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Introduction - While inductive modeling is used to develop a
model (function) from data of the whole problem space and
then to recall it on new data, transductive modeling is
concerned with the creation of single model for every new
input vector based on some closest vectors from the existing
problem space. The model approximates the output value
only for this input vector. However, deciding on the
appropriate distance measure, on the number of nearest
neighbors and on a minimum set of important
features/variables is a challenge and is usually based on
prior knowledge or exhaustive trial and test experiments.

This paper proposes a Genetic Algorithm (GA) approach
for optimizing these three factors. The method is tested on
several datasets from UCI repository for classification tasks
and results show that it outperforms conventional
approaches. The drawback of this approach is the
computational time complexity due to the presence of GA,
which can be overcome using parallel computer systems due
to the intrinsic parallel nature of the algorithm.
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1. INTRODUCTION

Transductive inference, introduced by Vapnik [1] is
defined as a method used to estimate the value of a
potential model (function) only for a single point of
space (that is, the new data vector) by utilizing additional
information related to that vector. This inference
technique is in contrast to inductive inference approach
where a general model (function) is created for all data
representing the entire problem space and the model is
applied then on new data (deduction). While the
inductive approach is useful when a global model of the
problem is needed in an approximate form, the
transductive approach is more appropriate for
applications where the focus is not on a model, rather on
individual cases, for example, clinical and medical
applications where the focus needs to be centered on
individual patient’s conditions rather than on the global,
approximate model.

The transductive approach is related to the common
sense principle [2] which states that to solve a given
problem one should avoid solving a more general
problem as an intermediate step. The reasoning behind
this principle is that, in order to solve a more general
problem, resources are wasted or compromised which is
unnecessary for solving the individual problem at hand
(that is, function estimation only for given points). This
common sense principle reduces the more general
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problem of inferring a functional dependency on the
whole input space (inductive approach) to the problem of
estimating the values of a function only at given points
(transductive approach).

In the past 5 years, transductive reasoning has been
implemented for a variety of classification tasks such as
text classification [3], heart disease diagnostics [4],
synthetic data classification using graph based
approach[S], digit and speech recognition [6], promoter
recognition in bioinformatics [7], image recognition [8]
and image classification [9], micro array gene expression
classification [10] and biometric tasks such as face
surveillance [11]. This reasoning method is also used in
prediction tasks such as predicting if a given drug binds
to a target site [12] and evaluating the prediction
reliability in regression [2] and providing additional
measures to determine reliability of predictions made in
medical diagnosis [13].

In transductive reasoning, for every new input vector x;
that needs to be processed for a prognostic/classification
task, the Ni nearest neighbors, which form a data subset
Di, are derived from an existing dataset D and a new
model Mi is dynamically created from these samples to
approximate the function in the locality of point x; only.
The system is then used to calculate the output value y;
for this input vector x;. This approach has been
implemented with radial basis function as the base model
[14] in medical decision support systems and time series
prediction problem, where individual models are created
for each input data vector (that is, specific time period or
specific patient). The approach gives a good accuracy for
individual models and has promising applications
especially in medical decision support systems.
Transductive approach has also been applied using
support vector machines as the base model in area of
bioinformatics [7, 10] and the results indicate that
transductive inference performs better than inductive
inference models mainly because it exploits the structural
information of the new, unlabeled data. However, there
are a few open questions that need to be addressed while
implementing transductive modeling.

Question 1: How many nearest neighbors should be
used to derive a model for every new input vector?

A standard approach, adopted in other research papers
[15-17] is to consider a range starting with 1, 2, 5, 10, 20
and so on and finally select the best value based on the
classifier’s performance. Alternatively, in the presence of



unbalanced data distribution among classes in the
problem space, Hand and Vinciotti [18] recommend the
value of nearest neighbors to range from 1 to a maximum
of number of samples in the smaller class. In cases of
datasets with large number of instances in hand, Jonnson
et al [19] recommend 10 neighbors based on results from
a series of exhaustive experiments. In contrast to this
recommendation, Duda and Hart [20] proposed using
square root of the number of all samples based on the
concept of probability density estimation. Alternatively,
Enas and Choi [21] suggested that the number of nearest
neighbors depends on two important factors: a)
Distribution of sample proportions in the problem space;
b) Relationship between the samples in the problem
space measured using covariance matrices. Based on
exhaustive empirical studies, they suggested using the
value of k as N** or N*® based on the differences between
covariance matrices for class proportions and difference
between class proportions. The problem of identifying
the optimal number of neighbors that help improve the
classification accuracy in transductive modeling remains
an open question that needs to be addressed.

