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Abstract

Deep learning based on computer vision and machine learning is an emerging
technology in both the medical imaging industry and academia. Despite the
existence of some commercial glaucoma detection systems such as retinal imaging,
OCT scans, and ocular tonometry, we are at the beginning of a long research
pathway toward the future generation of intelligent glaucoma detection systems.

Early glaucoma diagnosis prevents permanent structural optic nerve damage
and consequent irreversible vision impairment. Longitudinal studies have
described both baselines structural and functional factors that predict the
development of glaucomatous change in ocular hypertensive and glaucoma
suspects. Although there is neither a gold standard for disease diagnosis nor
progression, photographic assessment of the optic nerve head remains a mainstay
in the diagnosis and management of glaucoma suspects and glaucoma patients.

This thesis discusses several image processing techniques comprising disparity
map, superpixel and noise removal for pre-processing.

A stack of traditional classifiers was utilized as a hybrid model based on the
ensemble method to generalise and boost the performance of the proposed model
to detect glaucoma through the thickness of the retina.

A method was needed aiming at both detecting pathologic changes
characteristic of glaucomatous optic neuropathy in optic disc images, and
classification of images into categories of glaucomatous/suspect or normal optic
discs. Therefore, different machine learning algorithms were used including
transfer learning, deep convolutional neural networks, and deep multilayer neural
networks that extract features automatically based on clinically relevant optic disc
features. Meanwhile, biomarkers were demonstrated with the proposed deep
learning model to interpret which parts of the retina had been affected by
glaucoma.

Finally, this research proposes methods based on evolving deep pre-trained
learning architecture, stereo matching with the usage of disparity maps, hybrid
models with statistical analysis to retinal nerve fibre layer (RNFL) classification, and
visualization of biomarkers with deep learning to detect glaucoma in early stages
based on fundus images. Besides, in Appendix A; we discuss a hypothesis of
glaucoma detection through detecting specified pattern with signal processing and
video processing to achieve glaucoma detection at its early stages. Thus, we are
going to specify the OKN pattern of eye movement to detect glaucoma at its initial
stage.
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Chapter 1

Introduction

This chapter provides a brief background of image processing and machine learning on
glaucoma detection and motivations. The subject and the structure of the thesis are also
specified in this chapter. Additionally, the problem statements and research questions are
presented in this chapter of the thesis. The flowchart in Fig. 1.1 represents the structure of
the thesis on glaucoma detection.

Moreover, we applied machine learning techniques to detect glaucoma with three
different aspects; we employed transfer learning for image classification to detect glaucoma,
and a stack of traditional classifiers to make a robust and generalise model for glaucoma
detection with the thickness of the retina. Also, we utilized OKN pattern recognition as a
specific pattern identification via pupil tracking and video streaming technologies. Besides,
the schematic view for glaucoma classification of our research is illustrated in Fig. 1.2.

1.1 Background

In this section, we1 present a brief discussion of glaucoma vision impairment and
the reason why it occurs. Also, the usage of image processing and machine
learning to predict glaucoma including a brief theoretical background of those
machine learning techniques that we will use in the following chapters of the
thesis.

Glaucoma

Glaucoma is an optic neuropathy resulting in progressive vision loss [279]. It is the
leading cause of global irreversible blindness [256]. In 2013, the population aged
40–80 years with glaucoma worldwide was estimated to be 64.3 million; this is
projected to increase to 76.0 million by 2020 and 111.8 million by 2040 [240]. It is
also estimated that approximately 1.3 billion people live with some form of vision

1The use of “we” throughout this thesis is purposeful. It is used to involve the reader with the thesis
as recommended by Knuth [140].
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impairment. Glaucomatous optic neuropathy is listed as the fourth major cause of
vision impairment by the world health organisation (WHO). In 2015, an estimated
three million people went blind due to this disease.

In New Zealand, glaucoma is responsible for 7% (1,192 patients) of cases of
bilateral blindness, ranking the third most common reported etiology [279]. The
reported prevalence among the population in New Zealand is 2% over the age of
40 years. About 10% of those over 70 years are diagnosed with this disease [279].
Early detection is vital to reduce the burden of unnecessary blindness due to
glaucoma. The Royal Australian and New Zealand College of Ophthalmologists
recommends a biannual ophthalmic examination, and the New Zealand
Association of Optometrists recommends a regular examination every 2–5 years for
healthy adults. However, like other developed countries, New Zealand does not
have a formal screening programme for glaucoma [144]. Diagnosis and subtype
classification are based on intraocular pressure measurement, gonioscopy, and the
presence of both structural and functional evidence of glaucomatous optic
neuropathy [81, 219]. Intra- and inter-observer settlement in the detection of optic
disc (OD) abnormalities could be improved with stereo fundus images [248].

The retina is a light-sensitive neural tissue that forms the innermost part of the
posterior eyewall and consists of a thin multi-layered tissue. It maps received light

Figure 1.1: Flow chart of the thesis.
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Figure 1.2: Schematic view for glaucoma classification of our research.

into neural signals to the brain, thus being the initiator of visual perception [183].
Glaucoma refers to an eye disease that manifests as slow damage to the optic
nerve. The optic nerve is in charge of transmitting visual information to the brain
and optic nerve damage gradually causes reduced vision. If glaucoma is not
treated, the disease progresses slowly and results in varying degrees of irreversible
visual disability and, in some cases, blindness [258]. Loss of vision begins with side
vision loss and approaches towards the centre of the eye, as illustrated in Fig. 1.3.

Glaucoma is a disease that damages the eye’s optic nerve, and it has no warning
signs at the beginning, thus often being named the “silent thief of sight”.

Also, glaucoma is a chronic neurodegenerative disease characterised by loss of

Figure 1.3: Illustration of decreased side vision due to a gradual progression of
glaucoma.
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Figure 1.4: Glaucoma eye vs. healthy one [277].

retinal ganglion cells, resulting in distinctive changes in the optic nerve head (ONH)
and retinal nerve fibre layer (RNFL) [219]. It is the leading cause of global irreversible
blindness.According to Glaucoma New Zealand [287] statistics, approximately
91,000 New Zealanders aged 40 or older currently suffer from glaucoma while
about 50% of them are unaware of having the disease.

The high intra- and inter-observer variability in clinical examination [90]
demands the use of ancillary techniques to assess the structure of the ONH and
RNFL such as optic disc photography, confocal scanning laser ophthalmoscopy,
scanning laser polarimetry, and optical coherence tomography. Similarly, selective
perimetry techniques, including short-wavelength automated perimetry (SWAP) and
frequency-doubling technology (FDT) perimetry, are being explored as replacements
to standard automated perimetry (SAP) to provide earlier detection of visual field
deficits [219].

Glaucoma usually happens when fluid builds up intraocularly. That extra fluid
increases the intraocular pressure, damaging the eye’s optic nerve. The high
intraocular pressure is caused by the increasing amount of aqueous humor, and it
is one of the reasons for glaucoma disease (see Fig. 1.4). In a healthy eye, a balance
is maintained as the amount of liquid produced is equal to the amount of liquid
discharged by the eye. However, in glaucoma the liquid does not flow out of the
eye and increases stress on the eye resulting in damage to the optic nerve which is
responsible for brain-eye communication. Increase in pressure over time results in
severe destruction to the optic nerve and may end up with irreversible
blindness [210].

As we can see in Fig. 1.4, the eye produces aqueous humor or vitreous fluid that
constantly feeds the ganglion cells of the eye, and this fluid is constantly moving
through the eyeball and the excess is removed from the angel of the eye. If the
amount of aqueous humor gets higher than the healthy eye, eventually the person
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becomes blind. Thus, the blocked drainage canal causes too much fluid in the eye
and increases pressure. This section is described in Chapter 2.

Machine Learning and Image Processing

Research has been done using state-of-the-art supervised and unsupervised
machine learning techniques such as deep pre-trained models, convolutional
neural networks and traditional machine learning models such as support vector
machine (SVM), decision tree, K-nearest neighbours (KNN) and K-means clustering.

Most of the image processing techniques for glaucoma detection try to detect
the structural features such as the cup-to-disc ratio (CDR) and/or non-structural
features such as texture and intensity of fundus images. There are also some
favourable techniques to detect the CDR morphological operations based on
multi-threshold techniques, active contour models, region growing segmentation,
and disparity map techniques on stereo fundus images. This section is discussed in
Chapter 2.

Motivations

This research aims to develop an autonomous glaucoma detection tool to detect
glaucoma at its early stages and assist ophthalmologists in the diagnosis of
glaucoma using different data modalities such as monocular, stereo fundus images,
and thickness of the retina. Moreover, by employing the computational retina
biomarker modelling with the latest transfer learning techniques, ophthalmologists
will be able to develop a new way of predicting clinical outcomes.

This PhD project was motivated by the limitations in the glaucoma classifications
used in recent academic publications (2013-2019). One of the constraints is accessing
medical annotated data that is extremely costly, consequently we attempt to find a
solution to have a deep learning model to classify glaucoma patients at its early
stages with a tiny dataset.

In addition, technically, there is a motivation behind why it is imperative to
detect glaucoma in the initial stages. The reason is finding a model to choose more
precise in time and performance than ophthalmologist’s choice with the equivalent
data. In this manner, we chose a deep pre-trained model as a tool since it imitates
the human brain. We started the development of a computer aid application to
cope with this problem with the inspiration of brain function. Besides, apart from
supporting the global concern and motivation to deal with this disease, the author
has a personal motivation to contribute to this field as his father has suffered from
this disease for a decade.
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Goals and Objective

The main goal of the thesis was to develop a computer-aided diagnostic model for
glaucoma detection and propose a decision support system for ophthalmologists.
Moreover, we aimed to detect glaucoma at its early stages using the same dataset.
After employing deep learning techniques, the model was tested on both private
and public annotated datasets. Besides, the objectives of this study were to perform
a reliable segmentation on fundus images, improve the performance of glaucoma
image classification on limited data when annotated fundus images are limited by
utilising deep transfer learning models.

Another outcome of the project was the innovative OKN extraction through
eye-tracking with data streaming to identify eye disorders in the early stages, such
as glaucoma and lazy eyes for kids [70, 176].

1.2 Problem Statements and Research Questions

According to the census of the Glaucoma New Zealand website, glaucoma is the
leading cause of blindness in New Zealand, and it is estimated that approximately
91,000 New Zealanders are unaware of having the disease [287]. It is estimated that
there will be approximately 80 million people worldwide affected by glaucoma by
2020 [7]. In 2010, glaucoma affected more than 2.7 million Americans aged 40 and
older, which is approximately 2% of the population [314]. Glaucoma is the third
cause of blindness in New Zealand [279].

The research questions of this study are listed as follows:

How can we segment the OD and OC on fundus images as a step of
unsupervised annotation? (discussed in Chapter 4)

How can we detect changes on the retina in rim section of ONH with a stereo
image? (discussed in Chapter 5)

How can we find a method for glaucoma screening to detect glaucoma in the
early stages? (discussed in Chapter 6)

How can a convolutional machine learning model be optimized for glaucoma
detection? How can we cope with the lack of annotated data to have a
high-performance machine learning classifier? How can we develop a more
robust deep learning model for glaucoma detection? How can reliability be
optimized for the proposed model? How can we validate the classification
performance rate of the implemented classifier for glaucoma detection?
(discussed in Chapter 7)
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How can we use the eye-tracking to detect OKN pattern? (discussed in
Appendix A)

1.3 Structure of the Thesis

This thesis is organised in eight chapters. Chapter 2 provides an analytical and
critical survey of the literature using a systematic review approach and presents
the theoretical concepts of deep transfer learning and traditional classifiers.
Chapter 3 describes the data collection and difficulties in accessing medical data
and discusses the public datasets as a benchmark for our research. Chapters 4 to 7
present the author’s contribution to the field. These chapters include three main
contributions. Chapters 4 and 5 are about fundus image segmentation with
unsupervised models for monocular and apply disparity map on fundus stereo
images to magnify the rim area. Chapter 6 presents a novel optimized hybrid
model with traditional machine learning classifiers based on an ensemble model.
Chapter 7 discusses deep learning models on deep neural networks, deep
convolutional neural networks and deep pre-trained models. The last Chapter 8
presents discussions, conclusions and future works and gives an overall conclusion
of the thesis as well as highlighting the original and significant contributions.
Finally, some key future research directions are mentioned. Moreover, Appendix A
is the assumption of using eye-tracking for glaucoma detection through detecting a
specific pattern which is named OKN.

1.4 Original Contributions

The objective of this research is to design, implement, and evaluate a novel
computer-aid application based on machine learning algorithms that can be
applied as a decision support system for glaucoma specialists. We propose a
unique multimodal dataset to be employed for an optimized, robust, and
intelligent classifier.

This work is aimed to address the shortcoming of deep learning technique in
dealing with small datasets by proposing a model which optimizes the time and
memory usage. After pre-processing, noise reduction and data cleaning, boosting
and ensemble techniques are employed to discover the correlation between
multi-modal data and optimization of the classifier. The main contributions of this
study are:

• Conducting a comprehensive survey of the literature covering both traditional
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and deep machine learning technologies as well as the implementations of
deep pre-trained classifiers.

• Development of an optimized deep learning model, as a decision support
system, for assisting eye specialists.

• Optimization of the proposed classifier using the ensemble technique.

• Proposing an unsupervised segmentation model for fundus images.

• Implementation of a novel superpixel method on stereo fundus images to
detect the rim area with a disparity map model.



Chapter 2

Review and Theoretical Background

A survey has been done on detecting glaucoma using traditional classifiers, conventional
machine learning and emerging deep learning. Deep learning methods have outperformed
machine-learning techniques in different domains in recent years. This chapter discusses
the past and current impact of machine learning on glaucoma detection. We describe how
glaucoma symptoms can be identified by machine learning and provide a brief overview of
deep learning approaches, in particular of convolutional neural networks (CNNs). The
emerging CNN approaches have been used widely for solving different computer-vision
problems, and especially, for analysing retinal images. We summarise pre-trained CNN
architectures for glaucoma detection. We then outline the effectiveness of different types of
deep CNN architectures, some of which perform well for automated glaucoma classification.
We present a brief history of deep learning techniques and provide critical analysis of
methods and applications in glaucoma detection followed by current challenges and future
research directions.

2.1 Artificial Intelligence and Glaucoma Research

Artificial intelligence (AI), particularly deep learning, is transforming medicine. The
depth and impact of this transformation are likely to increase rapidly, and many
physicians and health care organisations are unaware of the degree to which
medicine will be fundamentally reshaped over the next generation.

Due to this advancement and growth in available databases, identification of
ocular disorders including glaucoma have been enhanced significantly [241].

Deep learning is a machine learning approach that makes use of several neural
networks, being subsequently used for transforming extensive input data into
short characteristics [56]. The technique can be modelled by a graph that has
several processing layers, each defined by many neurons (mathematically defining a
linear or non-linear layer function). Convolutional neural networks (CNNs) are
particularly effective for solving image analysis tasks [72]. In this chapter, we
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review advances in CNN architectures [146] in the context of glaucoma
detection [249].

Although there are already some dedicated surveys on applications of deep
learning for glaucoma detection [103, 156, 239], covering a considerable amount of
work, essential areas in the field, such as distinct deep learning frameworks, their
advantages and disadvantages have not yet been included. This chapter aims at
providing a comprehensive survey of the latest developments in the application of
deep pre-trained conventional models in medicine, particularly for glaucoma
detection. This review also describes publicly available and labelled glaucoma
fundus image databases, highlights different performance evaluation measures
commonly used within the field, and outlines current approaches in feature-based
fundus image classification. The motivation for our review is to offer a
comprehensive overview of techniques for glaucoma detection. We also include
our own experience with the application of combinations of traditional models and
deep-transfer-leaning architectures to detect glaucoma [67, 177, 178, 180–182], and
with an unsupervised learning method for optic cup and optic disc segmentation
for glaucoma detection [175].

We chose preferred reporting items for systematic reviews and meta-analyses
(PRISMA) as the systematic review methodology [168]. An extensive search was
conducted using the most reliable scientific databases, including Google Scholar,
Scopus, ACM and PubMed. The keywords used in the search were
“Review/survey” or “Convolutional neural network” or “Deep learning”, and
“Glaucoma detection” or “Glaucoma classification”. Additionally, all selected
papers were graded on the basis of glaucoma classification with deep learning
approaches.

Article Selection and Exclusion Criteria. After conducting an initial screening
of titles and abstracts of the retrieved papers, we eliminated duplicate articles that
were cited with different databases, such as Scopus, arXiv, IEEE, and Springer.
Moreover, additional records were excluded after reviewing the included studies
and an evaluation of full-text articles for eligibility. The eligibility criteria for
inclusion in the review were as follows:

• Original articles published as a journal article or in conference proceedings

• publication or reporting year between (inclusive) 2015 and 2019

• deep pre-trained conventional models are the primary subject of the reported
study
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• focusing on glaucoma classification with deep learning approaches only

• written and published in English

We excluded articles that did not report original research, such as letters to an
editor, comments or reviews. Initially, over 500 studies were identified through
database searching. After excluding duplicated records, 450 records were eligible
for screening. A total of 150 records did not meet our inclusion criteria based on the
initial screening. Finally, 300 studies were included to be evaluated for eligibility.
After excluding irrelevant studies, 180 articles were selected for the final review.
Note that the references at the end of this thesis also include sources pointing to
techniques or definitions considered of relevance while reviewing the selected
articles.

2.2 Structural Biomarker within Glaucoma Disease

Glaucoma is the second leading cause of blindness worldwide, with almost 60
million cases reported worldwide in 2010, and an increase of 20 million is expected
by 2020 [17, 197]. It is also the third-ranked cause of blindness in New
Zealand [279]. If glaucoma remains unnoticed, it can cause irremediable damage to
the optic nerve leading to blindness [217]. Therefore, diagnosing glaucoma at its
early stages is essential [17]. According to the census of the “Glaucoma New
Zealand” website, glaucoma is the leading cause of blindness in New Zealand and
it is estimated that 91,000 New Zealanders have the disease but are not aware of
it [287].

Because of the rapid ageing of the human population, accurate diagnosis is
critical for establishing a treatment to preserve vision and maintain quality of
life [123, 126, 240]. Intraocular pressure (IOP) is a major risk factor and is the fluid
pressure inside the eye [5, 99]. Typically, a high IOP (greater than 24 mmHg) leads
to glaucoma.

The optic cup and disc are major retinal areas for glaucoma detection. The optic
disc, often identified (see more detailed comments below) with the optic nerve head
(ONH), is the beginning of the optic nerve, i.e. the area where the nerves of retinal
cells come close to each other. It is the entering point of blood vessels that pass blood
to the retina. The optic cup is the central depression of variable size present on the
optic disc.

See Fig. 2.1 for an optic cup and optic disc example on a fundus image. The
optic disc region in Fig. 2.1 is divided into superior, nasal, inferior, and temporal
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Figure 2.1: Example of the optic cup and optic disc regions in a fundus image;
Z1 to Z4 denote the superior, nasal, inferior and temporal regions of the ONH,
respectively [18].

quadrants [161] for the right eye (oculus dextrus) in a clockwise orientation. In
glaucomatous eyes, most early signs occur in the superior and inferior sectors;
close examination of these regions facilitates diagnosis of glaucoma by
ophthalmologists [55].

The structural biomarker cup-to-disc ratio (CDR), has been used as a critical
outcome measure for glaucoma screening and detection [17, 86]; there are also
other essential features of the optic nerve (besides CDR) that could be used for
accurate glaucoma detection, see [78]. The CDR can be defined by the area quotient
of the optic cup and optic disc:

ACDR =
Acup

Adisc
(2.1)

The area of an image region is identified by the number of pixels contained in this
region [139].

The CDR has previously been measured by estimating the ratio of the horizontal
or vertical optic cup and optic disc diameters, formally expressed, respectively, by

HCDR =
Hcup

Hdisc
and VCDR =

Vcup
Vdisc

(2.2)

For combined use of VCDR and HCDR, see [79, 97]. Horizontal or vertical diameters
Hcup, . . . , Vdisc are also measured in numbers of pixels, but best along digitised
lines [139].

The measure ACDR is a 2-dimensional geometric property, therefore more
robust for expressing the CDR, especially in the cases of “non-circular” optic cups
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or optic discs. In the case of non-circular (such as elliptical) optic cups or optic
discs, a combined use of vertical and horizontal ratios, or, even best-fitted ellipses
may be preferable [155, 260].

Accurate CDR measurements require precise optic cup and optic disc
segmentation in a fundus image [84]. To be precise, the ONH is defined by the
region where the retinal ganglion cell axons and blood vessels leave the eye;
clinically, it has been characterised by a very narrow rim of the sclera, called the
scleral rim. Recent work by Burgoyne and Chauhan has demonstrated that what
clinicians identify as the clinical optic disc margin is not a unique and uniform
anatomic structure. Depending on the eye, the ‘clinical’ disc margin is formed by
the Bruch’s membrane opening or border tissue of Elschnig [50]. The optic cup is
the central region in the ONH with no nerve fibres, usually appearing as being
whitish or very bright.

This common definition of optic disc and optic cup is not identifying those pixels
uniquely in a fundus image which belong to optic disc or optic cup. Thus, a “precise
segmentation” is already a somehow vague intention.

