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Abstract
Aluminium to copper bimetal parts have seen wide use in electrical componentry. A
continuous interface between the two alloys is necessary in order to have unhampered
electron path. Friction stir welding, especially in a lap configuration (FSLW), is a
proven method in the production of continuous welds with dissimilar metals, producing
a metallurgical joint in the form of interfacial intermetallic layer formed in between the
plates. However, from existing literature there is no evidence of a discontinuity-free
interface in aluminium-to-copper FSLW. More specifically, no parameter optimisation
of penetration depth (d,) and tool rotation speed (@) were conducted to establish a
continuous weld interface. In addition, material flow, especially in the vicinity of the
pin bottom region is still unknown. Therefore, a series of experiments using three
different pins, left-hand threaded pin, scriber pin, and pin that have its last thread at the
bottom manually filed were conducted with the intention of modifying the flow in the
bottom region of the pin. Variation of d,, » and tool tilt angle also utilized to
investigate their effect toward the material flow, as well as to possibly find the optimum

parameter window.

Optimum parameters to produce a continuous Al-to-Cu welds using a conventional left-
hand threaded pin a range of d,, between 0.15 - 0.29 mm that combined with  and
travel speed (v) of either 1400 and 40 mm/min or 1000 rpm and 56 mm/min. However,
the d,, range is too narrow for manufacturing convenience. In addition, it was revealed,
despite the optimum @ and v were known, achieving a consistent continuous interface
in a weld as well as the reproducibility were difficult. Flow analysis was then conducted
by means of keyhole observation and stop action method. It was revealed that welding
using d, exceeding the workable range that resulted in the formation extensive copper
flashes in retreating (RS) and advancing (AS) side. During the process, in the rear half
of the pin, the flash in AS side folded inward to the stir zone. It was driven by the vortex
flow induced by pin threads. These extensive copper can be broken into big elongated
fragments and together with the folded RS flash can potentially blocked the aluminium
downflow. Thus, creating voids in the vicinity of the weld’s interface. Furthermore, the
inconsistency was hypothesized to be caused by non-uniform intermetallic shearing in

last thread at the bottom of the pin.



To solve the first problem, a series of welds were conducted with a pin with a 1 mm in
diameter scriber pin, fixed 2 mm off from the centre of the bottom surface of the pin.
With a scriber pin, 0.5 mm in length, using parameters of @ of 1400 rpm and v of 40
mm/min the scriber penetration depth (d,_scriver) range was extended to 0.2 - 0.5 mm.
Copper flash bent outward from the stir zone, creating unhampered material flow in the
scribed area. However, a d;,_gscriper l€SS than 0.2 mm led to a decrease in down flow
fluidity in the scriber area, and as a result, an extensive gap formed in the weld zone.
Tilting the tool closed the majority of the gap. However, a critical dj,_gcyiper 0F 0.2 mm
was applied forming a completely discontinuity free interface. Additionally, material
down flow was of importance in driving the copper fragments away from the weld
interface. The diminished downward flow was insufficient in driving the copper
fragments away from the scribed area, with the fragments and aluminium in the scribed
area transforming into a region of thick and brittle intermetallic. Weld keyhole analysis

was used in visualising the flash formation and material flow for these scriber pin trials.

To justify the previously drawn hypothesis, FSLW was then conducted using a pin that
manually filed to remove the last thread in the pin bottom for the purpose to produce
constant intermetallic shearing behind the pin. A consistent, discontinuity-free weld
interface, with similar features throughout the weld, was produced using a @ of 1400
rom, v of 40 mm/min, and d,, of 0.1 mm, verifying the hypothesis. The interface was
characterized by thick interfacial intermetallic layer from the RS to the middle of the
interface, with a 50 pum thick of Al,Cu cluster particles just above the interface, with the
cluster appearing to be driven away from the interface in the middle to AS. Extensive
copper flashes in both the retreating and AS were formed however, the absence of
thread in the bottom region of the pin, diminished or removed the vortex flow,
preventing flash folding into the stir zone. This also demonstrated in the weld using d,,
of 0.2 and 0.5 mm. The absence of Al,Cu clusters in welds at a deeper d,,’s, produced
enlarged copper fragments, too large to be completely transformed into Al,Cu particles.
These fragments along with the driven away Al,Cu were used in visualising the
aluminium down flow. The extended copper flash in welds with d,,’s of 0.2 and 0.5 mm
served as an anchor that made the shear tensile test breaking load value larger than weld

with a d,, of 0.1 mm. Fracture analysis confirmed fracturing to occur at the interfacial



intermetallic layer in the weld with a d,, of 0.1 mm, as opposed to fracturing occurring

in the mixed stir zone (MSZ) for at the other d,,’s.

