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Abstract

Aging is a complex problem because at different age points different changes occur

in the human face. From childhood to teenage the changes are mostly related to

craniofacial growth. At maturity the changes are mostly related to the skin color

changes and the face skin starts becoming slack and less smooth. So aging is a mixture

of all these components. Moreover, aging is a slow, irreversible and a process that is

unique to every human being. Many factors affect the aging process. For example

every person has different genes, blood group, and life style and belongs to a particular

ethnic group. In order to resolve all these issues we need modelling method that

should capture all changes throughout the aging process. So we deal shape and texture

separately and finally combine them to develop a synergy between the two. The main

objective of thesis is to develop novel aging growth models by using spatiotemporal

modeling. It aims to develop and enhance our knowledge of craniofacial growth of

human faces and capturing it to form models to understand the changes occurring

due to aging process. We investigate five different types of models built on different

levels of data granularity and with different perspective. At the global level a model

is built on training data that encompasses the entire set of available individuals,

whereas at the local level data from homogeneous sub-populations is used and finally

at the individual level a personalized model is built for each individual. We used

anthropometric features for extracting the shape information of face and for texture

information we extract features based on the edges on the texture of the human face.

Finally, we make integrated model in order to utilize synergy between three models

and arrive at an optimum solution. Our Integrated model is inspired by the Integrated

x
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Multi Model Frame Work(IMMF) proposed by Widuputra which exploits synergy

that exists between models at the global, local and personalized levels. Our integrated

model is based on Adaptive Linear Neuron or later Adaptive Linear Element (Adaline)

by calculating weights of each model. A concept of deaging was introduced to align

and make our features commensurate with different ages. We built a novel face

recognition system based on aging models. It is a two stage process. At first stage

we built the model and in second stage we try to identify the probe image into

the subspace of the gallery. In the second stage real problem is finding the correct

subspace. We have used Naive Bayesian method and the probe image subspace for

finding the most probable subspace. The probe image is then searched only in the

reduced search space of already determined subspace instead of the whole gallery,

thus resulting in reduction of cost of computation time. We built two different sets

of models, one for the shape and the other for texture. It was observed that we

need to resolve the conflict if our models point to different persons. We enunciated

a method to resolve the conflict between two models by building composite models

in which we combined the texture and shape. Our composite model is developed

by using Decision Tree approach. We have used well known standard databases

related to aging, namely, FG-NET and MORPH. Our experimentation showed good

results as well as demonstrated utility of our aging models. We also know that aging

is primarily a spatiotemporal process. So, tools for spatiotemporal and temporal

data (STTD) were also used. The Knowledge Engineering and Discovery Research

Institute (KEDRI) has developed methods and tools to deal with STTD, the latest

being the NeuCube. We built NeuCube (ST) aging model for age group classification

and gender recognition thus demonstrating utilization of a robust tool viz NeuCube

(ST).
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Chapter 1

Introduction

1.1 Back ground

The history of biometrics can be said to begin with the development of the Bertillion

system. A French police officer used biometrics information to identify criminals

(Rhodes, 1956). Generally, six biometric attributes, viz face, finger, hand, voice , eye,

ear signatures are used for biometrics(Heitmeyer, 2000). It is noted that face based

recognition systems are most convenient because it is natural, nonintrusive and easy

to use (A. Jain, Flynn, & Ross, 2007; A. K. Jain & Li, 2011). The recognition system

based on the human face has been around for many years.

Face image recognition is an important and significant part of the domain of

biometrics reseach(A. K. Jain, Nandakumar, & Ross, 2016; Cootes, Edwards, Taylor,

et al., 1999; Gong, Li, Tao, Liu, & Li, 2015; Li, Park, & Jain, 2011; Ramanathan &

Chellappa, 2006; Park, Tong, & Jain, 2010). Face recognition has two main areas of

research, namely face verification and face identification. In face recognition system,

face images from a number of subjects are enrolled into the system as gallery data,

and the face image of a test subject (probe image) is matched to the gallery data using

a one-to-one or one-to- many scheme. The one-to-one and one-to-many matchings

1
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are called verification and identification, respectively. Figure 1.1 shows the difference

between verification and identification system. Face recognition can be performed

in open set or closed set scenarios. Closed set recognition tests always have the

probe subject enrolled in the gallery data, but the open set recognition consider the

possibility that the probe subject is not enrolled in the gallery. Therefore, a threshold

value (on match score) is typically used in retrieving candidate matches in open set

recognition tests (A. Jain et al., 2007; A. K. Jain & Li, 2011).

Figure 1.1: Difference between verification and identification

Face recognition is an extensively researched topic.The first automated system

utilizing face recognition was developed in 1977 (Kanade, 1973). Although there has

been significant improvements in face recognition performance during the past decade,

it is still below an acceptable level. Many different algorithms for face recognition ex-

ist, related to different fields like machine learning, pattern recognition and computer

vision. The first algorithm was Principal Component Analysis (PCA) which describes
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the faces as a linear combination of eigenfaces(Sirovich & Kirby, 1987). Further,

Linear Discriminant Analysis (LDA) was introduced which is based on fisherfaces

introduced as improvement of PCA approach(Belhumeur, Hespanha, & Kriegman,

1997). Independent Component Analysis (ICA) followed, which make use of higher-

order statistics to improve the system(Déniz, Castrillon, & Hernández, 2003). Many

variations of the PCA, LDA and ICA algorithms have been made with varying results

(Delac, Grgic, & Grgic, 2005a, 2005b; Nefian & Hayes III, 1998). Researchers studied

different techniques and methods in order to increase the accuracy because existing

techniques were not suitable for combating confounding effects arising from illumuni-

ation, expression, occlusion, pose and aging. These techniques include such as Local

Binary Patterns (LBP) (Zhang, Huang, Li, Wang, & Wu, 2004), Gabbor wavelets

and Elastic Bunch Graph Matching (EBGM)(Bolme, 2003) and Active Appearance

Model (AAM) etc. Despite all the research and many different algorithms, new meth-

ods that deal with variations in expression, pose and aging are still required. Different

evaluations such as FERET (Phillips, Moon, Rizvi, & Rauss, 2000; Phillips, Moon,

Rauss, & Rizvi, 1997), FRVT (Phillips et al., 2003) and FRVT(Phillips et al., 2010)

have proved that aging, illumination and pose are still plaguing the performance of

state of art algorithms(Champod, 2015).

This thesis will research the issue of age modelling, and in particular the age

invariant face recognition problem. Novel methods for age invariant face recognition

are presented and an in-depth expeirmental study of these methods on well established

benchmark datasets are presented.
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1.2 Challenges in Face Recognition

Two dimensional (2D) face recognition is a vastly researched topic because of the

availability of equipment related to face recognition. Nowadays, 2D cameras are

routinely deployed in many different security scenarios. However, 2D face recognition

suffers from factors encountered in practice, such as pose and lighting variations,

expression variations, age variations, and facial occlusions. Figure 1.2 (K.jain, 2009)

shows some different types of problems related to face recognition.

Figure 1.2: Different problems in face recognition

1.2.1 Pose Variation

One major challenge is introduced by pose variation (Bowyer, Chang, & Flynn, 2006;

Ding & Tao, 2016). It results in performance degradation of image recognition. The

face is a 3D object and the dimensions and distance of its features change drastically if

the field of view is changed. Thus two images taken from different views are different
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in nature. Thus we have to differentiate not only between between inter-user variation

but also intra-user variation in face recognition.

1.2.2 Lighting variation

It is well known that severe lighting variation can also create differences in images

drawn from the same person. The face is a 3D object and the lighting source projects

itself on a 2D space. Thus different illumination conditions and shades can create

different images of the same person. The algorithms that have been developed that

are robust to lighting variations exploit prior knowledge of the optics of the lighting

sources (Abate, Nappi, Riccio, & Sabatino, 2007; Bowyer et al., 2006).

1.2.3 Occlusion variation

Occasionally, occlusion can result in face change, for example glasses on the face can

create variation of features. Some commercial applications reject images if eyes are

hidden behind glasses or cannot be detected. We resort to local based methods that

ar proposed to overcome the occlusion problem (Mart́ınez, 2002; Tan, Chen, Zhou, &

Zhang, 2005).

1.2.4 Expression

Facial expression also causes variation of the face image. For example, a smile can

change the facial features. This challenge is met through 3D modeling approaches

(Bowyer et al., 2006; Ahonen, Hadid, & Pietikainen, 2006). Although it overcomes to

a great extent the variations caused by expressions, it is still an active research area

in human computer interaction and communications (Uçar, Demir, & Güzeliş, 2016;

Tan, Chen, Zhou, & Liu, 2009)
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1.2.5 Age variation

The effects of aging and variations caused by it on the facial features have not been

exhaustively studied. Aging related variations can take various forms i) wrinkles

and speckles, ii) weight loss and gain and iii) change in face shape primitives (e.g.

drooping cheeks, sagged eyes and changes in mouth). Therefore, the aging process

affects both shape and texture. All these variations result in degradation of our

recognition performance. Moreover, there are only two publicly available face aging

databases, viz FG-NET and MORPH. Figures 1.3 and 1.4 show sample images from

both databases. These databases exist with all challanges that have been mentioned

above. Therefore, it is a challenging task to deal with such databases. As such, facial

aging has become an important research problem in the face recognition domain.

Figure 1.3: Sample of images from FG-NET database

Figure 1.4: Sample of images from MORPH Album 2 database
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1.3 Motivation, Objective and Research Ques-

tions

1.3.1 Motivation

There are many instances where we have to compare an image with another image

that could be a few decades older. This situation arises in many different real life

applications, e.g. missing children case, inheritance problems, security and surveil-

lance systems as well as human computer interaction. As yet, limited accuracy is

achieved in age invariant face recognition and so there is still room for improvement

in accuracy. Another gap in research relates to research focus; all currently proposed

techniques only concentrated on increasing recognition accuracy. As such, it would

be interesting to formulate methods that would aid in knowledge discovery and un-

derstanding relating to the aging process. That represent another objective of this

thesis.

In relation to this, the specific objectives of the work conducted in this PhD study

are defined as follows:

1.3.2 Objective

The main goal of this research is to develop a novel framework for age invariant face

recognition via aging models. The aging models viz global, local, personalized and

integrated models will be developed at different levels of data granularity. These

aging models would be helpful in understanding the aging process, and as a result,

the accuracy of age invariant face recognition is expected to be improved.

Since separate models are developed for shape and texture for a given person, it is

possible that two different matching predictions will be produced from each of them,
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hence giving rise to a conflict. Thus, another objective of this research is to resolve

conflicts between texture and shape-based models. As shown in Chapter 7, these

developed models prove to be useful for knowledge discovery and knowledge extraction

on the aging process. In this research we have also introduced the novel framework

based on NeuCube (SSTD) for gender recognition and age group classification.

1.3.3 Research Questions

The questions that we investigate during this research are.

1. How to develop comprehensive methods for age invariant face recognition that

result in better accuracy and effciency than current state-of-the-art methods?

2. How to develop a framework that incorporates both texture and shape features

at system level while effectively dealing with conflicts between the two model

types?

3. How to develop a craniofacial growth model that maximizes predictive power,

as measured by recognition accuracy?

4. Can aging effects be captured at different time points with proposed aging

models?

5. How to develop efficient methods for inter-related problems with face recogni-

tion, viz age group clasification and gender recognition in order to increase the

accuracy?

6. Is knowledge extraction possible with the proposed methods for gender recog-

nition and age group classification?
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In order to determine answers to these questions four different types of models

built on different levels of data granularity and with different perspective will

be investigated.

1.4 Scope

The scope of this research is limited because of time constraint inherent in PhD

studies. The face identification problem is carried out by using a closed set testing

strategy. This is also true for the gender recognition and age group classification

problems. The face age simulation and age estimation is not within the scope of this

PhD study.

1.5 Main Contributions

Throughout the completion of the PhD study, seven main contributions have been

made:

1. Development of global and personalized models for capturing aging patterns

with texture and shape information. Personalized model covers the individual

aging patterns while a Global model captures general aging patterns in the

database. De-aging factor is introduced that de-ages each individual in the

probe set.

2. Development of automatic selection of subspaces with texture and shape infor-

mation is proposed.

3. Development of a local model for texture and shape information which captures

homogeneous sub-population.
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4. Development of a multi-model framework named as the Integrated Multi- Model

Framework (IMMF) for texture and shape information that integrates different

types and levels of aging process and finds the synergy between the three models

viz global, local and personalized.

5. Development of Composite model which resolves the conflicts between all four

shape and texture models (fourth being integrated model) which would be help-

ful in more trusted decision making for face recognition.

6. Development of craniofacial growth model which simulates cranfacial growth of

face and extracts knowledge from aging models in future time points.

7. Development of NeuCube aging models and use of these models for age group

classification and gender recognition from databases and study the effects of

aging on genders and age groups.

In addition a number of publications including journal papers and conference

papers have also been produced which are listed below:

1.5.1 Journal Publications

1. Fahad Bashir Alvi & Russel Pears (2016). A composite spatio-temporal mod-

eling approach for age invariant face recognition. Expert Systems with Appli-

cations.

2. Fahad Bashir Alvi, Russel Pears & Nikola Kasabov. An evolving spatio-temporal

approach for gender and age group classification with Spiking Neural Networks.

Evolving Systems.
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3. Kasabov, N., Scott, Fahad Bashir Alvi (2016) and others. Evolving spatio-

temporal data machines based on the NeuCube neuromorphic framework: de-

sign methodology and selected applications. Neural Networks, 78, 1-14.

1.5.2 Conference Publications and Presentations

1. Fahad Bashir Alvi and Russel Pears. Use of Spatio-Temporal Modeling for

Age Invariant Face Recognition in 30th International Conference on Image and

Vision Computing, New Zealand (IVCNZ 2015).

2. Fahad Bashir Alvi and Russel Pears. An Integrated Modeling Approach to Age

Invariant Face Recognition in International Conference on image vision and

computing, France (ICIVC 2014).

3. Fahad Bashir Alvi and Russel Pears, Texture Modelling for Age invariant Face

Recognition. The 19th International Conference on Image Processing, Com-

puter Vision, & Pattern Recognition Las Vegas, Nevada, USA (IPCV’15 ).

4. Fahad Bashir Alvi, Russel Pears & Nikola Kasabov. Spatio temporal Data

Modelling for Age Classification. Abstract Accepted at 13th International Con-

ference on Neuro Computing and Evolving Intelligence 2015 (NCEI 15).

5. Presentation on Aging Simulation for Face Recognition through Age Simulation

in Australian Doctoral Consortium (ACDC’14).

1.6 Thesis Structure

The thesis is structured as follows:
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• CHAPTER 1 presents an introduction to the PhD study and a brief description

of challenges related to face recognition.

• CHAPTER 2 presents a review of the face recognition and inter-related pro-

belms. It also reviews and explains the features used in this study.

• CHAPTER 3 presents a global and personalized models for capturing aging

patterns with texture and shape information. Personalized model covers the

individual aging patterns while a Global model captures general aging patterns

in the database. De-aging factor is introduced that de-ages each individual

in the probe set. It employes KNN and regression for constructing the aging

models. It also uses bayesian method for autmomatic selection of subspace. The

developed models are then put in place for age invariant face recognition. The

publicaly available datasets MORPH and FG-NET were used for evaluating the

performance of the proposed models.

• CHAPTER 4 presents a local model for texture and shape information which

captures homogeneous sub-population for consturcting the aging models. It

employes dynamic time warping and the k means clustering algorithm for con-

stucting the clusters. Then aging models are developed by using nearest neigh-

bour and regression methods. The databases used in Chapter 3 are again being

utilised in this chapter to evaluate local model capability for age invariant face

recognition.

• CHAPTER 5 presents an Integrated Multi-Model Framework denoted as IMMF

proposed by Kasabov (2007b) and Widuputra (2011). The integrated frame-

work utilises the proposed global (Chapter 3), personalized (Chapter 3), and
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local (Chapter 4) of aging models for texture and shape information and uses

the synergy that exists between the three types of models for age invariant face

recognition. The same publicly available MORPH and FG-NET databases are

used for evaluation purpose.

• CHAPTER 6 presents the composite model for resolving the conflict between

texture and shape for models builts in chapter 3, 4 and 5 at different levels

of information. It uses a decision tree method for resolving conflicts between

different types of aging models. The same publicly MORPH and FG-NET

databases are used for evaulation purposes. It also discusses about different

models and explains which model is useful at different situations.

• CHAPTER 7 presents the craniofacial growth model. It also discusses knowl-

edge discovery from aging models at different age points for texture and shape

information.

• CHAPTER 8 presents the NeuCube aging models based on spiking neural net-

works for age group classification and gender recognition . The NeuCube aging

models are tested on both pubicaly available datasets.

• CHAPTER 9 presents the discussion and conclusion of the study and suggests

future work.



