
Full citation: Holder, S., Buchan, J., & MacDonell, S.G. (2008) Towards a metrics suite for object-
relational mappings, in Proceedings of the 1st International Workshop on Model-Based Software
and Data Integration. Berlin, Germany, Springer (Communications in Computer and Information
Science v.8), pp.43-54.
doi: 10.1007/978-3-540-78999-4_6

Towards a Metrics Suite for Object-Relational Mappings

Stefan Holder1,*

, Jim Buchan2, and Stephen G. MacDonell2
1 Max-Planck-Institut für Informatik, Campus E1 4,

66123 Saarbrücken, Germany
sholder@mpi-inf.mpg.de

2 SERL, School of Computing and Mathematical Sciences,

Auckland University of Technology,
Private Bag 92006, Auckland 1142, New Zealand

{jbuchan, smacdone}@aut.ac.nz

* The work reported here was conducted primarily while the first author was at Auckland University of Technology on exchange from Fulda
University of Applied Sciences, Germany.

Abstract

Object-relational (O/R) middleware is frequently used in
practice to bridge the semantic gap (the ‘impedance
mismatch’) between object-oriented application systems
and relational database management systems (RDBMSs).
If O/R middleware is employed, the object model needs to
be linked to the relational schema. Following the so-
called forward engineering approach, the developer is
faced with the challenge of choosing from a variety of
mapping strategies for class associations and inheritance
relationships. These mapping strategies have different
impacts on the characteristics of application systems,
such as their performance or maintainability. Quantifying
these mapping impacts via metrics is considered
beneficial in the context of O/R mapping tools since such
metrics enable an automated and differentiated
consideration of O/R mapping strategies. In this paper,
the foundation of a metrics suite for object-relational
mappings and an initial set of metrics are presented.

Keywords: Object-oriented software development;
Relational database; Impedance mismatch; Object-
relational mapping; Software metrics

1. INTRODUCTION

Applications designed using object-oriented (OO)
principles often achieve persistence of the object model
using a relational database management system
(RDBMS). This introduces a so-called ‘impedance
mismatch’ between an application based on an OO design
paradigm and an RDBMS designed according to quite

different principles from relational theory. Object-
relational (O/R) middleware is often used to bridge this
semantic gap by providing a mechanism to map the object
model to relations in the database. This layered approach
to O/R mapping using middleware achieves the design
goal of loose coupling between application and relational
schema, making it possible to change the relational
schema without the need to also change the application
source code.

If O/R middleware is employed in this way, the object
model needs to be linked to the relational schema using
the mapping mechanism offered by the O/R middleware.
In the case where a developer creates the object model
first and then creates the relational schema by mapping
the object model to relations, the so-called forward engi-
neering approach, the developer is faced with the
challenge of choosing from a variety of mapping
strategies for class associations and inheritance
relationships. These mapping strategies have different
impacts on the non-functional properties of application
systems, such as performance and maintainability [9, 11].

The problem for the developer, then, becomes selecting
the mapping strategy that best suits the desired non-
functional requirement priorities for a particular
application. There are a number of approaches to
addressing this problem and there is some tool support to
automate the selection and generation of the mapping in
the O/R middleware. In [8], for example, a single
inheritance mapping strategy is used and a fixed mapping
strategy for one-to-one, one-to-many, and many-to-many
associations is applied, respectively. This approach is
straightforward; however, the different impacts of
alternative mapping strategies are not considered.

http://dx.doi.org/10.1007/978-3-540-78999-4_6�

Philippi [11] therefore suggests a model-driven
generation of O/R mappings. In his approach, the
developer defines mapping requirements in terms of
quality trade-offs. The mapping tool then automatically
selects mappings that fulfill the specified requirements
based on general heuristics regarding the impacts of
mapping strategies. However, mapping impacts strongly
depend on concrete object schema characteristics such as
inheritance depth and the number of class attributes [9,
13], properties not considered in [11]. Furthermore, while
model-driven generation of O/R mappings is said to ease
mapping specification for the developer, such an
approach reduces the developer’s control over the
mapping process and may result in a sub-optimal map-
ping for a given application. The developer should
therefore have the option to define and refine mappings
manually when required.