Particles usually found dispersed in the stir zone in weld produced with a @ equal or
more than 1000 rpm were confirmed with EBSD to be Al,Cu, similar to the interfacial
intermetallic layer that is adjacent to aluminium stir zone. The composite-like structure,
which is the dispersion of Al,Cu particles in the stir zone, was formed by the reaction
between copper fragments and surrounding aluminium. With, denseness of the structure
depending on the amount of copper fragments. Copper was introduced into aluminium
matrix during the process. As temperature increased, the solubility limit increase, then
further reduced. The previously dissolved copper got out of the aluminium matrix into
the grain boundary and formed Al,Cu fragments. These fragments the grew and further
liquefied as they react with their surrounding aluminium. The amount of liquefaction
and denseness depends on the amount of copper fragments. Interfacial intermetallic
growth was also investigated by analysing multipass FSLW using optimum parameter
for left-hand threaded pin. It was seen that the growth of the interfacial intermetallic
layer was not fully governed by volume diffusion, and was formed by dispersion of

dense Al,Cu particles directly atop of the interface.
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Chapter 1: Introduction

1.1 Aluminium 6060-T5, commercially pure copper and Al-Cu bimetal

1.1.1  Aluminium background

Sir Humphry Davy, a British chemist, discovered aluminium (Al) in 1808. He named
this metal after alumina whose name was derived from Latin word alum, which means
bitter salt. However, he never succeeded to isolate the metal. In 1825, Danish chemist
named Hans Christian @rsted, succeeded to produce a very small amount of aluminium
by reducing aluminium chloride with potassium amalgam. Two years after @rsted,
Friedrich Wohler in Germany with the same method succeeded to obtain a very small
amount of aluminium lumps and demonstrate aluminium’s lightweight and malleability.
In France, around 1854, Henri Sainte-Claire Deville demonstrated that relatively low-
cost sodium than potassium can also be used. This led to the establishment of first
commercial plant that produced small amount of aluminium in 1855. However, the
process was expensive because sodium and potassium were produced with electrolytic

process [1].

Table 1 - 1 Group of aluminium wrought alloy [2].

Designation Major alloying element
Ixxx None
2XXX Cu
3XXX Mn
AXXX Si
OXXX Mg
BXXX Mg and Si
TXXX Zn
8XXX Other than above (iron, lithium or tin)
9XXX Reserved for the future

The development of large-scale electrical generating industrial instruments happened in
1886, at the same time, Paul Héroult in France and Charles hall in United States,
independently developed direct electrolytic decomposition of Al,03. They discovered
that when electric current is driven through molten cryolite containing dissolved Al,O3
at 980 °C, molten aluminium is deposited in cathode. This process together with the
process to produce alumina developed by Karl Josef Bayer in 1888, lead to the modern

production of aluminium that we know of today [1].



Aluminium is one of the most versatile metal with a very board application from a
simple, soft and ductile wrapping foil to a complicated and demanding engineering
application. Aluminium density is 2.7 glcm®, which is about one-third of lesser
compared to steel (7.8 g/cm®). With light weight and the strength of some alloys [3],
aluminium also have excellent corrosion resistance to environment that would cause
steel to rust owing to the formation of aluminium oxide on its surface when exposed to
oxygen. Furthermore, the oxide of aluminium is not in the form of flakes like in steel,
and it doesn’t peel off and expose fresh surface to further oxidation [3]. In addition,
aluminium is second most used in structural application and rivals copper (Cu) in
electrical application, although its thermal conductivity is about 50 to 60% than copper
aluminium is twice on equivalent basis and is the most abundance amount of structural
metal, about 8% of the earth’s crust [1] [3].