Chapter 2

Background and Literature Review

Aging problem in face image recognition is an important and significant part of the

domain of biometric research (A. K. Jain et al., 2016; Cootes et al., 1999; Gong et

al., 2015; Li et al., 2011; Ramanathan & Chellappa, 2006; Park et al., 2010). It

has important applications in real life in the fields of missing children identification,

passport verification, security, animation and business intelligence. For example,

in the case of law enforcement, an image of a suspect is available and we need to

find out whether the image of the same person exists and can be obtained from a

crime database or not. If the suspect does actually appear in the crime database

at a previous age then a match should be made and information on the last known

address and other associated information of the suspect could possibly be retrieved

from the crime database.

Inspite of extensive research in face recognition (Ramanathan & Chellappa, 2006;

Gong, Li, Lin, Liu, & Tang, 2013; Gong et al., 2015; Li et al., 2011) much ground

has not been covered in the field of age invariant face recognition (Gong et al., 2015,

2013; Li et al., 2011; Park et al., 2010). There are two types of approaches used in

age invariant face recognition, generative and non generative. Generative approaches

14
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assume prior knowledge of human age, given an image. On the other hand, non-

generative approaches concentrate on finding discriminative features of the face and

the changes therein throughout the face aging lifespan. From another perspective we

can identify three main directions of research related to face recognition across age:

viz, age invariant face recognition, age simulation and age estimation. Most research

has concentrated on age estimation and age simulation. Research into age invariant

face recognition is still at a nascent stage. There are five major challenges which affect

the performance of face recognition systems: pose, illumination, expression, occlusion

and aging. It has been observed in past research that for resolving one challenge

we need to compromise on others (Geng, Zhou, & Smith-Miles, 2007; Abdullah et

al., 2014; Pujol & Garćıa, 2012). Thus, in order to find an effective solution to

the problem, there is a need to compromise on the minimum number of factors or

challenges.

Age estimation means estimating the age of a person from a given image of that

individual. On the other hand age simulation deals with the production of images

that represent an individual over different time points, taken forwards in time, or

backwards in time; the latter corresponding to the situation where a reconstruction

of the appearance of the individual at a younger age is obtained. Yet another aspect

of face recognition research is age invariant face recognition which deals with locat-

ing such features on a face that remain invariant throughout the aging process, or

determining a process that annuls the effect of age on those features. It can further

be divided in two types, namely generative and non-generative as will be explained

below. Figure 2.1 explains these different directions of research.

(Kwon & da Vitoria Lobo, 1999) proposed a classification approach based on age
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Figure 2.1: Major directions of research

that identifies the age group of given face images. It is based on the anthropometry

of the face and the density of its face wrinkles. They considered three age groups

in their study. These groups were infants, young adults and senior adults. They

also observed that the lower and upper halves of faces grow at different rates during

the early formative years. Consequently they used ratios of facial measurements

in distinguishing images of infants from those of adults. They identified six ratios

for their study. Further, they also proposed the use of snakelets (Kass, Witkin, &

Terzopoulos, 1988) in characterizing facial wrinkle density in certain predesignated
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facial regions. This was used to distinguish images of young adults from that of senior

adults.

(Lanitis, Taylor, & Cootes, 1999) also used Active Appearance Models (AAM).

Lanitis et al used a statistical face model for studying the age estimation problem.

AAM parameters were extracted from facial images which were marked with 68 points.

A Genetic Algorithm was then applied to build and optimize an aging function.

(Geng et al., 2007) worked on the assumption that similar faces age in similar ways

across a population. He introduced the method of Aging pattern Subspace (AGES)

for modelling aging across time. Geng et al constructed a representative subspace by

utilizing a sequence of images of a given individuals face sorted in chronological order.

Thereafter, minimum reconstruction error was achieved by projecting the unseen face

image into its proper aging subspace, thus making it possible to determine the age of

the image from its aging pattern.

(Yan, Zhou, Liu, Hasegawa-Johnson, & Huang, 2008) introduced a method which

developed the concept of coordinate patches and Gaussian Mixture Models (GMMs)

which were used to estimate facial ages. In their method, the facial image of an in-

dividual is encoded as a group of overlapped spatially flexible patches (SFPs). Local

features are then extracted by a 2D discrete cosine transform (DCT). The patches are

used for integration of local features and coordinate information. The extracted SFPs

are then modelled with Gaussian Mixture Models (GMMs). The model produced was

used to estimate age of a person by comparing the sum of likelihoods from the set of

spatially flexible patches (SFPs) associated with the hypothetic age (i.e. predicted

age).
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(G. Guo, Fu, Dyer, & Huang, 2008) designed a localized regression classifier to

learn the aging function. The concept of manifold learning was used for age estima-

tion. (Fu & Huang, 2008) also used manifold learning as well. A set of age separated

images were taken and a low dimensional manifold was developed from it. Linear and

quadratic regression functions were applied on the low dimensional feature vectors

from the respective manifolds.

(Biswas, Aggarwal, Ramanathan, & Chellappa, 2008) proposed that there is co-

herency in facial feature drifts across ages. The degree of drift was used as a measure

to perform face verification across ages. The assumption was that facial feature drifts

observed in images that are age separated follows a definite coherent drift pattern.

It was also observed that the same might not be true for age separated face images

of two different individuals. Biswas et al extracted fiducial features from the interior

region of the face. The points on the outer contour (facial boundary) tend to be very

sensitive to head pose variations; therefore a suitable pose correction mechanism had

to be put in place.

Ramanathan and Chellappa (Ramanathan & Chellappa, 2006) used eight ratios of

distance measures to model age progression in young individuals, ranging in age from

0 to 18 years. These ratios were used to estimate an individual’s appearance across

time and to perform face recognition across age progression. They experimented

with a database of 233 images of 109 individuals, partially collected from the FG-

NET aging database and partially from a private gallery of images. Improvments in

rank 1 accuracy of 8 percent (without age prediction) to 15 percent over the state of

the art approach prevalent at that time (with age transformation) was reported.

(Park et al., 2010) presented an approach to age invariant face recognition by
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using a 3D generative model for face aging. In their method, in order to compensate

for the age effect, probe face images are first transformed to the same age as the

gallery image by using a trained 3D aging model. Then, Face VACS, a commercially

available face recognition engine, was used to evaluate the identification results.

Suo et al (Suo, Zhu, Shan, & Chen, 2010) proposed a statistical model for face

age simulation and age estimation. A hierarchical ANDOR graph representation is

adopted with which faces are decomposed into different parts (e.g., hair, wrinkles,

etc.) and organized into graph structures. In each age group faces are represented

by means of AND-OR graphs, where the ‘AND-nodes’ correspond to coarse-to-fine

representation of faces and the ‘OR-nodes’ represent the large diversity of faces by

alternative selections. Facial aging was modeled by means of a dynamic Markov

process on the AND-OR graph representation. The parameters of the dynamic model

are learnt from a large annotated face data set and the stochasticity of face aging is

modeled in the dynamics explicitly. The dictionary of different facial components and

regions is created across five age groups (20-30 years, 30-40 years, 40-50 years, 50-60

years and 60-70 years).

(Li et al., 2011) proposed a discriminative model to address face matching in the

presence of age variation. Each face was represented by designing a densely sampled

local features description scheme, in which scale invariant feature transform (SIFT)

and multi-scale local binary patterns (MLBP) were used as the local descriptors. The

densely sampled features were provided sufficient discriminatory information, includ-

ing distribution of the edge direction in the image. The multi feature discriminant

analysis method was developed to avoid over fitting. Multi feature discriminant analy-

sis combined two different random sampling methods, operating in feature and sample
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space. Finally, a fusion rule was used to classify by constructing multiple LDA-based

classifiers. Experiments were conducted with FG-NET and MORPH databases and

47.5% and 83.5% accuracy were obtained respectively.

(Syambas & Purwanto, 2012) used a combination of Active Appearance Models

(AAMs), Support Vector Machines (SVMs) and Monte-Carlo simulation to build

a high accuracy aging model. Two types of experiments were reported. In the first

experiment, they showed empirically that as the probe face progresses in age, the face

recognition rate decreases. In order to overcome this problem, in a second experiment,

they artificially aged probe faces so as to increase the likelihood of a match with a

gallery image that would then be closer in time terms to the aged version of the probe

image. The artificial aging was accomplished by the use of active appearance models

while the matching process was based on the use of PCA. A rank 1 accuracy of 32%

was obtained by Sethuram et al.

(Gong et al., 2013) proposed a Hidden Factor Analysis (HFA) method in which

person-specific stable features are extracted by analyzing the variation caused by the

aging process. A probabilistic model was built with two latent factors: an identity

factor that is age invariant, and an age factor affected by aging process were used to

separate the variation caused by aging process. Thereafter, the two latent factors were

combined in order to model the appearance. An expectation maximization procedure

was also developed to jointly estimate the latent factors and the model parameteres.

The proposed methods were tested with FG-NET and MORPH database

Gong et al (Gong et al., 2015) proposed a new method for face representation and

matching for the age invariant face recognition problem. A new maximum entropy

feature descriptor (MEFD) method is developed that encodes the microstructure of
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facial images into a set of discrete codes. The code entropy is maximized in order to

extract discriminative and expressive information from densely sampling encoded face

images. An identity factor analysis method was developed to estimate the probability

that two given faces have the same underlying identity. The method was tested on

the FGNET anad MORPH datasets and accuracies of 76.2% and 92.26% respectively

were obtained.

As mentioned above, Age invariant Face recognition methods can also be classified

as generative or non-generative. Recognition methods under the Generative approach

category typically introduce appearance transformations on one of the test images to

reduce the facial appearance difference due to age separation. These approaches typ-

ically involve a computational model for facial aging which is subsequently employed

on a face recognition task. The face recognition tasks are described in (Lanitis et al.,

1999; Ramanathan & Chellappa, 2006; Park et al., 2010).

On the other hand, non-generative approaches derive an age invariant signature

from faces which is used to perform face recognition across age progression. The

approaches proposed by (Ling, Soatto, Ramanathan, & Jacobs, 2007; Li et al., 2011;

Gong et al., 2013, 2015) fall under the latter category.

Tables 2.1 and 2.2 summarize accuracy achieved by various prominent approaches

on the FG-NET and MORPH datasets respectively.
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Table 2.1: Showing Prominent Results with FG-NET database

Models Accuracy

(Geng et al., 2007) 38.1%
(Park et al., 2010) 37.4%
(Li et al., 2011) 47.50%
(Gong et al., 2013) 60%
(Gong et al., 2015) 76.2%

Table 2.2: Showing Prominent Results with MORPH database

Models Accuracy

(Park et al., 2010) 79.80%
(Li et al., 2011) 83.90%
(Gong et al., 2013) 91.14%
(Gong et al., 2015) 94.59%
(Li, Gong, Li, &
Tao, 2016)

94.87%

2.1 Discussion

On the basis of the above literature review, the design of an appropriate feature rep-

resentation and an effective matching framework for age invariant face recognition

remains an open problem. It is concluded that aging of a human face results in

both change of texture as well as in shape information. This research is an attempt

to capture the change, study its pattern and then utilize it for modelling the aging

phenomenon. In order to achieve highest possible accuracy there is a need to study

both types of features, ie the shape and the texture information of the human face.
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The Anthropometric model has the potential of giving detailed information regard-

ing changes in the geometry of the face. Consequently, it was decided to extract

shape representation of face with the help of the Anthropometric model. Ratios of

the geometical distances between various points on the face were utilized to create

shape-based facial feature. As the face ages, the skin texture changes color and de-

velops wrinkes. These wrinkes which are in the form of lines are also very helpful in

characterizing the aging process. It was also noted in the literature that in earlier

ages, changes in shape are more significant when compared to texture changes, while

in the older ages, the opposite is true (Suo et al., 2010; Ramanathan & Chellappa,

2006; Rowland & Perrett, 1995; Bruce & Young, 1986; T. Wu, Turaga, & Chellappa,

2012; Mondloch, Le Grand, & Maurer, 2002): the texture and wrinkles on the face

provide more information about aging in older age groups. It was decided that for

study of texture the information and data of edges occurring on the face should be

gathered and treated as local features of the face. As a person ages, the number of

edges on the face will increase, thus providing data for the aging process. It was

decided to use the canny edge detection technique (Tian, Kanade, & Cohn, 2000;

Gheissari, Sebastian, & Hartley, 2006; Jana, Datta, & Saha, 2013; Ding, Choi, Tao,

& Davis, 2016)

2.2 Shape Features

2.2.1 Anthropometric Model

Face anthropometry, the science of measuring sizes and proportions on human faces,

has the potential to play a crucial role in developing facial aging models. Such studies

provide a quantitative description of the craniofacial growth at different ages and
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hence provide a plethora of options for learning based approaches to be adopted to

characterize facial aging. Face anthropometric studies provide dense measurements

taken between key landmarks on human faces across different ages and have played a

critical role in surgical procedures employed on the faces of growing children (Farkas

& Munro, 1987). Farkas provides a comprehensive overview of face anthropometry

and its many significant applications. He defines face anthropometry in terms of

measurements taken from 57 carefully selected landmarks on human faces spread

across 6 regions in the craniofacial area (head, face, orbits, nose, lips and mouth, ear).

The facial measurements are of three kinds: (i) projective measurements (shortest

distance between two landmarks); (ii) tangential measurements (distance between two

landmarks measured along the skin surface) and (iii) angular measurements. Figure 2

illustrates the kind of data that is collected in face anthropometric studies and further

illustrates the different fiducial features across which such data is collected (Farkas,

1994). In the absence of age-based Anthropometric measurements they collected

facial growth data by extracting facial features on the passport database.

Such growth data was collected on five different age groups: 21-30 years, 31-40

years, 41-50 years, 51-60 years and 61- 70 years. The facial growth data collected in

this manner was found to be effective in characterizing facial growth based on age,

gender, ethnicity etc. and further during cases where individuals gain or lose weight.
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• Facial index ( n−gn
zy−zy

)

• Mandibular index ( sto−gn
go−go

)

• Intercantal index ( en−en
ex−ex

)

• Orbital width index ( ex−en
en−en

)

• Eye fissure index ( ps−pi
ex−en

)

• Vermilion height index ( ls−sto
sto−li

)

• Mouth Face width index ( ch−ch
zy−zy

)

Figure 2.2: Anthropometric Model and Seven Features.

2.3 Texture Features

In the case of texture, as a part of preprocessing, we first register(Goshtasby, 2012;

Štruc & Pavešić, 2010) images on the basis of eye coordinates so that all images

transform to the same size and that each point on any given face refers to the same

point on all of the images. We then divide the facial image horizontally into five

slices. The slices cover the forehead, eyes, nose, mouth and the area below the mouth.

Edges are marked on the face after converting the image into grayscale. A histogram

is prepared for these edges. The frequency of the edges in each slice is taken as a

feature, thus resulting in five features across the entire face as shown in Figure 2.3.
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Figure 2.3: Five slices of the face.

2.3.1 Edge Detection

We used the Canny edge detector to find edges. The Canny operator was designed to

be an optimal edge detector (according to particular criteria — there are other detec-

tors around that also claim to be optimal with respect to slightly different criteria).

It takes as input a gray scale image, and produces as output an image showing the

positions of tracked intensity discontinuities.

The Canny edge detector operator works as a multi-stage process. First of all

the image is smoothed by Gaussian convolution. Then a simple 2-D first derivative

operator is applied to the smoothed image to highlight regions of the image with

high values for the first spatial derivative. Edges give rise to ridges in the gradient

magnitude image. The algorithm then tracks along the top of these ridges and sets

to zero all pixels that are not actually on the ridge top so as to give a thin line in

the output. This process is known as non-maximal suppression. The tracking process

exhibits hysteresis and is controlled by two thresholds: t1 and t2, with t1 > t2.

Tracking can only begin at a point on a ridge higher than t1. Tracking then continues

in both directions out from that point until the height of the ridge falls below t2.
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Figure 2.4: Canny edge detection.

This hysteresis helps to ensure that noisy edges are not broken up into multiple edge

fragments (Canny, 1986). Figure 2.4 shows canny edge detection for a selected image.



Chapter 3

Global and Personalized Modelling

3.1 Introduction

This chapter introduces two novel aging models, viz Global and Personalised models,

each one based both on texture and shape information. A Global model is a distinct,

fixed and reusable model that is very useful for describing the general underlying

behaviour of a stochastic system. This model is a realisation of inductive reasoning

that builds a single model by learning from the entire data set or problem space.

The developed model is then applied to new data that arrives in the future (Baruch

& Stoyanov, 1995; Spillantini et al., 1997; Marin, Garcia-Lagos, Joya, & Sandoval,

2002). Global modelling is the most commonly-used approach for inductive reason-

ing. So, this model investigates the general trend in aging. The Personalised model

investigates a given individual’s aging trend. Every person ages in a different way

that is unique to that person. Therefore Personalised modeling is required in order

to capture the personalised aging process.

