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Abstract 

Object-relational (O/R) middleware is frequently used in 
practice to bridge the semantic gap (the ‘impedance 
mismatch’) between object-oriented application systems 
and relational database management systems (RDBMSs). 
If O/R middleware is employed, the object model needs to 
be linked to the relational schema. Following the so-
called forward engineering approach, the developer is 
faced with the challenge of choosing from a variety of 
mapping strategies for class associations and inheritance 
relationships. These mapping strategies have different 
impacts on the characteristics of application systems, 
such as their performance or maintainability. Quantifying 
these mapping impacts via metrics is considered 
beneficial in the context of O/R mapping tools since such 
metrics enable an automated and differentiated 
consideration of O/R mapping strategies. In this paper, 
the foundation of a metrics suite for object-relational 
mappings and an initial set of metrics are presented.  
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1. INTRODUCTION 

Applications designed using object-oriented (OO) 
principles often achieve persistence of the object model 
using a relational database management system 
(RDBMS). This introduces a so-called ‘impedance 
mismatch’ between an application based on an OO design 
paradigm and an RDBMS designed according to quite 

different principles from relational theory. Object-
relational (O/R) middleware is often used to bridge this 
semantic gap by providing a mechanism to map the object 
model to relations in the database. This layered approach 
to O/R mapping using middleware achieves the design 
goal of loose coupling between application and relational 
schema, making it possible to change the relational 
schema without the need to also change the application 
source code. 

If O/R middleware is employed in this way, the object 
model needs to be linked to the relational schema using 
the mapping mechanism offered by the O/R middleware. 
In the case where a developer creates the object model 
first and then creates the relational schema by mapping 
the object model to relations, the so-called forward engi-
neering approach, the developer is faced with the 
challenge of choosing from a variety of mapping 
strategies for class associations and inheritance 
relationships. These mapping strategies have different 
impacts on the non-functional properties of application 
systems, such as performance and maintainability [9, 11]. 

The problem for the developer, then, becomes selecting 
the mapping strategy that best suits the desired non-
functional requirement priorities for a particular 
application. There are a number of approaches to 
addressing this problem and there is some tool support to 
automate the selection and generation of the mapping in 
the O/R middleware. In [8], for example, a single 
inheritance mapping strategy is used and a fixed mapping 
strategy for one-to-one, one-to-many, and many-to-many 
associations is applied, respectively. This approach is 
straightforward; however, the different impacts of 
alternative mapping strategies are not considered. 
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Philippi [11] therefore suggests a model-driven 
generation of O/R mappings. In his approach, the 
developer defines mapping requirements in terms of 
quality trade-offs. The mapping tool then automatically 
selects mappings that fulfill the specified requirements 
based on general heuristics regarding the impacts of 
mapping strategies. However, mapping impacts strongly 
depend on concrete object schema characteristics such as 
inheritance depth and the number of class attributes [9, 
13], properties not considered in [11]. Furthermore, while 
model-driven generation of O/R mappings is said to ease 
mapping specification for the developer, such an 
approach reduces the developer’s control over the 
mapping process and may result in a sub-optimal map-
ping for a given application. The developer should 
therefore have the option to define and refine mappings 
manually when required. 

We therefore suggest that concrete schema characteristics 
such as inheritance depth and the number of class 
attributes should be considered in the selection of O/R 
mappings. We propose an approach that incorporates 
schema characteristics into metrics that will provide more 
accurate and sensitive measures of the impacts of a given 
mapping specification on non-functional requirements. 
We further suggest the application of metrics for O/R 
mappings in order to give the developer sophisticated 
feedback on the impacts of the chosen mapping. The 
quantification of mapping impacts using metrics is 
considered beneficial in the context of O/R mapping tools 
since these metrics provide a semi-automated mechanism 
for a developer to evaluate the appropriateness of a 
selected mapping in terms of its likely impact on desired 
application non-functional requirements such as 
performance and maintainability. As its main 
contribution, this paper provides the foundation for a 
metrics suite for inheritance mappings and defines several 
initial metrics. 

