
Full citation: McLeod, L., & MacDonell, S.G. (2011) Factors that affect software systems 
development project outcomes: a survey of research, ACM Computing Surveys 43(4), pp.24-56. 
doi: 10.1145/1978802.1978803 
 

Factors that Affect Software Systems Development Project Outcomes: A Survey 
of Research 

 
Laurie McLeod and Stephen G. MacDonell  

SERL, Auckland University of Technology  
Private Bag 92006, Auckland 1142 

New Zealand 
{laumcl88, stephen.macdonell}@aut.ac.nz 

 

Abstract 
Determining the factors that have an influence on 
software systems development and deployment project 
outcomes has been the focus of extensive and ongoing 
research for more than 30 years.  We provide here a 
survey of the research literature that has addressed this 
topic in the period 1996-2006, with a particular focus on 
empirical analyses.  On the basis of this survey we 
present a new classification framework that represents an 
abstracted and synthesized view of the types of factors 
that have been asserted as influencing project outcomes. 
 
Keywords: Development processes; institutional 
context; people and action; project content; project 
outcomes. 
 
1. INTRODUCTION 

Such has been the scale of investment of time, effort and 
money in software systems that achieving success in their 
development and deployment has consumed many 
researchers (and of course, practitioners) in the last three 
decades. As far back as 1975 researchers were attempting 
to distil the determinants of project success and failure so 
that a successful outcome was more likely [Lucas, 1975] 
– with mixed results. In the early days we were in effect 
attempting – or perhaps hoping – to control something we 
did not understand. Since the mid-1980s we have 
acquired a far more detailed understanding of why and 
how systems are developed; ensuring success (by some 
definition) remains a significant challenge, however. 
There are many, many factors that are said to have an 
effect on software systems development project outcomes 
– some, researchers have speculated upon, others have 
been demonstrated empirically. In this paper we focus on 
the latter in an effort to identify and classify the factors 
that have been shown to have an impact on project 
outcomes. 

We first briefly consider previous classifications of the 
relevant literature as a benchmark for our own effort. A 

classificatory framework that emerged from our 
synthesized analysis of empirical studies of software 
systems development project outcomes is then presented, 
followed by a description of the approach used to conduct 
the empirical review. In Section 3, we consider what 
researchers actually mean by ‘project outcomes’ – use of 
such a descriptor is widespread but in many instances it is 
left undefined, the often unjustified assumption being that 
its meaning is somehow ‘obvious’. Sections 4 through 7 
of the paper then report on the (non-exclusive) classes of 
potentially influential factors that have been described in 
empirical studies published in academic journals between 
1996 and 2006. Each self-contained section can be read 
separately, or as part of the whole. The paper closes with 
a discussion of the main themes emerging from the 
extensive literature review conducted in this study, 
followed by a short conclusion. 
 
2. CLASSIFYING THE EMPIRICAL 
RESEARCH LITERATURE ON FACTORS 
INFLUENCING PROJECT OUTCOMES 

Software systems development and deployment projects 
and the influences shaping their outcomes have been the 
subjects of a sustained research effort over the last thirty-
five years. Making sense of the huge volume of empirical 
findings on this topic is a daunting task.  

A number of authors have attempted to organize the 
research in this area (Table 1). A classification of reasons 
for systems failure produced by Lyytinen & Hirschheim 
[1987] was an early attempt to provide a systemic 
framework based on an extensive empirical survey. Since 
1987, other authors have produced various classificatory 
frameworks or models in their attempts to develop an 
understanding of systems success or failure. (We do not 
define success and failure here – this is addressed in 
Section 3.) For example, Poulymenakou & Holmes 
[1996] utilize a contingency model to examine the effects 
of various macro and micro contextual factors on systems 
project processes and outcomes. Butler & Fitzgerald 
[2001] also focus on the effect of institutional contexts on 
the systems development process and systems success. 

http://dx.doi.org/10.1145/1978802.1978803�


They delineate a range of project-, process-, and user-
related factors, the content and conduct of which 
influence development outcomes through user 
participation and management of change. Synthesizing 
literature on critical success factors in enterprise system 
implementations and software and IT project risks, Scott 
& Vessey [2002] develop a model of enterprise resource 
planning (ERP) project risk factors based on four-levels 
of forces, both external and internal to the organization, 
influencing changes arising from organizational adoption 
of enterprise systems. 

While of value, the classificatory schemes summarized in 
Table 1 are limited in one or more ways. For example, the 
studies on which the Lyytinen & Hirschheim [1987] 
framework is based date from 1985 or earlier and may not 
reflect more recent changes in the nature of software 
systems development. Subsequent classificatory schemes 
are limited in their level of detail or scope, either focusing 
on specific aspects of systems development [Butler & 
Fitzgerald, 2001], a subset of influential factors 

[Poulymenakou & Holmes, 1996], or specific types of 
systems projects [Scott & Vessey, 2002].  

This paper redresses these limitations by offering a more 
current survey of empirical work on systems 
development, while still recognizing the desirability of a 
systematic conceptualization of the field emphasized by 
Lyytinen & Hirschheim [1987]. It synthesizes the 
findings of empirical studies that address a wide range of 
project outcomes, including both systems success and 
failure, as well as project performance or abandonment. 
The classificatory framework developed in this paper 
builds on the earlier examples described above through an 
explicit focus on features of the project itself, a 
consideration of the process of software systems 
development, together with the actions of human agents, 
and the inclusion of a range of contextual influences, 
spanning individual, development, organizational and 
environmental levels. This focus on project content, 
process, action and context reflects the underlying 
conceptualization of the new classificatory framework 
outlined below. 

Table 1: Prior schemes classifying influences on software systems development and deployment project outcomes 
Study Scope Categories (as defined in original study) 
Lyytinen & 
Hirschheim [1987] 

Classificatory 
framework of reasons 
for system failure 

1. Features of the system – technical and operational  
2. Features of the system environment – lack of fit of the system 

with users, rest of organization, or operating environment 
3. Features of the systems development process –  methods, 

decision-making, assumptions, nature of work, implementation, 
contingency factors 

4. Features of systems development environment – cognitive and 
skill limitations of analysts or users  

Poulymenakou & 
Holmes [1996] 

Contingency 
framework of variables 
affecting system failure 

1. Macro (organizational) contingent variables – culture, planning, 
accountability, irrationality, evaluation 

2. Micro (project) contingent variables – power and politics, user 
resistance to change, development methods 

Butler & Fitzgerald 
[2001] 

Model for user 
participation and 
management of change 
in systems development 

1. Institutional context – organizational policy 
2. Project-related factors – project initiator, top management 

commitment, type of system, project complexity, task-structure, 
time for development, available financial resources, resultant 
change 

3. Process-related factors– user-developer relationship, influence 
and power, communication 

4. User-related factors – user perceptions, commitment, willingness, 
ability, characteristics and attitudes 

Scott & Vessey 
[2002] 

Model of risk factors in 
ERP system 
implementations 

1. External business environment 
2. Organizational context – culture, structure, strategy, IT 

infrastructure, business processes 
3. Systems context – data, technology, project governance 
4. Project – project focus and scope, project management, change 

management 
 

2.1 A New Classificatory Framework 

The classificatory framework presented in this paper was 
developed as a way of synthesizing and organizing 
contemporary empirical knowledge of the various 
influences that affect systems development outcomes, and 
in order to provide a basis for a more systematic 
understanding of the factors that reportedly produce 
various system outcomes [Lyytinen & Hirschheim, 1987]. 
The framework is the outcome of a conceptual 
understanding of software systems development, 
informed by the results of a subsequent review of 
empirical literature. Although the final form of the 
framework emerged after the synthesis of the empirical 
literature, it is presented first in this paper in order to 

provide conceptual assistance to the reader in making 
sense of the breadth of information presented on software 
systems development [Gallivan & Keil, 2003]. 

Walsham’s [1993] theoretical treatment of the content, 
process and context of system-related organizational 
change was used as a conceptual basis for organizing the 
findings of the prior empirical research. Walsham [1993] 
suggests that a consideration of all three of these 
components in systems design, development and 
implementation overcomes a prior over-emphasis on the 
content of systems-related change at the expense of the 
process of change and its relationship with organizational 
and wider contexts. The content, process and context 
concepts have been used elsewhere in the software 
systems literature, suggesting a degree of recognition and 



acceptance [Kautz, 2004; Kautz & Nielsen, 2004; 
Serafeimidis & Smithson, 1999; Stockdale & Standing, 
2006]. In addition, these concepts are sufficiently generic 
to accommodate the wide variety of proposed factors 
influencing systems project outcomes, while providing a 
parsimonious framework for reviewing and classifying 
them [Stockdale & Standing, 2006]. 

To the content, process and context of system-related 
organizational change, we add a fourth component based 
on people and action. An explicit treatment of people and 
their actions is warranted given the increased recognition 
of software systems development as a social process [e.g. 
Flynn & Jazi, 1998; Kirsch & Beath, 1996; Robey et al., 
2001]. Indeed, the social is an integral part of Walsham’s 
[1993] understanding of context and process, and he 
emphasizes that “computer-based information systems are 
associated with organizational stability and change 
directly through the agency of human actors” [p. 253]. In 
this respect we are making explicit a dimension that was 
implicit in Walsham’s original analytical framework. 

The resultant framework is shown in Figure 11

Institutional context includes factors related to both the 
organization in which software systems development is 
located and the wider socio-economic environment in 
which the organization operates. A range of contextual 
properties or conditions, operating across local, national 
and international levels, and including the historical 

. Influences 
on software systems development are divided into four 
major dimensions, each containing a number of factors 
highlighted in the subsequent review of empirical studies 
of systems development. The interaction of these four 
dimensions influences the project trajectory at particular 
points in time, including project outcomes. However, the 
evaluation of project outcomes is problematic given their 
multi-dimensional nature, the different evaluative criteria 
used by various stakeholders, and their often negotiated or 
contested nature. 

Project content includes factors that are typically 
considered as properties of the software systems project 
itself, including its dimensions, scope and goals, the 
resources it attracts, and the hardware and software used 
in development. The project’s properties, whether 
technological, strategic or resource-related, materially 
influence the development outcome or are mobilized and 
drawn upon by various individuals or groups in their 
development activities and interactions with each other. 

Development processes include the various activities 
typically associated with software systems development 
and deployment, ranging from requirements 
determination and standard method use to the 
management of change resulting from implementation of 
a new software system. Grounded in a long history of 
received wisdom, these processes reflect the ongoing 
development of systems development practice. They 
constitute both opportunities and sites for action and 
interaction among the interested individuals and groups as 
they negotiate a particular system outcome. 

                                                           
1 While the use of overlapping circles to represent various dimensions 
resembles Stockdale & Standing’s [2006] model for evaluating 
information systems, the subject and detail of the two frameworks differ. 

circumstances from which software systems are 
developed and used, may shape the course of 
development in a software systems project by 
constraining or facilitating certain courses of action. 

Finally, as can be drawn from the content, context and 
process descriptions above, consideration needs to be 
given to the various people, both individuals and groups, 
who are involved or interested in the software systems 
development project. Their characteristics, actions, 
interactions and relationships shape the development 
trajectory and project outcomes in multiple ways, so an 
understanding of their roles and actions during system 
development is also necessary.  

The classificatory framework developed here serves as an 
analytical device to facilitate understanding and order out 
of the vast amount of information available on factors 
influencing the development and deployment of software 
systems. The framework does not attempt to privilege any 
factor or set of factors over others. Project outcomes are 
highly situational in nature. While generic influences are 
common to a range of systems development contexts, 
they manifest themselves differently in specific situations 
[cf. Poulymenakou & Holmes, 1996].  

Further, it is acknowledged that many of these factors are 
interrelated and that often project outcomes involve 
multiple factors that interact in complex ways. Indeed, the 
theoretical concepts of the content, process and context of 
change are typically treated as interlinked and in 
continuous interplay [Kautz, 2004; Kautz & Nielsen, 
2004; Serafeimidis & Smithson, 1999; Stockdale & 
Standing, 2006]. This is represented in Figure 1 using 
overlapping circles to reflect the interaction between 
project content, development processes and people’s 
actions during development, all situated within the 
broader context in which software systems development 
occurs.  The distinction made between these dimensions 
is for analytical purposes. In practice, all four dimensions 
are interrelated and mutually interactive. For example, the 
development of technical requirements for a software 
systems project occurs as part of the requirements process 
(a development process). However, the adequacy of their 
definition relies on the technical expertise of any 
developers involved (people and action). The technical 
requirements themselves will depend on the nature of the 
project itself, the existing organizational IT infrastructure, 
and any other internal systems with which the new system 
must integrate (project content). A range of external 
conditions may potentially influence the technical 
requirements, such as legislative requirements or 
technical constraints imposed by external entities such as 
government agencies or business partners who require 
access to data from the new system (institutional context). 

Table 2 compares the factors comprising the classificatory 
framework developed here with those from the prior 
classificatory schemes shown in Table 1. As can be seen, 
no one prior scheme provides the comprehensive and 
systematic coverage offered by the new framework. 
Further, in most cases, coverage of factors within the 
specific dimensions – project content, development 
processes, institutional context, and people and action – is 
incomplete. The new framework therefore provides the 
basis for a contemporary, inclusive and holistic analysis 



of influential factors in systems development across 
multiple levels of analysis and accommodating recent 

changes in development methods and practices. 

Figure 1: A framework for understanding influences on software systems development and deployment project 
outcomes 

 

2.2 An Updated Review of Systems Development 
Research 

As noted earlier, the classificatory framework presented 
here was used to synthesize an extensive survey of 
empirical literature on software systems development, 
addressing systems project outcomes and the wide variety 
of factors potentially influencing them. The literature 
review and synthesis also helped to refine and populate 
the initial conceptual classificatory framework. 

Our focus is intentionally on software systems. By this, 
we mean software embedded in a context, normally 
organizational but sometimes individual. As a result we 
are interested primarily in studies that address system, 
rather that specifically software, development factors and 
outcomes.  These software systems might be referred to 

as information systems or management information 
systems elsewhere; however, these labels can carry with 
them perhaps dated implications of transaction processing 
and reporting systems employed solely in a business 
context. The types of systems now prevalent – distributed 
systems, enterprise systems, systems utilizing web 
services and the like – may not be considered under such 
a categorization, but they are certainly of interest here. 
Hence we prefer the more inclusive software systems 
label. That said, studies that addressed the development of 
operating systems, real-time embedded systems and 
infrastructural systems are generally not covered here. 
This did not come about as the result of a deliberate 
strategy; rather, the search process did not lead to the 
retrieval of studies of this nature. 

Institutional Context 
Organizational properties 
Environmental conditions 
 

 
 

Project 
Outcomes 

People and Action 
Developers 
Users 
Top management 
External agents 
Project team 
Social interaction 
 

Project Content 
Project characteristics 
Project scope, goals & objectives 
Resources 
Technology 
 

Development Processes 
Requirements determination 
Project management 
Use of a standard method 
User participation 
User training  
Management of change 
 



The scope of the review was studies of software systems 
development published between 1996 and 2006. This 
period was chosen in order to provide a basis for 
development of a contemporary classificatory framework. 
We primarily focused our search attention on archival 
research as published in journals. As a result we did not 
set out to address material published in conference 
proceedings, although some of this material did emerge 
from secondary searching. While this does exclude some 
of the research literature it also means that in general the 
bulk of the studies have been rigorously peer-reviewed 
and are considered to be of substantial archival value. 

Each study included in the review was examined to 
establish that it met the following criteria: 

• The study was published between 1996 and 2006. 

• The study focused on software systems project 
outcomes or factors influencing software systems 
development (rather than system evaluation or 
systems in use).  

• The study provided empirical data on systems project 
outcomes or factors influencing systems 
development. 

An initial sample of studies was obtained using two 
EBSCO Information Services databases, Computer 

Source and Business Source Premier. Computer Source 
offers full text access to some 300 publications in 
computer science, information systems and software. 
Business Source Premier (over 2,300 full text journals) 
was included to provide coverage of journals in business 
and management information systems not covered by 
Computer Source. The two databases were searched 
between 1996 and 2006 using the terms ‘project failure’ 
or ‘project success’, in combination with the database-
supplied subject terms ‘computer software’ or 
‘information technology’. These searches provided an 
initial total of 289 publications, many of which were 
eliminated from the study on the basis of the criteria 
outlined above. The remaining studies were reviewed and 
further candidate studies were identified from their 
reference lists using a ‘snowballing’ technique. In 
addition, a number of journals particularly relevant to the 
development of software systems but not covered in the 
initial database searches were subjected to targeted 
searches using the same search terms, resulting in the 
identification of a small number of additional studies. The 
aim was to be as inclusive as possible and the result was a 
comprehensive (although not exhaustive) survey of 
empirical research on factors influencing software 
systems development outcomes. 

Table 2: Comparison of the new framework with prior classificatory schemes 
Factors Addressed Lyytinen & 

Hirschheim [1987] 
Poulymenakou & 

Holmes [1996] 
Butler & 

Fitzgerald [2001] 
Scott & Vessey 

[2002] 
People and Action     
Developers     
Users     
Top management     
External agents     
Project team     
Social interaction     
Project Content     
Project characteristics     
Project scope, goals & objectives     
Resources     
Technology     
Development Processes     
Requirements determination     
Project management     
Use of a standard method     
User participation     
User training     
Management of change     
Institutional Context     
Organizational properties     
Environmental conditions     

 

The empirical studies reviewed used a variety of data 
collection methods, including surveys, interview 
programs, Delphi studies and case studies. The most 
common approach was a factor-based study utilizing a 
large-scale survey and focused on one or a combination of 
people-, process- or project content-related factors. The 
case studies included in the literature review proved to be 
a particularly important source of contextual factors 
influencing software systems development. Factor-based 
empirical studies were reviewed first. These studies 
generated a range of author-reported influential factors, 
which were then assigned to one of the four dimensions 

of the classificatory framework and grouped into 
categories within each dimension based on their 
commonalities. As more studies were reviewed emergent 
categories were refined or combined to produce the 
categories used to populate each dimension in the 
classificatory framework shown in Figure 1. Where 
available, statistical significance was used to identify 
influential factors affecting systems development project 
outcomes in empirical studies based on quantitative data. 
Other quantitative studies used rank order to indicate the 
relative importance of individual factors. In empirical 
studies using qualitative data, reliance was placed on the 
authors’ descriptions of influential factors, particularly the 



frequency with which a factor was mentioned, the 
magnitude of the reported effect, or authors’ self-reported 
estimates of relative importance. 

It is beyond the physical constraints of a journal 
publication to summarize details of the focus, method, 
findings and measurement criteria for all the empirical 
studies reviewed in this paper. However, thirty of the 
largest factor-based studies, each focusing on multiple (at 
least eight) influential factors across at least three 
dimensions, are tabulated in Appendix A. These are 
supplemented in the following discussion by further 
empirical studies that focused on systems project 
outcomes or that concentrated on a smaller number of 
relevant factors or a specific aspect of software systems 
development. Altogether, 177 empirical papers were 
reviewed for this study. Additional recent conceptual or 
theoretical papers on software systems development and 
project outcomes are also cited in order to provide 
clarification or explanation of factors highlighted in the 
empirical studies. 

The results of the literature review are presented below 
based on the various components of the classificatory 
framework shown in Figure 1. The analysis first considers 
the problematic nature of defining software systems 
development project outcomes (Section 3). It then 
proceeds to review the (sometimes inter-related) influence 
of factors associated with people and action (Section 4), 
project content (Section 5), systems development 
processes (Section 6) and the institutional context 
(Section 7). At the end of each section Figure 1 is 
revisited to highlight key aspects of the dimension being 
considered. 
 

3. PROJECT OUTCOMES 

In the literature on software systems development, the 
outcome of a project is typically conceived of in terms of 
whether the project is successful or not. Identifying just 
what constitutes ‘success’ or ‘failure’, however, can be 
problematic. In general, there remains a lack of consensus 
on how to define success, lack of success, and failure. 
Such terms are perceived to be vague and difficult to 
measure [Butler & Fitzgerald, 1997, 2001; Lynch & 
Gregor, 2004; Wilson & Howcroft, 2002]. 

It is generally recognized that success and failure are 
multi-dimensional constructs, with interrelated technical, 
economic, behavioral, psychological and political 
dimensions [Bussen & Myers, 1997; DeLone & McLean, 
2003; Doherty et al., 2003; Lynch & Gregor, 2004; 
Wixom & Watson, 2001]. In order to make them 
somehow more tangible, project success and failure have 
been defined (and measured) in terms of the software 
systems development process and/or its product. That is, 
success is a high quality development process outcome 
and/or a high quality product outcome [Barki et al., 2001; 
Karlsen et al., 2005; Markus & Mao, 2004; Nelson, 2005; 
Procaccino & Verner, 2006; Wixom & Watson, 2001]. 
DeLone and McLean [2003], for example, describe 
product success in terms of system quality, information 
quality, services quality, use (or intention to use), user 
satisfaction and net benefits. In terms of the development 

process, some authors have described the outcome in 
terms of whether or not the project is completed on time 
or within budget [Standish Group International, 1999, 
2001; Wixom & Watson, 2001]. Other authors define 
project outcomes in terms of whether a project is 
smoothly completed, redefined or abandoned [Yetton et 
al., 2000]. While systems projects will ideally have 
successful process and product outcomes, Wallace & Keil 
[2004] suggest that projects emphasizing process outcome 
goals (such as budget and schedule) will be managed 
differently to those emphasizing product-related 
outcomes. 

Markus & Mao [2004] distinguish development success 
from implementation success, the latter of which they 
view as a change management process and/or outcome. 
They note that current system contexts may necessitate 
extending success beyond the system to a wider solution 
that includes the system and complementary business or 
process interventions (i.e. to solution success). They 
suggest that there is not necessarily a relationship 
between system or solution development success and 
system or solution implementation success. In a similar 
manner, Crowston et al. [2006] examine the increasing 
interest in open source software development and present 
additional concepts of software systems success that they 
suggest are more appropriate for this particular 
development domain. 

A number of researchers have approached success or 
failure in terms of the ability of a software system to meet 
the expectations of its stakeholders. In Lyytinen and 
Hirschheim’s [1987] view, system failure and success 
form a continuum in which the likelihood of fulfilling an 
individual’s expectations varies from very low to very 
high. Furthermore, groups or individuals may differ in 
their assessments of the extent to which a system is 
successful, judging it according to different criteria. 
Moreover, their opinions and evaluative assessments are 
fluid and may change over time, in response to political 
manoeuvring, persuasion, or changes in the organizational 
and technological context [Briggs et al., 2003; Bussen & 
Myers, 1997; DeLone & McLean, 2003; Jiang & Klein, 
2000; Jiang et al., 1998a; Karlsen et al., 2005; Kim et al., 
1999/2000; Lynch & Gregor, 2004; Nelson, 2005; Skok 
& Legge, 2002; Standing et al., 2006; Wilson & 
Howcroft, 2002]. 

For example, in a study of a project in the social services 
sector, Riley & Smith [1997] found that the many 
different stakeholders identified had different assessments 
of system success. The authors categorized the 
stakeholders into (1) project team members, who believed 
the system was innovative and valuable; (2) those outside 
the project team who questioned the basis of the project 
but thought that the system was worthwhile; and (3) user 
groups, some of whom accepted the system and made it 
work, others of whom rejected it. In another example, 
some members from a team of systems developers 
interviewed by Linberg [1999] suggested that even a 
project that was not completed could be successful, so 
long as some learning occurred that could be carried 
forward to future projects. 

Karlsen et al. [2005] suggest that project evaluations 
should reflect some of the issues outlined above. They 



recommend that success criteria need to be defined from 
the outset, using input from the various stakeholders and 
incorporating a range of criteria, and that they may need 
to be modified to reflect changes that occur during the 
course of a project. They also suggest that multiple 
evaluations should be undertaken at different points in 
time, for different purposes (e.g. a project management 
assessment could be done during project execution and in 
the project delivery stage, whereas a user assessment 
should be done after users had had some experience using 
the system). 

A number of authors suggest that success or failure 
should be thought of as a process rather than a single 
discrete outcome [Wilson & Howcroft, 2002]. From this 
perspective, the success or failure of a software system is 
constructed as the result of negotiated or contested 
subjective interpretations, and needs to be viewed against 
the historical context of systems development and the 
complex social and political interactions it involves 
[Mitev, 2000; Wilson & Howcroft, 2000, 2002]. Wilson 
& Howcroft [2002] further note that apparent definitional 
closure may not necessarily represent consensus. 
Dissenters may be forced to accept the situation or be 
denied a legitimate voice, particularly if they are 

considered to be of lesser standing in the project. The 
authors describe a nursing system which was perceived as 
a success by its sponsors, but as a failure by its users. 
Three years after its implementation, with continued user 
resistance, poor performance and financial pressures, the 
system was finally acknowledged as a failure by its 
sponsors. 

The above discussion reveals that labeling a project 
outcome as a ‘success’ or ‘failure’ can be both difficult 
and problematic. However, despite their definitional or 
conceptual ambiguity, these terms are still frequently used 
(and measured, often via proxy indicators) in systems 
development and deployment research. Project outcomes 
vary along a continuum, may be interpreted differently 
from different perspectives, and are in many cases 
constructed through processes of sense-making and 
negotiation with or within an organization. Use of the 
terms ‘success’ or ‘failure’ in the following discussion 
reflects their use by the authors of the empirical studies 
reviewed. We deliberately do not attempt to interpret (or 
re-interpret) the terms.  