Aluminium alloy is categorized into two major categories wrought and cast alloy.
Wrought alloy is alloy that is produced in the form of billet or ingot which then formed
into various shapes by various metal forming processes such as forging, rolling
drawing, extruding etc., and cast alloy is alloy that is used in parts cast to produce semi-
finished products which further made into end products. Since aluminium used in this
study is not from cast alloy category, further discussion will be emphasized on wrought
alloy category. Wrought alloys, depending on their major alloying element, are divided
into various groups that can be seen in Table 1 below. The group designation is

following the system developed by aluminium association (AA) [2], [3].

2XXX, 6XxX, 7xxx, and some of 8xxx aluminium groups are heat-treatable. The major
alloying elements are forming second phase precipitates and improve the mechanical
properties with precipitation hardening strengthening mechanism [2], [4].

1.1.1.1 Aluminium 6060-T5

6060-T5, aluminium used in this study, is belong to the 6xxx series. Its main alloying
elements are magnesium and silicone, which combination will form into magnesium
silicide (Mg.Si) phase as the basis of its precipitation hardening. This series is the most
common alloy due to its good machinability and weldability, making them highly
versatile applications in various industries. In addition, because this series is easy to be
extruded, it is available in wide range of shape and size from sheets and plates to
complex structural shapes. 6060-possesses similar properties as one of the most

common alloys used in this series that is 6063, which is commonly used in structures,



appliance parts, automotive parts, electrical and electronic parts, etc. Note that T5 is the
temper condition where aluminium is cooled down from elevated working temperature

condition with artificial aging performed subsequently [2], [4].

In term of electrical application performance, the electrical resistivity of 6060 is about
the same with 6063, which is around 54% international annealed copper standard
(IACS) in the same volume as copper and 180% IACS in the same weight as copper.
Furthermore, 6060 is still comparable to 1350 from 1xxx series that is commonly used
for electrical conductors which have around 61-62% IACS in the same volume as
copper and 200-210% IACS in the same weight as copper [5], [6]. This shows that 6060
is a good substitute for 1350 with far better formability.

1.1.2 Copper background

Together with gold (Au) and tin (Sn), copper is one of the first metals that humankind
utilized. Copper have been utilized since 10,000 years ago. Even the earliest artefact
made from smelted metal was dated as early as 7000 B. C. The discovery of alloying
copper with Sn led to the beginning of Bronze Age in the Middle East around 3000 B.
C. It allows the manufacture of various things starting from weapons, house appliances,
and decorative items, and even used in construction. The alloying with Zinc (Zn), and
brass, were also widely used. The discoveries of brass artefact from Greeks and Romans

era demonstrate the metal’s excellent corrosion resistance.

Industrial revolution making it possible to produce copper in higher amount and higher
purity, as well as various kinds of copper alloys. In this era, copper demonstrated its
excellence in conducting electricity, heat and corrosion resistance that made copper
widely used now in the modern era, with the majority of usage being in the electrical
application. In 1997, the majority of copper consumption in US is used for electrical
conductivity. Most of the applications is in the form of wires and cables. The electrical
conductivity is expressed in a percentage of IACS, which is equal to 100 times the ratio
of volume resistivity of the annealed copper standard (17.2 x 10 pQ.m) at 20 °C to the
value of the material measured. The highest purity of copper able to produced today,
99.999%, have the conductivity of 103% IACS.

Based on its alloying, copper alloys are divided into 9 categories, which can be seen in
Table 1 - 2. Because copper that is used in this study is belong to these coppers’
category. The unified numbering system (UNS) was used to distinguish copper and

copper alloys from one and another. UNS numbering system is a five-digit number and
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preceded by the letter C. Designation number from C10000 to C79999 is classified as
wrought alloys and designation number from C80000 to C99999 is classified as cast
alloys. Out of these two groups, the alloying composition are grouped into categories
listed in Table 1-2 above.

