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Abstract. This paper presents a solution for an integrated object-centric
event recognition problem for intelligent traffic supervision. We propose a
novel event-recognition framework using deep local flow in a fast region-
based convolutional neural network (R-CNN). First, we use a fine-tuned
fast R-CNN to accurately extract multi-scale targets in the open environ-
ment. Each detected object corresponds to an event candidate. Second,
a deep belief propagation method is proposed for the calculation of local
fast R-CNN flow (LFRCF) between local convolutional feature matrices
of two non-adjacent frames in a sequence. Third, by using the LFRCF
features, we can easily identify the moving pattern of each extracted
object and formulate a conclusive description of each event candidate.
The contribution of this paper is to propose an optimized framework
for accurate event recognition. We verify the accuracy of multi-scale ob-
ject detection and behavior recognition in extensive experiments on real
complex road-intersection surveillance videos.

Keywords: deep learning, event recognition, convolutional neural net-
work, belief propagation

1 Introduction

Object-centric event recognition is pivotal for traffic violation recording, traf-
fic monitoring, and traffic control [9]. Vision-based intelligent transportation
surveillance systems have been an active research area in past decades due to
high credibility and low costs of those systems.

There are various definitions for an event. In general, an event in video con-
tent refers to an object of interest with a certain behavior in the given scenes.
Here, we focus on traffic scenes at road intersections; our object-centric events
include object detection, object recognition, and object behavior recognition in
an interval of time.

Representing different object-centric events usually leads to high computa-
tional costs because a single event requires (in general) object motion detection,
object tracking, and object behavior understanding.



Following those three steps, robust object detection is the key step for event
modeling. Low-level feature-based methods such as Gabor wavelets, histogram
of gradients (HOG), or optical flow have been used in pioneering research in this
field. Recently, deep learning [14] achieves remarkable advances in solving the
given problems. Deep learning defines the state-of-the-art approach for object
detection or human activity recognition. However, deep learning is also run-time
consuming when detecting, tracking, and understanding objects, class by class.
Taking the need for real-time traffic monitoring and analysis into consideration,
we concluded that traditional scanning of all potential patches is impractical.

In this paper, we combine moving object detection as well as tracking and
event recognition with a convolutional neural network (CNN) using a local fast
region-based CNN flow (LFRCF) descriptor. For this purpose, the already well-
studied fast region-based CNN (fast R-CNN) architecture is fine-tuned for fast
event candidate generation. Next, spatio-temporal motion information is com-
pressed into local region flow in the deep convolutional space for event repre-
sentation, called deep local flow. Finally, the LFRCF is used for further event
recognition and identification. The contributions in this paper are as follows:

1. A novel LFRCF descriptor is proposed using deep belief propagation.

2. We propose a fine-tuned fast R-CNN architecture for automatically gener-
ating a group of regions of interest for real-time traffic event recognition.

3. We investigate a particular framework of deep CNNs, trained for integrated
object detection and behavior recognition in video data.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 details the proposed event recognition method using our
LFRCF descriptor. Section 4 shows experimental results for verifying the pro-
posed method. Section 5 concludes.

2 Related Work

In general, object-centric event recognition algorithms follow three steps, briefly
outlined below.

First, selective object detection and motion estimation can be beneficial for
both speed-up and accuracy. A Gaussian mixture model (GMM) is used in [26]
for vehicle detection in complex urban traffic scenes.

A diversity of feature-vector representation schemes has been proposed for
object detection in complex scenes. The active basis model [24] has been widely
employed for vehicle detection [11,16] in traffic surveillance. With the assistance
of a shared skeleton method, it can be easily trained with a considerable detection
performance. However, it can only be used for one object with a fixed pose. An
AND-OR graph [15] has been proposed for vehicle detection in congested traffic
conditions. A deformable part-based model for object detection was introduced
in [5]. These two methods still need multi-models for various targets and multiple
viewing points, which is rather time-consuming.



Deep learning methods improved dramatically the state-of-the-art in visual
object detection and recognition. The CNN [13] powered the performance of
object detection and recognition. Recently, a focus in this area [6,20] is on process
acceleration with a fundamental algorithm for region search [22]. However, it is
still a challenge to detect, track, and analyse the behavior for moving targets in
continuous frames, even with GPU-enabled computing.