While it is feasible to measure the impact of both 
association and inheritance mapping strategies with O/R 
metrics, we focus here on metrics for inheritance mapping 
strategies, for two reasons. First, the three basic 
inheritance mapping strategies (described in the following 
section) are applicable to all inheritance relationships, so 
the developer will always be required to choose one of 
them for each inheritance relationship. This is in contrast 
to association mapping strategies, whose applicability 
depends on the cardinality of the association, and so 
sometimes there is only limited choice or even no choice. 
Second, the impacts of inheritance mapping strategies 
strongly depend on the characteristics of the object model, 
such as inheritance depth and number of attributes. Thus, 
the drivers for the application of O/R metrics for in-
heritance relationships are more compelling. 

The remainder of this paper is structured as follows. In 
Section 2, basic strategies for mapping entire inheritance 
hierarchies are described. In Section 3, the semantics of 
mapping strategies for individual inheritance relationships 
are defined. The goals of measurement are set in Section 
4 before an initial metrics suite for inheritance mappings 
is proposed in Section 5, based on the defined inheritance 
mapping semantics. In Section 6, the coverage of the 

proposed metrics suite is explained. Finally, a conclusion 
to this paper is given in Section 7. 

 
2. BASIC STRATEGIES FOR MAPPING 

INHERITANCE HIERARCHIES 

In the literature, inheritance mapping strategies are 
generally described as being applicable to whole class 
hierarchies. These ‘pure’ mapping strategies are explained 
in this section using the notation suggested in [9]. 

 
2.1   One Class - One Table 

Following the ‘one class – one table’ mapping strategy, 
there is a one-to-one mapping between classes and tables. 
The corresponding table of a class contains a relational 
field for each non-inherited class attribute. Thus, object 
persistence is achieved by distributing object data over 
multiple tables. In order to link these tables, all tables 
share the same primary key. In addition, the primary keys 
are also foreign keys that mimic the inheritance 
relationships of the object schema [9]. Each row in a 
table, then, maps to objects in that table’s corresponding 
class and subclasses. 

It can be seen that for this mapping strategy, only one 
table needs to be accessed in order to identify the objects 
that match the query criteria of polymorphic queries. 
Whereas a non-polymorphic query only returns the 
objects of the class against which the query is issued, a 
polymorphic query returns the objects of the specified 
class and its subclasses for which the query criteria 
match. 

This mapping strategy is commonly recommended if the 
object model’s changeability (i.e. ability to easily change) 
is of primary importance because new classes can be 
added easily, without the need to modify existing tables. 
A significant drawback of this mapping strategy, 
however, is that multiple joins are needed to assemble all 
attribute data of an object. Moreover, if no views are 
used, it is relatively difficult to formulate ad-hoc queries 
because multiple tables need to be accessed to retrieve all 
object data [9]. 

 
2.2   One Inheritance Tree – One Table 

Following the ‘one inheritance tree – one table’ mapping 
strategy, all classes of an inheritance hierarchy are 
mapped to the same relational table. This mapping 
strategy requires an additional relational field in the 
shared table, which indicates the type of each row. 

This mapping strategy offers the best performance for 
polymorphic queries and allows easy ad-hoc reporting 
since only a single table needs to be accessed [9]. The 
changeability of the object model is reduced compared to 
the ‘one class – one table’ mapping strategy, however, 
because any object schema modification forces a modifi-
cation of the sole inheritance table, which may already 
contain data. 



Finally, if objects are stored using this mapping strategy, 
all relational fields that are not needed to store an object 
must contain null values. This especially applies to 
relational fields corresponding to attributes of subclasses 
since these fields are not used when storing objects from 
other subclasses. 

 
2.3   One Inheritance Path – One Table 

The ‘one inheritance path - one table’ mapping strategy 
only maps each concrete class to a table. Thereby, all 
inherited and non-inherited attributes of a class are 
mapped to the same table. Each table then only contains 
instances of its corresponding concrete class. 

Under this mapping strategy non-polymorphic queries run 
as quickly as they do under the ‘one inheritance tree – one 
table’ mapping strategy because only one table needs to 
be accessed. In contrast, a polymorphic query against a 
class needs to access the table that corresponds to this 
class and all tables that correspond to its subclasses, 
which could result in a significant performance overhead. 
Moreover, this mapping strategy implies a duplication of 
relational fields, which results in multiple updates of these 
fields if the corresponding class attribute is changed. 

