
Full citation: Schmidt, F., MacDonell, S.G., & Connor, A.M. (2012) An automatic architecture
reconstruction and refactoring framework, in Proceedings of the 9th ACIS International Conference
on Software Engineering Research, Management and Applications (SERA2011). Baltimore MD,
USA, Springer (Studies in Computational Intelligence v.377), pp.95-111.

doi: 10.1007/978-3-642-23202-2_7

An Automatic Architecture Reconstruction
and Refactoring Framework

Frederik Schmidt, Stephen G. MacDonell and Andy Connor
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
{fschmidt, stephen.macdonell, andrew.connor}@aut.ac.nz

Abstract

A variety of sources have noted that a substantial
proportion of non trivial software systems fail due to
unhindered architectural erosion. This design
deterioration leads to low maintainability, poor testability
and reduced development speed. The erosion of software
systems is often caused by inadequate understanding,
documentation and maintenance of the desired
implementation architecture. If the desired architecture is
lost or the deterioration is advanced, the reconstruction
of the desired architecture and the realignment of this
desired architecture with the physical architecture both
require substantial manual analysis and implementation
effort. This paper describes the initial development of a
framework for automatic software architecture
reconstruction and source code migration. This
framework offers the potential to reconstruct the
conceptual architecture of software systems and to
automatically migrate the physical architecture of a
software system toward a conceptual architecture model.
The approach is implemented within a proof of concept
prototype which is able to analyze java system and
reconstruct a conceptual architecture for these systems as
well as to refactor the system towards a conceptual
architecture.

Keywords: Architecture reconstruction, software
migration, source code transformation and refactoring,
search based software engineering, metaheuristics

1. INTRODUCTION

Software systems evolution is triggered by changes of
business and technical requirements, market demands and
conditions [1]. This evolution leads often to an erosion of
the architecture and design of the system [2]. Reasons for
this are several – insufficient time for design
improvements [3], no immediate architecture
maintenance and management, fluctuation of employees,
and different levels of knowledge and understanding of
the conceptual architecture. Additionally, the automatic

inclusion of imports within current IDE’s obfuscates the
creation of unwanted dependencies which conflict with
the conceptual architecture. This erosion of design leads
to fragile, immobile, viscous, opaque and rigid software
systems [4]. Architecture reconstruction tools can help to
create views of the physical architecture of the system [5],
however these views do not fully support the ability to
reconstruct a conceptual architecture view of the system
which can be utilized as a blueprint for further
development. Architecture management tools [6] such as
Lattix, Sotograph and SonarJ help to monitor the design
drift. To apply these, however, a clear conceptual
architecture has to be defined. These tools offer only
limited support to realign the conceptual and physical
architectures [6]. Manual recreation of the conceptual
architecture is hindered as the design erosion obfuscates
the original intent of the system design. Additionally,
existing architecture violations introduced during the
system erosion have to be resolved to realign the physical
architecture with the conceptual architecture. To avoid, or
at least simplify, this complex and time consuming
manual process we introduce an automatic framework for
reconstruction and refactoring. This framework features
the reconstruction of a conceptual architecture model
based on acknowledged design principles and the
resolution of architecture violations by applying software
migration techniques. This facilitates the migration of the
physical architecture model towards the conceptual
architecture model. Before the framework is described,
related work on software architecture reconstruction and
migration is presented.

2. RELATED WORK

The objective of this work relates to a variety of software
engineering disciplines such as software architecture
modeling, software architecture reconstruction, software
architecture transformation and automatic refactoring of
legacy systems. Strategies of software clustering and
search based software engineering are applied to realise
the objective of our study. Additionally, software
architecture metrics are applied to evaluate the value of

http://dx.doi.org/10.1007/978-3-642-23202-2_7�

the generated solutions. To highlight the relevance and
significance of our study relevant and contributing work
of the named areas are illustrated in this section.

2.1. Software Architecture

The architecture of a software system visualizes a
software system from an abstract view. An architectural
view of a system raises the level of abstraction, hiding
details of implementation, algorithms and data
representations [7]. These architectural views can focus
on different aspects of the system for example a service,
implementation, data or process perspective [5].
Associated fine grained entities are classified into more
abstract modules. Having a current representation of the
system architecture is crucial in order to maintain,
understand and evaluate a large software application [8].

Murphy & Notkin [9] depict the reflexion model as a
framework to prevent software architecture deterioration
of the implementation perspective. The reflexion model
features a conceptual architecture which defines a desired
model of the system and a mapping of the physical
implementation units into the subsystems of the
conceptual architecture model. The conceptual
architecture model facilitates a development blueprint for
the development stakeholders. An ideal conceptual
architecture models the domain and technical
environment of the software system and delivers a
framework to maintain desired quality aspects.