28
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3.2 Computational Models for Aging

In this research we treat the age recognition problem as a time series problem with

each texture feature and anthropometric feature giving rise to a separate time series

variable. In the standard time series problem a trajectory at several different time

points from the past is available and the problem is to project into the future. The

time series problem that we tackle differs from the standard time series problem in one

fundamental aspect: in the face recognition scenario only one time point is available,

which is the image (feature vector) at the time point at which the image was captured.

No other training data is available. This would make the problem virtually unsolvable

if not for the fact that we can explore the data spatially to obtain more training data.

Thus at any given time point we have f data points obtained from the f different

anthropometric features that we extract. However, since the time series trajectory of

each feature is largely independent of the others, a simple approach of combining them

into a single series would be highly ineffective. As such, our solution is to first build

trajectories for each of the features separately and then combine predicted feature

values at each time point into a single vector which is used to determine whether a

match exists between probe and gallery images. The other relatively minor difference

is the direction in which the trajectory is built; in our case it is backwards in time

instead of forwards.

In this chapter we investigate two different types of models built at different

levels of data granularity. At the global level a model is built on training data

that encompasses the entire set of available individuals. At the individual level a

personalized model was built for each individual. In the evaluation stage we use a

similarity matrix to compute Rank 1 accuracy.
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3.2.1 Global Model

Model Construction

A global model is induced over the entire problem space that contains the entire

population of available individuals. Such models serve to capture useful general trends

across the population over a spectrum of age bands that we use. After grouping

images into their respective age bands, we determine discriminative features and

compute the values of 7 unique indexes (i.e. ratio of Euclidean distances for a given

pair of Anthropometric features) for each image. The indexes were calculated after

warping the image to a mean image using the Procrustes algorithm (Cootes et al.,

1999). In the case of texture, as a part of preprocessing, we first register the images,

so that all images transform to the same size and each point on any given image

refers to the same point on all of the images. Then we divide the facial image into

five horizontal slices. The slices cover the forehead, eyes, nose, mouth and the area

below the mouth. Edges(Canny) are marked on the face after converting the image

into grayscale. A histogram is prepared for these edges. The frequency of edges in

each slice is taken as a feature, thus resulting in five features for the whole face. The

centroid of each age band is determined and an nth order polynomial (we experiment

with values of n in the range [1..3]) function is developed that spans all the age bands

using a least square based non-linear regression method. Equation (3.1) represents

the Global model for the Facial index feature, where ci represents the value of each

coefficient and xi represents its age band index value. Figure 3.1 shows the trajectory

of the Global Model across the agebands for the Facial index.

y
(global)
i = c1x

n
i + c2xi

n−1 + ....+ cnxi + cn+1 (3.1)
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Figure 3.1: Global Model for Feature 1 (Facial index). The two vertical blue lines
show the spread of feature values in age band 3 and age band 8.

3.2.2 Personalized Model

Model Construction

The transductive or personalized approach, in contrast to the inductive approach,

models each point in the problem space. It was defined by Vapnik in (Vapnik &

Vapnik, 1998) and used by Kasabov in (N. Kasabov, 2007b) and Pears in (Pears,

Widiputra, & Kasabov, 2013). The intuition behind personalized modeling is that

the aging process differs from person to person and hence modeling at the level of

individuals can be expected to yield more accuracy. The k-NN (k-nearest neighbor)

is one of the well-known transductive techniques and is the most widely used form of

personalized modeling.

The model is constructed as follows. We take an image, determine its age band (in

closed set evaluation mode the age for the image is known; in real-world applications, a

human expert can be used to estimate the age) and obtain its k nearest neighbors (the
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optimal value of k=5 is set by experimentation). When we get an Anthropometric

sample of an image we de-age that sample as follows:

DFi = Mi − Fi (3.2)

We introduce a deviation factor (DF) as defined in equation (3.2) above. The

deviation factor captures the degree to which an individual’s Anthropometric feature

value differs from the population as a whole. In this research we assume that the DFi

is independent of age which amounts to assuming that the rate of change in a feature

value is constant over time. In equation (3.2), Mi represents the mean of feature i

at the age band j estimated by the human expert and Fi is the feature value of the

image in that same age band.

Pij = Gij +DFi (3.3)

The de-aging process is done in equation (3.3) by adding the deviation factor DFi

of the image in the given age band to the centroid value Gij returned by the global

model at age band j which in turn is obtained by applying equation (3.1) on feature

i. The resultant pivot value Pij is used to find the k nearest neighbors and determine

the centroid ai of these neighbors. This process is repeated for each age band to

complete the construction of the personalized model for the image. We use these

centroids ai to fit a non-linear function across the age bands; once again we fit an nth

degree polynomial curve using the method of least squares. Equation (3.4) represents
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the Personalized model where yi is the feature value for feature i ; xi is the age band

index and n is the degree of the polynomial.

y
(personalized)
i = c1xi

n + c2xi
n−1 + ....+ cnxi + cn+1 (3.4)

Equation (3.4) embodies the aging trajectory for an individual and provides in-

sights into how one individual’s aging trajectory differs from another in the given

population. Although Global model is used for calculating the deviation factor, it is

a personalized process because equation 3.2 and equation 3.3 are used for building

separate trajectories for feature i in the backward direction. In our experimentation

in sections 3.5 and 3.6 we demonstrate the effectiveness of the personalized model

against the global model.

3.3 Use of Subspace for Target Image Identifica-

tion

In order to improve rank 1 accuracy, we aggregated adjacent age bands into subspaces.

In effect, we combine two adjacent age bands into one subspace, thus building I

subspaces from N age bands. This has two advantages. Firstly, we expect rank 1

accuracy to improve as there is less uncertainty in locating subspaces as opposed to

age bands. This is due to the fact that subspaces are larger in size than age bands.

Secondly, image recognition time is reduced as the search is restricted to a smaller

number of time segments.

Naive Bayes is used to identify a subspace given a probe feature Xj. Naive Bayes

is an effective and computationally efficient technique for constructing a classifier.
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The classifier assumes that features are independent of each other which implies that

the conditional probability of a class (in our case, a subspace) on a given feature is

independent of the corresponding conditional probabilities across the other features.

Although this assumption may not hold strictly in practice several empirical studies

in the machine learning literature have shown that this type of classifier is robust

in such situations as well (Witten & Frank, 2005). We thus select the Naive Bayes

classifier on account of its robustness and computational efficiency.

Each subspace is constructed as shown in Tables 3.2 and 3.4. Two bins, high and

low, spanning the higher and lower end of the median boundary range, were used

for each subspace after normalizing each feature value to the [0..1] range. When a

probe image is taken, models at the global and personalised data granularity levels

are constructed. The feature values are de-aged to the age band of the probe image.

Then a predicted value for all of the features are produced by the model. These values

are compared with the bin values and a bin is chosen on the basis of the closest match

with the predicted value.

A posterior probability for each subspace is computed by using equation (3.5)

where Pr(Ai) is a prior probability for subspace i. The conditional probability

Pr(Xj|Ai) is then found for each feature j by applying our aging models. The prob-

ability Pr(X) is a scaling factor that is computed across the entire feature set.

Pr(Ai|Xj) = Pr(Ai)Pr(Xj|Ai)/Pr(X) (3.5)

where

Pr(Xj|Ai) = Pr(X1|Ai)Pr(X2|Ai)......P r(Xn|Ai)
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Pr(Xj|Ai) =
∏n

j=1 Pr(Xj|Ai)

Pr(Ai|Xj) = Pr(Ai)
∏n

j=1 Pr(Xj|Ai)

Pr(X) =
∑k

i=1 Pr(Ai)
∏n

j=1 Pr(Xj|Ai)

This process is repeated for every subspace. The subspace that yields the highest

posterior probability Pr(Ai|Xj) is chosen and is assumed to contain the desired probe

image. We used a leave-one-person-out strategy to train the classifier.

For recognition, given a probe image, its age band is obtained from the human

expert. We use this age band estimate to compute predicted feature values for the

probe image by using the aging models. We then determine the target subspace of the

probe image. Finally, a similarity matrix is computed for measuring the performance.

The similarity matrix is a numerical measure of how similar two faces are.

A similarity matrix of scores is computed based on the Euclidean distances be-

tween all pairs of biometric samples from the gallery and the probe pj image. The

similarity matrix is built from all images in the search space and rank 1 accuracy is

then computed. The identification rate at rank 1, PI(1) , is also called the correct

identification rate and the top match rate or score (A. K. Jain & Li, 2011; A. Jain et

al., 2007). The identification rate for rank n, PI(n), is shown in equation (3.7).

For rank n, let

C(n) = |{pj : rank(pj) ≤ n}| (3.6)

be the cumulative count of the number of probes at rank n or less. The identifi-

cation rate PI(n) at rank n is then given by:
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PI(n) =
|C(n)|
|PG|

(3.7)

where |PG| is the number of images in the probe set. Both C(n) and PI(n) are

non-monotonic decreasing functions of n.

In closed set system, CMC curve is used for evaluating the performance of face

recognition system where CMC curve depicts identification rates over candidate list

sizes. The candidate list is selected by including the top X ranked results(Dunstone

& Yager, 2008). The performance metric of interest is where the genuine match

is ranked. Instead of asking Is the top match correct?, the CMC plot answers the

question, Is the correct match in the top-n matches?(A. K. Jain & Li, 2011; A. Jain

et al., 2007).

3.4 Empirical Study

Experiments were performed on the publicly available FG-NET and MORPH Album

2 (the largest publicly available face aging dataset) (Ricanek Jr & Tesafaye, 2006),

both of which are used for benchmarking new methods. The lack of a large publicly

available face aging database until recently limited research on age invariant face

recognition.

There are two desired attributes of a face aging database: (i) large number of

subjects, and (ii) large number of face images per subject captured at many different

age points (Li et al., 2011). In addition, it is desired that these images should not

have large variations in pose, expression, and illumination.

Each of the two datasets that we experimented with has their own challenges. The
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MORPH dataset has a large number of subjects with images taken across a narrow

age timeline while FG-NET database has a smaller number of subjects and images

but the average age gap between images from the same person is much larger than

with the MORPH dataset.

The MORPH dataset contains about 55,000 face images from 13,000 different

people. The FG-NET database on the other hand contains 1002 color and gray face

images of 82 persons across a range of different ethnicities. There is a large variation

in lighting, expression and pose across the different images. The image size is 300×400

in pixel units, on the average. The ages vary from 0 to 69 years. There are on the

average 12 images per person across different ages. The database was divided into

ten different age bands as shown in Tables 3.1 and 3.3.

Table 3.1: FG-NET Age Bands

Ages 0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-69

Images 233 178 164 155 81 62 38 31 26 34
Subjects 75 70 71 68 46 38 30 24 19 10

Table 3.2: FG-NET Subspaces

Ages 0-10 11-20 21-30 31-40 41-69

Images 411 319 143 69 60
Subjects 77 81 50 35 22
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Table 3.3: Morph Age Bands

Ages 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65

Images 2189 2113 1642 1760 1825 1657 1018 549 183 64

Subjects 973 1037 821 903 971 850 536 287 92 30

Table 3.4: Morph Subspaces

Ages 16-25 26-35 36-45 46-55 56-65

Images 2283 1759 1680 675 103

Subjects 2283 1759 1680 675 103

3.5 Experiment with FG-NET Database

For evaluation we chose all 1002 images taken from the entire set of 82 individuals.

A leave-one person-out (LOPO) strategy was used for evaluation (Gong et al., 2013,

2015; Li et al., 2011).

Our experimentation is focused on comparing the performance of the Global and

Personalized models.

3.5.1 Success rate of subspace selection

Table 3.5 shows that the Bayesian classifier was highly effective at finding the correct

subspace for both shape and texture models, with both types of models returning
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accuarcy rates around the mid 90% mark as measured according to the LOPO strategy

mentioned earlier.

Table 3.5: Classification Accuracy of subspace identification

Models Database,subjects
and Images in
probe

Accuracy

Shape FG-NET(82,1002) 96.4%
Texture FG-NET(82,1002) 94.6%

3.5.2 Comparison of models across data granularity level for

shape features

Figure 3.2: Cumulative Matching Characteristic Curves (CMC) for FG-NET

Database

The CMC curves in Figure 3.2 shows the performance of the Global and Personalized

models on shape features across rank orders from 1 to 10, with the Personalized model
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emerging winner as the clear winner across the range.

3.5.3 Comparison of models across data granularity level for

texture features

Figure 3.3: Cumulative Matching Characteristic Curves for FG-NET Database

The CMC curves in Figure 3.3 for texture features once again show that the Person-

alized model is the clear winner across across rank orders from 1 to 10.

We note that the models developed can not only be used for gallery image ex-

traction but could be used to simulate the aging process as well. The age trajectory

functions that we build can be used to predict their features values by performing

a forward traversal (rather than a backward one). This a further advantage of our

aging models over the one proposed by (Gong et al., 2015).
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Table 3.6: Comparative results of Rank-1 score with FG-NET database

Models shape Texture

Global 33.7% 23.3%
Personalized 70.4% 68.6%

Table 3.7: Comparative results of Rank-1 score with FG-NET database

Models Rank-1

Global (Texture) 23.3%
Global (Shape) 33.7%
Personalized(Texture) 68.6%
Personalized(Shape) 70.4%
(Geng et al., 2007) 38.1%
(Park et al., 2010) 37.4%
(Li et al., 2011) 47.5%
(Gong et al., 2013) 69%

(Gong et al., 2015) 76.2%

3.6 Morph Experimentation

In order to check generality of our models on different types of databases, we used

MORPH Album 2 (the largest publicly available face aging dataset) database. We

annotated the fiducial landmarks with Stasm as shown in Figure 3.4, a method based

on Active shape Models (Milborrow & Nicolls, 2014). We used all 13000 subjects for

conducting the experiment. We used the same methodology as used in state of art

algorithms (Gong et al., 2013, 2015; Li et al., 2011) in which the MORPH album 2

data set was split into three sets, viz training set, a probe set and a gallery set.
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Figure 3.4: Fiducial landmark detection results. Blue points represent the 68 land-

mark points

The persons in the training set were entirely different from those in the probe

and gallery sets. For the training dataset, we selected a subset of 13,000 face images

from 6500 subjects, with two images per subject. These two images were selected

such that they had the largest age gap between them. The gallery set was composed

of 6500 face images corresponding to the youngest age of these 6500 subjects. The

probe set was composed of 6500 face images corresponding to the oldest age of these

6500 subjects.

The CMC curves in Figure 3.5 and Figure 3.6 confirm the trends shown in Table

3.8 across rank order, thus confirming that the Personalized model is once again the

overall winner on the MORPH dataset as well.

3.6.1 Success rate of subspace selection

Table 3.7 shows that the Bayesian classifier was highly effective at finding the correct

subspace for both shape and texture models, with both types of models returning

accuracy rates above 95% as measured according to the LOPO strategy mentioned

earlier.



43

Table 3.8: Comparative results of Classification of different Models

Models Database,subjects

and Images in

probe

Accuracy

Shape Morph(6500,6500) 98.8%

Texture Morph(6500,6500) 99.0%

3.6.2 Comparison of models across data granularity level for

shape features

Figure 3.5: Cumulative Matching Characteristic Curves for Morph Database

The CMC curves in Figure 3.5 confirm that the trends displayed in shape models hold

across rank orders from 1 to 10, with the Personalized model emerging the winner

across the range.
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3.6.3 Comparison of models across data granularity level for

texture features

Figure 3.6: Cumulative Matching Characteristic Curves for Morph Database

The CMC curves in Figure 3.6 again confirm that the trends displayed in texture

models hold across rank orders from 1 to 10, with the Personalized model emerging

the winner across the range.

Table 3.9: Comparative results of Rank-1 score with MORPH database

Models Shape Texture

Global 21% 20%

Personalized 91% 90.5%

Tables 3.6 and 3.9 show that the Personalised Model outperforms the Global

Model.
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Table 3.10: Comparative results of Rank-1 score with MORPH database

Models Rank-1

Global(Texture) 20%
Global(Shape) 21%
Personalized(Texture) 90.5%
Personalized(Shape) 91%
(Klare & Jain, 2011) 79.08%
(Park et al., 2010) 79.80%
(Li et al., 2011) 83.90%
(Gong et al., 2013) 91.14%
(Gong et al., 2015) 94.59%
(Li et al., 2016) 94.87%

In this set of experiments we investigated the effects of shape and texture models

at global and personalized level. In tables 3.7 and 3.10 we benchmarked our models

against the current state-of-the-art models. The results clearly indicate that our

Personalized model outperformed the models of (Li et al., 2011; Park et al., 2010)

but near to models of (Gong et al., 2015). The results in the subsequent chapters 5

and 6 would clearly indicate that our integrated model for shape and texture features

and composite model (combination of shape and texture features) have higher Rank

1 accuracy than with the Gong et al approach.