We therefore suggest that concrete schema characteristics
such as inheritance depth and the number of class
attributes should be considered in the selection of O/R
mappings. We propose an approach that incorporates
schema characteristics into metrics that will provide more
accurate and sensitive measures of the impacts of a given
mapping specification on non-functional requirements.
We further suggest the application of metrics for O/R
mappings in order to give the developer sophisticated
feedback on the impacts of the chosen mapping. The
quantification of mapping impacts using metrics is
considered beneficial in the context of O/R mapping tools
since these metrics provide a semi-automated mechanism
for a developer to evaluate the appropriateness of a
selected mapping in terms of its likely impact on desired
application non-functional requirements such as
performance and maintainability. As its main
contribution, this paper provides the foundation for a
metrics suite for inheritance mappings and defines several
initial metrics.

While it is feasible to measure the impact of both
association and inheritance mapping strategies with O/R
metrics, we focus here on metrics for inheritance mapping
strategies, for two reasons. First, the three basic
inheritance mapping strategies (described in the following
section) are applicable to all inheritance relationships, so
the developer will always be required to choose one of
them for each inheritance relationship. This is in contrast
to association mapping strategies, whose applicability
depends on the cardinality of the association, and so
sometimes there is only limited choice or even no choice.
Second, the impacts of inheritance mapping strategies
strongly depend on the characteristics of the object model,
such as inheritance depth and number of attributes. Thus,
the drivers for the application of O/R metrics for in-
heritance relationships are more compelling.

The remainder of this paper is structured as follows. In
Section 2, basic strategies for mapping entire inheritance
hierarchies are described. In Section 3, the semantics of
mapping strategies for individual inheritance relationships
are defined. The goals of measurement are set in Section
4 before an initial metrics suite for inheritance mappings
is proposed in Section 5, based on the defined inheritance
mapping semantics. In Section 6, the coverage of the

proposed metrics suite is explained. Finally, a conclusion
to this paper is given in Section 7.

2. BASIC STRATEGIES FOR MAPPING

INHERITANCE HIERARCHIES

In the literature, inheritance mapping strategies are
generally described as being applicable to whole class
hierarchies. These ‘pure’ mapping strategies are explained
in this section using the notation suggested in [9].

2.1 One Class - One Table

Following the ‘one class – one table’ mapping strategy,
there is a one-to-one mapping between classes and tables.
The corresponding table of a class contains a relational
field for each non-inherited class attribute. Thus, object
persistence is achieved by distributing object data over
multiple tables. In order to link these tables, all tables
share the same primary key. In addition, the primary keys
are also foreign keys that mimic the inheritance
relationships of the object schema [9]. Each row in a
table, then, maps to objects in that table’s corresponding
class and subclasses.

It can be seen that for this mapping strategy, only one
table needs to be accessed in order to identify the objects
that match the query criteria of polymorphic queries.
Whereas a non-polymorphic query only returns the
objects of the class against which the query is issued, a
polymorphic query returns the objects of the specified
class and its subclasses for which the query criteria
match.

This mapping strategy is commonly recommended if the
object model’s changeability (i.e. ability to easily change)
is of primary importance because new classes can be
added easily, without the need to modify existing tables.
A significant drawback of this mapping strategy,
however, is that multiple joins are needed to assemble all
attribute data of an object. Moreover, if no views are
used, it is relatively difficult to formulate ad-hoc queries
because multiple tables need to be accessed to retrieve all
object data [9].

2.2 One Inheritance Tree – One Table

Following the ‘one inheritance tree – one table’ mapping
strategy, all classes of an inheritance hierarchy are
mapped to the same relational table. This mapping
strategy requires an additional relational field in the
shared table, which indicates the type of each row.

This mapping strategy offers the best performance for
polymorphic queries and allows easy ad-hoc reporting
since only a single table needs to be accessed [9]. The
changeability of the object model is reduced compared to
the ‘one class – one table’ mapping strategy, however,
because any object schema modification forces a modifi-
cation of the sole inheritance table, which may already
contain data.