Figure 2 summarizes key aspects of the nature and 
definition of project outcomes. 

 

Figure 2: Aspects of project outcomes 

 

4. INFLUENTIAL FACTORS – PEOPLE 
AND ACTION 

This section discusses influences related to the various 
individuals or groups with an interest in the system, their 
actions and interactions. Typical roles in software systems 
development include user, developer, development 
manager, business or user manager, project manager or 
leader, project team member, trainer, sponsor, customer, 
vendor, top management, and external consultant [Butler, 
2003; Enquist & Makrygiannis, 1998; Heiskanen et al., 
2000; Nandhakumar & Avison, 1999; Riley & Smith, 
1997; Roberts et al., 2000; Robey & Newman, 1996; 
Robey et al., 2001]. In some cases, an individual may 
have multiple roles or their roles and perspectives may 
change over time [Pouloudi & Whitley, 1997; Robey et 

al., 2001]. It is also important to recognize that an 
individual’s actions in pursuit of organizational objectives 
or in relation to a systems initiative will be influenced by 
competing commitments arising from social or 
professional groups he or she identifies with, 
organizational commitments institutionalized as 
organizational policy and practice, wider societal and 
cultural interests, or sectional interests arising as a result 
of the specific course of action [Butler, 2003]. For 
example, user managers can be conceived of as either 
users or managers. They can potentially mediate between 
their user group and higher level management [Marion & 
Marion, 1998], or they may be inclined to align 
themselves more with their user group. 

To a large extent, the definition of such roles and the 
allocation of individuals to them are undertaken for 

Project 
Outcomes 
 

Institutional Context 
 

Development 
Processes 

People and 
Action 

Project Content 

Type of outcome 
 Development process and/or product 
 Implementation process and/or product 
 System or whole solution (including complementary business or 

process interventions) 
 

Multi-dimensional 
 Technical, economic, behavioral, psychological, political 
 Subjective, contested/negotiated, temporal 
 



analytical purposes and depend on the specific context 
and time frame under consideration [Pouloudi & Whitley, 
1997]. Categorization into a particular group often 
reflects a researcher’s preconceptions or bias rather than 
how individuals perceive themselves. The unreflective 
use of these groupings can be problematic for both 
research and practice [Butler & Fitzgerald, 1997; Iivari & 
Igbaria, 1997; van Offenbeek & Koopman, 1996]. The 
following discussion attempts a finer-grained 
characterization of various groups with an interest in a 
system in order to improve our understanding and 
conceptualization of various aspects of systems 
development [Markus & Mao, 2004]. Attention in the 
academic literature has focused on four main relevant 
groups in systems development, which are discussed in 
detail below: developers, users, top management and 
external agents. The project team forms another, 
composite, group that is often identified. Finally, 
consideration is given to the potential influence of 
interaction between individuals or groups on systems 
development and its outcomes. 

 
4.1 Developers 
Software systems development professionals possess a 
range of characteristics that can influence how they 
approach and practice development and what contribution 
they make to a project and its outcomes. These 
characteristics include: technical skills, capabilities, 
expertise and experience; interpersonal, communication 
and social skills; application domain knowledge; 
commitment, motivation and trustworthiness; and norms, 
values and beliefs. Significant variation in skills and 
capabilities of developers can influence development 
productivity [Fitzgerald, 1998b; Fitzgerald et al., 2002] 
and hence project outcomes. 

Empirical studies suggest that competent staff with 
adequate technical skills can play an important role in 
facilitating positive project outcomes [Barry & Lang, 
2003; Jiang et al., 1996; Keil et al., 2002; Procaccino et 
al., 2006; Somers & Nelson, 2001; Standish Group 
International, 1999]. In particular, developer technical 
expertise, experience and training are said to have an 
important influence on project success [Baddoo et al., 
2006; Fitzgerald, 1998a; Fitzgerald et al., 2002; Kim & 
Peterson, 2003; Peterson et al., 2002; Wixom & Watson, 
2001]. Conversely, lack of developer expertise and 
experience is considered to be a project risk and may 
contribute to poor project outcomes, even project 
abandonment [Peterson & Kim, 2003; Schmidt et al., 
2001].  

In a survey of US system project leaders, Aladwani 
[2002] found that developers’ problem-solving 
competency was perceived to be critical to successful 
outcomes. This is not surprising as software system 
projects generally involve identifying and defining 
problems, generating solutions, reviewing alternatives, 
and evaluating options. Aladwani also found that clarity 
of project goals and staff expertise had a positive effect 
on problem-solving competency, while project team size 
had a negative effect. According to Fitzgerald et al. 
[2002], in addition to analytical skills, this process 

requires creative skills and judgment. An individual’s 
education, training and work background can influence 
his or her problem-solving approach and ability [Gasson, 
1999]. As developers gain more experience, they learn, 
extending their skill level and building up a repertoire of 
development strategies [Fitzgerald, 1998b; Fitzgerald et 
al., 2002]. Aladwani [2002] suggests that since a high 
proportion of developers’ work can involve problems that 
are very similar in nature, developers with wider 
experience and knowledge are more likely to have faced 
similar problems before. In light of rapid advances in 
technology and changing development practices, Kim & 
Peterson [2003] suggest that ongoing training may be 
important to organizations with a continuing commitment 
to software systems development. Baskerville & Pries-
Heje [2004, p. 260] argue that in the short cycle time 
development characterizing many modern software 
development projects, “skilled, experienced, and talented 
developers are needed to anticipate problems and 
innovate workable shortcuts”. 

Good interpersonal and communication skills are 
perceived to be important for interacting with users, and 
for facilitating dialogue between different groups of users 
[Baddoo et al., 2006; Fitzgerald et al., 2002; Jiang et al., 
1998a; Marion & Marion, 1998; Wixom & Watson, 
2001]. Hornik et al. [2003] found low levels of user 
satisfaction in system development projects where users 
perceived the developers to have poor communication 
skills, regardless of their technical expertise. 

If development is as much a social and political activity 
as a technical one, then change management skills may be 
necessary for developers [Markus & Benjamin, 1996; 
Symon, 1998]. Howcroft & Wilson [2003] suggest that 
developers require political skills in order to negotiate the 
often competing demands or interests of management on 
the one hand and user groups on the other. Other authors 
observe that developers may exercise political advocacy 
and image management skills [Markus & Benjamin, 
1996; Symon, 1998]. In the acquisition and use of 
packaged software, internal professionals are becoming 
increasingly involved in negotiating contractual and 
financial issues [Howcroft & Light, 2006]. 

The outcome of a project can depend on the 
understanding that development professionals have of the 
system context or problem domain [Baddoo et al., 2006; 
Butler, 2003; Fitzgerald, 1998a; Fitzgerald et al., 2002; 
Sumner, 2000]. This includes their knowledge of 
organizational operations, sensitivity to organizational 
norms and politics, understanding of the culture and 
functioning of user departments, and familiarity with and 
expertise in the type of application being developed 
[Jiang & Klein, 2000; Marion & Marion, 1998]. Where 
developers are outsiders to the organization, they are 
more likely to have a more limited knowledge of the user 
and the system’s context [Sarkkinen & Karsten, 2005].  

Fitzgerald [1998b; Fitzgerald et al., 2002] identified the 
level of motivation and commitment of developers as an 
important influence on the outcome of a software systems 
project. Developers who were motivated and committed 
to a project were more likely to ensure that the project 
was successfully completed. According to Oz & Sosik 
[2000], developer motivation is likely to be influenced by 



both the organizational context and the composition and 
culture of the project team. Developers may be motivated 
by effective leadership, a positive working environment, a 
sense of being involved, positive feedback, and where 
they enjoy a reasonable level of autonomy or 
responsibility. The technical challenge of designing a new 
solution, the opportunity to work with new technology or 
standard methods of systems development, working more 
closely with top management, or being helpful to users 
may also motivate some developers [Fitzgerald, 1998b; 
Fitzgerald & Fitzgerald, 1999; Fitzgerald et al., 2002; 
Jones & Harrison, 1996; Kautz et al., 2004; Linberg, 
1999; Nandhakumar & Avison, 1999]. On the other hand, 
developers may become frustrated or demotivated, not 
fully committing to the goals of the project, for various 
reasons, including lack of autonomy, inadequate 
development resources, technologically unrealistic 
requirements, conflict between team members or with 
managers, poor prior development experiences, job 
insecurity, and use of an inappropriate or constraining 
standard method or tools [Linberg, 1999; Nandhakumar 
& Avison, 1999]. 

Marion & Marion [1998] suggest that, in order to 
establish a working relationship with others interested in a 
system, development professionals need to be perceived 
of as trustworthy and sincere. Based on interviews with 
experienced Irish developers, Fitzgerald [1998b; 
Fitzgerald et al., 2002] found that project managers used 
their knowledge of developers’ skills and aptitudes in 
allocating development work. Within an organization, 
developers who could be trusted were assigned 
responsibility for critical tasks or projects. Trust was also 
an issue where critical roles were assigned to an external 
consultant or vendor.  

Development professionals have norms, values and codes 
of behavior that influence their conduct, and which reflect 
their socialization and training, and the professional, 
social and organizational context in which they work. For 
example, as a consequence of their professional norms, 
developers may focus on technical matters at the expense 
of human or organizational issues [Poulymenakou & 
Holmes, 1996], which can adversely affect the outcome 
of a project [Skok & Legge, 2002]. That said, Jiang, 
Klein, & Balloun [1998b] challenge the assumption that 
developers can be treated as a homogeneous group with 
one set of norms and behaviors.  Based on a survey of US 
development professionals (including system analysts, 
project leaders and system department managers), they 
found that different developers had different orientations, 
including technical, socio-political, or user orientations, 
or various combinations of these. Symon [1998] notes 
that different developers may contest representations of 
and rationales for their work. 

Developers’ values, beliefs and assumptions about the 
users of a technology, including their roles, abilities and 
needs, and the context of use, shape a technology such as 
a software system. Embedded within these beliefs and 
values is a presumed way of using the technology or 
system which influences users’ interaction with it 
[Wilson, 2002]. For example, developers may design a 
system using themselves as typical users, resulting in a 
system more suitable for expert users [Iivari, 2004a]. 

According to Wilson [2002], users may become 
dissatisfied with a system and even resist its use when 
there is a contradiction between their perceived roles and 
those roles inscribed for them by the developers of the 
system. Riley & Smith [1997, p. 309] highlight the 
problems that may result from developers’ “reductive 
view of a given user situation”.  

Lyytinen & Hirschheim [1987] conclude that failure by 
development professionals to appreciate differences in 
how individuals process information or how they may 
behave in response to a new system can result in poor fit 
between the system and its users. They argue that systems 
development activities tend to assume an idealized, 
average user, ignoring cognitive, motivational or skill 
differences within the population of users. The user is 
often viewed as static, with little or no allowance made 
for learning or cognitive evolution with the system. This 
can result in a system in which the user is constrained by 
technical rigidity of the interface presented to him or her.  

 
4.2 Users 
A number of authors have highlighted that (perhaps even 
more so than developers) the users of a system are not a 
homogeneous group [Butler & Fitzgerald, 1997; Iivari & 
Igbaria, 1997; Markus & Mao, 2004; Taylor et al., 2002; 
van Offenbeek & Koopman, 1996] although they may be 
referred to as such. Rather, ‘users’ may be made up of 
groups of individuals from different functional, 
geographical, vertical and horizontal areas in an 
organization with potentially different characteristics, 
interests in a system, and capabilities to influence the 
course and outcome of a system’s development [Asaro, 
2000; Markus & Mao, 2004; van Offenbeek & Koopman, 
1996]. 

A review of the extensive literature on users and software 
systems suggests that users may affect the outcome of 
systems development in three main ways. Users can have 
an effect through (1) their expectations of the system 
being developed; (2) their attitude towards and 
involvement with the system; and (3) specific 
characteristics that may affect their ability to utilize the 
system. 

 
4.2.1 User expectations 

As a major interested group in any developed system, 
users’ expectations are an important influence shaping a 
software systems project [Staples et al., 2002]. Lyytinen 
& Hirschheim [1987] argue that user expectations are 
value-based beliefs and desires about how the system will 
serve their interests. While some user expectations are 
explicitly formulated as system goals and requirements 
[Lemon et al., 2002], other expectations may remain 
unarticulated or only vaguely expressed. The latter may 
be a result of the unclear nature of an expectation, the 
sheer number and diversity of users, or an inability or lack 
of opportunity for users to voice their expectations 
[Lyytinen & Hirschheim, 1987].  

Schmidt et al. [2001] note that the growing sophistication 
of users is leading to higher user expectations of systems. 



They also identify the need to manage user expectations 
so as to avoid the mismatch between user expectations 
and the system delivered. It is commonly held that this 
can be achieved by participation of users in systems 
development, through the creation of more realistic user 
expectations about the system [Lin & Shao, 2000; 
Mahmood et al., 2000; McKeen & Guimaraes, 1997; 
Roberts et al., 2000].  

The failure to manage user expectations has been found to 
be an important risk factor to the successful completion of 
projects [Keil et al., 1998; Schmidt et al., 2001]. 
Empirical studies have found that established, managed or 
realistic user expectations are perceived to be important 
for system success [Lemon et al., 2002; Mahmood et al., 
2000; Somers & Nelson, 2001]. Similarly, unrealistic 
expectations may inhibit successful systems development 
[Barry & Lang, 2003].  

 
4.2.2 User attitude and involvement 

User attitude is usually defined as a psychological state 
reflecting an evaluative judgment or feeling towards a 
system [Barki & Hartwick, 1994]. Users’ attitudes 
towards a system affect their intention to use and actual 
use of the system [Amoako-Gyampah, 1997; Mahmood et 
al., 2000]. User attitudes may not necessarily result from 
a reasoned assessment of the functionality of the system. 
Although nothing can compensate for a lack of needed 
functionality [Mahmood et al., 2000], often subjective 
perceptions of the characteristics of a system determine a 
user’s attitude towards it [Amoako-Gyampah, 1997]. 
Users are likely to have a positive attitude about a system 
if they perceive that it is useful to them, it is easy to use, 
or it is in their interests to use it [Mahmood et al., 2000; 
Wilson & Howcroft, 2002]. Riley & Smith [1997] argue 
that if users are enthusiastic about a system then other 
obstacles are less likely to become critical problems.  

Negative user attitudes towards a system (which in some 
cases may lead to resistance to use it) can result from a 
perceived lack of relevance, consequent changes to the 
way work is performed, or when users feel threatened by 
change associated with the new system [Bussen & Myers, 
1997]. Empirical studies have shown that the introduction 
of a system can be problematic in situations where 
workers have a strong professional culture, identity, 
autonomy or level of unionization (often evident in the 
health, education and social care sectors). Problems can 
arise where the system, or parts of it, are perceived as 
challenging traditional professional values, roles, status 
and work conditions, undermining or threatening 
individual or collective identities, and making work 
practices more transparent [Doolin, 2004; Marion & 
Marion, 1998; Myers & Young, 1997; Riley & Smith, 
1997; Wilson, 2002; Wilson & Howcroft, 2002].  

User involvement (as distinct from user participation, 
discussed in Section 6.4) is a psychological state that 
reflects the extent to which a user perceives a system to 
be both important and personally relevant [Barki & 
Hartwick, 1994]. Empirical studies have found that user 
involvement is a significant factor in the successful 
completion of software systems projects [Hwang & 
Thorn, 1999]. Conversely, lack of user commitment is 

considered to be a project risk [Keil et al., 1998; Schmidt 
et al., 2001] and lack of user support has been found to be 
negatively related to various measures of project success 
[Jiang, Chen et al., 2002; Jiang & Klein, 1999, 2000; 
Jiang, Klein et al., 2000]. 

Prior work in software systems development has found a 
relationship between user attitude and user involvement 
[Hunton & Beeler, 1997]. Changing the attitude of highly 
involved users tends to require strong persuasive 
arguments that are factual and logical. In contrast, 
individuals with low involvement are more likely to 
change their attitudes because of normative influences 
such as interpersonal concerns or appeals from others 
who are important to them. Kirsch & Beath [1996] 
suggest that the actions of developers (e.g. through 
education, motivation or negotiation) can increase the 
extent to which users feel involved in a software systems 
project. 

 
4.2.3 Other user characteristics 

User attitude towards and involvement with a system may 
also be influenced by user characteristics such as 
personality type, experience with systems and 
organizational status [Barki & Hartwick, 1994]. Some 
user characteristics, particularly users’ lack of experience 
with or understanding of systems generally, the specific 
system or type of application, or the activities the system 
is intended to support, have been found to have a negative 
relationship with overall system success and some 
measures of project effectiveness [Jiang & Klein, 1999, 
2000]. Similarly, Mahmood et al. [2000] found that user 
satisfaction was strongly affected by user background 
characteristics such as user experience and skills. 

 
4.3 Top Management 
Top management, either individually or collectively, is 
often considered to play an important role in systems 
development, although who exactly comprises this group 
is generally not defined. In the management literature, top 
management refers to the group of most senior executives 
and decision makers with responsibility for the overall 
strategic direction of the organization [e.g. Wiersema & 
Bantel, 1992]. 

The presence or absence of top management support, 
commitment or understanding continues to be 
consistently reported in the software systems 
development literature as important in determining the 
outcome of a project [Akkermans & van Helden, 2002; 
Aladwani, 2002; Jiang et al., 1996; Jiang, Klein et al., 
2000; Newman & Sabherwal, 1996; Pan et al., 2004; 
Procaccino et al., 2005; Sharma & Yetton, 2003; Somers 
& Nelson, 2001].  For example, top management support 
ranks highly in the Standish Group’s CHAOS studies of 
project success factors, ranking either first or second of 
ten success factors in 1998 and 2000 [Johnson et al., 
2001; Standish Group International, 1999, 2001]. The 
importance of top management support for software 
systems success has been observed across a range of 
national and institutional contexts [Coombs et al., 1999; 
Kim & Peterson, 2003; Lemon et al., 2002; Peterson et 



al., 2002]. Several authors suggest that top management 
support needs to be sustained throughout systems 
development and implementation if a project is to be 
successful [Butler & Fitzgerald, 1999b; Keil et al., 1998; 
Umble et al., 2003]. 

Similarly, lack of top management support is considered 
an important project risk factor [Kappelman et al., 2006; 
Keil et al., 1998; Schmidt et al., 2001; Sumner, 2000] and 
has been implicated in challenged, abandoned or failed 
projects [Oz & Sosik, 2000; Martin & Chan, 1996]. In a 
survey of UK and New Zealand project managers, Yetton 
et al. [2000] found support for the hypothesis that a 
project with senior management support was more likely 
to be completed and not redefined or abandoned.  

Top management support may be particularly important 
in specific systems development contexts, for example, 
executive information systems (EIS), where the support 
of an executive sponsor as a potential user is important 
[Nandhakumar, 1996]; projects that are considered to be 
strategic or critical to business success [Yetton et al., 
2000]; projects that challenge the professional identity or 
autonomy of users [Riley & Smith, 1997]; projects with 
high task interdependence [Sharma & Yetton, 2003]; or 
large systems that have significant impacts throughout the 
organization, such as customer relationship management 
(CRM) projects [Kim & Pan, 2006], data warehouse 
projects [Wixom & Watson, 2001], ERP projects [Mabert 
et al., 2003; Somers & Nelson, 2001] and manufacturing 
resource planning projects [Irani et al., 2001]. 

The importance placed on top management support stems 
from the various roles that top management is perceived 
to play in software systems development. For example, 
top management support is considered important for 
ensuring the availability of budgetary and human 
resources required for the project [Aladwani, 2002; Butler 
& Fitzgerald, 1999b; Kim & Peterson, 2003; Parr & 
Shanks, 2000; Schmidt et al., 2001; Sharma & Yetton, 
2003; Yetton et al., 2000]. 

Top management is considered to also have an important 
role in overseeing systems development [Aladwani, 2002; 
Schmidt et al., 2001; Sharma & Yetton, 2003; Yetton et 
al., 2000], and ensuring that the project is aligned with 
and supports organizational strategies and goals [Clegg et 
al., 1997; Kim & Peterson, 2003]. Failure of top 
management to monitor progress, support and enforce 
management and control procedures, or be involved in 
critical decisions can cause project failure or 
abandonment [Goldstein, 2005]. According to Standish 
Group International [2001], top management should be 
responsible for setting the agenda for the project, and 
articulating the project’s overall goals. It should have an 
overall understanding of the project and how it benefits 
the organization. Pan & Flynn [2003] argue that top 
management has a role to play in managing political 
conflicts that emerge during systems development and 
implementation. 

Top management support is also considered important in 
influencing user attitudes, whether actively championing 
or visibly associating with the project to signal 
organizational commitment to the project [Parr & Shanks, 
2000; Sharma & Yetton, 2003], encouraging user 

participation in a project [Kim & Pan, 2006; Wilson et al., 
1997; Wixom & Watson, 2001], or countering any 
negative attitudes of users towards the new system or 
resulting organizational changes [Kim & Peterson, 2003; 
Riley & Smith, 1997; Yetton et al., 2000]. A significant 
project may entail the redefinition of roles and 
responsibilities within an organization. Top management 
can be influential in creating a positive context for change 
[Butler & Fitzgerald, 1999b; Lemon et al., 2002; Schmidt 
et al., 2001; Wixom & Watson, 2001]. According to 
Sharma & Yetton [2003], top management plays an 
important role in shaping the organizational context, 
which can influence how users appropriate a system. 
They suggest that top management can facilitate 
successful system implementation by instituting 
mechanisms or structures that facilitate user learning, 
instituting performance control systems that recognize 
and reward use, instituting coordination mechanisms that 
support the changes associated with a system, and 
instituting changes to performance goals. 

Other influential decision-makers, such as a company’s 
board of directors, may exert a level of influence, 
particularly in terms of sponsoring a software systems 
project [Gasson, 1999].  

 
4.4 External Agents 
According to Sawyer [2001b], the systems development 
market has changed from the approach of the early 1990s 
in which organizations largely developed their own 
systems internally. Increasingly, organizations are 
sourcing their solutions externally as made-to-order 
software or ready-to-install software packages. Within 
this development context, external consultants are playing 
an increasingly important role, particularly, in bridging 
the gap between system consumers and software vendors 
[Howcroft & Light, 2006; Sawyer, 2001b; Skok & Legge, 
2002]. External consultants may also be utilized where 
the organization lacks specific expertise [Butler, 2003], or 
to ‘grow’ internal staff expertise [Sumner, 2000]. 
Although prior studies have found only limited evidence 
for the importance of the use of external consultants on 
the outcome of a software systems project [Akkermans & 
van Helden, 2002; Irani et al., 2001; Schmidt et al., 2001; 
Somers & Nelson, 2001], with an increasing presence in 
systems development, their influence on project outcomes 
can be expected to increase.  

Challenges associated with using external consultants or 
contractors could include the nature of the contract and 
contractual issues (such as what constitutes an error, 
enhancement or unforeseen cost) [Goldstein, 2005; Pan et 
al., 2004]; lack of understanding or misinterpretation of 
organizational requirements by consultants [Howcroft & 
Light, 2006; Pan et al., 2004]; lack of control over the 
actions of external consultants [Schmidt et al., 2001]; 
poor product quality and poor service [Pan et al., 2004]; 
communication problems between consultants and users, 
or no direct communication channels between them [Pan 
et al., 2004; Skok & Legge, 2002]; high expense [Lemon 
et al., 2002]; lack of internal systems support once 
external consultants have departed [Butler, 2003]; and 



possibly reduced participation of users [Howcroft & 
Light, 2006; Sawyer, 2001b]. 

Sarkkinen & Karsten [2005] highlight the difficulties that 
external developers or consultants can encounter during a 
project, particularly where the system significantly 
changes individuals’ work practices, task division, and 
organizational status or authority. As outsiders to the 
organization, external developers or consultants may be 
unaware of the consequences associated with the new 
system or of any political undercurrents. They are more 
likely to focus on the technical aspects rather than the 
social aspects of the project. In doing so, they are likely to 
be perceived by users participating in the project as agents 
of management, forwarding their interests. 

 
4.5 Project Team 
All but the smallest of software systems projects are 
undertaken by a team that includes development 
personnel, user representatives, managers, and possibly 
external consultants. The composition of the project team, 
their collective expertise, their roles and relationships, can 
influence project outcomes through project team 
performance. For example, Jiang, Klein et al. [2002] 
found that strong project team effectiveness improves 
project outcomes. Similarly, Wang et al. [2005] found 
that project team cohesiveness was significantly 
positively related to project performance.  

The size and composition of the project team can 
themselves influence the outcome of a project. For 
example, large-sized project teams and teams that have 
not worked together in the past have been suggested as 
project risk factors [Jiang, Klein et al., 2000]. Aladwani 
[2002] found that project team size was significantly 
negatively correlated with project team performance, with 
larger teams experiencing dissatisfaction among team 
members and decreased productivity and problem 
solving. Developers in the team interviewed by Linberg 
[1999] felt that small-sized teams improved 
communication, enabled collaboration, and facilitated a 
sense of synergy.  Empirical evidence suggests that a 
stable, experienced, cohesive project team can lead to 
good project performance [Yetton et al., 2000]. The most 
effective development teams are asserted to be those with 
a balance of diverse personality types and mutual 
openness to ideas [Bradley & Hebert, 1997; Linberg, 
1999].  

