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Abstract

A weighted coloured–edge graph is a graph for which each edge is assigned
both a positive weight and a discrete colour, and can be used to model trans-
portation and computer networks in which there are multiple transportation
modes. In such a graph paths are compared by their total weight in each
colour, resulting in a Pareto set of minimal paths from one vertex to another.
This paper will give a tight upper bound on the cardinality of a minimal set
of paths for any weighted coloured–edge graph. Additionally, a bound is pre-
sented on the expected number of minimal paths in weighted bicoloured–edge
graphs.
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1. Introduction

Definition 1.1. A weighted coloured–edge graph G = 〈V,E, ω, λ〉 consists
of a directed multigraph 〈V,E〉 with vertex set V and edge set E, a weight
function ω:E → R

+, and a (surjective) colour function λ:E → M , where M
is a set of possible colours for the edges.

Hence associated with each edge e ∈ E, there is an initial vertex u ∈ V
and a terminal vertex v ∈ V , a positive weight ω(e) ∈ R

+, and a colour
λ(e) ∈ M . The graph G is said to be finite if both V and E are finite sets,
in which case M is also finite.

Concepts similar to weighted coloured–edge graphs have received little
attention in the literature. Cĺımaco et al. [1] experimentally studied the
number of spanning trees in a weighted graph whose edges are labelled with
a colour. In that work, weight and colour are two criteria both to be mini-
mized and the proposed algorithm generates a set of non–dominated spanning
trees. The computation of coloured paths in a weighted coloured–edge graph
is investigated by Xu et al. [2]. The main feature of their approach is a
graph reduction technique based on a priority rule. This rule basically trans-
forms a weighted coloured–edge multidigraph into a coloured–vertex digraph
by applying algebraic operations to the adjacency matrix. Additionally, the
authors provide an algorithm to identify coloured source–destination paths.
Nevertheless, the algorithm is not intended for general instances because its
input is a unit–weighted coloured multidigraph and only paths not having
consecutive edges equally coloured are considered. In his paper Manous-
sakis [3] studied the computation of paths with specific colour patterns in
unweighted coloured–edge graphs. Particularly, his study focuses on alter-
nating coloured–edge paths in complete coloured–edge graphs. Finally, Bang
& Gutin [4] presents a survey of the computation of alternating cycles and
paths in coloured–edge multigraphs. Manoussakis as well as Bang & Gutin
only focus on unweighted graphs.

As this paper investigates shortest paths and all weights are positive, it
is presumed that graphs do not have any self-loops. Similarly, it can be
presumed that for any two vertices x, y ∈ V and colour c ∈ M there is at
most one edge exy ∈ E from u to v for which λ(exy) = c. Therefore, for a
finite graph with n = |V |, m = |E|, k = |M |, there is a bound on the number
of edges, given by m ≤ kn(n− 1).

A path in G consists of a finite set of edges
{
ex0x1, ex1x2 , . . . , exl−1xl

}
for

which the terminal vertex xi of each exi−1xi
is the initial vertex of exixi+1

,
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and the path is considered to be from the source x0 to the destination xl.
The path is called simple if no two edges in the path have the same initial
vertex nor the same terminal vertex. It is straightforward to verify that a
finite graph has at most the following number of simple paths from a chosen
source vertex to a destination vertex:

k + k2(n− 2) + k3(n− 2)(n− 3) + . . .+ kn−1(n− 2)(n− 3) · · ·1.
For any path puv =

{
ex0x1, ex1x2 , . . . , exl−1xl

}
from a vertex u = x0 to a vertex

v = xl and any colour c ∈ M the path weight in colour c is defined by:

ωc(puv) =
∑

λ(exixi+1)=c

ω(exixi+1
),

namely the sum of the weights for those edges that have colour c. The weight
of a path is represented as a k-tuple (ωc1(puv), . . . , ωci(puv), . . . , ωck(puv)),
giving the total weight of the path in each colour. A preorder ≤ can be
defined on the paths from u to v by puv ≤ quv if for every colour c one has
ωc(puv) ≤ ωc(quv), essentially using the partial order defined on the weights
by the product partial ordering on R

k.
From the above definitions it is apparent that the concept of a weighted

coloured–edge graph with k colours can equivalently be formulated as a mul-
tiweighted multigraph where each edge is assigned a k-tuple of non-negative
weights (wc1, . . . , wci, . . . , wck) and exactly one wci > 0. However, multi-
weighted graphs are mostly used in multicriteria optimization applications
where the weight components correspond to quantities to be optimized, such
as cost and time, so edges typically contribute toward more than just one
quantity. For this reason multiweighted graphs whose edge weights are
zero in all but one component have not received attention in the litera-
ture. Furthermore, most multicriteria optimization techniques do not con-
sider multigraphs, although some can be generalized to include such possibili-
ties. By contrast, weighted coloured–edge graphs are suitable for multimodal
network applications, which can be modeled using weighted coloured–edge
graphs where the weights represent some form of distance in a network and
the colours represent the mode of transportation. In the past most mul-
timodal network optimization applications have needed constraints to be
placed on the network to make the determination of a shortest path fulfill-
ing application-specific criteria tractable. Often such criteria can be speci-
fied based on the total path weights in each mode, so if the set of minimal
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paths has manageable cardinality then the application-specific criteria might
only need be applied to the set of minimal paths rather than to potentially
O (kn−1(n− 2)!) paths.

This paper is interested in establishing bounds on the number of paths
that can be minimal from one vertex u to another vertex v. Certainly, if
the graph is disconnected then there might be no paths from u to v, and
if it is connected with edges in each allowed colour then there are at least
k minimal paths, since paths that have edges solely in single but distinct
colours are incomparable. However, an upper bound might appear to be
difficult to establish.

As a simple example, consider the following graph with three vertices,
six edges, and two possible colours M = {red, green} where red edges are
indicated by dashed arcs.

u

x

v

rux

gux
ruv

guv

rxv

gxv

This graph has six paths from u to v with the following weights:

(rux+rxv, 0), (rux, gxv), (rxv, gux), (0, gux+gxv), (ruv, 0), (0, guv).

Certainly the path weights (rux+rxv, 0) and (ruv, 0) must be comparable un-
der the product partial order on R

2, as are (0, gux+gxv) and (0, guv). Depend-
ing on the six edge weights there can be either two, three, or four minimal
paths from u to v with distinct weights.

Similarly, for the following graph with four vertices, fourteen edges and
two possible colours:

u

x

y

v
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there are 26 paths to consider from u to v. After a surprising amount of
effort it can be seen that there are between two and a maximum of eight
minimal path weights possible.

As an important special case, a weighted coloured–edge graph is called a
chain if in some enumeration of its vertices v1, v2, v3, . . . , vn−1, vn the graph
only has edges from a vertex vx to the next vertex vx+1 in the enumeration.

v1 v2 v3 v4 vn−1 vn

r1
g1
b1

r2
g2
b2

r3
g3
b3

. . .

rn−1

gn−1

bn−1

Clearly, a chain can have up to a maximum of kn−1 paths from v1 to vn. A
simple induction argument can be used to show that in the following chain
all kn−1 paths have minimal weight:

v1 v2 v3 v4 vn−1 vn. . .

1
1
1

2
2
2

4
4
4

2n−2

2n−2

2n−2

Adding more forward edges to the chain from x to y for y > x+1 increases the
number of paths in the graph but it cannot increase the number in a minimal
set of incomparable paths, and might possibly decrease the number. But
adding backward edges from x to y for y < x appears to greatly complicate the
situation. However, it is shown in this paper that essentially chains illustrate
the worst possible situation, whereas more general weighted coloured–edge
graphs may have a factorial number of paths a minimal set of incomparable
paths can only have cardinality up to kn−1 (hence in a multimodal network
this is a tight bound on the Pareto set of minimal path weights that might
need to be considered when applying application-specific constraints). It is
interesting to note that an equivalent result for general multiweighted graphs
(even restricting attention to only consider unigraphs) does not hold.