The three inheritance mapping strategies just described 
are restrictive in that they are only applicable to entire 
inheritance hierarchies. In the next section, we introduce 
more finely-grained inheritance mapping strategies that 
can be used in combination on elements of an inheritance 
hierarchy in order to produce an optimal mapping. 
 
3. SEMANTICS OF MAPPING 

STRATEGIES FOR INDIVIDUAL 
INHERITANCE RELATIONSHIPS 

In practice, current O/R middleware products such as 
Hibernate [6] support the mixing of different inheritance 
mapping strategies for one inheritance hierarchy, thereby 
providing a finer level of granularity in the mapping 
strategy selection than the basic mapping strategies 
described in Section 2. However, the opportunity to mix 
inheritance mapping strategies means that the developer 
must decide what mix of mapping strategies will be 
optimum for a given object model structure. This 
requirement strengthens the likely usefulness of a set of 
mapping metrics that reflect this finer granularity. Hence, 
the ability to use such a suite of metrics to inform this 
decision, as proposed by this paper, should ease the 
developer’s effort and result in a better quality decision. 

Before discussing the development of these metrics a 
method of clearly representing the semantics of individual 
inheritance mapping strategies is needed. The following 
notation will be used and follows the inheritance mapping 
model definitions suggested by [4]. In the following 
definitions, P denotes the superclass (parent class) at the 
superclass-end of an example inheritance relationship 
while C denotes the subclass (child class) at the subclass-
end of this inheritance relationship. 

Union superclass: If UC denotes the set of classes that are 
reachable from C (including C) via ‘union superclass’ 

inheritance relationships, the attributes defined by all 
classes in UC are mapped to a table corresponding to the 
most general class in UC. Moreover, a type indicator field 
is needed in this table in order to determine the class type 
of each row. 

Joined subclass: The attributes defined by C as well as 
the primary key attributes inherited from P or another 
superclass are mapped to an own table T. The primary key 
fields of T contain a foreign key constraint to the same 
primary key fields in the table to which P is mapped. 

Union subclass: If C is abstract and all inheritance 
relationships to its direct subclasses are mapped with 
‘union subclass’ (or C does not have any subclasses), then 
no corresponding table is created for C. Otherwise, the 
attributes of C and the attributes of all superclasses of C 
are mapped to an own table. 

Figure 1, adapted from an example in [4], shows a sample 
mapping that represents the above definitions. In it, white 
boxes denote classes  and grey boxes denote tables. The 
mapping from classes to tables is indicated with black 
arrows and inheritance relationships (white arrows) are 
labeled with the mapping strategies applied to them. 

Having introduced the semantics of mapping strategies 
for individual inheritance relationships, in the next section 
we describe the derivation of measurement goals relevant 
to the assessment of the impact of these mapping 
strategies. 

 

4. MEASUREMENT GOALS 

Bearing in mind that different mapping strategies have 
different impacts in terms of the non-functional 
characteristics of applications, our intent in this section is 
to identify measures that would be useful in guiding the 
developer’s choice of mapping. In order to identify 
appropriate metrics, we follow a simplified variant of the 
commonly employed Goal/Question/Metric (GQM) 
approach [2, 3]. The GQM approach defines a framework 
for identifying metrics by defining goals, asking questions 
related to how these goals could be achieved and defining 
metrics that are intended to answer the posed questions. 

In the first step of identifying relevant measurement 
goals, we consider software quality (non-functional) 
characteristics that are influenced by O/R mappings. The 
result of our top-down approach to identifying software 
quality characteristics for O/R mappings is depicted in 
Figure 2. 

This network of quality characteristics subsumes and 
extends the classifications of O/R mapping impacts 
suggested by [9, 11]. It starts with the quality 
characteristics efficiency, maintainability, and usability, 
which are a subset of the software quality characteristics 
defined by the ISO/IEC 9126-1 standard [7]. The other 
high-level software quality characteristics of the ISO/IEC 
9126-1 standard – functionality, reliability, and portability 
– are not considered to be significantly influenced by O/R 
mappings, and so are not included here. 
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Fig. 1. Example of mixed inheritance mapping strategies. 