The presence of glaucoma can be identified by an enlargement of optic nerve
cupping (i.e., an optic cup that is increased in size), which is secondary to thinning
the neuroretinal rim; see [217]. An eye with ACDR > 0.6 is generally declared as
being a glaucoma suspect in clinical practice [14, 217]. Other methods for detection
of glaucoma include assessment of optical coherence tomography (OCT) and perimetry,
the latter being the standard test of visual function for glaucoma analysis [80, 215].

Retinal nerve fibres are typically represented by the annular region between
optic disc and optic cup, known as the neuroretinal rim [40, 171, 197]. This loss of
optic nerve fibres results in thinning of the retinal nerve fibre layer (RNFL), which is
characterised by increased cupping. Progressive cupping (or enlargement of the
cup) is a frequent sign of glaucoma progression [40, 45]. A decrease in healthy
neuroretinal tissue can be easily noticed by measuring the CDR, which is an
indication of glaucomatous change [45]. Typically, for a healthy eye the area CDR
value of Eq. (2.1) is ≈ 0.3 or less; see [83,99]. Figure 2.2 shows variances in the optic
disc, neuroretinal rim, and optic cup.

The CDR measures remain essential biomarkers for the diagnosis of glaucoma;
ONH imaging is carried out for estimating the CDR. Other parameters such as the
inferior superior nasal temporal (ISNT) rule, the disc damage likelihood scale (DDLS), and
the glaucoma risk index (GRI) have been used widely for the diagnosis of glaucoma,
also using ONH imaging [169,239]. A pallid disc, from orange to pink in the disc, is
another biomarker of glaucoma [239].

A stepwise approach for systematic identification of glaucoma on fundus images
has been described for clinicians in [79]. First, the clinician identifies the scleral ring
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Figure 2.2: Healthy disc in comparison with two stages of glaucoma on fundus
images. Left: Healthy disc. Middle: Moderate glaucoma. Right: Advanced glaucoma
[88, 292].

to determine the outer boundary of the optic disc and its size; second, estimation
of the size of the neuroretinal rim; third, the examination of the retinal nerve fibre
layer; fourth, the examination of the region of para-papillary atrophy and finally,
detection of optic disc haemorrhages. However, this process is subjective and prone
to bias.

2.3 Current Clinical Methods for Glaucoma Detection

There is a variety of diagnostic tools for determining whether a patient has
glaucoma or not [192, 307].1 Currently, glaucoma is often diagnosed by standard
automated perimetry (SAP) assessment of the visual function (VF) [124, 173, 255]. SAP
is a subjective psychophysical test which requires patient interaction to complete
the VF testing [12]. The result is a map of local retinal sensitivities relative to
fixation [20, 41]. Detecting glaucoma at an early stage using VFs remains
challenging because VFs present a high degree of variability [167].

There is some evidence that suggests that detectable glaucomatous axonal loss
precedes detectable VF impairment [198, 211]. Several technologies such as
scanning laser polarimetry (SLP), confocal scanning laser ophthalmoscopy (CSLO), and
optical coherence tomography (OCT) are used to detect axonal loss [227].

OCT is a non-invasive, non- contact method of generating high-resolution
images using the coherence property of light reflected from a scanned area [142].
The working principle of OCT is like ultrasound, but OCT has a higher resolution

1The Glaucoma Foundation [307] was established in 1984 by Dr R. Ritch.
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that discriminates quite well between healthy and glaucomatous eyes. OCT has
received more interest in glaucoma diagnosis currently. Nevertheless, its role in
detecting any glaucomatous progression is not well established [33].

Fundus photography is another simple and non-expensive technology
appropriate for recording the optic nerve, independent of a specialised viewing
instrument. Fundus photos remain one of the most widely used methods for
documentation of the ONH [38, 171, 239]. Since qualitative observation of the ONH
is time-consuming and subject to inter-observer variability, from a clinical
perspective, access to a more objective analysis for glaucoma diagnosis is
preferred. Recent advances in deep learning and transfer learning, and the
significant growth in available fundus photographs allows identifying ocular
pathologies due to glaucoma manifesting in ONH fundus photographs and has led
to enhanced glaucoma diagnosis which is discussed in the following sections; see
also [6, 52, 53, 200].

2.4 General Background of Machine Learning

Supervised learning and unsupervised learning are two primary machine learning
categories. Supervised learning employs identified input and output variables
with a formula that maps process from the input to the output data. The aim of
supervised learning is therefore, to able to classify and predict the mapping
function so that any new input data can be classified according to the output
variables for that data. Likewise, supervised learning can be utilised to
classification and regression.

Unsupervised learning involves modelling the underlying structure and the
hidden data distribution to be told extra concerning the data. Unsupervised
learning just requires input data and no corresponding output data, and we can
use it for clustering and association.

Overview of Deep Learning and CNNs

Deep neural networks employ supervised learning in their tasks, and they are
adequately similar to ordinary neural networks. The name of neural networks
conveys brain-simulation learning. Besides, deep neural networks comprise of
neurons that have learnable weights and biases.

The name of “CNN” indicates that the network utilises a mathematical
operation called convolution as a linear operation. CNNs are simply neural
networks, and they use convolution operation in place of general matrix
multiplication in at least one of their layers [99]. CNNs also employ an activation
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function (e.g. relu, softmax) on the last fully connected layer. Moreover, all
regularisation steps including drop-out, deducting layers, early stopping, and data
augmentation utilise to improve the learning rate and avoid over-fitting.

An assumption for CNN models with input images is that; these models can
extract features automatically by convolution operator and multiple filters within
convolutional layers. There are three positive points of this assumption, first,
implement a model more accurate than normal neural networks, second, do not
need to extract features manually, third, vastly reduce the number of
hyper-parameters in the network. This will be explained in greater detail in the
next section.

2.5 Machine Learning for Glaucoma Diagnosis

Machine learning can determine markers for diagnosis of different diseases by
combining input features in a linear or non-linear
fashion [21, 32, 36, 39, 108, 203, 262, 263, 265]. These methods provided an objective
approach for glaucoma diagnosis [33, 37, 44, 63, 264, 266]. Conventional
machine-learning approaches typically use structured data such as demographic
parameters, ocular measurements, VF parameters, or RNFL thickness
measurements for glaucoma diagnosis or prognosis [21, 166]. Some conventional
machine learning techniques have shown acceptable precision in glaucoma
diagnosis [21, 37, 199].

However, emerging deep learning approaches have advanced automated
diagnosis significantly. A substantial breakthrough in machine learning,
introduced in 2006 [107], has been the deep belief network, which incorporates
multiple layers of restricted Boltzmann machines to learn highly-complex
non-linear models for discriminating features from different classes. These can
train one layer of a neural network at a time in an unsupervised way. The main
principle behind these series of developments was guiding and training
intermediate levels of representation using unsupervised learning, performed
locally at each level. This idea has revolutionised deep architectures and deep
learning algorithms in the last decade. Deep learning methods can learn from
unstructured data such as fundus images without requiring a separate feature
extraction step. In the following section, we described traditional, conventional,
and deep learning models that applied to glaucoma diagnosis in more detail.
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Selected Traditional Supervised Classifiers for Detecting Glaucoma

There are multiple studies on supervised classifiers that apply for glaucoma
detection [22, 66]. In this section, we discuss selected traditional classifiers which
employ in our research to deal with glaucoma detection’s problem.

Principal component analysis. PCA is an unsupervised method for understanding
global attributes of a dataset consisting of vectors. A covariance matrix of data
points is analysed to understand what dimensions or data points are more
important, for instance, data points having high variance amongst themselves, but
low covariance with others. One way to calculate the top principal components of
a matrix is by using eigenvectors with the highest eigenvalues. Singular-value
decomposition (SVD) is essentially a way of calculating ordered components also,
but one does not need to acquire the covariance matrix of points [220].

K-nearest neighbour. KNN is an instance-based supervised learning method that
identifies the class (label) of an unknown sample based on the known labels of its
neighbours in the feature space. Euclidean distance utilises in KNN algorithm as
the distance measurement metric. It is the typical distance function used for
measuring the distance between samples. The main advantage of KNN is its
simplicity and, in some cases, its efficiency [117]. KNN employed for glaucoma
diagnosis in several studies [93, 224]. Besides, the performance of different
classifiers including naı́ve-Bayes, KNN, SVM, and random forests were compared
with KNN algorithm’s performance as a benchmark [93].

Support vector machine. SVM is, besides naı́ve-Bayes, another widely-used
conventional classifier. In a typical diagnosis problem, the SVM finds a hyperplane
that maximizes the distance between the hyperplane and the nearest samples of the
healthy and the disease class in the feature space. The SVM is a supervised
classifier in which the labeled samples are employed in the training step. Different
kernels such as linear and Gaussian can apply for the SVM to feature
engineering [132, 133, 242]. Sequential minimal optimization (SMO) has used in SVM
for glaucoma diagnosis. SMO is an optimization method that can help us to obtain
a noteworthy accuracy.

In addition, support vector classier (SVC)/ SVM is a machine learning model that
generates splits (hyperplanes) in the data to acquire a better interpret in the new
unknown data. In Fig. 2.3, the hyperplane splits the data optimally into two, and
then new data can be properly classified-it would be blue above and red below. The
ideal split would not be a line in higher dimensions (not 2D), but hyperplanes.

NuSVC classifier. Support Vector Machine with Nu-algorithm classification is
similar to SVC, but a parameter is used to control the number of support vectors.
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Figure 2.3: Support vectors classifier, adopted from [290]; α is the largest margin
and β is an optimal hyperplane.

“The difference of NuSVC classifier with the standard SVC routine is the use and
interpretation of the regularisation parameter Nu. It is an upper bound for the
expected classification error [311].”

In other words, not only NuSVC is similar to SVC but also there is a parameter
to control the number of support vectors in each class. The support vectors are the
points where the hyperplane (split) exists. By defining the hyperplane, the SVC
algorithm works while maximizing the margin or distance between classes [290]
(see Fig. 2.4).

Grid search CV classifier. Grid search cross-validation (CV) is a hyper-parameter
tuning classier or approach that, for each combination of algorithm parameters
defined in a grid, will methodically construct and evaluate a model [275]. Let us
take an example as follow: Assume that a machine learning system X takes
hyper-parameters b1, b2 and b3. We first determine the range of values for each of
the b1, b2 and b3 hyper-parameters in grid searching. For each of the
hyper-parameters, we can think of as a set of values. Now the grid search
technique will build many versions of X with all possible combinations of
hyper-parameter values (b1, b2 and b3) that we first defined. This range of values
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Figure 2.4: NuSVC- support vectors classifier, adopted from [290].

for hyper-parameters is called the grid. Suppose the grid is described as:

• b1 = [1, 2, 9, 4, 5, 6]

• b2 = [16, 23, 33, 44, 5, 65]

• b3 = [115, 115, 130, 105, 155, 185]

It will begin with the [1, 16, 115] combination and end with [6, 65, 185]. It will go
through all the intermediate variations between these two, making a grid search
very costly computationally.

Random forest. A random forest classifier, as its name implies, consists of a large
number of individual decision trees that function as an ensemble. Each individual
tree in the random forest spits out a class prediction and the most-voted class
become the prediction of our model. A simple but powerful one – the wisdom of
crowds – is the fundamental concept behind the random forest. In data science, the
reason why the model of random forest works well is a large number of fairly
uncorrelated models (trees) acting as a committee can surpass any of the individual
models of constituents [310].

AdaBoost classifier. AdaBoost is short for adaptive boosting and it is a sort of
iterative ensemble learning algorithm [82, 94, 208, 275]. We can use the AdaBoost
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algorithm to combine multiple classifiers to increase the performance of weak
classifiers. The fundamental concept behind AdaBoost is to set the weights of
classifiers and train the data sample in each iteration to ensure that difficult
observations are classified accurately.

AdaBoost should meet two conditions:

• The classifier should train on various weighted learning examples
interactively.

• In each iteration, by reducing learning error, it aims to attain an excellent fit
for these instances.

Also, AdaBoost works in the following steps:

1. At first, AdaBoost randomly selects a learning subset.

2. It trains the AdaBoost machine learning system iteratively by choosing the
training set based on the last precise training’s prediction.

3. This applies the higher weight to incorrect classified results so that the high
probability of classification will achieve in the next iteration.

4. It also assigns the weight in each iteration to the qualified classifier according
to the classifier’s accuracy. High weight will be given to more accurate
classifier.

5. This method iterates until the complete training data suits without error or
exceeds the maximum number of estimators defined.

6. To classify, make a vote across all the learning algorithms we have made [275].

XGB classifier. XGBoost (extreme gradient boosting) is a decision-tree-based
ensemble machine learning algorithm that uses a gradient boosting framework to
handle structured data [316]. XGBoost is a scalable tree boosting system that is
widely used by data scientists to achieve an appropriate result and deal with
problems by using a minimal amount of resources. It is presented by a novel
sparsity aware algorithm for handling sparse data.

The XGBoost model works only with numeric features and can lead to
over-fitting easily if hyper-parameters are not properly tuned, so it requires to do
regularisation appropriately. On the other hand, the XGBoost algorithm has some
advantages [51]. For example, it is:

• Extremely fast with parallel computation.
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• Highly scalable end-to-end tree boosting system.

• Introduces a novel sparsity-aware algorithm for parallel tree learning.

• An open-source software library that provides a gradient boosting framework
with different programming languages such as C++, Java, Python, R, Julia,
Perl, and Scala.

Moreover, XGBoost algorithm has an option to penalize the cost function
through L1 and L2 regularisation which helps prevent over-fitting. There are two
common regularisation techniques called L1 and L2 regularisation for supervised
machine learning algorithms. These two techniques can reduce the effects of
over-fitting [174]. Both regularisation techniques are implemented by adding the
following errors to minimize error in the cost function. L1 (Lasso) and L2 (Ridge) are
objectives to minimize [288]:

E1 = αΣw |w| (2.3)

E2 = αΣww
2 (2.4)

Regularization algorithms are attached to the training algorithm by adding
objective [288]. These two algorithms work with adding a weight penalty to the
supervised machine learning model’s training section. Additionally, L1 and L2
regularization algorithms can be utilised to rank the selected features [285, 288].

Transfer Learning for Detecting Glaucoma

In this section, we have a brief discussion about traditional learning that we
discussed in the earlier section versus the transfer learning technique.

We train a new model with a given data set and task or domain in traditional
learning. Therefore, the learned prototype is called isolated in the sense that without
external information it is trained. All the knowledge in the model extract from the
data sets. To solve more complex problems, transfer learning employs accumulated
knowledge from pre-trained models and moves this knowledge to a separate task.

There is a sequential system in the transfer learning technique that can conduct
information from task A to task B. Besides, a multi-task learning algorithm is
identical to a neural network which is able to do multiple tasks simultaneously.
And then, possibly, each of these tasks would improve the other task [312]. We can
utilise transfer learning as a multi-task classification to detect glaucoma in various
fields such as detecting healthy eyes, early, moderate, and severe glaucoma.
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Accordingly, we can apply transfer learning for binary glaucoma detect to classify
glaucoma and healthy eyes, it is likewise our research.

Using an example for the multi-task transfer-learning classifier is the best way
to prove practical concept.Thus, building an autonomous vehicle is a respectable
instance. Besides, the self-driving car would need to detect manifold things
including pedestrians, other vehicles, and stop signs.

The second sample of usage of transfer learning is speech recognition. Likewise,
the “Alexa” is a tool in Amazon. We will not train a system from scratch, however,
but instead, move information from the existing model of speech recognition to our
new model. The result is a new model based on a pre-trained system to trigger word
detection. The third example of usage of learning from multiple tasks is training a
neural network to detect cat then we can use part or all of this knowledge to help to
detect an eye disease within X-ray scans.

Therefore, we can use it for glaucoma image recognition. To train the model, we
have a trained neural network model to detect cat, dog, bird and so on, we can adapt
this model for glaucoma diagnosis. Thus, we have (X,Y ) in that X is an image and
Y is the labelled healthy eye and glaucoma eye. Figure 2.5 shows a schematic view
of transfer learning. We can drop the output layer of the neural network with related
wights, then, create a new set of randomly initialized wights just for the last layer
to detect glaucoma. We also freeze all prior layers and wights. Then, the last one
or two layers need to train with the glaucoma fundus image dataset. Our fundus
dataset is not that big to train more than two or three last layers that we can name
it pre-training. If we have a big annotated glaucoma image dataset, we can also
re-train all parameters on all layers on the rest of the neural network, so we can call
in fine-tuning.

Moreover, there is (1) in Fig. 2.5 on the left as the first section of a pre-trained
network for image binary classification. Output layer (2) in the network needs to be
eliminated. Next (3), we can add a new layer/ layers to train by fundus images to
the pre-trained template the network (4) to cause glaucoma detection structure. As

Figure 2.5: Schematic view of transfer learning for glaucoma detection.
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illustrated, the combination of both networks results in one network including nine
layers.

In addition, transfer learning is applicable and precious in various
image-classification tasks. Transfer learning technique employs a lot of low-level
image features including lines, dots, edges, curves, and pattern of the objects which
come from an exceptionally large image dataset, such as COCO and ImageNet [1].
Transfer learning makes sense when task A and task B have the same input type of
data. It is also possible to retrain the model in a new domain with the same type of
data. If there is a trained model for task A including a huge number of images,
transfer learning technique can employ for task B with a tiny dataset. Thus,
low-level features from task A could be beneficial for learning task B. The goal of
transfer learning is to deal with the lack of data, improve performance, and reduce
the overall time required to train a new model.

Deep Pre-trained Conventional Machine Learning for Glaucoma
Detection

Conventional machine learning models have been used for classification and
segmentation of images in the past few years. The classical pipeline typically
includes a pre-processing step for extracting useful features from unstructured
data such as images (feature engineering) or transforming data from a
high-dimensional space to a lower-dimensional space. The feature-engineering
step is most tedious yet critical for conducting a successful machine-learning task.
Texture-feature extractions based on Fourier transforms, histogram models,
B-spline coefficients, or principal component analysis (PCA) are typical for applied
pre-processing [152, 153]. Based on these features, a glaucoma risk index (GRI) was
introduced and then applied in machine learning [34, 35, 164, 271]. For example,
wavelet-based energy features were extracted from fundus images and used for
glaucoma diagnosis in [71].

There are varieties of supervised and unsupervised conventional classification
models, using strategies such as support vector machines (SVMs) or K-nearest
neighbour (KNN) classifiers. Those are explained briefly above as selected classical
models [133, 291]. Naı́ve-Bayes is a widely used, yet effective, conventional
classifier. Naı́ve-Bayes is considered a statistical method which incorporates the
Bayes rule in predicting the class with the highest likelihood.

After extracting appropriate features, different machine-learning classifiers can
be applied. We sketch major conventional machine-learning classifiers that have
been used for glaucoma diagnosis.

In this section, we also outline the CNN architecture and deep learning
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frameworks; different variants of those can apply for glaucoma detection.

Deep convolutional neural networks. CNNs have been developed especially in the
context of image classification. A major disadvantage of CNNs is that they require
for training a huge amount of data as input with respect to scale, translation or
rotation, for supporting feature learning or possible generalisations [249].

Deep learning algorithms are composed of different models in comparison to
machine-learning algorithms. This is due to the flexibility that neural networks
provide. One can create any complicated structure with deep learning algorithms.
Ultramodern architecture can employ to classify images accurately, which have
been proven to be successful based on different reviews.

State-of-the-art CNN architectures are characterised by a minor difference that
separates them from prevalent models and takes them one step further in solving
problems. For instance, in the “ImageNet” (a large collection of annotated images on
the web that is presented in “ImageSteam” for solving computer vision problems)
challenge, CNNs successfully solve complex problems of identifying object classes
in thousands of visually recorded different classes [64].

These CNN architectures fall into the category of “deep models” which work
better in comparison to their shallow-model counterparts.

CNN Structures. We look at those CNN architectures in some detail for medical
image classification and object detection. As mentioned before, CNNs are invariant
to transformations which is one of the essential properties of CNNs, especially for
computer-vision problems in image classification and segmentation. This feature
allows one to extract an object’s identity or category independent of the specifics of
the visual input, such as relative positions or directions of the camera and the object.
This enables a network to effectively recognise a given object in cases where actual
pixel values within the object’s region significantly differ [249]. Unlike conventional
machine learning, CNNs can automatically extract features from unstructured data
such as images. In the basic layer, these are low-level features such as edges in
the image, while in subsequent layers they extract the higher-level features such as
disease signs. Features at different levels are calculated by convolving filters with
images at different locations.

Let G(n−1) and G(n) denote the input and output for the n-th layer of a CNN,
respectively, both composed of a finite number of feature maps. By using bold letters,
we identify matrices. Let G(0) be the 2D input image, and G(N) be the output of
layer N , the final layer. Also, M (n)

i ×M (n)
i and M (n)

o ×M (n)
o are the size of the input

and the output, respectively, of the n-th layer. Let P (n)
i and P

(n)
o be the number of

input and output maps, respectively, for the n-th layer. The input to the n-th layer
is the output of the (n− 1)-th layer, that means P (n)

i = P
(n−1)
o and M (n)

i = M
(n−1)
o .
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Let G(n)
k be the k-th output-feature-map of layer n. Let w(n)

ik be the kernel linking
the i-th input map to the k-th output map, ? denotes the convolution, and b(n)k is the
bias element for the k-th output-feature-map of the n-th layer. We obtain the output
of the n-th convolutional layer as follows:

G
(n)
k = f

(∑
i

G
(n−1)
i ?w

(n)
ik + b

(n)
k I

)
(2.5)

where 0 ≤ i ≤ Pn−1
i , 0 ≤ k ≤ Pn−1

o , and I is the unit matrix of size M (n)
o ×M (n)

o ;
see [52, 154].