Table 1 - 2 Copper and copper alloys

Alloy categories Description

Coppers Containing 99.3% of Cu

High-Copper alloys Containing up to 5% alloying elements
Copper-Zinc alloys (brasses) Containing up to 40% of Zn

Copper-tin alloys (phosphor (P) Containing up to 10% of Sn and 0.2% P
bronzes)

Copper-aluminium alloys (aluminium  Containing up to 10% of Al

bronzes)

Copper-silicon alloys (silicon (Si) Containing up to 3% of Si

bronzes)

Copper-nickel (Ni) alloys Containing up to 30% of Ni
Copper-zinc-nickel alloys (nickel Containing up to 27% of Zn and 18% Ni
silvers)

Special alloys Containing elements to enhance specific

characteristic

1.1.3 C11000 commercially pure copper

Commercially pure copper is a wrought copper that belongs to the first Coppers alloy
group with the content of copper being at least 99.3%. This type of alloy group is
known to be superior in electrical conductivity and mainly used in electrical and
electronic applications [7]. To be specific, commercially pure coppers are designated by
UNS number of C10100 to C13000 [8]. Comprise of oxygen-free coppers (C10xxx) that
is made by induction melting, electrolytic tough pitch copper (C11xxx) that is refined
electrolytically, and phosphorus-deoxidized copper (C12xxx) that is made by
deoxidizing the copper until the oxygen content drop to 0.02 - 0.04%. However, the
most used type of copper for electrical purposes such as busbar, cable, windings etc., is
the C11000 grade, that is the most commonly utilized grade [9]. In addition to their
excellent conductivity of 100 - 101.5% IACS, C11000 is also very ductile, making it

easy for them to be fabricated into various forms [7], [8].
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1.1.4 Al - Cu Bimetal

Al - Cu bimetals is commonly used in various electrical applications. To be specific, Al
- Cu bimetal parts are used as a bridge to pass electricity current from a specific part of
an electrical device or cathode and anode to an aluminium or copper busbar in a direct-
current bus system. Al - Cu bolted joint resistance can increase more than 30 times after
5 years. As an attempt to extend the life service of the joint, the Al - Cu interface that
was previously bolted was then welded to seal the joint from contaminant so that the
resistance would not drop after some times of usage. However, due to the formation of
thick and brittle intermetallic, the parts went through mechanical failure [10]-[12]. The
introduction of solid state joining technique such as roll and explosive bonding was
proven to be successful to expand the life service of the Al - Cu bimetal to more than 10
years [11].

1.2 Fusion welding

Welding, according to Messler, in general “is a process in which materials of the same
type or class are joined together through the formation of primary (and, occasionally,
secondary) bonds under combined action of heat and pressure” [13]. Similarly welding
according to ISO standard R 857 (1958) is “an operation in which continuity is obtained
between parts for assembly, by various means”. Continuity can be interpreted as the
absence of physical discontinuities or gaps in atomic level. Different with mechanical
fastening, no matter how tight the joint is, physical gaps will always present. Continuity
also does not always mean homogeneous in chemical composition across the welding
interface. For example, stainless steel can be joined with the same alloy (homogeneous)
or different alloy (heterogeneous), as well as cast iron can be welded with bronze filler
[13].

1.2.1 Fusion welding of similar metal

In fusion welding, the joint is established by heating the abutting interfaces above the
melting or liquidus point of pure and alloys, respectively, and then the interface is put
together in their liquid state, either with or without filler, so that atomic continuity will
be formed after the interface solidified. Typical fusion welding of similar metal
interface with distinct zones such as Fusion zone (FZ), heat-affected zone (HAZ), and
base metal can be seen in right hand side of Figure 1 - 1. In addition, in some alloy such
as Al 2024, Al 6061, etc., partially melted zone (PMZ) could be formed in between base
metal and FZ, as shown in the left hand side of Fig. 1 - 1 [14].



The fundamental process of fusion welding, depending on the heat generation source
can be divided into four: (1) Chemical energy from combustible fuel or exothermic
reaction (oxyfuel gas welding & aluminothermic welding); (2) Electric arc either from a
non-consumable or consumable electrode, whereas the latter acts as filling material as
well (gas-tungsten arc welding, plasma arc welding, gas-metal arc welding, shielded-
metal arc welding, submerged arc welding, etc.); (3) Joule heating that is produced by
direct current flow through the plates which are positioned in a circuit (spot welding);
(4) High intensity flux of beam that is fast-moving particles (laser welding, electron

beam welding, microwave welding, etc.) [14].

