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Abstract. This study extends the recently proposed Evolving Spiking Neural
Network (ESNN) architecture by combining it with an optimization algorithm,
namely the Versatile Quantum-inspired Evolutionary Algorithm (VQEA). kello
ing the wrapper approach, the method is used to identify relevant feathsets
and simultaneously evolve an optimal ESNN parameter setting. Appliedde car
fully designed benchmark data, containing irrelevant and redundanires of
varying information quality, the ESNN-based feature selection proeddad to
excellent classification results and an accurate detection of relevannation

in the dataset. Redundant and irrelevant features were rejectedssineteand

in the order of the degree of information they contained.

1 Introduction

In many recent studies attempts have been made to use Shi&irgl Networks (SNN)
for solving practical real world problems. It was arguedtBBIN have at least similar
computational power than the traditional Multi-Layer-&sptron derivates [1]. Sub-
stantial progress has been made in areas like speech réend8], learning rules [3]
and associative memory [4]. In [5] an evolving SNN (ESNN) wasoduced and ap-
plied to pattern recognition problems, later this work wagrded to speaker authenti-
cation tasks and even to audio-visual pattern recogniti®h [A similar spiking neural
model was analyzed [7], in which a classification problemtéste recognition was
addressed. Based on a simple but efficient neural modek tygsroaches used the
ESNN architecture, which was trained by a fast one-pasgilggaalgorithm. Due to its
evolving nature the model can be updated whenever new detertes available, with-
out requiring the re-training of earlier presented datapas Some promising results
could be obtained both on synthetic benchmark and real vdatasets.

This study investigates the potential of ESNN when appleBeature Subset Se-
lection (FSS) problems. Following the wrapper approachB88IN architecture com-
bined with an evolutionary algorithm. The latter one is usedientify relevant feature
subsets and simultaneously evolve an optimal parametimgér the ESNN, while
the ESNN itself operates as a quality measure for a presésdtare subset. By opti-
mizing two search spaces in parallel it is expected to evatv&SNN configuration,
specifically generated for the given dataset and a specéfiarfe subset, that maximizes
classification accuracy.



Algorithm 1 Training an Evolving Spiking Neural Network (ESNN)
Require: m; € (0,1), s €(0,1), c€(0,1), leL

1: initialize neuron repository; = {}

2: for all samplesx ” belonging to clasédo

3wl (my)7@, v j| j pre-synaptic neuron of

4 PSP — Y, w( (my)rder)

5. 09 — PSP,

6: if min(d(w™,w™))>s, w™ e R, then
7: w™ — mergew®andw™

8: 0™ — mergedandd™

9. dse

10: Ry — R U{w®}

11:  endif

12: end for

2 ESNN Architecturefor FSS

The ESNN architecture uses a computationally very simpteedficient neural model,
in which early spikes, received by a neuron, are strongeghted than later ones. The
model was inspired by the neural processing of the humarnvwdyieh performs a very
fast image processing. Experiments have shown that a @iamy needs several hun-
dreds of milliseconds to make reliable decisions about eadbat were presented in a
test scenario [8]. Since it is known that neural image reitagninvolves several suc-
ceeding layers of neurons, these experiments suggestazhthiavery few spikes could
be involved in the neural chain of image processing. In [9]athamatical definition
of these neurons was attempted and tested on some face itemodgsks, reporting
encouraging experimental results. The same model wasuseerby [10, 6] to perform
audio-visual face recognition.