Although the current CNN models work very well for various applications,
there is not yet a mature theory of CNNs. More efforts are required to investigate
the fundamental principles of CNNs. Meanwhile, it is also worth exploring how to
leverage the natural visual perception mechanism to progress the design of CNNs
further [102]. CNN architectures are applied for classification of glaucomatous or
non-glaucomatous fundus images, typically using transfer learning with weights
trained on ImageNet.

CNN Layers. Convolutional networks are often now at the core of
state-of-the-art computer-vision solutions, for a wide variety of tasks. Since 2014,
very deep convolutional networks started to define the detection and recognition
field, yielding substantial gains in various benchmark tests. Although the
increased model size and computational cost tend to translate to immediate quality
gains for many tasks (assuming that sufficient labelled data is provided for the
training), computational efficiency and low parameter count are still the enabling
factors for various use cases such as mobile vision or big-data scenarios.

Generally, there are five different layers in CNN models which include input,
convolutional, pooling, fully connected and output layers:

• The convolutional layer computes the output at vertices of the network (also
called neurons) that are connected to local regions in the input layer, each
computing a local convolution (also called dot product) between specified
weights at a neuron and a small region of the corresponding size to the
weights [309].

• The pooling layer is a building block of a CNN. Its function is to
progressively reduce the spatial size of the representation to reduce the
number of parameters and the computation in the network. The pooling
layer operates on each feature map independently. Common approaches
used in pooling are max-pooling, average-pooling, and sum-pooling.
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• The fully connected layers of the network address transfer learning, it starts
with “flattening” (i.e. mapping the 2D data array into a linear vector) and
ends with the “output layer”. Different kinds of activation functions are used
in the fully-connected layer such as the softmax function (to classify an object
with probabilistic values between 0 and 1 for multi-object classification) or the
relu function for binary classification in a final step of the fully connected layer.

Deep Learning Algorithms.
Deep learning algorithms are a subclass of machine learning algorithms that use

a cascade of multiple layers of non-linear processing units for feature extraction and
transformation. Each successive layer uses the output from the previous layer as
input [65].

In a clinical context, deep learning can already be performed desktop-based or
even just on a mobile platform [298]. Some frameworks in deep learning, their
advantages and disadvantages, are summarised in Table 2.1; all these deep
learning frameworks are the open-source [298].

As an example, the Spark MLlib framework [165] is valuable for large-scale
data, but Scikit-learn is more efficient for medium or small-size datasets. One of the
strengths of MLlib is the ability to be developed in Python, R, Java, and Scala.
Bender [278], Quantized-CNN [257], and Apple’s Core ML [276] were offered for
machine learning on the iOS operating system and allow iPhone users to run
machine learning algorithms from cloud GPU, although they are still mainly used
for running pre-trained data. Tensorflow-lite [304] was designed as a software
platform for machine learning on IOT internet of things and the Android operating
system.

Selected Deep Transfer-learning Architectures. There are deep learning models for
segmentation, classification, or visualisation. We list and briefly describe deep
learning models that are appropriate for glaucoma detection.

AlexNet [143]. AlexNet was introduced in 2012. It is available as a pre-trained
model in Matlab and Python. It is the first deep learning architecture introduced by
one of the early developers of deep learning; the model was trained on ImageNet
data set at that time (in 2010), which contains over 15 million annotated images from
a total of over a thousand categories.

AlexNet has eight layers in total; five layers are convolutional, and three layers
are fully-connected. Dropout and data augmentation techniques are applied which
use image translations. The activation function is “Relu”, to decrease the training
time. A technique that randomly selects neurons for being ignored during the
training of the neural network is called dropout, and data augmentation is a



2.5. Machine Learning for Glaucoma Diagnosis 27

Table 2.1: Desktop and mobile platform-based deep learning frameworks and
libraries.

Framework/ library Language Processor Benefits Drawbacks

TensorFlow [2]
Python,
C++, CUDA

CPUs/ GPUs/
TPUs

High performance library,
operates at large scale datasets,
really compatible with industry

Only Nvidia GPUs are supported

Keras [281] Python CPUs/GPUs

Fast prototyping and easily extensible
library, works seamlessly
with CNTK, Theano, TensorFlow
and Auto-Keras [121];
easily accessible deep learning tools

Can not be used as an independent
framework, not good enough
for data processing

Torch / Pytorch
[282, 296]

LuaJIT, Python
C / CUDA

CPUs/GPUs
Very flexible library,
high level of speed and efficiency,
lots of pre-trained models available

Unclear documentation,
lack of plug-and-play
code for immediate use, based on
Lua that is not so popular

CNTK [293] C++ CPUs/GPUs
easily realize framework,
combine popular deep learning model

Available only on Windows
and Linux

Theano [11] Python CPUs/GPUs Efficient framework for numerical tasks
Needs to be used with other
frameworks to gain an efficient
deep learning architecture

Caffe [122] C++ CPUs/GPUs
This framework is available
for Python and MATLAB,
training of models without writing code

Not great with new architectures

Accord. NET [300] C# CPUs/GPUs
Very well-documented framework,
good quality in visualization

Slow compared to TensorFlow

Scikit-learn [194] Python CPUs

Really efficacious for statistical
modelling techniques such as
classification and regression,
clustering on medium-scale data
based on supervised and
unsupervised learning algorithms,
this library is efficient
for data mining

Not efficient with GPU

MLPack [61] C++ CPUs/GPUs
Very scalable library,
C++ and Python bindings available

Do not have the best documentation

technique to generate additional data without imposing additional labelling costs.

ZF-Net [269]. ZF–Net model was introduced in 2014 and achieved
approximately 89% accuracy on ImageNet. It is more fine-tuned than AlexNet.
ZF-Net provides a visualisation of filters and weights, therefore, it generates more
interpretable outcomes. Slight modifications are made to the AlexNet model as a
novel way for visualising feature maps.

VGG-Net [223]. VGG-Net was introduced in 2014 and is available in two
different versions: VGG16 and VGG19. Both are pre-trained on ImageNet and
available in Matlab and Python. This is an appropriate architecture to approach a
specific task. The use of only 3 × 3 sized filters is quite different from AlexNet’s
11 × 11 filters in the first layer. One of the benefits is a decrease in the number of
parameters which is more appropriate for problems with a relatively small number
of samples.
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GoogLeNet [234]. GoogLeNet was introduced in 2015 and is provided in Matlab
as a pre-trained model on ImageNet. There are nine inception modules [234] in the
whole architecture, with over 22 layers in total without any fully connected layers.
Average-pool is used to go from a 7 volume to a 1 × 1 × 1024 volume, and twelve
times fewer parameters than in AlexNet are used. During testing, multiple crops of
the same image are created, fed into the network, and the softmax probabilities are
averaged to provide a final solution. It uses concepts from R-CNN for their detection
model. It is one of the first models that introduced the idea that CNN layers do not
always have to be stacked up sequentially.

Microsoft ResNet [105]. ResNet50 was introduced in 2015 and is available as a
pre-trained model (on ImageNet) in Keras. Other variations such as Resnet50 and
Resnet101 are available in Matlab. It has a residual block and 152 layers, and it
is eight times deeper than the VGG architecture. After only the first two layers, the
spatial size gets compressed from an input volume of 224×224 into a 56×56 volume.
A naı́ve increase [105] of layers in plain nets results in higher training and testing
errors. The error rate was 3.6% on ImageNet dataset.

Generative adversarial networks (GAN) [98]. GAN was introduced in 2014. GANs
are new types of generative models, which correspond to unsupervised learning
and are used to create images. They can be used as feature extractors in a CNN
model. GANs can generate artificial images that look rather natural. GANs can
also be useful as a part of CNNs for data augmentation. They represent an entirely
different kind of neural network architecture in which a neural network is used to
generate an entirely new image, not present in the training dataset, but realistic
enough to be in the dataset.

You only look once (YOLO) [205] YOLO was introduced in 2016. This is the current
state-of-the-art model built on deep learning for solving object detection problems
in real-time situations. All processes are done in parallel, so it can run in real-time,
processing up to forty images in a second by YOLO. Although it gives reduced
performance compared to its R-CNN counterpart for object detection, it still has the
advantage of being real-time to be viable for use in day-to-day problems.

SqueezeNet [145]. SqueezNet, introduced in 2016, is available in Matlab to classify
objects. It is a highly successful model with a small usage space (4.9 MB) compared
to Inception which occupies about 100 MB. This drastic change is brought up by a
specialised structure called the fire module.

Inception [235]. InceptionV3, introduced in 2016, is available as a pre-trained
model in both Keras and Matlab. RMSProp Optimizer, factorised 7× 7 convolution,
and batchNorm in auxiliary classifiers are used for the InceptionV3 model. It uses
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Table 2.2: Selected publications on convolutional machine-learning and
transfer-learning techniques for glaucoma detection.

First author/ year Methods/ features Activation Function in Classifier Dataset name/ Number of images Performance(%)

Mohammad 2019 [178]

Deep-MNN, Deep-CNN, VGG19

Inception-ResNet-V2, Xception

NasNet-large (best performance)

Softmax
Public: 455 (Rim-one V2)

ACC: 98.16
SE: 98.32
SP: 98.48
PP: 98.82

Mohammad 2018 [181]
VGG19

Inception-ResNet-V2
Softmax

Healthy private–UCLA dataset: 277

Glaucoma private–UCLA dataset: 170

Retest public: 30 (HRF)

ACC: 92.13
SE: 92.39
SP: 91.26
PP: 94.95

Christopher 2018 [55]

VGG16

InceptionV3

ResNet50

Softmax

Healthy private: 9189

Glaucoma private: 5633

ROC: 0.83 (Native VGG16)
ROC: 0.89 (Transfer learning VGG16)

ROC:0.83 (Native InceptionV3)
ROC: 0.90 (Transfer learning InceptionV3)

ROC: 0.89 (Native ResNet50)
ROC: 0.91 (Transfer learning ResNet50)

Al-Bander 2018 [7] DenseNet -

Training private: 650 (Orega)

Testing public:
110 (DRIONS-DB),
101 (Drishti-GS),

99 (ONHSD),
159 (RIM-ONE).

OD segmentation
DC: 0.9653
JC: 0.9334

ACC: 0.9989
SE: 0.9609
SP: 0.9995

optic cup segmentation
DC: 0.8659
JC: 0.7688

ACC: 0.9985
SE: 0.9195

Raghavendra 2018 [200] CNN-18 LDA Private: 1426
ACC: 98.13

SE: 98.00
SP: 98.30
PP: 98.79

Orlando 2017 [185]
OverFeat [216]

VGG-S
- Public: 101 (Drishti-GS)

Without vessels
AUC= 0.7212
AUC= 0.6655

With vessels
AUC= 0.7626
AUC= 0.7180

Sevastopolsky 2017 [217] U-Net -

Public: 110 (Drions-DB)

Public: 159 (Rim-one V3)

Public: 101 (Drishti-GS)

IU = 0.89, DC = 0.94 (OD)

IU = 0.89, DC = 0.95 (OD)
IU = 0.69, DC = 0.82 (OC)

IU = 0.75, DC = 0.85 (OC)

Chen 2015 [52] CNN -
Private: 1676

(Orega:650 and SCES: 1026)
AUC: 0.887

Chen 2015 [53] CNN Softmax
Private: 1676
(Orega:650
SCES: 1026)

ACC: 0.838
ACC: 0.898

added computations as efficiently as possible by suitably factorising convolutions
and aggressive regularisation.

Xception [59]. Xception was introduced in 2016 and is available as a pre-trained
model in Keras. It uses an intermediate step between regular convolution and a
depth-wise separable convolution operation (a depth-wise convolution followed
by a point-wise convolution). A depth-wise separable convolution can be
understood as an Inception module with a maximally large number of towers. This
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observation led to the proposal of a novel deep convolutional neural network
architecture inspired by Inception, where Inception modules have been replaced by
depth-wise separable convolutions. It is slightly improved compared to Inception
V3 on ImageNet and has the same number of parameters as Inception V3. The
performance gains are not due to increased capacity but rather to more efficient use
of model parameters.

ResNeXt [259]. Introduced in 2016, ResNetXt is one of the top-level techniques
for image classification. The model name, ResNeXt, contains Next. It means the next
dimension, on top of the ResNet. This next dimension is called the“cardinality”
dimension. ResNeXt model, in comparison with ResNet produces a 3.03% top-5
error rate, which is a large relative improvement of about 15%.

InceptionResNet [233]. InceptionResNet V2 was introduced in 2017 and is
available as a pre-trained model in Keras and Matlab. It provides clear empirical
evidence that training with residual connections accelerates the training of
Inception-V3 networks significantly, in comparison with the previous version of an
Inception-V3 network. Proper activation scaling stabilises the training of extensive
residual Inception networks.

MobileNet [113]. MobileNet was introduced in 2017 and is accessible as a
pre-trained model in Keras for image classification. It is a model for mobile and
embedded vision applications and is based on a streamlined architecture that uses
depth-wise separable convolutions to build light weight deep neural networks.

DenseNet [114]. DenseNet was introduced in 2017 and is available as a
pre-trained model in Keras. It has been used for glaucoma diagnosis [7]. Deeper
convolutional networks are used in this model to provide more accurate and
efficient training by containing shorter connections between layers close to the
input and those close to the output.

NASNet [274]. NASNet was introduced in 2017 and is available as a pre-trained
model in Keras for image classification. It is a method to learn the model
architectures directly on the dataset of interest. As this approach is expensive when
the dataset is large, we propose to search for an architectural building block on a
small dataset and then transfer the block to a larger dataset. The main contribution
of this work is the design of a new search space, and finding the best convolutional
architecture, then applying a defined cell to the ImageNet dataset by stacking
together more copies of this cell, each with their parameters to design a
convolutional architecture. Also, it introduces a new regularisation technique
called Scheduled-Drop-Path [274] that significantly improves generalisation. A large
version of NASNet also achieves 82.5% accuracy, which is 2.2% better than
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equivalently-sized, state-of-the-art models, and the image features learned from
ImageNet classification are generically useful and can be transferred to other
computer vision problems.

Some of the listed architectures can be used for transfer learning or native modes
such as NASNetLarge, InceptionResNetV2, or ResNet50.

The considerable boost of deep learning in recent years is also due to the progress
in computing hardware, from central processing units (CPUs) via tensor processing
units (TPUs) to graphics processing units (GPUs), and to the progress in the availability
of extensive labelled (i.e. ground truth) image datasets. GPU-based training allowed
researchers a significant acceleration in the development of deep learning models,
such as Google’s Colab.

Discussion and Evaluation of Deep CNNs and Traditional
classifiers for Glaucoma Detection

Discussion of Deep CNNs for Glaucoma Detection

We summarised selected papers using CNN for glaucoma detection in Table 2.2. In
this table, - indicates that a result is not reported. LDA stands for linear discriminant

Table 2.3: Selected publications on traditional machine-learning techniques for
glaucoma (progression*) detection with the thickness of the retina.

First author/ year
Methods

(best)
Data features in Classifiers

Private dataset
(Number of images)

Performance

Mohammad 2019 [179]
Ensemble 26 classifiers

(hybrid model)
RNFL, GCL and GCL++

H-eyes: 107
G-eyes: 68
Patients: 87

F1: 0.82
ACC: 0.82

Mohammad 2019 [180]
Five classifiers individually

(AdaBoost)
RNFL

H-eyes: 154
G-eyes: 97

SE: 0.92
SP: 0.98

AUC: 0.97

Stefan 2019 [160]

Eight classifiers
individually

(logistic regression)

(CNN)

RNFL and GCIPL

OCT images

H-eyes: 137
G-eyes: 432

AUC:0.89

AUC:0.94

Seong 2017 [134]
Four classifiers

individually
(random forest)

RNFL and VF
H-eyes: 202
G-eyes: 297

ACC: 0.98
SE: 0.983
SP: 0.975
AUC: 0.979

Siamak* 2014 [262]
Seven classifiers individually

(random forest)
RNFL and SAP

G-eyes: 73
Patients: 39

SE: 0.82
SP: 0.80
ROC: 0.88
F1: 0.80
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analysis. Weights in a native model are randomly initialised, and training was
performed using only the fundus ONH data described here. Weights for transfer
learning are initialised based on pre-training on a general image dataset
(ImageNet), except for the final, fully connected layers which were randomly
initialised. Table 2.2 shows the datasets that we used in my research are public and
private datasets. We got the best result with the proposed model based on the
NasNet-large pre-trained model. Also, we need to mention our research in
comparison with other research got better performance with approximately 98%.
Even though we need to mention the datasets are the same as other research, we
achieved a sustainable and conceivable result to detect glaucoma which was
approved by ophthalmologists.

Discussion of Traditional Classifiers with RNFL for Glaucoma Detection

Table 2.3 has selected publications on traditional machine learning techniques for
glaucoma detection with the thickness of the retina in two different types of data;
text (csv file) and OCT images. Although all datasets on the retinal nerve fibre layer
are private, we can describe that usage of adding GCL and GCL++ to RNFL data
can not help to classify with high performance in comparison with just RNFL data.
Also, all studies in this area try to add more data to RNFL that show us RNFL data is
really helpful to classify glaucoma versus healthy. Moreover, as we can see in both
of our studies, we achieved a convincible result, and the classifier’s performance
were dependent on the complexity of the data.

Evaluation of Deep CNNs and Traditional classifiers for Glaucoma Detection

The listed papers use different metrics to evaluate the quality of learning. The
positive predictive (PP) value or precision, the area under the receiver operating
characteristic curve (AUC), and the intersection over union (IU or IOU) are more
specific measures. Generic measures, as widely used in classification theory, are the
dice coefficient (DC), the Jaccard coefficient (JC), accuracy (ACC), sensitivity (SE),
specificity (SP), true positive or true negative (TP or TN), false positive or false negative
(FP or FN) can be used [7] to evaluate new methods in glaucoma detection.
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We state a few common definitions:

DC =
2 · TP

2 · TP + FP + FN
(2.6)

JC =
TP

TP + FP + FN
(2.7)

ACC =
TP + TN

TP + TN + FP + FN
(2.8)

SE =
TP

TP + FN
(2.9)

SP =
TN

TN + FP
(2.10)

PP =
TP

TP + FP
(2.11)

F1 =
2TP

2TP + FP + FN
(2.12)

AUC =
1 + TP + TN

2
(2.13)

The goal of using AUC in data classification is to deal with situations where one
has unbalanced samples from different classes to avoid over-fitting to one class [31].
In other words, AUC provides a single metric of a classifier’s performance for the
evaluation of whether which model has gotten a better result than the average [94].
The F1 score represents the harmonic mean of precision and recall as in Eq. (2.12).
The value of the F1-score is ranged from zero to one, and high values of F1-score
specify high classification performance [229, 239]. There are many other evaluation
measures such as mean squared error (MSE) and root-mean-square error (RMSE). The
confusion matrix can also be useful in interpreting the quality of learning. These
measures are typically evaluated using 10-fold cross-validation.

Challenges and Limitations

We discuss some of the common challenges of using machine learning libraries to
solve glaucoma diagnosis and prognosis problems.
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Challenges of Frameworks and Libraries.
TensorFlow is an open-source software library that is broadly utilised as a back-end
for implementing different machine learning architectures. One of the TensorFlow
constraints is time optimization. Although TensorFlow has been boosted with
quantum computing algorithms recently [42], it still lies in constructing a new
architecture because it is comparatively slow and should be streamlined. As a
result, it is challenging to develop sophisticated deep architectures in TensorFlow
(e.g., architectures that change their structure dynamically). For instance,
developing TreeLSTM is not a trivial task in TensorFlow [201]. Other limitations
related to deep learning frameworks and libraries include:

• Lack of general intelligence and multiple domain knowledge integrations. The
intelligence of human civilisation evolved due to connectivity between people
and the exchange of knowledge while current deep learning networks lack
exchanging knowledge. Moreover, deep learning models fed with inaccurate
or incomplete data will produce inaccurate results that make this process more
complicated.

• Unable to learn from relatively small sets of examples. A framework
intelligence highly depends on the training datasets that have been used, and
in most applications, only relatively small sets of samples exist (as it is
typically the case for glaucoma studies).

• Less powerful beyond classification problems. Most current deep learning
algorithms have focused on classification tasks. They are generally less
powerful for higher-level intelligence tasks or long-term planning. They
(still) lack creativity or imagination.

Deep learning models suffer from global generalisation. While humans can
predict different potential problems and their causes, and provide a solution to
each problem, current deep learning models are unable to solve any problem
besides what they have learned.

Another limitation of deep learning is the shortage of understanding about
exact distinguished rules within the input data. On the basis of training and
validation phases and input data, deep learning algorithms can only estimate the
output, without guarantee of its correctness. These models produce only
approximated outputs [297].