High-temperature

" heat-affected zone (HAZ) Fusion zone (FZ)
Low temperature Crai  in b
heat-affected zone (HAZ;-\ “"“/8;::; in :abaffected
A 7
Alloy // Pure metal
e / \, \_\
Unaffected base metal Partially melted zone (PMZ) Unaffected base metal

Figure 1 - 1 Microstructural zones of fusion welding [14].
1.2.2 Fusion welding of dissimilar metal

Dissimilar metal welding is proven hard to achieve due to difference in material
properties such as thermal expansion, melting point etc. However, it is still doable
except if thick intermetallic compound after the weld solidified formed. Two of which
are fusion welding of Cu - Fe [15]-[17] and Fe - Ni based alloys [18], [19]. As for Al -
Mg [20]-[23][23], Al - Ti [23]-[25], Mg - Ti [23] and Al - Cu [24], [26], [27] metal
couples, except for Mg - Ti for being immiscible [20]-[23], there is a common
agreement that the intermetallic that formed is brittle and have adverse effect on the

joint’s mechanical properties.

For Al - Cu fusion welding, Al - Cu intermetallic is readily formed in temperature
greater than 120 °C, owing to its high affinity in said temperature [10], [28]-[31]. This
intermetallic tends to form and grow excessively. Example can be taken from laser
welded Al - Cu in lapping configuration in Fig. 1 - 2a. Higher magnification of the weld
root shows that cracks are formed extensively (Fig. 1 - 2b). The cracks stopped at the

border of the weld root/copper vase metal are indicating that there is a significant



difference in toughness. Moreover, no cracks can be seen in upper region of the weld

where copper dilution in aluminium matrix was low to none [24].

Studies have shown that the thicker the intermetallic [11], [28], [32], [33], the lower its
mechanical properties. The critical thickness for the interfacial Al - Cu intermetallic in
order for the joint to retain its integrity, meaning that it would break in the HAZ, is not
more than 2.5 um [28], [33]. The crack mode changes from ductile, in the HAZ, to
intergranular fracture in Al,Cu/AlCu border when the intermetallic exceeds the critical
thickness and further growth changes the mode to transgranular fracture in all
intermetallic [28], [33], as shown in Fig 1- 2b. In addition, the increase in intermetallic
thickness in Al - Cu system is also directly proportional to the increase in electrical
resistivity [28], [31], [34] because these Al - Cu intermetallic compounds have covalent

bond, making them non-conductive in nature [28], [31].

Figure 1 - 2 (a) Al - Cu laser welding in lapping configuration (b) higher magnification
of the weld root showing extensive cracks in intermetallic that formed in
the weld root [24].

Although attempts have been made to reduce the interfacial intermetallic in dissimilar
metal fusion welding in general [23], [27], the presence of molten state during welding
makes it difficult to avoid the formation of intermetallic. Furthermore, fusion welding in
lap configuration, where the melting starts from the top plate all the way to the bottom
plate, ensures material mixing in molten state that lead to the formation of intermetallic
asshown inFig 1 - 2 aand b [24].

Because of these reasons, solid state welding, where no melting involved in the process,
is the best method to join dissimilar metals especially in lapping configuration. Friction
stir welding (FSW), one of solid state welding technique, is proven to be able to
produce a relatively good joints with an interfacial layer of intermetallic, such as the
metallurgical joint in Al-to-Fe [35], [36] and Al-to-Ti [37] that are produced under one

process, without the need of additional heat treatment to establish metallurgical joint.
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Figure 1 - 3 Schematic drawing of FSW [38], [39].

1.3 Friction stir welding

FSW is a solid state joining technique invented by Wayne Thomas and colleagues at
TWI in the United Kingdom in 1999, which was initially utilized to weld aluminium
alloys that could not be welded with conventional fusion welding methods [39]-[43].
The process itself is exceptionally simple; weld is established by using a non-
consumable rotating tool with specially designed shoulder and pin that is inserted into
abutting edges of plates, or in this study lapping plates, to be joined and subsequently
traversed along the joint line [38], [39], [44]. Fig. 1 - 3 clearly explains how the FSW
process in general, however additional elaboration is needed to further understand about
retreating side (RS) and advancing side (AS). It can be seen in Fig. 1 - 3 that the tool
rotates counter clockwise and traverses into the paper. Based on the tool position and
rotation direction, the RS is in the left side where the tool rotates in an opposite
direction with the tool’s travel direction. Whereas, the AS is in the right side of the pin

that rotates in the same direction with tool’s travel direction.