Finally, if objects are stored using this mapping strategy,
all relational fields that are not needed to store an object
must contain null values. This especially applies to
relational fields corresponding to attributes of subclasses
since these fields are not used when storing objects from
other subclasses.

2.3 One Inheritance Path – One Table

The ‘one inheritance path - one table’ mapping strategy
only maps each concrete class to a table. Thereby, all
inherited and non-inherited attributes of a class are
mapped to the same table. Each table then only contains
instances of its corresponding concrete class.

Under this mapping strategy non-polymorphic queries run
as quickly as they do under the ‘one inheritance tree – one
table’ mapping strategy because only one table needs to
be accessed. In contrast, a polymorphic query against a
class needs to access the table that corresponds to this
class and all tables that correspond to its subclasses,
which could result in a significant performance overhead.
Moreover, this mapping strategy implies a duplication of
relational fields, which results in multiple updates of these
fields if the corresponding class attribute is changed.

The three inheritance mapping strategies just described
are restrictive in that they are only applicable to entire
inheritance hierarchies. In the next section, we introduce
more finely-grained inheritance mapping strategies that
can be used in combination on elements of an inheritance
hierarchy in order to produce an optimal mapping.

3. SEMANTICS OF MAPPING

STRATEGIES FOR INDIVIDUAL
INHERITANCE RELATIONSHIPS

In practice, current O/R middleware products such as
Hibernate [6] support the mixing of different inheritance
mapping strategies for one inheritance hierarchy, thereby
providing a finer level of granularity in the mapping
strategy selection than the basic mapping strategies
described in Section 2. However, the opportunity to mix
inheritance mapping strategies means that the developer
must decide what mix of mapping strategies will be
optimum for a given object model structure. This
requirement strengthens the likely usefulness of a set of
mapping metrics that reflect this finer granularity. Hence,
the ability to use such a suite of metrics to inform this
decision, as proposed by this paper, should ease the
developer’s effort and result in a better quality decision.

Before discussing the development of these metrics a
method of clearly representing the semantics of individual
inheritance mapping strategies is needed. The following
notation will be used and follows the inheritance mapping
model definitions suggested by [4]. In the following
definitions, P denotes the superclass (parent class) at the
superclass-end of an example inheritance relationship
while C denotes the subclass (child class) at the subclass-
end of this inheritance relationship.

Union superclass: If UC denotes the set of classes that are
reachable from C (including C) via ‘union superclass’

inheritance relationships, the attributes defined by all
classes in UC are mapped to a table corresponding to the
most general class in UC. Moreover, a type indicator field
is needed in this table in order to determine the class type
of each row.

Joined subclass: The attributes defined by C as well as
the primary key attributes inherited from P or another
superclass are mapped to an own table T. The primary key
fields of T contain a foreign key constraint to the same
primary key fields in the table to which P is mapped.

Union subclass: If C is abstract and all inheritance
relationships to its direct subclasses are mapped with
‘union subclass’ (or C does not have any subclasses), then
no corresponding table is created for C. Otherwise, the
attributes of C and the attributes of all superclasses of C
are mapped to an own table.

Figure 1, adapted from an example in [4], shows a sample
mapping that represents the above definitions. In it, white
boxes denote classes and grey boxes denote tables. The
mapping from classes to tables is indicated with black
arrows and inheritance relationships (white arrows) are
labeled with the mapping strategies applied to them.

Having introduced the semantics of mapping strategies
for individual inheritance relationships, in the next section
we describe the derivation of measurement goals relevant
to the assessment of the impact of these mapping
strategies.

4. MEASUREMENT GOALS

Bearing in mind that different mapping strategies have
different impacts in terms of the non-functional
characteristics of applications, our intent in this section is
to identify measures that would be useful in guiding the
developer’s choice of mapping. In order to identify
appropriate metrics, we follow a simplified variant of the
commonly employed Goal/Question/Metric (GQM)
approach [2, 3]. The GQM approach defines a framework
for identifying metrics by defining goals, asking questions
related to how these goals could be achieved and defining
metrics that are intended to answer the posed questions.

In the first step of identifying relevant measurement
goals, we consider software quality (non-functional)
characteristics that are influenced by O/R mappings. The
result of our top-down approach to identifying software
quality characteristics for O/R mappings is depicted in
Figure 2.