Efficiency

Maintainability

Usability

Time 
behaviour

Resource 
utilisation

Analysability

Changeability

Operability

Secondary 
storage

Schema 
correspondence

Mapping 
uniformity

Change 
propagation

Ad-hoc 
queries

Polymorphic 
queries

Non-polymorphic 
queries

Additional null 
values

Redundancy

DB queries

Mapping 
understandability

Query complexity

DB inserts and 
updates

Change isolation

Constraint 
assuranceStability

Quality characteristics 
accoring to ISO/IEC 9126

Refined quality characteristics

  

Fig. 2. Quality characteristics of O/R mappings. 

Efficiency, maintainability, and usability are then split 
into quality sub-characteristics, also defined by the 
ISO/IEC 9126-1 standard. Finally, these sub-
characteristics are refined into specific quality 
characteristics relevant to O/R mappings. In Section 5, we 
propose metrics to measure these specific quality 
characteristics. 

In Table 1, the specific quality characteristics are listed 
and explained. This builds on the works of Keller [9] and 
Philippi [11] by considering additional characteristics, 
namely Redundancy, Change isolation, Constraint 
assurance, and Mapping uniformity, and we further 
extend their work by proposing metrics for some of these. 
The next section describes and justifies the metrics 
developed for these quality characteristics and provides 
examples of their use. 

5. METRICS FOR INHERITANCE 
MAPPINGS 

Metrics have been suggested for object-oriented design 
[5] and for relational database systems [12] as well as for 
object-relational database systems [1]. These metrics, 
while useful, are considered insufficient for measuring the 
impacts of O/R mappings for two reasons. First, the 
available metrics for relational schemas do not 
sufficiently cover the suggested network of quality 
characteristics (see Section 4). Second, the metrics focus 
on either object-oriented design or relational schemas but 
not on the mapping between them. Therefore, the metrics 
suite suggested here, comprising four metrics at the level 
of individual classes, is complementary to those described 
elsewhere, in that it explicitly addresses the measurement 
of O/R mappings. 



5.1 Table Accesses for Type Identification (TATI) 

Polymorphic queries against a class C return objects 
whose most specific class is C or one of its subclasses. 
Before an object can be completely retrieved, it is 
necessary to identify the most specific class of this object. 
It should be noted that identifying the most specific class 
is equivalent to identifying the tables that need to be 
queried in order to retrieve the requested object. In 
contrast, for non-polymorphic queries, the most specific 
class of the requested object is the same class against 
which the query is issued. 

There are two strategies to identify the most specific 
class: either each possible table is queried individually 
and the search is stopped as soon as the most specific 
class is identified, or all possible tables are queried with 
one query. While the former strategy means that the 
search is completed as soon as the most specific class is 
found, the latter strategy allows the database system to 
query the tables in parallel. The latter strategy can be 

accomplished by sending multiple queries to the database 
at the same time or by using the SQL UNION clause. The 
maximum number of table accesses measured with this 
metric is therefore only relevant if the former strategy is 
applied. 

Definition: For queries that are issued against a class C, 
TATI(C) equals the maximum number of tables that have 
to be accessed in order to identify the most specific class 
of the requested object. 

The maximum number of tables that need to be accessed 
for a query issued against a class C equals the number of 
different tables that correspond to C and all of its 
subclasses. In Figure 1, TATI(Person) = 4 since Person is 
the root class of the inheritance hierarchy and the 
inheritance hierarchy is mapped to 4 tables altogether. 
Similarly, TATI(Employee) = 3 since Employee and its 
subclasses Manager and Clerk are mapped to the 3 tables 
person, manager, and clerk. 

 

Table 1.  Description of quality characteristics. 

Quality characteristic Description 
Time behavior of polymorphic 
database queries 

Mainly depends on the number of tables that 
need to be accessed / the number of joins that 
need to be performed. Higher redundancy can 
improve the time behavior of polymorphic 
database queries but can negatively affect the 
time behavior of database inserts and updates 
[9]. 

