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  

Abstract— The paper argues that, the third generation of neural 

networks – the spiking neural networks (SNN), can be used to 

model dynamic, spatio-temporal, cognitive brain processes 

measured as functional magnetic resonance imaging (fMRI) data.  

The paper proposes a novel method based on the NeuCube SNN 

architecture for which the following new algorithms are 

introduced: fMRI data encoding into spike sequences; deep 

unsupervised learning of fMRI data in a 3D SNN reservoir; 

classification of cognitive states; connectivity visualization and 

analysis for the purpose of understanding cognitive dynamics. The 

method is illustrated on two case studies of cognitive data 

modelling from a benchmark fMRI data set of seeing a picture 

versus reading a sentence.    

 
Index Terms— Spiking neural networks, perceptual dynamics, 

fMRI data, NeuCube, deep learning in spiking neural networks, 

brain functional connectivity, classification, neuromorphic 

cognitive systems.  

I. INTRODUCTION 

     The main question that the paper addresses is: Can the third 

generation of neural networks – spiking neural networks (SNN) 

be used to model and understand dynamic, spatio-temporal, 

cognitive processes in the brain? A question to follow would 

be: Can this approach be translated into intelligent robotic 

systems?    

   The paper argues that, SNN can be used to model data that 

represent brain, spatio-temporal cognitive processes. Such 

models can be further implemented as neuromorphic cognitive 

systems using the latest neuromorphic hardware platforms.  

    The paper proposes new algorithms for encoding, learning 

and classification of functional magnetic resonance imaging 

(fMRI) data that measure dynamic cognitive processes. The 

algorithms are part of the recently proposed NeuCube SNN 

architecture. The model is illustrated on two case study fMRI 

data related to seeing a picture versus reading a sentence.  

    FMRI provides a non-invasive way to collect massive 

amounts of Spatio-Temporal Brain Data (STBD), providing 
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insights into brain structures and processes for researchers and 

clinicians [1] - [3]. Functional MRI uses Blood-Oxygen-Level 

Dependent (BOLD) contrast to measure brain activity by 

detecting changes in blood flow. Several analytical methods 

have been used to analyse these data, such as General Linear 

Method (GLM) [4]; Principal Component Analysis [5]; 

Independent Component Analysis [6], [7]; and Temporal 

Cluster Analysis [8]; but they all have limitations. Various 

techniques have been developed to analyse the brain’s 

activation, functional connectivity [9], [10] or effective 

connectivity [11], [12] in fMRI data, but none of these methods 

can capture the deep spatio-temporal dynamics ‘hidden’ in the 

data that represent the dynamics of the cognitive processes. 

Deep machine learning methods have been developed for 

traditional neural networks with fixed structures of layers and 

static input data [13]-[17]. However, brain activity, being 

consistent in local clusters due to the activation effects [18], 

must be treated as a dynamic spatio-temporal process [19], [20]. 

Helpfully, SNN have the ability to learn complex spatio-

temporal data [21]-[37], [44]-[47]. 

    The main question that this paper answers is: Can brain 

cognitive processes, measured as fMRI data, be modelled and 

understood through deep learning in a SNN architecture?  

   The algorithms introduced here present an alternative 

approach to modelling fMRI data with SNN to the method 

published in [41], even though the two approaches use the same 

NeuCube SNN architecture [35]. The difference is in the way 

the dynamical changes in the fMRI data, representing 

dynamical changes in brain activities, are captured, visualised 

and interpreted.     

II. SPIKING NEURAL NETWORKS – NEUCUBE   

SNN are computational models that consist of spiking 

neurons as processing elements, connections between them, and 

algorithms for learning from data [22]-[33], [44]-[47]. 

Compared to traditional neuronal networks, SNN can integrate 
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both spatial and temporal components of data. In addition to the 

neuronal synaptic state, SNN also integrate the notion of time 

into their operating model. Therefore, using SNN can lead to an 

increased level of realism in STBD modelling. 

SNN are capable of fast parallel information processing and 

compact representation of space and time. They can also learn 

quickly and recognize patterns, deeply ‘buried’ in STBD [34]. 