Question 2: What type of distance measure to use in
order to define the neighbourhood for every new input
vector?

There exist different types of distance measures that can
be considered to measure the distance of two vectors in a
different part of the problem/feature space such as
Euclidean distance, Mahalanobis distance, Hamming
distance, Cosine distance, Correlation distance,
Manhattan distance among others. It has been proved
mathematically that using an appropriate distance metric
can help reduce classification error while selecting
neighbors without increasing number of sample vectors
[22]. Hence it is important to recognise which distance
measure will best suit the data in hand. In spite of this
fact, it has been observed that Euclidean distance forms
the most common form of distance metric mainly due to
ease of calculations [15, 18, 23] and several others. In
contrast to this, in a case study of gene expression data,
Brown et al [24] recommend Cosine measure over
Euclidean distance, as Cosine considers angle of data and
is not affected by the length of data or outliers which
could be a problem with Euclidean distance metric. On
the other hand, Troyanskaya et al [16] suggested that
effect of outliers can be reduced using log-transform or
any other normalization technique and thus recommend
Euclidean measure after performing a comparison of
Euclidean, variance minimization and correlation
measures for gene expression data. In view of these
contradicting suggestions for selection of distance
measure to identify neighboring data vectors, there is a
need to follow standardization while considering the
appropriate distance measure.

Hirano et al [25] arrived at one such standardization for

selecting the type of distance measure based on
properties of the dataset. They suggest that in case the
dataset consists of numerical data, Euclidean distance
measure should be used when the attributes are
independent and commensurate with each other.
However, in case of high interdependence of the input
variables, Mahalanobis distance should be considered as
this distance measure takes inter-dependence between the
data into consideration. On the other hand, if the data
consists of categorical information, Hamming distance
should be used as it can appropriately measure the
difference between categorical data. Also, in case the
dataset consists of a combination of numerical and
categorical values, for example - a medical dataset that
includes numerical .variables such as gene expression
values and categorical variables such as clinical
attributes, then a weighted sum of Mahalanobis or
Euclidean for numerical data and Hamming distance for
nominal data is recommended.

Keeping these suggestions in perspective, it is important
to provide a wide range of options to select the distance
measure based on type of dataset in a particular part of
the problem space for a particular set of features.

Question 3: What features are important for every new
input vector?

Feature selection is a search problem [26] that consists of
feature subset generation, evaluation and selection.
Feature selection is useful for 3 main purposes: reduce
the number of features and focus on those features that
have a strong influence on the classification performance;
improve classification accuracy; simplify the knowledge
representation and the explanation derived from the
individual model.

The three questions above are addressed here by
introducing a GA approach. Generally speaking, GAs
provide an useful strategy for solving optimization tasks
when other optimization methods, such as forward
search, gradient descent or direct discovery, are not
feasible with respect to their computational complexity.
Moreover, since we need to optimize several parameters
at the same time and find a combination that gives
optimal results, the intrinsic parallelism of GA seems
most appropriate to perform the implementation on a
largely parallel architecture. In the paper, a selection is
made from the types of distance measures as shown in
Fig 1. The number of neighbors to be optimized lies in
the minimum range of 1 (in case of kNN classification
algorithm) or number of features selected (in case of
linear classifier function) and a maximum of number of
samples available in the problem space.

We also use GA to identify the reduced feature set. There
has been a controversy over the application of GA for
feature selection [27] as some authors find this approach
very useful [28-31] while others are skeptical [32, 33]



and not impressed with the results presented by GA in
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Fig I: Equations of selected distance measures (where x
andy are vectors of m attribute values)

comparison to other feature selection algorithms [34].
The main reason for using GA for feature selection in a
transductive setting are: 1) Features are selected in their
combination with the number of nearest neighbors and
the optimal distance measure; 2) This technique allows
for an unbiased feature selection where the test data is
not considered while selecting the optimal features thus
avoiding bias in the final feature-subset obtained; 3) The
entire range of features is represented in a chromosome
making the encoding task straightforward.

For this research work, multi linear regression[35] is
used as the base model for applying the transductive
approach. The model is represented by a linear equation
which links the features/variables in the problem space to
the output of the classification (or prediction) task and is
represented in Equation (1):

r=wo+wXi+..+ wXo (H

Where r represents the output and w, represents the bias
and w; represent the weights for the features/variables of
the problem space which are calculated using least square
method. The descriptors X, are used to represent the
features/variables and » represents the number of these
features/variables. The reason for selecting multi linear
regression model is the simplicity of this model that will
make the comparative analysis of the Transductive
approach using GA with the inductive approach easier to
understand and interpret.