Table 1 - 3 Advantages of FSW [38], [44].

Metallurgical benefits Environmental benefits Energy benefits

* Solid-phase process * No shielding gas required » Improved materials use (e.g., joining different

¢ Low distortion « Minimal surface cleaning required thickness) allows reduction in weight

* Good dimensional stability and repeatability  » Eliminate grinding wastes * Only 2.5% of the energy needed for a laser

* No loss of alloying elements « Eliminate solvents required for degreasing weld

¢ Excellent mechanical properties in the joint  » Consumable materials saving, such as ¢ Decreased fuel consumption in lightweight
area rugs, wire, or any other gases aircraft, automotive, and ship applications

¢ Fine recrystallized microstructure + No harmful emissions

= Absence of solidification cracking

* Replace multiple parts joined by fasteners
» Weld all aluminum alloys

¢ Post-FSW formability
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Figure 1 - 4 Typical FSW [38], [39]

The main advantage of FSW in dissimilar metal welding is its solid-state nature,
because the process normally occurs below the melting point or solidus line of an alloy
[39], [44]-[46]. This means that the welded material will not transform into molten state
during the process, thus avoiding the formation of thick intermetallic, which is brittle in
nature, effectively reducing the joint’s mechanical properties and if cracked, when used
in electrical applications, reducing the electron path, reducing the joints conductivity.
Beside this important advantage for dissimilar metal welding, advantages of FSW over

fusion welding in general are summarized in Table 1 - 3 [38], [44].

Table 1 - 4 Tool material and attributes [39], [47].

Tool material class

Carbides.
Refractory cermets, and

Material attributes  Tool steels  Superalloys metals ceramics Superabrasives
Strength (room Good Excellent Excellent Excellent Excellent

temperature)
Strength Good Very good  Excellent Good Excellent

(at processing

temperature)
Fatigue strength Very good  Excellent Very good Excellent Very good
Fracture toughness  Very good Very good  Very good Good Poor to good
Wear resistance Good Good Very good Good Excellent
Chemical inertness  Good Very good  Good Good Excellent
Availability Excellent Very good  Very good Very good Very good
Cost Excellent Very good  Poor to Good Poor to

acceptable acceptable

Pioneered by Threadgill, there are extensive studies on FSW microstructures to date
[38], [39], [48]. Despite of this, many of them still use the early definitions of the zones.
Different microstructural zones in FSW weld nugget can be seen in Fig. 1 - 4.

Explanation of the zones as follows [38], [39]:

A. Unaffected base material: this zone was secluded from the weld and deformed,
moreover it was not experienced microstructure and mechanical properties changes,

despite the probability that it may undergo a thermal cycle from the weld.



B. Heat affected zone (HAZ): this zone has undergone a thermal cycle from the weld
and has been experiencing microstructural and mechanical properties changes.
However, plastic deformation does not take place in this region.

C. Thermomechanically affected zone (TMAZ): this region experiences deformation,
which is caused by the influence exerted by the tool rotation and plastic
deformation of the material as well as the friction heat of the process. Moreover,
this zone does not undergo recrystallization, making it distinguishable from
recrystallization zone or weld nugget.

D. Weld nugget: Where significant amount of material was processed, and fully
recrystallized, and commonly known as stir zone. This was previously occupied by

the rotating pin during process.

1.3.1 Tools and Pins material selection and design

Featureless Shoulder Scrolled Shoulder
(viewed from undemeath)

O

Threaded Pin Stepped Spiral Pin

Mg T

(cylindrical or conical) ;
Threaded Pin  gtepped Spiral Pin
with Flutes With Flats

§ w

Figure 1 - 5 Common tool shoulder and pin features [39], [47].

In FSW, the tool has three main functions, which are, heating up the material, moving
the material to establish joint, and containing the heated material beneath the tool
shoulder. Heating is established by friction between the rotating tool, shoulder and pin,
with the severely deformed material of the plates. The localized heating softens the
material around the pin, and as the rotating tool traverse, the material in front of the pin
moves to the back of the pin, filling the space behind the pin. In addition, the shoulder
keeps the majority of the material beneath it to flow strictly under it without flowing out
excessively [38]. Due to these functions, the tool material needs to have certain
attributes to be able to perform these tasks without experiencing deformation. Table 1 -

4 is the summary of various tool materials that are usually used in FSW [38], [39].
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Table 1 -5 Tool features design variations and advantages [39], [47].