Similar to other SNN approaches a specific neural model, milgga method, a
network architecture and an encoding from real values iptkestrains needs to be
defined in the ESNN method. The neural model is given by thedyecs of the post-
synaptic potential (PSP) of a neurtin

0 if neuron has fired
PSP t = order(i 1
o {Zjlf(j)<t wj; x (m;)orderd)  else 1)

wherew,; is the weight of a pre-synaptic neurgn f(j) the firing time of j, and

m; € (0, 1) a parameter of the model, namely the modulation factor. femorder(j)
represents the rank of the spike emitted by neyrdfor example a rankrder(j) = 0
would be assigned, if neurghis the first among all pre-synaptic neurons that emits
a spike. In a similar fashion the spikes of all pre-synapéiarons are ranked and then
used in the computation @S P;. A neuron; fires a spike when its potential has reached
a certain threshold. After emitting a spike the potential is reset®5 P; = 0. Each
neuron is allowed to emit only a single spike at most. Thestmo&dd = ¢ PSP, iS

set to a fractiorr € (0, 1) of the maximal potentiaP.S P,,,... possible by a neuron.
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Fig. 1. a) Population encoding based on Gaussian receptive fields. For an alpetv= 0.75

(thick straight line in top left figure) the intersection points with each Gaudsiaomputed
(triangles), which are in turn translated into spike time delays (lower leftdjgh) Evolution of
the PSP of the neural model for a given input stimulus. If the potentehes threshold a spike
is triggered and the PSP set to O for the rest of the simulation, even if themisistill receiving
incoming spike trains.

An evolving neural network architecture using the above ehatbng with a learn-
ing algorithm was proposed in [5]. The method successivedates a repository of
trained output neurons during the presentation of traisiagples. For each training
sample a new neuron is trained and then compared to the ameslalstored in the
repository. If a trained neuron is considered to be too sintd the ones in the repos-
itory (according to a specified similarity threshaly the neuron will be merged with
the most similar one. Otherwise the trained neuron is adolélet repository as a new
output neuron. Because of the incremental evolution of @utpurons it is possible to
accumulate knowledge as it becomes available. Hence adraetwork is able to learn
new data without the need of re-training the already leasaadples. The procedure is
described in detail in Algorithm 1.

Encoding of input values seems to be a critical factor in BINSapproaches. Sev-
eral encoding mechanisms for SNN have been proposed, stgasncy mappings,
Poisson processes and rank order encoding. Another appisotie population encod-
ing which distributes a single input value to multiple news@nd hence may cause the
excitation and firing of several responding neurons. Ourémgntation is based on
arrays of receptive fields as described in [d],Figure 1. Receptive fields allow the
encoding of continuous values by using a collection of nesitgith overlapping sensi-
tivity profiles. The method is well studied and constitutesdgical plausibility. Each
input variable is encoded independently by a grougibfone dimensional receptive
fields. For a variable an interval[I}? .. I .. 1is defined. The Gaussian receptive field
of neuroni is given by its centen; = I, +(2i—3) /2% (I}, —I..) /(M —2)) and
widtho = 1/8(17, .. — I /(M —2), with 1 < g < 2. Parametef directly controls
the width of each Gaussian receptive field. See Figure 1 fexample encoding of a
single variable.

The described ESNN method is summarized in Figure 2a. Irstbidy it was used
to address FSS problems following the well known wrapperaggh. A wrapper con-
tains a general optimization algorithm interacting withrauction method (classifier).
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Fig.2. a) ESNN architecture — A data sample is masked to extract a feature sulesegebh
variable is translated into trains of spikes. The resulting spike sequeraleia spiking neural
network and a repository of output neurons is successively gedatating the training process.
b) Chromosome used in VQEA for simultaneously optimizing feature andrpea space.

The optimization task consists in a proper identificatioranfoptimal feature subset,
which maximizes the classification accuracy determinedhieyimductor. The ESNN
architecture will operate as the induction method durireggdburse of this paper. Due
to its interesting properties in terms of solution qualihdaconvergence speed we de-
cided to use the previously proposed Versatile Quantumpited Evolutionary Algo-
rithm (VQEA) [11] as the optimization algorithm. The methedolves in parallel a
number of independent probability vectors, which inteedatertain intervals with each
other, forming a multi-model Estimation of Distributiongdrithm (EDA) [12]. It has
been shown that this approach performs well on epistatiblenas, is very robust to
noise, and needs only minimal fine-tuning of its parametarfact the standard setting
for vQEA is suitable for a large range of different problernes and classes. Finally
VQEA is a binary optimizer and fits well to the feature selattproblem we want to
apply it on.