Project team skills have also been found to have a major 
influence on project outcomes. According to Aladwani 
[2002], a project team with a variety of experience and 
skills is likely to perform better than one with lesser 
available skills. It has been suggested that for effective 
project team functioning, the collective expertise of the 
project team should enable them to accomplish the range 
of allocated tasks, to work with undefined elements, 
uncertain objectives and issues emerging during the 
project, to work cooperatively as a team and with top 
management, and to understand organizational operations 
and the human implications of the system [Jiang & Klein, 
2000; Jiang, Klein et al., 2000; Kim & Peterson, 2003; 
Wixom & Watson, 2001].  

In a survey of data warehousing managers and users, 
Wixom & Watson [2001] found that a project team with 
strong technical and interpersonal skills was able to 
perform tasks well and interact with users, leading to 
project implementation success. A skilled and competent 
project team was considered to be more able to identify 
the complex project requirements. Wixom & Watson 
[2001] concluded that in projects that involve specialized 
technology it is important that the development team 
understand how to use the technology and how it relates 
to the existing technical infrastructure. Jiang, Klein et al. 
[2000] suggest that where teams lack sufficient expertise 
with the application or technology being developed, they 
may become reliant on the few team members who do, 
leading to inefficient use of team resources. In three case 
studies of CRM system implementations, Kim & Pan 
[2006] found that the balance between high levels of 
business skills and technical expertise within the project 
team in a successful implementation was missing in the 
unsuccessful cases. 

The use of support technologies and tools can supplement 
the capabilities and productivity of the team [Aladwani, 
2000, 2002]. However, in a study of software project 
teams performing requirements analysis, Guinan et al. 
[1998] found that group processes and team performance 
were positively influenced more by project team skill, the 
project manager’s involvement in the day-to-day 
workings of the team, and similar levels of experience 
within the team, than by the use of systems development 
methods and tools. Similarly, Sawyer & Guinan [1998] 
found that the use of automated development tools had no 
explanatory effect on variances in either software product 
quality or project team performance. 

The roles and responsibilities of the various team 
members need to be well-defined and clearly 
communicated to team members. Improper definition of 
roles and responsibilities has been perceived as a risk to 
successful completion by both project managers and 
system users [Keil et al., 2002; Schmidt et al., 2001]. 
Empirical studies have found that lack of clarity of role 
definition is significantly negatively related to system 
success [Jiang & Klein, 1999, 2000]. When roles and 
responsibilities are poorly defined or communicated, 
requirements may be overlooked, items or features may 
be left out or not completed, or there may be significant 
task overlap [Keil et al., 2002]. 

 
4.6 Social Interaction 
The development of a software system can be perceived 
(though not exclusively) as a social process involving 
interaction between participants in various social roles 
[Kirsch & Beath, 1996]. Throughout systems 
development, individuals from the groups described 
above may interact in various ways, including 
negotiation, decision-making, communication, conflict or 
political manoeuvring. This interaction will be shaped by 
similarities and differences in the various groups’ values 
and beliefs, professional or social norms, expectations and 
perceived interests. 

Individuals who are perceived by other participants in a 
project to be experts in some area (for example, with 



knowledge of systems development practice or of the 
application domain) can shape the meaning of systems 
development (and its activities) for others [Gasson, 1999, 
2006; Symon, 1998]. Gasson [1999] found that individual 
experts managed meanings to the extent that they defined 
what were appropriate forms of the systems development 
process, its products, work roles and activities. She 
suggests that such influence may diminish as other areas 
of knowledge become more important in a project. 

The nature and quality of interactions between 
participants, particularly users and developers, can 
influence project outcomes [Procaccino et al., 2006; 
Robey & Newman, 1996; Wang et al., 2006]. Changes in 
the relative influence of groups, and critical encounters 
between them, can affect the course of a project 
[Heiskanen et al., 2000; Robey & Newman, 1996]. It has 
been suggested that the key to establishing a working 
relationship between project participants is the creation of 
mutual respect and trust – a responsibility that often falls 
to development professionals or to the project manager 
[Marion & Marion, 1998]. A shared organizational 
culture can also be a basis for positive interaction [Butler 
& Fitzgerald, 2001; Poulymenakou & Holmes, 1996; 
Symon, 1998]. 

There are often multiple direct and indirect channels for 
interaction among and between system participants. In 
bespoke developed projects, these may include facilitated 
workshops, intermediaries, a customer support line, 
prototyping, interviewing, testing, a survey, email or a 
bulletin board, and observation of work tasks. User 
participation may be a means for developing a social 
relationship between users and developers [Kirsch & 
Beath, 1996]. According to Fitzgerald et al. [2002], 
during systems development users and developers learn 
from each other in a mutual, interactive way. The use of 
standard methods of systems development can influence 
interactions between participants in a software systems 
project by structuring roles, responsibilities and occasions 
for interaction [Robey et al., 2001]. 

Asaro [2000] suggests that in situations where the 
emerging system artifact becomes part of the system 
development, it mediates user-developer interaction. 
Developers cannot interpret requirements in isolation of 
users’ reactions to the developing system, and users can 
less easily resist a system that has been built and revised 
in response to their concerns. Both groups also become 
aware of the practical and material limitations of the 
technology itself. For example, Hardgrave et al. [1999] 
suggest that prototyping facilitates increased and more 
responsive interaction and communication between users 
and developers. Butler & Fitzgerald [1997; 1999a; 1999b; 
2001] describe how in certain projects the use of 
prototyping or computer-aided software engineering 
(CASE) tools improved user-developer communication, 
and increased the level of user participation and 
involvement in the projects by providing a common 
language that bridged the traditional gap between 
technically-oriented developers and business-oriented 
users.  

Effective interaction between participants in a software 
system project can facilitate the alignment of goals and 
expectations, achieve mutual understanding, and 

encourage effective communication. However, it can also 
lead to more contradictory outcomes when differences 
between participants emerge, or when misunderstandings 
or breakdowns in communication occur. 

 
4.6.1 Goals and expectations 

The recognition that there are typically multiple interested 
participants in a project, each with different interests, 
values, beliefs, norms, practices and behaviors, rewards, 
goals or expectations has led some authors to argue that 
successful software systems development relies on 
alignment or congruence between such attributes [Jiang, 
Chen et al., 2002; Jiang, Sobol et al., 2000; Keil et al., 
2002; Marion & Marion, 1998; Pan, 2005]. For example, 
Jiang, Chen et al. [2002] suggest that different groups of 
participants will have different expectations and will 
judge the system being developed on different criteria. 

Substantial differences in goals and expectations can 
occur between groups of development professionals, 
between system developers and the users of a system, or 
between different groups of users. For example, Mahaney 
& Lederer [2003] found a perceived goal conflict between 
system developers and project managers, with respect to 
solution quality and delivery, respectively. In a study of 
US systems professionals and users reported by Jiang, 
Sobol et al. [2000], development personnel often believed 
that they had reached agreement with users over project 
objectives, whereas the users did not believe such an 
agreement had been reached.  Consequently, the users, 
who had different expectations of the system, were 
dissatisfied when it failed to meet their expectations.  

Different groups of users may potentially have conflicting 
organizational interests or professional interests [Doolin, 
2004; Marion & Marion, 1998; Myers & Young, 1997; 
Riley & Smith, 1997; Wilson & Howcroft, 2002]. 
Further, the interests or expectations of participants are 
not necessarily static and may change over the course of 
systems development [Pan, 2005]. This may occur, for 
example, through the development of coalitions of 
individuals, or as members of the project team develop 
loyalty to each other and/or the project [Myers & Young, 
1997]. 

Jiang, Chen et al.’s [2002] solution to goal or expectation 
incongruence is a compromise between the various 
groups in order to reconcile their differences. They view 
project management as the exercise of this compromise, 
in the face of resource constraints and the realization that 
no one set of needs will be completely satisfied. As part 
of this stance, Jiang, Klein et al. [2000] argue that the 
common interests of various stakeholders should be 
emphasized. Jiang, Chen et al. [2002] suggest that pre-
project partnering, in which various stakeholders work 
together before a project begins, is a useful approach for 
fostering collaboration and reducing the potential for 
conflict. Surveying US development professionals, Jiang 
and co-authors found that pre-project partnering was 
significantly positively associated with project 
performance. They also noted that pre-project partnering 
reduced the risk of poor user support for the project, and 
led to effective project team characteristics and improved 



project manager performance [Jiang, Chen et al., 2002; 
Jiang et al., 2006; Jiang, Klein et al., 2002]. 

 
4.6.2 Understanding 

Historically, a lack of understanding between participants 
in a software system project has been associated with 
system failure [Sauer, 1999]. Based on a survey of 
systems development participants, Enquist & 
Makrygiannis [1998] found that misunderstandings occur 
frequently between them throughout the development 
process. Such misunderstanding often produces minor 
negative consequences (such as minor process delays, 
product errors, and/or problems in relations with other 
participants), but occasionally their consequences may be 
more extensive. The most common causes of 
misunderstandings were (in order) unclear or 
incompletely expressed information; differences in 
concepts and frames of reference; and uncertainty about 
tasks, responsibility, authority or intentions of other 
participants. 

A gap in understanding (in particular, between users and 
developers) has been attributed to differences in 
organizational cultures or sub-cultures [Al-Karaghouli et 
al., 2005; Coughlan et al., 2003; Enquist & Makrygiannis, 
1998; Flynn & Jazi, 1998; Jiang, Sobol et al., 2000; 
Poulymenakou & Holmes, 1996; Taylor-Cummings, 
1998]. Such cultural divergence can arise from 
differences in organizational roles and loyalties, 
professional backgrounds, world views, interests, 
expectations, skills bases, experience, ambitions, 
education, training, cognitive styles, problem-solving 
approaches and vocabularies [Butler & Fitzgerald, 1997; 
Flynn & Jazi, 1998; Gasson, 1999; Jiang, Sobol et al., 
2000; Symon, 1998; Urquhart, 2001]. A common 
perception is that developers are focused on technical 
issues, while users are concerned more with facilitating 
work or business tasks. For example, based on a survey of 
developers and users in the UK, Al-Karaghouli et al. 
[2005] attribute the gap in understanding (rather 
unsurprisingly) to lack of business knowledge by 
developers and lack of technical understanding by users. 

Differences in understanding can also be viewed as a 
result of the diverse interpretive schemes or frames used 
by various participants to construct meaning in relation to 
the project [Galliers & Swan, 2000]. For example, 
individuals (with different education, training, work 
background and prior experiences with systems 
development) may have different perceptions (and 
preconceptions) of the purpose, meaning and use of a 
system, which may influence their ability to achieve a 
shared understanding of the new system [Gasson, 1999]. 
In a case study of software system design, Gasson [1999] 
observed that individual project team members influenced 
each others’ perspectives on the project, and that these 
perspectives converged with time as the team developed a 
shared understanding of the project.  

 
4.6.3 Communication 

Communication is often perceived to be an important 
dimension of the interaction between users and 

development staff, essential for effective functioning of 
the project team, and a key factor in system success 
[Akkermans & van Helden, 2002; Butler, 2003; Butler & 
Fitzgerald, 2001; Hartwick & Barki, 2001; Sawyer & 
Guinan, 1998; Somers & Nelson, 2001]. Conversely, poor 
communication can lead to misunderstanding and conflict 
between participants, which may even be carried over into 
subsequent projects within the organization [Amoako-
Gyampah & White, 1997; McKeen & Guimaraes, 1997; 
Skok & Legge, 2002]. 

Communication between participants in a project can be 
informal or formal, direct or indirect, one-way or two-
way [Amoako-Gyampah & White, 1997; Butler, 2003; 
Butler & Fitzgerald, 2001; Gallivan & Keil, 2003]. 
Communication is influential through the role it plays in 
facilitating information exchange, mutual understanding 
and collaboration, and in identifying and resolving 
conflicts [Amoako-Gyampah & White, 1997; Keil et al., 
2002; Oz & Sosik, 2000]. It has been suggested that 
establishing a shared language or vocabulary between 
participants is important for achieving effective dialogue 
[Marion & Marion, 1998]. 

Effective communication is frequently perceived as 
important for meaningful user participation in software 
systems projects [Amoako-Gyampah & White, 1997; 
Hartwick & Barki, 2001]. It is considered necessary for 
users to convey their understandings of the organizational 
context and their requirements to developers, and for 
developers to explain technical issues to users and listen 
to user-related problems [Al-Karaghouli et al., 2005; 
Butler & Fitzgerald, 2001]. However, Gallivan & Keil 
[2003] suggest that ‘communication lapses’ may occur 
that negate or reduce the effectiveness of user 
participation. Such communication lapses can occur 
where development is framed in a way that excludes 
consideration of particular issues; where users are 
unaware of an issue being a problem, see no need to 
communicate an obvious problem, or are unable to 
articulate an issue as a problem; where user 
representatives may not perceive an issue as problematic 
even though other users might; where communication 
channels are not available or where users are unaware of 
those communication channels available; where users 
actively decide not to communicate through a channel 
because certain messages are perceived as politically or 
socially unacceptable; where interpretive schemes, mental 
models, differences in language use, or intermediaries 
distort or filter out specific messages; or where 
developers fail to act on a message, act on the wrong 
messages or consider certain actions unacceptable 
[Gallivan & Keil, 2003]. 

Communication may also be used by the project team as 
an important component in maintaining relationships 
with, and the support of, other organizational groups 
[Jiang, Klein et al., 2000]. Amoako-Gyampah & White 
[1997] note the need for ongoing two-way 
communication so that users and managers feel that their 
input is valued (and will be sought), are given feedback 
on their input or concerns, and are informed about project 
changes. In a post-hoc longitudinal case study, Butler & 
Fitzgerald [1999b] found that the project manager, 
developers and users had employed various strategies 



(such as a high degree of formal and informal 
communication between groups) to avoid ‘us vs. them’ 
scenarios developing. 

 
4.6.4 Conflict and politics 

Differences in values, perceptions, interests, goals or 
expectations, a lack of mutual understanding, and 
ineffective communication, have all been attributed to 
causing disagreement or conflict between participants in a 
project. Conflict may occur between groups associated 
with systems development, such as users or developers, 
and within such groups [Symon, 1998], including the 
project team. Coakes & Coakes [2000] suggest that 
conflict can arise between different groups or individuals 
with apparently similar interests because of different 
interpretations of a problem. Conflict may also be of an 
interpersonal nature. For example, conflicting 
personalities and attitudes may lead to poor project team 
relationships [Keil et al., 2002; Schmidt et al., 2001]. 

Unsurprisingly, the presence and intensity of conflict and 
disagreement between participants can adversely impact 
the systems development process and project outcomes 
[Jiang & Klein, 2000; Keil et al., 2002; Pan, 2005; Robey 
& Newman, 1996; Schmidt et al., 2001]. Poor 
relationships between participants may continue until they 
are disrupted by conditions that challenge existing 
behavior [Robey & Newman, 1996]. 

The literature suggests that the potential for conflict 
increases as the number and diversity of participants 
involved increases, when the scope of the project is large, 
when the project is highly complex, when high levels of 
integration among the participants is necessary, and when 
external factors such as third parties or other projects are 
involved [Linberg, 1999; van Offenbeek & Koopman, 
1996; Yetton et al., 2000]. Robey et al. [2001] argue that 
conflict increases as role interdependence between 
participants increases, especially under time or resource 
constraints and when responsibilities or approaches to the 
work differ. Developers interviewed by Linberg [1999] 
indicated that conflicts often occurred both within the 
project team and with external managers, sometimes as a 
result of the pressure under which developers were 
working. Similarly, Sawyer [2001a, p. 174] sees conflict 
as inevitable when people interact in activities such as 
systems development, which are “characterized by 
ambiguity, contradictory information and time pressures”. 

Robey et al. [2001] suggest that conflict can sometimes 
have a positive effect if it encourages meaningful and 
constructive debate among participants. Acknowledgment 
of disagreement and conflict can ensure that important 
project issues are addressed and new or creative solutions 
are considered [Wilson et al., 1997], arguably leading to 
better decision making [Sawyer, 2001a]. The participation 
of various groups in systems development has been 
suggested as a way of reducing potential conflict in 
projects. The rationale for this position is the increased 
level of mutual understanding between different groups 
through their working together [Jiang, Chen et al., 2002] 
or the increased sense of ownership and control 
engendered through their involvement [Butler & 
Fitzgerald, 1999b]. However, conflict resolution may not 

always be achieved through the articulation of differences 
and the negotiation of a shared understanding or 
compromise [Jiang, Chen et al., 2002; Sawyer, 2001a].  

Given the long term consequences of what is at stake, it is 
not surprising that the level of political activity in systems 
development can be high [Butler, 2003; Clegg et al., 
1997; Foster & Franz, 1999; Howcroft & Wilson, 2003; 
Myers & Young, 1997]. A number of studies have found 
that in certain cases organizational politics can adversely 
affect the outcome of a project [Robey & Newman, 1996; 
Warne & Hart, 1996; Yetton et al., 2000]. Pan & Flynn 
[2003] identified a number of political issues that 
influenced decision making or produced conflict in an 
electronic commerce system project, leading to its 
abandonment. These were political mistrust among 
project stakeholders (including those external to the 
organization), formation of an opposing coalition, threats 
of retaliation, political insensitivity, lack of political 
promotion of the system project, and failure to obtain 
continued political support from top management. Politics 
may become a problem with organization-wide systems 
(or even industry-wide systems) that span multiple groups 
who feel their interests (e.g. their ownership and control 
of business processes and data) are being threatened 
enough that they decide to take action [Drummond, 1996; 
Gasson, 2006; Warne & Hart, 1996]. Akkermans & van 
Helden [2002] found that open communication and a lack 
of political behavior among different organizational 
groups were important in turning around a failing ERP 
project. 

Participants may draw on prevailing norms, values and 
resources to legitimize their actions (e.g. to justify using a 
particular development approach or method or to include 
or exclude various groups or individuals from 
participating) or to mask their political motives 
[Fitzgerald, 1998b; Fitzgerald et al., 2002; Howcroft & 
Wilson, 2003]. Butler & Fitzgerald [2001] describe how 
in a case of shared project ownership, different user 
groups resorted to political infighting in order to influence 
the development team in their favor.  Butler [2003] also 
describes how friction developed between two user 
business units in a corporate software systems project.  
Doolin [1999] describes a political struggle for control of 
a systems project, but between the development 
department and a competing source of authority within 
the organization, the Finance department, which contested 
the perceived validity of the system solution.  

Myers & Young [1997] describe how, in a software 
systems project in the health sector, user participation was 
used to legitimize the project amongst the wider user 
community. Further, senior management had a hidden 
agenda. Features that clinical users perceived as 
challenging their professional status were omitted from 
the initial user requirements, and were not discussed until 
the project was well underway and the project team and 
user representatives had built up allegiance to the project. 

Developers themselves, often lacking formal 
organizational authority, may also use political tactics to 
secure access to necessary resources, to work around 
management-imposed constraints, or to secure the support 
and cooperation of other organizational groups [Linberg, 
1999; Nandhakumar, 1996]. Alternatively, systems 



professionals may fail to support an software systems 
project that is not under their control [Olesen & Myers, 
1999]. 

Key properties or attributes of the influences that 
comprise the people and action dimension are 
summarized in Figure 3. 

Figure 3: Properties/attributes of influences related to people and action 

 

5. INFLUENTIAL FACTORS – PROJECT 
CONTENT 

This section discusses influences related specifically to 
software systems development and deployment projects, 
including the characteristics of the project, its goals and 
objectives, the resources made available to it, and aspects 
of technology that support the system and its 
development. 

 
5.1 Project Characteristics 
There is some evidence that the outcome of a software 
systems project is related to various characteristics of the 
project itself, such as its size, technical complexity, and 
newness to the organization [Jiang & Klein, 1999; 
Johnson et al., 2001; Martin & Chan, 1996; Standish 
Group International, 1999; Yetton et al., 2000].  

Project size may be characterized (if not measured) in a 
number of ways, including the duration of the project, its 
cost, the size of the project team, the number of different 
stakeholders on the team, the number of users, the number 
of organizational units involved, and the number of 
hierarchical levels occupied by system users [Jiang & 
Klein, 2000; Standish Group International, 1999].  Each 
indicator provides some (limited) sense of the scale of the 
project, the implication being that higher values generally 
indicate larger and therefore more difficult projects to be 
undertaken. Johnson et al. [2001] attribute part of the 
increase in project success rates observed in the USA 
between 1994 and 2000 by the Standish Group to smaller 

project size. They suggest that the emergence of the 
World Wide Web and the use of standard software 
infrastructures have facilitated the development of 
smaller-sized projects, which has in turn led to 
proportionally more successes. Some organizations have 
dealt with large projects by breaking them down into 
smaller sub-projects or by using incremental development 
[Kautz et al., 2004; Pan et al., 2004] in an effort to 
increase the likelihood of a successful outcome. 

Chatzoglou [1997] suggests that smaller projects tend to 
involve well-defined project domains, facilitating more 
effective determination and implementation of system 
requirements. Large projects are more likely to have high 
complexity and high task interdependence, need to be 
redefined, take longer to complete, require more 
resources, and involve increased lines of communication 
and potential conflict [Schmidt et al., 2001; Yetton et al., 
2000]. In their survey of UK and New Zealand project 
managers, Yetton et al. [2000] found that project size was 
negatively related to project completion.  

As software systems have become pervasive in 
organizations, increasing functionality, scope and speed 
of technical change, and the need for systems integration, 
have contributed to an increase in complexity [Clegg et 
al., 1997]. A number of authors have suggested that 
technical complexity adversely affects project outcomes, 
including aspects such as project completion and delivery 
of expected benefits [Barry & Lang, 2003; Jiang & Klein, 
2000; Parr & Shanks, 2000]. Jiang & Klein [1999] found 
a significant negative relationship between application 
complexity and overall system success. High project 

Developers 
 Technical expertise & experience 
 Problem-solving competency 
 Social & communication skills 
 Problem/application domain knowledge 
 Motivation & commitment 
 Norms, values, beliefs & assumptions 
 

Users 
 Expectations 
 Attitude & involvement 
 Experience & skills  
 

Top management 
 Sustained support, commitment, understanding 
 Project oversight, business alignment, resource availability, 

influencing user attitudes  
 

External agents 
 Intermediaries between software producers & consumers 
 Management & control challenges 
 

Project team 
 Size, composition & stability 
 Collective expertise & skill mix 
 Defined roles & responsibilities 
 Relationships & cohesiveness 
 

Social interaction 
 Communication 
 Alignment of goals & expectations 
 Understanding 
 Conflict & politics 
 

Project 
Outcomes 

 

Institutional Context 
 

Development 
Processes 

People and 
Action 

 

Project Content 



complexity can pose problems for various people 
associated with a software system. Lyytinen & 
Hirschheim [1987] suggest that, in such cases, individuals 
often find it difficult to understand the system, and to 
articulate and act on their concerns. 

A project that is new to an organization (in terms of 
application domain, required functionality) can pose 
problems because the organization may lack the relevant 
knowledge, skills or competencies to successfully 
complete it. To access these skills or competencies, the 
organization may outsource (part of) the project [Yetton 
et al., 2000], introducing further risk. Yetton et al.’s 
survey of project managers [2000] found that newness 
reduced the chance of project completion, with newer 
projects being more problematic and more likely to be 
redefined. 

 
5.2 Project Scope, Goals and Objectives 
A number of studies have highlighted the importance to 
project success of an appropriate and achievable project 
scope, and well-defined and clear project goals or 
objectives [Aladwani, 2002; Jiang et al., 1996; Kim & 
Peterson, 2003; Martin & Chan, 1996; Peterson et al., 
2002; Somers & Nelson, 2001]. Empirical findings 
suggest that less than successful project outcomes can 
arise from excessively large project scope, 
underestimating the scope of a project, changing scope or 
objectives, unclear goals or objectives, lack of agreement 
on goals or objectives among interested parties (e.g. 
management, information systems staff, users), or elusive 
goals that emerge and change as the project proceeds 
[Barry & Lang, 2003; Keil et al., 1998; Keil et al., 2002; 
Oz & Sosik, 2000; Pan et al., 2004; Parr & Shanks, 2000; 
Schmidt et al., 2001]. 

It has been argued that clear project goals can help 
software system projects address the needs and 
expectations of both users and the organization. In this 
sense, the project goals actively guide the determination 
of information requirements [Kim & Peterson, 2003]. 
According to Aladwani [2002], clear, well-defined project 
goals enable the project team to develop a common 
understanding of the problem and so develop a unified 
(and therefore less risky) approach to solving it.  

Yetton et al. [2000] point out that success is more likely 
when project goals are well communicated to all 
concerned with the project. They view clarifying and 
communicating project goals or objectives to be the role 
of senior management. Aligning project goals with the 
goals of the organization is also perceived to be important 
in ensuring that the system as delivered supports 
organizational strategies [Aladwani, 2002; Clegg et al., 
1997; Kim & Peterson, 2003; Martin & Chan, 1996; 
Peterson et al., 2002; Poulymenakou & Holmes, 1996]. 
Clegg et al. [1997] found that the integration of 
technology and business goals was regarded as the 
responsibility of senior management. 

These challenges are enduring.  According to Lyytinen & 
Hirschheim [1987], part of the cause of systems 
development failure lies in the fact that goals are often 
ambiguous, particularly with respect to technical, data, 
user or organizational requirements.  Project goals tend to 
focus on quantitative aspects, such as the technical 
aspects of systems development and the economic aspects 
of organizational performance. Furthermore, goals reflect 
values – often those of management or information 
systems professionals – that may later be incorporated 
into the system being developed. The uncritical adoption 
of tangential goals and narrow perspectives can lead to 
‘expectation failure’, particularly on the part of users. 