Second, object tracking algorithms are proposed for trajectory reconstruction.
Region-based tracking algorithms [8], feature-based tracking algorithms [25], and
model-based tracking algorithms [19] have all been widely applied for various
outputs.

Third, for the tracking of moving objects in adjacent frames of a video se-
quence, the problem of understanding object behaviors from image sequences
arises naturally. Subsequently, methods such as hidden Markov models (HMM) [2]
Bayesian approaches [3], or 3-dimensional (3D) models [10] are used to under-
stand the trajectory of moving targets.

There is also work [17,21] that aims at a more focused anomaly detection,
but so far in a global sense only, not for individually acting objects. Global
anomalies (involving multiple objects) are, for example, a traffic jam, an accident,
or changes of global motion in scenes of crowds. Global anomaly detection also
requires further research.

Different to existing work, our contribution in this paper is an integrated
framework for multi-class event recognition in complex road scenes. Event local-
ization and recognition are conducted in a deep CNN using the proposed LFRCF
(i.e. local fast R-CNN flow) descriptor.

3 Methodology

This section presents our event recognition method using a fast R-CNN [6] ar-
chitecture and the proposed LFRCF descriptor. We divide this section into three
parts. First, we provide an overview of the event recognition framework. Then
we present the fundamental method of fast R-CNN. Finally, we detail the cal-
culation of the LFRCF descriptor with deep belief propagation for behavior
recognition and event identification.

3.1 Overview

As illustrated in Fig. 1, the proposed framework recognizes a multi-scale and
object-centric event by using two non-adjacent frames, denoted as Frame input1
and Frame input2. First, fast R-CNN is implemented for convolutional feature
extraction, object detection, and bounding box regression. Hence, by using the
extracted location of each bounding box, we use a new spatial-temporal pooling
algorithm to extract the local convolutional feature (i.e. a local Conv feature
map) in the 4th convolutional layer, for two non-adjacent frames. Finally, the
LFRCF descriptor is calculated between the obtained two local Conv feature
maps, which refers to the moving patterns of candidate events; this descriptor
is the applied for the final behavior recognition and event identification.
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Fig. 1. Framework of the proposed method

3.2 Region-based Convolutional Neural Network

In this paper, we use convolutional layers, max pooling layers, rectified linear
units (ReLUs), and fully connected (FC) layers to construct our traffic-event
recognition network.

Input data pass through all the organized layers to generate the final recog-
nition outputs. In the convolution layers, a group of kernels is used to filter the
input such as to produce feature maps for deeper feature extraction. The function
of the pooling layer is to calculate the overall response of a neighborhood area in
a feature map, which is one of the outputs of the convolution layer. Being aware
of the problem of over-fitting, dropout layers are proposed for training towards
optimization. Finally, by using the softmax optimization method, a multi-class
identification result is given with an FC layer.

One of the most effective approaches for solving a multi-scale object de-
tection task is the family of R-CNNs. By using the selective search algorithm,
a group of regions is extracted for further scale normalization (i.e. resized to
227 x 227 in our case).Then, a traditional CNN is used for feature extraction
and object recognition. This method achieves high accuracy, however, it is very
time consuming because of redundant feature extraction in a deep ConvNet.

In this paper, we use a fast R-CNN framework for multi-scale object detection
and event hypothesis generation. This framework solves the previous problems
by computing the feature map only once per image. The corresponding region-
based deep convolutional feature map is extracted in form of a new ROI-pooling
map. We also propose a multi-task loss function for bounding-box regression.

The ConvNet is regarded as a feature descriptor of specific video frames. In
this paper, we use the VGG-16 deep ConvNet for our fast R-CNN, which is
pre-trained on a large Pascal Voc 2007 dataset, as Table 1 shows.

Categories and bounding box locations of 20 classes of objects are used to
finish the training stage.