Manual fine-tuning the neuronal parameters can quickly tmeca challenging task
[6]. To solve this problem the idea of the simultaneous ojatitiion of the two combi-
natorial search problems of FSS and learning of paramedethéd induction algorithm
was proposed [13]. The selection of the fithess function wastified to be a crucial
step for the successful application of such an embeddedagipr In the early phase
of the optimization the parameter configurations are setecdndomly. As a result it
is very likely that a setting is selected for which the clissiis unable to respond to
any input presented, which corresponds to flat areas in tesfittandscape. Hence a
configuration that will allow the network to fire (even if naircectly) represents a huge
(local) attractor in the search space, which could be difftolescape in later iterations
of the search. In [13] a linear combination of several sutea was used to avoid a too
rugged fitness landscape. Nevertheless we can not confiatnthign use of much sim-
pler fitness functions led to any problems in our experimedsing the classification
accuracy on testing samples seemed to work well as it is preséater in this paper.
All parameters modulation factan;, similarity thresholds;, PSP fractiony, Vi € L



of ESNN were included in the search space of VQEA. Due to iafyi nature vQEA
requires the conversion of bit strings into real values. @efl that a small number of
Grey-coded bits were sufficient to approximate meaningiwdmeter configurations of
the ESNN method. In Figure 2b the structure of a chromosonitdsagsed in VQEA is
depicted.

3 Experiments

We have applied the vVQEA optimised Evolving Spiking Neuratwork (ESNN) ar-
chitecture on the Two-Spiral problem firstly introduced 14]. It is composed of two-
dimensional data forming two intertwined spirals. It regsgithe learning of a highly
non-linear separation of the input space. The data wasdratyuused as a benchmark
for neural networks, including the analysis of the ESNN rodtltself [6]. Since the
data contains only two relevant dimensions we have exteiidgdadding redundant
and random information. The importance of the redundantifea was varied: Fea-
tures range from mere copies of the original two spirals tmgletely random ones.
The information available in a feature decreases when g#ronoise is applied. The
generation of the dataset is particularly interestingeesiih is expected that the ESNN
is capable of rejecting features according to their inherglormation,i.e. , the less
information a feature carries, the earlier ESNN should He &bdiscard the feature
during the selection process. We will briefly summarize thedyeneration below.

Data points belonging to two intertwined Archimedean dpifalso known as the
arithmetic spiral) were generated and labelled accorgdifigie irrelevant dimensions
consist of random values chosen from a uniform distribytemvering the entire input
space[—1, 1] of the dataset. The redundant dimensions are representedpigs of
the original spiral pointp = (x,y)?, which were disturbed by a Gaussian noise using
standard deviatiom = |p| * s, with |p| being the absolute value of vectprand s a
parameter controlling the noise strength. The noise isa®énearly for points which
are more distant from the spiral origif, 0)7. A noisy valuep! is then defined as the
outcome of they;-centered Gaussian distributed random variable;, o2), usingo as
defined above.

Our final dataset contained seven redundant two-dimerisipiral points(z/, /)%,
for each a different noise strength parameter {0.2,0.3, . ..,0.8} was used, totalling
in 14 redundant features. Additional four random features. ., r, were included.
Together with the two relevant features of the spiralaridy) the dataset contained 20
features. Figure 3 presents the 400 generated samplesrekiliéng dataset.

For vVQEA we chose a population structure of ten individuatgaized in a single
group, which is globally synchronized every generationis®etting was reported to
be generally superior for a number of different benchmadblams [12]. The learning
rate was set t6 = /100 and the algorithm was allowed to evolve over a total number
of 400 generations. In order to guarantee statistical asles 30 independent runs were
performed, using a different seed for each of them.