The approach adopted by Murphy & Notkin [9] demands
regular compliance checking of the physical and
conceptual architectures and the immediate removal of
architecture violations by applying refactoring techniques
[10]. Therefore the documentation of a conceptual
architecture and compliance checking of the conceptual
and physical architecture is an important aid to maintain
and understand software systems [11]. Within many
software projects the compliance checking of physical
architecture and conceptual architecture as well as the
inclusion of realignment of the physical and conceptual
architecture is not consequently included into the
development process [12]. Additionally, software systems
evolve due to requirement and framework changes during
development. This may require altering the conceptual
architecture. Consequently, the conceptual and physical
architecture drifts apart without a rigorous compliance
checking and refactoring of the physical architecture. The
manual reconstruction of the architecture as well as the
manual realignment is complex and time consuming.

2.2. Software Architecture Reconstruction

One of the challenges associated with architecture
reconstruction is that often the available documentation is
incomplete, outdated or missing completely. The only
documentation of the software system is the source code
of the system itself.

Reverse engineering activities help to obtain abstractions
and views from a target system to help the development
stakeholders to maintain, evolve and eventually re-
engineer the architecture. The main objective of software

architecture reconstruction is to abstract from the
analyzed system details in order to obtain general views
and diagrams with different metrics associated with them.
Even if the source code might be eroded it is often the
only and current documentation of the software system.
Therefore the extraction of architecturally significant
information and its analysis are the key goals which have
to be determined to apply software architecture
reconstruction successfully.

A variety of approaches and tools evolved to support the
reconstruction of software architectures. Code Crawler
[13] allows reverse engineering views of the physical
architecture. The tool is based on the concept of
polymeric views which are bi-dimensional visualisations
of metric measurement such as Lines of Code, Number Of
Methods, Complexity, Encapsulation etc. These views
help to comprehend the software system to identify
eroded and problematic artefacts. The Bauhaus [14] tool
offers methods to analyze and recover the software
architecture views of legacy systems; it supports the
identification of re-usable components and the estimation
of change impact.

In reverse engineering, software clustering is often
applied to produce architectural views of applications by
grouping together implementation units, functions, files
etc. to subsystems that relate together. Software clustering
refers to the decomposition of a software system into
meaningful subsystems [15]. The clustering results help
to understand the system. The basic assumption driving
this kind of reconstruction is that software systems are
organised into subsystems characterised by high internal
cohesion and loose coupling between subsystems.
Therefore, most software clustering approaches reward
high cohesion within the extracted modules and low
coupling between the modules [16]. Barrio [17] is used
for cluster dependency analysis, by using the Girvan–
Newman clustering algorithm to extract the modular
structure of programs. The work of Macoridis & Mitchell
[18, 19, 20] identifies distinct clusters of similar artefacts
based on cohesion and coupling by applying a search
based cluster strategy. These approaches are appropriate
if the purpose is merely the aggregation of associated
artefacts into a first abstraction of the system to redraw
component boundaries in software, in order to improve
the level of reuse and maintainability. Software
architecture reconstruction approaches apply software
clustering approaches to determine an architecture model
of the system.

Chrstl & Koschke [21] depict the application of a search
based cluster algorithm introduced in [22] to classify
implementation units into a given conceptual architecture
model. In a set of controlled experiments more than
ninety percent of the implementation units are correctly
classified into subsystems. The results indicate that an
exclusively coupling based attraction function delivers
better mapping results than the approach based on
coupling and cohesion. Due to the given conceptual
architecture the search space (clusters and dependencies
between clusters) is distinctly reduced and a fair amount
of the tiring process of assigning implementation units
into subsystems is automated. However, it would be
interesting if the approach is still feasibility if the erosion

of the system is more pronounced. There is a high chance
that with further erosion of the system that the error ratio
would accumulate. Additionally, to apply the approach of
Christl & Koschke [21] a conceptual architecture has to
be evident to conduct the clustering. But as illustrated in
the previous section and supported by various sources [7,
12, 23] current software systems face especially that the
conceptual architecture is completely or at least partially
lost.

The work of EAbreu et al. [16] complements the results
of Christl & Koschke [21], showing that clustering based
on the similarity metric and rewarding cohesion within
subsystems and penalising coupling between subsystems
does not provide satisfactory results which go beyond the
visualisation of cohesive modules such as dependencies
between modules, which would allow to model concepts
as machine boundaries and encapsulation of modules.