This network of quality characteristics subsumes and
extends the classifications of O/R mapping impacts
suggested by [9, 11]. It starts with the quality
characteristics efficiency, maintainability, and usability,
which are a subset of the software quality characteristics
defined by the ISO/IEC 9126-1 standard [7]. The other
high-level software quality characteristics of the ISO/IEC
9126-1 standard – functionality, reliability, and portability
– are not considered to be significantly influenced by O/R
mappings, and so are not included here.

id
name

Person

university
Student

salary
department

Employee

occupation
Clerk

bonus
Manager

union superclassunion subclass

joined subclassunion subclass

person

id
name
salary
department
type

clerk

id
occupation

student

id
name
university

manager

id
name
salary
department
bonus

foreign key

Fig. 1. Example of mixed inheritance mapping strategies.

Efficiency

Maintainability

Usability

Time
behaviour

Resource
utilisation

Analysability

Changeability

Operability

Secondary
storage

Schema
correspondence

Mapping
uniformity

Change
propagation

Ad-hoc
queries

Polymorphic
queries

Non-polymorphic
queries

Additional null
values

Redundancy

DB queries

Mapping
understandability

Query complexity

DB inserts and
updates

Change isolation

Constraint
assuranceStability

Quality characteristics
accoring to ISO/IEC 9126

Refined quality characteristics

Fig. 2. Quality characteristics of O/R mappings.

Efficiency, maintainability, and usability are then split
into quality sub-characteristics, also defined by the
ISO/IEC 9126-1 standard. Finally, these sub-
characteristics are refined into specific quality
characteristics relevant to O/R mappings. In Section 5, we
propose metrics to measure these specific quality
characteristics.

In Table 1, the specific quality characteristics are listed
and explained. This builds on the works of Keller [9] and
Philippi [11] by considering additional characteristics,
namely Redundancy, Change isolation, Constraint
assurance, and Mapping uniformity, and we further
extend their work by proposing metrics for some of these.
The next section describes and justifies the metrics
developed for these quality characteristics and provides
examples of their use.

5. METRICS FOR INHERITANCE
MAPPINGS

Metrics have been suggested for object-oriented design
[5] and for relational database systems [12] as well as for
object-relational database systems [1]. These metrics,
while useful, are considered insufficient for measuring the
impacts of O/R mappings for two reasons. First, the
available metrics for relational schemas do not
sufficiently cover the suggested network of quality
characteristics (see Section 4). Second, the metrics focus
on either object-oriented design or relational schemas but
not on the mapping between them. Therefore, the metrics
suite suggested here, comprising four metrics at the level
of individual classes, is complementary to those described
elsewhere, in that it explicitly addresses the measurement
of O/R mappings.

5.1 Table Accesses for Type Identification (TATI)

Polymorphic queries against a class C return objects
whose most specific class is C or one of its subclasses.
Before an object can be completely retrieved, it is
necessary to identify the most specific class of this object.
It should be noted that identifying the most specific class
is equivalent to identifying the tables that need to be
queried in order to retrieve the requested object. In
contrast, for non-polymorphic queries, the most specific
class of the requested object is the same class against
which the query is issued.

There are two strategies to identify the most specific
class: either each possible table is queried individually
and the search is stopped as soon as the most specific
class is identified, or all possible tables are queried with
one query. While the former strategy means that the
search is completed as soon as the most specific class is
found, the latter strategy allows the database system to
query the tables in parallel. The latter strategy can be

accomplished by sending multiple queries to the database
at the same time or by using the SQL UNION clause. The
maximum number of table accesses measured with this
metric is therefore only relevant if the former strategy is
applied.

Definition: For queries that are issued against a class C,
TATI(C) equals the maximum number of tables that have
to be accessed in order to identify the most specific class
of the requested object.

The maximum number of tables that need to be accessed
for a query issued against a class C equals the number of
different tables that correspond to C and all of its
subclasses. In Figure 1, TATI(Person) = 4 since Person is
the root class of the inheritance hierarchy and the
inheritance hierarchy is mapped to 4 tables altogether.
Similarly, TATI(Employee) = 3 since Employee and its
subclasses Manager and Clerk are mapped to the 3 tables
person, manager, and clerk.