As biological neurons are (much) more complex than any of the artificial
variants, the brain research continues toward a better understanding of the
function of biological neurons. Any success in this area can lead to more intelligent
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deep learning models. For instance, [191] indicates that spiking neural networks
may constitute the next generation of deep learning models.

In summary, the impact of deep learning is certainly limited by the currently
used models, and almost all of its successful applications use supervised learning
with human-annotated data. Deep learning cannot deal with complex decisions
beyond any previous training. However, Deep Q learning algorithms represent a
“small step” towards that goal. Q learning is a model-free reinforcement learning
algorithm [253] that seeks to locate the best action to take given the current state.
It does not require a model of the environment, and it can confront issues with
stochastic transitions and rewards, without requiring adaptations. Deep Q learning
is a combination of deep learning and reinforcement learning [306].

Moreover, reinforcement learning is the problem faced by an agent that learns
behaviour through trial-and-error interactions with a dynamic environment. It is
an area of machine learning that focuses on training agents. Reinforcement
learning algorithms take certain actions at certain states from within an
environment to maximize rewards. This learning behaviour accrues via
trial-and-error interactions with a dynamic environment [129]

Limitations of Datasets.
There are many difficulties involved in glaucoma data collection for developing
deep learning models. One needs to comply with ethical considerations,
particularly in the biomedical area. While medical research is subject to ethical
standards that promote and ensure respect for all human subjects to protect their
rights, it creates more challenges towards dataset generation for deep learning
problems. Moreover, clearing and annotating biomedical data, which are tedious
tasks, adds other challenging dimensionalities to the deep learning problems.

Other Aspects.
Another major fundamental limitation of glaucoma detection is the lack of
annotated multi-modal data and fusion models to develop more robust systems,
with high-accuracy models.

2.6 Critical Analysis

There are some diagnosis parameters reported for glaucoma detection [239].
Fundus images from healthy eyes have normal discs, and the CDR value is smaller
in healthy eyes compared to eyes with moderate or advanced stages of glaucoma.
CDR increases gradually with glaucoma progression, becoming close to one in
advanced glaucoma cases (see Fig. 2.2). The area of the neuroretinal rim often
decreases with the progression of the disease. Inequalities (2.14) specify the
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relationship for neuroretinal rims for healthy eyes, and for eyes with moderate or
advanced stages of glaucoma. This equation can be well adapted for glaucoma
prognosis:

0 ≤ CDRHealthy < CDRModerate < CDRAdvanced ≤ 1 (2.14)

In addition to (2.14), one can supplement the analysis using image processing.
For instance, we developed an image clustering method to describe the image
contents using the improved chaotic imperialist competitive algorithm (ICICA) [175]
and colour conversion techniques. This approach can segment retina images to
support the extraction of disc and cup parameters for glaucoma diagnosis and
prognosis beyond deep learning models.

Glaucoma Detection Challenges

Conventional machine learning problems deal mainly at first with feature
extraction and engineering, and secondly with machine learning algorithms.
Considering the tedious static feature extraction task, deep learning methods could
play an important role in glaucoma detection because they do not require feature
engineering prior to learning.

The first major challenge for developing a generalisable deep learning
framework is a large well-annotated dataset. Collecting, annotating, cleaning, and
pre-processing fundus datasets poses a significant challenge. To keep up with
extensive well-annotated ImageNet datasets, currently available to computer
scientists, the glaucoma research community must take similar steps.

The second challenge will be selecting an appropriate back-end for
implementation and an appropriate deep learning architecture. The appropriate
deep learning architecture is highly dependent on the number and quality of the
fundus images. It is recommended to use architectures with a reduced number of
parameters to optimize while working with small datasets. It is also recommended
to use transfer learning (models initially trained on the large ImageNet dataset)
techniques on deep learning algorithms to mitigate small sample size and
potentially avoid over-fitting and achieving higher accuracy.

We have investigated several deep learning architectures and datasets to identify
glaucoma from fundus images. We observed that image concatenation typically
improves the outcome. We also observed that the NASNet architecture, developed
in TensorFlow and Python, is appropriate for glaucoma detection because it does
not require large datasets and generates relatively high accuracy.

For future work, we propose a combination of pre-trained deep learning
architectures with unsupervised learning in a single (unified) framework to further
improve the accuracy of glaucoma detection.
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2.7 Summary

Original methods of medical image classifications deal with extracting appropriate
features based on physicians’ advice or using feature extraction algorithms, which
is often time-consuming and an error-prone process. We summarised the result of
this literature review as follows;

• Usage of transfer learning techniques for deep learning algorithms can
achieve an appropriate accuracy and produce a faster outcome while coping
with small size datasets.

• The most recent pre-trained CNN architectures for glaucoma detection were
reviewed. Moreover, some frameworks in deep learning, their advantages and
disadvantages were investigated.

• Selected papers using CNN for glaucoma detection as well as the impact of
deep learning and limitations of currently used models were discussed. It
was found that several successful applications of deep learning use supervised
learning with human-annotated data.

We also categorised fundus images into two (healthy and glaucoma) groups. It
was found that using current algorithms, we were able to achieve improved image
classification results.

For detecting glaucoma, patients should follow the advice of the hospital’s
ophthalmology department or an ophthalmic clinic. But, by remotely monitoring
the retina fundus and patient clinical data, an AI system might be able to detect the
glaucoma disease automatically with high accuracy.

As the first step for such an AI approach, it is necessary to collect fundus
images with high accuracy and reliability. Secondly, the extraction of features from
the collected images is a major step, which requires accurate identification of
glaucoma by ophthalmologists.

We expect that the use of transfer learning techniques for deep learning
algorithms achieve high accuracy results, and the fastest and most qualitative ones
are summarised in this chapter.

Overall, pre-processing and normalisation on fundus data help to promote the
deep learning process. Retinal images coming from mass screening may have
various image resolutions, illumination effects, or contrast. It will be important to
resize input images and apply some filters on different channels and different
colour spaces to enhance the reliability of results.

In some cases, we faced data constraints in the area of identifying a disease, so
we had a look at different architectures and frameworks. One of the most suitable
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ones, which does not require huge quantities of data, is NASNet. It is a powerful
neural network based on TensorFlow in Python that achieves state-of-the-art
performance for mobile platforms on many datasets. We also suppose that a
feature concatenation approach might be very promising and may also enhance
other areas of machine learning.

We hope that this survey not only provides a better understanding of deep
CNN architectures but also facilitates future research activities and application
developments in the field of traditional classifier and transfer learning for
glaucoma detection.



Chapter 3

Data Collection

We present all fundus public datasets and two private datasets which utilised to our
research. Data collocating is one of the most challenging parts in a medical study, in
particular to classify eye diseases. It is also costly and time-consuming. One of the
difficulties in my research was lack of data. Besides, getting ethics approval in New Zealand
for medical research is tough and takes a long time. In this chapter, we present multi-modal
data which ophthalmologists use to diagnosis glaucoma.

3.1 Different Data Modality

There are three common data types for glaucoma detection presented in this section:
fundus image, stereo image, and OCT image including retina thickness.

Fundus Image

Fundus photography is an image of the eye-bottom. Fundus imaging is defined as
the process whereby reflected light is used to obtain a two-dimensional (2D)
representation of the three-dimensional (3D), semitransparent, retinal tissues
projected on to the imaging plane [209]. Any process that results in a 2D image
where the image intensities represent the amount of a reflected quantity of light is
fundus imaging. Consequently, the purpose of optical coherence tomography (OCT)
imaging (to be discussed below) is different from fundus imaging (see Fig. 3.1).

Fundus photographs are routinely ordered for a wide variety of ophthalmic
conditions. For instance, AMD, diabetic retinopathy and glaucoma can affect the
macula, fovea, blood vessels and the optic nerve head over time.
Ophthalmologists’ studies use serial photographs to detect subtle changes in the
optic nerve and then recommend the proper therapy [19].
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(a) Fundus photographs of the left eye (b) Fundus photographs of the right eye

Figure 3.1: Fundus photographs of both eyes of a glaucoma patient in the private
SuperClinic dataset.

Stereo Image

In stereo images, the optical systems are kept parallel to each other and
perpendicular to the plane of the subject. This introduces the least amount of
distortion in the image [244]. The stereo fundus image is used to inspect anomalies
associated with diseases that affect the eye, and to monitor their progression to
identify glaucoma (see Fig. 3.2). Figure 3.2a shows a stereo image pair of healthy
optic discs, and Fig. 3.2b shows optic discs with glaucomatous optic neuropathy.
Even though, in this case, the glaucoma background is darker than the healthy
fundus image, the rim is narrow, and one can see some changes on the optic disc
area because of high IOP.

There is a potential to detect the depth with and length of changes on rim area

(a) Stereo fundus images of a healthy (b) Stereo fundus images of a glaucoma

Figure 3.2: Stereo fundus images; courtesy of [88, 292].
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on fundus stereo images by stereo matching technique. Stereo matching is the
search for corresponding pixels in a pair of stereo images, and it is an example of
the labelling approach [138].

The OCT Image and Retinal Thickness

Generally, glaucoma has particular symptoms which aid ophthalmologists to detect
it in the early stages: the retina may get thinner gradually on the ONH area because
of ganglion cell death, and the rim area may get slimmer.

OCT Imaging

OCT imaging is a non-invasive imaging test which uses light beams to take
cross-section pictures of the retina. It is also a sort of optic disc photography in
high resolution. A cross-sectional image is constructed by scanning the light waves
in the transitive direction on the tissue [85].

Thickness measurements can be extracted with a blue circle at the centre of the
ONH and a diameter of 3.4 mm that covers the optic disc area (see Fig. 3.3 – A and
B) [91]. With OCT, ophthalmologists can see each of the retina’s distinctive layers.
This allows specialists to map and measure their thickness and aids in diagnosis.
They also provide treatment guidance for glaucoma and other diseases of the retina
such as age-related macular degeneration (AMD) and diabetic eye disease [295].

The Retina’s Thickness

The retinal nerve fibre layer (RNFL) or nerve fibre layer, stratum opticum, is formed
by the expansion of the fibres of the optic nerve; it is thickest near the optic disc,
gradually diminishing toward the ora Serrata (see Fig. 3.3 – C and D).

Attributes of the retina’s thickness on the collected dataset include unique
patient ID, gender, age, left or right eye, scan size 6 × 6 mm, scan resolution
512× 256 pixel, fixation is disc, OCT focus mode is vitreous, contents are as follow;
RNFL, GCL+ (ganglion cell layer + IPL (inner nuclear layer)), and GCL++
(RNFL+GCL+IPL) with 1024 thickness features. These three layers have been
affected by glaucoma disease and the most changes have been accrued on these
three layers (RNFL, GCL and IPL) (see Fig. 3.4).
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3.2 Publicly Available Glaucoma-related Fundus
Datasets

We list seven annotated datasets that offer fundus images with diagnostic labels
which are publicly available for machine learning experiments to identify glaucoma
(see Table 3.1). Public image databases can also be used as a benchmark to improve
the quality of the proposed model and the patients’ experience; however, the model
includes traditional and deep machine learning. A brief explanation is presented as
follows:

RIM-ONE. This database includes fundus photographs of ONHs with two
diagnostic labels: healthy and glaucoma [88]. This dataset is exclusively focused on
ONH segmentation. It was released in three different online versions [195]. It has a
Matlab interactive tool in all three versions for optic disc and optic cup
detection [89]. It can also illustrate the accurate gold standard, the ONH, by
professionals in this field. Three hospitals, Hospital Clı̀nico San Carlos, Hospital
Universitario Miguel Servet, and Hospital Universitario de Canarias, contributed

Figure 3.3: Schematic of OCT images for both eyes [115].
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Figure 3.4: Example of an OCT with manually reviewed and corrected segmentation
into the following retinal layers: retinal nerve fibre layer (RNFL), ganglion cell layer
(GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer
(OPL) and outer nuclear layer (ONL) [184].

to the development of this database.
The first version (V1) has five different diagnostic labels as identified by

glaucoma experts [292]: A total of 118 fundus images from healthy (H) eyes, 12
images from eyes with early glaucoma (EG), 14 images from eyes with moderate
glaucoma (MG), 14 images from eyes with severe glaucoma (SG), and 11 images from
eyes with ocular hypertension (OHT).

The second version (V2) includes two subsets. All images are cropped to
include only the ONH. This version has three diagnostic labels; healthy,
glaucoma-suspect, and glaucoma. Glaucoma suspects consist of 200 images and
255 images from healthy eyes. The resolution of the images in this dataset are not
consistent. This dataset is classified into two subsets: glaucoma and glaucoma
suspects with a total of 200 images, and a healthy subset including 255 images at
different resolutions (see Fig. 3.5).

The third version (V3) was released in 2015 with 159 stereo images of size
(2, 144 × 1, 424) that consists of 85 healthy and 74 glaucoma stereo images. It
includes five manual reference segmentations and a gold standard for each
image [175]. The large number of expert segmentations enable the creation of solid
gold standards and the development of highly accurate segmentation
algorithms [48]. It includes images from 85 healthy eyes as well as 74 images from
eyes with glaucoma at various stages. These fundus images have been captured in
three hospitals in Spain. Compiling images from different medical sources
guarantees acquisition of a representative and heterogeneous image set.

HRF. This dataset includes 15 high-resolution fundus images from healthy eyes,
15 from eyes with diabetic retinopathy, and 15 from eyes with glaucoma [43]. The
dataset is provided by the “Pattern Recognition Lab” (CS5) of the “Department of
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Ophthalmology”, Friedrich-Alexander University Erlangen-Nuremberg
(Germany), and the Brno University of Technology. The images are of size
(3, 504× 2, 336) pixels.

GlaucomaDB. This dataset includes 120 eyes with glaucoma with different sizes
(e.g., (200 × 300) [133]. The original dataset includes 462 images captured using a
Topcon TRC 50EX camera with a resolution of 1, 504× 1, 000. The publicly available
subset includes only 120 annotated images from eyes with glaucoma.

DRION-DB. The digital retinal images for optic-nerve segmentation (DRION)
database [48] was originally created by a joint collaboration of three Spanish
organisations in 2008. It has 110 retinal images of size 600 × 400 pixels that were
annotated by two glaucoma experts with 36 landmarks. Although labels are not
available for types of eye diseases, 23.1% of the images are from eyes with chronic

Table 3.1: Labelled public glaucoma datasets.

Dataset Number of images Resolution

RIM-ONE V1 [88, 292]

H: 118
EG: 12
MG: 14
SG: 14

OHT: 11

∼ 400× 500

RIM-ONE V2 [88, 292]
H: 255

G & GS: 200
∼ 500× 600

RIM-ONE V3 [88, 292]
H: 85

G & GS: 74
2, 144× 1, 424

HRF [43]
H: 15
G: 15
D: 15

3, 504× 2, 336

DRIONS-DB [48] 110 600× 400

Drishti-GS [228]
H: 31
G: 70

∼ 2, 050× 1, 750

GlaucomaDB [133] G: 120 ∼ 200× 300
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Figure 3.5: Healthy (left) and glaucoma (right) optic disc critical region on the
RIM-ONE dataset [88].

glaucoma and 76.9% are from eyes with hypertension. The images were acquired
with a colour analog fundus camera, approximately centred on the ONH and were
stored in slide format. The images were digitized using an HP-Photo-smart-S20
high-resolution scanner in red-green-blue (RGB) format and 8-bits/pixel.
Independent contours from two medical experts were collected by using a software
tool provided for image annotation. Technicians with medical education and solid
experience in ophthalmology acted as experts. To generate annotated images, in
each image, each expert traced the contour by selecting the most significant
papillary contour points and the annotation tool connected automatically adjacent
points by a curve [103].

Drishti-GS. This database [226, 228] has two subsets: a training subset and a
testing subset. A total of 50 training images are provided with ground truth for
optic disc and optic cup segmentation and notching information. The testing
subset includes 51 images for which ground truth is available only with permission
through registration to their website. There are 31 fundus images from healthy
eyes and 70 images from eyes with glaucoma at different resolutions
(approximately 2, 050 × 1, 750). Selected participants were between 40-80 years of
age with roughly equal numbers of males and females.

Although there are some other public fundus images datasets are available such
as RIGA [9], none are annotated for glaucoma diseases.

The RIGA [18] dataset has been used in this research because of OD and OC
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detection. The RIGA dataset includes three different types of files:

• Some part of the MESSIDOR [62] database that contains 460 original fundus
images with a resolution of 2, 240× 1, 488.

• The Bin Rushd Ophthalmic Center dataset which contains 195 original images
with a resolution of 2, 376× 1, 584.

• The Magrabi Eye Center database that has 95 retinal images with a resolution
of 2, 743× 1, 936.

In total, there are 750 fundus images that are labelled manually by six
ophthalmologists; thus, 4,500 manually marked images are available in RIGA. All
images are saved in JPG and TIFF formats.

Additionally, most of the fundus data that are used on many researches all
around the world are stored locally and are not accessible to researchers. Therefore,
a dataset has been collected to do this research on retinal data that present in the
private dataset section.

3.3 Private Dataset Description

This section presents private datasets for our research in classification techniques
with reliable outcomes [9].

UCLA Dataset

ONH photographs in the UCLA dataset have a diagnostic label of either healthy or
glaucoma. The collection of these ONH photographs followed the tenets of the
Declaration of Helsinki, Health Insurance Portability and Accountability Act
guidelines; the Human Research Protection Program approved these studies.
Written informed consent was obtained from all study participants.

The UCLA dataset includes 447 fundus images: 170 fundus images from eyes
with glaucoma and 277 images from healthy eyes. Eyes were defined as
glaucomatous or glaucoma suspect if there was evidence of localized or diffuse
neuroretinal rim loss of retinal nerve fibre layer loss based on a review of the ONH
photographs by a glaucoma specialist (KNM) regardless of the visual field
findings. Otherwise, eyes were considered healthy (see Fig. 3.6). The IRB at UCLA
approved the original study and all the patients consented prospectively. All
procedures adhered to the tenets of the Declaration of Helsinki.

Moreover, the second category of UCLA dataset is the thickness of retina
includes 251 recodes. Retinal nerve fibre layer (RNFL) thickness measurements
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Figure 3.6: ONH photographs from the UCLA dataset. Left: ONH photograph of an
abnormal eye, Right: ONH photograph of an eye with glaucoma.

from 154 normal eyes and 97 eyes with glaucoma were acquired with Spectralis
OCT. We used a total of 733 RNFL measurements as input to the machine learning
classifiers (described in Chapter 6) consisting of RNFL thickness in six sectors,
average RNFL thickness, and 726 peripapillary A-scans.

SuperClinic Dataset

A SuperClinic dataset has been collected in Manukau, Auckland, New Zealand,
which contains 3,605 patients. There are monocular and stereo fundus images
obtained. These images have not been annotated by any ophthalmologists yet. It
could be a potential to analyse and do more research for the future to apply this
outstanding dataset in upcoming research. It is an adequately large dataset to use
for training and testing of any deep learning and developed systems. Such
reference would be useful to researchers developing algorithms as well to detect
the optic disc and cup boundaries.

For data collecting, we were in touch with ToPcon Ltd. to fetch data from the
eye devices and update the licence. We thereupon tried to de-identify and develop
the scripts to generate a unique ID for patients (see Fig. 3.7). Then, data should
be annotated which takes a long time. Thank to Dr Anmar Abdul-Rahman, who
guided me well in all medical aspects of the project.

Adhering to the tenets of the Declaration of Helsinki the study was considered
minimally observational; therefore, it did not require ethics approval as indicated by
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(a) De-identified fundus and RNFL datasets (b) Data collection in the SuperClinic

Figure 3.7: Data collection and de-identified big dataset.

Table 3.2: Demographic characteristics of study participants (L: left, R: right, G:
glaucoma, H: healthy).

H G L eye R eye L eye G L eye H R eye G R eye H
Male (52%) 62% 38% 50% 50% 34% 76% 38% 62%

Female (48%) 60% 40% 49% 51% 44% 66% 35% 75%

recommendations from the New Zealand Health and Disability Ethics Committee.
There are two categories on this dataset which include 3,605 patients: fundus

and stereo images. Stereo and fundus images for left and right eyes are available for
most patients. The resolution of fundus and stereo images is 4, 288 × 2, 848. These
fundus images were chosen randomly with regard to glaucomatous and healthy
patients. Moreover, the second category, the thickness of the retina, includes 525
recodes, of three to each patient.

In our annotated RNFL dataset, there are 175 RNFL data of 87 (42 female and
45 male) healthy and glaucoma patients, including a few patients with glaucoma
without cupping. Some patients also have two RNFL data which were collected at
different dates. About 39% of RNFL data are from patients with glaucoma and the
rest of the data belongs to healthy eyes.

Also, we show the participants’ demographic distribution in Table 3.2. There are
three age ranges in our non-public data set. There are 34 patients who are 8–60 years
old, 87 patients are of age 61–80, and the remaining 59 people are over 80 years old.
Thus, our database indicates that the majority of people are in the 60–80 years range.

The dataset has a healthy and a glaucoma/suspension patients class defined by
a binary classification (healthy or glaucoma label) which was annotated by an
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ophthalmologist. Furthermore, we can see in Table 3.2 that there are 52% male and
48% female patients. This data set illustrates that we have approximately a balance
in male and female patients.