Time behavior of non-polymorphic 
database queries 
Time behavior of database inserts 
and updates 

Additional null values Null values that solely result from the applied 
mapping strategy 

Redundancy The degree of redundancy that is caused by the 
applied mapping strategy 

Change propagation Extent to which it is necessary to adapt the 
relational schema and the O/R mappings to 
changes in the object model 

Change isolation Depends on whether existing tables need to be 
modified for adding/deleting classes 

Constraint assurance Depends on the ability of the relational schema 
to enforce integrity constraints 

Mapping uniformity Uniformity of applied mapping strategies. 
Refers to the overall mapping and is not 
applicable to individual mapping strategies 

Schema correspondence Extent to which the object model resembles 
the relational schema 

Query complexity Effort required to formulate ad-hoc queries 

 
5.2   Number of Corresponding Tables (NCT) 

In contrast to polymorphic queries, the most specific class 
of a queried object in a non-polymorphic query is known. 
Therefore, no queries are necessary in this case to 
determine the most specific class. The performance of 
non-polymorphic queries therefore mainly depends on the 
number of tables that contain data of the requested object. 
For polymorphic queries, it is possible to retrieve the 
complete object data while querying tables in order to 
identify the most specific class of the requested object. 

We therefore propose the metric NCT(C), which equals 
the number of tables that contain data from instances of a 

class C. This number depends on the inheritance mapping 
strategies that are used for the inheritance relationships on 
the path of class C to the root class of the inheritance 
hierarchy. In particular, the application of the ‘joined 
subclass’ strategy results in increasing values of NCT. 

As already indicated, this metric is a measure of object 
retrieval performance. In addition, this metric is a 
measure of query complexity in the context of ad-hoc 
queries since we consider the number of involved tables 
to be an appropriate measure of the user’s effort in 
formulating a query. However, using the number of tables 
to measure ad-hoc queries assumes that no views are 
employed to ease query formulation. 



Definition: NCT is formally defined by equation (1), 
where the function p(C) returns the direct superclass of C. 
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In Figure 1, NCT(Clerk) = 2 because the tables clerk and 
person contain data that are necessary to assemble objects 
of Clerk. In contrast NCT(Manager) = 1, as all defined 
and inherited attributes of the class Manager are mapped 
to relational fields of the table manager. 

 
5.3 Number of Corresponding Relational Fields 

(NCRF) 

The Number of Corresponding Relational Fields (NCRF) 
gives a measure for the degree of change propagation for 
a given O/R mapping. More specifically, this metric 
reflects the effort required to adapt the relational schema 
after inserting, modifying, or deleting a class attribute. 
This effort is mainly influenced by the application of the 
‘union subclass’ mapping strategy since applying this 
mapping strategy typically results in the duplication of 
relational fields (see Section 2.3). Because of these dupli-
cations, changes in the object model result in multiple 
changes to the relational schema. In contrast, the 
duplication of relational fields does not occur when the 
‘joined subclass’ or the ‘union superclass’ mapping 
strategies are applied. (Note: primary key fields are not 
considered by this metric because they should be resistant 
to changes.) 

Definition: For a class C, NCRF(C) equals the number of 
relational fields in all tables that correspond to each non-
inherited non-key attribute of C. If C does not have any 
non-inherited non-key class attributes, NCRF(C) equals 
the number of relational fields to which each non-
inherited non-key class attribute of C would be mapped. 

In Figure 1, NCRF(Person) = 3 since the class attribute 
Person.name is mapped to the three relational fields 
person.name, student.name, and manager.name. 
NCRF(Employee) = 2 since each of the attributes 
Employee.salary and Employee.department is mapped to 
one relational field in the table person and one relational 
field in the table manager. Finally, NCRF(Student) = 
NCRF(Manager) = NCRF(Clerk) = 1 since the only non-
inherited class attribute of each of these three classes 
(Student.university, Manager.bonus, Clerk.occupation) is 
mapped to 1 relational field. 

 
5.4   Additional Null Values (ANV) 

ANV measures additional storage space in terms of null 
values that result when different classes are stored 
together in the same table using the ‘union superclass’ 
mapping strategy (see Section 2.2). 