 
5.3 Resources 
Like any project within an organization, the level of 
resources made available to a software systems project 
(including money, people and time for development and 
implementation) can be central to its outcome (Table 3). 
Not only is the provision of adequate resources perceived 
to be important for ensuring successful systems 
development, but the allocation of inadequate resources is 
often perceived as contributing to the problems 
encountered in challenged or failed projects. Even where 
adequate resources are made available, problems can arise 
where the project exceeds its allocated costs or project 
schedule or where the project schedule is altered in some 
way [Linberg, 1999]. Provision of adequate resources can 
be particularly critical to organization-wide systems, 
which can be expensive, time-consuming and resource-
intensive [Wixom & Watson, 2001]. 

Table 3: Contribution of resources to system project outcomes 

Financial resources 
• Adequate financial resources perceived to be important to successful systems development [Fitzgerald, 1998a; Jiang et al., 1996; Martin & Chan, 

1996; Nandhakumar, 1996; Wixom & Watson, 2001] 
• Inadequate financial resources perceived as contributing to problems encountered in software systems projects [Jiang et al., 1998a] 
Development time 
• Adequate development time perceived to be important to successful development [Fitzgerald, 1998a; Martin & Chan, 1996; Wixom & Watson, 

2001] 
• Inadequate development time or unrealistic deadlines perceived as contributing to the problems encountered in projects [Jiang et al., 1998a; 

Linberg, 1999; Oz & Sosik, 2000; Schmidt et al., 2001] 
Human resources 
• Adequate or appropriate project staff perceived to be important to successful development [Jiang et al., 1996; Martin & Chan, 1996; Wixom & 

Watson, 2001] 
• Insufficient or inappropriate project staff perceived as contributing to problems encountered in projects [Barry & Lang, 2003; Jiang et al., 1998a; 

Keil et al., 2002; Linberg, 1999; Nandhakumar, 1996; Schmidt et al., 2001] 
• Project staff turnover perceived as contributing to problems encountered in projects [Bussen & Myers, 1997; Schmidt et al., 2001; Sumner, 2000; 

Yetton et al., 2000] 

  



The allocation of adequate resources can indicate senior 
management support and commitment to a project, can 
help to overcome organizational obstacles, and can enable 
the project team to meet project milestones [Wixom & 
Watson, 2001]. On the other hand, perceived 
unwillingness of the organization to provide adequate 
resources can demotivate members of the project team, 
causing them to question the project’s importance and to 
not fully commit to the project.  Furthermore, unrealistic 
project schedules can result in extreme workload 
pressures that undermine developer creativity and 
compromise project quality [Linberg, 1999]. 

The effect of human resources is not confined solely to 
insufficient staff numbers for development. People with 
appropriate technical infrastructure skills are also needed 
[Schmidt et al., 2001]. Limited access to technical 
expertise in certain areas or competition between projects 
for common human resources can adversely affect or 
delay a project [Linberg, 1999; Nandhakumar, 1996]. 
Project staff turnover, especially the loss of key project 
personnel, can remove critical knowledge about the new 
system, causing time delays and a loss in user confidence 
that the system will meet specifications [Schmidt et al., 
2001]. 

 
5.4 Technology 
There are clearly many considerations relating to either 
hardware or software that can potentially influence the 
outcome of a software systems project. Inappropriate 
technology selection or use, rapidly changing or new 
technology, inadequate or inappropriate technical 
resources available to design and build a system, and 
difficulties with data, can all result in a challenged 
technological solution [Kim & Peterson, 2003]. The level 
of software modification undertaken can negatively 
impact on project success in packaged software projects 
such as ERP implementations [Mabert et al., 2003; 
Sumner, 2000].  

The use of appropriate technology is perceived to be 
important for system success in some cases [Kim & 
Peterson, 2003; Nandhakumar, 1996; Peterson et al., 
2002; Somers & Nelson, 2001; Wixom & Watson, 2001], 
but not necessarily in others [Jiang, Klein et al., 2000; Oz 
& Sosik, 2000; Yetton et al., 2000]. It may be that there is 
an indirect effect – for example, the increasing software 
and hardware options available means that the technology 
infrastructure of an organization and the technical 
expertise available are important considerations in 
whether or not particular technologies are appropriate 
[Kim & Peterson, 2003]. Because a high proportion of 
application code is infrastructure (70% on average), it has 
been suggested that purchasing standard software 
infrastructure rather than building it can positively 
influence project outcomes [Johnson et al., 2001]. The use 
of an appropriate technical architecture can be helpful for 
managing project complexity [Vidgen et al., 2004].  

Wixom & Watson [2001] found that the use of 
appropriate ‘development technology’ (comprising the 
hardware, software, methods and tools required to 
complete a project) was significantly associated with 
successful technical implementation. They suggest that 

development technology influences the efficiency and 
effectiveness of the project team. Aladwani [2000; 2002] 
found that adequacy of development tools was 
significantly positively associated with project 
performance. Not only is use of appropriate hardware and 
software technologies important for delivering an 
adequate technological solution, it can be important for 
ensuring user acceptance. For example, in an in-depth 
study of an EIS development, the use of impressive 
interfaces was perceived to be important in ensuring 
executive acceptance [Nandhakumar, 1996].  

The introduction of unproven or new technology is also 
perceived by some to be an important risk factor in 
various aspects of successful completion of a software 
project [Jiang & Klein, 1999; Keil et al., 1998; Schmidt et 
al., 2001; Wastell & Newman, 1996], although Jiang & 
Klein [2000] reported no significant relationship between 
technological newness and project effectiveness. 
However, Wastell & Newman [1996] identified the use of 
proven software as a critical factor in a case study of 
successful systems development.   

The impact of various technical problems that may arise 
during the course of a project on the outcome of that 
project can be mediated by the technical expertise 
available. For example, in a case study of four projects 
reported by Butler & Fitzgerald [1999b], various 
technical problems were encountered with introducing 
client-server architectures, developing a corporate data 
warehouse, evaluating hardware platforms, and 
integrating and interfacing new and existing systems. 
Overcoming project technical obstacles was perceived to 
be critical to the success of the development process, and 
required significant developer or vendor technical skills 
and expertise. 

Data can also present problems to a software systems 
project. In designing and developing a new solution, the 
data may be incorrect or in an inappropriate form [Bussen 
& Myers, 1997; Nandhakumar, 1996]. Inadequate 
management of data issues, such as availability, 
ownership and security, can also lead to problems for the 
project team, such as lack of cooperation from groups 
outside the scope of the project [Nandhakumar, 1996]. 
Data quality is particularly critical in the development and 
implementation of enterprise-wide systems, given the 
need for data integration across the organization [Somers 
& Nelson, 2001; Sumner, 2000; Umble et al., 2003; 
Wixom & Watson, 2001]. 

Key properties or attributes of the influences that 
comprise the project content dimension are summarized 
in Figure 4. 

 
6. INFLUENTIAL FACTORS – SYSTEMS 

DEVELOPMENT PROCESSES 

This section discusses influences related to aspects of the 
systems development process. In particular, it deals with 
processes of requirements determination, project 
management, use of a standard method, user participation 
in the systems development process, user training, and the 
management of change arising from systems development 
and implementation. 



6.1 Requirements Determination 

Requirements determination is widely regarded as a 
critical step in software systems development [Alvarez, 
2002; Coughlan et al., 2003; Flynn & Jazi, 1998; 
Urquhart, 1999, 2001]. Essentially, requirements 
determination involves achieving a shared understanding 
of the information, processes and functions that need to 
be incorporated into the new system [Al-Karaghouli et al., 
2005; Coughlan et al., 2003; Urquhart, 1999, 2001]. 
Although there are often many individuals or groups with 
an interest in a system, expectations and functional needs 
are often elicited from the intended users of the system 
[Lemon et al., 2002]. In addition to user requirements, 
there may be business requirements that the system will 

need to satisfy, or technical requirements related to the 
existing IT infrastructure, the need for integration with 
other systems, regulatory requirements, or the system 
itself in the case of packaged software acquisition. A 
(formal) requirements specification document is usually 
produced that specifies what the system should do, and 
often functions as a contract between the project team and 
the sponsors of the system. It can also serve to guide 
subsequent design activities. The realization of user 
requirements – delivering a system that matches the 
users’ needs – is perceived as important by various parties 
with an interest in a system, including development 
managers and staff, and users and their managers [Li, 
1997].  

Figure 4: Properties/attributes of influences related to project content 

 

A number of empirical studies have highlighted the 
importance of well-defined and clearly stated 
requirements to project success [Lemon et al., 2002; 
Procaccino et al., 2005; Procaccino et al., 2006; Verner & 
Evanco, 2005]. Similarly, a lack of or misunderstood 
requirements is considered to be a project risk factor 
[Kappelman et al., 2006; Keil et al., 1998; Keil et al., 
2002; Schmidt et al., 2001]. Other authors observe that 
poorly defined or unclear requirements are often an 
important factor in challenged or abandoned projects 
[Barry & Lang, 2003; Bussen & Myers, 1997]. Unstable 
or changing requirements are also perceived to render 
software projects problematic [Barry & Lang, 2003; Keil 
et al., 1998; Oz & Sosik, 2000; Schmidt et al., 2001]. 
Strategies that have been suggested to counter the risk of 
changing requirements include using iterative design, in 
which different parts of the system’s functionality are 
delivered in different phases [Johnson et al., 2001; 
Larman & Basili, 2003; Schmidt et al., 2001], prototyping 
[Beynon-Davies et al., 1999; Hardgrave et al., 1999] or 
agile methods [Vinekar et al., 2006; Williams & 
Cockburn, 2003]. 

Software projects in which the system requirements are 
poorly defined can experience difficulties because the 
resources required in order to complete the project are not 
fully understood or made available [Butler & Fitzgerald, 
1999b; Schmidt et al., 2001]. Poor requirements 
determination can also result in unclear objectives for the 

project team, or a system that does not meet the needs and 
expectations of one of the groups with an interest in it. 
The latter can result from a failure to identify and include 
in the determination of requirements all parties with an 
interest in a system [Pan et al., 2004; Schmidt et al., 
2001]. This is particularly relevant where the system 
spans multiple, diverse groups whose needs must be 
understood and communicated to the project team 
[Wixom & Watson, 2001]. The beliefs, ideas and 
assumptions held by those developing the system can 
influence the conduct of requirements determination, 
particularly in terms of who is (and is not) included. 

Drawing on a post-hoc longitudinal case study of four 
systems development projects, Butler & Fitzgerald 
[1999b] argue that, for system project success, adequate 
time needs to be spent with relevant users to elicit user 
requirements. They observed that the outcome of 
requirements determination depends both on the time that 
is allocated to it and, more importantly, on the 
participation of suitable users. Butler & Fitzgerald 
[1999b] note that within their case study organization, 
decisions concerning the time allocated for requirements 
determination were not usually made by the development 
team, and were often made in response to external 
conditions, without due regard to what requirements 
determination actually entailed.  

Requirements determination is a complex social process. 
Various authors have highlighted the importance of 

Project characteristics 
 Size 
 Complexity 
 Newness to organisation 
 

Project scope, goals & objectives 
 Appropriateness & achievability 
 Stability & agreement 
 Definition, clarity & communication 
 Alignment with organizational goals 
 

Resources 
 Financial resources 
 Development time 
 Human resources 
 

Technology 
 Development technology & tools 
 New or unproven technology 
 Form, quality & availability of data 
 Level of software modification 

Project 
Outcomes 

 

Institutional Context 
 

Development 
Processes 

People and 
Action 

Project 
Content 
 



communication and mutual understanding between 
participants with particular reference to the construction 
of system requirements [Al-Karaghouli et al., 2005; 
Coughlan et al., 2003; Flynn & Jazi, 1998; Guinan et al., 
1998; Urquhart, 1999, 2001]. Problems in requirements 
determination can arise because users may be unable or 
unwilling to articulate their requirements, or they may not 
even know them. Different user constituencies may have 
different requirements or differing viewpoints on 
requirements. Users and developers often speak different 
‘languages’ and have different frames of reference. Even 
if users are willing or able to share their requirements, 
these are typically translated for design and 
implementation by developers in most systems 
development approaches. Users may utilize different 
mental models or ontological views of organizations and 
systems. They may not understand (or support) 
requirements models used by developers or technically-
oriented modeling languages. Developers may not 
sufficiently understand users’ work or needs, or may be 
unable to elicit user requirements, or may think they 
know already what is required. Further, they may have 
interests or objectives that take precedence over meeting 
user requirements (e.g. maintaining technical credibility 
or technical design integrity) [Al-Karaghouli et al., 2005; 
Alvarez, 2002; Flynn & Jazi, 1998; Guinan et al., 1998; 
Urquhart, 2001].  

These problems may be compounded by many 
approaches to (and tools used in) requirements 
determination, which tend to assume that requirements 
are objective artifacts that can be codified, specified at the 
outset, and remain unchanged during development. Such 
approaches may not adequately recognize the emergent 
and socially-constructed nature of requirements, nor the 
political aspects of requirements determination, in which 
system stakeholders may have different goals, objectives 
and interests. Often insufficient attention is paid to the 
social and political context in which the system will be 
situated [Flynn & Jazi, 1998; Galliers & Swan, 2000]. 
 

6.2 Project Management 
In general terms, software systems development project 
management involves planning, organizing and managing 
organizational resources, both financial and human, for 
the duration of a project. Given the complex nature of 
such projects, the intricacy of the social interactions that 
can occur in and around systems development, and the 
dynamic nature of the development context, it is hardly 
surprising that empirical studies have emphasized the 
perceived value placed on project management by the 
various parties involved in a systems project [Butler & 
Fitzgerald, 1999b; Jiang et al., 1996; Lemon et al., 2002; 
Linberg, 1999]. According to Johnson et al. [2001], the 
increased project success rate observed between 1994 and 
2000 in the Standish Group’s CHAOS studies was due in 
part to improved project management processes, better 
management tools, and more highly skilled project 
managers. An international survey in 2005 found that the 
organizational profile of project management continues to 
increase, with more organizations using project 
management processes, having project management 
offices (PMOs), using business cases to justify investment 

in systems projects, and undertaking project governance 
for selecting and approving projects (but less so for 
monitoring projects and measuring benefits) [KPMG, 
2005]. 

Project planning activities include defining the project; 
estimating its size, cost, and scheduling; assessing 
potential risks; and developing a project plan. Such 
activities are usually undertaken by the project manager 
or leader, a steering committee or an ad hoc planning 
group. Empirical studies have highlighted the perceived 
importance of planning activities to successful project 
outcomes [Aladwani, 2000; Barki et al., 2001; Butler & 
Fitzgerald, 1999b; Kim & Peterson, 2003; Lemon et al., 
2002; Mabert et al., 2003; Peterson et al., 2002]. In their 
survey of project managers, Yetton et al. [2000] found 
that project planning reduced budget variances, but had 
no effect on project completion rates. Planning was also 
found to reduce project team instability. Consistent with 
these findings, inadequate or insufficient planning, poor 
estimates, and poor risk management have been held 
responsible for detrimental project outcomes [Keil et al., 
2002; Martin & Chan, 1996; Yetton et al., 2000]. Poor 
planning can result in unrealistic deadlines or budgets, or 
poorly defined project goals and objectives. 

Once systems development is underway, project 
management invariably involves managing and 
controlling resources in the pursuit of project objectives. 
Time and cost targets may be adjusted to reflect changes 
in both the project and the organizational context in which 
it is taking place [Clegg et al., 1997]. Monitoring and 
control, providing feedback to the project team (e.g. 
through regular project review meetings), providing them 
with adequate information and the opportunity to make 
suggestions relevant to the project (e.g. on project goals 
and objectives, status, any changes, user needs), 
coordination of multidisciplinary project teams, and 
coordination and collaboration with organizational units 
or groups affected by the system, are all perceived to be 
important factors influencing system success  [Barki et 
al., 2001; Butler & Fitzgerald, 1999b; Jiang et al., 1996; 
Jonasson, 2002; Kim & Peterson, 2003; Pan et al., 2004; 
Peterson et al., 2002; Schmidt et al., 2001; Wang et al., 
2006]. In a longitudinal case study, Butler & Fitzgerald 
[1999b; 2001] found that developers and user 
representatives felt that regular project meetings enabled 
project members to keep abreast of each others’ activities 
and of external issues, and that they were good for 
morale. User representatives felt that the project meetings 
also enabled them to feel part of the team. 

Use of a formal project management method, project 
management techniques or quality control standards are 
believed to facilitate the project management process 
[Barki et al., 2001; Johnson et al., 2001; Kautz et al., 
2004]. Based on a survey of systems project managers, 
Gowan & Mathieu [2005] found that enterprise-wide 
system upgrade projects are more likely to be completed 
by their target completion date when a formal project 
management method is used. They also found that there 
was a greater need for project management interventions 
in larger or more technically complex projects. However, 
Clegg et al. [1997] caution that project management 
methods and techniques are often criticized for their 



techno-centric and bureaucratic effects and their neglect 
of human and organizational issues. 

A number of studies have emphasized the importance of 
having an experienced and competent project manager or 
leader with both strong technical and interpersonal skills 
[Coughlan et al., 2003; Jiang et al., 1996; Jiang, Klein et 
al., 2002; Johnson et al., 2001; Kappelman et al., 2006; 
Keil et al., 2002; Kim & Peterson, 2003; Peterson et al., 
2002; Schmidt et al., 2001; Sumner et al., 2006; Verner & 
Evanco, 2005; Wang et al., 2005; Wastell & Newman, 
1996]. Project leaders can play an influential role in 
shaping working conditions through their decision 
making and their ability to motivate and empower the 
project team [Jiang, Klein et al., 2000; Linberg, 1999; 
Sumner et al., 2006; Verner & Evanco, 2005; Wang et al., 
2005]. However, it has also been suggested that the 
project manager or leader needs to be able to balance his 
or her controlling activities with recognition of the 
autonomous self-control of the project team [Kim & 
Peterson, 2003; Vidgen et al., 2004]. 

Several authors emphasize the role of the project manager 
in mediating between the various groups involved in the 
project. This might include communicating and 
translating business and technical requirements between 
different disciplines [Coughlan et al., 2003; Johnson et 
al., 2001; Standish Group International, 2001], building 
consensus and commitment among the project 
stakeholders [Jiang, Klein et al., 2000; Pan et al., 2004], 
or acting as a buffer between the project team and 
external influences [Linberg, 1999]. Verner & Evanco 
[2005] found that changing the project manager during a 
software development project was significantly negatively 
correlated with project success. 

 
6.3 Use of a Standard Method 
A standard method of software systems development is a 
formal or documented set of procedures for directing or 
guiding development, whether commercially or publicly 
available, or developed internally by an organization. The 
use of “method” as referring to the codified systematic 
conduct of systems development is primarily European. 
North American usage tends to refer to a method as a 
“methodology” [Iivari et al., 2000/2001; Robey et al., 
2001]. Each standard method embodies a set of guiding 
principles and is based upon a particular philosophy, 
paradigm or approach to systems development. Usually, 
each method is supported by a set of preferred 
development techniques and tools [Fitzgerald et al., 2002; 
Iivari et al., 2000/2001; Iivari & Maansaari, 1998; Robey 
et al., 2001; Wynekoop & Russo, 1997]. 

According to much (although not all) of the literature, use 
of an appropriate standard method of systems 
development can improve both the development process 
and its outcomes, particularly in large or complex projects 
[Butler & Fitzgerald, 1999b; Fitzgerald, 1998c; Kim & 
Peterson, 2003; Peterson et al., 2002]. A standard method 
can facilitate the development process by providing an 
element of control over aspects such as the sequence of 
development activities, project management, cost 
allocation, project team composition and user 
participation [Lyytinen & Hirschheim, 1987]. Lack of or 

inappropriate use of a standard method has been 
considered to increase the risk of project failure [Pan et 
al., 2004; Schmidt et al., 2001]. A number of studies, 
however, have failed to find a significant association 
between the use of standard methods and project success 
[Barry & Lang, 2003; Fitzgerald, 1998a; Sawyer & 
Guinan, 1998]. Relative to other factors influencing 
systems development, use of a standard method has not 
usually been regarded as a primary mechanism for 
improving project outcomes, and may not be enough in 
itself to ensure success of a project [Barry & Lang, 2003; 
Warne & Hart, 1996]. Kiely & Fitzgerald [2003] suggest 
that while standard methods do not solve all systems 
development problems, they can be of help if used 
properly by experienced developers. 

In a survey of development and deployment professionals 
in the United Kingdom examining the economic impact 
of using methods on systems development, Chatzoglou 
[1997] found that using any method was generally better 
than using no method at all. For example, the use of a 
method for the entire development process reduced the 
elapsed time, effort and cost of development, and slightly 
reduced the number of people involved in development. 
The use of a method required fewer iterations of the 
requirements analysis process. Because different methods 
had different economic impacts, Chatzoglou [1997] 
suggests that specific methods can help to achieve the 
desired economic result. 

Even where a method is used, the benefits to be had may 
depend on the context in which it is used [Fitzgerald, 
1998b]. In some situations, such as small organizations or 
small projects with a small development team, the use of 
methods may hinder rather than help development [Kiely 
& Fitzgerald, 2002, 2003]. Different groups may also 
have different perceptions of the relative value of using a 
standard method. In a Delphi study of software project 
managers and users, Keil et al. [2002] found that system 
users perceived that the lack of an effective development 
process or method was the most important risk to a 
software systems project (as it would result in a product 
that did not meet their needs), whereas it was not 
perceived to be a risk by project managers. They note that 
users appear to be concerned that project managers may 
not use an effective development method, while project 
managers are more confident in their chosen method.  

According to Robey et al. [2001], standard methods can 
influence social interactions and relationships between 
project participants, by, for example, assigning roles and 
responsibilities, and indicating how such roles are to 
interact. Within systems development, participants who 
control development are in a position to allocate resources 
and make decisions that may further their own interests. 
Certain methods place developers in control of 
development, while others place users or other 
stakeholders in control. Robey et al. [2001] go on to 
suggest that the effects of standard methods on social 
behaviors among participants can potentially influence 
the outcome of a project. For example, the use of certain 
systems development tools and methods can improve the 
work and (therefore) the status of development 
professionals, but not necessarily other groups, who may 
consequently feel that the system does not address their 



work needs as effectively as it might [Lyytinen & 
Hirschheim, 1987]. 

 
6.4 User Participation 
The term ‘user participation’, as distinct from user 
involvement [Barki & Hartwick, 1994], is commonly 
used as a generic label describing the activities performed 
by users or their representatives in systems development. 
A number of authors have reviewed or conducted meta-
analyses of prior empirical studies examining the 
relationship between user participation and system 
success [Hwang & Thorn, 1999; Mahmood et al., 2000]. 
Overall, it seems that while in some studies user 
participation was found to positively influence system 
outcomes, many studies were inconclusive regarding this 
issue. 

In terms of specific empirical studies, a number have 
identified a significant positive relationship between user 
participation and system success [Coombs et al., 1999; 
Doherty et al., 2003], user satisfaction or acceptance 
[Foster & Franz, 1999; Hardgrave et al., 1999; Lin & 
Shao, 2000; Lu & Wang, 1997; Terry & Standing, 2004], 
project completion [Wixom & Watson, 2001; Yetton et 
al., 2000], project performance [Aladwani, 2000; 
Procaccino et al., 2005], system impact [Lynch & Gregor, 
2004] or data quality [Zeffane & Cheek, 1998]. Case 
study evidence also suggests that active user participation 
is an important component of successful systems 
development [Butler, 2003; Kim & Pan, 2006; Sumner, 
2000; Wastell & Newman, 1996; Wilson et al., 1997]. 

Perhaps more importantly, various groups of 
organizational participants perceive user participation to 
be important to system success, including development 
managers, systems developers, users, and user managers 
[Butler & Fitzgerald, 1999b; Fitzgerald, 1998a; Johnson 
et al., 2001; Kim & Peterson, 2003; Lemon et al., 2002; 
Peterson et al., 2002; Standish Group International, 1999, 
2001]. Similarly, lack of user participation is perceived to 
be a project risk factor, contributing to system failure or 
abandonment [Clegg et al., 1997; Johnson et al., 2001; 
Keil et al., 1998; Keil et al., 2002; Pan, 2005; Peterson & 
Kim, 2003; Schmidt et al., 2001]. Howcroft & Wilson 
[2003] describe an organization in which user 
participation became so entrenched in the systems 
development culture that it was inconceivable that a 
software system project would be developed without the 
participation of users. 

At what stages in the systems development process user 
participation occurs also impacts on project outcomes 
[Lin & Shao, 2000; McKeen & Guimaraes, 1997; Saleem, 
1996]. Empirical studies have shown that user 
participation in the early stages of development can have 
greater impact on user acceptance of a system than 
participation at later stages [Foster & Franz, 1999; Kujala, 
2003; Pan, 2005]. Participation throughout the entire 
systems development process may also encourage user 
acceptance of the system [Butler & Fitzgerald, 1999b, 
2001]. 

Nevertheless, there have been projects undertaken without 
user participation that have succeeded and other projects 

incorporating participation that have not been successful. 
For example, Gallivan & Keil [2003] present a case study 
of user participation in a project and its subsequent 
redeployment and redesign, spanning some twelve years. 
Despite high levels of user participation throughout this 
time, users’ perceptions of the usefulness of the software 
system and their actual usage of it remained low, and the 
project was eventually terminated.  