The reconstruction of an architectural model, which can
later be used as a conceptual architecture for further
development is accompanied by two main problems,
which cannot be solved with an approach which
exclusively relies on maximises cohesion and minimising
coupling based on a similarity function. The first problem
is that a natural dependency flow from higher subsystems
to modules of lower hierarchy levels exists. This
dependency flow induces the cohesion and coupling
based cluster algorithms to include artefacts of lower
modules. Secondly, an architecture reconstruction is
probably applied when the conceptual architecture is lost.
Therefore a high degree of erosion might be evident in the
physical architecture and correspondingly the assumption
that a high internal cohesion and loosely coupling is
evident might not be existent. Hence, to reconstruct an
architectural model which fulfils the requirements of an
architectural model more refined analysis techniques have
to be applied. Other approaches base their analysis on non
source code formations such as symbolic textual
information available in comments, on class or method
names, historical data (time of last modification, author)
[24]. Other research includes design patterns as an
architectural hint [25]. Sora et al. [8] enhance the basic
cohesion and coupling based on the similarity and
dissimilarity metric by introducing the concept of
abstraction layers. Sora et al. [8] proposes an partitioning
algorithm that orders implementation units into abstract
layers determined by the direction of the dependencies.
Sora et al. [8] do not include the possibility of unwanted
dependencies. Therefore, architecture violating
dependencies might bias the analysis and a higher degree
of erosion leads to a solution with lower quality. Further
evolved architecture reconstruction approaches aim to
recover the layering of software systems as a more
consistent documentation for development [26, 8].

Current approaches show the feasibility to reconstruct
architectural views of software systems, however these
approaches do not evaluate if these results are applicable
to improve the understandability of the system or if the
results are applicable as a conceptual architecture as part
of the reflexion model. Additionally the illustrated
architecture reconstruction approaches struggle to identify
metrics beside cohesion and coupling to capture the
quality of a conceptual architecture. The illustrated

approaches do not consider that the physical architecture
features a degree of erosion and deterioration which
biases the reconstruction of a conceptual architecture.
Current architecture reconstruction approaches create an
abstract view of the physical architecture of the software
system into. These abstraction views itself do not benefit
a quality improvement of the system. They rather deliver
a blue print for development stakeholders to understand
the current implementation of the system. This enhanced
understanding of the system can be utilised to conduct
refactorings to improve the physical design of the system.
Thus, the reconstruction of a conceptual architecture
without changing the physical architecture will not
improve the quality of the software system. Especially if
the conceptual architecture has been reconstructed based
on the source code of an eroded software system
refactoring is required to realign the eroded design with
the new conceptual architecture model. Hence, to improve
the quality of the system the physical architecture has to
be refactored in conjunction with the conceptual
architecture to improve the overall design of the system.

2.3. Automatic Architecture Refactoring

One of our objectives of this study is to automatically
realign the physical architecture with a given or
reconstructed conceptual architecture. We understand the
resolution of architecture violations as a migration of the
physical architecture model to a new instance of the
physical architecture model which features the same
behaviour but aligns to a given conceptual architecture
model. Therefore, work which feature automatic
refactoring, architecture realignment and migration of
software systems is of particular interest.

Refactoring is the process of changing the design of a
software system by preserving the behavior [27]. This
design improvement should positively benefit software
quality attributes [10] such as testability, modularity,
extendibility, exchangeability, robustness etc. Gimnich
and Winter [28] depict migration as an exclusively
technical transformation with a clear target definition.
The legacy system is considered as featuring the required
functionality and this is not changed by applying the
migration. Therefore, the refactoring of a software system
can be understood as a migration of a software system to
another version which fulfils other quality criteria.
Hasselbring, et al. [29] describe architecture migration as
the adaptation of the system architecture e.g. the
migration from a monolithic system towards a multi-tier
architecture. Heckel et al.[30] illustrates a model driven
approach to transform legacy systems into multi-tier or
SOA architecture by applying the four steps code
annotation, reverse engineering, redesign and forward
engineering. The code annotation is the manual
equipment with a foreseen association of architectural
elements of the target system, e.g., GUI, application logic
or data conducted by the development stakeholders [30].
The remaining three stages are executed guided by the
annotations. If the identified solution is not satisfying the
approach is iteratively repeated.

Ivkovic & Kontogiannis [1] propose an iterative
framework for software architecture refactorings as a

guideline to refactor the conceptual architecture model
towards Soft Quality Goals using model transformations
and quality improvement semantic annotations. The first
step of Ivkovic & Kontogiannis [1] approach requires
determining a Soft Goal hierarchy. The Soft Goal
hierarchy is a set of Soft Goals ordered by relevance. The
Soft Goal model assigns metric configurations to the Soft
Goals high maintainability, high performance and high
security. In the second phase a set of candidate
architectural refactorings are selected which lead to
improvements towards one of the Soft Goals. In the third
stage the derived refactorings are annotated with
compatible metrics which measure quality aspects of the
concerned Soft Goal. Metric values are determined before
and after conducting the refactoring to establish if the
refactoring has a positive effect onto the quality attribute
of the Soft Goal. Finally, the refactorings are iteratively
conducted by selecting each soft goal of the soft goal
hierarchy and implementing the refactorings with the
highest benefit based on the previous metric
measurements. O'Keeffe and Cinnéide [31] propose an
automatic refactoring approach to optimize a set of
quality metrics. They developed a set of seven
complementary pairs of refactorings to change the
structure of the software system. Metaheurisitc algorithms
such as multiple ascent hill-climbing, simulated annealing
and genetic algorithm are then used to apply the
implemented refactorings. The fitness function to evaluate
the refactored source code instance employs an
implementation of the Bansiya’s QMOOD hierarchical
design quality model [32]. The QMOOD model
comprises eleven weighted metrics depending on the
weighting of these metrics the software quality attribute
understandibility, reusability and flexibility can be
expressed as a numerical measurement [32]. O'Keeffe and
Cinnéide [31] utilizes these three different weightings as
different fitness functions to refactor a system towards the
desired quality attributes. They found that some of the
example projects can be automatically refactored to
improve quality as measured by the QMOOD evaluation
functions. The variation of weights on the evaluation
function has a significant effect on the refactoring
process. The results show that first-ascent hill climbing
produces significant quality improvements for the least
computational expenditure, steepest-ascent hill climbing
delivered the most consistent improvements and the
simulated annealing implementation is able to produce the
greatest quality improvements with some examples.
O'Keeffe and Cinnéide [31] go on to state that the output
code of the flexibility and understandability produced
meaningful outputs in favour of the desired quality
attributes where the reusability function was not found to
be suitable to the requirements of search-based software
maintenance because the optimal solution includes a large
number of featureless classes.