3.7 Discussion

In this chapter, the models of shape and texture at different levels of granularity have

been presented. It was observed that dividing the whole database into subspaces

and using the Naive Bayesian approach to narrow down the search space proved to

be a success. This limits the search space, which reduces the computation cost and
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improves the recognition accuracy. The Global model has some limitations because

it captures the general behavior of population, thus resulting in low accuracy. Even

though the global approach operating on its own was outperformed by personalized

model it was indispensable as the personalized approach required a globalized aging

function to de-age features and step backward through the age bands. The Per-

sonalised model provides very high accuracy. However it has a limitation in that it

would be expensive to build a Personalized model for every member specially when

the database size is large. Moreover, k nearest neighbor approaches would become

more expensive as database size increases. The solution to this problem is to find

homogeneous groups in database on the basis of aging pattern. This search lead

to development of a local model. This model, built from homogeneous population,

would be more helpful for finding probe image thus reducing the computation cost.

The next chapter discusses the Local model and building homogeneous population

for that model. It is worthwhile to point out here that reduction in size of search

space is a different phenomenon from building a homogenous population, as will be

evident from the subsequent discussion in the next Chapter.



Chapter 4

Local Modelling

4.1 Introduction

Local models (N. Kasabov, 2007b, 2007a, 2001; Yamada, Yamashita, Ishii, & Iwata,

2006; Lucks, Oki, & RamirezAngulo, 1999; Widiputra, Pears, & Kasabov, 2011;

Widiputra, 2011; Hwang, 2009) break down a problem space into smaller subspaces

before building separete models on each of the subspaces defined. These models are

created by grouping together data that shows similar behaviour within the group

while being distinct from the behavior of data outside the group. For example, the

variables in a given subpopulation change in consonance with each other but in a

different manner from those in other subpopulations. Data for such items of similar

behavior define their own clusters. These clusters are the basis of the local models

that are developed based on regression. Such models display higher accuracy over

the local problem space covered as compared to that of a global model. In this type

of modeling, results are evaluated on only a subset of the problem space. Local

modeling provides us additional flexibility as results can be predicted either on the

basis of single model or in combination with other models (N. Kasabov, 2007a). There
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is another distinct advantage in that local models enable us to capture recent data

trends in the data and relate them to similar behaviour from the past data. A global

model considers only the past activity, thus resulting in reducing the significance of

recent trends in the data (Widiputra et al., 2011a).

Figure 4.1: Illustration of local modelling to create localised linear regression models

from clusters of sample data set in a 2-D space (Hwang,2009, Widiputra et al., 2011)

4.2 Local Model

While a personalized model captures aging effects that are tailored to an individual

and a global model captures trends across a population, scope exists for an inter-

mediate level modeling approach. Given a probe image the local modeling approach

constructs a model from a homogeneous subset of the population that is most closely

aligned with the image rather than from the entire population that in general is het-

erogeneous. Essentially, the local approach constructs subpopulations through the

use of a clustering scheme. For each probe image, the cluster that is closest to it
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is identified and thereafter the same model construction process as discussed in the

previous chapter for the personalized model is applied. Thus in terms of performance,

the local approach is expected to be faster than personalized modeling as the con-

struction and fitting of the aging function is restricted to a subset of instances rather

than to the population as a whole.

In a real world situation, the population may be heterogeneous with several dif-

ferent sub-populations made up of different ethnicities, different lifestyles, etc, all of

which have a bearing on the aging process. However, in this research we do not as-

sume that the image gallery is annotated with such explicit feature information. Thus

in order to segment the population we need to make use of a clustering algorithm that

could be applied on the time series trajectories obtained from the fiducial features

taken over time. The intuition is that individuals who age similarly will produce simi-

lar trajectories and hence will be clustered together in the same segment. However, it

can also happen that any two given individuals age similarly but have pair-wise differ-

ences in the time series variable (fiducial feature) over the age bands that we track. In

time series analysis this corresponds to two time series that are highly correlated but

are out of phase with each other. A standard clustering algorithm such as K-means

will fail to cluster such correlated but out of phase sequences. This problem can be

avoided by applying Dynamic Time Warping (DTW)(Sakoe & Chiba, 1978; Müller,

2007; Sakoe, Chiba, Waibel, & Lee, 1990) before applying K-means. As mentioned

earlier the construction follows the same procedure as for the personalized model but

with segmentation performed as a pre-processing step and the use of cluster means

in place of global means at each age band.
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4.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known technique to find an optimal align-

ment between two given (time-dependent) sequences under certain restrictions.

The objective of DTW is to compare two (time-dependent) sequencesX = (x1, x2, ..., xN)

of length N ∈ N and Y = (y1, y2, ..., yM) of length M ∈ N . These sequences in our

case are aging image attributes sampled at equidistant points in time. Let us denote

our feature space with F . Then xn, ym ∈ F for n ∈ [1 : N ] and m ∈ [1 : M ]. To

compare two different features x, y ∈ F , a local cost measure needs to be computed.

It is referred to as a local distance measure.

Typically, c(x, y) is small (low cost) if x and y are similar to each other, otherwise

c(x, y) is large (high cost).

The algorithm starts by building the distance matrix C ∈ RN×M representing all

pairwise distances between X and Y . This distance matrix is called the local cost

matrix for the alignment of two sequences X and Y :

Cl ∈ RN×M : ci,j = ‖xi − yj‖ , i ∈ [1 : N ], j ∈ [1 : M ] (4.1)

Once the local cost matrix is built, the algorithm finds the alignment path which

runs through the low-cost areas - “valleys” on the cost matrix, Figure 4.2. This

alignment path (or warping path, or warping function) defines the correspondence

of an element xi ∈ X to yj ∈ Y following the boundary condition which assigns

first and last elements of X and Y to each other.

4.2. DTW can be formally defined as an (N,M) warping path is a sequence

p = (p1, p2, ..., pK) with pl = (pi, pj) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : K] which must

satisfy to the following criteria:
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Figure 4.2: Time alignment of two independent time sequences. Alined points are
indicated by the arrows

1. Boundary condition: p1 = (1, 1) and pK = (N,M). The starting and ending

points of the warping path must be the first and the last points of aligned

sequences.

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ ... ≤ mK .

This condition preserves the time-ordering of points.

3. Step size condition: the basic step size condition formulated as pl+1 − pl ∈

{(1, 1), (1, 0), (0, 1)}.

The total cost of the warping is computed as it is used in cluster construction. The

cost function associated with a warping path is computed with respect to the local

cost matrix (which represents all pairwise distances)

cp(X, Y ) =
L∑
l=1

c(xnl
, yml

) (4.2)

The warping path which has a minimal cost associated with alignment is called the

optimal warping path P ∗. Once computed, it used for time-series alignment.

In order to determine an optimal path p, there is a need to test every possible

warping path between X and Y . Such a procedure, however, would lead to a compu-

tational complexity that is exponential in the lengths N and M. Therefore dynamic
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programming was used to introduce an O(NM) algorithm that defines the prefix se-

quences X(1 : n) = (x1, ...xn) for n[1 : N ] and Y (1 : m) = (y1, ...ym) for m[1 : M ]

and setD(n,m) = DTW (X(1 : n), Y (1 : m)).

4.4 Model Construction

The model is constructed in 3 steps as follows:

Step 1: for each feature f, apply the K-means clustering algorithm on the time

warped vector space and create K clusters that span the n age bands. Note that we

use K to distinguish it from the neighborhood parameter k used in the k-NN search.

This will result in a total of K ∗ n centroids, one for each age band in each cluster.

Step 2: for each probe image its age band is determined. For that age band the

cluster Ci that fits most closely to the image, given a fiducial feature Xj is identified

on the basis of the conditional probability of the occurrence of the cluster given:

Pr(Ci|Xj) = Pr(Ci)Pr(Xj|Ci)/Pr(E) (4.3)

where Pr(E) is a normalizing factor taken across all clusters. In practice the normal-

izing constant Pr(E) need not be computing as maximum likelihood is applied on

(4.3) above thus resulting in retruning the clusters which maxmimizes Pr(Ci|Xj).

Step 3: Use equation (3.2) with Mi representing the mean of feature i across the clus-

ter that the image belongs to, instead of the mean across all images in the database.

Thereafter, equation (3.3) is applied to find the pivot points Pi and k polynomial
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aging function of the same form as in equation (3.4) is developed for each of the K

clusters.

Algorithm 1 Local Model

Input:Probe images and its data for features (X1....Xn).
Gallery images and features (X1......Xn) of each image.
Output: Rank determined.

1: for each probe image do
2: Read its features (X1......Xn) data.
3: Get probability Pr of cluster (C1.........Ck) by using equation 4.3
4: Sort the clusters (C1.....Ck) in descending order of probability.
5: Choose top M clusters out of the K clusters.
6: for each cluster (C1........CM) do
7: for each feature (X1......Xn) do
8: Use equation 3.2 and calculate deviation factor
9: for each band(b1........bn) do

10: Use equation 3.3 and calculate de-aged distance
11: Use the knn search algorithm and find the closest k neighbors
12: of de-aged distance
13: Get centorid of k neighbors
14: end for
15: Use equation 3.4 and determine a quardratic polynomial function .
16: Get predicted distance vector P of all features (X1...........Xn)
17: end for
18: for each of M clusters do
19: Calculate subspace S as per method explained in section 3.3
20: Use predicted distance and determine similarity matrix.
21: if rank1 is obtained then
22: break
23: end if
24: end for
25: Final rank is obtained
26: end for
27: Collate the results for the rank of all images.
28: end for
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4.5 Empirical Study

The experiments were performed with the same FG-NET and MORPH databases as

used in previous chapters. We have used the same settings for agebands and subspaces

throught out this experimentation.

4.6 Experiment with FG-NET Database

For evaluation we chose all 1002 images taken from the entire set of 82 individuals.

A leave-one person-out (LOPO) strategy was used for evaluation (Gong et al., 2013,

2015; Li et al., 2011). The same method is used for age subspace selection as given

in the previous chapter. The algorithm for ranking images using the local modelling

approch is given below in Algorithm 1.
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4.6.1 Comparison of models across data granularity level for

shape features

Figure 4.3: Cumulative Matching Characteristic Curves (CMC) for FG-NET

Database

The CMC curves in Figure 4.2 confirm that the trends displayed in shape models hold

across rank orders from 1 to 10, with the Personalized model emerging the winner

across the range. However, it is apparent that the local modelling approach is superior

to that of the global approach, especially at the lower rank orders.



56

4.6.2 Comparison of models across data granularity level for

texture features

Figure 4.4: Cumulative Matching Characteristic Curves for FG-NET Database

The CMC curves in Figure 4.3 again confirm that the trends displayed for shape

features also hold for the texture features as well, with the personalized approach

emerging the winner once again followed by the local and global approaches.

Table 4.2 reveals the advantges of the local modelling approach over the person-

alized approach. While its rank 1 accuarcy (Table 4.3) is lower than that of the

personalized approach its performance with respect to average probe image time is

substantially less than that of the former approach.



57

Table 4.1: Comparative results of Rank-1 score with FG-NET database

Models shape Texture

Global 33.7% 23.3%
Personalized 70.4% 68.6%
Local 63.7% 53.9%

Table 4.2: Comparative results of Time per probe Image with FG-NET database

Models Shape Texture

Global 0.11s 0.9s
Personalized 0.58s 0.56s
Local 0.27s 0.24s

4.7 MORPH Experimentation

4.7.1 Comparison of models across data granularity level for

shape features

We next tested the performance of the local modelling approach on the MORPH

gallery. Given that this gallery differs markedly from FG-NET in terms of having a

much smaller average age gap between two images from the same person it would be

interesting to see the effects of this characteristic on rank 1 accuracy. The expectation

would be that the local modelling approch would perform significantly better than

its counterparts with respect to usage of both shape and texture features.
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Table 4.3: Comparative results of Rank-1 score with FG-NET database

Models Rank-1

Global (Texture) 23.3%
Global (Shape) 33.7%
Personalized(Texture) 68.6%
Personalized(Shape) 70.4%
Local(Texture) 53.9%
Local(Shape) 63.7%
(Geng et al., 2007) 38.1%
(Park et al., 2010) 37.4%
(Li et al., 2011) 47.5%
(Gong et al., 2013) 69%

(Gong et al., 2015) 76.2%

Figure 4.5: Cumulative Matching Characteristic Curves for MORPH Database

The CMC curves in Figure 4.5 confirm that the the Personalized model is once

again the winner across rank orders 1 to 10. Howvever, we note that the local mod-

elling approach has closed the gap with the Personalized model, in keeeping with our

expectations.



59

4.7.2 Comparison of models across data granularity level for

texture features

Figure 4.6: Cumulative Matching Characteristic Curves for MORPH Database

The CMC curves in Figure 4.6 reveals that the trends displayed for shape features

also hold for texture features across rank orders from 1 to 10, with the Personalized

model emerging the winner across the range, closely followed by the Local model.

Table 4.4: Comparative results of Rank-1 score with MORPH database

Models Shape Texture

Global 21% 20%
Personalized 91% 90.5%
Local 85% 81%

The results in Tables 4.1, 4.2, 4.4 and 4.5 clearly indicate that the Local approach

for shape and texture returns good Rank-1 accuracy and relatively low recognition

time as compared to Personalized models. However, Personalized models for shape
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Table 4.5: Comparative results of Time per probe Image with MORPH database

Models Shape Texture

Global 0.18s 0.16s
Personalized 1.43s 1.36s
Local 0.56s 0.51s

Table 4.6: Comparative results of Rank-1 score with MORPH database

Models Rank-1

Global(Texture) 20%
Global(Shape) 21%
Personalized(Texture) 90.5%
Personalized(Shape) 91%
Local(Texture) 81%
Local(Shape) 85%
(Klare & Jain, 2011) 79.08%
(Park et al., 2010) 79.80%
(Li et al., 2011) 83.90%
(Gong et al., 2013) 91.14%
(Gong et al., 2015) 94.59%
(Li et al., 2016) 94.87%

and texture do return better rank-1 accuracy as compared to Local and Global models.

Tables 4.3 and 4.6 show that the Local model performance is also comparable to state

of art approaches(Klare & Jain, 2011; Park et al., 2010; Li et al., 2011; Geng et al.,

2007) for FG-NET and MORPH database. However, we note that rank1 accuracy is

still short of what (Gong et al., 2015) achieved. In the next chapter we present new

versions of our aging modelling scheme based on two new models, namely Integrated

and Composite that perform competitively to (Gong et al., 2015).
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4.8 Discussion

In this chapter, Local models for shape and texture are presented. In the case of the

Local model we reduced the search space by first dividing the whole database into

sub populations(clusters) and then considered subspaces within each subpopulation.

The Local model trades-off accuracy with recognition time. Reduction in recognition

time follows directly from restricting the search space to a cluster rather than the

entire dataset. Experimentation with the FG-NET and MORPH database resulted

in a reduction of recognition time in relation to the Personalized model approach.

But a reduction in rank 1 accuracy also resulted due to the fact that image recog-

nition decisions are made on localized data rather than on the entire dataset. After

building the three models viz Global, Personalized and Local at different level of data

granularity a question arises ”Does any synergy exist between these three models? ”.

In the next chapter we will investigate this question and search and utilize the

synergy to build integrated model where we combine these three models.



Chapter 5

Integrated Modelling

5.1 Introduction

The characterics of features of the human face indicates that there are certain trends

which are globally true for whole of the problem space. On the other hand, there are

other trends that are common to only subsets of population and not valid for whole

of the population. The former set of chatacteristics determines a global model and

the latter set determines a local model in our study. There is yet a third set of trends

that is characteristically special to the individual image. Such trends are studied

under the broad concept of a personalized model. All these three approaches provide

complementary information and data that is useful for inter related complex modelling

tasks. It is also hypothesised that if a synergy exists between these approaches then

an integrated model approach can be used by combining all the types of information

into a single cohesive model.

(Kasabov, 2007b) has also introduced the concept of an integrated scheme em-

bracing different types and levels of knowledge. The author discusses the prediction
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capability of each of the three models (global, local and personalized) and then pro-

poses a single multimodel system that encompasses all three models. However he did

not give an implementation of his integrated framework. (Widiputra, 2011) intro-

duced the integrated multi model framework for multiple time series. A methodology

was laid down for construction of such a synergetic integrated model that deals with

multiple time series along with their interactions and profiles of relationships. It

utilizes information from all the three types of models.

The experiments and analysis carried out in this chapter will answer the questions:

does any synergy exist in the three approaches (global, local and personalized) with

a view to enhancing overall accuracy.