By using a multi-task loss-function training algorithm, the loss (or error)
function during the fine-tuning work of the initial VGG-16 neural network is



Table 1. Details of all selected layers of the pre-trained fast R-CNN

Layer [[convl pooll conv2 pool2 conv3 pool3 conv4 poold convh

Input 600 600 300 300 150 150 75 75 38
X975 X975 x488 x488 x244 x244 x122 x122 x61
x3 x64 x64 x128 x128 x256 x256 x512 x512
Output || 600 300 300 150 150 75 75 38 38
X975 x488 x488 x244 x244 x122 Tx122 x61 x61
x64 x64 x128 x128 x256 x256 x512 x512 x512
Channel || 64 64 128 128 256 256 512 512 512

represented as follows:
E(X7Cv£):ECZS(f(X)vc)+C'E100(X7£) (1)

where, X is the location of the considered region of interest (ROI) defined by
(ri,72,¢1,c2). C and L are the ground truth for object category and location,
respectively. E.q(f(X),C) is the loss function regarding the recognition of an
object in X as being in the correct class C. The second term FEj,. is the loss
function of bounding box regression; ¢ is a parameter to control the balance
between these two terms. In this paper, we simply use ¢ = 1.

3.3 Local fast R-CNN Flow

Accurate object detection and recognition results define already an important
step towards accurate event analysis. However, in order to give a detailed de-
scription of an object-centric event for recognition, we still need to analyze the
motion pattern of any detected and recognized object of interest.

Flow is an effective approach for moving pattern description. However, pixel-
wise flow matching in a large-scaled spatial image is time-consuming and inac-
curate. Therefore, we directly analyze the flow in the local region of interest as
fast R-CNN flow, or deep flow for short.

Feature reorganization. For extracting flow features in the extracted bound-
ing box by using fast R-CNN, we reorganize convolution features in extended
bounding boxes in two non-adjacent frames.

The convolutional feature map in the k-th layer is taken into account, for-
mally expressed by

fo(V(t), k) = Cf € Rtwxwixd for fp=1,...5 (2)

Here, V/(t) is the ¢-th frame in video V, and C} is the feature map in the k-th
convolutional layer of the t-th frame.

By implementing this method of feature description for two selected non-
adjacent frames (e.g. ¢ — a and ¢ + b), we obtain two convolutional feature maps
C’f(“ and C,i*b; k is the index of the convolutional layers. These two maps
indicate the motion patterns within the interval of a + b+ 1 frames.



The location of recognized Object n in Frame ¢ — a is expressed by

Xy (n) = [r1(n),ra(n), c1(n), ea(n)] 3)

where 71,73, c1, c2 are the row and column coordinates of the object’s bounding
box in this frame. Considering that an object may easily move out of its current
bounding box in a short period of time, we construct a spatial extended bounding
box for each object. Let the standard extending scale s; be defined as follows:

st(n) =7 - max (Vz(n) 2T1(n)J , {62@) QCl(n)J) (4)

where 7 is a parameter to change the scale. Thus, the n!” extended region is
represented as

Xe(n) = [max(1,71(n) — s¢(n)), min(M, ra(n) + s¢(n)),
max(1,c1(n) — s¢(n)), min(N, ca(n) + s¢(n))] (5)

M and N are the row and column numbers of the whole image.

By using the spatial extended bounding box region, we further reorganize the
kth convolutional feature matrix for object-centric behavior recognition. The
reorganized features, for considered object n in two non-adjacent frames, are
further written as two local feature matrices L *" and L',;er’". L™ and

LEFP™ consist of all pixels in the tensor CL=%(z,y, z) and CEFP(x,y, 2) , with

[ (1,1)
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for 1 < z < dy. [-] and |-] are the ceiling and floor function, respectively. x; and
X2 are the layer’s scale factors, with

hk Wi

= 7’ = — 8

X1 Vi X2 N (8)

After feature reorganization, we extract the local convolution feature matrix

Ly”“" and ijb’n for each object which has already been recognized by the fast

R-CNN framework. These matrices are used for recognizing events occurring
between the selected two non-adjacent frames.

LFRCF matching. Following related work [7], we transfer the behavior
recognition problem into a label parsing problem using probabilistic graphical
model. Two local convolution feature matrices L} " and L?‘b’” are used to
analyze the behavior of the n'” object which is detected in Frame t — a. For
convenience, we directly set the value of a and b as 0 and 5, respectively, in this
paper.

Let w(p) = [u(p), v(p)] be the LFRCF at a pixel location p € §2, where (2 is
the set of all pixel locations of a map Lz_a’n. To calculate the LFRCF w from



L™ to LEFP™ we introduce a unary cost function E(w) as follows:

B(w) = " min(| L)~ |26 0+ w )] )

peES?
+ 3 {min(arlu(p) —u(q)] )
q€A(p)
+min(a [v(p) — v(q)|,€)} (9)

Here, A(p) is the set of pixel locations being 4-adjacent with p; d and e are two
thresholds for truncating the L; norms.