3. AN ARCHITECTURE RECONSTRUCTION

AND REFACTORING FRAMEWORK

This section describes an automatic architecture
reconstruction and transformation process designed to
support the reconstruction of a conceptual architecture
model of a software system and the migration of the

analysed software system towards a given conceptual
architecture model.

In the previous section a variety of architecture
reconstruction, refactoring and migration approaches have
been reviewed. It has been shown that current architecture
reconstruction approaches are feasible to extract views of
the physical architecture. The reconstructed architectural
views can help development stakeholders to understand
the current design of the system. However, the
approaches are not aiming to reconstruct a conceptual
architecture of the system or a blue print of the system
which can be used for further development and
compliance checking. Consequently, the re-creation of a
conceptual architecture remains a tedious manual process
which requires analyzing domain and technical
environment aspects in compliance with the evident
software system. One of the main problems while
reconstructing a conceptual architecture is the erosion
which might be evident in the system and bias the
extraction of a conceptual architecture. The identification
of violating dependencies is hard due to the uncertainty of
the system deterioration. Automatic refactoring
approaches refactor architectural views [1] or the source
code [31] of the system towards predefined quality goals.
These quality goals are represented as combinations of
metrics which measure the desired quality goal. Migration
and transformation approaches transform legacy systems
into multi-tier or SoA architectures [29]. Most approaches
require a substantial part of manual classification [30]
hence a good understanding of the system is required.
Other approaches transform views of the architecture
without transforming the source code of the system [28].
Furthermore, approaches either transform or reconstruct
architectural views or change the source code of the
system. To our current understanding none of the
reviewed approaches aim to provide a conceptual
architecture view as well as a corresponding physical
architecture model. We believe that a conceptual
architecture model as well as a violation free physical
model is one of the key requirements to enable an active
and continuous architecture management. Additionally,
the evidence of a corresponding reflexion model delivers
the base for further development and refactoring of the
system towards better architectural design.

Based on this we propose and evaluate a combination of
architecture reconstruction techniques to extract a
conceptual architecture model and refactoring techniques
to obtain an aligned physical architecture and conceptual
architecture model. The process reflects that a conceptual
architecture model can be based on acknowledged
software design principles represented as architecture
styles, design patterns and software metrics. The
conceptual architecture model represents a target
definition for the migration of the physical architecture
model. The reconstruction and transformation process is
outlined in Figure 1 which illustrates the input and output
relationships.

A prototype has been developed to enable an evaluation
of the feasibility of the framework. This prototype allows
the reconstruction of a conceptual architecture as well as
the refactoring of the physical architecture towards this
conceptual architecture model on the basis of java

software systems. Dependency analysis as well as the
migration of source code instances are enabled by
applying the RECODER source code optimisation and
transformation framework [33]. The following two
sections illustrate architecture reconstruction and
architecture migration as implemented in our framework.

Fig. 1 Automatic Architecture and Migration Framework

3.1. Architecture Reconstruction

An automatic conceptual architecture reconstruction
framework is useful if the desired architecture of a system
is lost. As previously stated, the manual reconstruction of
conceptual architecture in fairly eroded systems is
complex and labour intensive [34]. The objective of this
component is to evaluate if the automatic reconstruction
of a reflection model is feasible in terms of delivering a
modular structure of a software system as a basis for
further development. The reconstructed architecture
model delivers a conceptual blueprint of the system that
implements established design principles of software
architectures. This blueprint can be used in further
development, refactoring and architecture monitoring.