5.2 Integrated Model

Our Integrated model is inspired by the Integrated Multi Model Frame Work(IMMF)

proposed by (Widiputra, 2011) which exploits synergy that may exist between models

at the global, local and personalized data granularity levels.
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Figure 5.1: Illustration of integrated framework of global, local and personalized

models. (Hwang,2009, Widiputra et al., 2011)

The main component of the IntegratedMulti-Model Framework (IMMF) is the

accumulator module which is implemented through the use of an Adaline Neural

Network (Widrow & Stearns, 1985) that decides the contribution (weighting) of each

type of model. The accumulator module takes as input the set of training images and

then for each training image will feed prediction outcomes (in the form of predicted

feature value for feature j ) from each of the global, local and personalized models in

order to assign weights that will be associated with each type of model. The output of

the accumulator represented by X in Figure. 5.2 is the optimized final set of weights

over the entire set of training images. Equation 5.1 defines the prediction for feature
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j for the Integrated model in terms of a linear weighted function of predictions from

the global, local and personalized models.

.

Figure 5.2: Illustration of the Adaline for Integrated Model

(X)j = Wj,gY
(Global) +Wj,lY

(Local) +Wj,pY
(Personalised) (5.1)

where Wj,g is the weight attributed to the global model for fiducial feature j. Wj,l is

the weight attributed to the local model for fiducial feature j. Wj,p is the weight attributed

to the personalized model for fiducial feature j. Y (Global), Y (Local) and Y (Personalised) are

values returned from equation 3.1 and 3.4.

ADALINE Learning Rules

The ADALINE network adjusts the connection weight according to the weighted sum of the

inputs, whilst in a different way, the standard perceptron adjusts the connection weights

according to the output of the activation or transfer function. Nevertheless, this method-

ology considers that there is no external interference to the system. In relation to that,

the bias value b in the ADALINE is not considered. Therefore, only the weights are being

estimated through each iteration.
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In general, the Least Mean Square (LMS) algorithm proposed by (Rappaport et al.,

1996; Haykin, Haykin, Haykin, & Haykin, 2009) adjusts the weights and biases (if any is

being considered) of the ADALINE network in order to minimise the mean square error,

where the error is the difference between the target output and the network output.

The key insight of the learning rule was to estimate the ADALINE networks mean

square error F(x) defined by:

F (x) = e2(k) = (t(k)− a(k))2, (5.2)

where the error e is a function of the weights vector w. Consequently, as weights change,

the error changes. The objective of the learning process is then to move in weight space

down the slope of the error function with respect to each weight. Nevertheless, the size of

the move should be proportional to the magnitude of the slope. Then at each iteration k a

gradient estimate of the form that is given below can be obtained:

∇F (x) = ∇e2(k) (5.3)

xk + 1 = xkα∇F (x)|x=xk
(5.4)

= xk + 2αe(k)z(k) (5.5)

The equations of the LMS algorithm can then be written conveniently in matrix notation:

w(k + 1) = w(k) + 2αe(k)pT (k) (5.6)

where the error e and the bias b are now vectors.

b(k + 1) = b(k) + 2αe(k) (5.7)
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Equations 5.6 and 5.7 make up the LMS algorithm which is the learning algorithm for the

ADALINE network (also known as the Widrow-Hoff learning algorithm or the delta rule).

However, since no bias value is being considered in the integrated framework proposed in this

study, what is being estimated through each iteration are only the weights. Additionally,

a single accumulator module in the IMMF would produce only a single output (as the

integrated prediction results from the global, local and transductive model) and not multiple

outputs. Therefore, in the learning algorithm of the IMMF only Equation 5.6 is used.

Learning Algorithm of Integrated Model

The learning procedure implements two stopping conditions of the ADALINE learning

process when finding the optimal weights with the smallest mean squared error. The first

stopping condition is the maximum number of epochs, while the second one is the tolerance

level for the mean squared error.

Step 1: For each feature(X1.........Xn) of training image , a predicted distance vector

from global, local and personalized model is calculated for feature j. These values are multi-

plied with the weights vector as shown in equation 5.1. In each case the error is determined

by comparing predicted distance with the actual feature value of image.

Step 2: The weights are revised by using equation 5.6 and the same process (step1) is

repeated for all training images. When all the images are processed, a final weight vector is

determined. These weights are used to obtain the mean squared error. If the squared error

is less than or equal to the tolerance value, then the weights for that feature are finalized.

Step 3: If the error is greater than tolerance value then steps 1 and 2 are repeated. Each

such iteration is called an epoch. This proccess is repeated for the maximum number of

epochs. If error falls below the tolerance before the maximum number of epochs is reached

then the process is stopped. If not, we continue for maximum number of epochs.

Step 4: Finally weight vector for the feature is determined. This process is repeated for
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each feature and a weight vector finalized for each feature.

These weights are used for preparation of Integrated model and judging the overall perfor-

mance of the system.

In the preparation of Integrated model, three parameters need to be chosen. These

are learning rate α, number of epochs and the tolerance level. The other two are stopping

criterion of the learning process for determining weights. During the conduct of experiments

the learning rate is set to 0.1, while number of epochs is set to 200 and the tolerance level

is set to 1e−5.

Algorithm 2 Integrated Model

Input:Probe images and its data for features (X1....Xn).
Weights calculated during training.
Gallery images and features (X1......Xn) of each image.
Output: Rank determined.

1: for each probe image do
2: Read its features (X1.............Xn) data.
3: Get predicted distance for global model as explained in section 3.2.1
4: Get predicted distance for Personalized model as explained in section 3.2.2
5: Get predicted distance for local model as explained in section 4.4
6: Use equation 5.1 and get weighted output (X)j for features.
7: Calculate subspace S as per method explained in section 3.3
8: Use weighted output (X)j and determine similarity matrix.
9: Final rank is obtained

10: end for
11: Collate the results for the rank of all images.

5.3 Empirical Study

The experiments were performed with same FG-NET and MORPH databases as used in

previous chapters. We have used the same settings for agebands and subspaces through out
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this experimentation.

5.4 Experiment with FG-NET Database

For evaluation we chose all 1002 images taken from the entire set of 82 individuals. A

leave-one person-out (LOPO) strategy was used for evaluation (Gong et al., 2013, 2015; Li

et al., 2011). The same method is used for subspace selection as used in previous chapter.

5.4.1 Comparison of models across data granularity level for

shape features

Figure 5.3: Cumulative Matching Characteristic Curves (CMC) for FG-NET

Database

The CMC curves in Figure 5.3 confirm that the trends displayed for shape models hold

across all rank orders from 1 to 10, with the Integrated model emerging the winner across

the range.
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5.4.2 Comparison of models across data granularity level for

texture features

Figure 5.4: Cumulative Matching Characteristic Curves for FG-NET Database

The CMC curves in Figure 5.4 again confirm that the trends displayed for texture models

holds across all rank orders from 1 to 10, with the Integrated model emerging the winner

across the range.

Table 5.1: Comparative results of Rank-1 score with FG-NET database

Models shape Texture

Global 33.7% 23.3%
Personalized 70.4% 68.6%
Local 63.7% 53.9%
Integrated 75.6% 74.5%
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Table 5.2: Comparative results of Time per probe Image with FG-NET database

Models Shape Texture

Global 0.11s 0.9s
Personalized 0.58s 0.56s
Local 0.27s 0.24s
Integrated 0.78s 0.75s

Table 5.3: Comparative results of Rank-1 score with FG-NET database

Models Rank-1

Global (Texture) 23.3%
Global (Shape) 33.7%
Personalized(Texture) 68.6%
Personalized(Shape) 70.4%
Local(Texture) 53.9%
Local(Shape) 63.7%
Integrated(Texture) 74.5%
Integrated(Shape) 75.6%
(Geng et al., 2007) 38.1%
(Park et al., 2010) 37.4%
(Li et al., 2011) 47.5%
(Gong et al., 2013) 69%

(Gong et al., 2015) 76.2%

5.5 MORPH Experimentation

5.5.1 Comparison of models across data granularity level for

shape features

Figure 5.5: Cumulative Matching Characteristic Curves for MORPH Database
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The CMC curves in Figure 5.5 confirm that the trends displayed for shape models holds

across all rank orders from 1 to 10, with the Integrated model emerging the winner across

the range.

5.5.2 Comparison of models across data granularity level for

texture features

Figure 5.6: Cumulative Matching Characteristic Curves for MORPH Database

The CMC curves in Figure 5.6 again confirm that the trends displayed for texture models

holds across all rank orders from 1 to 10, with the Integrated model emerging the winner

across the range.

The results in table 5.1, 5.2, 5.4 and 5.5 clearly indicate that Integrated approach for

shape and texture returns the highest Rank-1 accuracy at the cost of more processing time.

Tables 5.3 and 5.6 show that the Integrated model performance is also competitive when

compared to the state of art algorithms(Klare & Jain, 2011; Park et al., 2010; Li et al.,

2011; Geng et al., 2007) for FG-NET and MORPH database. Our experimentation results

accuracy surpasses that of (Gong et al., 2015) with MORPH database but falls slightly



73

Table 5.4: Comparative results of Rank-1 score with MORPH database

Models Shape Texture

Global 21% 20%
Personalized 91% 90.5%
Local 85% 81%
Integrated 95.3% 95%

Table 5.5: Comparative results of Time per probe Image with MORPH database

Models Shape Texture

Global 0.18s 0.16s
Personalized 1.43s 1.36s
Local 0.56s 0.51s
Integrated 1.84s 1.88s

short in the case of the FG-NET database. In the next chapter we present our Composite

model that is competitive to that of (Gong et al., 2015) for the FG-NET database as well.

5.6 Discussion

In this chapter an Integrated model, generated separately for shape and texture features, is

presented. The Integrated model combines three models viz Global, Local and Personalized

models. It gives higher accuracy than all of other models on their own but at the cost of

rise in computation time. Experimentation with the FG-NET and MORPH databases both

corroborate this fact. The results show that there synergy exists between the three models

that at different levels of data granularity. It was further observed that the Integrated model

for shape and texture features sometimes retrun different matched images (to a given proble

image) in their respective Rank 1 sets. This observation leads to further research where
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Table 5.6: Comparative results of Rank-1 score with MORPH database

Models Rank-1

Global(Texture) 20%
Global(Shape) 21%
Personalized(Texture) 90.5%
Personalized(Shape) 91%
Local(Texture) 81%
Local(Shape) 85%
Integrated(Texture) 95%
Integrated(Shape) 95.3%
(Klare & Jain, 2011) 79.08%
(Park et al., 2010) 79.80%
(Li et al., 2011) 83.90%
(Gong et al., 2013) 91.14%
(Gong et al., 2015) 94.59%
(Li et al., 2016) 94.87%

we introduced a method to remove the conflict when shape and texture do not both allot

the same image to their Rank 1 sets. For this case we introduced a composite model which

resolves the conflict between the Integrated models for shape and texture.



Chapter 6

Composite Modelling

6.1 Introduction

In this Chapter we present an approach whereby shape and texture models are combined

in order to exploit synergy that exists between them. In certain cases, both types of

models point to the same image which also happens to be the right one. In such cases

having two types of models enhances the robustness of the matching process as agreement

exists. However in certain other cases, each model could identify different images. Conflict

resolution is then necessary and we make use of a decision tree classifier for resolving such

conflicts. Our choice of the decision tree classifier was based on the fact that it had the

highest conflict resolution success rate out of the classifiers that we experimented with,

which included the Support Vector Machine (SVM) (Furey et al., 2000), Decision Tree

(Schmid, 2013; Kuncheva, 2004; Friedl & Brodley, 1997), Random Forest (Liaw & Wiener,

2002) and Naive Bayes(Amor, Benferhat, & Elouedi, 2004).

We built separate models for shape (four models, at diffent levels of data granularity)

and texture (four models) and obtained separate results for each. A composite model was

then built after resolving conflicts between shape and texture models in order to make a

final decision on the probe image. In certain cases, both models (shape and texture) point to

75
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same person which is also the right one. But in other cases, each of the two models predicts

a different person. In the conflict situation we used a decision tree classifier for resolving

the conflict. Our empirical study show that the composite approach further improves rank

1 accuracy over the Integrated approach that we presented earlier in Chapter 5.

6.2 Composite Model

There are two types of scenarios possible with both types of models operating in tandem.

The first is that both model types return the same predicted image for a given probe

image. This scenario increases confidence in the prediction process, and thus in this case

the returned image is selected. The other scenario occurs when both types of models point

to different images. Figure 6.1 illustrates the Composite model approach.

Figure 6.1: Composite Model

The conflict scenario is a non trivial case to deal with as it requires a conflict resolution

mechanism. The resolution mechanism that we adopt is a classifier. The conflict scenario

can be represented as a two class classification problem: class 1 corresponds to the case when
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the belief is that the shape model type has made the right decision while class 2 corresponds

to the belief that the texture model has made the right decision. In principle, any type

of robust classifier can be utilized here, including the Bayesian that we used for subspace

identification. We experimented with different classifiers such as the support vector machine

(SVM), Decision tree, Random Forest and Naive Bayes, and found that the Decision Tree

returned the highest accuracy amongst all.

The predictors used were: the 7 shape features, 5 texture features and 2 deviation factors

dfs and dft; one each for shape and texture respectively. In addition, we use two confidence

measures cs and ct, for shape and texture respectively, which we define below.

The confidence factor is a measure of the predictive power of the model type on identi-

fying the correct image in the gallery. The closer the distance between the predicted image

returned by the model to the desired image, the larger should be the confidence. However,

it is desirable that the confidence diminishes rapidly in a non-linear manner with distance; a

distance of 2d between the images should be considered much more than twice as weak as a

confidence obtained with a distance of d. Hence our decision to choose an inverse exponen-

tial function to measure confidence. In principle, any monotonically decreasing nonlinear

function can be used, but our experimentation with different types of such functions has

shown that the inverse exponential function defined in equation 6.1 performs best.

confm = 1/(1 + edm) (6.1)

where subscript m refers to the model type, taking values of either ”shape” or ”texture”

and e is the natural logarithm base

For either of the model types, the distance can be represented as a Euclidean distance

between the predictor image feature vector and the actual image feature vector and is

defined in expression 6.2 below.



78

E(P,A) =

√∑
i

(Pi −Ai)2 (6.2)

The confidence measures for both model types were generated from the gallery dataset.

Algorithm 3 Composite Model

Input: Results of testing the shape and texture model.
Input: feature(X1, X2, ......Xn) values of shape and texture
Output: Final Rank determined.

1: for each probe image do
2: if (Shape Rank==1 && Texture Rank ∼ =1) ||(Shape Rank ∼=1 && Texture

Rank== 1) then
Get features (X1, X2, .........Xn) from Shape Model
Get feaures (X1, X2, ............Xn) from Texture Model
Get deviation factor by using equation 3.1
Calculate Confidence measure for Shape and Texture by using equation 6.1
Prepare feature vector V = [X1...............Xn,Cs, Ct, dfs, dft]

3: end if
Use a classifier as described in section 6.2 and obtain classification.
Final rank is obtained from the classification

4: end for
Collate the results for the rank of all images.

6.3 Empirical Study

The experiments were performed with the same FG-NET and MORPH databases as used

in previous chapters. We have used the same settings through out the experimentation.

6.4 Integration vs Composition

In this set of experiments we investigated the effects of combining shape and texture models

at different levels of granularity. We benchmarked our models against the current state-of-

the-art one proposed by (Gong et al., 2015).
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Table 6.1: Comparative results of Rank-1 score with FG-NET database

Models Rank-1

Global 41.7%
Local 65.1%
Personalized 71.2%
Integrated 77.6%

(Geng et al., 2007) 38.1%
(Park et al., 2010) 37.4%
(Li et al., 2011) 47.5%
(Gong et al., 2013) 69%

(Gong et al., 2015) 76.2%

The results in Tables 6.1 and 6.2 clearly indicate that the Composite Local and Per-

sonalized approaches significantly outperform the Global approach. In fact, the Composite

Local and Personalized models are capable of good accuracy by themselves. This is to be

expected as aging is a personalized process and its trajectory is very different for different

individuals, depending on a range of factors such as lifestyle, genetic disposition and others.

At the same time we observe that the Composite Integrated approach provides further im-

provement to models operating on their own, indicating that a certain amount of synergy

existed between the two modeling approaches. We also note that the Composite Integrated

approach significantly outperformed the models proposed by (Gong et al., 2015) and (Li et

al., 2016). The Integrated vs Composite results are paired for each test image and a paired

t-test is used for testing. Our composite model results are statistically significant with a P

value for FG-NET of 0.00001 and a P value of 0.0000001 for the MORPH database based

on a confidence level of 95%.
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Table 6.2: Comparative results of Rank-1 score with MORPH database

Models Rank-1

Global 21.2%
Local 81.2%
Personalized 90.6%
Integrated 96.7%
(Klare & Jain, 2011) 79.08%
(Park et al., 2010) 79.80%
(Li et al., 2011) 83.90%
(Gong et al., 2013) 91.14%
(Gong et al., 2015) 94.59%
(Li et al., 2016) 94.87%

6.5 Discussion

Based on the results of our Empirical study, we observe that model composition, similar

to model integration, resulted in better accuracy. The final conclusion of the study was

that the optimal modeling approach is to compose shape models built by integration across

data granularity levels with their corresponding texture counterparts using the same data

granularity scheme.

