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Abstract—Electroencephalogram (EEG) signals have been 

widely used to analyze brain activities so as to diagnose certain 

brain-related diseases. They are usually recorded for a fairly 

long interval with adequate resolution, consequently requiring a 

considerable amount of memory space for storage and 

transmission. Recently compressed sensing (CS) has been 

proposed in order to effectively compress EEG signals. However, 

its performance is closely dependent on how a compression 

dictionary is built. Through our study, we notice that building 

the best fit over-complete Gabor dictionary plays an important 

role in this task. In this paper, we evaluate the effect of different 

time and frequency step sizes in building Gabor atoms on the 

performance of EEG signal compression using CS with three 

common EEG databases used by the research community. 

Taking the Normalized Mean Square Error (NMSE) as a 

performance metric, we present a quantitative study with an 

attempt to provide more insight on how to adopt CS in EEG 

signal compression. 

I. INTRODUCTION 

Electroencephalogram (EEG) is the recording of electrical 
activities of the brain through electrode sensors placed on the 
scalp, and was first introduced in 1924 by a German 
physiologist and psychiatrist Han Berger. Since measuring an 
EEG signal is a non-invasive procedure, it has been widely 
used as a clinical routine to diagnose physical or mental health 
problems such as epilepsy, loss of consciousness or dementia 
and sleep disorders. Moreover, EEG signals can be applied in 
construction of a Brain-Computer-Interface (BCI) to assist 
disabled people with daily living tasks. Nowadays, with the 
help of a modern wearable device, EEG signals could be 
uninterruptedly recorded for up to 14 days. This fact has 
promoted the widespread use of EEG applications such as 
Ambulance EEG monitoring (AEEG), telemedicine and 
provided patients with a flexible and cost-effective way to 
monitor their health in real-time [1-4].  

In general, EEG signals are recorded using the 10-20 
international system with the electrode placed first at 10%, 
followed by four-section of 20% then ending with 10% of the 
total distance from the nasion to the inion; left to right 
preauricular point as describe in Fig. 1. Typically, 21 channels 
are recorded. For some special applications, it is possible to 
extend this 10-20 system by placing electrodes in between 
resulting in 32, 64, 128 and even 256 channels. With the 
sampling rate varying from 256Hz to even 20kHz and the 
resolution up to 24bit, a second of EEG signal is 
approximately one kilobyte. As a result, the EEG data volume 
can easily exceed 10GB per day for a single patient. Moreover, 
a long-term (up to several months) recording of EEG signals 
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that is required especially in the diagnosis of epilepsy produces 
a huge amount of data [5].  

 

Fig. 1. EEG 10-20 system [1] 

The problem of huge amount of data makes it impossible 
to store as well as monitor the EEG signals in real-time and 
realize prospective telemedicine systems. An obvious solution 
to this problem is to apply data compression and reduce the 
size of an EEG data file, which essentially involves trade-offs 
among various factors, including the compression ratio, the 
amount of distortion introduced, and the computational 
resources required to compress and reconstruct the data.  

Compressed sensing (CS) [6-10] techniques have emerged 
with potential in the field of biomedical signal compression 
because they allow higher compression rates at a level of 
acceptable distortion, more importantly, with lower power 
consumption.  With the benefit of minimizing the data volume 
and energy utilization in the sensor node, CS is best fitted to 
the context of a mobile, wearable and tele-healthcare system.  

The fundamental idea behind CS is that we can represent 
signals using only a few non-zero coefficients in a suitable 
dictionary. As a result, the compression stage is simply the 
multiplication of the source signal with a sparse sensing 
matrix. The complexity in a CS system occurs in the 
reconstruction stage.  Since the number of compressive 
measurements taken is far smaller than the number of samples 
in the original signal, the task of converting the compressed 
signal back into original one involves solving an 
underdetermined matrix equation. However, adding the 
constraint that the initial signal is sparse enables one to solve 
this underdetermined system of linear equations through 
convex optimization techniques [11, 12].  

It is not trivial to find a suitable dictionary in CS, especially 
for a signal that is not really sparse in the time domain or 
transform domain, like an EEG signal. We aim to identify a 
suitable dictionary that is able to sparsely represent the signal 
before applying the optimization solution. The sparsity of EEG 

Compressed Sensing of EEG with Gabor Dictionary: Effect of Time 

and Frequency Resolution 

Phuong Thi Dao, Anthony Griffin and Xue Jun Li, Senior Member, IEEE 



  

signal has been shown in Gabor domain [2, 3]. 
Parameterization of the time and frequency steps of Gabor 
atoms is an important factor in creating a best fit dictionary. In 
this paper, we evaluate the effect of different time and 
frequency step sizes in building Gabor atoms on the 
performance of EEG signal compression using CS with three 
common EEG databases used by the research community.  