Table 1. Description of quality characteristics.

Quality characteristic Description
Time behavior of polymorphic
database queries

Mainly depends on the number of tables that
need to be accessed / the number of joins that
need to be performed. Higher redundancy can
improve the time behavior of polymorphic
database queries but can negatively affect the
time behavior of database inserts and updates
[9].

Time behavior of non-polymorphic
database queries
Time behavior of database inserts
and updates

Additional null values Null values that solely result from the applied
mapping strategy

Redundancy The degree of redundancy that is caused by the
applied mapping strategy

Change propagation Extent to which it is necessary to adapt the
relational schema and the O/R mappings to
changes in the object model

Change isolation Depends on whether existing tables need to be
modified for adding/deleting classes

Constraint assurance Depends on the ability of the relational schema
to enforce integrity constraints

Mapping uniformity Uniformity of applied mapping strategies.
Refers to the overall mapping and is not
applicable to individual mapping strategies

Schema correspondence Extent to which the object model resembles
the relational schema

Query complexity Effort required to formulate ad-hoc queries

5.2 Number of Corresponding Tables (NCT)

In contrast to polymorphic queries, the most specific class
of a queried object in a non-polymorphic query is known.
Therefore, no queries are necessary in this case to
determine the most specific class. The performance of
non-polymorphic queries therefore mainly depends on the
number of tables that contain data of the requested object.
For polymorphic queries, it is possible to retrieve the
complete object data while querying tables in order to
identify the most specific class of the requested object.

We therefore propose the metric NCT(C), which equals
the number of tables that contain data from instances of a

class C. This number depends on the inheritance mapping
strategies that are used for the inheritance relationships on
the path of class C to the root class of the inheritance
hierarchy. In particular, the application of the ‘joined
subclass’ strategy results in increasing values of NCT.

As already indicated, this metric is a measure of object
retrieval performance. In addition, this metric is a
measure of query complexity in the context of ad-hoc
queries since we consider the number of involved tables
to be an appropriate measure of the user’s effort in
formulating a query. However, using the number of tables
to measure ad-hoc queries assumes that no views are
employed to ease query formulation.

Definition: NCT is formally defined by equation (1),
where the function p(C) returns the direct superclass of C.











+

=
↑

own table its tomapped is if 1))((
 superclass its as tablesame the tomapped is if))((

subclass'union ' viamapped is)),(p(
or classroot theis if 1

)(
(1)

CCpNCT
CCpNCT

CC
C

CNCT

In Figure 1, NCT(Clerk) = 2 because the tables clerk and
person contain data that are necessary to assemble objects
of Clerk. In contrast NCT(Manager) = 1, as all defined
and inherited attributes of the class Manager are mapped
to relational fields of the table manager.

5.3 Number of Corresponding Relational Fields

(NCRF)

The Number of Corresponding Relational Fields (NCRF)
gives a measure for the degree of change propagation for
a given O/R mapping. More specifically, this metric
reflects the effort required to adapt the relational schema
after inserting, modifying, or deleting a class attribute.
This effort is mainly influenced by the application of the
‘union subclass’ mapping strategy since applying this
mapping strategy typically results in the duplication of
relational fields (see Section 2.3). Because of these dupli-
cations, changes in the object model result in multiple
changes to the relational schema. In contrast, the
duplication of relational fields does not occur when the
‘joined subclass’ or the ‘union superclass’ mapping
strategies are applied. (Note: primary key fields are not
considered by this metric because they should be resistant
to changes.)

Definition: For a class C, NCRF(C) equals the number of
relational fields in all tables that correspond to each non-
inherited non-key attribute of C. If C does not have any
non-inherited non-key class attributes, NCRF(C) equals
the number of relational fields to which each non-
inherited non-key class attribute of C would be mapped.