A recent SNN architecture, called NeuCube (“Fig. 1”) consists 

of several modules [35]. An input module encodes the input 

temporal data sequences into spike sequences. A scalable 3D 

SNNcube is used to spatially map the input variables (e.g. EEG 

channels, fMRI voxels) according to their original spatial 

locations, and then the SNNcube is trained using a learning rule, 

such as the spike-time dependent plasticity (STDP) learning 

rule [28], to create and update the connections between spiking 

neurons. These connections capture spatio-temporal 

relationships between input variables. Next, an output 

classification/regression module is trained to classify the 

spiking activity patterns from the SNNcube into predefined 

class/output values.  

NeuCube has been successfully applied for EEG data and for 

some fMRI data analysis [35] - [38], [41]. When compared with 

previous work, the model proposed here offers novel algorithms 

for encoding, initialization, deep learning, classification and 

visualization of STBD in the NeuCube SNN architecture, all of 

them facilitating a better understanding of the dynamics of the 

cognitive processes captured in the data. It is a generic method, 

applicable to different types of STBD, including fMRI data, but 

not restricted to it.    

Brain processes are spatio-temporal and that is how they are 

modelled here. We consider STBD as a set of spatially located 

sources of data (e.g. fMRI voxels, EEG channels etc.) and the 

data is measured over time (e.g. seconds, milliseconds).  

When using the NeuCube architecture, first a SNNcube 

(reservoir) is created where each neuron represents the 3D 

coordinates of an area of the brain according to a given template 

(e.g. Talairach, MNI). The sources of brain data are mapped 

correspondingly into spatially allocated neurons of the 

SNNcube called input neurons, preserving the spatial 

distribution of these sources in the brain. When the SNNcube is 

trained on the temporal brain data, it captures spatio-temporal 

changes in the STBD and learns them as connection weights 

between neurons that map brain areas. These connections can 

be analysed to reveal functional connectivity of the brain related 

to a given task.   

The material of the paper presents the following novel 

algorithms for STBD modelling, in particular – fMRI data, 

namely: 

- Data encoding into spikes; 

- Deep unsupervised learning in a 3D SNN cube; 

- Classification, visualization and interpretation of the 3D 

SNN connectivity.         

This is illustrated in the paper on two case studies of fMRI 

data: seeing a picture; reading a sentence. Both case represent 

typical examples of dynamic cognitive processes.  

III. A NEW ALGORITHM FOR ENCODING DYNAMIC STBD 

INTO SPIKE SEQUENCES 

A continuous input brain data signal is encoded into a spike 

sequence so that the dynamics of the data is preserved. For a 

given STBD sequence S(𝑡) (𝑡 ∈ {𝑡0, 𝑡1, … , 𝑡𝐿}), we first define 

the time 𝑡𝑚 when the signal reaches its minimum value: 

 

𝑡𝑚 = 𝑎𝑟𝑔 min
𝑡

𝑆(𝑡),   𝑡 ∈ {𝑡0, 𝑡1, … , 𝑡𝐿}.                             (1) 

 

The time period from 𝑡𝑚 to 𝑡𝐿 (the end time of the signal) is 

considered further and no spikes will be generated before time 

𝑡𝑚. Based on the initial decrease in the signal,  𝑡𝑚 is set as the 

starting time point to capture the changes in the signal during a 

cognitive task. Let B(𝑡)  denote the baseline for S(𝑡) at time 

𝑡 (𝑡 ∈ [𝑡𝑚, 𝑡𝐿])  and B(𝑡𝑚) = S(𝑡𝑚) . If at a time moment 

𝑡𝑖+1 (𝑚 ≤ 𝑖 < 𝐿) , the signal value S(𝑡𝑖+1)  is above the 

previous baseline B(𝑡𝑖), we encode a spike at time 𝑡𝑖+1 and the 

baseline is updated as: 

 

B(𝑡𝑖+1) = αS(𝑡𝑖+1) + (1 − α)B(𝑡𝑖),                                 (2) 

 

where α (α ∈ [0,1])  is a parameter to control the signal’s 

contribution to the increase of the baseline. Otherwise, if 

S(𝑡𝑖+1) is below B(𝑡𝑖), then no spike is encoded at this time and 

the baseline is reset as B(𝑡𝑖+1) = S(𝑡𝑖+1). Successive spikes in 

the resulting spike sequence reflect the increase of the signal, 

whilst the absence of a spike means a decrease of the signal 

(“Fig. 2A”).  