II. EEG COMPRESSED SENSING 

Compressed sensing is based on the fundamental fact that 
we can represent many signals using only a few non-zero 
coefficients in a suitable dictionary. Fig. 2 shows the block 
diagram of a typical compressed sensing algorithm. 

 

Fig. 2. Compressed sensing 

A. Compression 

Given a signal 𝒙 ∈ ℝ𝑁×1  is sparse, compressed sensing 
compresses it by a random matrix 𝚽 ∈ ℝ𝑀×𝑁: 

y Φx         

where 𝒙 is the input signal, 𝚽 is the sampling matrix, and 𝒚 is 
the compressed signal containing 𝑀  measurements. The 
compression is achieved by setting 𝑀 ≪ 𝑁. The measurement 
matrix 𝚽  must be maximally incoherent with the chosen 
dictionary. Previous works have shown that random matrices 
such as Gaussian, Bernoulli and sparse binary sensing matrices 
satisfy this requirement [2, 4-6]. 

Given that the input signal is sparse in the dictionary 𝑫 ∈
ℝ𝑁×𝑃, we can represent the signal as: 
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With 𝐾  being the number of non-zero elements in the 
coefficient vector 𝜽, the signal 𝒙 can be represented by a few 
atoms 𝒅𝒊 from the dictionary. Thus, the compressed signal is 

𝒚 = 𝚽𝒙 = 𝚽𝑫𝜽         (3) 

B. Reconstruction 

Given the compressed signal 𝒚, the reconstruction stage 
needs to find 𝒙 in order to satisfy (3). As the length of the 
unknowns 𝒙 and  is much larger than the length of 𝒚, there 
are infinitely many solutions for this equation. 

The classical solution for this type of inverse problem is to 
minimize the Euclidean norm of the approximate signal 𝒙 
subject to satisfying that the product of the measurement 
matrix 𝚽  with the reconstructed signal is equal to the 
compressed signal 𝒚 . This solution is called least squares 
minimization or ℓ2 norm minimization: 

𝒙 = argmin ‖𝒙‖𝟐 subject to 𝚽𝒙 = 𝒚   

Although (4) has a convenient closed form solution given 
by the normal equation, the solution is almost never sparse, 
resulting in a high reconstruction error. 

As the ℓ2 norm  minimization does not usually return a 
sparse vector, alternatives have been sought. One is to directly 
enforce a sparsity constraint on the solution, namely the 
ℓ0 norm, to minimize the number of non-zero elements in 𝒙.  

𝒙 = argmin ‖𝒙‖𝟎 subject to 𝚽𝒙 = 𝒚  

However, this is computationally unfeasible as it is NP hard.  
The solution is to relax (5) and use the ℓ1 norm , thereby 
minimizing the magnitude of the non-zero elements in 𝒙, 

𝒙 = argmin ‖𝒙‖𝟏 subject to 𝚽𝒙 = 𝒚  

The ℓ1 norm has been proved to achieve a unique solution 
under certain conditions. As a result, 𝒙 can be reconstructed 
exactly from compressed signal 𝒚. With the constraint that 𝒙 
is sparse and the knowledge of the dictionary 𝐃, the solution 
of 𝒙 is equivalent to finding the best fit for the coefficient 
vector . As the result, the problem now becomes minimizing 
the magnitude of the non-zero elements in   

min‖𝜽‖𝟏 subject to 𝒚 = 𝚽𝐃𝜽   (7) 

C. Gabor Dictionary 

The real discrete time-frequency Gabor dictionary can be 

constructed by [7]:  

𝐺(𝑥, 𝑓, 𝑛0, 𝑠, 𝜑) = exp (−
(𝑥−𝑛0)2

2𝑠2 ) cos(2𝜋𝑓(𝑥 − 𝑛0) + 𝜑) 

Fig. 3 is a plot of real Gabor atom of length 𝑁 = 512 at 
sampling rate of 𝑓𝑠 = 128𝐻𝑧 (solid line) with its Gaussian 
boundary (dashed line). The atom is centered at 𝑛0 = 256, 
scale 𝑠 = 64, with frequency 𝑓 = 4𝐻𝑧 and phase 𝜑 = 0.  

 

Fig. 3. Gabor atom  

The time and frequency steps of such atoms play an 
important role in the reconstruction stage. Fig. 4 presents a 
simple example of representing a signal A + B + C (plot 4) 
with 𝑠 = [16, 32, 64] , 𝑛0 = [32, 160, 384]  and 𝑓 =
[12, 16, 8] are the scales, time shifts and frequencies of A, B 
and C, respectively.   