In Figure 1, NCRF(Person) = 3 since the class attribute
Person.name is mapped to the three relational fields
person.name, student.name, and manager.name.
NCRF(Employee) = 2 since each of the attributes
Employee.salary and Employee.department is mapped to
one relational field in the table person and one relational
field in the table manager. Finally, NCRF(Student) =
NCRF(Manager) = NCRF(Clerk) = 1 since the only non-
inherited class attribute of each of these three classes
(Student.university, Manager.bonus, Clerk.occupation) is
mapped to 1 relational field.

5.4 Additional Null Values (ANV)

ANV measures additional storage space in terms of null
values that result when different classes are stored
together in the same table using the ‘union superclass’
mapping strategy (see Section 2.2).

For a definition of ANV(C), the following is considered.
Let AC be the set of non-inherited attributes of class C and
let FC be the set of corresponding relational fields in the
shared table. Applied to a particular class C, the aim of
ANV(C) is to give a measure for the number of null
values that occur at the relational fields FC. An important
observation is that null values at the relational fields FC
occur if and only if instances of classes different from C
and different from subclasses of C are stored in the shared
table. More precisely, if instances of two distinct classes
B and C are stored together in a shared table and B is not
a subclass of C, then each row in the shared table that
represents an instance of B contains a null value at each
relational field in FC. ANV(C) is therefore higher the
more classes different from C and different from
subclasses of C are mapped to the same table as C.

 The number of null values depends on the number of
instances of each class, something that may be unknown
at the stage of mapping specification. In order to give an
approximation of additional null values, it is assumed that
there is the same number of instances for all (concrete)
classes. Furthermore, ANV is normalized by assuming
that there is only one instance of each class. This
assumption also ensures that ANV only depends on a
given object model and is thus in line with the previously
described metrics. Note, however, that this metric could
easily be generalized to take the number of instances per
class into account if this is known.

Definition: ANV(C) equals the number of non-inherited
attributes in C multiplied by the number of concrete
classes that are mapped to T, excluding C and all of its
subclasses.

For the example mapping shown in Figure 3,
ANV(Student) is calculated as follows. Concrete classes
that are mapped to the same table as Student are
Employee and Clerk. These two classes do not inherit the
attributes declared by Student; therefore, additional null
values are contained by rows that correspond to instances
of Employee and Clerk. If one instance for each class was
stored, in total there would be 2·3 = 6 null values in the
rows of the table person at the fields university,
majorSubject, and isEnrolled. Thus, ANV(Student) = 6.

6. METRIC COVERAGE

Table 2 shows the coverage of the defined quality
characteristics by the proposed metrics. This table shows
that more metrics are needed in order to more fully
measure the relevant quality characteristics of mapping
strategies.

The quality characteristic Redundancy is not included in
the table since this characteristic is only applicable to
association mapping strategies and not to inheritance
mapping strategies [10]. It should be noted that although
the ‘one class – one inheritance tree’ mapping strategy
leads to a duplication of relational fields, it does not imply
redundancy.

id
name

«abstract»
Person

university
majorSubject
isEnrolled

Student
salary

Employee

occupation
Clerk

bonus
Manager

union superclassunion superclass

union superclassjoined subclass

person

id
name
university
majorSubject
isEnrolled
salary
occupation
type

manager

id
bonus

Fig. 3. Example mapping to illustrate the ANV metric.

Table 2. Metric coverage for inheritance mapping strategies.

Quality characteristic TATI NCT NCRF ANV
Polymorphic queries X X
Non-polymorphic queries X
DB inserts and updates X
Additional null values X
Change propagation X
Change isolation
Constraint assurance
Mapping uniformity
Schema correspondence
Query complexity X

7. CONCLUSIONS AND FURTHER

RESEARCH

The application of metrics in O/R mapping tools provides
significant potential for supporting the developer in the
considerably difficult task of mapping specification.
Developers would benefit from a facility that supports the
manual specification of O/R mappings by giving feedback
on the impacts of these mapping strategies. Since the
impacts of mapping strategies strongly depend on the
concrete characteristics of the object model, metrics are
considered an appropriate means to convey these schema
characteristics. Moreover, the adoption of O/R metrics in
model-driven generation of O/R mappings should enable
a more appropriate selection of mapping strategies that
leads to better fulfillment of non-functional requirements.
As mapping impacts differ particularly for inheritance
mappings, we have focused on developing a set of metrics
for inheritance mapping strategies. This metrics suite is
based on a novel inheritance mapping model that supports
the mixing of inheritance mapping strategies in
inheritance hierarchies.