User participation is believed to play a role in shaping 
users’ perceptions of the system in a number of ways. By 
participating, users can gain an understanding of the 
system being developed, which may influence their 
expectations about how the system will serve their 
interests. This may ultimately avoid a mismatch between 
user expectations and the delivered system. User 
participation is also believed to improve users’ attitude to 
and involvement with the system, although the 
relationship may be influenced by the nature and degree 
of participation (e.g. voluntary or mandatory 
participation, direct or indirect participation, and the level 
of actual influence on design decisions). In other words, it 
is important that participation is meaningful, involving 
significant consultation, communication, personal 
autonomy, decision-making, responsibility and control 
[Butler & Fitzgerald, 1997; Gallivan & Keil, 2003; 
Hunton & Beeler, 1997; Kirsch & Beath, 1996; Lynch & 
Gregor, 2004; Saleem, 1996; Wilson, 2002; Wilson & 
Howcroft, 2002; Wilson et al., 1997].  

By playing an active role in development, users form a 
sense of ownership of the project and are more likely 
accept the developed system [Irani et al., 2001; Keil et al., 
1998; Myers & Young, 1997]. To this end, users outside 
the group of user representatives may also need to feel 
involved and that their interests are being adequately 
conveyed by their representatives [Butler & Fitzgerald, 
1997]. Participation may cause users to become attached 
to (involved with) the system solution developed, even 
though it may not meet other criteria for outcome success, 
such as meeting organizational needs or the needs of other 
users [Myers & Young, 1997]. However, even with user 
participation, user resistance may still occur [Butler & 
Fitzgerald, 2001]. 

Another important aspect of user participation is that it 
provides a forum for interaction and communication 
between users and other groups, in particular systems 
developers. Such interaction is perceived to enable users 
to articulate their interests, objectives, and needs; to 
facilitate the mutual exchange of views and expectations, 
improving user-developer understanding; and to assist in 
constructive conflict resolution [Markus & Mao, 2004].  

A number of authors have emphasized the importance to 
system success of active participation in the systems 
development process of wider groups with an interest in 
the system (including groups external to the 
organization), particularly in modern software systems 
development contexts [Chang, 2006; Jiang, Chen et al., 
2002; Liebowitz, 1999; Markus & Mao, 2004; Newman 
& Sabherwal, 1996; Pan, 2005; Pan & Flynn, 2003; 
Ravichandran & Rai, 2000; Roberts et al., 2000]. In this 
way, the interests and objectives of each group may be 
represented or articulated, mutual understanding may be 
facilitated, any issues or concerns that arise may be 



addressed, and commitment (particularly from senior 
management) may be maintained for the duration of the 
project [Jiang, Chen et al., 2002; Newman & Sabherwal, 
1996; Pan, 2005; Ravichandran & Rai, 2000]. 
Participation of groups external to the organization (e.g. 
vendors or external consultants) may provide access to 
knowledge (e.g. about emergent technologies) that may 
not be available within the organization [Ravichandran & 
Rai, 2000]. Failing to include all interested groups, 
including non-represented user groups, in the system’s 
development can result in a system that does not address 
their needs, or can lead to their lack of commitment or 
active resistance to the system [Pan, 2005; Pan et al., 
2004]. For example, Pan [2005] describes the 
development of an electronic procurement system in 
which the procurement manager ignored the concerns of 
the organization’s suppliers who felt their business 
interests were threatened by the new system. The 
perceived threat of the new system united the suppliers in 
influencing the organization to abandon the new system. 

 
6.5 User Training 
User training and education has been identified in the 
literature as a further factor that can influence the 
outcome of a software systems development and 
deployment project. A number of studies have found that 
user training can be important for system success 
[Coombs et al., 1999; Riley & Smith, 1997; Skok & 
Legge, 2002; Sumner, 2000; Wastell & Newman, 1996], 
although it may be time-consuming in some large projects 
[Mabert et al., 2003]. 

Training seems to affect project outcomes through its 
influence on users’ attitudes towards the system. Through 
a training program, users can gain skills and experience in 
utilizing the system, potentially increasing their 
confidence in using it, as well as greater knowledge and 
understanding of the system, which can influence their 
acceptance (or rejection) of it [Skok & Legge, 2002]. It 
has been argued that user education and training may be 
critical to the long term success of a system, especially 
when users feel threatened (such as by changed job roles), 
as incomplete knowledge and understanding of the system 
and a lack of appreciation of changes can lead to 
resistance towards new systems [Irani et al., 2001; Marion 
& Marion, 1998]. Wilson & Howcroft [2002] argue that 
training can also be used to try to persuade users of the 
benefits of a new system in an effort to enroll them to use 
it.  Although training usually begins after installation has 
occurred [Jiang et al., 1998a], Mahmood et al. [2000] 
suggest that by introducing a training program earlier in 
the development process users may contribute more 
effectively to development. 

 
6.6 Management of Change 
The management of changes resulting from systems 
implementation has long been recognized as important to 
the outcome of software systems projects [Lyytinen & 
Hirschheim, 1987]. The introduction of a system to an 
organization can produce considerable changes and have 
consequences for many users of the new system [Butler & 

Fitzgerald, 1997; Riley & Smith, 1997]. Confronted with 
change, individuals may experience a range of negative 
emotions such as fear, anger or denial. They may be 
reluctant to share their knowledge or information, or may 
provide inaccurate or conflicting information, if they feel 
that their jobs are threatened. They may resist changing 
how they work or even resist using the new system 
[Butler, 2003; Butler & Fitzgerald, 1999b, 2001; 
Coughlan et al., 2003; Lin & Shao, 2000; Lu & Wang, 
1997; Olesen & Myers, 1999; Pan, 2005; Pan et al., 2004; 
Skok & Legge, 2002; Wixom & Watson, 2001]. 
According to van Offenbeek & Koopman [1996], 
potential resistance increases when the individuals 
involved have a low potential for change, a low 
willingness to change, and when the impact on the 
organization is high.  

Risk management notwithstanding, some consequences 
cannot be anticipated or identified at the start of a project. 
Increasingly sophisticated, flexible and integrated systems 
increase the potential for unpredictable or unintended 
consequences [Doherty et al., 2003; Robey & Boudreau, 
1999]. Further, individuals may interpret or appropriate 
the system in a variety of ways during its development 
and use [Eason, 2001]. 

While change management is not necessarily an issue in 
every project, many studies highlight the ongoing 
importance for system success of addressing 
organizational change, or the perils of ignoring or 
inadequately understanding the dynamics of change that 
occur for both individuals and the organization [Butler, 
2003; Butler & Fitzgerald, 1997, 1999b, 2001; Dhillon, 
2004; Irani et al., 2001; Kappelman et al., 2006; Lu & 
Wang, 1997; Schmidt et al., 2001]. Systems development 
can overlook organizational changes, such as changes to 
structures and processes, workloads, organizational roles, 
job content or autonomy [Clegg et al., 1997; Doherty et 
al., 2003]. Dhillon [2004] argues that a consideration of 
power relationships within an organization during 
systems design and implementation is essential in order to 
manage the alignment of these consequential changes.  

Several authors suggest that change management issues 
need to be addressed and resolved early in the systems 
development process to avoid subsequent problems 
[Butler & Fitzgerald, 1999b; Skok & Legge, 2002]. Eason 
[2001] notes that even when change management 
practices are well established, they tend to occur after 
systems design, restricting the possibilities for social or 
organizational issues to be taken into account. With 
respect to enterprise-wide systems, Skok & Legge [2002] 
recommend that organizations need to act to change the 
culture within the organization, possibly starting long 
before the new system is implemented. Enterprise-wide 
systems can involve significant changes, such as changing 
business processes, organizational structure and culture; 
altering data ownership, use and access; or changing 
roles, work processes and jobs specifications [Chang, 
2006; Doherty & King, 1998b; Doherty et al., 2003; Irani 
et al., 2001; Riley & Smith, 1997; Skok & Legge, 2002; 
Wixom & Watson, 2001].  

As noted earlier, a number of authors suggest that 
managers within an organization, particularly top 
management, can play an important role in facilitating 



system-related change by championing the project, 
creating a suitable context for change, and countering any 
negative attitudes [Butler & Fitzgerald, 1999b; Kim & 
Peterson, 2003; Lemon et al., 2002; Riley & Smith, 1997; 
Wixom & Watson, 2001; Yetton et al., 2000]. However, 
some managers may be reluctant to challenge what they 
perceive as powerful user groups [Doolin, 2004; Marion 
& Marion, 1998; Riley & Smith, 1997; Wilson, 2002]. 
Development professionals may also play an important 
bridging role in managing change by facilitating 

communication between different participants in a project 
[Marion & Marion, 1998]. Symon [1998, p. 39] 
emphasizes the role of internal systems developers as 
change agents, “effectively embedD new organizational 
systems into organizational contexts”. 

Key properties or attributes of the influences that 
comprise the development processes dimension are 
summarized in Figure 5. 

Figure 5: Properties/attributes of influences related to development processes 

 
 

7. INFLUENTIAL FACTORS – 
INSTITUTIONAL CONTEXT 

Various authors have argued that contextual properties of 
the organization, as well as the wider social, economic, 
political, cultural, and historical environmental conditions 
in which an organization is located, can influence systems 
development and deployment project outcomes, often in 
unpredictable ways [Bussen & Myers, 1997; 
Constantinides & Barrett, 2006; Gärtner & Wagner, 1996; 
Iivari, 2004a; Mitev, 2000]. Unlike many of the other 
factors discussed above, these contextual factors often lie 
outside the direct control of the project team [Bussen & 
Myers, 1997]. Systems development occurs across layers 
of context, ranging from the local organizational context 
to the national and international environment [Avgerou, 
2001; Christiaanse & Huigen, 1997; Krishna & Walsham, 
2005; Symon, 1998]. Elements of the institutional 
context, comprising both internal organizational 
properties and external environmental conditions, may 
shape project outcomes through their influence on 
systems development processes and procedures, such as 
user participation and standard method use. These 
elements may include an organization’s structures, culture 
and practices, the historical context of system use within 
the organization, and wider socio-economic conditions 
and regulatory requirements. 

 

7.1 Organizational Properties 
The term ‘organizational properties’ is used here to 
encompass a range of organizational structures, practices 
and relations that make software systems development 
possible. These include: institutionalized norms, values 
and beliefs; the distribution of available organizational 
resources (time, money and skills); standard rules and 
operational procedures; established customs and 
practices; formal and informal organizational structures; 
control and coordination mechanisms; reward structures; 
and the division of labor [Knights & Murray, 1994]. 

Particular structural properties and context-specific 
features can enable or constrain the course of systems 
development. For example, structures of authority within 
an organization will influence the time, money, tools and 
other resources available for development, such as 
organizationally-imposed restrictions on system-related 
expenditure [Bussen & Myers, 1997]. Organizational 
structure and culture may discourage or encourage 
communication and cooperation between functional units 
[Gallivan & Keil, 2003]. According to Butler & 
Fitzgerald [2001], the increased size and complexity of 
mature software systems development groups in older or 
larger organizations may decrease their ability to develop 
systems that are perceived as useful. 

Three types of organizational properties that have 
received particular attention in the literature include 
aspects of organizational culture, those related to 

Requirements determination 
 Type, definition, clarity & stability 
 Socially constructed, negotiated & emergent 
 Methods & tools 
 

Project management 
 Project planning 
 Management & control 
 Project management methods & techniques 
 Project manager experience, competence & skills 
 

Use of a standard method 
 Appropriateness & effectiveness 
 Variability & extent of use 
 

User participation 
 Nature, timing & extent 
 Active & meaningful participation 
 Wider range of stakeholders 
 

User training 
 Skills, familiarity & understanding 
 

Management of change 
 Extent & timing 

Institutional Context 
 

Project 
Outcomes 

 

People and 
Action 

Project Content 

Development 
Processes 

 



organizational policy and established practices, and the 
history of systems development and use in the 
organization. 

 
7.1.1 Organizational culture 

Organizational culture can be viewed as a symbolic 
system of learned and shared sets of meanings that 
provide patterns for behavior within an organizational 
setting [Iivari, 2004a; Walsham, 1993]. Relevant aspects 
of organizational culture include systems of ideas and 
symbols, values and beliefs, collective identity, shared 
experiences, and common understandings, interpretations 
and assumptions that shape behavior or action in relation 
to systems development and implementation [Iivari, 
2004a; Robey & Boudreau, 1999].  

The established organizational culture may reflect widely 
accepted norms and values that influence interactions 
between users and developers, inter-departmental 
cooperation, or the intended use of a software system 
[Nandhakumar & Avison, 1999; Nandhakumar & Jones, 
1997; Olesen & Myers, 1999; Somers & Nelson, 2001]. 
For example, an organizational culture based on 
consensus encourages communication and conflict 
resolution [Coughlan et al., 2003], facilitating positive 
project outcomes. Umble et al. [2003] highlight how the 
development of an organizational culture that was 
receptive to change and continuous improvement 
facilitated implementation and acceptance of the changes 
associated with an ERP system. In a contrasting example, 
Olesen & Myers [1999] describe how the existing culture 
and norms of an organization meant that users 
appropriated a new groupware system in a way that 
reproduced their existing work practices rather than 
accepting the work-related changes envisaged by senior 
management. 

In her study of three software development organizations, 
Iivari [2004b] identified multiple discourses on user 
participation that constructed user participation in 
different ways in the organizations. Butler [2003] 
describes the systems development practices in a large 
multinational organization where the social matrix and 
identity of the organization (including culture, structure, 
business processes, communication and learning) were 
shaped by the dominant group of employees who were 
engineers. Engineering ‘communities of practice’ existed 
within the various business functions and retained a high 
degree of autonomy in developing their own systems. 

In another example of the influence of organizational 
culture on systems development, Chae & Poole [2005] 
discuss the development of an enterprise-wide system in a 
university context. The new system was envisaged by the 
project sponsors and project team as a centralized, 
integrating system that could serve as a standard solution 
across different sized organizations and various levels of 
users. Centralization would mean that it would be easier 
to modify the system in response to external changes, 
such as new regulations or laws. However, the system 
was developed locally within particular units rather than 
globally, in an organizational culture that emphasized 
decentralized decision making and autonomy. As 
development proceeded, the project team modified their 

development approach to become more user-oriented in 
an attempt to satisfy the unique needs of the various 
organizational units. According to Chae & Poole [2005], 
the result was an ‘average’ system that satisfied nobody. 
Some units customized the new system using 
workarounds; other units continued using existing 
systems or developed yet other alternatives. 

In studying the development of an EIS, Nandhakumar & 
Jones [1997] found that while established hierarchical 
organizational structures initially restricted opportunities 
for interaction between developers and executive users, 
they also provided a medium for some legitimate 
interaction. In conforming to such established patterns, 
individuals reproduce the norms and values that underlie 
them. However, individuals may also be able to modify 
established patterns of behavior, or at least find ways of 
working around those that are relatively resistant to 
change (e.g. using intermediaries such as secretaries as a 
source of user requirements) [Nandhakumar & Jones, 
1997]. 

 
7.1.2 Organizational policy and practice 

There is a link between organizational culture and the 
policies and practices which emerge around systems 
development. Robey & Newman [1996] suggest that 
organizations may have an embedded cultural orientation 
to systems development (or even sub-cultures with 
different perspectives). They argue that “cultures develop 
rituals that are repeated, and systems development can be 
regarded as a ritualistic cultural practice” [p. 59]. An 
organization’s policies or procedures can enable or 
constrain individuals’ actions by enforcing organizational 
rules or norms of what constitutes appropriate or 
acceptable behavior [Butler, 2003]. In this way, 
organizational policies and established practice related to 
software systems development may define and thereby 
influence human action in development activities [Butler 
& Fitzgerald, 2001]. Once a particular practice has been 
utilized on a routine basis, it becomes institutionalized (or 
taken-for-granted), becoming an integral part of the 
organization’s culture [Butler & Fitzgerald, 1997]. 

Charette [2005] suggests that increasing numbers of 
organizations are assessing their development practices 
using approaches such as the Capability Maturity Model 
(CMM), and its variants, for development, acquisition and 
for people. Such an approach reflects an organizational 
culture that first seeks to have defined and repeatable 
processes before possibly building on these towards 
continuous improvement and optimization. The 
motivation for organizations to adopt such an approach 
may draw on several factors; e.g. these may be financial 
(in terms of being in a position to be awarded contracts), 
or cultural (in terms of embracing the principles of 
continuous improvement). Interestingly, there are to date 
very few empirical studies that have identified process 
maturity as an influential factor in affecting project 
outcomes, at least in terms of the search undertaken here. 

Existing organizational policies and practice may 
constrain the appropriation of systems development 
innovations, such as new standard methods, techniques or 
tools. In a case study of system design, Gasson [1999] 



found that even though attempts were made to utilize a 
new approach to design (integrating business process 
investigation with technical system design), established 
practice continued to influence systems development. It 
did so by constraining the choices of available methods 
and tools, and informing the problem-solving approach of 
the ‘expert’ designer on the project team, who initially 
tried to impose a structured approach on systems 
development. 

However, organizational policies on and practice in 
systems development can change over time [Heiskanen et 
al., 2000; Robey & Newman, 1996]. For example, 
drawing on two projects in a large Irish organization, 
Butler & Fitzgerald [2001] illustrate how the 
organization’s policy on user participation and 
development-related change influenced how user 
participation and change management were enacted. The 
organization had a participative approach to decision-
making and change, which was reflected in their policy 
and institutionalized practice of user participation. Both 
projects had high levels of user participation but still 
experienced change-related problems.  As a result of the 
problems experienced, the organization implemented a 
more structured policy on development-related change 
and negotiated employee commitment to future changes. 
The organization’s policies and procedures in relation to 
systems development continued to evolve, in response to 
either past experiences or to changes in the systems 
development context [Butler & Fitzgerald, 1999a].  

 
7.1.3 Organizational systems history 

Knights & Murray [1994] discuss various aspects of 
technology which form local conditions that may 
influence systems development in an organization. These 
include attitudes to and understandings of systems within 
the organization; the position occupied by development 
specialists within the organizational structure; and the 
legacy and past experience of systems development and 
use. For example, a history of system failures in an 
organizational context can create cynicism or resistance 
towards new systems development [Doolin, 2004]. On the 
other hand, success in prior projects within an 
organization does not necessarily guarantee success in 
future projects [Goldstein, 2005]. 

Various authors have suggested that the analysis of 
system failures (and by analogy, system successes) by 
organizations can potentially play an important role in 
informing software systems development practice (e.g. by 
supporting established practice or suggesting changes) 
[Lyytinen & Robey, 1999; Nelson, 2005; Poulymenakou 
& Holmes, 1996; Warne & Hart, 1996]. However, 
Lyytinen & Robey [1999] argue that many organizations 
fail to learn from their previous systems development 
experiences. By ignoring or reinterpreting relevant 
information, they have learnt to fail to the point that 
failure comes to be accepted as normal. If this situation 
continues, failure itself can become institutionalized. For 
example, in a case study describing the development of an 
electronic procurement system at a local government 
organization in the UK, Pan et al. [2004] found that 
failure had become an acceptable norm.  

An organization’s failure to learn may arise from limited 
time available for reflective analysis, a reluctance to 
allocate additional resources for retrospective analysis of 
a failed project, a desire to move on, a high turnover of 
staff with relevant experience and knowledge, and 
established institutionalized arrangements and patterns of 
thinking. There may be no incentives to learn from 
system failures; in fact, organizations may try to forget 
their failures or punish those perceived to be responsible 
for them. Further, organizational structure or competition 
between business units may inhibit interaction, 
information sharing and learning between groups 
involved in a project failure [Lyytinen & Robey, 1999; 
Nelson, 2005]. Lyytinen & Robey [1999] discuss three 
generic ‘myths’ that inhibit learning from failure. These 
are the myth of the ‘technological fix’, in which more and 
better technology will solve systems development 
problems, the ‘organizational’ myth that changing 
organizational design (e.g. changing the organizational 
structure, outsourcing or process re-engineering) will 
overcome development challenges, and the ‘silver bullet’ 
myth, in which a  ‘magical’ solution exists that will 
rectify difficulties encountered in systems development. 

Legacy systems and an organization’s existing 
technological infrastructure can also influence the 
development of software systems [Knights & Murray, 
1994]. According to Chae & Poole [2005], pre-existing 
systems (both internal and external to an organization) 
play an active role in shaping the direction of new 
systems development. Drawing on a case study of the 
development of an enterprise-wide system, they argue 
that pre-existing systems can exert an influence by 
constraining or directing the new development trajectory. 
For example, the new system described by Chae & Poole 
[2005] had to conform to the requirements of the existing 
computing infrastructure in the organization and other 
systems with which it was meant to interface and 
exchange data. In considering design options, the project 
team took account of alternative systems in other 
organizational settings, which acted as standards of 
functionality for the new system. Pre-existing systems can 
also affect approaches to developing a new system 
through developers’ prior experiences and learning. For 
example, Chae & Poole [2005] describe how the project 
team director adopted a relatively conservative approach 
to the project that was influenced by his previous 
experiences in developing large-scale systems. Similarly, 
Symon & Clegg [2005] observe that the history of 
systems development in an organization can influence the 
strategy adopted for user participation in software systems 
projects. 

 
7.2 Environmental Conditions 
Knights & Murray [1994] discuss the general and local 
socio-political and economic conditions within which an 
organization functions. They suggest that “within a 
market economy, these conditions largely concern labor, 
product and capital markets, their respective regulatory 
frameworks, and the social relations of class, gender and 
race” [p. 43]. Bussen & Myers [1997] describe the case of 
failure of an EIS in a large organization. While their case 
exhibited many of the traditional risk factors identified 



within the academic literature, the authors also identify 
various environmental conditions, which they argue 
probably had more influence over the project outcome. 
These included changes in company ownership, leading 
to eventual overseas ownership, and rapid organizational 
and economic growth in a depressed economy. Changes 
in the external environment may also mean that a 
proposed system loses its former relevance [Doolin, 
2004]. 

A range of external entities operating at the 
environmental level can influence systems development 
decisions and practices. These potentially include: 
government authorities, international agencies, 
professional and industry associations, trend-setting 
and/or multinational corporations, universities, financial 
institutions, and trade unions. For example, the impetus to 
introduce a new system may arise from a new government 
initiative [Doolin, 2004; Myers & Young, 1997]. In fact, a 
new system may be the means by which the policies or 
objectives of government are imposed on an organization 
[Myers & Young, 1997]. Conversely, withdrawal of 
government financial support may result in project 
abandonment [Constantinides & Barrett, 2006; Doolin, 
1999]. 

External entities exert their influence through a range of 
processes such as building and/or deploying specific 
knowledge related to systems development; subsidizing 
or directing development; establishing standards, norms 
or regulations within which systems development occurs; 
and institutional isomorphism [Avgerou, 2001; Nicolaou, 
1999]. Institutional isomorphism, the idea that 
organizations in the same field adopt similar structures 
and processes, may occur through coercive pressures, 
such as government mandates, industry standards or 
dominant business partner influences [Chae & Poole, 
2005]. 

Isomorphic effects can also be seen in the voluntary 
imitation of organizations’ system development processes 
and decisions that are perceived to be successful, or in the 
normative effects of professional networks and 

educational institutions [Nicolaou, 1999]. For example, 
system developers work within professional disciplines, 
which represent “bodies of knowledge that preserve 
concepts, practices, and values” [Chae & Poole, 2005, p. 
23]. These disciplines structure developers’ actions in the 
systems development process. 

Differences in national cultural contexts may cause a 
range of issues in systems development, including 
attitudes to project roles, use of procedures, developer 
autonomy, team relationships, flexibility for 
organizational or process change, and the balance 
between technical and organizational issues [Coughlan et 
al., 2003; Krishna & Walsham, 2005]. Walsham [2002] 
explores contradiction and conflict in a case study of 
cross-cultural systems development work. He suggests 
that the conflict that developed around management style, 
work ethos and project coordination reflected “differences 
in deep-seated cultural attitudes” [p. 365]. Similarly, 
Kumar et al. [1998] discuss how traditional US systems 
development approaches based on technical-economic 
rationality do not translate well into different cultural 
contexts, which may require consideration of specific 
cultural dimensions of work and communication 
practices. 

The influence of national culture can also be seen in 
Mitev’s [2000] description of the difficulties encountered 
by the French government rail service in introducing a 
computerized reservation system originally developed for 
the US airline industry. The new system completely 
changed the established practices of rail workers and 
railway users, who rejected such changes. According to 
Mitev [2000, p. 90], the difficulties arose through 
attempts to translate “management discourses, 
commercial practices, economic models, strategic goals, 
political perspectives, sectorial markets, and structures” 
between two very different cultural and sectorial contexts. 

Key properties or attributes of the influences that 
comprise the institutional context dimension are 
summarized in Figure 6. 

Figure 6: Properties/attributes of influences related to the institutional context 

 

 
 

 
 

Institutional Context 
 

Project 
Outcomes 

 

Development 
Processes 

People and 
Action 

Project Content 

Organizational properties 
 Organizational culture 
 Policies & practices related to development 
 History of system development & use 
 Legacy systems & infrastructure 
 

Environmental conditions 
 Socio-political & economic conditions 
 External entities 
 National context 



8. DISCUSSION 

From the preceding survey of the research literature, five 
general themes emerge. These relate to the persistence of 
certain traditional factors influencing software systems 
development, the influence of the changing nature of 
development, the relative importance of people and 
process in project outcomes, the recognition of the 
importance of the institutional context in which software 
systems development takes place, and the need to focus 
on the interrelationships and interactions between factors 
influencing software systems projects. 