This paper also addresses the determination of a bound on the expected
number of minimal paths when the edge weights are random variables in a
weighted bicoloured–edge graph (k = 2). It provides an O(n3) probabilistic
bound on the expected number of minimal paths for bicoloured–edge graphs
whose weights are drawn from a bounded probability density function.
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2. Upper Bound on Minimal Paths

To prove that kn−1 is a bound on the cardinality a special class of weighted
coloured–edge graph is first introduced.

Definition 2.1. A weighted coloured–edge graph G = 〈V,E, ω, λ〉 is called
canonical if:

• G is complete in each colour, namely for all vertices x �= y and colour
c there is exactly one edge exy from x to y with λ (exy) = c,

• G satisfies the triangle inequality in each colour, for all distinct vertices
x, y, z and colour c, the triangle formed by the three edges exy, eyz , exz
with λ (exy)=λ (eyz)=λ (exz) = c obeys ω (exz) ≤ ω (exy) + ω (eyz).

It is not difficult to verify in a canonical graph that every edge exy gives
a minimal path from x to y. The following lemma shows that it will be
sufficient to establish the bound on the class of canonical graphs.

Lemma 2.2. Given any finite weighted coloured–edge graph G = 〈V,E, ω, λ〉
there is a canonical graph G∗ = 〈V,E∗, ω∗, λ∗〉 with the same vertices and
colours as G, where E ⊆ E∗, λ∗|E = λ, and for which every minimal path
in G is also minimal in G∗.

Proof. Firstly note that G can be made complete by adding edges exy with
weight n · w where n = |V | and w is the maximum weight of any edge in
G. The added edges won’t affect any existing minimal paths as those paths
contain at most n − 1 edges so their path weight in each colour is less than
n · w. It might however introduce additional minimal paths in the graph if
there were no existing path from x to y in some colour. Take E∗ to be the
resulting set of edges.

Next, the graph can have its weights altered by defining ω∗ (exy) to be
the weight of the shortest path from x to y that only uses edges with colour
λ∗ (exy). Thanks to completeness ω∗ is well-defined and clearly the resulting
graph satisfies the triangle inequality.

Theorem 2.3. Suppose G is a weighted coloured–edge graph with n ≥ 2
vertices and k colours. Then a set of incomparable minimal paths in G from
one vertex to another can have at most kn−1 paths.
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Proof. The proof uses a counting argument and induction to bound the car-
dinality fc(n) of a set of incomparable minimal paths whose first edge has
colour c in any weighted coloured–edge graph with n vertices. Trivially,
fc(2) = 1 for any graph G with only two vertices.

For the inductive step presume that fc(m) ≤ km−2 in any graph with
m ≤ n vertices and suppose G = 〈V,E, ω, λ〉 has n + 1 vertices. By Lemma
2.2 G can be presumed to be canonical. Let u and v be any two distinct
vertices of G and S be a set of incomparable minimal paths from u to v. By
the triangle inequality it can be presumed that no minimal path in S has
two consecutive edges of the same colour. Furthermore, a useful observation
for a minimal path that starts with an edge eux of colour λ (eux) = c and
which passes through some vertex y before reaching v is that for the edge
euy with λ (euy) = c minimality of the path ensures that ω (eux) < ω (euy).
To show that fc(n+1) ≤ kn−1 for each colour c order the remaining vertices
of V , v1, v2, . . . , vn−1 so that if i < j then ω (euvi) ≤ ω