The proposed method accurately encodes the activation 

information of continuous temporal data into spike trains. This 

is important for the following interpretation of the trained 

SNNcube model, because it enables researchers to better 

understand brain processes that generate the data. This 

encoding is also robust to noise. Due to a minimum value 

threshold which is applied to changes in the signal value, small 

noise perturbations of the signal are not transformed into spikes. 

This transformation also accounts for the frequency of changes 

in the raw signal. 
The timing of spikes corresponds with the time of change in 

the input data. The spike sequence is obtained after the 

encoding process which represents new input information to the 

SNN model, where the time unit maybe different from the real 

time of the data acquisition (machine computation time versus 

data acquisition time). 

IV. A NEW ALGORITHM FOR CONNECTIVITY INITIALIZATION 

AND DEEP LEARNING IN A SNNCUBE 

After the STBD is encoded into spike trains, the next step is 

to train a SNNcube (see “Fig.1”), where the spike sequences 

represent the input data. Input variables are mapped to 

corresponding spiking neurons in the 3D SNNcube with the 

same (x, y, z) coordinates. The spike trains are then entered into 

the SNNcube as whole spatio-temporal patterns (samples) of 

many time units. A sample representing a labelled sequence of 

cognitive activity over a certain time period.  



> IEEE Transaction on Cognitive and Developmental Systems < 

 

 

3 

 

 

Fig. 1. The NeuCube SNN architecture (from [35]). 

 

Before a learning rule is applied, the connections between 

spiking neurons in the SNNcube are initialized as follows: 

 Let 𝑁𝑖 denote the neighborhood of neuron 𝑖, defined as: 

 

 𝑁𝑖 = {𝑗: 𝐷𝑖𝑗 ≤ 𝑇, 𝑖 ≠ 𝑗},                                                    (3) 

 

where 𝐷𝑖𝑗 denotes the distance between neuron 𝑖 and neuron 𝑗, 

and T represents the maximum distance allowed for 

connections between two neurons (T is a parameter that is 

subject to optimization along with other model’s parameters).  

For two neighbouring neurons 𝑖  and  𝑗 , bidirectional 

connections are created and connection weights are initialized 

to zero. 

After initializing the connections, the input spike sequences 

are propagated through the SNNcube and the following 

learning rule is applied as introduced here: If neuron 𝑖 and 𝑗 are 

connected, and one spike from 𝑖 precedes that from 𝑗 within a 

certain time period, 𝑤𝑖𝑗  will be increased and 𝑤𝑗𝑖  left 

unchanged: 

 

∆𝑤𝑖𝑗 = {
𝐴+ exp (

∆𝑡

𝜏+
)                       𝑖𝑓 ∆𝑡 ≤ 0,

0                                           𝑖𝑓 ∆𝑡 > 0,
                      (4) 

 

where ∆𝑤𝑖𝑗  is the synaptic modification (increment of weight); 

Similar to the STDP parameters as describe in [48], ∆𝑡 is the 

time difference between spike times of pre-synaptic neuron i 

and post-synaptic neuron j. A+ is the maximum quantities of 

synaptic modification; and 𝜏+  represents the time window 

within which the weight modification is allowed.  

After this learning rule is applied to the input data, both 

bidirectional connection weights are learned, but only the 

connection with the larger weight of the two bidirectional 

connections is retained as a final connection between the two 

neighbouring neurons (“Fig. 2B”). This learning rule is spike 

time dependent, but different from the STDP rule [28] used in 

the NeuCube models developed so far [35], [38], [41].  