Considering the necessity to apply an architecture
reconstruction it can be assumed that no or only limited
documentation of the conceptual architecture exists and
the physical architecture of the system is eroded. Hence,
regular compliance checking has not been conducted due
to the missing basis for comparison. Additionally, it is
also not possible to determine the degree of erosion as the
basis for comparison in the form of a defined design
description is missing and the erosion is influenced by a
variety of factors such as development activity, design
drift, design understanding of development stakeholders,
framework changes and time without compliance
checking. Additionally, the requirements of an ideal
conceptual architecture candidate change over time
caused by requirement, environment and framework
changes. The definition of an ideal conceptual
architecture depends on variables such as the
development environment, development philosophy,
applied frameworks and functional requirements. It is
hard to capture all these variables within an automated
approach based on the analyses of legacy code. However,

we are convinced that at least having a conceptual
architecture has long term benefits on the life cycle and
quality of the software system.

We suggest a search based cluster approach to reconstruct
a conceptual architecture. This decision is based on the
complexity of the problem, the size of the search space
and also the multiplicity of optimal solutions. To date the
reconstruction of a layered architecture style with
transparent horizontal layers has been implemented. A
search based clustering algorithm similar to the clustering
approach of Mitchell and Mancoridis [20] classifies the
implementation units into n layers. As an acknowledged
software clustering concept the clustering penalizes high
coupling between clusters and rewards high cohesion
within the clusters.

We employ a greedy metaheurisitic to identify a start
solution and apply a steepest ascent hill climbing
metaheuristic to improve this initial solution. Our
approach utilizes the work of Harman [35] which states
that metrics can act as fitness functions. Our objective is
to recreate a system architecture that exhibits good
modularity.

We designed a fitness function Solution Quality to
evaluate the fitness of a solution. Based on the Soft Goal
graph of Ivkovic & Kontogiannis [1] we utilize the
Coupling Between Objects metric as measurement for
modularity. Every dependency between implementation
units is annotated with a CBO measurement. Our greedy
algorithm classifies the implementation units into clusters
based on rewarding cohesion and penalizing coupling.
The clusters are ordered ascending based on the ratio of
incoming and outgoing dependencies. Additionally, we
reward solutions with more layers. The Solution Quality
is multiplied with the number of layers in the system.
However, at this stage we only allow solutions with three
or less layers. The steepest ascent hill climbing algorithm
tries to increase the Solution Quality measurement by
swapping implementation units between clusters.

In our model an architecture violation is a dependency
from a lower layer to a higher layer. These dependencies
deteriorate the encapsulation of two layers if we take the
conceptual architecture as an optimal solution. As the
system probably features an indefinite degree of
deterioration we do not just want to minimize the number
of architecture violations. Hence, just relying on the
minimization of architecture violations would model the
deteriorated system into a conceptual model and therefore
not challenge an improvement of the system design. Our
overall aim is to obtain a violation free architecture of the
system. To support this approach we classify between
violations which can be resolved by the automatic
refactoring (defined in sections 3.2.1 and 3.2.2) and
violations our approach is not capable to resolve. Each
dependency is tested if it can be resolved by one of our
three automatic refactoring transformations. If a
dependency can be resolved by the application of
refactoring the CBO weight of the dependency is
multiplied with a factor of 0.25 and therefore the
dependency is rather an accepted architecture violation as
it does only increase the coupling between layers by a
small degree. Hence, we penalize the inclusion of
architecture violations which cannot be resolved with our

by multiplying the CBO measurement with a factor of
2.0, which strongly increases the coupling between layers
and therefore penalizes the solution.

The output of this conceptual architecture reconstruction
is a conceptual architecture model which comprises
ordered layers and implementation units which are
mapped into these layers. Therefore, a reflexion model
has been created. However, the physical architecture
might feature dependencies which violate with the
reconstructed conceptual architecture model [9].

3.2. Automatic Architecture Refactoring

This section describes an automatic refactoring
framework to migrate the physical architecture towards a
given conceptual architecture by applying a set of
transformations.

Our automatic refactoring approach expects as input the
reflexion model of a software system. This reflexion
model can be user-defined or can be created by our
previously illustrated architecture reconstruction method.
The objective of this component is to deliver an automatic
source code transformation approach that has the potential
to re-establish the modularity of eroded software.

The migration framework aims to resolve architecture
violations which cannot be resolved by reclassifying
implementation units into different subsystems of the
conceptual architecture model. The origin of these
architecture violations is hidden in the implementation of
the system, which does not align with the conceptual
modularity and decomposition of the system [7]. To
resolve architecture violations of this kind the source code
of the implementation unit has to be migrated to comply
with the conceptual architecture. A set of allowed
transformations had to be specified to migrate the system
from one instance to another.

The objective of the automatic refactoring is the
resolution of unwanted dependencies between
implementation units. This requires the application of
refactorings which alter the dependency structure between
implementation units. Rosik, Le Gear, Buckley, Babar
and Connolly [2] found that a significant number of
violations are based on misplaced functionality. Another
common reason for the erosion of design is the injection
of higher-classified implementation units as a parameter
and access to the structure and behaviour of these objects
from lower-classified implementation units [12].
Therefore the three transformations move method, move
constant and exclude parameter have been implemented
within our proof-of-concept prototype. These
transformations refactor the implementation unit which
causes the architecture violation as well as the interrelated
callers of the refactored code element. The behaviour of
these transformations is as follows:

3.2.1. Move Method and Move Constant - These
transformations move a method or constant that causes an
architecture violation to any other implementation unit.
As it cannot be assumed to which implementation unit the
refactored code artefact should be moved, the code
artefact in question is placed into every implementation

unit of the system. For each of these outcomes a new
instance of the source code is created as the base for the
application of further transformations.