We have two terms in the cost function, namely the data and the smoothness
term. By using the data term, the convolutional event descriptor is constrained
to be matched; the smoothness term is employed to constrain adjacent pixels to
having similar LFRCF's.

For minimizing the cost function F(w) and obtaining the most accurate
directional LFRCF vector w, we use belief propagation (BP) [18]. Compared with
the method in [18], the proposed cost function ignores the small-displacement
term, as the object may move obviously between non-adjacent frames.

By using an improved loopy belief propagation algorithm, the cost function
is minimized after 40 iterations for each object. In this paper, due to the next
two reasons, instead of using the calculated LFRCF in the area X.(n), we ret-
rospect the location X;(n) and extract the central LFRCF for further behavior
representation.

First, we only focus on the moving pattern of an object which has already
been located in the area Xy(n), which corresponds to the central area of X.(n).
Second, by considering the convolutional processing in the neural network we
may influence the boundary of on object in an image.

Let m;(n), ni(n) be the height and width of map Lj “", respectively. Thus,
the central LFRCF area for further behavior representation is given by

[n - max(my,ng), mi—n - max(mg, ng),n - max(myg, ny), ni—n - max(mg,ny)]  (10)

The behavior recognition result is denoted by w(x;, y;), with 7 - max(my, n;) <
x; < my_n - max(my,n;), and n - max(m,n;) <y < ng_n - max(mg,ng).

Motion visualization. The parsing result, which corresponds to dynamic
local motion, is represented as shown in Fig. 2 by using a color-key. Then, based
on the visualization results of the proposed LFRCF descriptor, the behavior
can be easily distinguished. In order to further clarify an object-centric event in
complex on-road scenes, we further provide a motion-representation method for
events.

A behavior vector is calculated as follows:

Um = %Zu(xay)v Um = %Zv(xvy)

€,y z,y
x € [ - max(my,n;), mi—n - max(my,n;)]

y € [n - max(my,ng), n—n - max(mg,n;)] (11)



Calculated u,, and v,, are the mean horizontal and vertical flow of the calcu-
lated LFRCF, u and v are the horizontal and vertical LFRCF flow components,
respectively. Z is the area of the current region. See Fig. 3 for examples of event
representation.

In Fig. 4, the green rectangular lines are regression results of object detection
and event location. The directed red bar in the blue circle represents the central
mean flow w,, = [um,vm]. It accurately represents the behavior of the detected
object, and even provides a coarse information of the current speed of the object.

4 Experiments

The experimental report is divided into three segments. Detailed information
of the dataset is given at the beginning. Then, we compare the performance of
event localization for different methods. Finally, we present the performance of
event recognition for extensive data recorded at a real traffic intersection using
the proposed method.

Datasets. It is always a challenging problem to detect and track vehicles
and pedestrians in outdoor scenes for traffic event recognition. In this paper,
focusing on various scenes, we use three groups of datasets which are selected
from the publicly available HIGHWAY dataset and the UA-DETRAC dataset.
These video datasets are captured under various lighting conditions, viewing
angles, and for different road scenes.

To evaluate the proposed method, we also collected an extensive data-set,
called the JINAN data-set, at inner-city road intersections with a camera located
about 8 meters over the road surface. Our videos record top or rear views of
vehicles moving below the camera level. It is possible to observe in the recorded
data vehicles and pedestrians in a distance such as on the other side of the
intersection. These videos were recorded at a frequency of 25 frames per second.
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Fig. 2. Visualization of deep convolution flow. Left: Flow directions and magnitudes
for selected pixels. Right: Color-key-based representation of optical flow for all pixels



Fig. 4. Event localization and recognition examples.
Table 2. Used datasets for object detection and tracking, and event characterisation

Resolution Frames Frames showing Frames showing
vehicle events pedestrian events

HIGHWAY 640 x 480 1,652 742 0
UA-DETRAC 720 x 960 1,466 426 0
JINAN 2,592 x 2,048 1,304 179 97

Summarizing ground truth for event localization, brief event descriptions (for
three selected time intervals of traffic videos) are listed in Table 2.