The weaker connection, of the two neuronal connections 

between neurons i and j, is removed and the remaining 

connection represents a stronger, possible temporal relationship 

between the two neurons. The removed connection weights are 

all reset to zero to maintain symmetry of the equation and 

enable further adaptive training from new data. The trained 

SNNcube forms a deep architecture as whole spiking input 

sequences which are learned as chains of connections and 

spiking activities, regardless of the number of data points 

measured for every input variable. Unlike hand-crafted layers 

used in second-generation neural network models [13]- [17], or 

randomly connected neurons in the computing reservoir of a 

liquid state machines [22], the chains of directional connections 

established in the SNNcube represent long spatio-temporal 

relationships between the sources of the spike sequences (the 

input variables). Due to the scalable size of a SNNcube, the 

chains of connected neurons are not restricted in length during 

learning, which can be considered as unrestricted deep learning, 

in contrast to existing deep learning methods that use fixed 

number of layers. As we can see in the following sections, this 

learning also results in automatic feature extraction, i.e. the 

automatic selection of a smaller subset of marker input 

variables. 

V. FEATURE SELECTION FROM A TRAINED SNN MODEL 

Once the SNNcube is trained with spike sequences of 

encoded STBD, we can interpret both the connectivity and 

spiking activity of the model, aiming at new findings about 

brain functional connectivity and cognitive processes.   

A deep chain of connections is learned for each input pattern 

(sample) in the SNNcube. When entering new input data, the 

fired chain of neurons and connections will indicate as to which 

of the previous learned patterns the new one belongs to. This 

can be used to classify STBD (as shown in the experimental 

results later in the paper) and for a better understanding of the 

spatio-temporal brain dynamics.          
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Fig. 2. (A) Spike sequence encoding for one signal. An example of one signal continuous values at 16 time points along with the encoded 

sequence of spikes (below); The successive spikes from time 4 to 9 represent the increase in the signal, while the absence of spikes from time 10 

to 12 means a decrease in the signal; (B) connections established between two connected neurons after unsupervised learning in a SNNcube. Two 

examples of connection weights established through the proposed method for unsupervised learning between two connected neurons depending 

on the time of the pre- and post-synaptic spikes of the two neurons. The solid line is the final connection (a thicker line means a larger weight), 

while the dotted line is removed after learning because of its weaker connection weight. For example, spikes in neuron 𝑁𝑐 mostly precede those 

in neuron 𝑁𝑑, so the learned connection weight 𝑤𝑁𝑑𝑁𝑐
 is smaller, which will be removed after the unsupervised learning. 

To analyse the spiking activity of a neuron i in the SNNcube, 

we define an indicator called activation degree 𝐷𝑖:  

 

𝐷𝑖 =
∑ (𝑤𝑖𝑗+𝑤𝑗𝑖)𝑗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑁𝑖
   𝑗 ∈ 𝑁𝑖.                       (5) 

 

The parameter 𝐷𝑖  represents the averaged activation degree 

of neuron 𝑖  after a summation of all its inward and outward 

connection weights. A higher degree of activation of a spiking 

neuron, represents a greater likelihood that the corresponding 

loci in the brain are activation foci.  

After training the SNNcube, neurons sharing similar spike 

patterns will have larger weighted connections. This allows us 

to analyse and understand for example a single subject’s 

response to different stimuli and to compare the responses of 

different subjects to the same stimulus. A set of spiking neurons 

with the highest degree of activation representing a given class 

of stimuli or a cognitive state, will represent a feature set of 

markers for this class; thus the automatic selection of features 

as part of the internal deep learning process.  

In the following section we illustrate the above model on two 

case study fMRI data related to cognitive tasks. The SNNcube’s 

parameters used for the two case study experiments are set as:  

α = 0.5; 𝐴+ = 0.1;  𝜏+ = 1.  

VI. CASE STUDIES ON MODELLING, CLASSIFICATION AND 

FEATURE SELECTION FROM FMRI DATA RELATED TO 

COGNITIVE TASKS 

We randomly selected two subjects’ data from the StarPlus 

fMRI data related to two cognitive tasks [42].  Our experiments 

were performed on two subject’s data (ID=05680 and 

ID=04820).  FMRI data comprised 25 brain regions of interest 

(ROIs) represented by 5062 and 5015 voxels respectively. For 

convenience, we will use the terms ID=05 and ID=04 to refer 

to the above subjects’ fMRI data respectively. 

The fMRI data was captured every 0.5 seconds (two fMRI 

volume snapshots per second) while the subjects performed 

reading a sentence or watching a picture perception tasks during 

40 trials. We consider here the first 8-seconds of recorded data 

for each trial, during which a 4-second stimulus (picture or 

sentence) was presented, followed by a 4-second rest. The first 

16 volumes of the fMRI data extracted from each trial fell into 

two classes: watching a picture (Class Pic) or watching a 

sentence (Class Sen).  

