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Abstract: The pole shape optimization of an electromagnet typical of an MRI type 
application is investigated. We compare the use of different parameterizations of the 
pole shape and compare the convergence of the optimizations using a discrete variable 
step length Tabu Search scheme. 
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I. Introduction 
MRI applications require a high field homogeneity within a region. If iron poles are used 
these can be shaped to increase the field uniformity. New powdered iron materials can be 
molded into complex contours [1]. Choosing a good parameterization of the shape is critical 
to the success of any optimization process. The designer faces a dilemma: 
 

• Choose a detailed representation using many parameters and risk the optimization 
process running out of time before a good solution is found. 

• Choose a coarse representation with only a few parameters and risk the optimal 
solution being outside the search space.   

 
In the case of pole shape optimization experience has shown that a good “rule of thumb” is a 
profile with 2 steps [2]. In this paper we will investigate pole shape optimization using 
different parameterizations representing different numbers of steps in the pole. 
 
II. Tabu Search Scheme 
The basic concept of Tabu search as described by Glover [3] is a metaheuristic superimposed 
on another heuristic. The overall approach is to adopt an aggressive strategy that forces the 
underlying heuristic to always make a move, even if the search is trapped in a local optima. A 
move is a transformation from one solution to a new solution in the allowable neighborhood. 
 
Following a steepest descent/mildest ascent approach, a move may either result in a best 
possible improvement or a least possible deterioration of the objective function value. 
Without additional control, however, such a process can cause a locally optimal solution to be 
re-visited immediately after moving to a neighboring solution which then results in an 
unending cycle between the two solutions. 
 
To prevent this cycling, Tabu search introduces the concept of an attribute based memory. By 
choosing suitable attributes of either a move or the solution resulting from a move it is 
possible to retain a representative record of the search trajectory through the solutions space. 
This representative record can be used to guide the search trajectory away from local optima 
in an attempt to explore different regions of the solution space. 
 
A. Implementation 
The principles of Tabu search can be implemented in a number of ways depending on a 
combination of the underlying search algorithm, the attributes chosen to be used to represent 
the search vector through the solution space and the enhancements added to control the 
search. The method described in this paper is a very simple implementation where the 



attributes chosen are simply the values of the design parameters and the underlying search 
algorithm is based on a Hooke and Jeeves method [4]. Simple search intensification and 
diversification strategies have been designed to alter the focus of the search vector without 
adding computational expense (see Figure 1). 
 

 
Figure 1. Tabu control algorithm. 

 
B. Short Term Memory 
In general, the short term memory consists of a list of solution attributes that cannot be 
embodied in moves whilst they are still contained in the memory. The search is generally 
barred from making a move that essentially reverses a move contained in the list. This 
approach has the advantage that intensification and diversification of the search can be easily 
controlled by considering which moves have generally resulted in improvement and which 
moves are not regularly used. However, the storing of moves does not guarantee that the 
method will not return to the same real solution. As parametric design problems tend to deal 
with numerical design parameters rather than symbolic parameters the attributes used in the 
short term memory are simply the values of the design parameters themselves. This prevents 
the method returning to a previously visited solution by a convoluted route for as long as the 
solution is maintained in the list. The short term memory is continually refreshed as the 
search explores the solution space. As each move is made a new set of attributes are placed in 
the memory and the oldest set of attributes are removed. 
 
C. Search Intensification and Diversification 
The short term memory enables the method to leave locally optimal solutions in the quest for 
the global optimum of a function. However, short term memory alone does not ensure that 
the search will be both efficient and effective. Search intensification and diversification 
techniques are often used first to focus the search in particular areas and then to expand the 
search to new areas of the solution space. This is normally achieved by the use of longer term 



memory cycles. Given the simple nature of the attributes used, the intermediate memory 
cycle is nothing more than a list of previously visited solutions that have resulted in an 
improved solution being found. 
 
Without effective intensification and diversification strategies, the Tabu search method offers 
little over methods such as Dynamic Hill Climbing [5]. The work in this paper utilizes a very 
simple intensification strategy that proposes a new solution based on the average value for 
each design parameter calculated from the solutions contained in the intermediate memory 
list. During the initial stages of the search this often leads to a new good solution that is 
significantly different from those contained in the intermediate memory list as those solutions 
are still quite distinct. At later stages of the search this strategy tends to produce solutions that 
are very similar to those contained in the intermediate memory list as the method will have 
converged to a region in the solution space. 
 
Previous implementations of the Tabu search method have used simple random refreshment 
of the search point to a new solution. The method used in this paper is working toward a 
more effective diversification strategy by introducing concepts of scatter search. Rather than 
use a single refreshment point, the strategy proposes a number of solutions and starts 
searching from the best solution found. At current, there is no control over the spacing of the 
solutions generated in the diversification though a potential refinement would be to introduce 
such control to guarantee that the solutions are suitably spaced throughout the solution space. 
 
D. Hill Climbing Algorithm 
The underlying hill climbing algorithm used in this work is based upon the method developed 
by Hooke and Jeeves [4]. This method consists of two stages, the first of which carries out an 
initial exploration around a given base point. When a move to a new point (the exploration 
point) which improves the objective function is identified, the search is extended along the 
same vector by a factor in a pattern move. If this new solution has a better objective value 
than the exploration point, then this point is used as the new base point and the search is 
repeated. Otherwise, the search is repeated using the exploration point as the new base point. 
The algorithm used in this implementation of Tabu search differs in several ways from the 
standard Hooke and Jeeves algorithm. 
 