A brief comparison in tabular form is given in Table 6.3. Table 6.4 compares the models

on two factors, complexity and effectiveness. Complexity relates to computation time and

effort involved in model generation, whereas effectiveness relates to accuracy. Tables 6.3

and 6.4 provides some guidelines asto which models should be used, depending on the end-

user’s requirements. For highest accuracy the Integrated Model is suggested; on the other

hand when time is at a premium, the Local Model is a good compromise as it has a lower

recognition time than the Personalized model while having better accuracy than the Global

model.

Our aging models are also capable of forward traversal through time. Forward traversal
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Table 6.3: Complexity and Effectiveness Characteristics of Models

Models Complexity Effectiveness
Global Low Low
Local Low High
Personalized High High
Integrated High High

Table 6.4: Usage Criteria for Aging Models

Models When to Used
Global When results are required in

a very short time
Local When good accuracy is re-

quired in short time
Personalized When high accuracy is re-

quired and recognition time
is not a problem

Integrated When very high accuracy
is required and recognition
time is not a problem

has two attractive benefits. The first is automatic update of the image database. Over

a period of time an image gallery containing older images of a person becomes less useful

for recognition purposes as research has shown that the longer the time gap between the

probe image and the target image, the lower is the rank 1 accuracy in general (Park et

al., 2010). The solution to this problem either involves obtaining newer images from the

subjects concerned which may not be practicable as some subjects may not be available. A

more practical alternative would be an automatic refresh based on a computed trajectory

provided by the aging functions proposed in this research. The second benefit lies in age

simulation whereby the appearance of given person at a future point in time is required for
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applications as face animation or for making decisions at a future point in time on plastic

surgery alternatives.

In next chapter we will discuss extraction of knowledge about aging process and show

simulation process with our aging models.



Chapter 7

Knowledge Discovery

7.1 Introduction

Aging is a complex process because different changes would occur in a face at different

points on the aging trajectory. The aging process could affect craniofacial growth, texture,

soft skin changes, wrinkles and skin colour at different age points. It would be interesting

to identify and search changes in the face at different age points. Our aging models can

provide important insights into craniofacial growth of the face and how features change at

different age points. This aging information can be used in forensic sciences(İşcan & Helmer,

1993; Neave, 1998), face animation and face recognition(Gates, 2011) technologies and in

plastic surgery. It is important to understand that patterns, characteristics and rates of

aging depend upon culture and lifestyle choices. Furthermore, environmental factors could

play a role as well. A person’s Gender could also play a role when taken in conjunction

with lifestyle and environmental conditions. Finally, factors such as genetic makeup of the

individual could also play an important part in the aging process. Thus, it evident that

aging is influenced by a variety of factors and the complex interplay between these factors

ultimately determines a given person’s aging trajectory.
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In order to fully account for all of these factors a rich database consisting of lifestyle

variable and genome information needs to be available. Such databases are currently not

available and the approach taken in this research has to use the limited information present

in currently available databases to model craniofacial change with time.

7.2 Craniofacial growth

Aging is a personalized process and so we use our personalized aging models to build a

simulated shape profile of a person across time. Firstly, we build a personalized aging model

for any given person by applying the methods presented in section 3.3.2. For constructing

a simulated shape profile we use equation 7.1 given below.

Cupdated = Ci + (Pi − Pi−1) (7.1)

In equation 7.1 the updated coordinates Cupdated of the face are obtained by adding

(Pi − Pi−1) into coordinates Ci of the face, where Pi and Pi−1 are predicted features value

of two consecutive age bands and i denotes the age band index. For forward projection we

build the aging model starting from age band 1 and move in the forward direction by using

equations 3.2 and 3.3. To streamline the presentation, we reproduce equations equations

3.2 to 3.4 which are used in the algorithm below

DFi = Mi − Fi (3.2)

Pij = Gij +DFi (3.3)
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y
(personalized)
i = c1xi

n + c2xi
n−1 + ....+ cnxi + cn+1 (3.4)

Table 7.1: FG-NET Age Bands

Ages 0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-69

Images 233 178 164 155 81 62 38 31 26 34
Subjects 75 70 71 68 46 38 30 24 19 10

Algorithm 4 Craniofacial growth

Input: Images and its data for features (X1....Xn) .
Gallery images and features (X1......Xn) of each image and 68 fiducial points.
Output: Predicted image.

1: for each probe image do
2: Read its features (X1......Xn) data.
3: for each feature (X1......Xn) do
4: Use equation 3.2 and calculate deviation factor
5: for each band(b1........bm) do
6: Use equation 3.3 and calculate de-aged distance
7: Use the knn search algorithm and find k neighbors of de-aged distance
8: Get centorid of k neighbors
9: end for

10: Use equation 3.4 and determine a quardratic polynomial function .
11: Get predicted distance vector P of all features (X1...........Xn)
12: Update fiducial points by using equation 7.1
13: end for
14: Plot predicted fiducial points to obtain simulated image
15: end for
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Figure 7.1: Personalized Craniofacial growth of a person at different age points (

Arrows show parts where change occurs)

Personalised craniofacial growth of a person is shown in Figure 7.1. We can clearly

see that as this person ages his fiducial features also change. By carefully examining the

sketches we observe that craniofacial growth of the face occurs in horizontal and vertical

directions until ageband 3. His mouth bone structure keeps changing till the ageband 9.

There are little changes in eyes as compared to other features. We can also see changes

in eyebrow bones at ageband 9. This could be the reason for wrinkles on the forehead

and areas around the eyes. As discussed earlier aging is a personalized process and every

person ages in different way. For general analysis we need to analyse the whole population.

Therefore, in next the section we would discuss effects of anthropometric features at various

points on the aging trajectory.
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7.3 Effects of aging on shape

.

• Facial index ( n−gn
zy−zy )

• Mandibular index ( sto−gn
go−go )

• Intercantal index ( en−en
ex−ex )

• Orbital width index ( ex−en
en−en)

• Eye fissure index ( ps−pi
ex−en)

• Vermilion height index ( ls−sto
sto−li )

• Mouth Face width index ( ch−ch
zy−zy )

Figure 7.2: Anthropometric Model and Seven Features.

After carefully examining Figures 7.2 and 7.3 we can extract information regarding the

aging process in craniofacial features. Facial index is one such feature. It is defined as the

ratio between ( n−gn
zy−zy ). It refers to the whole face. In this feature there is an increase in

the ratio till the ageband 6. Beyond that point we observe a decrease. Mandibular index

( sto−gn
go−go ) refers to the height and width of the chin. This feature changes for the first three

decades of the lifespan. After ageband 6 we observe a decrease in the value of this feature.

Intercantal index ( en−en
ex−ex ) refers to the inner and outer width of eyes. There is a decrease

in feature value till the fourth decade and after that we observe an increase in the feature

value. Orbital width index ( ex−en
en−en) refers to the eyes. Like intercantal index in the first

four decades there is a slight increase in the feature value and after that it monotonically

decreases. Vermilion height index ( ls−sto
sto−li ) refers to the lips. This feature decreases till
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Figure 7.3: Shape features and their average behaviour at personalised level. Hori-
zontal axis shows agebands and vertical axis shows feature values.

third decade and after that it would start increasing. Mouth Face width index ( ch−ch
zy−zy )

refers to the face width. For four decades there is an increase in this feature value and

after that it appears to slightly decrease. The features that we constructed with horizontal

measurements (en-en, ex-ex, go-go, zy-zy, ch-ch) and 3 vertical measurements (n-gn,n-sn,

sto-gn)) are most representative of facial features. The features constructed with horizontal

measurements increase until the fourth decade. We have used (Analysis of Variance) Anova

with a 95 % confidence interval for verifying that the aging process is different between

different age groups. Our results show that there is a significant change in features across

the aging process.
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Effects of aging on genders

Figure 7.4: Female Shape features and their average behaviour at personalised level.

Horizontal axis shows agebands and vertical axis shows feature values.

Figure 7.5: Male Shape features and their average behaviour at personalised level.

Horizontal axis shows agebands and vertical axis shows feature values.
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After carefully examining Figures 7.4 and 7.5 we can extract information regarding the

aging process in craniofacial features between different genders. Facial index and Mouth

Face width index aging patterns are similar but Mandibular index and Intercantal index,

Orbital width index and Vermilion height index display different age trajectories across the

two genders.

7.4 Effects of aging on texture

Figure 7.6: Texture features and their average behaviour at personalised level. Hori-

zontal axis shows agebands and vertical axis shows feature values.



91

.

Figure 7.7: Five slices of the face for texture analysis.

In order to gain an understanding of the effect of texture features we divide the facial image

horizontally into five slices. The slices cover the forehead, eyes, nose, mouth and the area

below the mouth. Edges are marked on the face after converting the image into grayscale.

A histogram is prepared for these edges. The frequency of the edges in each slice is taken

as a feature, thus resulting in five features across the entire face as shown in Figure 7.6.

We have used Anova with a 95% confidence interval and verified whether the aging process

is different at different age points. Our results show there is significant change in features

throughout the aging process. The number of edges on the face tends to increase as the

person ages. This change can be detected by using Figures 7.6 and 7.7 for each texture slice.

Texture slice 1 represents the forehead area. During aging the forehead feature shows that

more edges form after ageband 6 and ageband 10. Texture slice 2 represents the eye area.

During aging, the eye feature shows that more edges tend to form at ageband of 4 and 10.

Texture slice 3 represents the nose area. It shows that during aging changes occur in the

nose area throughout the lifespan of a person. Texture slice 4 represents the mouth area.

It shows that during aging changes occur in the mouth at ageband of 4, 6 and 10. Texture

slice 5 represents the chin area. It shows that during aging changes occur in the chin lesser

occurs to a lesser extent when compared to other parts of the face. These changes could be

more visible due to change in bone structure in the chin area.
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Effects of gender on aging

Figure 7.8: Female texture features and their average behaviour at personalised

level.Horizontal axis shows agebands and vertical axis shows feature values.

Figure 7.9: Male texture features and their average behaviour at personalised level.

Horizontal axis shows agebands and vertical axis shows feature values.
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After examining Figures 7.8 and 7.9 we can clearly see that texture changes in the two

genders occur in different ways. Figure 7.8 for Females shows that the number of edges

show an increasing trend with time. This implies that females would have more edges on

the face at later ages such as ageband 10. On the other hand, Figure 7.9 for Males shows

a downward trend in the number of edges. It means, at ageband 10 male would get lesser

edges on the face than their female counterparts. This suggests that females age faster than

males.

We validated the accuracy of our craniofacial growth simulation algorithm with the

RMSE measure. The FG-NET database was used as the testbed for this purpose. The

prediction error rate, as measured by the Root Mean Square Error (RMSE) is:

RMSE =

√∑n
i (P̂i − Pi)2

n
(7.2)

where P̂ , P represents predicted and actual coordinates respectively. The simulated model

shows an RMSE value of 1.30 and 1.95 for (x,y) coordinates respectively. We also carried

out a comparison of our algorithm with (Scandrett, Solomon, & Gibson, 2006). In order

to standardize the comparison with the state of the art results reported from (Scandrett et

al., 2006) , we predicted the average of the X and Y coordinates and obtained the RMSE of

the average value. Table 7.1 shows clearly that our simulation method is significantly more

accurate than the current state of the art method reported in the literature.

Table 7.2: Comparative results of RMSE with other methods

Models RMSE

(Scandrett et al.,

2006)

3.8

Proposed algorithm 1.6
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7.5 Discussion

In this chapter, we have shown that our aging models are also capable of extracting useful

knowledge through a forward traversal in time. We have discussed the aging simulation

process that can be used for prediction of features at future time points. The knowledge

extraction from aging models shows that there is significant change in fiducial features

throughout the aging process. During aging vertical shape changes occur until around the

ageband 4 (age of 20) and horizontal shape changes occur until the fourth decade of a

person’s life. The texture analysis also showed that change in features occur throughout

life. These changes can be more visible at times because of a personalised life style. The

craniofacial development of face and texture both play important role in aging process. It

can be concluded that aging is a mixture of both texture and shape information (Park et

al., 2010).

In the next chapter we will research gender recognition and age group classification.



Chapter 8

NeuCube Aging Model

8.1 Introduction

Aging is a slow process and its effects are visible only after a few years. But in spite of

being slow, it remains a spatio-temporal phenomenon. The facial features of a person can be

considered as a subspace and the aging over the years of this subspace is in turn a temporal

process. It would be very useful to incorporate temporal as well as spatial patterns in aging

data as important components in classification. Age group classification and gender recog-

nition have important applications for business managers and law enforcement agencies. In

Human Computer Interaction (HCI) gender recognition can be used to make interaction

with humans more amenable to both genders. For example, it enables a computer to address

a user by their correct title, Mr or Mrs, as the case may be. Automatic gender recognition

facilitates better interaction with humans as well as saves keystrokes in filling up forms. In

Surveillance systems, a gender specific physical locality can be concentrated upon, thereby

reducing the area under observation and making the whole system more efficient. It could

also assign higher threat levels to a specified gender location. In content based systems,

indexing and searching can be greatly facilitated. For example, today a plethora of digital

videos and photographs are produced. Gender based indexing and searching can be easily

95
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carried out on this vast collection of digitised images. It will also reduce the search effort

by limiting it to a particular gender, thereby making it more efficient. The same applies to

Biometrics. The automatic collection of demographic data for statistical purposes will be

facilitated if gender can be automatically recognised. Age group classification and gender

recognition can play important role in age invariant face recognition. We use aging expert

for finding the correct age band for model building in chapter 3. The age classification

method can be incorporated with age invariant face recognition system for finding the cor-

rect age group. Moreover, gender recognition helps us build gender specific aging model

for age invariant face recognition. This would help to improve the overall accuracy of age

invariant face recognition system.

Age group classification and gender recognition are areas of research that is receiving a

lot of attention due to advances in the field of biometrics (G. Guo & Mu, 2011; A. K. Jain

et al., 2016; Liu, Yan, & Kuo, 2015; Ramanathan & Chellappa, 2006).

In this chapter we introduce a novel framework for age group classification and gender

recognition. We use the same Anthropometric model for feature extraction and extract

seven different indexes as in previous chapters. After extracting features we convert the

data into a discrete spike train. We use the Address Event Representation (AER) encoding

method to discretize the continuous signal. This encoding method was applied successfully

for the artificial retina sensor (Hechenbichler & Schliep, 2004). We initialize the NeuCube

by using the Small World rule (Hechenbichler & Schliep, 2004). At unsupervised training

stage we used the STDP rule (Hechenbichler & Schliep, 2004). The dynamic evolving

Spike Neural Networks (deSNN) is used here as an output classifier. Our choice of the

NeuCube platform was influenced by its outstanding success that it has achieved on spatio-

temporal classification problems in many diverse application domains (N. Kasabov et al.,

2016; Dhoble, Nuntalid, Indiveri, & Kasabov, 2012; N. Kasabov, Dhoble, Nuntalid, &

Indiveri, 2013; N. K. Kasabov, 2014). All such studies employing NeuCube have been on
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data that exhibit a relatively fast pace of temporal changes. However in the aging domain

that this research is based on, the speed of changes are much smaller, on the order of months

to years rather than hours to seconds, and hence it will be interesting to investigate whether

the success of NeuCube can be replicated in such a slow-changing temporal environment.

Our empirical results indicate that NeuCube captures temporal patterns accurately in this

domain as well, as its classification accuracy was significantly better than with classical

methods such as the K Nearest Neighbor(KNN), Multi Layer Perceptron (MLP) and Naive

Bayes classifiers.

8.2 Methodology

We have used the same anthropometric model with its seven features as discussed in the pre-

vious chapter. These features were fed into NeuCube. NeuCube, featuring a spiking neural

network architecture that was successfully used in spatio-temporal modelling in brain data

applications (N. K. Kasabov, 2014; N. Kasabov et al., 2014; N. Kasabov, 2012; N. Kasabov

et al., 2015; Tu et al., 2014). In contrast to brain data signals obtained through the use

of devices such as EEG where time length between observations spans seconds, the corre-

sponding time length in facial aging spans years, thus making it an interesting experiment

to test the efficacy of NeuCube’s spatio-temporal modelling capability in an environment

of much coarser time granularity. A block diagram of NeuCube’s architecture is shown in

Figure. 8.1. NeuCube consists of three major components: an input encoding module, a

three-dimensional Spiking Neural Network Cube(SNNc), and an output dynamic evolving

spiking neural network (deSNN) classifier (N. Kasabov, 2012). In the first stage we adjust

the connection weights in spiking SNNc to learn spatio temporal patterns embedded in the

data. In the second stage, supervised learning is carried out.
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Figure 8.1: Schematic representation of the NeuCube-based methodology for map-
ping, learning, visualisation and classification of FG-NET DATA

Overall, the modeling process consists of data encoding, SNNc initialization, unsuper-

vised training of the SNNc and finally supervised training of the classifier.