As the brain volume has a one-to-one mapping with the 

SNNcube model, the value of a brain voxel in a brain activation 

map is defined as the corresponding neuron’s activation degree 

in the SNNcube. 

The results from applying the proposed method on fMRI data 

of subject ID 05 are illustrated in Fig. 3 and Fig. 4. 

Brain activation maps for Class Pic and Class Sen were 

obtained after learning had taken place in the SNNcube (“Fig. 

3Aa”). The neuron’s activation degree of the SNNcube was 

averaged over 20 trials for each class. The voxels in red suggest 

they were more likely to be activation foci in a certain cognitive 

state, whilst the blue voxels were less likely to be active. The 

activation maps were normalized respectively within each 

class. These maps can be further interpreted, for example, it can 

be seen from Fig. 3Bb that when the subject was watching a 

sentence, the BOLD response in the Calcarine (CALC) region 

was much stronger than in other regions.  

Neurological studies [39], [40] suggest that reading a 

sentence is more difficult to comprehend than seeing a picture. 

Therefore, it strongly engages specific regions of the brain 

along with the visual cortex. The CALC sulcus begins near the 

occipital lobe, where the primary visual cortex (V1) is 

concentrated, and passes through the splenium of the corpus 

callosum, where it is joined at the parieto-occipital sulcus. Our 

findings confirm that language comprehension, including a 

reading task, requires more concentration which involves more 

regions of the brain to act and consequently increases the 

amount of oxygenated blood required by neurons.    

To detect voxel activation, a threshold 𝑇𝐷  for the neuron’s 

degree of activation and a threshold 𝑇𝑤  for the neighboring 
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neurons’ connection weights were defined. The detection 

procedure is based on the following steps: 

Step 1. Find the activation foci in the SNNcube where 

activation degrees are above 𝑇𝐷. 

Step 2. Set the activation foci as an initial centres of the 

activation regions R. 

Step 3. Expand the activation regions R in the SNNcube, i.e. 

add a neuron outside R if it satisfies the condition that its 

connection weight with a certain neuron in R is higher than 𝑇𝑤. 

Step 4. Repeat Step 3 until no neurons outside R  can be 

included in R. The neurons in R  imply that corresponding 

voxels in the brain volume are the detected activation voxels. 

“Fig. 3B” shows that there are more activated neurons in the 

CALC region during Class Sen than Class Pic. When the 

subject was watching a picture, the right hemisphere was 

slightly more active than the left, but when the subject was 

reading a sentence, more ROIs in the left hemisphere were 

involved, including the Left Inferior Parietal lobe (LIPL), Left 

Superior Parietal Lobe (LSPL), and Left Temporal lobe (LT). 

Increased activation of the left cerebral hemisphere is proving 

to be a more important role for these areas during reading a 

sentence than during visual object processing. These activations 

evolved by transferring more spikes between the neurons 

located in these areas of the SNNcube, reflect more changes in 

the corresponding voxels’ BOLD in the fMRI data.  

Since we map voxels to spiking neurons, we can investigate 

how many activated voxels were involved in multiple brain 

activities. The percentage P of overlapped activation voxels is 

defined as follows: 

 

                      P =
𝑅𝑃𝑖𝑐∩𝑅𝑆𝑒𝑛

𝑅𝑃𝑖𝑐∪𝑅𝑆𝑒𝑛
  .                                      (6) 

 

Where 𝑅𝑐  denotes the activation voxels in Class c ( c ∈
{Pic, Sen}). We obtained P = 29.0% for watching a picture and 

reading a sentence, indicating that a common part of the brain 

was engaged in both cognitive states.  

 



> IEEE Transaction on Cognitive and Developmental Systems < 

 

 

6 

 
 

 
Fig. 3. Brain activation detection and brain regions mapping in the SNNcube for subject ID 05. (Aa) 2D SNNcube activation maps for each class: 

watching a picture (Class Pic) or reading a sentence (Class Sen); (Ab) Probability map estimated by t-test for Class Pic (left) and Class Sen 

(right); (Ba) Locations of activation neurons in the averaged SNNcube; (Bb) Histogram of activated neurons with respect to different regions of 

interest (ROIs) for each class; (C) 25 ROIs were mapped into the SNNcube; (D) Averaged activation of the neurons in the SNNcube from “Fig. 