(
euvj
)
where euvi and

euvj are the edges of colour c from u to vi and vj respectively. By the earlier
observation, no minimal path that starts with the edge euvi of colour c can
pass through any of the vertices vj for j < i. Hence, any minimal path
that starts with the edge euvn−1 has only a choice of k − 1 edges to reach
v (since its consecutive edges are not of the same colour), so there are at
most k−1 such paths. Similarly, any minimal path that starts with the edge
euvi can only utilize vi, vi+1, . . . , vn−1 and v, so by the inductive hypothesis
for m = n − i + 1 there are at most Σc′ �=cfc′(n − i + 1) ≤ (k − 1)kn−i−1.
Summing across all the edges euv1 , euv2 , . . . , euvn−1 and euv gives fc(n + 1) ≤
(k−1)kn−2+(k−1)kn−3+ · · ·+(k−1)+1 = kn−1. Since there are k possible
colours in which to start a path this completes the proof.

Note that as the proof relies on being able to linearly order the vertices
v1, v2, . . . , vn−1 based on the edge weights ω (euvi) in a specific colour c, the
proof can not be readily adapted to arbitrary multiweighted graphs. This
result gives a tight upper bound on the cardinality of a set of incomparable
minimal paths in a weighted coloured–edge graph. The bound is suitable
for applications that are primarily interested in determining an optimal path
given criteria that depend on the total weight in each mode of transportation.
However, the proof can be sightly modified to provide a bound on the total
number of minimal paths in the graph from u to v, counting all minimal
paths that are comparable with each other (having the same path weight).
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Theorem 2.4. Suppose G is a weighted coloured–edge graph with n ≥ 2
vertices and k colours for which there is only at most one edge of each colour
between vertices. Then G has at most k(k + 1)n−2 minimal paths from one
vertex to another.

Proof. Similar to Theorem 2.3 except that the counting argument bounds
gc(m) ≤ (k + 1)m−2 and paths are allowed to have the same colour on two
consecutive edges.

The bound established in Theorem 2.4 can be seen to be tight by con-
structing examples based on the chain example in the previous section but
with additional edges, such as the following example for n = 4 in which each
of the 3× 42 paths from v1 to v4 is minimal:

v1 v2 v3 v4

1

1

1

2

2

2

4

4

4

3

3

3

6

6

6

7
7

7

3. Expected Number of Minimal Paths

This section demonstrates that the expected number of minimal paths for
a bicoloured–edge graph is polynomially bounded. The approach is based on
some ideas from Röglin & Vöcking [5] and Beier et al. [6] where a bound
on the expected number of optimal solutions is estimated for bicriteria prob-
lems. Their work focuses on the establishment of a probabilistic bound on
the number of Pareto optimal points for bicriteria integer problems, exploit-
ing structural properties of the Pareto frontier that are termed as winners
and losers. It is adapted here to estimate a probabilistic bound on the num-
ber of minimal paths in weighted bicoloured–edge graphs. However, several
arguments have been modified to be applied in the context of coloured–edge
graphs.

Suppose G is a finite weighted bicoloured–edge graph with colours M =
{red, green} for convenience and let u, v be vertices of G for which there is
a pure coloured–edge path in colour green from u to v.
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Assume e is a red edge of G whose weight is a random variable with
bounded probability density function fe : (0,∞) → [0, φe] for some φe > 0.
Define the function Δe : [0,∞) → (0,∞] for r ≥ 0 by the following. Consider
the paths pe from u to v that do not include the edge e and for which
ωred(pe) ≤ r. Since there is a pure path in colour green from u to v, there
are such paths pe, and since G is finite there are only finitely many such
paths. Take pmax

e to be such a path that has least green weight and let
gr = ωgreen(p

max
e ). Note that gr is uniquely defined for r and does not depend

in any way on the value of ω(e). Next, consider the paths qe from u to
v that do include the edge e and for which ωgreen(qe) < gr. If there is no
such path then take Δe(r) = ∞ for convenience, otherwise let qmin

e denote
such a path that has least red weight and take Δe(r) = ωred(q

min
e ). Note that

although ωred(q
min
e ) depends on the value of ω(e), the weight of this edge does

not affect the relative red ordering between the various qe (since they each
include e). Hence the choice of qmin

e (or another qe with same red weight)
does not depend in any way on the value of ω(e), and sr = ωred(q

min
e )−ω(e)

(where sr is the sum of red weights except for e) is uniquely determined by
r and does not depend on the choice of ω(e).