Event Localization. Normally, robust object detection and tracking are
necessary for event localization. In order to identify object movements, we com-
pare the performance of vehicle localization of the active basis model of [11],
the Viola-Jones cascade detector of [23], the deformable part model of [4], and
our proposed method.

Table 3. Comparisons of event localization on the HIGHWAY data-set

Active basis V-J cascade Deformable part Proposed

model [11] detector [23] model [4] method
Recall 83.2% 94.5% 46.1% 92.7%
Precise  56.1% 45.3% 91.5% 98.4%




Table 4. Comparisons of event localization on the UA-DETRAC data-set

Active basis V-J cascade Deformable part Proposed

model [11] detector [23] model [4] method
Recall 77.3% 84.8% 90.3% 88.7%
Precise 84.2% 50.6% 91.9% 97.1%

Table 5. Comparisons of event localization on the JINAN data-set

Active basis V-J cascade Deformable part Proposed

model [11] detector [23] model [4] method
Recall - - 74.8% 81.8%
Precise - - 97.8% 94.3%

The active basis model and the V-J cascade detector perform well for rear-
view vehicles, but it is difficult to train them for accurate vehicle event local-
ization in cases of other viewing-angles (see the JINAN data-set results). The
deformable part-based model is very accurate for detecting objects with a rigid
structure, but it costs too much time to process one frame for one kind of tar-
gets even when using a cascading speed-up technology. Besides, we even need to
cope with whole frames several times to extract different objects. The method
proposed by us shows competitive results but proves to be much more time-
efficient for extracting multiple moving objects of interest. A further validation
of recognition accuracy is given in the next section.

Table 6. Comparison of comprehensive event recognition results

Accuracy Computational cost

Optic flow [1] 63.1% 0.9 s (CPU)
Dense SIFT flow [18] 98.9% 10.9 s (CPU)
Proposed method — 98.7% 0.4 s (CPU)

Event Recognition. In this paper, multi-class object-centric (i.e. vehicle
and pedestrian) events are taken into consideration. For an event sample, we
selected five subsequent frames. The manually labeled 1,347 vehicle-centric and
97 pedestrian-centric events are studied for recognition by the proposed method.

According to the calculated behavior vector [ty v.,]|, we generally define nine
directions of motion (i.e. bottom-up, up-bottom, right-left, left-right, bottomright-
upleft, bottomleft-upright, upright-bottomleft, upleft-bottomright, and remain-
ing static). Based on the manually labeled result, accurate event recognition is
defined by matching flow direction and flow magnitude.

The accuracy A is defined as follows:

P+ PR

A=_2P "0
N, + N,



Fig. 5. Event recognition performance. Top to bottom: Results for the HIGHWAY,
UA-DETRAC, and JINAN data-sets

where P, and P, are the number of accurately recognized events for pedestrians
and vehicles, respectively. N, and N, are the number of all manually labeled
events for pedestrians and vehicles.

We also use optic flow and dense SIFT flow for comparison on behavior
recognition; see Table 6. Here, the 1st and the 5th frame are used for deep flow
calculation.



Fig. 6. Examples of false event recognition

By using the proposed event recognition framework, each moving object of
interest is detected, frame by frame. The entire algorithm is implemented in
Matlab 2016a with MatConvNet in OS Windows 10, using 16GB RAM and
an i5 CPU processor. Processing is on average at 0.2 fps on a CPU-only mode.
Some false event recognition examples (i.e. false-positive detection and false-flow
calculation) are given in Fig. 6 illustrating a need for further refinements.

5 Conclusions

This paper presents a novel traffic-event recognition method using a descriptor
defined by local fast R-CNN flow (LFRCF). Specifically, we use a fine-tuned
fast R-CNN for multi-scaled object (i.e. vehicles or pedestrians) detection in
complex traffic scenes. Then, by using a new spatial-temporal pooling algorithm,
we extract the proposed LFRCF descriptor in the 4th convolutional layer for
each object. Local convolutional features of two non-adjacent frames are used
for event recognition with an improved loopy belief propagation algorithm.

By using the identified three datasets (i.e. data collected under various light-
ing, viewing angles, and for different road scenes), we evaluate the robustness
and accuracy of traffic-event recognition and the computing cost of the proposed
method.

It might be of interest to extend DCF analysis to the recognition of more
generalized events. A high-level understanding (e.g. by linking multiple traffic
events of the same vehicle together) is also worth considering.
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