3.4 Pupil Tracking Dataset

Use of an eye-tracking dataset as a hypothesis can be applied for the purpose of
glaucoma detection with calculating changes on visual filed via evaluating the
special patterns on pupil movement and quality of the vision.

Public Eye Movements Dataset

There is one freely available dataset with pupil tracking that was published in
2018 [24]. This dataset is collected in the school of Health Science, City, University
of London, UK to test the hypothesis that age-related neurodegenerative eye
disease can be detected in a person’s spontaneous eye-movements while watching
three separate video clips. Data was recorded in 32 healthy vision, and 44
glaucoma patients. The dataset contains raw gaze data, processed eye movement
data, clinical vision test results, with demographic information in Table 3.3 [284].

Table 3.3: Demographic information of public eye movements glaucoma dataset
[24]; “H” is healthy, and “G” is glaucoma.

Total patients H G Male Female Age <= 60 60 < Age < 80 Age >= 80

76 32 44 36 40 14 59 3

Private Eye Movements Dataset

Our dataset was approved by the Auckland University ethics committee and
complied with all Helsinki declarations. All participants gave full, written
informed consent. This study and data collection have been continuing on a joint
project with AUT and Auckland University with partially MedTech CoRE funding
(see Fig. 3.8). We used the Pupil Labs device [305] as an open-source eye-tracking
platform to capture the video streams then developed a model to detect the special
pattern which is called optokinetic nystagmus (OKN)to find out the quality of the
vision which can then can be applied for glaucoma detection. This model is
discussed in Appendix A.

Healthy participants (n = 6 adult volunteers) were recruited for this study. OKN
was elicited for each participant using an array of drifting disks (see Fig. A.5)
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Figure 3.8: Data collection using head-mounted eye-tracking system.

presented on a 24” LCD display (AOC G2460PG with Ultra Low Motion Blur). The
arrays comprised of disks with a central disk diameter chosen to ensure that the
stimulus was easily seen (0.7 logMAR, 5 minutes of arc). The central intensity of
the disks was 35 cd/m2, the peripheral intensity of the disks was 9 cd/m2, and the
background intensity of the screen was 13 cd/m2. The arrays were shown over
intervals of five seconds, during which time it was shown either stationary (0
deg/sec) or drifting horizontally (±5 deg/sec) in a random left/right direction.
Each state (left, right, stationary) was shown to the participant five times.

3.5 Summary

This chapter reviewed the public and private multimodal datasets on glaucoma
detection, and three different type of data modality including Fundus images,
RNFL data and eye movement video were discussed. In addition, seven glaucoma
annotated datasets were identified among the over ten public datasets including
resolution and number of images. Besides, we introduced two private fundus
datasets to be able to compare the results with public datasets as a benchmark. We
also selected thickness of the retina in two private datasets of a generic OCT
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imaging that led to both a faster and more robust classifier for glaucoma screening.
Moreover, the eye movement dataset was utilised to recognise the OKN pattern

that aimed to detect clinically significant deficits in visual acuity (VA), the
(self-reported) ability of the eye to see fine detail that applied for OKN detection.





Chapter 4

Unsupervised Fundus Image Segmentation

Measuring the cup-to-disc ratio (CDR) is a common approach for glaucoma detection.
Glaucoma can be specified by thinning the rim area that identifies the CDR value.
Clustering and image segmentation can simply divide fundus images into distinct areas to
estimate the optic disc (OD) and the optic cup (OC). This chapter is based on a robust
method, using the improved chaotic imperialistic competition algorithm (ICICA) for
determining the position of the OD and OC on colour fundus images for glaucoma
detection. The predicted OD and OC boundaries are then used to estimate the CDR for
glaucoma diagnosis. The performance of the proposed method was evaluated by using the
publicly available RIGA dataset. It was found that some of the common problems of the
K-means clustering algorithm can be addressed by the proposed method for achieving better
results. Moreover, the OC and OD regions can be precisely separated from the colour image
so that ophthalmologists can measure OC and OD areas more accurately. Material
discussed in this chapter has been published in my publication [175]

4.1 Unsupervised Learning and Glaucoma Risk Factor

In this chapter, different types of glaucoma are investigated which are defined by
the appearance of changes in fundus images due to various causes. One of the most
important factors is the intra-ocular pressure (IOP) to resize the optic disc (OD) and
optic cup (OC). A localisation of the OD and OC (often the central parts of the optic
disc), and finding their borders, are performed by eye specialists where optic nerve
tests include eye fundus examination. The presence of glaucoma can be identified
by noticing optic nerve cupping, i.e. an increase of the OC in size [217]. One of the
main indicators of the disease is the cup-to-disc ratio (CDR) between the sizes of the
cup and the disc [10]. It is considered to be one of the most representative features of
OD and OC areas for glaucoma detection, and, according to [14], an eye with a CDR
of at least 0.65 is generally declared as being glaucomatous in clinical practice [217].

Clustering divides data into different clusters which are considered (e.g. by the
applied algorithm) useful for object detection. Cluster analysis is the task of
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grouping a set of objects in such a way that objects in the same group are more
similar to each other than to those in other groups [151, 159]. It is a common
technique for statistical data analysis, used in many fields such as machine
learning, image analysis, pattern recognition, or medical imaging.

Clustering does not use category labels that tag objects with prior class labels;
thus, it is named unsupervised learning [119].

In this chapter, we focus on partitional clustering and in particular, a popular
partitional clustering method known as K-means clustering. The well-known
K-means algorithm is one of the widely used algorithms due to its efficiency and
simplicity in data clustering where it measures the distance between cluster
representatives (centroids) and data points to partition data into K clusters. In most
cases, the Euclidean distance is used as the dissimilarity measure. To find the best
position of the representatives, the K-means algorithm minimizes the cost function
of data variations around the centroids. However, the initial state may cause the
algorithm to trap into a local optimum and as a result, affect the quality of the final
solution.

Recently, the use of meta-heuristic algorithms for solving the clustering
problem has been successful in attracting more attention [170]. From the
perspective of optimization problems, clustering can be considered as a specific
type of NP-hard problems [74]. These types of algorithms involve a search to find
an optimal solution for an optimization problem, with reducing the risk of being
stuck in a local optimal region.

Motivated by the success of the imperialist competitive algorithm (ICA) with
variant optimization problems, this chapter proposes a novel data clustering
algorithm based on an improved chaotic ICA for cluster analysis. The ICICA aims
to enhance the capability of ICA in exploration without constraining its
exploitation capabilities. In this chapter, we integrate positive benefits of the chaos
into ICA to enhance its performance. The proposed ICICA differs from the
standard ICA in two important aspects: First, a special equation for assimilation
mode is used to discard the local optima which provide better exploration
opportunities for colonies. Second, in most of ICA implementations, an empire is
collapsed and eliminated when it loses all of its colonies. Nevertheless, in this
research, we replace one of the weakest colonies of the best empire (low cost) with
this imperialist.



4.2. Improved Chaotic Imperialist Competitive Algorithm 55

4.2 Improved Chaotic Imperialist Competitive
Algorithm

The flow chart in Fig. 4.1 represents our suggested approach for OC and OD
detection of fundus images based on the ICICA for glaucoma detection; the historic
development of the ICICA is discussed below. The following sections explain the
flowchart.

Figure 4.1: Overall approach for detecting OC and OD in the fundus image.

Pre-processing

First of all, detecting a region of interest (ROI) is an important part because this is the
area which should include OD and OC. In a pre-processing stage, we consider it as
being helpful to increase the quality (resolution) of the fundus images; this should
precede the segmentation step.

In general, the pre-processing and enhancement stage is known as being
essential for processing medical images. This stage is used to decrease image noise,
highlight edges, and visualize digital images where needed. Examples of
techniques also used in medical image pre-processing include principal component
analysis (PCA) and superpixels before image segmentation. A subsequent
enhancement stage includes an increase in image resolution or contrast
enhancement for removing image noise.

A PCA greyscale method [58] has been used to enhance the quality of brightness
when converting the given red-green-blue (RGB) input images into greyscale. A
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gamma filter is applied to give the best possible detection. Ideally, a given medical
image should be sharp and balanced in brightness.

In this research, noise is removed by using a median filter of size 11 × 11; due
to this filter, the intensity variance of light decreases in the fundus images, and this
filter is also appropriate to maintain the shape of edges and edge locations.

Subsequent superpixel partitioning provides accurate boundaries between
different tissues; after that, image features are extracted from each superpixel [230].
Using superpixels leads to improved accuracy and increases the speed of
computation.

In this chapter, superpixel segmentation is used to separate background regions
in an image from the foreground, and for reducing the negative impacts of vessels
in the segmentation process. The RGB colour space of the images, given prior to the
PCA-greyscale transform, is mapped into a LAB space for better clustering. The use
of the colour-opponent LAB colour space simplifies the separation of colours more
approximate to human visual perception. We convert all fundus images from RGB
into LAB colour space.

Passing these stages, the fundus images are ready to be used in the clustering
step.

K-means Clustering Algorithm

K-means is a well-known clustering method that was primarily proposed by
MacQueen and further developed by Hartigan and Wong [158]. K-means is an
unsupervised learning algorithm in which the user divides the data (here we
consider each data item as being a pattern) into a set of predetermined clusters. The
clusters are defined by the use of patterns that identify the related clusters and are
regarded as being the centroids of the clusters.

For the given data set {x} = {x1, ..., xn} of n patterns, a value k > 0 is specified,
and k centres of k clusters (called the centroids) are, at first, determined randomly.
These are the initial seeds.

Then, the set {x} is divided into k clusters (i.e. subsets of patterns) such that
each pattern is devoted to that cluster where the centre of this cluster has the closest
distance to the considered pattern.

Then, considering all patterns devoted to the clusters, the position of the centres
will be re-calculated, and the algorithm will continue this trend till no change (or
“nearly no change”) is made in the position of the centres. This means that all the
patterns have converged into an “appropriate” cluster, and there is no further
change in the clusters.

In this case, the objective function in Eq. (4.1) is a square-error function that
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defines the performance of the algorithm; it is applied for minimizing the
following error term:

f =

k∑
i=1

n∑
j=1

‖xij − µi‖2 (4.1)

where µi represents the centre of the i-th cluster and ‖xj − µi‖ is the Euclidean
distance of the j-th pattern from the centre of the i-th cluster, for j = 1, . . . , n and
i = 1, . . . , k.

Imperialist Competitive Algorithm

The imperialist competitive algorithm (ICA) is one of the most recently developed
meta-heuristic optimization algorithms that have been developed based on a
socio-politically motivated strategy. The main idea behind this algorithm is to
divide countries into two types: imperialistic countries and colonies [25–28, 74].

Imperialistic competition and assimilation policies result in the convergence of
colonies towards an optimal position. The efficiency of ICA as an excellent
optimization method has been proven in various fields such as data
clustering [172], hybrid flow scheduling problems [30], travelling salesman
problems [267], skin colour detection [204], multilayer perceptron weight
optimization, and artificial neural networks [238].

The ICA simulates a socio-political process of imperialism and imperialistic
competition. This algorithm contains a population of agents or countries. Like
other evolutionary algorithms, the ICA begins with a random primitive population
in which each individual of the population represents a country. Countries in the
ICA are similar to the chromosomes in a genetic algorithm (GA). At the initial stage,
some of the best countries (less costly) are selected as imperial countries, and
survivors are considered to be colonies of the imperialists [111].

Then colonies are divided between imperialists with regard to the power of the
imperialists. After dividing all the colonies between the imperialist countries, the
colonists move towards their related imperialists with regard to the cultural space.
A collection of imperialist countries and some colonies make up an empire.

These empires compete with each other and sometimes replace each other. The
survival of an empire depends on its power and the way it controls its colonies
against other rivals. The power of the larger empires increases with the collapse of
smaller empires. As a result of the repetition of this competition among empires, the
colonies’ power comes close to the power of their imperialists, which is an indication
of convergence. The upper limit of the imperialistic competition occurs when there
remains only one imperialist and several colonies that are the closest colonies to the
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imperialist country with respect to position. The ideal situation is when colonies
enjoy the same status and power as the imperialist.

Proposed Algorithm

Chaos is one of the most important research achievements of non-linear systems. A
limited, unstable, dynamic behaviour that is dependent and sensitive to initial
conditions covers the infinite irregular periodic movements in the non-linear
systems. Although it appears to be random, it occurs in a definite non-linear
system in definite conditions [158, 193, 261, 272].

Many of the chaotic maps in the literature possess confidence, ergodicity, and
random features and qualities. Instead of random sequences, chaotic sequences
have been recently used for various applications due to their relatively good and
very interesting results [232, 270]. They have also been used in association with
some stochastic instead of exploratory optimization algorithms for the expression
of optimization variables [15, 16, 47]. The selection of chaotic sequences is justified
theoretically mainly due to their unpredictability features, such as their wide range,
irregularity, complex temporal behaviour, and ergodic features and qualities.

In random-based optimization algorithms, the technique of using chaotic
variables instead of random variables is called chaotic optimization algorithm.
Optimization algorithms based on chaos theory [69] are random search methods
that are different from swarm intelligence or any other existing evolutionary
calculation methods. As chaos is not repeated, these methods do the total search
with higher speed compared to a random search that is dependent on probabilities.

When a random number is required in the ICA algorithm, it can be produced
through the repetition of one stage of a selected chaotic map that is started from
one of the random primary conditions in the first ICA repetition. Uni-dimensional
irreversible maps are the simplest systems, possessing the ability to producing
chaotic movements [186].

In the rest of this chapter, we evaluate some of the famous uni-dimensional
maps for glaucoma detection. In this chapter, ICICA is proposed for the
segmentation of the fundus images. The proposed technique uses the ability of the
improved chaotic imperialistic competition algorithm, a meta-heuristic algorithm
based on chaotic and imperialistic competition algorithms for clustering and
detecting appropriate segmentation of the fundus images.

In 2012, Talatahari et al. [236] presented a chaotic imperialist competitive
algorithm. This algorithm is formed by modifying the movement stage of the
original algorithm. Considering the movement process of the ICA, by substituting
the random numbers for the ICA parameters with sequences generated from
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Figure 4.2: Movement of colonies toward their relevant imperialists [236].

chaotic systems. The algorithm not only uses different chaotic map values but also
utilizes the orthogonal colony-imperialistic contacting line instead of θ for
deviation of the colony as follows:

{x}new = {x}old + β · d · {cm} ⊗ {V1}
+cm · tan(θ) · d · {V2},

‖ {V2} ‖ = 1

(4.2)

where β is a parameter whose value is greater than 1 and d is the distance
between the colony and the imperialist (Fig. 4.2). {V2} is perpendicular to {V1},
since this vector must cross the point obtained from the two first terms. {cm} is a
chaotic vector based on the selected map and the sign ⊗ denotes an
element–by–element multiplication. However, in multi-dimensional problems like
clustering, the calculation of {V2} is a very complicated task and is mathematically
difficult.

Therefore, in this research, we change the movement step as follows:

• First, different chaotic map values are utilized for different components of the
solution vector in place of only one value (4.2).

• Second, it is possible to obtain a random value for θ in third terms of the (4.2)
that will be randomly changed in (0, 1) at each iteration.

For a proper exploration and escape from local minima, the value of the selected
chaotic map in (4.2) with an initial random value is calculated in each iteration. The
equation is modified by

{x}new = {x}old + β · d · {cmk} ⊗ {V1}
+ {cmk} · tan({θk}) · d

(4.3)
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Figure 4.3: Pre-processing and extraction of a region of interest with K-means
algorithm [7].

where in (4.3) {cmk} is the k-th chaotic vector, {θk} is the k-th vector of θ values that
will be randomly in the range of (0, 1) at each iteration.

Equation (4.4) of the circle map in the chaotic map is as follows, and it is used
to generate chaotic sequences that are required at each time of the algorithm. The
random numbers are replaced by these chaotic sequences in the original imperialist
competitive algorithm [162]:

Xn+1 = Xn + b−
( a

2π

)
sin (2πXn) mod (1) (4.4)

Given a = 0.5 and b = 0.2, this chaotic map produces chaotic sequences in the
interval (0, 1).

4.3 Experiments and Results

We run the K-means clustering model to segment OC and OD regions, and the
results demonstrated in Fig. 4.3. This model deployed on RIGA dataset (described
in Chapter 3) and results were checked by an ophthalmologist [175].

The proposed algorithm was applied to the RIGA dataset (described in
Chapter 3) while both colour conversion and ICICA clustering techniques were
used (Fig. 4.4).

Moreover, the K-means algorithm was applied to the pre-processed images [183]
of fundus for comparison by calculating the root mean square error (RMSE) [131].

For extracting the ROI from fundus images, the lowest RMSE was selected to
find the background by drawing a box around the centre of the cluster Fig. 4.4d.
Then, the ROI images were considered as input for the ICICA algorithm to extract
the OD and OC.

Upon colour transformation of images from grey level to RGB, and then to LAB
colour space, the ICICA was employed to cluster the input image and segment its
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pixels. However, the clustering may lead to the production of separate regions
with black holes or dots. Furthermore, Otsu’s model was applied to obtain the final
segmented regions. The following test shows how the proposed algorithm was
used to detect OD and OC on fundus images (Fig. 4.5).

After transferring the original grey image to RGB and then to LAB colour space,
the approach produced three components of “L” for light intensity, “A” related to
the colour distribution along the green-to-red axis, and finally “B” for colour located
along the blue-to-yellow axis. Therefore, all information related to colour is located
in “A” and “B” layers.

The difference between two colours can be measured through the measurement
of their Euclidean distance. The ICICA clustering algorithm was used to classify
colour in the “A B” colour space. This algorithm, like the K-means clustering,
requires specification of a number of clusters and distance measurement criteria to
detect the degree of closeness of objects together.

Given the fact that the information related to the existing colour was located in
the “A B” colour space, the objects were pixels with “A” and “B” value that were
classified into three clusters by the ICICA clustering algorithm and Euclidean
distance metrics.

Figure 4.5 shows the results of applying the ICICA algorithm to the processed
images and extracting the final results are shown in Fig. 4.5i and Fig. 4.5j as
comparative performance evaluations.

The OD and OC regions were marked by ophthalmologists manually as shown
in Fig. 4.4e. It should be noted that the RIGA database was annotated by six different
ophthalmologists, and in most cases, the decision was the same.

(a)
Input

(b) Remove
background

(c)
PCA-grayscale

(d)
ROI

(e)
Ophthalmologist

Figure 4.4: Pre-processing and extraction of a region of interest manually by
ophthalmologist [7].
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4.4 Summary

Image clustering is used to describe the high level of image contents which plays
an important role in solving pattern recognition problems and medical image
processing.

An image segmentation method based on ICICA and colour conversion
techniques is proposed for segmentation of retinal images. The presented
evaluations on fundus images show encouraging results.

In order to achieve a better performance, after de-noising [67] the image using
the median filter and improving the quality of the image, the clean image was
converted to RGB and then to the LAB colour space. Then, the ICICA clustering
algorithm was employed to cluster the images and label the pixels. Finally, the
Otsu method was used to completely segment the OC and OD.

The proposed method avoids the common problems of K-means clustering
algorithms, such as dependence on initial values and early convergence that cause

(a)
ROI

(b) Gray-scale
PCA on ROI

(c)
Gamma filter

(d)
Colour map

(e)
Super-pixel

(f) Output
superpixel

(g) OC cluster
with ICICA

(h) OD cluster
with ICICA

(i) Proposed
method OC

(j) Proposed
method OD

Figure 4.5: Region of interest including OC and OD results with ICICA algorithm
[7].
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poor results.
In order to evaluate the performance of the proposed method, the final results

were compared with the results of K-means clustering using the RMSE parameter.
According to the results, the OC and OD regions can be precisely separated from
the colour image and the proposed method enables ophthalmologists to measure
OC and OD areas accurately.





Chapter 5

Superpixel Segmentation on Stereo Fundus
Images and Disparity Map

Population-based studies report high rates of undiagnosed glaucoma with over 50% of
the population with glaucoma living in developed countries remaining undiagnosed and
unaware of their disease. Clinical diagnosis rests on the detection of the characteristic optic
disc signs. Stereo optic-disc imaging improves intra and inter-observer agreement in the
detection of optic disc abnormalities. We propose a robust method to help the specialist in
detecting some abnormalities in stereo optic-disc images using stereo vision and superpixel
segmentation concepts. A stereo vision system produces a disparity map for the input stereo
images of the retina in which abnormalities are more distinguishable. In the region of
interest in the disparity map, we can clearly visually recognize all abnormalities because of
changes in distances for abnormality parts in glaucoma patients. The produced disparity
map is segmented using two different superpixel segmentation algorithms (simple
linear-iterative clustering and simple non-iterative clustering) to detect abnormalities. The
original stereo images are also segmented using the same concept; results are compared with
the segmented disparity map. Material discussed in this chapter has been published in my
publication [177].