�

�

�

��

�

�

�

�

�
pmax
e

��

��
qmin
e

�

��

�

��

�

�

��

�

��

�

�

�

��

�

Δe(r)

r

gr

red

green

Figure 1: Representation of Δe(r) and associated variables.
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Figure 1 illustrates Δe and its associated variables, where black dots are
used to represent paths not using edge e and white dots represent the paths
containing e. Note that all qe paths just shift horizontally depending on the
value of ω(e). However, they do not change their positions relative to each
other.

Lemma 3.1. For any r ≥ 0 and ε ≥ 0, if Δe(r) < ∞ then

P(r < Δe(r) ≤ r + ε) ≤ φe · ε.

Proof. Let r ≥ 0, ε > 0 and qmin
e be a path that includes e with ωgreen(q

min
e ) <

gr and ωred(q
min
e ) minimal amongst such paths. As sr does not depend on

the value of ω(e) one has:

P(r < Δe(r) ≤ r + ε) = P(r < sr + ω(e) ≤ r + ε)

= P(r − sr < ω(e) ≤ r − sr + ε)

=

∫ r−sr+ε

r−sr

fe(x)dx

≤
∫ r−sr+ε

r−sr

φedx = φe · ε.

Now, suppose that all the red edges e of the graphG have weights that are
random variables with bounded probability density functions, and suppose
that besides a pure green path from u to v there is also a pure coloured–edge
path in red from u to v, with a minimal pure coloured–edge path in red
having red weight rtot.

Define the function Δ : [0, rtot) → (0,∞) for 0 ≤ r < rtot by the following.
Consider the minimal paths q from u to v for which ωred(q) > r. Since there
is a pure red path with weight rtot, there are such paths q, and since G is
finite there are only finitely many such paths. Take qmin to be a minimal path
with ωred(q

min) > r that has least red weight and take Δ(r) = ωred(q
min) > r.

Figure 2 illustrates Δ(r) and qmin.

Lemma 3.2. For 0 ≤ r < rtot, there exists a red edge e for which Δ(r) =
Δe(r).
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�
pmax

�

�

�

�
qmin

�

�

�

�

�

�

�

�

�

�

Pareto frontierΔ(r)

r
red

green

Figure 2: Representation of Δ(r) and associated variables.

Proof. Consider the minimal paths p from u to v for which ωred(p) ≤ r. Since
there is a pure green path from u to v there are such paths, and since G is
finite there are only finitely many such paths. Take pmax to be a minimal
path with ωred(p) ≤ r that has least green weight. Then pmax and qmin

are adjacent minimal paths on the Pareto frontier, so there can be no path
between pmax and qmin in the sense that no path can have both its red weight
less than ωred(q

min) and its green weight less than ωgreen(p
max).

Since ωred(p
max) ≤ r < ωred(q

min) there must be some red edge e that is
in qmin but not in pmax. As pmax

e has the least green weight amongst paths pe
that do not include e and for which ωred(pe) ≤ r, ωgreen(p

max
e ) ≤ ωgreen(p

max).
As ωred(p

max
e ) ≤ r < ωred(q

min), and there are no paths between pmax and
qmin it follows that ωgreen(p

max
e ) = ωgreen(p

max). Hence gr = ωgreen(p
max).

As pmax and qmin are incomparable ωgreen(q
min) < ωgreen(p

max) = gr.
Next, as qmin

e has the least red weight amongst paths qe that do include e and
for which ωgreen(qe) < gr, ωred(q

min
e ) ≤ ωred(q

min). But since ωgreen(q
min
e ) <

gr = ωgreen(p
max) and there are no paths between pmax and qmin, it fol-

lows that ωred(q
min
e ) = ωred(q

min). Hence one has Δ(r) = ωred(q
min) =

ωred(q
min
e ) = Δe(r).
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Corollary 3.3. For any 0 ≤ r < rtot and ε > 0

P(Δ(r) ≤ r + ε) ≤
( ∑

red edge e

φe

)
· ε.