3.2.2. Exclude Parameter - The exclude parameter
transformation excludes one parameter of a method. The
code elements which reference or access the parameter
are moved to the caller implementation units. Currently
the order of execution can be changed by applying this
transformation and consequently the program behaviour
might change. Our current solution is to exclude the
parameter and instead include a listener pattern which
notifies the top layer implementation unit to execute the
refactored code elements. Based on an identified
architecture violation one of the three implemented
transformations can be selected. A new instance of the
software system is created based on the application of
every transformation. The complexity of an exhaustive
search would quickly result in an uncontrollable number
of generated software system instances. Figure 2
illustrates the uncontrolled generation of software system
instances.

Fig. 2 Evolution of Source code instances based on applied

transformations

Due to this computational complexity we apply a greedy
algorithm to control the reproduction process of software
system instances. Based on the initial solution a
population of new software instances is created. The
fittest solution is selected based on the lowest number of
architecture violations as the primary selection criteria. If
two solutions feature the same number of architecture
violations the selection is based on the fitness function
illustrated in section 3.1. Figure 3 illustrates the selection
strategy and reproduction for two generations.

4. EVIDENCE OF FEASIBILITY AND
EVALUATION

Our initial evaluation of the prototype has utilised
controlled experiments. Evaluation of the framework is
based on the architecture reconstruction of a small self-
developed system (comprising 15 implementation units)

which follows a MVC architecture style. The system is
structured such that in each case five of the
implementation units fulfil model, view or controller
functionality. If we measure the fitness for a self defined
optimal conceptual MVC- architecture model with no
erosion in the physical design we measure a Solution
Quality of 0.66185.

Fig. 3 Selection Strategy of Greedy algorithm

4.1. Reconstruction of Conceptual Architecture

A set of 11 experiments has been conducted, in each
experiment an architecture violating dependency is added
and then resolution is attempted. These imposed
architecture violations conflict with the MVC
architecture. The type of violation is equally distributed
by adding wrongly placed methods, constants and
wrongly injected parameters. The results of the
experiments are shown in Table 1.

Table 1. Results Architecture Reconstruction Experiment

No. Injected
Architecture
Violations

No.
Layers

Misplaced
implementation

units

Architecture
violations

Solution
Quality

0 3 2 0 0.64835
1 3 2 0 0.63464
2 3 2 1 0.53571
3 3 3 2 0.55833
4 3 3 3 0.45889
5 3 3 3 0.42652
6 2 5 2 0.58534
7 2 5 2 0.58534
8 2 6 3 0.54532
9 2 6 5 0.53345

10 2 6 6 0.52345

The results show that the prototype is able to identify a
conceptual architecture model of the system and classify
the implementation units into corresponding layers. The
Solution Quality as a fitness representation tends towards
lower values with increasing erosion of the system. The

only break in this general trend is the reduction of layers
in the conceptual architecture to two which causes
disjointed values.

In each of the experiments the resulting conceptual
architecture features a set of implementation units which
are not classified correctly and also the number of
identified violations differs from the number of initiated
architecture violations; hence the identified architecture
violations are not necessarily identical to the introduced
architecture violations. The experiments also show that,
based on the rising number of misplaced implementation
units, the constructed conceptual architecture model drifts
further from the initial MVC architecture. However, at
this stage the suggestion of a conceptual architecture
model which can be used as a base for further
development and refactoring to regain a degree of system
modularity seems to be feasible.

4.2. Realignment of Physical Architecture with

Conceptual Architecture Model

We conducted a second set of experiments based on the
physical architecture of our self developed MVC
example. We utilised the physical design with 10 injected
architecture violations and the reconstructed conceptual
architecture model with 2 layers from our previous
experiments. The objective of these experiments is to
evaluate the automatic refactoring of the physical
architecture towards a given conceptual architecture
model.

To evaluate the feasibility of the automatic refactoring
towards a given conceptual architecture it is necessary to
evaluate if the process contributes to a quality
improvement of the software system. The proposed
approach aims to re-establish the modularity of the
system. The main objective of the automatic refactoring is
the reduction of architecture violations. However, the
number of architecture violations depends strongly on the
given conceptual architecture model. So far the Solution
Quality fitness function is available to evaluate the
modularity of the system. Table 3 shows the results of this
experiment.