2. PROPOSED ALGORITHM

The main objective of this algorithm is to develop an
individualized model for every data vector in a semi-
supervised manner by exploiting the data vector’s
structural information, identifying its nearest neighbors
in the problem space and finally testing the model using
the neighboring data vectors to check the effectiveness of
the model created. GA is used to locate an effective set of
features that represent most of the data’s significant
structural information along with the optimal number of
neighbors and the optimal distance measure to identify
the neighbors. The complete algorithm is described in
two parts: the transductive inference procedure; and the
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GA optimization procedure.

Transductive_MLR_withGA-Optimization (Sample S, Dataset
D):

Calculate D = Linear_normalization (D)
For Sample=1 to size (D)
Set GA_parameters to Generations, Populations, Crossover
rate & Mutation rate
Initialize CurrentGen=1
Initialize random start values for
1. Number of neighbors (K umencen) between number of
features selected and maximum size(Entire Data)
2. Distance function (Dcymenien) between Euclidean,
Manbhattan/City Block, Correlation and Cosine
3. Number of features (Fcuremcer) based on binary
selection.
While CurrentGen <Generations
Initialize CurrentPop=1
While CurrentPop<Populations
Select Kcurenien neighbours Neighbors.umpe of
the sample S with distance measure as D ymentcien
and feature list as FeumentGen-
Calculate the fitness function for CurrentPop as
follows. We assume that that if the parameters
[K(‘un-em()en D( “urrentGen F (,‘umm(:'en] Pl'Odllce a
MLR model with high classification accuracy for
Neighborsmpe , then these parameters will work
well with the sample S as well. We calculate the
classification accuracy for Neighborswumpie
with MLR model using data extracted with
parameters [K(,'ummGen DcurrentGen F CumtmGen] as
follows:
For m=1 to size(Neighborsampic)
Find Kcumencen n€ighbors of
Neighborssumpi.(m) using Dcurencen distance
measure and Feumencen features.
Run Multi Linear Regression model with
K urremten n€ighbors of Neighborssampi(m) as
the traindata and Neighbors,amp.(m) as
testdata. Calculate classification accuracy as
Accuracy (m).
EndFor
Calculate average (4ccuracy) as fitness function
for the GA.
EndWhile
Sort the fitness function values across all populations
and select the two best populations with maximum
fitness function as parents for GA.
Mutate and Crossover to create offspring with
parameters for [KcumentGen Dcurrenttien Feurenten] USING
Crossover rate & Mutation rate.
EndWhile.
Select the final population with maximum fitness
function as the best model parameters [K D F] for the
Sample S.
Test these model parameters [K D F] for D(Sample)
as festdata and calculate classification accuracy AcCuampre
EndFor.

Fig 2: Algorithm for Transductive modeling with GA
parameter optimization

Transductive inference procedure

1. The dataset is normalized linearly (values between 0
and 1) to ensure a standardization of all values. This
normalization procedure is based on the assumption that
all variables/features have the same importance for the




output of the system in the whole problem space.

2. For every test sample T}, perform the following steps:
Select closest neighboring samples, create a model and
evaluate its accuracy. For every test sample 7, we select
through the proposed GA procedure a set of features to
be considered, the number of nearest neighbors, and the
distance measure to locate the neighbors. A typical GA
chromosome includes the following fields (“genes”):
Distance Measure; Number of neighbors; Feature set.
The accuracy of the selected set of parameters for 7;
model is calculated by creating a model with these
parameters for each of the neighbors of test sample 7; and
calculating the accuracy of each of these models. The
cross validation is run in a leave one out mode for all
neighbors of T,. If, for the identified set of parameters,
the neighbors of T; give a high classification accuracy
rate, then we assume that the same set of parameters will
also work for the sample 7,. This criterion is used as a
fitness evaluation criterion for the GA optimization
procedure.

3. Perform the set of operations in step 2 in a leave one
out manner for all the samples in the dataset and
calculate the overall classification accuracy for this
transductive approach.

GA optimization procedure

GA [36-38] have found a considerable range of
applications for global optimization of objective
functions. In our optimization procedure, for every new
input vector T;, the initial populations of models begin
with randomly selected, from a given constrained range
of values, set of parameters for distance measure, K value
and a subset of features. Here K values range from a
minimum of number of features to a maximum of all
samples in problem space. For the bits representing the
features in the chromosome, a value of ‘1’ represents the
selection of the feature and a value of ‘0’ denotes that the
feature is not selected.