Tool feature  Design variation Advantage
Shoulder Convex with  Curved geometry  Allows joining of different thickness
scroll work-pieces. Scroll contains material

within shoulder
Tapered geometry -do-

Concave Smooth surface Concavily preserves material within shoulder
(standard region. Requires tool tilt.
design) Scrolled surface Allows welding without tool tilt. Minimizes

normal tool force and thickness reduction
in weld zone.
Pin Cylindrical Flat bottom Easier too machine. Commonly used design
Round bottom Reduces tool wear during plunge and
improves joining at weld root.
With flats Increased plastic strain and temperature in
nugget region
Conical Threaded cone Low transverse force compared to cylindrical
pins.
Stepped spiral Robust design and used for high temperature
materials welding
With flats Increased plastic strain and temperature in
nugget region
Whorl Reduces transverse force on tool
MX Triflute Refined version of whorl pin
Threadless Useful in aggressive tool wear situation
Retractable Allows closure of exit hole

It is important for shoulder and pin to have certain features to control the material flow.
Originally, the diameter ratio of shoulder and pin was 4:1. However, it was revealed that
shoulder has the highest contribution towards heat generation [49]. To control the heat
input, lower ratio of 3:1 to 2:1 can be used [39]. Generally, the shoulder can be made
flat, concave (most common shoulder shape), or convex, additional scroll is needed for
this. Flat, featureless and concave shoulder has to be run with a tilt angle, making the
trailing part of the shoulder forged the material behind the pin. Scroll shoulder feature is
usually machined in a flat shoulder, protruding out or sinking in of the shoulder surface.
Then main function of this feature is driving the material inward to the base of the pin.
This type of shoulder can be run with no tilt angle, meaning that the weld can run in any
direction and can run in curved surfaces, while the convex shoulder can be used to weld

plates with uneven thickness.

The shape and features of the pin have a big influence in material flow. The most
common shape is cylindrical and truncated conical. The addition of features mainly
functioned to induce vertical flow from shoulder area to bottom of the pin. Changing the
pin from cylindrical to truncated-conical promotes more down force and better

downward flow as the consequence. For the pin features, both threaded and stepped
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spiral promote vertical flow with stepped spiral pin having twice as much displaced
down material volume than threaded pin, in the contrary to featureless pin, where the
material flows only from the front to the back of the pin. Moreover, the addition of flats
and flutes on the pin promotes changes in material flow by acting as paddles and
promotes local turbulent resulting in wider weld nugget and reduction in traversing
force. That means it is easier for the tool to travel forward than pin without flats or
flutes, in other words, faster travel speed can be carried out [38], [39], [47]. The

summary of advantages of various shoulder and pin can be seen in Table 1 - 5.

Band spacing {
~ VIQ \ v

Figure 1 - 6 Bands of periodically deposited material behind the pin [50].

1.3.2 Material flow and flow related defects

Large temperature difference on the interface of the tool and workpiece confine the
thermally soften plasticized region within a region restricted by thermally and
mechanically unaffected base material, tool shoulder and backing plate. The volume of
this thermally soften material depends on FSW parameter such as rotation speed, travel
speed, as well as pin tool design and the properties of the material itself. The soften
region is displaced around the tool and deposited behind the pin in the shape of bands.
The length of these bands of deposited material is equal to the distance of the tool travel
to complete one tool rotation (Fig. 1 - 6) [50], [51].