Table 2. Results Architecture Refactoring Experiment

Generation Number of Architecture Violations Solution Quality
1 6 0.52345
2 5 0.50432
3 4 0.54545
4 3 0.56362
5 2 0.53756
6 2 0.53756

A reduction of architecture violations can be observed
during the first five generations. From the fifth generation
no appropriate move can be identified to resolve the
remaining architecture violation. The Solution Quality
fitness function measurement reflects no significant
quality improvement of the refactored system and no
clear trend of the Solution Quality measurement can be
recognised. The reason for this might be the individual

evaluation of architecture violations in the model in
respect to their resolvability with our implemented
refactorings. To evaluate the quality of the generated
solution more general metrics should be applied to allow
estimating the overall quality development of the system.

In general, it has been found that violations based on
wrongly placed constants can be completely resolved.
The outcome of resolutions using the move method and
exclude parameter transformations depends on the
dependencies of the method and parameter to the initial
containing implementation unit. If no interrelation to the
containing implementation unit exists the method can be
placed into other implementation units or the parameter
can be excluded and the violation resolved. However,
these preliminary results show that a migration from one
instance of a software system to another is feasible by
applying a set of defined transformations which align the
software system with a given conceptual architecture
model.

5. LIMITATIONS

The conducted evaluation is preliminary but is
encouraging. Further application in real scenarios is
necessary (and is ongoing) to more fully assess the
applicability of our Architecture Reconstruction and
Migration Framework.

6. CONCLUSIONS AND FUTURE WORK

This paper describes a framework designed to reconstruct
a conceptual architecture model for legacy systems and to
migrate the physical architecture model of legacy systems
towards a given conceptual architecture model. Based on
the theoretical illustration of the causes and consequences
of deteriorated software design, the possibility to utilise
the conceptual architecture model as a metamodel for the
physical architecture is illustrated. The method of
operation of the architecture reconstruction by utilizing
acknowledged macro-architecture design principles and
the physical architecture model is described. Furthermore
the principles of operation of the software migration
framework by utilising the conceptual architecture model,
applying design patterns, software metrics and source
code transformation are described. Finally, preliminary
results of our feasibility evaluation are presented and
discussed.

At this time our prototype addresses a limited set of
architecture styles and transformations. We are working
to extend the number of possible architecture styles by
introducing vertical layering and impervious layers to
model functional decomposition and machine boundaries
in the conceptual architecture. Further research will also
focus to resolve architecture violations by the migration
of the source model towards design patterns. Another
current working area is the extension of the move method
and exclude parameter transformations to migrate
interrelations to containing implementation units. The
current search strategies are immature. It will be
beneficial especially for the evaluation of larger software
systems to guide the search towards more promising
solution candidates by applying other search strategies e.g

genetic algorithms. Future work will involve evaluating if
the migration approach has the potential to migrate a
software system from one conceptual architecture model
to another. This is of particular interest if the conceptual
architecture of a system changes due to requirement,
environment and technology changes and the conceptual
architecture model and mapping of implementation units
into this new architecture can be defined.

REFERENCES

[1] Ivkovic I, Kontogiannis K (2006) A framework for
software architecture refactoring using model
transformations and semantic annotations. Proceedings of
the 10th European Conference on Software Maintenance
and Reengineering (CSMR'06), Bari, Italy, p. 10.

[2] Rosik J, Le Gear A, Buckley J, Babar MA, Connolly D
(2010) Assessing architectural drift in commercial software
development: A case study. Software: Practice and
Experience 41(1), 63–86.

[3] Kerievsky J (2005) Refactoring to patterns. Addison-
Wesley Professional, Reading, Massachusetts.

[4] Martin RC (2000) Design principles and design patterns.
Object Mentor retrieved from
http://www.objectmentor.com/resources/articles/Principles_
and_Patterns.pdf.

[5] Koschke R (2008) Architecture reconstruction: Tutorial on
reverse engineering to the Architectural Level.
International Summer School on Software
Engineering,140–173.

[6] Telea A, Voinea L, Sassenburg H (2010) Visual tools for
software architecture understanding: A stakeholder
perspective. IEEE Software,27(6), 46-53.

[7] Bass L, Clements P, Kazman R (2003) Software
architecture in practice. Addison-Wesley Professional,
Reading, Massachusetts

[8] Sora I, Glodean G, Gligor M (2010) Software architecture
reconstruction: An approach based on combining graph
clustering and partitioning. Proceedings of the
International Joint Conference on Computational
Cybernetics and Technical Informatics, 259-264.

 [9] Murphy GC, Notkin D (1997) Reengineering with reflexion
models: A case study. IEEE Computer, 30(8), 29-36.

[10] Fowler M (1999) Refactoring: Improving the design of
existing code. Addison-Wesley Professional, Reading,
Massachusetts.

[11] Ducasse S, Pollet D (2009) Software architecture
reconstruction: A process-oriented taxonomy. IEEE
Transactions on Software Engineering, 35(4), 573-591.

[12] Van Gurp J, Bosch J (2002) Design erosion: problems and
causes. Journal of Systems and Software, 61(2), 105-119.

[13] Lanza M, Ducasse S, Gall H, Pinzger M (2005)
Codecrawler: an information visualization tool for program
comprehension. Proceedings of the 27th International
Conference on Software Engineering, 672-673.