8.2.1 Data Encoding

In the aging problem feature data is in the form of real values, and hence needs to be

discretised into spike trains. The Address Event Representation (AER) encoding method

is used for this purpose. This encoding method was applied successfully for the artificial

retina sensor(Hechenbichler & Schliep, 2004). The improved spike encoding method (SF )

to recover the original signal is defined as for a given signal S(t) where (t = 1; 2; :::;n), a

baselineB(t) variation during time t withB(1) = S(1). If the incoming signal intensity S(t1)

exceeds the base-line B(t1−1) plus a threshold defined as Th, then a positive spike is encoded

at time t1, and B(t1) is updated as B(t1) = B(t1−1) +Th; and if S(t1) <= B(t1−1) +Th, a

negative spike is generated and B(t1) is assigned as B(t1) = Bt−1 +Th. In other situations,

no spike is generated and B(t1) = B(t1−1). We obtain both positive and negative spike

trains for encoding. Positive spikes accompany an increase in feature value, whereas a

negative spike occurs when the feature value has decreased(N. Kasabov et al., 2015).
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8.2.2 NeuCube(ST) Initialization

We initialize the SNNc by the following rule. Each neuron in the SNNc is connected to its

nearby neurons which are within a distance d, where d equals the longest distance between

any pair of neurons in the SNNc multiplied by a parameter r. The initial weights are set

with r selected at random in the range [-1, 1]. We randomly select 80% of the connection

weights to be positive and the remaining 20% to be negative in the cube initialization

process. The actual proportion of positive to negative connections will change continuously

due to weight propagation that occurs when data is processed by the cube.

8.2.3 Training Stage I:

This stage deals with Unsupervised Reservoir Training. It encodes hidden spatio-temporal

relationships from the input data into neuronal connection weights. According to the Heb-

bian learning rule, if the interaction between two neurons persists, then the connection be-

tween them will be strengthened. We train the SNNc using the STDP learning rule (Song,

Miller, & Abbott, 2000): if neuron j fires before neuron i, then the connection weight from

neuron j to neuron i will increase, otherwise the connection from neuron i to neuron j will

decrease. This ensures that the time signal inherent in the input spiking trains will be

captured by the neuron firing state and manifest as asymmetrical connection weights in the

SNNc.

In the SNNc, when a neuron fires, it emits a spike and then its potential gradually

reduces over time to reach a zero value. Each neuron connecting to this firing neuron will

receive a spike. Because of the emitted spike the potential of each neighboring neuron will

increase in proportion to its connection weight to the current firing neuron. The potential

of each neuron has a small, constant rate of leakage over time until it reduces to 0. After

learning, the connection weights in the SNNc encode temporal relationships from the input
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spatio-temporal data (Tu et al., 2014).

8.2.4 Training Stage II:

In this stage, supervised classifier training is carried out. The deSNN (Dhoble et al., 2012;

N. Kasabov et al., 2013; N. K. Kasabov, 2014) is used here as an output classifier, because

deSNN is computationally efficient and emphasizes the importance of the first spike, which

has also been observed to play a significant role in biological systems.

Once the NeuCube(ST) (N. K. Kasabov, 2014) is trained, all connection weights in the

SNNc and in the output classification layer are established. For a given new sample without

any class label information, the trained NeuCube can be used to predict its class label. For

the deSNN classifier, there are two algorithms that can be used to determine the class label

of the new sample (Dhoble et al., 2012; N. Kasabov et al., 2013; N. K. Kasabov, 2014). The

deSNN classifier uses one of two algorithms to determine the class label of the new sample.

One is (Dhoble et al., 2012; N. Kasabov et al., 2013; N. K. Kasabov, 2014) and other is

deSNNm (Dhoble et al., 2012; N. Kasabov et al., 2013; N. K. Kasabov, 2014) . We have

used the deSNNs algorithm in this work.

8.3 Empirical Results of Age group Classification

Experiments were performed on the publicly available FG-NET (FG-NET, 2002) and MORPH

Album 2 (Ricanek Jr & Tesafaye, 2006) databases, both of which are used for benchmarking

new methods. We have also extended our experiments to new video (Cerniello, 2013) data

for analysis. In all experiments, the size of the SNNc is 1000 neurons, a relatively simple

(10×10×10) cube. It is trained and tested using a leave one out method. First, the data is

converted into discrete spike trains using the AER encoding method to discretize the con-

tinuous signal, following the example of the silicon retina (Hechenbichler & Schliep, 2004)
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. The deSNN classifier mentioned previously is used here as an output classifier because

deSNN is computationally efficient and emphasizes the importance of the first spike which

has been observed to be significant in biological vision systems. We conducted experiments

to compare traditional modeling methods (KNN, Naive Bayes and MLP) and our proposed

method for age group classification.

We designed three experiments for these baseline algorithms. Note that for these base-

line algorithms, the time length of training samples and testing samples have to be the same

as these methods cannot tolerate different lengths of feature vectors for training and testing.

Table 8.1 shows clearly that the classification achieved with NeuCube significantly outper-

formed the other techniques. The results clearly indicate that NeuCube with its spatio

temporal capability can capture the aging effects more effectively than classical classifiers

that do not explicity take into account the time dimension in the data.

Since evolving system data machines (eSTDM) model relationships both between and

within spatio-temporal data, even a small amount of input data will be able to trigger the

spiking activities in SNNc, giving rise to a more accurate pattern (class) recognition rate

from image data.

8.3.1 Age Group Classification with FG-NET

For this experiment we distributed the FG-NET Database into three age groups, the first

being the 0-3 age group, the second grouping as 4-16 and the final one as 17-69. We set the

sample size to span 5 divisions of time within each age group. We then chose 30 samples

from each group, thus enabling 150 images to be selected for each group. For age group 1

the 150 images that were chosen were assigned as class 1. Similarly, we chose 150 images

from age group 2 and assigned them as class 2 and did the same for age group 3. For each

of the images we take 7 features. Each sample provides a 5x7 matrix with each having 7

features. In all there are 90 samples. The leave-one-person-out testing strategy is used for
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the FG-NET database. For comparative purposes we used the same testing strategy as in

(Liu et al., 2015).

The data was then fed to NeuCube and Weka. The results of this experiment are given

below.

Table 8.1: Age Group Classification using a NeuCube eSTDM in comparison to
traditional classifiers: KNN, MLP, NB.

Measure NeuCube MLP KNN NaiveBayes

Accuracy(%) 98 80 91.1 66.7

We benchmarked our NeuCube results against classical classifiers such as the k nearest

neigbor, Multi Layer Perceptron and Naive Bayes.

Table 8.2: Comparative results of age group classification with state-of-the-art age
group classifiers

Models Classification(%)

NeuCube 98%
(Liu et al., 2015) 93.5%
(Sai, Wang, &
Teoh, 2015)

90%

Table 8.1 shows that NeuCube showed outperformed all of the general purpose classifiers,

with the k nearest neighbor performing best amongst this group.

Table 8.2 shows that the purpose-built age classifiers performed better than their general

purpose counterparts. However, a substantial gap still exists between them and NeuCube.
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8.3.2 Age Group Classification with MORPH

We randomly selected a subset of about 21000 faces from MORPH Album 2 database that

contain a mix of black and white, Female and Male faces. Each sample provided a 5x7

matrix with each having 7 features. Our setting for the experiment is similar to that of

(Liu et al., 2015) and (G. Guo & Mu, 2011). We divide data into three subsets, S1, S2

and S3. We used S1 for training and tested it with W/S1. We randomly selected a subset

W of 21000 images from MORPH database. Then we used S2 for training and tested with

W/S2. Finally, we averaged the two results to obtain an overall result.

Table 8.3: Results of Age Group Classification using a NeuCube eSTDM in compar-
ison to traditional classifiers: SVM, MLP, NB.

Measure NeuCube MLP KNN NaiveBayes

Accuracy(%) 95.00 82.30 89.03 67.60

Table 8.4: Comparative results of age group classification with MORPH Album 2

Models Classification(%)

NeuCube 95%
(Liu et al., 2015) 92.6%
(Sai et al., 2015) 71.2%

Tables 8.3 and 8.4 mirror the results for the FG-NET database, once again underlining

the superior performance of NeuCube.

Discussion In Figures 8.2-8.4, blue lines represent positive connections (i.e. those with

positive weights) while red lines represent negative connections (those with negative weights).

The colour of a neuron signifies its connectivity; the brighter the color, the larger is the size
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Figure 8.2: Age group (0-3). X,Y and Z are directions

of its neighborhood. The thickness of a line denotes the intensity of a connection between

a pair of given neurons. Thus a thick blue line indicates a strong positive connection, while

a thin blue line also represents a positive connection but one with a lesser strength.

Figures 8.2-8.4 show that different age group activate different parts of the cube, as

indicated by their connectivity.

Figures 8.2 shows that in age group (0-3), the Facial, Intercantal and Orbital width

indexes have the strongest level of expression when compared to the other two age groups

as they have stronger positive connections when compared to their counterparts in Figures

8.3 and 8.4. Changes in variables in a Spiking Neural Network results in increased spiking

activity which in turn spawns positive connections. Thus we can conclude that Cranofacial

growth in age group (0-3) occurs at a faster rate than with the other two age groups.

Figure 8.3 shows that in age group (4-16) there is strong connection strength in the Eye

fissure and Mandibular index regions due to the presence of thick blue lines. Mandibular

and Eye fissure indexes are associated with the eye and chin ratios. This suggests that most
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Figure 8.3: Age group (4-16)

changes in the face occur in these features at age group (4-16).

Figure 8.4 shows that in age group (17-69) most of the strong connections seem to occur

in the Orbital width, Intercantal, Mandibular and Facial index regions. Even though three

of these features, namely the Facial, Intercantal and Orbital indexes, are also expressed in

age goup (0-3), the levels of expression is less than that for age group (0-3). Thus we can

conclude that while most changes in age group (17-69) occur in these indexes, the rate of

change is slower than with age goup (0-3).

Our comparative analysis shows that in all three age groups the Mandibular and Inter-

cantal indexes are active as they are associated with strong spiking activity. The Eye fissure

index creates strong spikes for age groups (4-19) and (17-69). The Vermilion height index

shows weak connections and a low level of spike activity in age groups (0-3) and (17-69).

However, the Vermilion index shows a medium level of spike activity and strong connection

weights in age grouping (4-16).

We observe that there is a clear shift away from the Facial, Intercantal, Orbital width

and Mouth Face width indexes as markers for the age group (0-3) to Mandibular and Fissure
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Figure 8.4: Age group (17-69)

indexes for age group (4-16). The fact that different indexes are prominent at different age

groups suggests that NeuCube has succeeded in capturing the aging process. This is useful

on two different accounts. First, it provides solid evidence that NeuCube is capturing not

just the temporal but also spatial signals in the data. Second, from the viewpoint of aging

research it provides a useful insight into the changes that take place in the face over time

and enables interested researchers into building more useful age estimation models. It also

provides the potential to simulate future changes in a person’s face over time.
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Table 8.5: Feature profile for age group (0-3)

Features Influence

Level

Connections

Facial High Strong

Mandibular High Strong

Intercantal High Strong

Orbital width High Strong

Eye fissure Low Weak

Vermilion height Low Low

Mouth Face

Width

Medium Strong
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Table 8.6: Feature profile for age group (4-16)

Features Influence

Level

Relationship

Facial Low Weak

Mandibular High Strong

Intercantal Medium Weak

Orbital width Low Weak

Eye fissure High Strong

Vermilion height Medium Weak

Mouth Face

Width

Low Weak
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Table 8.7: Feature profile for age group (17-69)

Features Influence

Level

Relationship

Facial Medium Weak

Mandibular High Strong

Intercantal Medium Strong

Orbital width High Strong

Eye fissure High Weak

Vermilion height Low Weak

Mouth Face

Width

Low Weak

We conclude this section by observing that NeuCube not only outperformed its rivals

across both databases in terms of classification accuracy but also yielded useful insights into

the aging process.

8.4 Age Group Classification with Video data

A NeuCube aging model is created to classify a given video data into one of three age groups

based on its assessed age. The raw data which has been used in this study is from (Cerniello,

2013). It is five minutes of video containing 8943 frames of size (1920× 1080) pixels. First

the video is converted into greyscale frames. The nose tip of the subject in the image is

manually annotated. The purpose was to locate a small region on the face which remains

at a fixed distance from the annotated point. That same region is used for all the images in
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our study. This region is a part of the texture information of the face image, namely a small

part of cheek portion of the face. This is chosen as facial skin that is naturally smooth in

youth becomes wrinkled with age, thereby resulting in a change in the textural information

present in this area. Based on this assumption 50 pixels are selected from the cheek area of

each face image. All frames are divided into three classes. A total of 128 frames are chosen

for each sample, for each of the 60 samples. Thus the whole data comprises some 7680

images. The first 20 samples comprise (0-18) youth, the next 20 samples adults (19-35) and

the third set of 20 samples represent older (36-70) age persons.

In this experiment the SNNc is trained and tested in a hold out method. Firstly we

converted the video data into discrete spike trains using the Temporal Contrast encoding

method to discretise the continuous signal, following the example of the silicon retina (Del-

bruck & Lichtsteiner, 2007). The deSNN classifier mentioned previously is used here as an

output classifier due to the fact that deSNN is computationally efficient and emphasises

the importance of the first spike, which has been observed in biological vision systems.

We conducted experiments to compare between traditional modelling methods (SVM and

MLP) and our proposed method for age group classification. We designed two experiments

for these baseline algorithms.

Table 8.8: Age group classification accuracy (%) from video data.

Method Classification(%)

SVM 55%
MLP 26%
NeuCube 78%

Note that for these baseline algorithms, the time length of training samples and testing

samples have to be the same as these methods cannot tolerate different lengths of feature
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vectors for training and testing. It was observed that the classification achieved with Neu-

Cube was better than with other techniques. See Table 8.8 for results. Note that the

techniques mentioned (other than NeuCube) do not have the capability of representing the

spatio-temporal problem space effectively. These traditional techniques are only suitable for

static data within a given time segment. Since an eSTDM models the relationships between

and within spatio-temporal data, even a small input data will be able to trigger the spiking

activities in SNNc, for an accurate pattern (class) recognition from video data.

8.5 Empirical Results of Gender Recognition

8.5.1 Gender Recognition with FG-NET

For this experiment we use the FG-NET Database. We model Gender recognition as a

two-class classification problem. We assign the gender label through a visual inspection of

the data, with class 1 as male and class 2 as female. We also used the classical classifiers

from Weka as in the first experiment for comparative analysis. For each of the images we

take 7 features. Each sample provides a 5x7 matrix, ie 5 images, each having 7 features. In

all there are 172 samples. The leave-one-person-out testing strategy is used for FG-NET.

Table 8.9 shows the results of the age group classification process.

Table 8.9: Gender Classification on FG-NET

Measure NeuCube MLP KNN NaiveBayes

Accuracy(%) 95.00 76.10 83.00 62.79

Tables 8.9 and 8.10 show clearly that NeuCube has better classification performance

when compared to all of its rivals.
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Table 8.10: Age group classification on FG-NET

Models Classification(%)

NeuCube 95%
(G. Guo & Mu,
2011)

87.20%

8.5.2 Gender Recognition with FG-NET in a younger age

group (0-18)

For this experiment we use the FG-NET Database. For each of the images we take 7

features. Each sample provides a 5x7 matrix ie 5 images, with each having 7 features. In

all there are 120 samples. The leave-one-person-out testing strategy was used for FG-NET.

Table 8.11 shows results of gender recognition in the younger age group.

Table 8.11: Gender Classification for younger age group (0-18)

Measure NeuCube MLP KNN NaiveBayes

Accuracy(%) 85.00 72.60 70.80 67.3

8.5.3 Gender Recognition with MORPH

For this experiment we use the MORPH Album 2 Database. We model Gender recognition

as a two-class classification problem. We use the same testing strategy as used in (G. Guo

& Mu, 2011; Liu et al., 2015). This data is then fed into the NeuCube. We use the same

classical classifiers from Weka as we did in the first experiment for comparative analysis.

For each of the images we take 7 features. Each sample provides a 5x7 matrix ie 5 images,

with each having 7 features. In all there are 3378 samples.
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Table 8.12: Results of Gender Classification using a NeuCube eSTDM in comparison
with traditional techniques: KNN, MLP, NB

Measure NeuCube MLP KNN NaiveBayes

Accuracy(%) 99.00 76.30 88.00 66.00

Table 8.13: Comparative results of age group classification with FG-NET database

Models Classification(%)

NeuCube 99%
(G. Guo & Mu,
2011)

98.20%

Tables 8.12 and 8.13 show clearly that NeuCube has better classification performance

when compared to all of its rivals.