5.1 Stereo Vision and Glaucoma Abnormalities

In this research, there is a potential to detect one of the abnormalities that is RIM
shrinking based on the disparity map technique. The general definition of
abnormalities for glaucoma aspects is as follows:

• Increased cup-to-disc ratio (i.e. the ratio of the optic cup in the central optic
disc to the margin of the optic disc),

• Notching of the neuroretinal rim (focal loss of the margin of the optic disc
margin)

• The symmetry of optic disc cupping
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• Loss of retinal nerve fibre layer

We assessed optic discs from patients with different subtypes of glaucoma
defined by abnormal stereo OD images (SODIs). The RIM-ONE [292], release three,
used in this chapter is a public SODIs dataset that was described in Chapter 3.
Glaucoma manifests as ONH cupping; clinically this is most easily recognised at
the superior and inferior poles of the optic disc as well as focal and diffuse retinal
nerve fibre layer loss [81, 219].

Stereo vision extracts 3D information from multiple 2D views of a scene. Stereo
vision works by using a stereo-matching algorithm which finds corresponding
points in a stereo image pair and produces a disparity map. This map encodes the
difference in horizontal coordinates of corresponding image points. The values in
the disparity map are inversely proportional to the scene depth at the
corresponding pixel location [303]. Up-to-date stereo matching is robust (due to
progress in matching algorithm design) and fast (as it only processes one stereo
image pair). Many modern applications, such as advanced driving assistance
system or robot navigation, work on principles of stereo vision to estimate the
actual distance or the range of objects of interest relative to the camera [302]. In this
chapter, we apply a stereo-matching algorithm to our input SODIs to assess the
difference in depth values for abnormalities compared to OD. We use a commercial
stereo-vision system SP1 [214] which produces disparity maps for input SODIs.

The process of partitioning a digital image into multiple segments is called
image segmentation. These multiple segments are sets of pixels which are also
known as superpixels. Pixels that share certain characteristics such as similar
colours, intensities or grey-levels are grouped together to form superpixels [218].
By doing so, image segmentation simplifies the representation of an image and
makes it easier to analyze [87]. The simple linear-iterative clustering (SLIC) algorithm
is one of the widely used algorithms. It efficiently generates compact, nearly
uniform-sized superpixels by clustering pixels in a combined five-dimensional
colour and image coordinate space [299]. In this chapter, we apply the SLIC
algorithm to divide input SODIs and disparity maps into distinct areas to estimate
the abnormalities on OD. We also apply the simple non-iterative clustering (SNIC)
algorithm on SODIs and disparity maps; SNIC is an improved version of SLIC.
Results of SLIC and SNIC algorithms are compared at the end.

5.2 Stereo Vision Materials

The SP1 stereo vision system has been used in this research; it is a product of
Nerian Vision Technologies (NVCom) (see [214]). It performs stereo matching in
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real-time using a semi-global matching algorithm [109]. It is a stand-alone
processing system with an integrated field programmable gate array (FPGA) which
produces a dense disparity map. The system can be configured through a web
interface using its IP address. A gigabit Ethernet connection is established between
the SP1 and a client computer for the transmission of images. The NVCom
software is required to send input stereo images to the SP1 and to display and write
the received images from the SP1. The system can process the images from two
industrial USB cameras in real-time, or it can also generate disparity maps for input
stereo images transmitted from a client computer. The SP1 can process images with
a resolution from 320 × 240 pixels up to 1, 440 × 1, 440 pixels; the number of
calculated disparities ranges from 32 to 256 pixels. It can also reconstruct the 3D
location of corresponding scene points from the disparity map [214].

5.3 Iterative Clustering in Stereo Images

The flow chart in Fig. 5.1 represents our approach for the detection of abnormalities
on ODs in SODIs. At first, input stereo fundus images are separated in left and
right images. Then, the left and right images are cropped in order to have a region of
interest (ROI) accurately. These two images are given to the SP1 system to calculate
the disparity map. Afterwards, in two stages, the disparity map and the left image
are entered into the SNIC and SLIC algorithms to achieve the segmented masks.
Finally, the SNIC and SLIC masks are overlaid on the input left image as outputs
(see Fig. 5.5). Current segmentation studies, as reviewed in [6, 10], are not used in
the disparity map.

The concepts of stereo vision and superpixel segmentation for glaucoma
detection are discussed below in the rest of this section; processes applying in this
flow chart are explained in the following sections.

Stereo Vision

We cite [112]: ”Stereopsis is a term that is most commonly used to refer to the
perception of depth and 3-dimensional (3D) structure obtained on the basis of the
visual information deriving from two eyes by individuals with normally
developed binocular vision”; the difference in the relative horizontal position of
objects in the two images is referred to as binocular disparity. The visual cortex of
the brain processes disparities to yield depth perception.

Stereo vision is a well-known ranging method because it resembles the basic
mechanism of the human eye. Computer stereo-vision systems use the same
principle by replacing eyes with two CCD cameras. They are displaced
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Figure 5.1: Overall approach for segmentation of abnormalities on optic discs.

horizontally to obtain two different views. A disparity map, which encodes the
difference in horizontal coordinates of corresponding image points, can be
obtained by comparing these two slightly different images. The values in the
disparity map are inversely proportional to the scene depth at the corresponding
pixel location [303].

Figure 5.2 illustrates matching in canonical stereo geometry; both the images
have collinear rows y, defining the epipolar lines. Here, the left image is the base
image indicated by B, and the right image is the matched image indicated by M .
The projection of a 3D world point P in the base image is displayed by pixel p =

(x, y). Now, we must search for a corresponding pixel on the same epipolar line in
the matched image M . The two pixels are corresponding if they are projections of

Figure 5.2: Left and right camera image for canonical stereo geometry [138].
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the same point P in the scene.
Let pixel q = (x + d, y) be the corresponding pixel of pixel p. Here, d is the

value of the disparity which is plotted in a disparity map [138]. Also, d is defined by
equality (5.1) which is specified by the distance between pixels p and q in the same
row to calculate the disparity map [283].

d = |xp − xq| (5.1)

We start at pixel p in the base image (B), consider its neighbourhood defined by
a square window (W ), and compare with neighbourhoods around pixel q on the
epipolar line (i.e. on the same row due to canonical stereo geometry) in the matched
image (M ) [138]. Therefore, Wq in match image M is the best window matching
for corresponding Wp in B as the base image based on searching the window Wp in
match image M , and q is the best point of p over on image M . Figure 5.3 shows an
input stereo pair and a resulting disparity map; we use a colour key for visualising
integer disparities.

The first step in our experiments is to perform stereo matching. We use the SP1
stereo-vision system to produce a disparity map for the input fundus images. The
SP1 produces a disparity map from the perspective of the left camera image [301].

The input image data is transmitted from a client computer to the SP1 for stereo
matching. The system performs stereo matching using a semi-global matching (SGM)
algorithm and produces a disparity map with a bit depth of 8 bits per pixel. The
NVCom application is used to receive and display disparity maps from the SP1

(a) Input left image (b) Input right image (c) Disparity map

Figure 5.3: Input stereo pair and resulting disparity map (used colour code is shown
on the right).
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[301]. Results for tested 3D scenes verified the accuracy of the SP1; the following
SGM algorithm has been developed for accurate, pixel-wise matching at low run
time [109]. It combines concepts of global and local stereo methods [213].

Simple Linear Iterative Clustering Algorithm

Superpixel algorithms group pixels into perceptually meaningful atomic regions.
These pixels should adhere well to image boundaries [3]. The SLIC algorithm
produces the desired number of regular, compact and nearly uniform superpixels
with low computational overhead. The SLIC algorithm is very simple, fast and
efficient, which makes it extremely easy to use. [299] documented that this
algorithm achieved a segmentation quality better than four state-of-the-art
methods (at that time).

SLIC adapts a k-means clustering approach to efficiently generate superpixels [3,
273]. There are two important distinctions compared to general k-means clustering:

1. The search space for the number of distance calculations in the optimization is
limited to a region proportional to the superpixel size.

2. The colour and spatial proximity are combined by a weighted distance
measure. It also provides control over the size and compactness of the
superpixels [3].

SLIC has only one parameter k which is the desired number of approximately
equally sized superpixels.

For colour images in the CIELAB colour space, the first step of the clustering
procedure is to sample k initial cluster centres ci=[li, ai, bi, xi, yi]> on a regular

Figure 5.4: Search regions of k-means and SLIC algorithms [3].
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grid, spaced s pixels apart. Here, s =
√

N
k for roughly equally sized superpixels.

To avoid centring a superpixel on an edge, the centres are transferred to seed
locations corresponding to the lowest gradient position in a 3 × 3 neighbourhood.
The next step is to assign each pixel at location p to the nearest cluster centre whose
search region overlaps its location. As depicted in Fig. 5.4, the size of the search
region is limited to reduce the number of distance calculations, in contrast to
general K-means clustering. Since the expected spatial extent of a superpixel is a
region of approximate size s × s, the search for similar pixels is done in a region
2s × 2s around the superpixel’s centre. The last step is to adjust the cluster centres
to be the mean vector [l, a, b, x, y]> of all the pixels belonging to the cluster. The
residual error E between the new and previous cluster centres is calculated. The
last two steps of the algorithm are repeated iteratively until the error converges [3].
Finally, a post-processing step reassigns isolated pixels to nearby superpixels to
enforce connectivity [3, 76].

Simple Non-Iterative Clustering Algorithm

SNIC is an improved version of the SLIC algorithm [4]. It is simpler and faster as it
is non-iterative. SNIC does not use a distance map and therefore requires less
memory. It enforces connectivity from the start. The authors say: “SNIC algorithm
retains the desirable properties of SLIC, namely computational efficiency,
simplicity of implementation and use, and control over the number and
compactness of superpixels.” SNIC outperforms SLIC on quantitative
benchmarks [4].

Superpixel partitioning provides accurate boundaries around different tissues
which makes the extraction of image features easier [230]. In this chapter,
superpixel segmentation is used to reduce the negative impacts of vessels on
abnormality detection. Moreover, it groups the abnormalities on OD in one or
more clusters which helps in glaucoma detection.

5.4 Experiments and Results

The first step of this experiment is to perform stereo matching on to the input
dataset. The SODIs are cropped to ensure that the left and right camera images are
of identical size. The size of the left and right camera images is set to 1, 056× 1, 424

pixels. The stereo fundus images of glaucoma patients are then transferred from a
client computer to the SP1 through gigabit Ethernet. The SP1 computes the
disparity map and transmits it back to a client computer [301].
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For computing the disparity map, the value of the maximum number of
disparities is set to 256. For generating the disparity map, the SP1 uses intrinsic
and extrinsic calibration parameters. The value of the re-projection error is
inversely proportional to the accuracy of the disparity map. For our experiments
here, the value of the re-projection error was 0.06. The SP1 produces a disparity
map from the perspective of the left camera image. A rainbow colour-map is
applied on the disparity map for better visualization. As we go from blue colour to
pink colour, the disparity value increases gradually. See Fig. 5.3 for an example of
an output disparity map for one SODI. As the abnormalities are present on or near
the OD, we crop the input left camera image and the output disparity map into a
ROI around the OD.

In the ROI of a disparity map, we can visually recognize all abnormalities
because of changes in the distance (seen by changes in colour) for abnormality
parts in glaucoma patients; we can easily distinguish abnormalities by comparing
Figures. 5.5a and 5.5b.

The OD showed in Fig. 5.5a has advanced glaucoma as the inner line is close to
the outer line indicating a loss of tissue between both lines; the tissue between the
two lines is called the neuroretinal rim.

Figure 5.5b is a cropped disparity image. The size of the cropped images is
uniformly 585 × 585 pixels. The original left image and the produced disparity
map are now considered as inputs for the SLIC and SNIC algorithms. The SLIC
and SNIC methods segment the images and produce boundary masks. Both
algorithms are applied for the same number k (we decided k = 200) of superpixels
for comparison purposes. The value of compactness in the SNIC algorithm is set to
40. If the number of superpixels increases (above 200), there are high chances that
the clustering may lead to the production of regions having black holes or dots
(showing non-simple region topologies).

The computed SLIC and SNIC boundary masks of the input fundus image and
also of the disparity map are then overlaid on the original (cropped) input left
image for better comparative visualization. As a result, four output images are
generated for each SODI. Figures 5.5c and 5.5d show the segmented input fundus
image using SLIC and SNIC algorithms, respectively. Resulting images, after
overlaying the boundary masks of segmented disparity maps onto original input
images, are shown in Figures. 5.5e and 5.5f. Figure 5.5e illustrates the result of
applying the SLIC algorithm and Fig. 5.5f is the result of applying SNIC algorithm.

This chapter indicates a novel method which may help the specialist for
glaucoma detection by using stereo matching. The output disparity map has
different disparity values for abnormalities which helps to detect glaucoma.

Therefore, finding abnormalities in these clustered images is easier for specialists
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compared to the fine structure of the pixel grid. The four types of segmented output
images are suggested for being analysed by the specialist.

5.5 Summary

An image segmentation method was proposed for SODIs by combining two
superpixel algorithms (SNIC and SLIC) and disparity map calculations, resulting
in four kinds of segmentation of ROIs. The goal is to support the early detection of
(small) abnormalities.

According to a consulted ophthalmologist, results as shown in Figs. 4.4c and 5.5d
appear to be promising and useful due to the following factors:

1. Ability to identify the margin of the optic disc

2. Some outlining of blood vessels

3. Outlining of the optic cup (the centre depression of the optic disc)

Also, results shown in Figs. 4.4c and 4.4d are more accurate in contrast to Figs. 5.5e
and 5.5f. The results derived from segmented disparity maps use a recent approach
which may be used in further studies for glaucoma detection. From our
experiments, we can conclude that disparity values for abnormality regions tend to
larger than disparity values for normal parts which assist with the specialist for
glaucoma detection (Fig. 5.3c). This change in disparity values can also be further
studied towards abnormality segmentation.

In future work, we will focus on the development of a system to eliminate the
healthy segments of a disparity map image to achieve improved abnormality
detection and have an accurate rim area segmentation.
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(a) ROI in input left fundus image (b) ROI in disparity map

(c) Input image segmentation using
SLIC

(d) Input image segmentation using
SNIC

(e) Disparity map segmentation
using SLIC

(f) Disparity map segmentation using
SNIC

Figure 5.5: Results after applying SLIC and SNIC algorithms.



Chapter 6

Ensemble Traditional Classifiers on Retina
Thickness

In this chapter, we present a proposed ensemble model on both SuperClinic and UCLA
datasets. We also try to compare the results but the number of features on both datasets is not
the same, so we cannot discuss and compare the performance of our model with the results
of each.

We employed the UCLA dataset (discussed in Chapter 3) to run a hybrid machine
learning model that can automatically identify glaucoma using peripapillary retinal nerve
fibre layer thickness measurements [180]. Additionally, the proposed fused model on the
SuperClinic dataset (also described in Chapter 3) is based on a stack of supervised classifiers
combined via an ensemble learning method to achieve a robust and generalised model for
glaucoma screening. Additionally, we implemented an unsupervised model based on
K-means clustering with 80% accuracy for glaucoma screening. We have also followed two
purposes: first, to assist the ophthalmologists in their daily patient examination to confirm
their diagnosis, thereby increasing the accuracy of diagnosis. The second usage is glaucoma
screening by optometrists in order to perform more eye tests and better glaucoma diagnosis.
Therefore, thesis experimental tests illustrate that having only one SuperClinic dataset still
allows us to obtain highly accurate results by applying both supervised and unsupervised
models.

In this chapter, all ensemble, hybrid, fussed and stack model expressions have the same
meaning and the reason why is to not be repetitive in my thesis. Material discussed in this
chapter has been published in my publications [179, 180].

6.1 Hybrid Machine Learning Model on UCLA Dataset

Glaucoma, suspected and healthy eye definitions, and eyes with glaucoma were
defined as those with at least four abnormal visual field test points (at %5) confirmed
once. Suspect eyes had either glaucomatous optic neuropathy (GON) based on stereo
photograph examination or they had IOP greater than 21 and they had a normal
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visual field at the baseline. Healthy eyes were defined as those with a normal disc,
and IOP less than 21 mmHg [221], and normal visual field.

We wanted to examine whether machine learning classifiers can detect
glaucoma onset from retinal nerve fibre layer thickness measurements prior to the
development of visual field (VF) damage (VF conversion) in glaucoma suspect
eyes. We used “RNFL thickness” to discriminate healthy eyes from eyes with
glaucoma.

As we can see from instrument measurements in Fig 6.1, RNFL data belongs to
the circle of the retina eye on the optic disc area. This area can separate into four
main parts which are named Superior, Nasal, Inferior, and Temporal.

Participants had advanced glaucoma progression in 97 eyes and 154 healthy
eyes on the UCLA dataset with RNFL data (discussed in Chapter 3). RNFL
thickness measurements were collected from Spectralis (Heidelberg Engineering)
with circumpapillary circle scans, 768 A-scans, and seven sectoral and global
parameters at UCLA through Dr Kouros Nouri-Mahdavi. Also, the most
discriminating RNFL thickness inputs to the classifier were average RNFL
thickness, temporal-inferior RNFLthickness, and A-scans 60, 231, and 296. We need
to somehow define the topography of these A-scans.

In this section we try to describe a solution of the research question: can
machine learning classifiers detect glaucoma from the retinal nerve fibre layer
(RNFL) thickness measurements? We discuss the solution of this question which
informs combining several models to have reliable and robust outcomes. We aim to
optimize the machine learning model to glaucoma classification based on RNFL
data which needs to be analysed, and do data cleaning and pre-processing on it.

First designing a study map to classify the healthy and glaucoma patients (see
Fig. 6.1). Before feeding the input to the proposed model we need to do data
cleaning. Therefore, some of the features are eliminated which do not have
effective value or without value on it. There is A-scan data as raw data with 768
features for each patient which is applied to data cleaning to have access to the
significant features as an output of the data cleaning step for the remaining 726
attributes. Thus, we designed a framework to detect glaucoma as shown in this
diagram then we fed the classifier with seven different instrument parameters and
768 A-scans and we trained the classifiers and assigned the test eyes to wither of
the two classes.

Table 6.1 shows the mean and standard deviations calculated for healthy and
glaucoma patients on different regions and also globally. The average age for
glaucoma patients is 68.9 years and for healthy patients is 51.9 years. You can see
demographic clinical information for both healthy and glaucomatous categories;
this table shows the demographic information of the study eyes.
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Figure 6.1: Design study of the hybrid machine learning model.

Table 6.1: Demographic and clinical information.

Parameter Normal Glaucoma P value
Number of eyes 154 97 -

Number of subjects 146 64 -
Age (years) 51.9 (13.5) 68.9 (9.3) <0.001

Mean deviation (MD; dB) -0.6 (1.3) -8.6 (6.7) <0.001
RNFL thickness Global (µm) 97.2 (12.3) 63.1 (15.3) <0.001

RNFL thickness at Temporal (µm) 97.5 (11.2) 52.4 (12.9) <0.001
RNFL thickness at Temporal-Superior (µm) 126.5 (22.3) 79.7 (28.2) <0.001
RNFL thickness at Temporal-Inferior (µm) 144.1 (19.7) 74.5 (32.5) <0.001

RNFL thickness at Nasal (µm) 78.8 (17.3) 52.2 (16.4) <0.001
RNFL thickness at Nasal-Superior (µm) 111.6 (26.8) 69.6 (23.6) <0.001
RNFL thickness at Nasal-Inferior (µm) 113. (27.4) 70.8 (23.5) <0.001

It should be noted the number of visits, follow-up length, and baseline mean
deviation (MD) were significantly different in non-converted and VF-converted
eyes. Remember, we excluded the visits after the VF conversation date from the
VF-converted eyes.

Now, let us have a look at the slope of the RNFL thickness of seven instrument
parameters. Analysing the data and illustrating the RNFL data flow on different
diagrams can distinguish healthy from glaucoma patients (see Fig. 6.2). How do we
distinguish eyes in two groups from global RNFL thickness? The challenging area
is the overlap section.
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(a) Global (b) Temporal (c) Temporal Superior

(d) Temporal Inferior (e) Nasal (f) Nasal Superior

(g) Nasal Inferior (h) A-scan629 (i) A-scan638

Figure 6.2: The histogram shows the distribution of the mean RNFL thickness in
different sectors.

We first examined the “global RNFL loss” in non-converted versus converted
eyes. Histogram 6.2a shows the distribution of the mean RNFL thickness slope in
non-converted eyes (in light gray) versus VF-converted eyes (in dark gray). The
mean values of the slopes of these two groups are significantly different (at the .05
level). Here, we have overlaid the distribution of the slopes of RNFL thickness of
these two groups. As you can see, the distribution of the slopes of non-converted
eyes (in blue) is pretty symmetric while the distribution of the slopes of the
VF-converted eyes (in red) is not symmetric with a longer tail towards the left.
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Figure 6.3: Diagram of the hybrid machine learning model for identifying glaucoma
from retinal nerve fibre layers (RNFL) thickness measurements.

This, in part, indicates that the VF-converted eyes have faster RNFL loss compared
to non-converted eyes. The important point here is that, although the mean of the
RNFL slopes in these two groups are significantly different (p-value less than .05),
there is a significant overlap between the RNFL slopes of the eyes in these two
groups. As you can see, the same trend is available on the other histograms in
Fig. 6.2.

The method of the proposed hybrid model is based on the processing of retinal
nerve fibre layer (RNFL) thickness measurements from 154 healthy eyes and 97 eyes
with glaucoma was acquired with Spectralis OCT. We developed five independent
machine learning classifiers (discussed in Chapter 2) including extra-trees, K-nearest
neighbours, ridge classifier, AdaBoost, and random forest and integrated them into
a hybrid model to generate a more informed decision (see Fig. 6.3).