[14] Raza A, Vogel G, & Plödereder E (2006) Bauhaus – A Tool
Suite for Program Analysis and Reverse Engineering. In L.
Pinho & M. González Harbour (Eds.), Reliable Software
Technologies – Ada-Europe 2006 (LNCS 4006, pp. 71-82):
Springer Berlin / Heidelberg.

[15] Wiggerts TA (1997) Using clustering algorithms in legacy
systems remodularization. Proceedings of the Fourth
Working Conference on Reverse Engineering (WCRE'97),
Amsterdam, Netherlands 6-8 October , 33-43.

[16] e Abreu FB, Goulão M (2001) Coupling and cohesion as
modularization drivers: Are we being over-persuaded?,"
Proceedings of the 5th Conference on Software
Maintenance and Reengineering, Lisbon, Portugal.

[17] Dietrich J, Yakovlev V, McCartin C, Jenson G, Duchrow
M (2008). Cluster analysis of Java dependency graphs.
Proceedings of the 4th ACM Symposium on Software
Visualization, Herrsching am Ammersee, Germany,
September 16-17, 91-94.

[18] Mancoridis S, Mitchell BS, Chen Y, Gansner ER (1999)
Bunch: A clustering tool for the recovery and maintenance
of software system structures. Proceedings of the IEEE
International Conference on Software Maintenance
(ICSM'99), Oxford, England, UK 30 August - 3 September,
50-59.

[19] Mitchell BS, Mancoridis S (2006) On the automatic
modularization of software systems using the Bunch tool.
IEEE Transactions on Software Engineering, 32(3), 193-
208.

[20] Mitchell BS, Mancoridis S (2008) On the evaluation of the
Bunch search-based software modularization algorithm,
Soft Computing- A Fusion of Foundations, Methodologies
and Applications, 12(1), 77-93.

[21] Christl A, Koschke R, Storey MA (2005) "Equipping the
reflexion method with automated clustering," 2005, 10-98.

[22] Mitchell BS (2002) A heuristic search approach to solving
the software clustering problem. PhD, Drexel University,
Drexel.

[23] Fontana FA, Zanoni M (2011) A tool for design pattern
detection and software architecture reconstruction.
Information Sciences: An International Journal, 181(7),
1306-1324.

[24] Andritsos P, Tzerpos V (2005) Information-theoretic
software clustering. IEEE Transactions on Software
Engineering, 31 (2), 150-165.

[25] Bauer M, Trifu M (2004) Architecture-aware adaptive
clustering of OO systems. Proceedings of the Eighth
Euromicro Working Conference on Software Maintenance
and Reengineering (CSMR'04), 3-14.

[26] Scanniello G, D'Amico A, D'Amico C, D'Amico, T (2010)
An approach for architectural layer recovery. Symposium
on Applied Computing 2010 (SAC '10), Sierre,
Switzerland, 2198-2202.

[27] Opdyke, WF (1992) Refactoring: A program restructuring
aid in designing object-oriented application frameworks.
PhD thesis, University of Illinois at Urbana-Champaign.

[28] Gimnich R, Winter, A (2005) Workflows der Software-
Migration. Softwaretechnik-Trends, 25(2), 22-24.

[29] Hasselbring W, Reussner R, Jaekel H, Schlegelmilch J,
Teschke T, Krieghoff S (2004) The dublo architecture
pattern for smooth migration of business information
systems: An experience report. Proceedings of the 26th
International Conference on Software Engineering (ICSE
'04), 117-126.

[30] Heckel R, Correia R, Matos C, El-Ramly M, Koutsoukos
G, Andrade L (2008) Architectural Transformations: From
Legacy to Three-Tier and Services," In Software Evolution

(pp. 139-170): Springer Berlin Heidelberg.
doi:10.1007/978-3-540-76440-3_7.

[31] O'Keeffe M, Cinnéide MÓ (2006) Search-based software
maintenance. Proceedings of the 10th European
Conference on Software Maintenance and Reengineering
(CSMR 2006), 249-260.

[32] Bansiya J, Davis CG (2002) A hierarchical model for
object-oriented design quality assessment," IEEE
Transactions on Software Engineering, 28(1), 4-17.

[33] Ludwi A (2010, 22.03). Recoder homepage. Available:
http://recoder. sourceforge.net.

[34] O'Brien L, Stoermer C, Verhoef C, (2002) Software
architecture reconstruction: Practice needs and current
approaches. Technical Report CMU/SEI-2002-TR-024,
Carnegie Mellon University.

[35] Harman M, Clark J (2004) Metrics are fitness functions too.
Proceedings of the International Software Metrics
Symposium, Chicago, Illinois, USA, 14-16 September ,58-
69.

	An Automatic Architecture Reconstruction and Refactoring Framework
	1. Introduction
	2. Related Work
	3. An Architecture Reconstruction and Refactoring Framework
	4. Evidence of Feasibility and Evaluation
	References