Proof. If r < Δ(r) ≤ r + ε then by Lemma 3.2, there exists a red edge e for
which r < Δe(r) ≤ r + ε. Hence using a union bound and Lemma 3.1,

P(r < Δ(r) ≤ r + ε) ≤
∑

red edge e

P(r < Δe(r) ≤ r + ε)

≤
∑

red edge e

φe · ε.

Corollary 3.3 provides the main argument to establish a bound on the
expected number of minimal paths for a bicoloured–edge graph.

Theorem 3.4. Let G be a finite weighted bicoloured–edge graph and let u, v
be vertices of G for which there is a pure colour path from u to v in each of
the two colours. Suppose that the weights of all edges e in one of the colours
are random variables with probability density functions bounded above by φe,
and let rtot denote the weight of the minimal pure colour path in that colour.
Then the expected number of Pareto minimal elements with distinct weights
is bounded above by

∑
e φe · rtot + 1.

Proof. As previously denote the colours by {red, green} for convenience. As
G is finite there are only finitely many minimal paths q from u to v, and
they all have red weight between 0 and rtot inclusive.

Partition the interval (0, rtot] into κ equal subintervals and note that since
only minimal paths with distinct (red) weights are considered, there is a
threshold κmin above which each interval can contain at most one minimal
path. Hence for all κ ≥ κmin, the expected number of distinct minimal paths
is

1 +

κ−1∑
i=0

P

(
∃ minimal path q with

rtot
κ

i < ωred(q) ≤ rtot
κ

(i+ 1)
)

including the minimal pure green path that has red weight 0. Figure 3 depicts
the partition of (0, rtot].
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green

Figure 3: Pareto minimal elements and partition of the interval (0, rtot].

Now for each i there is a minimal path q with rtot
κ
i < ωred(q) ≤ rtot

κ
(i + 1)

if and only if Δ( rtot
κ
i) ≤ rtot

κ
(i+ 1) which has probability bounded above by

(
∑

φe)
rtot
κ

by Corollary 3.3. Hence the expected number of minimal paths
with distinct weights is bounded by

1 +

κ−1∑
i=0

(∑
φe

) rtot
κ

= 1 + (
∑

φe) · rtot.

Note that if each red edge has weight bounded by rmax then rtot is O(n),
so the expected number of minimal paths is O(mn) + 1 where m denotes
the number of red edges. Furthermore, there are only at most n2 − 3n + 3
red edges to consider in a graph with n vertices so the order is bounded by
O(n3).

4. Conclusions

For weighted coloured–edge graphs to be successfully utilized in multi-
modal network applications the number of minimal paths needs to be man-
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ageable, as each minimal path may need to be further investigated to de-
termine a sought optimal path or paths in a particular application. The
chain example from Section 1 with exponentially growing weights illustrates
that there can be an exponential number of incomparable minimal paths in
a weighted coloured–edge graph. However, Theorem 2.3 shows that this is a
tight bound, and the fact that there can only be an exponential number kn−1

of minimal paths rather than potentially a factorial number O (kn−1(n− 2)!)
is surprising. As a consequence, even in the worst case moderately sized
graphs (with around 20− 30 vertices) can still be feasibly tackled.

Experimental studies undertaken by the authors indicate that the number
of minimal paths in real networks is typically a low-order polynomial function
of n, so very large networks can be studied in practice. Theorem 3.4 justifies
this observation for bicoloured–edge graphs whose edge weights are randomly
drawn from a bounded probability density function, showing that only O (n3)
minimal paths are expected. It is presumed that this polynomial bound can
be substantially reduced and that a similar result is also true for coloured–
edge graphs with k > 2 colours.
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