The input EEG signal must first be epoched into non-
overlapping segments with a length of 4 seconds. Secondly, 
each segment will be resampled to 128Hz to provide a realistic 
sampling rate in telemedicine applications. This step 
guarantees the uniformity of all datasets that we use in our 
work. Mean removal is also be applied to improve the 
compression ratio. This preprocessing step results with non-
overlapping EEG segments of length 𝑁 = 512.  



  

 
Fig. 4. Signal representation 

As aforementioned, a random matrix ensures the maximal 
incoherent characteristics of the EEG signal without the 
knowledge of dictionary. We selected the white-noise 
Gaussian random matrix [8] as our sensing matrix to save the 
computation cost. 

Gabor dictionary include atoms are parameterized as [6]: 
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in which 𝑠 is the scale of atom, 𝑛0  and 𝑓0  are the center of 
atom, 𝐾(𝑛0, 𝑓0, 𝑠) is the normalization factor. Following the 
work in [6], we selected the time and frequency step as 

0 8f sB  
0 2n sB    

with   0.5ln 0.5 1B B    and B = 2 is the base.  

The solution for the problem stated in (7) can be solved by 
setting the normal equation: 

Set: 𝐓 = 𝚽𝐃       ⟹      𝐲 = 𝐓𝛉             (𝐓 ∈ ℝM×P) 

⟺ 𝐓′𝐓𝛉 = 𝐓′𝐲 

⟺ (𝐓′𝐓)−𝟏𝐓′𝐓𝛉 = (𝐓′𝐓)−𝟏𝐓′𝐲 

⟺ 𝛉 = (𝐓′𝐓)−𝟏𝐓′𝐲       
Numerical optimization techniques such as Basis Pursuit (BP) 
Matching Pursuit (MP) of Orthogonal Matching Pursuit 
(OMP) are widely used to solve the reconstruction problem [4, 
9-11]. In this work, we use a convex optimization method 
namely BP Denoising (BPDN) from the SPGL1 package [12]. 

D. Experiment Setup 
To evaluate the effect of the time and frequency steps of 

the Gabor atoms in a wide range of EEG signals, we worked 
with three popular databases. The first two databases come 
from Physionet [13]. The first one was collected at the 
Children's Hospital Boston from 24 paediatric subjects with 
intractable seizures (CHB-MIT), and contains 664 files. The 
time recorded for each file is from 10 minutes up to 4 hours 
with a well-defined seizure notation. Data was collected at a 
sampling frequency of 256Hz, with a resolution of 16 bits per 
sample, and using up to 23 channels. The second one is a set 
of 108 polysomnographic recordings registered at the Sleep 
Disorders Center of the Ospedale Maggiore of Parma, Italy. 
With the recording time up to 10 hours each, this is a big 
database at sampling rate of 256Hz, resolution of 16 bits and 
from 5 to 13 channels.  

The last database is from BCI Competition IV – dataset 1 
[14], consisting of 7 files with 59 channels each, a sample rate 
of 1 KHz, and a resolution of 16 bits. The data was collected 
from healthy subjects with the EEG signals corresponding to a 
specific mental state.  

With the total size from 7GB up to 43GB each, it is 
impractical to test the performance using the whole databases. 
As not all of the EEG channels from the database are actually 
EEG signals, and there are some dead channels with NaN or 
all zero values, we first had to remove these unusable channels 
from the databases. We had built the dataset with 100 
randomly selected segments of 4 seconds from each database. 
To ensure uniformity across the datasets, we resampled the 
data to 128Hz.  

Based on the standard time and frequency steps described 
in (10), we define time and frequency factors, 𝑡𝑓 and 𝑓𝑓 then 

build a set of 12 dictionaries namely D𝑡𝑓𝑓𝑓 with time step 𝑡𝑠 =
4Δ𝑛0/𝑡𝑓 (points)  and frequency step 𝑓𝑠 = Δ𝑓0/𝑓𝑓 (Hz). 
Table I shows the time and frequency step at each scale. 

TABLE I. TIME AND FREQUENCY STEP 

Scale 1 2 4 8 16 32 64 

𝑡𝑓 = 1  2.13 4.26 8.53 17.06 34.11 68.23 136.45 

𝑡𝑓 = 2 1.07 2.13 4.26 8.53 17.06 34.11 68.23 

𝑡𝑓 = 4 0.53 1.07 2.13 4.26 8.53 17.06 34.11 

𝑓𝑓 = 1 53.59 26.79 13.40 6.70 3.35 1.67 0.84 

𝑓𝑓 = 2 26.79 13.40 6.70 3.35 1.67 0.84 0.42 

𝑓𝑓 = 4 13.40 6.70 3.35 1.67 0.84 0.42 0.21 

𝑓𝑓 = 8 6.70 3.35 1.67 0.84 0.42 0.21 0.01 

Thus, as 𝑡𝑓 and 𝑓𝑓 increase, we obtain a higher resolution 

in time and frequency, resulting in larger dictionaries. Table II 
shows the size of each Gabor dictionary.   