 
8.1 The More Things Change, the More They 

Stay the Same 
A number of factors highlighted in literature prior to the 
review period as affecting software systems project 
outcomes (e.g. see Lyytinen & Hirschheim [1987]) 
continue to be perceived, and empirically demonstrated, 
as important positive influences on contemporary systems 
development. These are probably best regarded as 
necessary but not sufficient for achieving positive project 
outcomes. They include: 

People and action 

• developers with adequate experience, application 
domain knowledge and interpersonal skills; 

• committed users with realistic expectations of the 
system; 

• committed and supportive top management; 

• effective functioning of the project team; 

Project content 

• clear, well-defined and well communicated project 
goals and objectives; 

• adequate time, financial and human resources; 

• the use of appropriate technology; 

Development processes 

• well defined and clearly stated user requirements; 

• the use of an appropriate standard method of systems 
development. 

• the active participation of users in systems 
development; and 

• adequate user training. 

Many of these factors have become well established in the 
software systems development culture, and are frequently 
rehearsed in the software systems practitioner literature 
[e.g. Charette, 2005; Jurison, 1999; Reel, 1999]. What is 
difficult to explain is why, despite the apparent 
knowledge of these factors in software systems 
development practice, does software system project 
failure continue to occur? As Cobb’s Paradox states, “We 
know why projects fail, we know how to prevent their 

failure – so why do they still fail?” [Royal Academy of 
Engineering, 2004, p. 10].2

                                                           
2 We are grateful to an anonymous reviewer for bringing Cobb’s 
Paradox to our attention and for highlighting the potential for 
interactions among factors. 

  

While it is tempting to place responsibility for this 
situation on a failure to adhere to best practices, there may 
be other possible explanations. Sauer [1999, pp. 291-292] 
provides a useful analysis of why organizations 
apparently “continue to do the things identified as factors 
associated with or causing failure”. He suggests that 
either the ‘true’ causes of software systems project 
failures have not yet been identified or, more likely, the 
various factors are causes of failure but are not readily 
avoidable. In either case, he criticises prescriptive, factor-
based research on project failure for four reasons.  

First, Sauer [1999] suggests that most prescriptions lack 
specificity. For example, the ‘adequacy’ of resources and 
training, the ‘appropriateness’ of development technology 
and methods, or the ‘clarity’ of goals and system 
requirements, typically remain undefined in prescriptive 
lists of project ‘success’ factors. Critically, such 
evaluations are only made post hoc and, in a circular 
argument, in reference to the perceived success or failure 
of the project [Sauer, 1999]. Similarly, while ‘user 
participation’ has become a routine prescription for 
systems development, exactly who is a ‘user’ and what 
actually comprises ‘active’ user participation is often not 
specified. Second, Sauer [1999] suggests that some 
prescriptions are not easily acted upon. He uses the 
example of the importance of top management support, 
pointing out that its absence is difficult to measure and 
that gaining it is often difficult to achieve in practice. 
Third, Sauer [1999] suggests that organizational or 
environmental conditions may inhibit whether a 
prescription can be followed in practice. Finally, he 
suggests that prescriptive ‘cures’ may exacerbate other 
problems in software systems projects. For example, an 
unqualified prescription for top management support may 
lead to escalation of commitment to a failing course of 
action [Keil & Robey, 2001]. 

Finally, prescriptive lists of generic factors also imply that 
each factor is independent, universally applicable, and of 
equal importance in specific software systems projects. In 
practice, the influence of factors is temporal in nature. 
Rather than being “frozen in time” [Nandhakumar, 1996, 
p.62], factors may vary dynamically in their relative 
importance and influence at different times during the 
course of a project. This suggests that different factors 
may be significant, and thereby require explicit attention, 
at particular times or stages [Nandhakumar, 1996; Somers 
& Nelson, 2001, 2004]. In addition, several authors have 
conceptualized factors as operating from within different 
layers of a multilayered context, suggesting that factors 
from different layers will vary in the magnitude and 
frequency of their impact [Nandhakumar, 1996; Scott & 
Vessey, 2002]. Moreover, it is likely that factors in a 
particular project context involve complex 
interrelationships and interactions. As Sauer [1999] 
observes, this complexity makes theorizing about 
software systems project outcomes difficult.  



The continued emphasis given to the factors listed above 
in the systems literature over a long period of time 
suggests that they constitute a set of fundamental (but not 
exclusive) issues that need to be addressed in most 
projects. However, changes to the nature and practice of 
software systems development in relatively recent times 
have brought other issues and factors to the fore. 

 
8.2 The Changing Nature of Software Systems 

Development  
Various authors have argued that the nature of software 
systems development has changed significantly in recent 
years [e.g. Kiely & Fitzgerald, 2003; Markus & Mao, 
2004]. These changes tend to reflect rapid advances or 
changes in technology, the demands of an increasingly 
complex, global business environment, and changing 
systems development practices. In many cases, these 
changes are inter-related. For example, systems based 
around new technologies, such as the Web or rich media, 
have typically involved more flexible, non-traditional 
development approaches, often ad hoc or informal in 
nature [Avison & Fitzgerald, 2003; Barry & Lang, 2003; 
Britton et al., 1997; Taylor et al., 2002], although Lang & 
Fitzgerald [2005; 2006] suggest that Web and hypermedia 
systems development is more disciplined than previously 
thought. For example, Bahli & Tullio [2003] discuss the 
emergence of ‘web engineering’ – new methods and tools 
for Web-based systems development projects. Further, 
differences between traditional and Web-based 
development projects are likely to become less 
pronounced over time as the latter are increasingly 
integrated with other organizational systems [Vidgen, 
2002]. 

Modern software systems development is generally 
characterized by increasing devolution of development 
expenditure to business units or user groups, high levels 
of packaged software acquisition and customization, 
increased outsourcing of systems development, and 
concomitant reduced levels of in-house systems 
development [Avison & Fitzgerald, 2003; Clegg et al., 
1997; Fitzgerald, 2000; Keil & Tiwana, 2006; Sawyer, 
2001b; Schmidt et al., 2001]. The increase in packaged 
software acquisition and implementation by 
organizations, in effect consuming software rather than 
developing it, has led to changed or new influential 
factors in systems deployment. For example, increased 
emphasis is placed on vendor selection and relationships, 
product feature analysis and comparison, system 
configuration or customization, and necessary changes to 
business processes [Sawyer, 2001b; Somers & Nelson, 
2001; Umble et al., 2003]. 

Another aspect of the changing nature of systems 
development seems to be the development of smaller-
sized projects or the delivery of larger projects in parts, 
which can increase the chances of successful project 
outcomes [Johnson et al., 2001; Software Magazine, 
2004]. Smaller-sized projects are partly a result of factors 
such as standard software infrastructure use [Johnson et 
al., 2001], incremental development [Avison & 
Fitzgerald, 2003], and the need for rapid delivery of 
systems in the short time frames characterizing the 

modern business environment [Baskerville & Pries-Heje, 
2004; Fitzgerald, 2000]. 

At the same time, the emergence of enterprise-wide 
systems, inter-organizational systems and globally 
distributed systems have led to increased complexity in 
some development and deployment projects [Bahli & 
Tullio, 2003; Espinosa et al., 2006; Gowan & Mathieu, 
2005; Keil & Tiwana, 2006; KPMG, 2005; Parr & 
Shanks, 2000; Royal Academy of Engineering, 2004; 
Wixom & Watson, 2001]. Increased complexity and the 
concomitant organizational changes associated with such 
systems can adversely affect project outcomes. This has 
highlighted the ongoing need to effectively manage such 
changes, particularly from early in the development 
process [Eason, 2001; Skok & Legge, 2002]. However, as 
systems become increasingly sophisticated and integrated, 
the possibility of unpredictable or unintended 
consequences also increases [Doherty et al., 2003; Robey 
& Boudreau, 1999]. 

Modern systems development contexts are also tending to 
require the active participation of a wider group of 
stakeholders in a software project [Markus & Mao, 2004]. 
For example, the trend towards outsourcing of systems 
development or the increasing prevalence of enterprise-
wide systems introduces new participants such as vendors 
and outsourcing contractors, and the external consultants 
who play an increasingly active role in mediating between 
these participants and the system client [Chang, 2006; 
Howcroft & Light, 2006; Sawyer, 2001b]. Managing or 
controlling such parties is becoming increasingly 
important in systems development [Pan et al., 2004; 
Schmidt et al., 2001]. The range of activities in which 
they may potentially participate has also diversified, such 
as in the process reengineering or change management 
often associated with the development and 
implementation of enterprise-wide systems [Markus & 
Mao, 2004]. 

There is some evidence that improved project 
management and having more skilled project managers 
has led to increased project success [Johnson et al., 2001]. 
Project management may be assuming a more influential 
role in systems development, particularly in large or 
complex, enterprise-wide systems where there is likely to 
be a relatively greater need for project management 
interventions [Gowan & Mathieu, 2005; Somers & 
Nelson, 2001]. Indeed, in a report on the challenges of 
complex software and IT projects, the UK Royal 
Academy of Engineering and British Computer Society  
[Royal Academy of Engineering, 2004] emphasized that 
the importance of project management is still not well 
understood and is often underestimated. 

 
8.3 People and Process 
Difficulties associated with software systems 
development and implementation are often divided into 
technical issues and organizational or human-related 
issues.  Historically, technical issues dominated accounts 
of systems development outcomes. However, in the last 
decade there has been increasing recognition that project 
failures are rarely caused by technical problems alone 
[Clegg et al., 1997; Eason, 2001; Flynn & Jazi, 1998; 



Luna-Reyes et al., 2005; Markus & Benjamin, 1996; 
Markus & Mao, 2004; Poulymenakou & Holmes, 1996; 
Royal Academy of Engineering, 2004].  A number of 
studies have recognized the importance of organizational, 
political and human-related issues, often finding that 
these are more important than technical issues in 
determining system outcomes [Clegg et al., 1997; 
Doherty & King, 1998a, 1998b, 2001; Doherty et al., 
2003; Drummond, 1996; Irani et al., 2001; Oz & Sosik, 
2000; Riley & Smith, 1997]. As the Standish Group 
[1999, p. 5] note, “What has become clear … is that 
people and process have a greater effect on project 
outcome than technology”. 

Organizational or human-related issues that contribute to 
system underperformance include: inadequate or 
misaligned organizational and business strategies to guide 
development and implementation; inadequate user 
participation and ownership of the system; insufficient 
education and training; insufficient organizational 
resources or support for organizational or human-related 
issues; lack of attention to organizational structure, 
processes, culture and professional autonomy; and lack of 
attention to job and task design, usability, and user 
working styles and motivations [Clegg et al., 1997; 
Doherty & King, 1998a, 1998b, 2001; Doherty et al., 
2003; Riley & Smith, 1997].  In a software systems 
project described by Gallivan & Keil [2003], the reasons 
given by users for not using the system were technically-
based. Even when these shortcomings were addressed, so 
that the users’ perceptions of the problems improved, 
usage of the system still did not improve. Gallivan & Keil 
[2003] conclude that the underlying reasons for not using 
the system were related to a perceived incongruence in 
task-technology fit, and that these reasons had not 
changed despite the technical redesign that occurred. 

Increasingly, systems development professionals are 
recognizing the importance of organizational issues, 
although they still tend to address those issues which have 
a more technical element than those which are less 
tangible [Doherty & King, 1998a, 1998b, 2001; Doherty 
et al., 2003]. This is compounded by the techno-centric 
nature of much software systems development and the use 
of standard methods, which tend to encourage 
consideration of organizational implications after system 
implementation [Clegg et al., 1997; Doherty & King, 
1998b]. Many organizations appear to be using ad hoc 
interventions to address organizational issues as they 
occur (often after implementation), rather than formal 
socio-technical approaches [Doherty et al., 2003; Eason, 
2001]. 

There is also increasing recognition in the literature that 
software systems development is a process of social 
interaction, and that the nature and quality of interactions 
between participants can strongly influence the course 
and outcome of a project [e.g. Heiskanen et al., 2000; 
Wang et al., 2006]. Increasing participation of more 
stakeholder groups suggests that the problems associated 
with interaction amongst participating groups, such as 
differences in goals, expectations, and understanding of 
the system being developed, may be exacerbated. The 
potential for conflict around systems development 
increases when the number and diversity of participants 

increases, such as in systems that require high levels of 
integration across an organization or involve external 
parties [e.g. Yetton et al., 2000]. Some authors are now 
suggesting that conflict, if resolved, can be beneficial if it 
leads to constructive debate or better decision making 
[Robey et al., 2001; Sawyer, 2001a].  

Similarly, there is increased recognition that the various 
groups of participants associated with a software systems 
development and deployment project are not 
homogeneous. For example, Jiang et al. [1998b] suggest 
that developers are heterogeneous in their technical, 
socio-political and user orientations. Equally, in projects 
that involve the development or implementation of 
complex, enterprise-wide or inter-organizational systems 
there may be multiple user groups or functional units with 
different interests [e.g. Markus & Mao, 2004; Pan, 2005]. 
The introduction of a new or changed system may be 
problematic where it challenges professional roles, 
autonomy and cultures [e.g. Doolin, 2004; Myers & 
Young, 1997; Wilson, 2002].  A number of authors have 
suggested that user representatives may not actually 
represent the full user community or can be ‘captured’ by 
the software development team [Butler & Fitzgerald, 
1999a; Gallivan & Keil, 2003]. 

 
8.4 The Importance of Institutional Context 
An area of relative neglect in the software systems 
development literature that is beginning to receive more 
attention is the importance of the links between systems 
development people and process and the institutional 
contexts in which systems development occurs. A number 
of authors have emphasized a strong interrelationship 
between context and action, such that the form, nature and 
conduct of systems development processes need to be 
viewed as situated within their contextual setting [e.g. 
Constantinides & Barrett, 2006; Gasson, 1999]. 

At the level of the organization, the development of 
software systems occurs within a context of established 
organizational practices and structures that guide 
appropriate behavior in organizational activities. Further, 
systems development involves multiple interested groups 
and hence potentially traverses different subcultures or 
communities of practice, each with distinctive shared 
beliefs, norms, and understandings. The 
institutionalization of particular systems development 
policies and practices, which both facilitate and constrain 
project outcomes, is the result of negotiation or 
contestation between these different organizational 
groups. In particular, the history of software systems 
development and use in an organization may play an 
active role in shaping the direction of new developments. 

Organizations and their software systems development 
efforts also exist in a wider social, political and economic 
environment. Various elements of the wider 
environmental context may shape the course of 
development in any given software systems project. 
These include the influence of labor and market 
conditions, government regulation or intervention, 
industry or competitive pressures, and specific 
dimensions of national culture. Empirical research on 
software systems projects needs to incorporate a 



consideration of the way in which project outcomes 
emerge from their historical and organizational context, 
together with an appreciation of software systems 
development in the context of a wider set of social, 
cultural, political and economic conditions. 

 
8.5 Interrelationships and Interaction 
As noted in Section 8.1 above, many factor-based studies 
implicitly assume, or give the impression, that individual 
factors implicated in software systems projects are 
independent in their operation and effect. In practice, 
however, this is not the case. A number of empirical 
studies have emphasized that software system project 
outcomes typically involve multiple factors that interact 
in complex ways, either directly or indirectly [e.g. 
Akkermans & van Helden, 2002; Butler & Fitzgerald, 
1999b; Clegg et al., 1997; Nandhakumar, 1996; Scott & 
Vessey, 2002]. The relationship between factors is 
dynamic, varying in terms of the direction, strength, and 
timing of their influence on each other [Butler & 
Fitzgerald, 1999b; Nandhakumar, 1996]. Understanding 
these interactions is likely to be critical to gaining greater 
insights into how and why software systems project 
outcomes occur [Nandhakumar, 1996]. Although beyond 
the scope of this paper, detailed analysis of the 
interrelationships between factors influencing software 
systems project outcomes is an area that requires further 
work. Two broad strategies for attempting this were 
observed in the recent empirical literature.  

Some quantitative empirical studies reviewed in this 
paper hypothesized and found statistical evidence for 
relationships between specific factors, indirect effects on 
software systems project outcomes, or the role of 
mediating factors on relationships. However, where 
present, such findings were difficult to synthesize given 
the lack of clarity and inconsistent treatment of various 
factors or outcome measures across empirical studies. 
Future research would benefit from a greater degree of 
consensus or agreement among the software systems 
research community over the use of common and 
explicitly defined terminology, together with instruments 
and scales used to measure specific factors and project 
outcomes. Past experience has shown that this may be 
possible. As part of a move to address methodological 
problems associated with early studies of the participation 
of users in software systems projects, Barki & Hartwick 
[1994] defined two distinct constructs, ‘user participation’ 
and ‘user involvement’, where previous studies had used 
the terms interchangeably. Subsequent empirical studies 
[e.g. Hunton & Beeler, 1997; Lin & Shao, 2000; McKeen 
& Guimares, 1997] and meta-analyses [e.g. Hwang & 
Thorn, 1999] have used Barki & Hartwick’s definitions of 
these constructs (although other studies have tended to 
perpetuate the confusion).  

A second group of empirical studies addressed the 
complexity of interrelationships between factors by using 
process research approaches, which attempt to explain 
how particular project outcomes develop over time as the 
consequence of a preceding sequence of interrelated and 
interdependent events and factors in organizational 
processes [Markus & Robey, 1988]. These studies use 

longitudinal, qualitative data to identify simultaneous 
influential relationships among multiple factors over time. 
Their analyses are often represented using mapping 
techniques, such as casual loop diagramming [Akkermans 
& van Helden, 2002], network analysis [Butler & 
Fitzgerald, 1999] and influence diagrams [Kim & Pan, 
2006]. The aim is to illustrate the complex 
interrelationships and influences between factors, while 
avoiding the reductionism of other research approaches 
[Butler & Fitzgerald, 1999]. Kim & Pan [2006, p. 63] 
suggest that such an approach “facilitates linking pieces 
into a whole picture, and interpreting the influence of any 
one factor on others. This in turn facilitates an 
understanding of the chain of events that link the factors 
to success”. 

There is a need for empirical research that undertakes a 
more in-depth consideration and conceptualization of 
software systems development. After all, “systems 
development is, in essence, a multi-dimensional change 
process that takes place … [within] a complex web of 
social conditions and factors that shape and influence the 
… development process and its outcomes” [Butler & 
Fitzgerald, 1999, pp. 351-352]. 

 
9. CONCLUSION 

We have presented an extensive survey and synthesis of 
recent literature (1996 to 2006) addressing factors 
influencing the outcomes of software systems 
development and deployment projects. The intent of the 
survey was to consider whether or not these factors had 
changed relative to traditional studies of systems 
development, possibly in line with changes in 
development methods and practices, and to provide the 
basis for a contemporary and inclusive analytical 
framework that would facilitate ongoing investigation of 
influential factors. The framework presented in Figure 1 
incorporates four groupings of factors – people and 
action, project content, development processes, and 
institutional context – that together enable a project and 
its outcomes to be considered in terms of content, process, 
action and context [Walsham, 1993]. The result is an 
empirically grounded framework that reflects 
contemporary thinking, recognizing that the development 
and deployment of software systems is a multi-
dimensional process in which people and technology act 
and interact in locally situated contexts. 

The classificatory framework serves as a useful analytical 
device for categorizing and synthesizing the empirical 
literature on factors influencing software systems 
development. It can be used by researchers as a device for 
enabling analytical abstractions, since the four dimensions 
of the framework are conceptually more manageable than 
having to deal with the eighteen individual factors 
identified by our review. When greater detail is required, 
consideration can be given to the individual factors within 
each dimension. A particular strength of the framework is 
its capacity to accommodate interrelationships between 
the various dimensions. Indeed, an exclusive focus on any 
one dimension encourages a myopic analysis of software 
systems development and fails to take into account how, 
for example, the content of a software systems project is 



intimately connected with the context in which 
development occurs, the processes it involves and the 
people who perform them. Using the framework as an 
analytical guide facilitates a more holistic analysis across 
multiple levels of analysis, and avoids the narrow focus 
on individual dimensions and factors that has proved to be 
inadequate in the past.  

The classificatory framework also has potential practical 
application in risk management. Consideration of the 
content, process and context of software systems projects, 
as well as their potential interaction, could form the basis 
of an inclusive project risk framework. For example, 
during initial risk identification, the various factors could 
provide a comprehensive list of areas of potential risk that 
need to be addressed. Further, the four dimensions of the 
framework could represent general themes around which 
these risks could be grouped for subsequent ongoing risk 
management as a software systems project proceeds. 
Inclusion of contextual elements, such as the 
organizational history of software systems development 
and use, facilitates the organizational learning from past 
projects that is a critical part of risk management. 

The various themes outlined in the discussion section of 
this paper suggest that future work in this field needs to 
take several trends into account. Given the substantial 
changes observed over the past decade, it seems 
reasonable to expect further changes in software systems 
development and acquisition in the future. Empirical 
research needs to address these changes while attending 
to any persistent aspects. The continued occurrence of 
perceived systems project failures suggests that simple 
prescriptive lists of ‘best practice’ factors are inadequate, 
and that research is needed that acknowledges and 
explores the complex interrelationships and interactions 
between factors in software systems projects. The 
importance of people and process to project outcomes is 
likely to grow as the nature of software systems 
development and acquisition continues to change, 
requiring more detailed analyses of processual, political 
and behavioral factors involving an increasing range and 
diversity of stakeholders. Finally, recognition that 
software systems projects take place in specific contextual 
settings implies a need for empirical research that focuses 
on the institutional dimensions of software systems 
development, across multiple contexts and levels of 
analysis. 

 

ACKNOWLEDGEMENT 

The authors would like to thank the referees for their 
constructive comments and suggestions, which have 
helped to shape the final version of this paper. 
 
REFERENCES 

Akkermans, H. & van Helden, K. (2002). Vicious and 
virtuous cycles in ERP implementation: a case study 
of interrelations between critical success factors. 
European Journal of Information Systems, 11(1), 35-
46. 

Aladwani, A.M. (2000). IS project characteristics and 
performance: a Kuwaiti illustration. Journal of Global 
Information Management, 8(2), 50-57. 

Aladwani, A.M. (2002). An integrated performance 
model of information systems projects. Journal of 
Management Information Systems, 19(1), 185-210. 

Al-Karaghouli, W., Alshawi, S. & Fitzgerald, G. (2005). 
Promoting requirement identification quality: 
enhancing the human interaction dimension. The 
Journal of Enterprise Information Management, 
18(2), 256-267. 

Alvarez, R. (2002). Confessions of an information 
worker: a critical analysis of information requirements 
discourse. Information and Organization, 12(2), 85-
107. 

Amoako-Gyampah, K. (1997). Exploring users' desires to 
be involved in computer systems development: an 
exploratory study. Computers in Human Behavior, 
13(1), 65-81. 

Amoako-Gyampah, K. & White, K.B. (1997). When is 
user involvement not user involvement? Information 
Strategy: The Executive's Journal, 13(4), 40-45. 

Asaro, P.M. (2000). Transforming society by 
transforming technology: the science and politics of 
participatory design. Accounting, Management and 
Information Technologies, 10(4), 257-290. 

Avgerou, C. (2001). The significance of context in 
information systems and organizational change. 
Information Systems Journal, 11, 43-63. 

Avison, D.E. & Fitzgerald, G. (2003). Where now for 
development methodologies? Communications of the 
ACM, 46(1), 79-82. 

Baddoo, N., Hall, T. & Jagielska, D. (2006). Software 
developer motivation in a high maturity company: a 
case study. Software Process Improvement and 
Practice, 11(3), 219-228. 

Bahli, B. & Tullio, D. (2003). Web engineering: an 
assessment of empirical research. Communications of 
the AIS, 12, 203-222. 

Barki, H. & Hartwick, J. (1994). Measuring user 
participation, user involvement and user attitude. MIS 
Quarterly, 18(1), 59-82. 

Barki, H., Rivard, S. & Talbot, J. (2001). An integrative 
contingency model of software project risk 
management. Journal of Management Information 
Systems, 17(4), 37-69. 

Barry, C. & Lang, M. (2003). A comparison of 
'traditional' and multimedia information systems 
development practices. Information and Software 
Technology, 45, 217-227. 

Baskerville, R. & Pries-Heje, J. (2004). Short cycle time 
systems development. Information Systems Journal, 
14(3), 237-264. 

Beynon-Davies, P., Tudhope, D. & Mackay, H. (1999). 
Information systems prototyping in practice. Journal 
of Information Technology, 14(1), 107-120. 



Bradley, J.H. & Hebert, F.J. (1997). The effect of 
personality type on team performance. Journal of 
Management Development, 16(5), 337-353. 

Briggs, R.O., De Vreede, G.-J., Nunamaker, J.F. & 
Sprague, R.H. (2003). Special issue: information 
systems success. Journal of Management Information 
Systems, 19(4), 5-8. 

Britton, C., Jones, S., Myers, M. & Sharif, M. (1997). A 
survey of current practice in the development of 
multimedia systems. Information and Software 
Technology, 39(10), 695-705. 

Bussen, W. & Myers, M.D. (1997). Executive 
information systems failure: a New Zealand case 
study. Journal of Information Technology, 12, 145-
153. 

Butler, T. (2003). An institutional perspective on 
developing and implementing intranet and internet- 
based information systems. Information Systems 
Journal, 13(3), 209-231. 

Butler, T. & Fitzgerald, B. (1997). A case study of user 
participation in the Information Systems process. In 
K. Kumar & J.I. DeGross (Eds.), Proceedings of the 
18th International Conference on Information Systems 
(Atlanta, GA) (pp. 411-426). Atlanta, GA: Association 
of Information Systems. 