The reason why five classifiers were chosen was that 26 different classifiers
were developed and based on 5-fold cross-validation and area under the receiver
operating characteristics (ROC) curve metrics. We chose the top five of them to be
integrated into each other based on the ensemble model to boost the result and
have a robust model. We used a total of 733 RNFL measurements as input to the
machine learning classifiers consisting of RNFL thickness in six sectors, average
RNFL thickness, and 726 peripapillary A-scans. We used 5-fold cross-validation to
develop and test the models. We examined the accuracy of the hybrid model and
each independent classifier using annotated instances and ROC.
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6.2 Ensemble Classifier on the SuperClinic Dataset

Aim and Materials Overview

Structural and functional methods are utilized to detect and monitor glaucomatous
damage. The relationship between these detection measures is complex and differs
between individuals, especially in early glaucoma [157]. Cross-sectional studies,
comparing the visual field with optic disc appearance, established that there is a
relationship between structural aspects of the optic nerve head and functional areas
of the visual field [125, 130].

However, although some longitudinal studies have demonstrated structural
change before functional change [231], other studies have shown the
opposite [106]. These findings demonstrating objective detection of early structural
change depends upon the variability of the tests involved, in addition to the
criterion that is used to determine that structural change has occurred.

Due to the irreversible nature of the pathological changes, early diagnosis is
imperative in order to preserve functional vision [157]. While glaucomatous
structural damage can be assessed subjectively by clinically examining the optic
nerve head (ONH) and peripapillary retinal nerve fibre layer (RNFL), the introduction
of ocular imaging modalities into clinical management has allowed for
supplemental objective and quantitative evaluation of ocular structure [46].

We used a fused pattern recognition model where multiple supervised models
are combined to develop a hybrid model [180]; this was used to evaluate RNFL
thickness in healthy eyes and those of patients with glaucoma. As a result, we
classify towards diagnosing glaucomatous eyes and healthy eyes and develop a
proposed model to detect glaucoma accurately with two properties, robustness and
generalisation.

In this section, we aim at evaluating the relationship between retinal nerve fibre
layer (RNFL) thickness and glaucoma patients. Thus, we develop a fused pattern
recognition model to detect healthy vs. glaucoma patients. We also used the
SuperClinic dataset that includes 175 eyes of 87 (42 female and 45 male) healthy
and glaucoma patients. We propose an ensemble machine learning approach for
healthy and glaucoma patients by applying and comparing supervised and
unsupervised models.

Statistical Data Analysis

We present the complexity of data in two different classes based on the
Z − score [190] to compare across RNFL measures. There are 175 RNFL in the
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Figure 6.4: RNFL distribution of normal versus glaucoma patients.

SuperClinic database which has a non-homogeneous distribution of healthy class
versus glaucoma class cases and this dataset was presented in Chapter 3.

There are 1,024 attributes for each eye, indicating the thickness of the retina at
points in the circle to the centre of the optic nerve and within a radius of six
micrometres. Also, data distribution with PCA (described in Chapter 2) to reduce
the dimensionality of the data is shown in Fig. 6.4 and 6.5.

We also calculated the Z-score (see Eq. (6.1)) for all 1,024 features of each value
in the normalized data set; then the mean of each record was determined. Also, we
applied a kernel density estimation (KDE) function to generate the probability
density function for density estimation to present the data distribution for each
class. Afterwards, we used the Gaussian kernels for visualising the distribution of
those high-dimensional data [222].

What is a Z-Score? A Z-score is a numerical measurement used in statistics of a
value’s relationship to the mean (average) of a group of values, measured in terms
of standard deviations from the mean. If a Z-score is 0, it indicates that the data
point’s score is identical to the mean score. A Z-score of 1.0 would indicate a value
that is one standard deviation from the mean. Z-scores may be positive or negative,
with a positive value indicating the score is above the mean and a negative score
indicating it is below the mean. Also, Z-scores are measures of an observation’s
variability.
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Therefore, the Z-score is the distance of the standard deviation away from the
mean, and it is calculated by

z =
x− µ
σ

(6.1)

where x represents the data point (RNFL value for each feature) from the data set, µ
is the mean, and σ is the standard deviation.

For a data point, a Z-score helps to point out how “unusual or usual” a data
point is compared to other values. Also, Z-scores have a normal distribution curve
where the mean is zero and the variance is equal to 1, so Z-scores do not follow the
normal distribution unless the original data follows the normal distribution.

Figure 6.4 shows an RNFL standard normal probability distribution of healthy
versus glaucoma patients. There is a significant overlap between healthy and
glaucoma RNFL thickness data. Therefore, we proposed a hybrid classifier to
detect glaucoma accurately.

Besides, the number of variables to analyse the data is 1,024. Thus, to reduce the
dimensionality of each of them, we used principal component analysis (PCA) [101].
The overlapping section is the challenging area to classify eyes into two groups
based on global RNFL thickness (see Fig. 6.5).

Also, the first three components of PCA (described in Chapter 2) show the
complexity of the data. Figure 6.5 on the bottom illustrates that there is high
complexity in our data set so we were not able to classify the data correctly by

(a) 2–PCA components (b) 3–PCA components

Figure 6.5: The complexity of data distribution based on 2– and 3–PCA components.
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using a plane in 3-dimensional space.

Methods

In Fig. 6.6, we sketch our overall approach for automated glaucoma diagnosis based
on a fused pattern recognition model with RNFL data.

Overview of Hybrid Model

The schematic diagram is a mind map of the proposed model that represents the
main components of the process. RNFL data are entered as input numeric values.
Then, data cleaning is performed on input data as a pre-processing step. Data
cleaning has been done on missing values that includes dropping missing features
and filling in not available values with any number that comes directly after it in
the same row. Afterwards, data is fed into the fused pattern recognition model.
There are two stages in the proposed model: unsupervised and hybrid supervised
phases. The hybrid model was trained on 75% of the data. Meanwhile, all data are
used for clustering by using a K-means model.

The proposed hybrid system works with an ensemble model that includes the
top ten classifiers with high 5-fold cross-validation accuracy and 5-fold
cross-validation F1 scores. All results of applied models in one particular ensemble
are amalgamated to acquire hard votes for all models together. Even though we

Figure 6.6: Overall approach based on the proposed fused pattern recognition
model.
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have high accuracy in an individual model, we apply the ensemble model to be
more robust and generalised in case of our relatively small data set. Appropriately,
the proposed ensemble model accomplishes the integrated output with high
accuracy and F1 score by applying 5-fold cross-validation. The selected classifiers
for our ensemble model are listed in Table 6.2 which we modified elements to get a
better result. The top ten selected classifiers for our ensemble model are listed in
Table 6.7 on Section 6.3 which we modified elements to get a better result.

We also determine the hyper-parameters of the classifiers with nested loops
defined by the upper and lower bound of the elements to get the highest
performance. We are combining results of classifiers with the mean of the
probability of top ten classifiers to generate a hybrid model that could improve
robustness and a generalisation of the final model as the main advantage of this
research.

Table 6.2: Examples of tuned elements (hyper-parameters) include classifiers that
are used on the tuned hybrid model.

Our supervised model Modified elements

XGBClassifier robust

random state=0 , max depth = 3 , learning rate = 0.1,
n estimators= 50, silent =True , objective=

’binary:logistic’, booster=’gbtree’,
min child weight= 3, max delta step= 1

AdaBoostClassifier robust
algorithm=”SAMME”,

learning rate=0.1 , random state=0 , n estimators=500

RandomForestClassifier robust
criterion=’entropy’, max depth=1, max features=’log2’,

random state=0,warm start=True,
n estimators=50, bootstrap=True

KNeighborsClassifier robust
n neighbors=13,

weights=’uniform’ , algorithm=’auto’ , leaf size=5

RidgeClassifier robust
max iter=100,

fit intercept=True, normalize=True

svm svc robust
C = 1 , kernel= ’rbf’, gamma = ’scale’,

probability = False, max iter= -1,
decision function shape= ’ovo’, random state=0

ExtraTreesClassifier robust
criterion=’entropy’,

max depth=1, max features=’auto’,random state=0,
warm start=True, n estimators=50, bootstrap=True)

RidgeClassifiercv robust
max iter=100,

fit intercept=True, normalize=True

NearestCentroid robust
metric=’cityblock’,

shrink threshold=None
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The test data set was entered into the tuned hybrid classifiers to detect healthy
and glaucoma eyes. Even though the size of the testing set is not very large, we
used 5-fold cross-validation on hole data to detect the top ten classifiers that can
effectively have high accuracy on our data set.

Also, we used all of our labelled data set to evaluate the performance of our
tuned unsupervised model, and the results on the K-means model compare with
labels that show us 80% accuracy with our tuned unsupervised model.

Proposed Hybrid Supervised Model

RNFL thickness measurements from 107 healthy eyes and 68 eyes with glaucoma
were acquired with Spectralis OCT. We developed 26 independent machine learning
classifiers including the top ten listed in Table 6.7.

We integrated the result of those well-tuned 26 classifiers into an ensemble
learning model to generate a “more informed” decision. We used a total of 1,024
RNFL measurements as input for the machine learning classifiers. We used 5-fold
cross-validation to find out the top ten models and test the models and examined
the accuracy and the F1 score of the hybrid model and each independent classifier
to have a robust and generalised model.

We selected the top ten most discriminating classifiers based on the best 5-fold
cross-validation F1 score and accuracy measures. The hybrid model was generated
by ensemble models of the top ten classifiers which are mentioned based on the
accuracy of 5-fold cross-validation: AdaBoost, GridSearchcv (cv; cross-validation),
XGBoost, RandomForest, NuSVC, KNN, RidgeClassifier, SVM svc, ExtraTrees and
SVC. This defines our stack of top ten classifiers to achieve an accurate model.

Proposed Unsupervised Model

We proposed an unsupervised model based on a tuned K-means classifier for
screening. This model was trained based on two clusters and without any random
state. Finally, the predicted labels were compared with the real labels annotated by
an ophthalmologist, and we obtained 80% performance based on the unsupervised
tuned model. This shows that the proposed model can be used for screening to aid
ophthalmologists. Also, the unsupervised model can be used by optometrists for
screening participants and refer suspected glaucoma cases to do more medical
examinations and be checked by an ophthalmologist accurately.

Validation of Our Study in SuperClinic Dataset

We divided the data into 75% for training and 25% for testing for validation of our
hybrid model, where the test set was not to be used during training. The evaluation
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has been done based on the test set. In addition, K-fold cross-validation will be
conducted to tune the parameters using the training data.

Multiple measures were used for performance evaluation (evaluation metrics
are described more in Chapter 2) of the proposed model such as accuracy (AC),
specificity (SP), sensitivity (SE), and F1 score (F1).

Hybrid and boosting Classifiers

In this section, we discuss the state-of-the-art boosting models with selected
classifiers as mentioned in the Section 6.2 and demonstrate the results of our
proposed model in the next Section 6.3. Moreover, the selected classifiers are
discussed in Chapter 2.

To illustrate the concept of boosting, let us give an example. Suppose we have a
series of sample test questions, and use three classifiers such as: KNN, decision tree
and NN. From the beginning, we will read and learn with the answers given
marking the ones that are most difficult for us to read for later review. The same
concept applies to the boosting classifiers. In this first stage of the classifier
method, we assume; KNN classifier observes a sample of data (using a method
such as the bagging) and constructs its own classifier. Then, it is given the same
unseen examples from the training set and this classifier is likely to misunderstand
some of the examples. Now, to select the subset of data for the second classifier
(decision tree) in the boosting method, those samples failed by the first classifier
are, it is more likely to be selected for the second classifier. The harder samples are
more likely to be selected than the simpler ones. Similarly, to create a subset of data
for the third classifier, those that were more difficult in the first and second
classifiers are more likely to be selected [280]. Hybrid classifiers generally prevent
the algorithm from over-fitting, and in many cases produce better results than
other algorithms.

6.3 Results and Discussion

Results on UCLA Dataset

We assessed the ROC curves of RNFL thickness slopes of all instrument parameters
in these two groups (see Table 6.3). Indeed, the ROC curves confirmed all our
previous findings. Moreover, the area under the ROC curve of all of the instrument
parameters (RNFL sector) were not any better and there is no chance of improving
by separating the non-converted from VF-converted eyes (see Table 6.4). Machine
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learning outcomes can be seen in Table 6.5, and the result of the proposed machine
learning model is significantly convincing.

The sensitivity of the hybrid model was 92% for detecting glaucoma eyes
correctly and specificity was 98% for detecting healthy eyes correctly. The area
under the ROC curve of the hybrid model was 0.97 (see Fig. 6.7). The most
discriminating RNFL thickness inputs to the classifier were average RNFL
thickness, temporal-inferior RNFL thickness, A-scans 60, 231, and 296, respectively.
We need to somehow define the topography of these A-scans.

Also, as a quick discussion, when data is good (features are discriminative), the
type of classifier is not a bottleneck. Whenever the features are too overlapping, the
role of the classifier is more critical. A machine learning classifier can learn from
RNFL data and provide diagnostic information accurately. Combining machine
learning classifiers and generating hybrid models could improve the robustness
and generalisability of the final model. It should be noted, when conventional
classifiers are performing convincingly, there is no reason for using deep learning.

Results on SuperClinic Dataset

Moreover, in this study on the SuperClinic dataset, we achieved an F1 score of 0.82
and an accuracy of 82% using 5-fold cross-validation on a data set of 107 RNFL
data from healthy eyes and 68 RNFL data from eyes with glaucoma; 25% of the
data had been selected randomly for testing. We also used different evaluation
measures [187] to show the probability that a patient has glaucoma or not. We

Table 6.3: The area under the ROC curve of RNFL thickness at different sectors; the
best area under the ROC curve is 0.91.

RNFL sector Area under the ROC curve
Average RNFL thickness Global 0.91

Average RNFL thickness at Temporal-Inferior 0.91
Average RNFL thickness at Temporal-Superior 0.88

Average RNFL thickness at Nasal-Inferior 0.88
Average RNFL thickness at Nasal 0.86

Average RNFL thickness at Nasal-Superior 0.86
Average RNFL thickness at Temporal 0.79
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Table 6.4: The area under the ROC curve of RNFL thickness ad different A-scans;
the best area under the ROC curve is 0.90.

RNFL sector Area under the ROC curve
RNFL thickness at A-scan 629 0.90
RNFL thickness at A-scan 638 0.90
RNFL thickness at A-scan 639 0.90
RNFL thickness at A-scan 640 0.89

Table 6.5: Machine learning with the hybrid model and traditional classifiers
outcomes.

Machine learning method Area under the ROC curve
Hybrid model 0.97

Extra-trees 0.96
K-nearest neighbours 0.96

Ridge classifier 0.94
AdaBoost 0.94

Random forest 0.94

obtained the results (shown in Table 6.6) by our proposed robust model.

Table 6.6: Results of our hybrid model based on 1,024 features for 175 patients.

F1 5cv Acc 5cv F1 Acc Recall Precision
0.82 81.7 0.82 81.8 0.82 0.82

Sensitivity or recall was 82% for detecting glaucoma eyes correctly. Also, the
F1 score for 5-fold cross-validation was 0.82 for detecting the top ten classifiers to
obtain healthy versus glaucoma eyes successfully, and the F1 score is usually more
indicative than accuracy.

All results of the top ten selected classifiers for our ensemble model are listed in
Table 6.7.

We also used the top ten classifiers for testing of 25% of unseen data with
different evaluation measures. The confusion matrix (see Fig. 6.8) shows the
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Figure 6.7: ROC curves of the hybrid machine learning framework for detecting
glaucoma from RNFL thickness measurements; K-nearest neighbours (orange
colour), extra-trees (light green colour), ridge classifier (pink colour), random forest
(purple colour), and AdaBoost (dark green colour).

performance of the proposed model.
Based on the results of our proposed fused pattern recognition model, we

demonstrate that our model can work on a variety of new data from the same
device with 80% accuracy. We also obtained 80% accuracy with the unsupervised
model which is quite promising because ophthalmologists usually can classify 80%
of patients based on one modality data.

Detailed Comparison and Discussion

Although, there are the same types on both datasets (text data) the number of
features and complexity of patients’ data are different and, because of that, the
performance of the results is not the same as each other. We also added one more
XGBClassifier in to a proposed ensemble model to get better performance on the
SuperClinic dataset. This classifier boosts the performance of our outcome.
Additionally, we used on both datasets different evaluation metrics to tune and
optimize the model. Finally, our proposed model shows that performance on it is
over 80% which is valuable for glaucoma screening and aiding ophthalmologists.
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Table 6.7: Results of the proposed hybrid model based on the top ten of 26 classifiers.

Proposed top ten models All data Test data set
No Models F1 5cv Acc 5cv F1 Acc Recall Precision TN FP FN TP
1 AdaBoostClassifier robust 0.82 82.3 0.77 77.3 0.77 0.77 19 4 6 15
2 GridSearchCV 0.82 81.7 0.82 81.8 0.82 0.82 20 20 3 5
3 XGBClassifier robust 0.82 81.8 0.77 77.3 0.77 0.77 19 4 6 15
4 RandomForestClassifier robust 0.82 81.7 0.75 75.0 0.75 0.76 20 3 8 13
5 NuSVC 0.82 81.2 0.82 81.8 0.82 0.82 1 20 3 5
6 KNeighborsClassifier robust 0.82 81.2 0.80 79.6 0.80 0.80 20 3 6 15
7 RidgeClassifier robust 0.81 81.1 0.82 81.8 0.82 0.83 21 2 6 15
8 svm svc robust 0.81 81.1 0.82 81.8 0.82 0.82 20 3 5 16
9 ExtraTreesClassifier robust 0.81 81.2 0.75 75.0 0.75 0.76 20 3 8 13

10 SVC 0.82 80.6 0.75 75.0 0.75 0.76 1 20 3 8

11 RidgeClassifiercv robust 0.80 80.6 0.77 77.3 0.77 0.79 21 2 8 13
12 LogisticRegression 0.78 78.3 0.72 72.7 0.73 0.74 1 20 3 9
13 GaussianNB robust 0.77 77.2 0.73 72.7 0.73 0.73 18 5 7 14
14 NearestCentroid robust 0.77 76.5 0.77 77.3 0.77 0.77 18 5 5 16
15 MLPClassifier 0.76 76.5 0.77 77.3 0.77 0.78 20 3 7 14
16 LinearSVC 0.75 74.9 0.68 68.2 0.68 0.68 17 6 8 13
17 OneVsRestClassifier 0.74 74.9 0.77 77.3 0.77 0.77 19 4 6 15
18 Perceptron 0.73 74.8 0.70 70.5 0.71 0.71 15 8 5 16
19 PassiveAggressiveClassifier 0.73 73.1 0.65 65.9 0.66 0.67 19 4 11 10
20 GradientBoostingClassifier 0.72 72.6 0.72 72.7 0.73 0.73 1 19 4 8
21 SGDClassifier 0.72 73.6 0.53 61.4 0.61 0.78 23 0 17 4
22 BaggingClassifier 0.71 70.9 0.65 65.9 0.66 0.66 18 5 10 11
23 DecisionTreeClassifier 0.68 68.2 0.63 63.6 0.64 0.64 1 18 5 11
24 LinearDiscriminantAnalysis 0.63 62.9 0.64 63.6 0.64 0.64 1 16 7 9
25 QuadraticDiscriminantAnalysis 0.49 50.3 0.38 45.5 0.46 0.39 1 18 5 19
26 BernoulliNB 0.43 53.2 0.40 52.3 0.52 0.51 22 1 20 1

6.4 Summary

We used UCLA dataset to train a hybrid machine learning classifier that detected
glaucoma with high specificity and sensitivity based on RNFL thickness
measurements. In other words, a stack of five models ensemble-voting on the
outcome can be more robust and generalisable. This approach could be valuable in
detecting glaucoma in clinical practice and for research purposes.

We also propose the tuned ensemble method on the SuperClinic dataset and we
did data cleaning prior to analysis to obtain a better performance. Our results were
approved by an ophthalmologist. The performance of our model is 82% and this
documents two features, robustness and generalisation, which points to the
usefulness for screening. The proposed model is ready to be retested on large and
diverse data sets and can assist the ophthalmologists in their daily examination
tasks to confirm their diagnoses, thereby increasing the accuracy of diagnosis. This
study also shows that the proposed ensemble model and K-means performs well
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Figure 6.8: Confusion matrix based on the proposed hybrid model on testing data.

for real-time implementation of a classifier for healthy and glaucoma eyes. It is also
suitable for the development of medical devices based on IoT (internet-of-things)
and remote monitoring via a web interface. Finally, the contributions of this
chapter can be summarised as follows:

• Classification of healthy versus glaucoma patients through RNFL data with
1,024 feature points with 0.82 of F1 score

• Visualisation of our complex data with Z-score metric in both glaucoma and
healthy classes

• Robustness and generalisability improvement through results combination of
traditional classifiers to generate the hybrid

There are not any public RNFL data sets. There is also some related research
on private and not large data sets [60, 149, 180] and available high accuracy results
on this research because of less complexity of data, but we got promising results
based on small, complex and high dimensional data with the ensemble technique.
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Moreover, the accuracy of our result is not quite high, but it can generally detect
over 80% of ophthalmologist’s diagnoses. Additionally, other studies [60, 149, 180]
used different data features and complexity and that was why no comparison results
with other state-of-the-art algorithms are given. For the future, we will use time
series and multi-modal retina data for the prognosis of glaucoma disease and will
do retests on our proposed model on the new data set with the same data structure.