8.5.4 Gender Recognition with MORPH in a younger age

group (16-20)

In all there are 420 samples that we use for this experiment. Each sample provides a 5x7

matrix with each image having 7 features. We use the same testing strategy as used in

(G. Guo & Mu, 2011; Liu et al., 2015). Table 8.14 shows results of gender recognition in

the younger age groups.

It was observed that the gender recognition classification achieved with NeuCube was

better than with other traditional techniques for the younger age groups.

Discussion In Figures 8.5 and 8.6, line colour, thickness and coloring of neurons have

similar meaning to that described above.
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Figure 8.5: Male

Figure 8.6: Female
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Table 8.14: Results of Gender Classification at a younger age group (16-20) using a
NeuCube eSTDM in comparison with traditional techniques: KNN, MLP, NB

Measure NeuCube MLP KNN NaiveBayes

Accuracy(%) 87.0 68.3 79.3 63.8

By visualization of the cube in Figure 8.5 we can see that the Intercantal, Vermilion

height, Eye fissure and Mouth Face Width indexes have strong positive connections. How-

ever, the Mandibular, Facial and orbital indexes show weak connections caused by less

spiking activity.

In Figure 8.6 we see that all features generate high spikes and stronger connections

except for the Vermilion height index. This is typical for the female specimens in the data

sample.

By conducting a comparative analysis we observe that for both genders the Intercantal,

Eye Fissure and Mouth Face Width indexes show strong, positive connections, implying

that more changes would occur in eyes, mouth and bone structure between eyes.

The Facial, Mandibular, Orbital width and Vermilion height indexes behave differently

across the genders, implying that a gender aging pattern exists. This further validates the

point that gender also effects the face recognition process. Therefore, it is recommended

that gender-specific aging models be built for age invariant face recognition.

By visualization we can also see another interesting effect, facial index, mandibular

index, intercantal index and orbital index show strong connections for female gender as

compared to male gender. This suggests that female gender ages more quickly as compared

to male gender.

In these experiments we can see that the NeuCube has the capability of providing better

accuracy as compared to the traditional methods. Its main strength lies in three dimensional
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connections and their weights and the ability of learning spatio temporal aging process.

Table 8.15: Feature profile (Male)

Features Influence

Level

Connections

Facial Low Weak

Mandibular Low Weak

Intercantal High Strong

Orbital width Low Weak

Eye fissure High Strong

Vermilion height High Strong

Mouth Face

Width

High Strong
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Table 8.16: Feature profile (Female)

Features Influence

Level

Connections

Facial High Strong

Mandibular High Strong

Intercantal High Strong

Orbital width High Strong

Eye fissure High Strong

Vermilion height Low Low

Mouth Face

Width

High strong

8.6 Conclusion

In this chapter we have shown two inter-related problems in face recognition using the

NeuCube computational platform. The FG-NET, MORPH and video(Cerniello, 2013)

databases were used and Anthropometric features were extracted from landmark points

on the face. These features enabled learning of spatio temporal relationships. The Weka

machine learning workbench was used to compare the performance of traditional classifiers

such as the K nearest neighbor (KNN), Multi-LayerPerceptron (MLP) and Naive Bayes with

NeuCube. This research has revealed that NeuCube has the capability of giving better per-

formance for gender recognition and age group classification because it has the capacity to

learn both spatial and temporal relationships simultaneously.

Our empirical results show that NeuCube performed consistently better across both
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problem types that we investigated. We explored the temporal relationships between differ-

ent Anthropometric features. The aging process causes significant alterations on the human

face, thus affecting the long term performance of face authentication systems. Our research

also revealed that different Fiducial markers are prominent at different age groups, thus

offering the possibility of estimating aging effects for future points in a given person’s time-

line. However, for age simulation to be successful such markers may need to be combined

with other person-specific information such as lifestyle and environment variables that could

also impact on shaping a person’s facial profile over time.



Chapter 9

Conclusion and Further Research

9.1 Conclusion

This research has presented a novel method for age invariant face recognition and inter-

related problems to face recognition viz age group classification and gender recognition. The

developed models could also be used for knowledge extraction and information extraction

on the aging process. To the best of my knowledge, this study is the first comprehensive

study of using spatio temporal modeling methods for modeling aging in biometrics. During

the course of this study different aging models have been developed at different levels of data

granularity. These models have been used for knowledge extraction and for age invariant face

recognition. The NeuCube aging model based on the spiking neural network architecture

has been used for gender recognition and age group classification.

On the basis of research objectives we outlined our research questions in Chapter 1.

These research questions have been investigated by utilising the two publically available

databases, viz MORPH and FG-NET. The questions that we investigated during this re-

search are:

1. The development of comprehensive methods for age invariant face recognition that

result in better accuracy and efficiency than current state-of-the-art methods have

been discussed in Chapters 3, 4 and 5. Chapter 3 presents global and personalized

119
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models for capturing aging patterns with texture and shape information. A Personal-

ized model covers the individual aging patterns while a Global model captures general

aging patterns across the entire population captured in a database. A novel de-aging

factor has been introduced that de-ages each individual’s age in a given probe set. The

personalized model employes KNN and regression for constructing the aging models.

It also uses a Bayesian method for autmomatic selection of an aging subspace. The

developed models are then put in place for age invariant face recognition. Chapter 4

presents a local model for texture and shape information which captures homogenity

within a sub-population. It employs dynamic time warping and the k means clus-

tering algorithm for constucting clusters that repsrent the sub-populations. Chapter

5 presents the application of an Integrated Multi-Model Framework to the age in-

variant recognition problem. The integrated framework utilizes the proposed global

(Chapter 3), personalized (Chapter 3), and local (Chapter 4) aging models for texture

and shape information and exploits synergy that exists between the three types of

models for age invariant face recognition. Our results show that our proposed models

performed better as compared to state of art approaches.

2. The development of a framework that incorporates both texture and shape features

at system level while effectively dealing with conflicts between the two model types

was presented in Chapter 6. It discusses a composite model for resolving conflictx

between texture and shape models built at different levels of data granularity. It uses

a decision tree method for resolving the conflicts between different types of aging

models. It also discusses about different models and explains which model is useful

at different situations.

3. A craniofacial growth model has been developed that maximizes predictive power, as

measured by recognition accuracy. This craniofacial growth model can also be used
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for face simulation by incorporating texture information.

4. Chapter 7 presented the craniofacial growth model. Aging effects have been captured

at different time points by the proposed aging models. The Chapter demonstrated

that the two genders age differently. The shape of a person face changes in the

horizontal and vertical dimensions but that rate of change is personalized to that

person. Moreoever, at certain time points different types of changes were observed

and analyzed.

5. The development of efficient methods for inter-related problems with face recognition,

viz age group clasification and gender recognition, in order to increase the accuracy

have been discussed in Chapter 8.

The results suggested that NeuCube’s aging models performed better as compared

to state of art algorithms.

6. Knowledge extraction was carried out with the proposed methods for gender recog-

nition and age group classification.

The NeuCube aging models were tested on both publically available datasets. The

knowledge discovered shows that anthropometric features have temporal relationships

with each other. The analsyis showed that, at different age groups, feature profile

behaviour specific to that age grouping was successfully captured by NeuCube.

The next section will discuss about our accomplishments during this research.

9.2 Accomplishments

In this research we presented shape and texture models at different levels of data granularity.

The Personalized model, where a model is built for each individual at the lowest level of
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granularity yielded the best Rank 1 recognition rate. This indicates that aging to a large

extent is an individualized process and this finding is in agreement with other studies.

Our method of dividing the whole database into subspaces and using the Naive Bayesian

classifier to narrow down the search space also proved to be a success. This limits the search

space and improves recognition accuracy.

In the case of the Local model we further reduced the search space by first dividing the

whole database into sub-populations (clusters) and then considered subspaces within each

sub-population. The Local model traded off accuracy with recognition time. Reduction

in recognition time follows directly from restricting the search space to a cluster rather

than the entire dataset. Experimentation with the databases resulted in a reduction of

recognition time by a factor of 60% in relation to the Personalized model approach but a

reduction in Rank 1 accuracy also resulted due to the fact that image recognition decisions

are made on localized data rather than on a global dataset.

The Integrated model which consisted of a combination across granularity level (Global,

Local, Personalized) resulted in the highest accuracy because of the synergy that existed

between the models. The increased accuracy did come at the cost of extra computation

time, increasing the recognition time 35% in relation to the Personalized model approach.

Another idea that we explored in this research was model composition between models

built from shape and texture features. It turned out that model composition, similar to

model integration, resulted in better accuracy. The final conclusion of the study was that

the optimal modeling approach was to compose shape models built by integrating across

data granularity levels with their corresponding texture counterparts using the same data

granularity scheme.

A brief comparison also suggested which of the models can be used depending on the

end user’s requirements. For highest accuracy the Integrated Model is suggested and when

time is at a premium, the Local Model is a good compromise as it has a lower recognition
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time than the Personalized model while having better accuracy than the Global model.

Craniofacial growth model shows that our aging models are also capable of forward

traversal through time. Forward traversal bring with it two attractive benefits. The first is

automatic update of the image database. Over a period of time an image gallery containing

older images of a person becomes less useful for recognition purposes as research has shown

that longer the time gap between the probe image and the target image, the lower is the

Rank 1 accuracy in general (Park et al., 2010). The solution to this problem either involves

obtaining newer images from the subjects concerned which may not be practicable as some

subjects may not be available. A more practical alternative would be an automatic refresh

based on a computed trajectory provided by the aging functions proposed in this research.

The second benefit lies in age simulation whereby the appearance of given person at a

future point in time is required for applications as face animation or for making decisions

at a future point in time on plastic surgery alternatives.

We also researched two inter-related problems in face recognition using the NeuCube

computational platform. The well-known FG-NET and MORPH image galleries were used

and Anthropometric features were extracted from landmark points on the face. These

features enabled learning of spatio temporal relationships. The Weka machine learning

workbench was used to compare the performance of traditional classifiers such as the K

nearest neighbor (Knn), Multi-LayerPerceptron (MLP) and Naive Bayes with NeuCube.

This research has revealed that NeuCube has the capability of giving better performance

for gender recognition and age group classification because it has the capacity to learn both

spatial and temporal relationships simultaneously.

Our empirical results show that NeuCube performed consistently better across both

problem types that we investigated. We explored the temporal relationships between differ-

ent Anthropometric features. The aging process causes significant alterations to the human

face, thus affecting the long-term performance of face authentication systems. Our research
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also revealed that different Fiducial markers are prominent at different age groups, thus

offering the possibility of estimating aging effects for future points in a given person’s time-

line. However, for age simulation to be successful such markers may need to be combined

with other person-specific information such as lifestyle and environment variables that could

also impact on shaping a person’s facial profile over time.

In conclusion we observe that NeuCube provides a good platform for aging research,

whether the objective is age estimation or estimating change in facial features over time,

thus opening up future research opportunities in these two key areas of aging research.

9.3 Limitations of Research

9.3.1 Lack of Database

Since aging is a spatio temporal process it is quite difficult to collecta comprehensive training

dataset because of temporal nature of the domain in our problem space. It affects the quality

of aging models that are generated because they are highly dependent on volume and quality

of data available for training purposes. The ideal database should have sufficient information

regarding lifestyle, economic conditions, bio markers such as genes and blood group, as

well as social data such as ethnicity. Moreoever, databases should have minimum number

of aberrations in images with respect to confounding factors such as allumination, pose,

expression, occlusion and facial expressions. Such datasets will help in better understanding

of the aging process.

9.3.2 Dependency on human aging expert

The generative methods are highly dependent on age of the person. Currently, it is assumed

that a human aging expert helps to identify the age of a probe image. It is more realistic

to use an age estimation method and incorporate it into the system. Moreover, effects of

texture and shape on age estimation would also make for an interesting study.
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There are further limitations which will be addressed in the future work section.

9.4 Directions of Future Research

9.4.1 Dynamic deviation factor

We can incorporate a dynamic deviation factor that changes with age. One direction is to use

the Markovian property(Rao & Kshirsagar, 1978; Shyama & Linda, 2016) and incorporate

hidden markov process techniques(Uiboupin, Rasti, Anbarjafari, & Demirel, 2016; B. Wu,

Hu, & Ji, 2016).

Each person can be represented by hidden markov model λ(A,B, π) where A represents

the state transition probability matrix , B represents observation probability matrix and π

initial state distribution matrix. After the initialization the parameters would be updated

using the Baum-Welch algorithm(Welch, 2003) and optimal path can be found by using

Viterbi algorithm(Forney, 1973). This optimal path information can be used in place of the

deviation factor formulation currently formulated in Chapter 3.

At each ageband three possible states of a person can occur viz growth, persistence or

decay. Therefore state refers to change status within the ageband (growth, persistent or

decay) as manifested by fiducial feature value. The transition probabilities can be learned

by using training data. A given person’s aging trajectory will be determined by the status

taken within each age band. Since it is possible for a person to transit from one state to

another within an age band, multiple aging paths could be constructed for a given person.

The Viterbi algorithm could then be used to construct an aging trajectory that corresponds

to the path with the maximum liklihood given the set of all poissble paths for an individual.

Also different machine learning algorithms such as genetic algorithm (Janikow, 1993)

can be tested for better representation of deviation factor.

It has been claimed that via the operations of selection, crossover, and mutation the

Genetic Algorithm (GA) will converge over successive generations towards the global (or
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near global) optimum. The fitness function can be determined by using the Euclidean

distance between the probe image feature vector and the nearest matching training set

feature vector.

The basic objective is to minimize the error in fitness objective function. Therefore,

the solution returned by the GA can be used as an alternative formulation of the deviation

factor vector.

9.4.2 Multivariate tecnique for age invariant face recognition

It would be interesting to use multivariate regression(Scott, 2015; Harrell, 2015; Chatterjee

& Hadi, 2015; Wegbreit et al., 2015; Dhall, Goecke, Joshi, Hoey, & Gedeon, 2016) and

incorporate other attributes related to aging such as ethnicity, gender, blood group, life

style information etc. Analysis of these attributes would give important insights into the

aging process.

9.4.3 Aging models for face simulation

The proposed models can be used for building a synthesized face(Tang & Wang, 2003;

Wang & Tang, 2009; Aizawa, Harashima, & Saito, 1989). We would need to add texture

information to craniofacial shape growth model as well as wrinkles and scars on the face

using warping techniques(Wolberg, 1990; Brown, 1992; Glasbey & Mardia, 1998; Pishchulin,

Gass, Dreuw, & Ney, 2012).

9.4.4 NeuCube aging models for age estimation

One direction that can be explored is to construct NeuCube aging models for each feature

separately and then fuse the different models to build a composite model(Alvi & Pears,

2016) of the simulated face. Modelling each feature separately is attractive as it allows each

feature to express its individual contribution to the aging process to the maximum possible
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extent without interference from the other features(Alvi & Pears, 2015). Our future research

will explore this approach in depth.

9.4.5 NeuCube aging models for real time use

The NeuCube aging models implementation can be done for real time processing face recog-

nition. As a NeuCube simulator is available in PyNN, along with Java and Matlab(N. Kasabov

et al., 2016) this makes it possible for a direct implementation of such models on all available

neuromorphic hardware platforms for very fast processing on large volumes of data in an on-

line, real time mode. Computational platforms such as the Manchester SpiNNaker(Furber,

Galluppi, Temple, & Plana, 2014; Mendat, Chin, Furber, & Andreou, 2016) and the IBM

TrueNorth(Merolla et al., 2014) along with hybrid neuromorphic chips(Indiveri et al., 2011),

of thousands and millions of spiking neurons with very low energy consumption, can now

be used for real time age group classification and age estimation from large databases(Bose,

Kasabov, Bruzzone, & Hartono, 2016). In this respect the proposed method is the first to

enable a direct use of neuromorphic hardware for such data modeling and analysis.

9.4.6 3D models for aging

Moreover, 3D anthropometric(Luximon, Ball, & Justice, 2012; Seo, Song, Kim, & Kim,

2016; Horprasert, Yacoob, & Davis, 1997; Evison & Bruegge, 2016) models can be created

for better representation of shape. More sophisticated texture features such as Local Binary

pattern(Ojala, Pietikainen, & Maenpaa, 2002; Mirmehdi, Xie, & Suri, 2008; Z. Guo, Zhang,

& Zhang, 2010) and scale invariant feature transforms(Lowe, 1999; Juan & Gwun, 2009;

Lowe, 2004) can be extracted from the face image. It would be an interesting study to

fuse generative and non generative approaches for aging problems. It is expected that they

would also be helpful for understanding of aging process.

This is due to the fact that fusion could help to study the effects of features that are
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variant with age as well as those features that remain relatively invariant during the lifespan

of a person.
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