Over the years, attempts on studying the material flow have been conducted extensively.
Various methods such as marker [52]-[54], tracer [55]-[57], stop action [53], [55], [57],
[58] and pin breaking technique [59] have been implemented. However, flow models

from Nunes et al. [51], [56] study can represent FSW flow in general.
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Figure 1 - 7 Nunes kinematic model for FSW material (a) rigid-body rotation (b)
uniform flow, (c) maelstrom or vortex flow, (d) combined flow model
resulting in two material currents, straight through and maelstrom current.
[51], [56]

In Nunes et al. [51], [56] model or the Nunes kinematic model, flow around the pin is

formed from three different incompressible flows. First flow is the rigid-body rotation,

where the material attached to the pin body and rotated with the same rotation speed
with it. The pin wall acts as the boundaries, from top, the shoulder, to the bottom of the
pin and expands to the edge of the shoulder or to where the plastic flow change is
slipping (rotates slower than the tool’s rotation speed) to the outer side of the shoulder,
with slight increase of thickness in the RS to allow material displacement to the back of
the pin as the pin moves forward (Fig. 1 - 7a). The second flow is uniform flow, where
the flow speed is equal but in the opposite direction to the travel direction of the tool

(Fig. 1 - 7b). In a flow field combination of first and second flow, tool approaches the

metal with a certain travel speed, joins the rotating pin at the first flow surface, and

rapidly carries around the pin at the same speed as the tool’s rotation speed in an

arching trajectory and deposits behind the tool as the tool move further away forward
[51], [56].

Trailing Side
Final
Forging
Zone

Figure 1 - 8 Material flow behind the pin [60], [61]
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The third flow is the maelstrom or vortex flow where the material flow is encircling the
pin and bringing material up towards the shoulder and in to the centre of the shoulder or
base of the pin, then displaced down. After reaching the bottom, material goes out of the
maelstrom flow (Fig. 1 - 7¢). This flow is caused by the threads feature on the pin [51],
[56].

The three flows combined are producing two material flow currents, which are straight
through and maelstrom currents. The straight through current happened in the RS with
mechanism explained in the first flow. While, maelstrom current comes from the AS in
the front of the pin with mechanism explained in second flow. As the material radially
displaced inward at the shoulder, the shoulder is keeping the material from exiting the
material around the pin and under the shoulder. This trapped material then flows around
the pin and as the pin rotates, the straight through current fills the RS side in front of the
pin. Because of this, the remaining maelstrom current is only able to get out in the AS
of the weld behind the pin after the material that was picked up from the RS on the front
of the pin displaced to the RS behind the pin (Fig. 1 - 7d) [51], [56].
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Figure 1 - 9 Process schematic of zinc refinery [62], [63].

Flow behind the pin can be best represented by Arbegast’s model [60], [61]. In this
model, there are five zones as can be seen in Figure 1 - 8. Material flow from the front
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side of the pin passes through to zone Il, some material around the pin displaced into
zone | and some displaced downward, some can travel further into zone IV under the
pin and move upward again to combine with the material in zone 1. Material in zone 1l
is material that is dragged across from RS to AS. The material from RS in zone Il is
then forced to move to zone | due to new material stream entering zone Il in AS. Zone
IV usually appears under very hot condition, high tool rotation speed and/or low travel
speed, where the downward flow is turned upwards into recirculating pattern. In lap

joints, this will result in hooking formation or sheet thinning.

Several defects that commonly occur in FSW can be explain with this model. Excessive
material flows from zone Il to zone | result in nugget collapse. Insufficient material
from zone 11, 11, or IV due to flash, raised crown, sheet lifting or sheet separation can
lead to insufficient material entering zone 11, 111 or IV and will cause less material to
enter zone |, that manifested as volumetric defects such as lack of filling at surface,
wormhole or lack of consolidation, microvoids or scalloping. Insufficient material
flowing into zone IV will lead to lack of penetration defect, while on the contrary,

excessive material flow into zone IV can cause root flow defect [60], [61].

1.4 Zinc Electrowinning and Al-Cu bimetal application

Electrowinning is a method of metal refining by electrolysis of aqueous solutions or

melts that contain the metal’s salts by utilizing insoluble anode [63]. Electrowinning is

the last step of metal refinement. Since metals found in nature in the form of sulphides

and oxides ores, the refinement steps usually consist of (Figure 1 - 9) [62], [63]:

1. Ore enrichment, removing the wastes usually by floatation, which produces a
concentrate of metal sulphides and/or oxides.

2. Roasting, transforming the metal sulphide into oxide (equation 1) so that it becomes
metal oxide that is soluble in sulphuric acid (equation 2).

27ZnS + 30, - 2Zn0 + H,0 Eq. 1

3. Leaching, separation of some unwanted impuri