For a definition of ANV(C), the following is considered. 
Let AC be the set of non-inherited attributes of class C and 
let FC be the set of corresponding relational fields in the 
shared table. Applied to a particular class C, the aim of 
ANV(C) is to give a measure for the number of null 
values that occur at the relational fields FC. An important 
observation is that null values at the relational fields FC 
occur if and only if instances of classes different from C 
and different from subclasses of C are stored in the shared 
table. More precisely, if instances of two distinct classes 
B and C are stored together in a shared table and B is not 
a subclass of C, then each row in the shared table that 
represents an instance of B contains a null value at each 
relational field in FC. ANV(C) is therefore higher the 
more classes different from C and different from 
subclasses of C are mapped to the same table as C. 

 The number of null values depends on the number of 
instances of each class, something that may be unknown 
at the stage of mapping specification. In order to give an 
approximation of additional null values, it is assumed that 
there is the same number of instances for all (concrete) 
classes. Furthermore, ANV is normalized by assuming 
that there is only one instance of each class. This 
assumption also ensures that ANV only depends on a 
given object model and is thus in line with the previously 
described metrics. Note, however, that this metric could 
easily be generalized to take the number of instances per 
class into account if this is known. 

Definition: ANV(C) equals the number of non-inherited 
attributes in C multiplied by the number of concrete 
classes that are mapped to T, excluding C and all of its 
subclasses. 

For the example mapping shown in Figure 3, 
ANV(Student) is calculated as follows. Concrete classes 
that are mapped to the same table as Student are 
Employee and Clerk. These two classes do not inherit the 
attributes declared by Student; therefore, additional null 
values are contained by rows that correspond to instances 
of Employee and Clerk. If one instance for each class was 
stored, in total there would be 2·3 = 6 null values in the 
rows of the table person at the fields university, 
majorSubject, and isEnrolled. Thus, ANV(Student) = 6. 

 

6. METRIC COVERAGE 

Table 2 shows the coverage of the defined quality 
characteristics by the proposed metrics. This table shows 
that more metrics are needed in order to more fully 
measure the relevant quality characteristics of mapping 
strategies. 

The quality characteristic Redundancy is not included in 
the table since this characteristic is only applicable to 
association mapping strategies and not to inheritance 
mapping strategies [10]. It should be noted that although 
the ‘one class – one inheritance tree’ mapping strategy 
leads to a duplication of relational fields, it does not imply 
redundancy.  
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Table 2. Metric coverage for inheritance mapping strategies. 

Quality characteristic TATI NCT NCRF ANV 
Polymorphic queries X X   
Non-polymorphic queries  X   
DB inserts and updates  X   
Additional null values    X 
Change propagation   X  
Change isolation     
Constraint assurance     
Mapping uniformity     
Schema correspondence     
Query complexity  X   

 
 
7. CONCLUSIONS AND FURTHER 

RESEARCH 

The application of metrics in O/R mapping tools provides 
significant potential for supporting the developer in the 
considerably difficult task of mapping specification. 
Developers would benefit from a facility that supports the 
manual specification of O/R mappings by giving feedback 
on the impacts of these mapping strategies. Since the 
impacts of mapping strategies strongly depend on the 
concrete characteristics of the object model, metrics are 
considered an appropriate means to convey these schema 
characteristics. Moreover, the adoption of O/R metrics in 
model-driven generation of O/R mappings should enable 
a more appropriate selection of mapping strategies that 
leads to better fulfillment of non-functional requirements. 
As mapping impacts differ particularly for inheritance 
mappings, we have focused on developing a set of metrics 
for inheritance mapping strategies. This metrics suite is 
based on a novel inheritance mapping model that supports 
the mixing of inheritance mapping strategies in 
inheritance hierarchies. 

We plan to empirically evaluate the suggested metrics in 
terms of their utility in giving feedback about the impacts 
of mapping strategies to developers. We will extend this 
further by investigating algorithms that automatically 
determine the appropriate mapping strategy based on the 
requirements of the developer. To achieve this goal, 
normalization of the metrics will be required to ensure 
that metric values can be weighted and compared 
appropriately. 

Finally, as object-relational database management 
systems (ORDBMSs) become increasingly prevalent, 
support for mapping from object-oriented programming 
languages to ORDBMS-schema also becomes more 
important. We will therefore further investigate how 
mapping specification for ORDBMS-schemas can be sup-
ported by the application of metrics. 
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