In the Hooke and Jeeves algorithm each parameter is varied in turn and the first move that 
results in a better objective function value is selected. The implication of this is that not all 
potential moves are evaluated. In the Tabu search implementation all trial moves are 
investigated and the best move that is not tabu is chosen. 
 
Another difference concerns how the step size is periodically reduced. In the Hooke and 
Jeeves search when a point is reached from which no improvement can be found then the step 
size is reduced by a factor of two. In the Tabu search implementation this is not practical as 
the Tabu search metaheuristic forces the search point out of local optima. The step size is 
therefore reduced when other conditions apply. A counter is maintained of the number of 
search moves that have elapsed since an improved solution was found. When this reaches a 
given value then the search carries out an intensification action. If an improved solution is 
found then the counter is reset. If no improvement is found then the search continues until the 
counter reaches a higher preset value at which point diversification is carried out. Again, the 
search continues and if no improvement is found before the number of moves reaches the 
next preset level then the step size is reduced. 
 



At present there are no convergence criteria built into the search control to terminate the 
search before the step sizes are brought to their minimum sizes and the search ends naturally. 
This implies that a potentially large number of evaluations are used to produce only very 
small improvements in objective function value. A more efficient search could easily be 
produced by introducing convergence criteria. 
 
We used the same control strategy that had been found to be successful for previous 
problems. If the dimension of the parameters is N then the intensification count is max(4, 
N/2), diversification count is max(8, N) and the reduce step size count is max(3N/2, 12) 
though it is acknowledged that possible other values may have yielded more efficient 
optimization processes. 
 
III. RESULTS 
An idealized pole shape problem was investigated (see Figure 2). The configuration is typical 
of a MRI application. A pair of rotationally symmetric poles are used to shape the field. 
 

 
Figure 2. Idealized MRI application. 

 
 
For simplicity the source of the field is not modeled, the poles are assumed to driven by 
auxiliary coils or permanent magnets, that set up a m.m.f between the pole faces. 
 
This was modeled using two dimensional axisymmetric finite elements. Symmetry allows 
one half of the axisymmetric problem to be modeled. A magnetic scalar formulation was used 
with the pole set to a fixed potential. The finite element model was truncated with a natural 
boundary at a radius of 400 mm and a distance of 300 mm from the plane of symmetry. 
 
A. Detailed Parameterization RAW 
The pole face shape was parameterized with a 16 segment line (these corresponded to the 
edges of finite elements). The points were evenly spaced in the radial direction but the axial 
coordinate was allowed to vary within the range 0–40 mm. 
 



 
Figure 3. The axisymmetric finite element model. 

 
The elements 50 mm above and 40 mm below this line where stretched and compressed to 
accommodate this geometry change, this avoids numerical discontinuities that can arise if 
remeshing is used. We looked at the field homogeneity in a cylinder of radius 80 mm and 
height of 80 mm. The z directed field, B = BZ was sampled in the target region. The cost 
function was defined as cost = (BMAX – BMIN) / (BMAX + BMIN). 
 
The problem space was made discrete by choosing a resolution of 0.00001 m. The initial step 
size was chosen to be 1/5 of the parameter range. It is known (from previous experience) that 
an initial flat pole shape is a good starting point for an optimization. However, to make life 
more interesting for the optimization scheme we denied it the privilege of this information. 
We started at random points in the search space. 
 
B. Reduced Parameter Representations 
We investigated reducing the number of parameters that represented the pole shape. Four 
cases were investigated, representing 1, 2, 3 and 4 ramps in the pole height. Figure 4, shows 
the 2 ramp version. The radial length parameters a and b were given a minimum step of 10 
mm, (corresponding to node positions). 
 

 
Figure 4. Four parameter study. 

 
 
The parameter b was allowed to take the range 10mm <= b <= 160mm, whilst a was 
constrained so 0 <= a < b. The 2 heights c and d used the same resolution as the RAW 
parameter version, making this scheme a subspace of RAW. The 1, 3 and 4 step schemes 
were constructed in a likewise fashion. 
 



C. Results 
It is difficult to compare schemes when they involve an element of random choice. We 
choose to perform five optimizations for each parameterization. For each parameterization we 
noted the objective function after 20, 100 and 1000 iterations, we also note the final value. 
The results are displayed in Table I which shows the range of observed values for each 
parameterization. 
 

Table I. Variation of the objective function versus iterations over 5 runs using 
different parameterizations 

 
Scheme Iteration / objective function ×103 

 20 100 1000 inf 
RAW 3029 - 3395 1701 - 2534 172 - 1999 112 - 315 

1 1006 - 3897 597 - 1118 520 - 595 520 - 595 
2 610 - 2252 284 - 1136 126 - 250 112 - 149 
3 1105 - 4474 213 - 2343 66 - 425 55 - 217 
4 6065 - 13256 576 - 1419 183 - 429 98 - 422 

 
Some typical convergence characteristics are shown in Figs. 5 and 6. Typical pole shapes 
found are shown in Figure 7. 
 

 
 

Figure 5. Typical convergence for the different parameterizations. 
 



 
 

Figure 6. Convergence for another set of runs. 
 

 
 

Figure 7. Typical pole shapes produced by the optimization process. 
 
IV. CONCLUSION 
As expected the results clearly show that too many parameters increased the search time 
making an optimum shape difficult to find. Also (as expected) the 1 step parameterization 
was unable to achieve the highest field uniformity because the search space was too 
constrained. The 2 step parameterization performed well as did the 3 step parameterization. It 
can be seen from the results that the 3 pole parameterization was able to find a better 
configuration than the 2 step case but it was not so reliable. 
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