3B” for individual trials for Class Pic and Class Sen. Abbreviations: CALC - calcarine; DLPFC - left dorsolateral prefrontal cortex; FEF - frontal 

eye fields; IFG - inferior frontal gyrus; IPL - left inferior parietal lobe; IPS - intraparietal sulcus; IT - inferior temporal gyrus; OPER - pars 

opercularis; PPREC - posterior precentral gyrus; SGA - supramarginal gyrus; SPL - superior parietal lobe; T - temporal lobe; TRIA - pars 

triangularis; SMA - supplementary motor area. 

Analysis of the spiking activity in the SNNcube confirms that 

BOLD responses differ across trials even of the same class, but 

the averaged BOLD response for each class corresponds to the 

hemodynamic response function (“Fig. 3D”). In this figure, the 

response of the activated voxels (shown in the histogram of 

activated neurons in Fig.3B) is averaged over 16 fMRI time 

points and presented for 3 trails per class. We also presented the 

averaged response of all the trials per class.  
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To validate the extracted activated voxels, we conduct the t-

tests of difference in mean responses of the activated voxels 

between the rest state and each class. The p-value for class Pic 

is 3.5622e-7, and 5.3622e-22 for class Sen. Thus, at 

significance level 99.5% the responses of such extracted 

activated voxels are significantly different from the rest state. 

We also compare the mean responses between class Pic and 

class Sen averaged over the extracted voxels, and it shows that 

the mean of the BOLD responses in class Sen is significantly 

larger than that in class Pic (p=8.0237e-8 using t-test).   

During the SNNcube’s learning process, the evolution of the 

neurons’ activation degrees was also captured (“Fig. 4A”). The 

set of neurons with higher activation for one stimulus than 

another represents a set of features for this stimulus. To 

demonstrate this concept, we selected two sets of 500 neurons 

from the SNNcube with highest activation degrees for Class 

Sen and Class Pic correspondingly (“Fig. 4B”).  

  The directional connections in the SNNcube and 

identification of the featured neurons allow for further analysis 

of brain functional activity. Chains of connections for Class Sen 

and Class Pic are presented in “Fig. 4C”. These chains are parts 

of the whole deep learning architecture. 

 

 
Fig. 4. Evolution of neurons’ activation degrees and the deep learning architecture formed in the SNNcube. (A) Neurons’ activation degrees at 

three snapshots when the subject is watching a picture (one trial of Class Pic) or reading a sentence (one trial of Class Sen); The neurons’ degrees 

are normalized at each snapshot for visualization purpose; (B) Locations of neurons with the top 500 activation degrees for Class Pic (upper row) 

and Class Sen (lower row). These neurons are used as spatio-temporal features for the classification of the two different brain activities; (C) 

Visualization of typical chains of connections for each class. 
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Fig. 5. Brain activation detection is visualized in the SNNcube when trained on ID 04 fMRI data. (A) 2D SNNcube activation 

maps for class Pic and class Sen; (B) Histogram of activated neurons with respect to different regions of interest (ROIs) for each 

class; (C) Locations of activation neurons in the averaged SNNcube; (D) Averaged activation of the neurons in the SNNcube for 

individual trials of Class Pic and Class Sen. 

We also applied this methodology to ID: 04 data. The results 

are illustrated in Fig. 5.   

The p-value for class Pic is 5.6203e-4, and 1.8675e-8 for 

class Sen. It demonstrates that the averaged response of the 

extracted activated voxels for each class is significantly 

different from the rest state. The mean of the BOLD responses 

in class Sen is larger than those in class Pic (p=3.2742e-4 using 

t-test).  

We also performed task classification by entering fMRI input 

data sample by sample, measuring the activity of the featured 

neurons and classifying the input sample into the class that has 

a higher number of feature neurons active. The classification 

accuracy, tested through a leave-one-out cross validation 

method, is shown in Table. I. The classification accuracy 

increases over time with more samples entered from each class, 

because there is a delay in the BOLD response after a stimulus 

is presented. Once the BOLD response reached a certain level, 

the difference between watching a picture and reading a 

sentence became greater (measured as classification accuracy).