We plan to empirically evaluate the suggested metrics in
terms of their utility in giving feedback about the impacts
of mapping strategies to developers. We will extend this
further by investigating algorithms that automatically
determine the appropriate mapping strategy based on the
requirements of the developer. To achieve this goal,
normalization of the metrics will be required to ensure
that metric values can be weighted and compared
appropriately.

Finally, as object-relational database management
systems (ORDBMSs) become increasingly prevalent,
support for mapping from object-oriented programming
languages to ORDBMS-schema also becomes more
important. We will therefore further investigate how
mapping specification for ORDBMS-schemas can be sup-
ported by the application of metrics.

REFERENCES

1. Baroni, A. L., Calero, C., Piattini, M., Abreu, F.B.: A
Formal Definition for Object-Relational Database

Metrics. In: 7th International Conference on
Enterprise Information Systems (ICEIS'05), Miami
(2005) 334-339

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal
Question Metric approach. In: Encyclopedia of
Software Engineering, Vol. 1 (1994) 528-532

3. Basili, V.R., Rombach, H.D.: The TAME project:
Towards Improvement-Oriented Software
Environments. In: IEEE Transactions on Software
Engineering, Vol. 14(6) (1988) 758-773

4. Cabibbo, L., Carosi, A.: Managing Inheritance
Hierarchies in Object/Relational Mapping Tools. In:
Proc. of the 17th Int. Conference on Advanced
Information Systems Engineering (CAiSE 2005),
Porto, Portugal (2005) 135-150

5. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for
Object Oriented design. IEEE Transactions on
Software Engineering, Vol. 20(6) (1994) 476-493

6. Hibernate Open Source Software,
http://www.hibernate.org

7. ISO/IEC 9126-1:2001 Software Engineering - Product
Quality - Part 1: Quality Model, http://www.iso.org

8. Keller, A.M.; Jensen, R.; Keene, C.: Persistence
Software: Bridging Object-Oriented Programming and
Relational Databases. In: Proc. of the 1993 ACM
SIGMOD Int. Conf. on Management of Data,
Washington, D.C. (1993) 523-528

9. Keller, W.: Mapping Objects to Tables: A Pattern
Language. In: Proc. of the 1997 European Conf. on
Pattern Languages of Programming (EuroPLoP '97),
Irrsee, Germany (1997)

10. Oertly, F., Schiller, G.: Evolutionary database design.
In: 5th International Conference on Data Engineering
(ICDE), Los Angeles (1989) 618-624

11. Philippi, S.: Model Driven Generation and Testing of
Object-Relational Mappings. In: Journal of Systems
and Software, Vol. 77(2) (2005) 193-207

12. Piattini, M., Calero, C., & Genero, M.: Table Oriented
Metrics for Relational Databases. In: Software Quality
Journal, Vol. 9(2) (2001) 79-97

13. Rumbaugh, J., Blaha, M.R., Premerlani, W., Eddy, F.,
Lorensen, W.: Object-Oriented Modelling and Design.
Prentice Hall, Englewood Cliffs, New Jersey (1991)

	1. Introduction
	The remainder of this paper is structured as follows. In Section 2, basic strategies for mapping entire inheritance hierarchies are described. In Section 3, the semantics of mapping strategies for individual inheritance relationships are defined. The ...
	2. Basic Strategies for Mapping Inheritance Hierarchies
	2.1 One Class - One Table
	2.2 One Inheritance Tree – One Table
	2.3 One Inheritance Path – One Table
	3. Semantics of Mapping Strategies for Individual Inheritance Relationships
	4. Measurement Goals
	5. Metrics for Inheritance Mappings
	6. Metric Coverage
	The quality characteristic Redundancy is not included in the table since this characteristic is only applicable to association mapping strategies and not to inheritance mapping strategies [10]. It should be noted that although the ‘one class – one inh...
	Fig. 3. Example mapping to illustrate the ANV metric.
	7. Conclusions and Further Research
	References