Butler, T. & Fitzgerald, B. (1999a). The 
institutionalisation of user participation for systems 
development in Telecom Eireann. In M. Khosrowpour 
(Ed.), Success and Pitfalls of Information Technology 
Management (pp. 68-86). Hershey, USA: Idea Group 
Publishing. 

Butler, T. & Fitzgerald, B. (1999b). Unpacking the 
systems development process: an empirical 
application of the CSF concept in a research context. 
Journal of Strategic Information Systems, 8(4), 351-
371. 

Butler, T. & Fitzgerald, B. (2001). The relationship 
between user participation and the management of 
change surrounding the development of information 
systems: a European perspective. Journal of End User 
Computing, 13(1), 12-25. 

Chae, B. & Poole, M.S. (2005). The surface of 
emergence: agency, institutions, and large-scale 
information systems. European Journal of 
Information Systems, 14(1), 19-36. 

Chang, H.H. (2006). Technical and management 
perceptions of enterprise information system 
importance, implementation and benefits. Information 
Systems Journal, 16(3), 263-292. 

Charette, R.N. (2005). Why software fails. IEEE 
Spectrum, 42(9), 42-49. 

Chatzoglou, P.D. (1997). Use of methodologies: an 
empirical analysis of their impact on the economics of 
the development process. European Journal of 
Information Systems, 6(4), 256-270. 

Christiaanse, E. & Huigen, J. (1997). Institutional 
dimensions in information technology implementation 

in complex network settings. European Journal of 
Information Systems, 6(2), 77-85. 

Clegg, C.W., Axtell, C., Damodaran, L., Farbey, B., Hull, 
R., Lloyd-Jones, R., Nicholls, J., Sell, R. & 
Tomlinson, C. (1997). Information technology: a 
study of performance and the role of human and 
organizational factors. Ergonomics, 40(9), 851-871. 

Coakes, J.M. & Coakes, E.W. (2000). Specifications in 
context: stakeholders, systems and modelling of 
conflict. Requirements Engineering, 5(3), 103-133. 

Constantinides, P. & Barrett, M. (2006). Negotiating ICT 
development and use: the case of a telemedicine 
system in the healthcare region of Crete. Information 
and Organization, 16(1), 27-55. 

Coombs, C.R., Doherty, N.F. & Loan-Clarke, J. (1999). 
Factors affecting the level of success of community 
information systems. Journal of Management in 
Medicine, 13(3), 142-153. 

Coughlan, J., Lycett, M. & Macredi, R.D. (2003). 
Communication issues in requirements elicitation: a 
content analysis of stakeholder experiences. 
Information and Software Technology, 45(2), 525-
537. 

Crowston, K., Howison, J. & Annabi, H. (2006). 
Information systems success in free and open source 
software development: theory and measures. Software 
Process Improvement and Practice, 11(2), 123-148. 

DeLone, W.H. & McLean, E.R. (2003). The DeLone and 
Mclean of information systems success: a ten-year 
update. Journal of Managment Information Systems, 
19(4), 9-30. 

Dhillon, G. (2004). Dimensions of power and IS 
implementation. Information & Management, 41(5), 
635-644. 

Doherty, N.F. & King, M. (1998a). The consideration of 
organizational issues during the systems development 
process: an empirical analysis. Behaviour and 
Information Technology, 17(1), 41-51. 

Doherty, N.F. & King, M. (1998b). The importance of 
organisational issues in systems development. 
Information Technology and People, 11(2), 104-123. 

Doherty, N.F. & King, M. (2001). An investigation of the 
factors affecting the successful treatment of 
organisational issues in systems development projects. 
European Journal of Information Systems, 10, 147-
160. 

Doherty, N.F., King, M. & Al-Mushayt, O. (2003). The 
impact of the inadequacies in the treatment of 
organizational issues on information systems 
development projects. Information and Management, 
41, 49-62. 

Doolin, B. (1999). Sociotechnical networks and 
information management in health care. Accounting, 
Management and Information Technologies, 9(2), 95-
114. 



Doolin, B. (2004). Power and resistance in the 
implementation of a medical management information 
system. Information Systems Journal, 14(4), 343-362. 

Drummond, H. (1996). The politics of risk: trials and 
tribulations of the Taurus project. Journal of 
Information Technology, 11(2), 347-357. 

Eason, K. (2001). Changing perspectives on the 
organizational consequences of information 
technology. Behaviour and Information Technology, 
20(5), 323-328. 

Enquist, H. & Makrygiannis, N. (1998). Understanding 
misunderstandings. In Proceedings of the Thirty-First 
Hawaii International Conference on System Sciences 
(6-9 January) (Vol. 6, pp. 83-92). Kohala Coast, HI. 

Espinosa, J.A., DeLone, W.H. & Lee, G. (2006). Global 
boundaries, task processes and IS project success: a 
field study. Information Technology and People, 
19(4), 345-370. 

Fitzgerald, B. (1998a). An empirical investigation into the 
adoption of systems development methodologies. 
Information & Management, 34(6), 317-328. 

Fitzgerald, B. (1998b). An empirically-grounded 
framework for the information systems development 
process. In R. Hirschheim, M. Newman & J.I. 
DeGross (Eds.), Proceedings of the International 
Conference on Information Systems (Helsinki, 
Finland) (pp. 103-114). Atlanta, GA: Association of 
Information Systems. 

Fitzgerald, B. (1998c). A tale of two roles: the use of 
systems development methodologies in practice. In N. 
Jayaratna, A.T. Wood-Harper & B. Fitzgerald (Eds.), 
Educating Methodology Practitioners and 
Researchers. London: Springer-Verlag. 

Fitzgerald, B. (2000). System development 
methodologies: the problem of tenses. Information 
Technology and People, 13(3), 174-185. 

Fitzgerald, B. & Fitzgerald, G. (1999). Categories and 
contexts of information systems development: making 
sense of the mess. In C. Ciborra (Ed.), Proceedings of 
the 7th European Conference of Information Systems 
(pp. 194-211). Copenhagen, Denmark. 

Fitzgerald, B., Russo, N.L. & Stolterman, E. (2002). 
Information systems development: methods in action. 
London: McGraw-Hill. 

Flynn, D.J. & Jazi, M.D. (1998). Constructing user 
requirements: a social process for a social context. 
Information Systems Journal, 8(1), 53-83. 

Foster, S.T. & Franz, C.R. (1999). User involvement 
during information systems development: a 
comparison of analyst and user perceptions of system 
acceptance. Journal of Engineering and Technology 
Management, 16(3-4), 329-348. 

Galliers, R.D. & Swan, J.A. (2000). There's more to 
information systems development than structured 
approaches: information requirements analysis as a 
socially mediated process. Requirements Engineering, 
5(2), 74-82. 

Gallivan, M.J. & Keil, M. (2003). The user-developer 
communication process: a critical case study. 
Information Systems Journal, 13(1), 37-68. 

Gärtner, J. & Wagner, I. (1996). Mapping actors and 
agendas: political frameworks of systems design and 
participation. Human-Computer Interaction, 11(3), 
187-214. 

Gasson, S. (1999). A social action model of situated IS 
design. The Data Base for Advances in Information 
Systems, 30(2), 82-97. 

Gasson, S. (2006). A genealogical study of boundary-
spanning IS design. European Journal of Information 
Systems, 15(1), 26-41 

Goldstein, H. (2005). Who killed the Virtual Case File? 
IEEE Spectrum, 42(9), 24-35. 

Gowan, J.A. & Mathieu, R.G. (2005). The importance of 
management practices in IS project performance. The 
Journal of Enterprise Information Management, 
18(2), 235-255. 

Guinan, P.J., Cooprider, J.G. & Faraj, S. (1998). Enabling 
software team performance during requirements 
definition: a behavioral versus technical approach. 
Information Systems Research, 9(2), 101-125. 

Hardgrave, B.C., Wilson, R.L. & Eastman, K. (1999). 
Toward a contingency model for selecting an 
information system prototyping strategy. Journal of 
Management Information Systems, 16(2), 113-136. 

Hartwick, J. & Barki, H. (2001). Communication as a 
dimension of user participation. IEEE Transactions on 
Professional Communication, 44(1), 21-31. 

Heiskanen, A., Newman, M. & Similä, J. (2000). The 
social dynamics of software development. Accounting, 
Management and Information Technologies, 10(1), 1-
32. 

Hornik, S., Chen, H.-G., Klein, G. & Jiang, J.J. (2003). 
Communication skills of IS providers: an expectation 
gap analysis from three stakeholder perspectives. 
IEEE Transactions on Professional Communication, 
46(1), 17-34. 

Howcroft, D. & Light, B. (2006). Reflections on issues of 
power in packaged software selection. Information 
Systems Journal, 16(3), 215-235. 

Howcroft, D. & Wilson, M. (2003). Participation: 
'bounded freedom' or hidden constraints on user 
involvement. New Technology, Work and 
Employment, 18(1), 2-19. 

Hunton, J.E. & Beeler, J.D. (1997). Effects of user 
participation in systems development: a longitudinal 
field experiment. MIS Quarterly, 359-388. 

Hwang, M.I. & Thorn, R.G. (1999). The effect of user 
engagement on system success: a meta-analytical 
integration of research findings. Information & 
Management, 35(4), 229-236. 

Iivari, J., Hirschheim, R. & Klein, H.K. (2000/2001). A 
dynamic framework for classifying information 
systems development methodologies and approaches. 



Journal of Management Information Systems, 17(3), 
179-218. 

Iivari, J. & Igbaria, M. (1997). Determinants of user 
participation: a Finnish survey. Behaviour and 
Information Technology, 16(2), 11-121. 

Iivari, J. & Maansaari, J. (1998). The usage of systems 
development methods: are we stuck to old practices? 
Information and Software Technology, 40(9), 501-
510. 

Iivari, N. (2004a). Enculturation of user involvement in 
software development organizations - an interpretive 
case study in the product development context. In 
Proceedings of the Third Nordic Conference on 
Human-Computer Interaction (Tampere, Finland) (pp. 
287-296). ACM Press: New York. 

Iivari, N. (2004b). Exploring the rhetoric on representing 
the user: discourses on user involvement in software 
development. In R. Agarwal, L.J. Kirsch & J.I. 
DeGross (Eds.), Proceedings of the 25th International 
Conference on Information Systems (Washington DC, 
Dec 12-15) (pp. 631-643). 

Irani, Z., Sharif, A.M. & Love, P.E.D. (2001). 
Transforming failure into success through 
organisational learning: an analysis of a 
manufacturing information system. European Journal 
of Information Systems, 10, 55-66. 

Jiang, J.J., Chen, E. & Klein, G. (2002). The importance 
of building a foundation for user involvement in 
information systems projects. Project Management 
Journal, 33(1), 20-26. 

Jiang, J.J. & Klein, G. (1999). Risks to different aspects 
of system success. Information & Management, 36(5), 
263-272. 

Jiang, J.J. & Klein, G. (2000). Software development 
risks to project effectiveness. The Journal of Systems 
and Software, 52(1), 3-10. 

Jiang, J.J., Klein, G. & Balloun, J.L. (1996). Ranking of 
system implementation success factors. Project 
Management Journal, 27, 50-55. 

Jiang, J.J., Klein, G. & Balloun, J.L. (1998a). Perceptions 
of software development failures. Information and 
Software Technology, 39(14-15), 933-937. 

Jiang, J.J., Klein, G. & Balloun, J.L. (1998b). Systems 
analysts’ attitudes towards information systems 
development. Information Resources Management 
Journal, 11(4), 5-10. 

Jiang, J.J., Klein, G. & Chen, H.-G. (2006). The effects of 
user partnering and user non-support on project 
performance. Journal of the Association for 
Information Systems, 7(2), 68-90. 

Jiang, J.J., Klein, G. & Discenza, R. (2002). Pre-project 
partnering impact on an information system project, 
project team and project manager. European Journal 
of Information Systems, 11(2), 86-97. 

Jiang, J.J., Klein, G. & Means, T.L. (2000). Project risk 
impact on software development team performance. 
Project Management Journal, 31(4), 19-26. 

Jiang, J.J., Sobol, M.G. & Klein, G. (2000). Performance 
ratings and importance of performance measures for 
IS staff: the different perceptions of IS users and IS 
staff. IEEE Transactions on Engineering 
Management, 47(4), 424-434. 

Johnson, J., Boucher, K.D., Connors, K. & Robinson, J. 
(2001). The criteria for success. Software Magazine, 
21(1), S3-S11. 

Jonasson, I. (2002). Trends in developing web-based 
multimedia information systems. In M. Kirikova, J. 
Grundspenkis, W. Wojtkowski, W.G. Wojtkowski, S. 
Wrycza & J. Zupancic (Eds.), Information Systems 
Development: Advances in Methodologies, 
Components and Management (pp. 79-86). New York: 
Kluwer Academic. 

Jones, M.C. & Harrison, A.W. (1996). IS project 
performance: an empirical appraisal. Information & 
Management, 31(2), 51-65. 

Jurison, J. (1999). Software project management: the 
manager's view. Communications of the AIS, 2 
(Article 17). 

Kappelman, L.A., McKeeman, R. & Zhang, L. (2006). 
Early warning signs of IT project failure: the dominant 
dozen Information Systems Management, 23(4), 31 - 
36. 

Karlsen, J.T., Andersen, J., Birkel, L.S. & Odegard, E. 
(2005). What characterizes successful IT projects. 
International Journal of Information Technology & 
Decision Making, 4(4), 525-540. 

Kautz, K. (2004). The enactment of methodology: the 
case of developing a multimedia information system. 
In R. Agarwal, L.J. Kirsch & J.I. DeGross (Eds.), 
Proceedings of the 25th International Conference on 
Information Systems (Washington DC, USA) (pp. 671-
684). Atlanta, GA: Association for Information 
Systems. 

Kautz, K., Hansen, B. & Jacobsen, D. (2004). The 
utilization of information systems development 
methodologies in practice. Journal of Information 
Technology Cases and Applications, 6(4), 1-20. 

Kautz, K. & Nielsen, P.A. (2004). Understanding the 
implementation of software process improvement 
innovations in software organizations. Information 
Systems Journal, 14(1), 3–22. 

Keil, M., Cule, P., Lyytinen, K. & Schmidt, R. (1998). A 
framework for identifying software projects risks. 
Communications of the ACM, 14(11), 76-83. 

Keil, M. & Robey, D. (2001). Blowing the whistle on 
troubled software projects. Communications of the 
ACM, 44(4), 87-93. 

Keil, M. & Tiwana, A. (2006). Relative importance of 
evaluation criteria for enterprise systems: a conjoint 
study. Information Systems Journal, 16(3), 237-262. 



Keil, M., Tiwana, A. & Bush, A. (2002). Reconciling user 
and project manager perceptions on IT project risk: a 
Delphi study. Information Systems Journal, 12(2), 
103-119. 

Kiely, G. & Fitzgerald, B. (2002). An investigation of the 
information systems development environment: the 
nature of development life cycles and the use of 
methods. In Proceedings of the Eighth Americas 
Conference of Information Systems (Dallas) (pp. 
1289-1296): AIS. 

Kiely, G. & Fitzgerald, B. (2003). An investigation of the 
use of methods within information systems 
development projects. In M. Korpela, R. Montealegre 
& A. Poulymenakou (Eds.), Proceedings of the IFIP 
WG8.2 & WG9.4 Working Conference on Information 
Systems Perspectives and Challenges in the Context of 
Globalization (Athens), In Progress Research Papers 
(pp. 187-198): IFIP. 

Kim, H.-W. & Pan, S.L. (2006). Towards a process model 
of information systems implementation: the case of 
Customer Relationship Management (CRM). The 
Data Base for Advances in Information Systems, 
37(1), 59-76. 

Kim, C.S. & Peterson, D.K. (2003). A comparison of the 
perceived importance of information systems 
development strategies by developers from the United 
States and Korea. Information Resources Management 
Journal, 16(1), 1-18. 

Kim, C.S., Peterson, D.K. & Kim, J.H. (1999/2000). 
Information systems success: perceptions of 
developers in Korea. The Journal of Computer 
Information Systems, 40(2), 90-95. 

Kirsch, L.J. & Beath, C.M. (1996). The enactments and 
consequences of token, shared, and compliant 
participation in information systems development. 
Accounting, Management and Information 
Technologies, 6(4), 221-254. 

Knights, D. & Murray, F. (1994). Managers Divided: 
Organisation Politics and Information Technology 
Management. Chichester: Wiley. 

KPMG. (2005). Global IT Project Management Survey. 
Switzerland: KPMG International. 

Krishna, S. & Walsham, G. (2005). Implementing public 
information systems in developing countries: learning 
from a success story. Information Technology for 
Development, 11(2), 123-140. 

Kujala, S. (2003). User involvement: a review of the 
benefits and challenges. Behaviour and Information 
Technology, 22(1), 1-16. 

Kumar, K., van Dissel, H.G. & Bielli, P. (1998). The 
Merchant of Prato - revisited: toward a third 
rationality of information systems. MIS Quarterly, 
22(2), 199-226. 

Lang, M. & Fitzgerald, B. (2005). Hypermedia systems 
development practices: a survey. IEEE Software, 
22(2), 68-75. 

Lang, M. & Fitzgerald, B. (2006). New branches, old 
roots: a study of methods and techniques in 
Web/hypermedia systems design. Information Systems 
Management, 23(3), 62-74. 

Larman, C. & Basili, V.R. (2003). Iterative and 
incremental development: a brief history. Computer, 
36(6), 47-56. 

Lemon, W.F., Liebowitz, J., Burn, J.M. & Hackney, R. 
(2002). Information systems project failure: a 
comparative study of two countries. Journal of Global 
Information Management, 10(2), 28-39. 

Li, E.Y. (1997). Perceived importance of information 
system success factors: a meta analysis of group 
differences. Information & Management, 32(1), 15-
28. 

Liebowitz, J. (1999). Information systems: success or 
failure? Journal of Computer Information Systems, 
40(1), 17-26. 

Lin, W.T. & Shao, B.B.M. (2000). The relationship 
between user participation and system success: a 
contingency approach. Information & Management, 
37(6), 283-295. 

Linberg, K.R. (1999). Software developer perceptions 
about software project failure. The Journal of Systems 
and Software, 49, 177-192. 

Lu, H.-P. & Wang, J.-Y. (1997). The relationships 
between management styles, user participation, and 
system success over MIS growth stages. Information 
& Management, 32(4), 203-213. 

Lucas, H.C. (1975). Why Information Systems Fail. New 
York: Columbia University Press. 

Luna-Reyes, L.F., Zhang, J., Gil-Garcia, J.R. & 
Cresswell, A.M. (2005). Information systems 
development as emergent socio-technical change: a 
practice approach. European Journal of Information 
Systems, 14(1), 93-105. 

Lynch, T. & Gregor, S. (2004). User participation in 
decision support systems development: influencing 
system outcomes. European Journal of Information 
Systems, 13, 286-301. 

Lyytinen, K. & Hirschheim, R. (1987). Information 
systems failures: a survey and classification of the 
empirical literature. Oxford Surveys in Information 
Technology, 4, 257-309. 

Lyytinen, K. & Robey, D. (1999). Learning failure in 
information systems development. Information 
Systems Journal, 9, 85-101. 

Mabert, V.A., Soni, A. & Venkataramanan, M.A. (2003). 
Enterprise resource planning: managing the 
implementation process. European Journal of 
Operational Research, 146(2), 302-314 

Mahaney, R.C. & Lederer, A.L. (2003). Information 
systems project management: an agency theory 
interpretation. Journal of Systems and Software, 68(1), 
1-9. 



Mahmood, M.A., Burn, J.M., Gemoets, L.A. & Jacquez, 
C. (2000). Variables affecting information technology 
end-user satisfaction: a meta-analysis of the empirical 
literature. International Journal of Human-Computer 
Studies, 52, 751-771. 

Marion, L. & Marion, D. (1998). Information technology 
professionals as collaborative change agents: a case 
study of behavioral health care. Bulletin of the 
American Society for Information Science, 24(6), 9-
12. 

Markus, M.L. & Benjamin, R.I. (1996). Change agentry - 
the next IS frontier. MIS Quarterly, 20(4), 385-407. 

Markus, M.L. & Mao, J.-Y. (2004). Participation in 
development and implementation - updating an old, 
tired concept for today's IS contexts. Journal of the 
Association for Information Systems, 5(11-12), 514-
544. 

Markus, M.L. & Robey, D. (1988). Information 
technology and organizational change: causal 
structure in theory and research. Management Science, 
34(5), 583-598. 

Martin, A. & Chan, M. (1996). Information systems 
project redefinition in New Zealand: will we ever 
learn? The Australian Computer Journal, 28(1), 27-
40. 

McKeen, J.D. & Guimaraes, T. (1997). Successful 
strategies for user participation in systems 
development. Journal of Management Information 
Systems, 14(2), 133-150. 

Mitev, N. (2000). Towards social constructivist 
understandings of ISD success and failure: introducing 
a new computerised reservation system. In W.J. 
Orlikowski, S. Ang, P. Weill, H.C. Krcmar & J.I. 
DeGross (Eds.), Proceedings of the Twenty-First 
International Conference on Information Systems (pp. 
84-93): Association for Information Systems. 

Myers, M.D. & Young, L.W. (1997). Hidden agendas, 
power and managerial assumptions in information 
systems development: an ethnographic study. 
Information Technology and People, 10(3), 224-240. 

Nandhakumar, J. (1996). Design for success?: critical 
success factors in executive information systems 
development. European Journal of Information 
Systems, 5(1), 62-72. 

Nandhakumar, J. & Avison, D.E. (1999). The fiction of 
methodical development: a field study of information 
systems development. Information Technology and 
People, 12(2), 176-191. 

Nandhakumar, J. & Jones, M. (1997). Designing in the 
dark: the changing user-developer relationship in 
information systems development. In K. Kumar & J.I. 
DeGross (Eds.), Proceedings of the Eighteenth 
International Conference on Information Systems 
(Atlanta, Georgia, USA) (pp. 75-88). Atlanta, GA: 
Association for Information Systems. 

Nelson, R.R. (2005). Project retrospectives: evaluating 
project success, failure and everything in between. 
MIS Quarterly Executive, 4(3), 361-372. 

Newman, M. & Sabherwal, R. (1996). Determinants of 
commitment to information systems development: a 
longitudinal investigation. MIS Quarterly, 20, 23-54. 

Nicolaou, A.I. (1999). Social control in information 
systems development. Information Technology and 
People, 12(2), 130-147. 

Olesen, K. & Myers, M.D. (1999). Trying to improve 
communication and collaboration with information 
technology: an action research project which failed. 
Information Technology and People, 12(4), 317-332. 

Oz, E. & Sosik, J.J. (2000). Why information systems 
projects are abandoned: a leadership and 
communication theory and exploratory study. Journal 
of Computer Information Systems, 44(1), 66-78. 

Pan, G.S.C. (2005). Information systems project 
abandonment: a stakeholder analysis. International 
Journal of Information Management, 25, 173-184. 

Pan, G.S.C. & Flynn, D.J. (2003). Information systems 
project abandonment: a case of political influence by 
the stakeholders. Technology Analysis & Strategic 
Management, 15(4), 457-466. 

Pan, G.S.C., Pan, S.L. & Flynn, D.J. (2004). De-
escalation of commitment to information systems 
projects: a process perspective. Journal of Strategic 
Information Systems, 13, 247-270. 

Parr, A. & Shanks, G. (2000). A model of ERP project 
implementation. Journal of Information Technology, 
15(4), 289–303. 

Peterson, D.K. & Kim, C.S. (2003). Perceptions on IS 
risks and failure types: a comparison of designers 
from the United States, Japan and Korea. Journal of 
Global Information Management, 11(2), 19-38. 

Peterson, D.K., Kim, C.S., Kim, J.H. & Tamura, T. 
(2002). The perceptions of information systems 
designers from the United States, Japan, and Korea on 
success and failure factors. International Journal of 
Information Management, 22(6), 421-439. 

Pouloudi, A. & Whitley, E.A. (1997). Stakeholder 
identification in inter-organizational systems: gaining 
insights for drug use management systems. European 
Journal of Information Systems, 6(1), 1-14. 

Poulymenakou, A. & Holmes, A. (1996). A contingency 
framework for the investigation of information 
systems failure. European Journal of Information 
Systems, 5(1), 34-46. 

Procaccino, J.D. & Verner, J.M. (2006). Software project 
managers and project success: an exploratory study. 
The Journal of Systems and Software, 79(11), 1541–
1551.  

Procaccino, J.D., Verner, J.M., Darter, M.E. & Amadio, 
W.J. (2005). Toward predicting software development 
success from the perspective of practitioners: an 



exploratory Bayesian model. Journal of Information 
Technology, 20(3), 187-200 

Procaccino, J.D., Verner, J.M. & Lorenzet, S.J. (2006). 
Defining and contributing to software development 
success. Communications of the ACM, 49(8), 79-83. 

Ravichandran, T. & Rai, A. (2000). Quality management 
in systems development: an organizational system 
perspective. MIS Quarterly, 24(3), 381-415. 

Reel, J.S. (1999). Critical success factors in software 
projects. IEEE Software, 16(3), 18-23. 

Riley, L. & Smith, G. (1997). Developing and 
implementing IS: a case study analysis in social 
services. Journal of Information Technology, 12(4), 
305-321. 