Additional to the feature space, VQEA was used to optimieegpirameter space of
the ESNN architecture. For each cldss L three parameters exist: The modulation
factorm;, the similarity threshold;, and the proportion factar;. Since the data rep-
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Fig.3. The different features of the generated synthetic dataset for inviesjgaSNN in the
context of a FSS problem. The colors/symbols represent the clagsofaheiven data point.
Each figure shows two features-(andy-axis), all features are combined to form the complete
experimental dataset.

resents a two-class problem, six parameters are involvtkiE SNN framework. The
binary character of vVQEA requires the conversion of bihgsiinto real values. In the
experiments we found four bits per variable enough to offficsent flexibility for the
parameter space. For the conversion itself a Grey code veals us

In terms of the population encoding we found that especth#ynumber of recep-
tive fields needs careful consideration, since it affeatsrésolution for distinguishing
between different input variables. After some preliminaxperiments we decided for
20 receptive fields, the centers uniformly distributed aberinterval[—1, 1], and the
variance controlling parametgr= 1.5.

In every generation the 400 samples of the dataset were mapdbuffled and di-
vided into 300 training and 100 testing samples. The chromesof each individual in
the population was translated into the corresponding patemand feature space, re-
sulting in a fully parameterized ESNN and a feature subdet. HESNN was then trained
and tested on the appropriate data subsets. For the computithe classification er-
ror we determined the ratio between correctly classifiedpdasrand the total number
of testing samples.

3.1 Resaults

In Figure 4a the evolution of the average best feature suibsetery generation is
presented. The lighter the color the more often the corredipg feature was selected

in a specific run at the given generation. First of all, eacthef30 runs identified the
two relevant features very accurately, but particularrggéng is the order in which
the features have been discarded by the algorithm. The émgom features,, ..., ry
containing no information were almost immediately rejdételess than 20 generations.
The redundant features, y; were rejected one after the other, according to the strength
of the noise applied: The higher the noise the earlier a featauld be identified as
irrelevant. Some runs struggled to reject the featufeandy;, perturbed by the smallest
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Fig. 4. Results on a synthetic spiral data set averaged over 30 runs usinguliffandom seeds
for the optimization algorithm. The two relevant features were identifiedllof the 30 runs (a).

The number of features decreases with increasing generationsnliheGame time the SNN
classifier delivers a good estimate of the quality of the the presenteddeathset (c). Only if
most of the noisy features have been discarded an optimal accunagoited. Along with the
features also the parameters of the SNN model are optimized (d).

noise strengthly = 0.2. The average number of features selected decreases stieadil
later generations, but the trend line in Figure 4b sugghstevolution is not completely
finished, yet. On the other hand the classification accurasyréached a satisfyingly
high level in later generationsf. Figure 4c. The average accuracy reported by each
individual in the population was constantly abd@%. Parameter optimization using
all of the features delivered a very poor average accuragy 6%, since the trained
network was unable to respond for most of the test sampleepted.

Figure 4d presents the evolution of the parameters of theNE&Mhitecture. Usu-
ally the values for modulation, merging and spike threslaoklpairwise very close to
each other. We take this as an indicator that vVQEA indeedraited these parame-
ters carefully, since different values for these pairs wWdag meaningless in this well-



balanced dataset. All three pairs display a steady tren@aolde constantly towards a
certain optimum, not reporting too much variability.

4 Conclusion and Future Work

In this study we have presented an extension for ESNN by agaowing it with an
evolutionary algorithm, which simultaneously evolves gtiroal feature subset along
with an optimal parameter configuration for ESNN. Here weduse already tested
and published quantum-inspired evolutionary algorith@].[The method was tested on
benchmark data for which the global optimum was knavmniori. The obtained results
are promising and encourage further analysis of more tieadisenarios. Especially the
meaning and impact of each of the ESNN parameters requirgea baderstanding and
should be investigated in detail in future studies. ESNNIs¢e be compared to similar
approaches in order to identify its potential advantageséadisadvantages on specific
problem classes. Finally the use of a real-valued parametéanization in addition to
the binary feature search should be considered.
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