TABLE II. DICTIONARIES SIZE 

Name # atoms Name # atoms Name # atoms 

D11 1,918 D21 3,801 D41 7,529 

D12 3,928 D22 7,784 D42 15,420 

D14 8,042 D24 15,938 D44 31,578 

D18 16,458 D28 32,622 D48 64,645 

To evaluate the compression achieved, we used the 
compression ratio (CR) defined as CR = 𝑁 𝑀⁄ , where 𝑀  is 
the number of measurements and 𝑁  is the length of input 
signal. The performance of the reconstruction stage will be 
measured by the normalized mean square error (NMSE) as 

 
2 2

ˆ ˆ,NMSE    xx x x x x μ , where 𝒙 is the original signal, 

𝒙 is the reconstructed signal and 𝜇𝒙 is the mean of 𝒙.  

III. RESULTS AND DISCUSSION 

The NMSE of the reconstruction for each dictionary over 
the three datasets is shown in Table III.  There a few points to 
note here: (i) As the CR decreases, the NMSE decreases.  This 
is to be expected, due to more signal information being 
available to the reconstruction algorithm. (ii) As the dictionary 
size increases – due to either increased time or frequency 
resolution – the NMSE decreases.  This is due to the dictionary 
being able to more accurately represent the signal, as in (3). 
(iii) These trends are consistent across the datasets, which is 
intuitively satisfying. Figs. 5 and 6 present the NMSE of the 
reconstruction dictionaries averaged across the three datasets. 
Fig. 5 shows the mean NMSE in descending order. Despite the 
fact that D28 is better in term of reconstruction rate than D24 



  

most of the time, the D24 dictionary seems to be the best 
choice for reconstruction performance whilst minimizing the 
dictionary size (half the size of D28), given that the dictionary 
size will impact memory requirements and computation cost. 
Fig. 6 illustrates that although the increased dictionary size 
improves the NMSE, the effect has diminishing returns, 
particularly above a dictionary size of 16,000.   

TABLE III. MEAN NMSE VS CR FOR EACH DATASET 

CR 8 4 2 

Dataset Dictionary    

CHB-MIT 

D11 1.0638 0.9380 0.7412 

D12 0.8722 0.5568 0.2087 

D14 0.7518 0.3992 0.1398 

D18 0.7403 0.3837 0.1356 

D21 1.0182 0.7707 0.5660 

D22 0.7851 0.4240 0.1450 

D24 0.6934 0.3656 0.1270 

D28 0.6903 0.3802 0.1223 

D41 0.9289 0.6376 0.3310 

D42 0.7355 0.4018 0.1300 

D44 0.6928 0.3826 0.1267 

D48 0.6830 0.3566 0.1236 

CAP 

D11 1.1472 1.0808 1.0804 

D12 0.8102 0.4418 0.1365 

D14 0.5264 0.2427 0.0633 

D18 0.5207 0.2273 0.0579 

D21 1.0766 0.9375 0.8525 

D22 0.5756 0.2578 0.0666 

D24 0.4705 0.2064 0.0514 

D28 0.4557 0.2095 0.0522 

D41 0.9518 0.7928 0.6291 

D42 0.5777 0.2457 0.0635 

D44 0.5128 0.2133 0.0520 

D48 0.4689 0.2219 0.0527 

BCI 

D11 1.0980 1.0446 1.0705 

D12 0.7690 0.4367 0.1531 

D14 0.4908 0.2306 0.0823 

D18 0.4498 0.2249 0.0800 

D21 1.0522 0.9311 0.8844 

D22 0.6118 0.2722 0.0949 

D24 0.4352 0.2038 0.0777 

D28 0.4281 0.2038 0.0740 

D41 0.9755 0.8108 0.6741 

D42 0.5531 0.2477 0.0870 

D44 0.4350 0.2092 0.0742 

D48 0.4202 0.2026 0.0728 

 

Fig. 5. Mean NMSE for different dictionaries 

IV. CONCLUSION 

This paper presented a study into the effect of Gabor atom 
dictionaries’ time and frequency resolution in compressed 

sensing of EEG signals. The results showed that a dictionary 
with about 16,000 offers an excellent tradeoff when comparing 
reconstruction performance with memory requirements and 
reconstruction time. Future work includes investigating 
whether further improvements can be gained by tailoring the 
Gabor dictionary to specific EEG characteristics. 

 
Fig. 6. Mean NMSE at each compression ratio 
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