The fitness function represents the average classification
accuracy obtained using a particular chromosome
(model). The fitness function is calculated as the average
of the classification accuracy for all selected neighbors of
the test sample 7. The hypothesis held here is that if the
average classification accuracy is good for all neighbors
of the test sample with a particular chromosome, then
that chromosome will work well for the test sample.

Rank based selection with elitism strategy [37] is applied
for selecting the best performing chromosome for further
reproduction.  Elitist strategy ensures that at least one
copy of the best individual in the population is always
passed onto the next generation. The main advantage of
this strategy is that convergence is guaranteed, i.e., if
global maximum is discovered, the GA converges to that
maximum. However, by the same token, there is a risk of
being trapped in a local maximum. The reproduction
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involves: a) Crossover - Once the selection procedure is
complete, a uniform crossover is applied with a crossover
rate kept as high as possible and the selected parents
from the previous generation are crossovered with a high
cross over probability; b) Mutation — Uniform mutation
is carried out that makes small alterations to the values of
all selected genes to create the next generation. A binary
mutation procedure is applied which simply requires the
mutated bit to become its complement. Probability of
mutation is normally kept as 1/(number of bits in the
chromosome) which acts as a fixed pre-determined
probability for mutation for every gene (bit) in every
chromosome. This mutation rate is kept very low to keep
the search from diversifying rapidly. Fig. 2 shows the
psuedocode for the transductive multi linear regression
algorithm with GA parameter optimization.

3. EXPERIMENTS

We conducted experiments on various UC Irvine datasets
[39] with their characteristics represented in table 1. The
tests were carried out on the entire data using leave one
out validation technique. The datasets were selected as
the ones without any missing values except for breast
cancer dataset that had 4 missing values. At the pre-
processing stage, the four samples with missing values
were deleted and the size of breast cancer dataset reduced
from 198 to 194. As the next step of pre-processing, all
the datasets were normalized using linear normalization
resulting in values in the range of 0 and 1 to provide
standardization.

Table 1: Characteristics of datasets

Dataset # of classes # of features # of data points
Thyroid 3 5 215

Sonar 2 60 208

Glass 7 10 214

Breast 2 30 194

Cancer

The Transductive MLR with parameter optimization is
compared against inductive MLR and Transductive MLR
without optimization. In the latter case, the parameters
for nearest neighbors and distance measure are kept fixed
after selecting which distance measure would be best to
use for a particular case study problem (see the table in
the appendix). Table 2 presents cross validation results
for comparison between inductive and transductive
modeling approach without and with GA parameter
optimization only for MLR types of models.

Table 2: Leave one out cross validation accuracy
obtained for different MLR modeling approaches:
inductive MLR models; transductive MLR models without
GA parameter optimization but using the best known so
far values for the three parameters under optimization;
transductive MLR modeling with GA parameter
optimization (fig.2).



Data Inductive. | Bestof Transd. MLR | Transd
MLR with fixed (best) MLR with

parameters (see GA optim.
appendix)

Thyroid 86.51 94.88 94.88

Breast 72.16 67.01 73.71

Cancer

Sonar 75.48 78.81 81.25

Glass 60.75 68.69 71.96

4. DISCUSSIONS AND CONCLUSION

The results show that the transductive modeling approach
with GA optimization significantly outperforms the
inductive modeling and the parameter optimization
procedure improves the accuracy of the individual
models at average. An extension of the current work will
deal with: Using connectionist models that enable rule
extraction for each individualized models; GA
implementation with real values instead of binary values
for feature selection that will indicate the normalization
range and the importance of each feature for each
individual model [38]; Using a hybrid approach for the
optimization task where the GA will provide the starting
point for local search algorithms to find the optimal
parameter combination.
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6. APPENDIX

Table 3: Classification accuracy of transductive MLR
models using different fixed values for K and type of
distance. The best model is reported in table 2.

Num. of Distance Thyroid | Somar | Breast | Glass
Nearest measure Cancer
neighbors
Jﬁ Euclidean 93.02 77.88 54.64 68.69
Correlation | - 77.88 57.22 -
Cityblock 92.56 79.81 54.12 64.95
Cosine - 77.40 60.82 -
Smaller Euclidean 94.88 75.48 64.95 32.71
class of Correlation | - 75.96 67.01 -
samples Cityblock 94.88 74.04 61.86 32.71
inN Cosine - 75 65.46 -
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