Roberts, T.L., Leigh, W. & Purvis, R.L. (2000). 
Perceptions on stakeholder involvement in the 
implementation of system development 
methodologies. Journal of Computer Information 
Systems, 40(3), 78-83. 

Robey, D. & Boudreau, M.-C. (1999). Accounting for the 
contradictory organizational consequences of 
information technology: theoretical directions and 
methodological implications. Information Systems 
Research, 10(2), 167-185. 

Robey, D. & Newman, M. (1996). Sequential patterns in 
information systems development: an application of a 
social process model. ACM Transaction on 
Information Systems, 14(1), 30-63. 

Robey, D., Welke, R.J. & Turk, D. (2001). Traditional, 
iterative, and component-based development: asocial 
analysis of software development paradigms. 
Information Technology and Management, 2(1), 53-
70. 

Royal Academy of Engineering. (2004). The Challenges 
of Complex IT Projects. London: Royal Academy of 
Engineering. 

Saleem, N. (1996). An empirical test of the contingency 
approach to user participation in information systems 
development. Journal of Management Information 
Systems, 13(1), 145-166. 

Sarkkinen, J. & Karsten, H. (2005). Verbal and visual 
representations in task redesign: how different 
viewpoints enter into information systems design 
discussions. Information Systems Journal, 15(3), 181-
211. 

Sauer, C. (1999). Deciding the future for IS failures: not 
the choice you might think. In R.D. Galliers & W.L. 
Currie (Eds.), Rethinking Management Information 
Systems: An Interdisciplinary Perspective (pp. 279-
309). Oxford: Oxford University Press. 

Sawyer, S. (2001a). Effects of intra-group conflict on 
packaged software development team performance. 
Information Systems Journal, 11, 155-178. 

Sawyer, S. (2001b). A market-based perspective on 
information systems development. Communications of 
the ACM, 44(11), 97-102. 

Sawyer, S. & Guinan, P.J. (1998). Software development: 
processes and performance. IBM Systems Journal, 
37(4), 552–569. 

Schmidt, R., Lyytinen, K., Keil, M. & Cule, P. (2001). 
Identifying software project risks: an international 
Delphi study. Journal of Management Information 
Systems, 17(4), 5-36. 

Scott, J.E. & Vessey, I. (2002). Managing risks in 
enterprise systems implementation. Communications 
of the ACM, 45(4), 74-81. 

Serafeimidis, V. & Smithson, S. (1999). Rethinking the 
approaches to information systems investment 
evaluation. Logistics Information Management, 
12(1/2), 94–107. 

Sharma, R. & Yetton, P. (2003). The contingent effects of 
management support and task interdependence on 
successful information systems implementation. MIS 
Quarterly, 27(4), 533-555. 

Skok, W. & Legge, M. (2002). Evaluating enterprise 
resource planning (ERP) systems using an interpretive 
approach. Knowledge and Process Management, 9(2), 
72-82. 

Software Magazine. (2004). Standish: Project Success 
Rates Improved Over 10 Years. Retrieved 6 August, 
2004, from 
http://www.softwaremag.com/L.cfm?Doc=newsletter/
2004-01-15/Standish 

Somers, T.M. & Nelson, K. (2001). The impact of critical 
success factors across stages of Enterprise Resource 
Planning implementations. In Proceedings of the 34th 
Hawaii International Conference on System Sciences 
(Vol. 8, pp. 8016). Washington, DC: IEEE Computer 
Society. 

Somers, T.M. & Nelson, K. (2004). A taxonomy of 
players and activities across the ERP project life 
cycle. Information & Management, 41(3), 257-278. 

Standing, C., Guilfoyle, A., Lin, C. & Love, P.E.D. 
(2006). The attribution of success and failure in IT 
projects. Industrial Management & Data Systems, 
100(8), 1148-1165. 

Standish Group International. (1999). CHAOS: A Recipe 
for Success (1998). West Yarmouth, Massachusetts: 
The Standish Group International, Inc. 

Standish Group International. (2001). Extreme CHAOS 
(2000). West Yarmouth, Massachusetts: The Standish 
Group International, Inc. 

Staples, D.S., Wong, I. & Seddon, P.B. (2002). Having 
expectations of information systems benefits that 
match received benefits: does it really matter? 
Information & Management, 40(2), 115-131. 

Stockdale, R. & Standing, C. (2006). An interpretive 
approach to evaluating information systems: a content, 
context, process framework. European Journal of 
Operational Research, 173(3), 1090–1102.  



Sumner, M. (2000). Risk factors in enterprise-wide/ERP 
projects. Journal of Information Technology, 15(4), 
317-327. 

Sumner, M., Bock, D. & Giamartino, G. (2006). 
Exploring the linkage between the characteristics of it 
project leaders and project success Information 
Systems Management, 23(4), 43-49. 

Symon, G. (1998). The work of IT system developers in 
context: an organizational case study. Human-
Computer Interaction, 13(1), 37-71. 

Symon, G. & Clegg, C.W. (2005). Constructing identity 
and participation during technological change. Human 
Relations, 58(9), 1141-1161. 

Taylor, M.J., McWilliam, J., Forsyth, H. & Wade, S. 
(2002). Methodologies and website development: a 
survey of practice. Information and Software 
Technology, 22, 381-391. 

Taylor-Cummings, A. (1998). Bridging the user-IS gap: a 
study of major information systems projects. Journal 
of Information Technology, 13(1), 29-54. 

Terry, J. & Standing, C. (2004). The value of user 
participation in e-commerce systems development. 
Informing Science, 7, 31-46. 

Umble, E.J., Haft, R.R. & Umble, M.M. (2003). 
Enterprise resource planning: implementation 
procedures and critical success factors. European 
Journal of Operational Research, 146(2), 241-257. 

Urquhart, C. (1999). Themes in early requirements 
gathering: the case of the analyst, the client and the 
student assistance scheme. Information Technology 
and People, 12(1), 44-70. 

Urquhart, C. (2001). Analysts and clients in 
organisational contexts: a conversational perspective. 
Strategic Information Systems, 10, 243-262. 

van Offenbeek, M.A.G. & Koopman, P.L. (1996). 
Information systems development: from user 
participation to contingent interaction among involved 
parties. European Journal of Work and 
Organizational Psychology, 5(3), 421-438. 

Verner, J.M. & Evanco, W.M. (2005). In-house software 
development: what project management practices lead 
to success? IEEE Software, 22(1), 86-93. 

Vidgen, R. (2002). Constructing a web information 
system development methodology. Information 
Systems Journal, 12(3), 247-261. 

Vidgen, R., Madsen, S. & Kautz, K. (2004). Mapping the 
information systems development process. In B. 
Fitzgerald & E.H. Wynn (Eds.), IT Innovation for 
Adaptability and Competitiveness (pp. 157-172). 
Boston: Kluwer Academic Press. 

Vinekar, V., Slinkman, C.W. & Nerur, S. (2006). Can 
agile and traditional systems development approaches 
coexist? An ambidextrous view. Information Systems 
Management, 23(3), 31-42. 

Wallace, L. & Keil, M. (2004). Software project risks and 
their effect on outcomes. Communications of the 
ACM, 47(4), 68-73. 

Walsham, G. (1993). Interpreting Information Systems in 
Organizations. Chichester: John Wiley and Sons. 

Walsham, G. (2002). Cross-cultural software production 
and use: a structurational analysis. MIS Quarterly, 
26(4), 359-380. 

Wang, E.T.G., Chou, H.-W. & Jiang, J.J. (2005). The 
impacts of charismatic leadership style on team 
cohesiveness and overall performance during ERP 
implementation. International Journal of Project 
Management, 23(2), 173–180. 

Wang, E.T.G., Shih, S.-P., Jiang, J.J. & Klein, G. (2006). 
The relative influence of management control and 
user-IS personnel interaction on project performance. 
Information and Software Technology, 48(3), 214-
220. 

Warne, L. & Hart, D. (1996). The impact of 
organizational politics on information systems project 
failure-a case study. In Proceedings of the Twenty-
Ninth Hawaii International Conference on System 
Sciences (Vol. 4, pp. 191-201): IEEE. 

Wastell, D. & Newman, M. (1996). Information system 
design, stress and organisational change in the 
ambulance services: a tale of two cities. Accounting, 
Management and Information Technologies, 6(4), 
283-300. 

Wiersema, M.F. & Bantel, K.A. (1992). Top management 
team demography and corporate strategic change. 
Academy of Management Journal, 35(1), 91-121. 

Williams, L. & Cockburn, A. (2003). Agile software 
development: it's about feedback and change. 
Computer, 36(6), 39-43. 

Wilson, M. (2002). Making nursing visible? Gender, 
technology and the care plan script. Information 
Technology and People, 15(2), 139-158. 

Wilson, M. & Howcroft, D. (2000). The politics of IS 
evaluation: a social shaping perspective. In W.J. 
Orlikowski, S. Ang, P. Weill, H.C. Krcmar & J.I. 
DeGross (Eds.), Proceedings of the Twenty-First 
International Conference on Information Systems (pp. 
94-103): Association for Information Systems. 

Wilson, M. & Howcroft, D. (2002). Re-conceptualising 
failure: social shaping meets IS research. European 
Journal of Information Systems, 11, 236-250. 

Wilson, S., Bekker, M., Johnson, P. & Johnson, H. 
(1997). Helping and hindering user involvement - a 
tale of everyday design. In S. Pemberton (Ed.), 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (22-27 March, Atlanta, 
GA) (pp. 178-185): ACM Press. 

Wixom, B. & Watson, H.J. (2001). An empirical 
investigation of the factors affecting data warehousing 
success. MIS Quarterly, 25(1), 17-41. 



Wynekoop, J.L. & Russo, N.L. (1997). Studying system 
development methodologies: an examination of 
research methods. Information Systems Journal, 7(1), 
47-65. 

Yetton, P., Martin, A., Sharma, R. & Johnston, K. (2000). 
A model of information systems project performance. 
Information Systems Journal, 10(4), 263-289. 

Zeffane, R. & Cheek, B. (1998). Does user involvement 
during information systems development improve data 
quality? Human Systems Management, 17(2), 115-
121. 



Appendix A: Empirical studies reporting multiple factors influencing software system project outcomes. (‘+’ or ‘-’ respectively indicate a positive or negative relationship to the 
project outcome measure. Italicized factors indicate a statistically significant relationship at or below a value of p=0.10.) 

Study Focus Method People and action Project content Development processes  Institutional context Measure of success 
(failure) 

Aladwani 
[2000] 

Systems project 
performance 

Survey 

Kuwait 

Project staff expertise (+) 
Top management support (+) 
Project team conflict (-) 
Horizontal coordination (+) 

Project complexity (-) 
Adequate development tools (+) 

Project planning (+) 
User participation (+) 

 Project efficiency 
Project effectiveness 

Barry & Lang 
[2003] 

Multimedia 
systems project 
performance 

Survey 
Ireland 

Inadequate staff skills (-) 
Unrealistic user expectations (-) 

Scope creep (-) 
Project complexity (-) 
Staff shortages (-) 
Cost overruns (-) 
Time overruns (-) 

Unclear requirements (-) 
Lack of standard method (-) 

 Not defined 

Bussen & 
Myers [1997] 

EIS 
implementation 

Case 
study 
NZ 

Lack of user commitment (-) 
Lack of user readiness (-) 
Lack of top management  

support (-) 
Lack of user-developer communication (-) 
Organizational politics (-) 

Non-alignment with business goals (-) 
Time overruns (-) 
Staff turnover (-) 
Technical problems (-) 
Data problems (-) 

Poorly defined requirements (-) 
Lack of project planning (-) 

Hierarchical organizational 
structure (-) 
Changes in company 
ownership (-) 
Rapid organizational 
growth (-) 
Economic context (-) 

Project abandonment 

Butler & 
Fitzgerald 
[1999b] 

Systems 
development 
critical success 
factors 

Case 
studies 
Ireland 

Top management support (+) 
Adequate vendor support (+) 

Use of prototyping tools (+) 
Technical problems (-) 

Well-defined requirements (+) 
Project management (+) 
Project planning (+) 
User participation (+) 
Use of a standard method (+) 
Management of change (+) 

 Not defined 

Clegg et al. 
[1997] 

Systems project 
performance 

Interviews 
UK 

Lack of project staff expertise (-) 
Unrealistic user expectations (-) 
Lack of top management  

support (-) 
Organizational politics (-) 

Non-alignment with business goals (-) 
Cost overruns (-) 
Time overruns (-) 
Project complexity (-) 

Unclear requirements (-) 
Poor project management (-) 
Inadequate standard methods (-) 
Lack of user participation (-) 
Adequate user training (+) 
Poor management of change (-) 

 Meeting system 
objectives 

Irani et al. 
[2001] 

MRP system 
implementation 

Case 
study 
UK 

User resistance (-) 
Lack of top management  

support (-) 
Use of external consultants (+) 
Issues with external vendors (-) 

Alignment with business  

goals (+) 
Technological issues (-) 

Project management (+) 
Project management  

techniques (+) 
Management of change (+) 
User participation (+) 
User training (+) 

Organizational culture (+) System use 

Jiang et al. 
[1996] 

Systems 
implementation 

Survey 
US 

User commitment (+) 
Project staff expertise (+) 
Top management support (+) 
User-developer  

communication (+) 

Clear project goals (+) 
Adequate resources (+) 
Appropriate technology (+) 

Project management (+) 
Project leadership (+) 
User participation (+) 

 Not defined 



Study Focus Method People and action Project content Development processes  Institutional context Measure of success 
(failure) 

Jiang et al. 
[1998a] 

Systems 
development 
problems 

Survey 
US 

Lack of project staff communication skills 
(-) 
Lack of project staff expertise (-) 

Restricted scope (-) 
Unclear project goals (-) 
Inadequate resources (-) 
Cost overruns (-) 
Time overruns (-) 

Unclear requirements (-) 
Lack of project planning (-) 
Inadequate documentation (-) 
Inadequate testing (-) 
Lack of user participation (-) 
Lack of management of  

change (-) 
Lack of user training (-) 

 Not defined 

Jiang & Klein 
[1999, 2000] 

Systems project 
risks 

Survey 
US 

Lack of user commitment (-) 
Lack of user experience (-) 
Lack of project staff expertise (-) 
Lack of project staff domain knowledge (-) 
Lack of functioning of project team (-) 
Unclear role definition (-) 
Project team conflict (-) 

Project size (-) 
Project complexity (-) 
Technological newness (-) 
Inadequate resources (-) 

Extent of change (-)  Project effectiveness 
Satisfaction with 
system 
Organizational 
impact 
 

Kappelman  
et al. [2006] 

Systems project 
risks 

Survey 
US 

Lack of project staff expertise (-) 
Lack of top management  

support (-) 
Lack of project team  

commitment (-) 
Poor communication (-) 

Unclear business case (-) 
Lack of resources (-) 
Unavailability of appropriate expertise (-
) 

Lack of documented  

requirements (-) 
Poor project planning (-) 
Poor project leadership (-) 
Lack of user participation (-) 
Lack of management of  

change (-) 

 Not defined 

Keil et al. 
[2002] 

Software project 
risks (users) 

Delphi 
study 
US 

User resistance (-) 
Lack of project staff expertise (-) 
Unclear role definition (-) 
Poor project team relationships (-) 
Organizational conflict (-) 

Changing scope (-) 
Inadequate/inappropriate project staff (-) 

Misunderstanding requirements (-) 
Lack of project planning (-) 
Lack of user participation (-) 
Non-use of a standard method (-) 

 Not defined 

Keil et al. 
[1998]; 
Schmidt et al. 
[2001] 
 

Software project 
risks (project 
managers) 

Delphi 
study 
Hong 
Kong  
US 
Finland 

Unmanaged user expectations (-) 
Lack of user commitment (-) 
Lack of project staff expertise (-) 
Lack of top management  

support (-) 
Unclear role definition (-) 
Organizational conflict (-) 

Changing scope (-) 
Inadequate/inappropriate project staff (-) 
Staff turnover (-) 
Technological newness (-) 

Misunderstanding requirements (-) 
Changing requirements (-) 
Lack of user participation (-) 
Lack of project leadership (-) 
Poor management of change (-) 

 Not defined 

Kim & Pan 
[2006] 

CRM systems 
critical success 
factors 

Case 
studies 
Singapore 

Top management support (+) 
Project champion continuity (+) 
Project team skills (+) 

Adequate resources (+) Requirements management (+) 
Effective system design & development 
(+) 
User participation (+) 
Management of change (+) 
Business process design (+) 

 IS quality 
User satisfaction 
Use 
Net benefits 
 

Kumar et al. 
[1998] 

Inter-
organizational 

Case 
study 
Italy 

User commitment (+) 
Support of institutional stakeholders (+) 

Alignment with business  

goals (+) 

Clear requirements (+) 
Adequate user training (+) 

Inattention to national 
cultural context (-) 

Not defined 



Study Focus Method People and action Project content Development processes  Institutional context Measure of success 
(failure) 

system 
implementation 

Adequate resources (+) 
Proven technology (+) 

Adequate testing (+)  

Lemon et al. 
[2002] 

Systems project 
performance 

Survey 
Australia 
US 

Realistic user expectations (+) 
Unmanaged user expectations (-) 
Project staff expertise (+) 
Top management support (+) 

Clear project goals (+) 
Inadequate/inappropriate project staff (-) 
Inappropriate technology (-) 

Clear requirements (+) 
Lack of project management (-) 
Project planning (+) 
Small project milestones (+) 
Lack of risk management (-) 
Lack of project governance (-)    
User participation (+) 

Corporate culture (-) Not defined 

Linberg [1999] Software project 
performance 

Case 
study 
US 

Lack of top management  

support (-) 
Functioning of the project  

team (+) 
Organizational conflict &  

politics (-) 

Under-estimated project size (-) 
Project complexity (-) 
Low project importance (-) 
Inadequate resources (-)  
Time overruns (-) 
Cost overruns (-) 
Inadequate development tools (-) 

Project management (+) 
Project leadership (+) 
Use of a standard method (+) 

 Project completion or 
project cancellation 

Mabert et al. 
[2003] 

ERP systems 
implementation 

Survey 
US 

Top management support (+) 
Communication with external stakeholders 
(+) 
Communication with internal stakeholders 
(-) 

Project size & complexity (-) 
Major software modification (-) 

Project planning (+) 
Benchmarked progress against 
milestones (+) 
Empowered decision-makers (+) 

Accelerated implementation strategy (+) 
User training (+) 
Minor alignment of business processes 
(+) 

 Completed on time 
and to budget 

Martin & Chan 
[1996] 

Systems project 
performance 

Survey 
NZ 

User resistance (-) 
Lack of project staff expertise (-) 
Lack of top management  

support (-) 
Project champion (+) 
Project team conflict (-) 
Organizational politics (-) 
Poor communication (-) 

Project size (-) 
Project complexity (-) 
Project newness (-) 
Project importance (+) 
Clear project scope & goals (+) 
Alignment with business goals (+) 
Adequate resources (+) 
Inadequate/inappropriate staff (-) 
Cost overruns (-) 
Time overruns (-) 
Staff turnover (-) 
Inappropriate technology (-) 

Changing requirements (-) 
Inexperienced project leader (-) 
Realistic project plan &  

schedule (+) 
Allowance for developer  

learning (+) 
Cost-benefit analysis (+) 
Use of standard methods (+) 
Lack of user participation (-) 
Lack of user training (-) 
Lack of management of  

change (-) 

Growing IT 

 function (-) 
Focus on assimilating new 
technology (-) 
Organizational restructuring 
(-) 

Project smoothly 
completed, redefined 
or abandoned 

Nandhakumar 
[1996] 

EIS critical 
success factors 

Case 
study 
Europe 

Top management support (+) Alignment with business  

goals (+) 
Availability of resources (+) 
Use of appropriate technology (+) 

Project planning (+) Hierarchical organizational 
structure (-) 
Organizational policy on 
resource allocation (+) 
Poor market conditions (-) 

Not defined 



Study Focus Method People and action Project content Development processes  Institutional context Measure of success 
(failure) 

Management of data problems (+) 
Oz & Sosik 
[2000] 

Systems project 
performance 

Survey 
US 
Europe 

Lack of project staff expertise (-) 
Lack of top management  

support (-) 
Lack of functioning of the project team (-) 
Organizational politics (-) 

Unclear project goals (-) 
Time overruns (-) 
Unrealistic deadlines (-) 
Cost overruns (-) 
Inappropriate technology (-) 

Changing requirements (-) 
Poor project management (-) 

 Project abandonment 

Parr & Shanks 
[2000] 

ERP systems 
critical success 
factors 

Case 
studies 
Australia 

Top management support (+) 
Project champion (+) 
Balanced project team mix (+) 

Clear project scope and goals (+) 
Small project scope (+) 
Availability of appropriate project staff 
(+) 
Realistic deadlines (+) 
Minimal software  

modification (+) 

Empowered decision-makers (+) 

Commitment to change (+) 

 Completed on time 
and to budget 

Procaccino  
et al. [2006] 

Software project 
performance 

Survey 
US 

Realistic user expectations (+) 
Project staff expertise (+) 
Functioning of the project  

team (+) 
User-developer interaction (+) 

Lack of project scope creep (+) 
Availability of appropriate expertise (+) 

Clear requirements (+) 

Realistic & achievable requirements (+) 

Project management (+) 

Use of standard method (+) 

User participation (+) 

 Not defined 

Peterson et al. 
[2002];  
Kim & 
Peterson  
[2003] 

Systems project 
performance 

Survey 
US   
Korea 
Japan 

Project staff expertise (+) 
Top management support (+) 

Appropriate project scope (+) 
Clear project goals (+) 
Alignment with business  

goals (+) 
Appropriate technology (+) 

Project planning (+) 
Peer review & feedback (+) 
Project leadership (+) 
Use of standard method (+) 
User participation (+) 
Management of change (+) 

 Not defined 

Skok & Legge 
[2002] 

ERP systems 
critical success 
factors 

Case 
studies 
Europe 

User resistance (-) 
Project staff expertise (+) 
Lack of developer domain knowledge (-) 
Top management support (+) 
Effective management of external 
consultants (+) 
User-developer  

communication (+)  
Conflict management (+) 

Inadequate/inappropriate project staff (-) 
Staff turnover (-) 

Experienced project leader (+) 
User participation (+) 
User training (+) 
Management of change (+) 

Differences in national 
cultural context (-) 

Not defined 

Somers & 
Nelson [2001] 

ERP systems 
critical success 
factors 

Survey 
US 

Management of user  

expectations (+) 
Project staff expertise (+) 
Top management support (+) 
Project champion (+) 
Adequate vendor support (+) 
Use of external consultants (+) 

Clear project goals (+) 
Adequate resources (+) 
Use of appropriate software (+) 
High quality data sources (+) 
Compatible IT architecture (+) 
Minimal software  

modification (+) 

Project management (+) 
Appropriate project  

governance (+) 
User training (+) 
Management of change (+) 
Alignment of business  

Organizational culture of 
cooperation (+) 

Not defined 



Study Focus Method People and action Project content Development processes  Institutional context Measure of success 
(failure) 

Communication (+) processes (+) 
Sumner [2000] ERP systems 

project risks 
Case 
studies 
US 

Lack of developer domain knowledge (+) 
Lack of top management  

support (-) 
Lack of project champion (-) 
Ineffective use of external consultants (-) 
Ineffective communication (-) 

Inadequate/inappropriate project staff (-) 
Staff turnover (-) 
Major software modification (-) 
Lack of data integration (-) 
Integration with legacy  

systems (-) 
Incompatible IT architecture (-) 

Lack of centralized project management 
(-) 
Lack of user training (-) 
Lack of user participation (-) 

 Not defined 

Standish 
Group 
International 
[2001]; 
Johnson et al. 
[2001] 

Systems project 
performance 

Survey 
US 

Top management support (+) Clear business objectives (+) 
Minimized scope (+) 
Standard software  

infrastructure (+) 

Stable requirements (+) 
User participation (+) 
Project leadership (+) 
Project planning (+) 
Use of a project management method (+) 

 Completed on time, 
to budget and to 
specifications 

Wastell & 
Newman 
[1996] 

Systems project 
performance 

Case 
studies 
UK 

Top management support (+) 
Consultative management  

style (+) 

Adequate resources (+) 
Proven technology (+) 

Human-centered design  

approach (+)  
User participation (+) 
User training (+) 
Adequate testing (+) 

Good industrial relations 
(+) 

Service level 
improvement 
Project abandonment 

 

Wixom & 
Watson [2001] 

Data warehouse 
systems 
implementation 

Survey 
US 

Project staff skills (+) 
Top management support (+) 
Project champion (+) 

Adequate resources (+) 
Appropriate technology (+) 
High quality data sources (+) 

User participation (+) 
Management of change (+) 

 Implementation 
success  
System success 

Yetton et al. 
[2000] 

Systems project 
performance 

Survey 
UK 
NZ 

Top management support (+) 
Project team conflict (-) 

Project size (-) 
Project newness (-) 
Project importance (+) 
Project technical risk (-)  
Staff turnover (-) 

Project planning (+) 
User participation (+) 

 Project completion  
Budget variances 

 


	Factors that Affect Software Systems Development Project Outcomes: A Survey of Research
	1. Introduction
	4.2.1 User expectations
	4.2.2 User attitude and involvement
	4.2.3 Other user characteristics
	4.6.1 Goals and expectations
	4.6.2 Understanding
	4.6.3 Communication
	4.6.4 Conflict and politics
	7.1.1 Organizational culture
	7.1.2 Organizational policy and practice
	7.1.3 Organizational systems history