TABLE I 

Classification accuracy of class Pic and Sen at each time point of training the SNNcube, calculated using the leave-one-out cross 

validation method for subjects ID: 05 and 04. There are 20 samples of class Pic and 20 samples of class Sen. The correctly predicted 

classes are located in the diagonal of the NeuCube confusion table. The classification accuracy improves over time as the SNNcube 

training process advances.  

Subject ID:05 

Time point of 

training the 

SNNcube 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Confusion Table 

Class Pic 

classification 

accuracy in % 

 

0.0 

 

0.15 

 

0.1 

 

0.2 

 

0.4 

 

0.65 

 

0.7 

 

0.65 

 

0.75 

 

0.7 

 

0.8 

 

0.8 

 

0.85 

 

0.8 

 

0.9 

 Pic Sen 

Pic 18 2 

Class Sen 

classification 

accuracy in % 

0.95 0.9 1 0.95 0.8 0.85 0.8 0.75 0.85 0.8 0.8 0.85 0.8 0.8 0.8 Sen 4 16 

Subject ID: 04 

Class Pic 

classification 

accuracy in % 

0.9 

 

0.6 

 

0.4 0.3 0.25 0.35 0.45 0.35 0.3 0.35 0.5 0.55 0.65 0.60 0.65  Pic Sen 

Pic 13 7 

Class Sen 

classification 

accuracy in % 

0.00 0.00 0.00 0.05 0.10 0.20 0.55 0.70 0.65 0.70 0.75 0.70 0.75 0.65 0.75 Sen 5 15 

 

VII. CONCLUSION 

In this paper, we proposed a novel methodology for mapping, 

initialization, deep learning, feature selection, visualization, 

and classification of STBD using the NeuCube SNN 

architecture. Feasibility of the proposed methodology has been 

exemplified here using fMRI data from case studies which 

include cognitive brain processes.  

In the case studies, the 3D SNNcube visualization shows the 

evolution of neuronal activation degrees and the incrementally 
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learned deep patterns from fMRI data. After a SNNcube was 

trained with spike sequences of encoded fMRI data, we 

interpreted the model neuronal activation degrees to better 

understand how this fMRI data relates to the cognitive tasks 

undertaken by the subjects. Our results show that the NeuCube 

SNN-based visualization is compatible with the neuroscience 

literature, which reports that comprehension from reading a 

sentence is cognitively more complex than watching a picture. 

Moreover, the NeuCube model reveals the spatio-temporal 

dynamics of the different cognitive processes. 

VIII. FUTURE PERSPECTIVES: FROM MODELLING COGNITION 

WITH SNN TO THE CREATION OF NEUROMORPHIC COGNITIVE 

AND DEVELOPMENTAL SYSTEMS   

The proposed approach will be further extended in the 

direction of modelling more complex cognitive data (such as 

integrated fMRI, EEG, DTI) for a better understanding of brain 

cognitive processes. Furthermore, we plan to include molecular 

information such as the level of neurotransmitters, receptors, 

genes and protein expression as parameters of spiking neurons 

in the SNNcube [47] (also shown in “Fig.1”).  

A research question to address in the future is: Based on the 

results here, which demonstrate that a SNN architecture can be 

used to model cognitive brain data, can we create neuromorphic 

cognitive and developmental systems of thousands and millions 

of spiking neurons? Such systems should be able to manifest 

complex cognitive behaviour through learning of spatio-

temporal patterns. Such systems should be structurally and 

functionally evolving, i.e. being able to develop new 

connectivity, new clusters of activities, new output neurons to 

learn new categories and actions.  All these functionalities are 

enabled in the NeuCube SNN architecture, but the challenge is 

how to assemble them in an integrated, possibly brain-like, 

cognitive system, how to allocate input neurons according to 

input sensory information, how to include available genetic 

information, how to implement such system on a computer 

platform, including cloud computing and/or neuromorphic 

hardware platforms of thousands and millions of neurons [44]-

[47].  
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