Chapter 7

Transfer Learning in Glaucoma Detection

This chapter aims to develop a machine learning-based algorithm for glaucoma diagnosis
in patients with lack of annotated fundus images, so we use the transfer learning model. In
order to build a deep transfer learning model to diagnose glaucoma using a fundus image, we
re-designed and tuned an optimized transfer learning model to detect glaucoma efficiently.
First, we propose a system for clinical testing based on an automated glaucoma diagnosis
using the transfer learning technique and validate it with test and retest data sets. Then,
we make a comparison of transfer learning techniques, deep convolutional neural network,
and multilayer neural network methods for the diagnosis of glaucomatous optic neuropathy.
There is also a potential to have a tool/web-application glaucoma prediction via traditional
and deep machine learning models based on the cloud.

Moreover, we used the developed deep learning framework that can automatically
identify clinically relevant biomarkers on glaucoma fundus images. Material discussed in
this chapter has been published in my publications [178, 181, 182].

7.1 Glaucoma Patients and Rules for Assessment of
Fundus

Glaucoma, the second leading cause of blindness in the world, is a group of optic
neuropathy disorders that lead to loss of vision if left untreated [7, 136].

Early glaucoma diagnosis prevents permanent structural optic nerve damage
and consequent irreversible vision impairment. Longitudinal studies have
described both baselines structural and functional factors that predict the
development of glaucomatous change in ocular hypertensive and glaucoma
suspects. Although there is neither a gold standard for disease diagnosis nor
progression, photographic assessment of the optic nerve head remains a mainstay
in the diagnosis and management of glaucoma suspects and glaucoma patients.

Because of the rapid increase in aging populations, accurate diagnosis is critical
for making treatment decisions to preserve vision and maintain quality of life [123,
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126,240,279,287,314]. Stereoscopic disc photos provide an appropriate record of the
optic nerve, independent of the specialized viewing instrument [171, 173, 239, 255,
279, 287].

Stereoscopic disc photos remain one of the most widely-used and accepted
methods for documentation of the optic nerve head [127, 171]. However, due to its
subjective nature, assessment of optic disc photographs for the presence of
glaucoma is labour-intensive and prone to interpretation errors. From a clinical
perspective, many eye care specialists prefer to have access to more objective
analyses for glaucoma diagnosis. Five rules for assessment of fundus
stereo-photographs to identify glaucoma and monitor its progression over time
have been described by Fingret et al. [38, 239].

Identifying glaucomatous optic neuropathy (GON) based on ONH photographs
is one of the standard methods used for glaucoma diagnosis [38]. This process is
labour-intensive and biased by reader variations.

Optic disc change supersedes visual field testing as a reference standard in both
disease diagnosis and progression [163, 219]. Structural change is detected earlier
than visual field abnormalities in over half of patients progressing to an initial
diagnosis of glaucoma [100]. Optic disc photography is the most commonly used
technique to objectively document structural ONH damage due to its
reproducibility and low cost [73]. In addition it has been used as an endpoint in
randomized clinical trials: the ocular hypertension treatment study (OHTS), the early
manifest glaucoma trial (EMGT), and the European glaucoma prevention study
(EGPS) [219].

We present a decision support tool for differentiating normal optic nerves from
those diagnosed with glaucoma/glaucoma suspects. The extracted parameters
include cupping the area, and vertical and horizontal cup to disc ratio. This study
was conducted in order to detect slight changes in these parameters automatically
using digital fundus image DFIs and dividing images into two different categories of
glaucoma/glaucoma suspects and normal optic nerves. The optic disc critical region
(ODCR) is the small region of the DFIs, and processing ODCRs takes less time in
comparison with the processing of the DFIs.

We applied different machine learning algorithms such as transfer learning
models, deep convolutional neural network (CNN), and deep multilayer neural network
(MNN) to the ODCRs and extracted clinically relevant parameters automatically.
The ODCR parts are available in DFIs in the RIM-ONE data set as input to apply to
the deep learning algorithms. Generally, deep CNN was developed for image
segmentation and classification [53, 75].

Transfer learning of machine learning techniques restores the weights and
labelled data which are trained on the ImageNet dataset [64]. It can be applied to
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other tasks that are complicated such as glaucoma classification and robust optic
disc segmentation [251]. Moreover, transfer learning models have been improved
and developed to be applicable to small data sets. Recently, research studies
indicated that many approaches that have attempted to segment the optic cup and
optic disc have used unsupervised machine learning [175].

Recent advances in artificial intelligence and significant growth in available data
have enhanced identification of ocular disorders including glaucoma diagnosis. In
particular, deep learning techniques can identify highly complex patterns to detect
various ocular pathologies [6, 143].

In this chapter, we propose an automated software application based on deep
learning and transfer learning that can differentiate between healthy eyes and
those with glaucoma using ONH photographs. We selected the regions of interest
within the ONH photographs, namely regions which included the cup. In fact, the
cup-to-disc ratio (CDR) is one major parameter for identifying glaucoma [239].
Besides, we compared the transfer learning models and deep convolutional neural
network and deep neural network to convince that the proposed model based on
transfer learning is accurate, robust and objective.

7.2 Materials

We used two independent data sets as described below, from universities in the USA
and in Germany/Czech Republic.

The first data set was obtained from patients with healthy eyes and those with
glaucoma who visited the glaucoma clinic at the University of California Los Angeles
(UCLA) and it was presented in Chapter 3.

The second data set is the high-resolution fundus (HRF) data set that is publicly
available. This data set was also presented in Chapter 3.

RIM-ONE is the third data set that we used in this chapter to compare the
transfer learning models with deep CNN and NN; we employed a public retinal
image database on optic nerve evaluation for two healthy and glaucoma categories
that are exclusively focused on optic nerve head (ONH) segmentation. The second
version (V2) of RIM-ONE data set [88] was presented in Chapter 3 as well.

In the following sections of this chapter, we propose an automated software
application based on deep learning and transfer learning that can differentiate
between healthy eyes and those with glaucoma using ONH photographs. We
selected the regions of interest within the ONH photographs, namely regions
which included the cup. In fact, the cup-to-disc ratio (CDR) is one major parameter
for identifying glaucoma [239]. In addition, we compared the transfer learning
models and deep convolutional neural network and deep neural network with
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each other to convince that the proposed model based on transfer learning is
accurate, robust and objective.

7.3 Very Deep Pre-trained Networks

The transfer learning (pre-trained) method is a state-of-the-art supervised machine
learning technique. This model is developed and trained on a massive standard
data set (ImageNet) and then used for other tasks. Pre-trained algorithms are first
trained on that data set, and then weights and parameters are saved. Thus, it
applies to deploy a pre-trained algorithm on glaucoma detection, but results are
dependant on setting the hyper-parameters so it is tricky to get trustworthy results.
Pre-trained methods do not require segmentation of DFI structures, so these
algorithms can serve as prior knowledge for measuring different glaucomatous
symptoms associated with fundus segmentation.

Convolutional neural networks (CNNs) have been widely used for image
segmentation and classification [52, 53, 154, 200]. Transfer learning is implemented
in developing deep learning frameworks to address restrictions due to the limited
number of input samples as well as computational resources for running deep
learning techniques. Transfer learning employs the weights and parameters that
were learned from previous large labelled data sets and applies them to the new
task [251].

We use very deep learning along with transfer learning to detect glaucoma from
ONH photographs. Transfer learning (transferring the pre-trained parameters and
weights to a new deep learning model) is a state-of-the-art machine learning
technique that is used widely to train deep learning approaches. Thus, we have
briefly explained in this section about pre-trained models that apply to the next
section.

VGG19

VGG19 [223] has been widely used for different applications. As its name implies,
VGG19 has 19 layers, with 16 convolutional layers and three fully connected layers
[313].

VGG19 accepts a default input size of 244 × 244 for a colour image and it has
been recently used for glaucoma detection on visual field tests [153, 223]

In this research, the input size is modified to 299× 299 and the number of layers
is extended up to 25 layers to address the over-fitting problem. Similar to
InceptionResNet, most of the parameters are trainable and a small fraction is kept
as default.
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Figure 7.1: Schematic block diagram of VGG19 [54].

VGG19 has three fully connected layers at the end and all hidden layers use the
rectifier units (ReLU) activation function. VGG19 provides a flexible architecture for
different tasks. Similar to InceptionResNet, we used data augmentation in training.
Figure 7.1 represents the architecture of the VGG19 model.

VGG19 is an appreciable architecture to evaluate a specific task, and it also
works well on image classification for big image data sets. Scale jittering was used
as one of data augmentation techniques during training. The ReLU activation
function was used after each convolution layer and trained with batch gradient
descent. Two training and validation scores have not converged into each other in
different epochs, up to fifty. Therefore, in this case, VGG19 is an overfit model and
not applicable.

InceptionResNet-V2

InceptionResNet-V2 is a very deep convolutional network (825 layers) [289] that
has been employed in different image recognition tasks in recent years.
InceptionResNet has multiple layers including input, output, convolutional,
pooling, residual, concatenate, dropout, and fully connected layers. The default
image input size is 299× 299 in colour format [233]. In our study, we required most
of the parameters to be trainable and only a small fraction was selected as default.
In order to optimize the training computational complexity, we used a cloud-based
graphics processing unit (GPU). Figure 7.2 shows the details of InceptionResNet
layers.
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Figure 7.2: Schematic block diagram of InceptionResNet-V2 [308].

Multilayer Neural Networks

Our proposed MNN has three fully connected layers with, five, fifteen and five
neurons in each layer. The ReLU activation function on the first three layers and
the softmax activation function on the output layer were employed. All images are
applied as an input vector to the first layer and then transferred to the hidden
layers while each hidden layer is connected to preceding layers. The task of the
activation function is to express an output which is given by some inputs.

Two training and validation scores have not converged into each other in one
hundred epochs. Therefore, in this case, the MNN method is not applicable; it has
an over-fitting problem.

Convolutional Neural Networks

ConvNets [147, 269] can learn weights and biased values from the processed
images. The CNN had been employed to detect glaucoma by training seven
convolutional layers with an average accuracy of 92.68 % [237] on the Drive
database, which is a public data set. In our work, a deep CNN was employed with
six convolution-layer blocks. In the first block, two convolution-layers are available
with sigmoid activation functions, and there are two convolution-layers with ReLU
activation functions in the other five blocks. At the end of this ConvNet
architecture, there are three fully connected layers with a softmax activation
function. It should be mentioned that the filter size is 3× 3 and dropout is 5% in all
blocks. Two training and validation scores have not converged into each other for
the first one hundred epochs; thus, the proposed method fails to meet the
objectives because of over-fitting.

Although the current CNN model works very well on big data sets, the transfer
learning method can be deployed on the limited data set to get the best result.
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Transfer Learning - InceptionResNet

The Inception-ResNet [233] is applicable to glaucoma detection, and both
validation and training loss scores converged into each other in ten epochs. The
accuracy of test data with the Inception-ResNet method on the RIM-ONE data set
is 85%. In our study, we required most of the parameters to be trainable and only a
small fraction was selected as a default. In order to optimize the training
computational complexity, we used a cloud-based graphics processing unit (GPU).

Transfer Learning - Xception

Another pre-trained model to check the results of our application is Xception [59].
The Xception model is a linear stack of depth-wise separable convolutional layers
with residual connections [92]. A depth-wise separable convolution is a kind of an
Inception module [54] with a maximally large number of towers. This approach
leads to the proposal of a novel deep CNN model inspired by Inception, where
Inception modules have been replaced by depth-wise separable convolutions. It
slightly improved results compared to Inception V3 on ImageNet and has the same
number of parameters as Inception V3. Performance gains are not due to increased
capacity but rather to a more efficient use of model parameters [59].

The default image input size is 299 × 299 in colour format and training and
validation input images feed into the model. In our study, convs layers were
frozen, so available weights of Xception were transferred from convs layers into
fully connected layers. These fully connected layers were trained by input images.
Accuracy and loss scores converged into each other. The best result is achieved on
the 20th epoch: 90% of healthy images and glaucoma cases are correctly identified.

Proposed Method Based on Transfer Learning - NASNet

In this study, another pre-trained model was used to recheck the result of our
application. NASNet [274] is a pre-trained model that can be used for small
databases. Our proposed model based on NASNet is explained in detail as follows:
The feeding image size is 299 × 299. The proposed model is modified in the
training phase by an augmentation. There are four fill-mode augmentations:
constant, nearest, reflect, and wrap. Due to the high performance, the best result
was achieved using a proposed fill mode with “nearest” in augmentation.
Furthermore, images have been horizontally filled. Other tuned factors are rotation
range (equal to 40), width shift range (0.2), height shift range (0.2), shear range
(0.2), zoom range (0.2), and channel shift range (10); the remaining factors are the
same as NASNet defaults.
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The proposed model has 85,723,220 parameters, of those, 85,523,960 are trainable
and the rest of them are non-trainable parameters. Our model started by calling the
NASNet-Large model with ImageNet weights. The model was flattened to build a
long feature unit vector and use it by a fully connected layer to make a decision for
the final classification with the softmax activation function; dropout is assumed to
be 0.1. Freezing layers have been used, except in the fully connected layers. The
proposed model uses Adam optimizer and a lower learning rate of 1e− 5 since our
model is fine-tuning to achieve our goal which is a better performance and accuracy
to detect glaucoma or non-glaucoma eyes. Three learning rates have been tested:
1e − 3, 1e − 4 and 1e − 5. Except for the 1e − 5 learning rate (that we have chosen),
the other learning rates lead to over-fitting in the model.

We will compare the reported results with a number of transfer learning models
and deep learning methods to identify the best performing approach.

7.4 Transfer Learning Generalisation

We developed a deep learning algorithm for identifying glaucoma on optic nerve
head (ONH) photographs. Transfer learning was applied to overcome over-fitting
on the small training sample size that we employed. The transfer learning
framework that was previously trained on large data sets such as ImageNet, uses
the initial parameters and makes the approach applicable to small sample sizes. We
then classified the input ONH photographs as healthy (“normal”) or “glaucoma”.

Using this approach, deep learning frameworks are trained using a large
standard, like ImageNet [64], then weights and parameters are saved to be used for
another task. Thus, we transferred the pre-trained parameters as the initial setting
of the deep learning framework and then tuned the parameters using the ONH
photographs from the UCLA data set for glaucoma diagnosis.

Basically, it is challenging to train a robust model with a limited number of
input images without transfer learning. In other words, transfer learning can serve
as prior knowledge for measuring the difference between glaucomatous signs
manifested in ONH photographs of eyes with glaucoma and those from healthy
eyes.

The block diagram in Fig. 7.3 represents our proposed approach to
automatically diagnose glaucoma using ONH photographs. Training and
validation data of the UCLA data set were entered as input images. Then, all
images were cropped as the pre-processing step. Afterwards, data were fed into
VGG19 and InceptionResNet-V2 models, then hyper-parameters (features on deep
learning models that should be initialized such as learning rate, batch size, and so
forth) were tuned to have accurate and tuned classifiers. Finally, the test and retest



7.5. CNN and MNN in Contrast to Transfer Learning 101

Figure 7.3: The overall approach for automated glaucoma diagnosis.

data sets were entered into the tuned classifiers to detect healthy and glaucoma
eyes.

We used two deep learning models; VGG19 and InceptionResNet-V2. Our
motivation is to identify which model performs better when we use a small
number of input fundus images.

ONH photographs were entered into both VGG19 and InceptionResNet-V2
models. We kept the initial parameters of these two models and trained them using
UCLA ONH photographs. Different layers of these two models extract features
(related to glaucoma symptoms) at different resolutions.

We used 447 ONH photographs from the UCLA data set that included 277
images from healthy eyes and 170 images from eyes with glaucoma. We randomly
selected 70% of the images for training, 25% for the validation and 5% for testing.

We also used the HRF data for retesting the model and assessing its
generalisability. The region of interest of each image (optic disc) was cropped
manually and fed to the models.

7.5 CNN and MNN in Contrast to Transfer Learning

We describe a method aimed at both detecting pathologic changes, characteristic of
glaucomatous optic neuropathy in optic disc images, and classification of images
into categories glaucomatous/suspect or normal optic discs. Three different deep
learning algorithms used are transfer learning, deep convolutional neural network,
and deep multilayer neural network that extract features automatically based on
clinically relevant optic-disc features.

Deep learning demands extensive data for training. Optimized weights and
image features are chosen during learning, and also for evaluation using accuracy
metric. Then, the best model is selected. Finally, after training the selected model,
the test data set is used to check the quality of the trained model.

The research is aimed at classifying medical images; a high-quality deep



102 7. Transfer Learning in Glaucoma Detection

Figure 7.4: Block diagram for glaucoma classification.

learning model based on a limited number of low resolution (about 500 × 600 )
images from RIM-ONE V2 has been employed. Due to the small size of this image
data set, it is divided into three parts, approximately 75% for the training set, 20%
for evaluation, and 5% for testing. In order to overcome the requirement of having
a large number of images, we used transfer learning models which are applicable
to the weights trained on a large number of images in ImageNet. For the
evaluation of the proposed approach, it has been compared with three popular
types of deep learning: transfer learning, CNN and MNN. It was found that due to
the lack of data, the aforementioned methods did not provide desirable results. By
using transfer learning methods and adjusting the hyper-parameters, we was able
to achieve improved results. Altogether, in this research we compared three
methods for diagnosing glaucoma: CNN, MNN, and (four different) transfer
learning methods which are represented as a block diagram in Fig. 7.4. This block
diagram includes three supervised learning techniques and a deep learning
approach. In the following, we explain briefly these three deep learning methods.

7.6 Evaluation Criteria and Results

Results of Transfer Learning Generalisation

The proposed approach based on InceptionResNet-V2 for generalisation achieved a
validation accuracy of 92.3% on a data set of 277 ONH photographs from healthy
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(a) Accuracy scores (b) Loss scores

Figure 7.5: Scores of accuracy and loss function for training and validation stages
on InceptionResNet-V2 model.

eyes and 170 ONH photographs from eyes with glaucoma. In order to retest the
accuracy and generalisability of the proposed approach, we retested the algorithm
using an independent data set of 30 ONH photographs. The retest accuracy was
80.0% on average.

This section presents our results when applying the proposed model based on
InceptionResNet-V2 model.

Figure 7.5 presents accuracy versus loss in the training and validation stages of
the InceptionResNet-V2 model. Figure 7.5a shows how accuracy improves both
training and validation with an increase in the number of epochs. Figure 7.5b
illustrates how loss decreases for both training and validation with an increase in
the number of epochs. Accuracy and loss scores are totally converged into each
other. The test and retest results show that this model is working accurately.

Table 7.1: Results of InceptionResNet-V2 model.
“VAL” indicates validation, “ACC” is accuracy, “H” is healthy, and “G” is glaucoma
or suspected. Bold data belongs in the best epoch for the proposed method.

Results on UCLA data set Results on HRF data set
Epoch Train loss Train ACC (%) VAL loss VAL ACC (%) Test H ACC (%) Test G ACC (%) Retest H ACC (%) Retest G ACC (%)

5 0.40 81.88 0.61 71.15 70 100 86.67 60
10 0.26 90.00 0.31 86.54 80 90 86.67 40
15 0.16 93.13 0.26 92.31 80 100 66.67 40
20 0.12 96.88 0.17 92.37 80 90 93.33 20
25 0.11 96.25 0.28 91.35 70 100 73.33 40
30 0.06 98.44 0.22 92.31 100 90 93.33 66.67
35 0.05 97.81 0.23 89.42 70 100 53.33 53.33
40 0.03 99.06 0.19 92.31 100 90 93.33 40
45 0.02 99.37 0.16 92.31 90 100 66.67 66.67
50 0.05 98.75 0.07 96.15 90 100 86.67 53.33
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We used the pre-trained deep learning model (InceptionResNet-V2 model; see
Table 7.1) for generalisation.

Figure 7.5 indicates that scores of InceptionResNet-V2 model converged into
each other, and it shows that the record of epochs is between 0 to 30.

Table 7.1 shows more detailed results on training, validation, testing, and
retesting for all data sets. We recorded the outcome of the model on epochs five to
50, for every five epochs.

As can be seen, the loss of training decreases consistently with an increase in
the number of epochs, except for the 15th epoch in the InceptionResNet-V2 model
(Table 7.1).

The best result is achieved on the 30th epoch, in that all healthy images and
90% of glaucoma cases are identified correctly. Moreover, in this epoch, the system
detected 93.3% of the healthy eyes and 66.7% of glaucoma eyes correctly.

The results of comparing Transfer Learning with CNN and MNN

The Inception-ResNet [233] is applicable to glaucoma detection, and both
validation and training loss scores converged into each other in ten epochs. The
accuracy of test data with the Inception-ResNet method on the RIM-ONE data set
is 85%. In our study, we required most of the parameters to be trainable and only a
small fraction was selected as a default. In order to optimize the training
computational complexity, we used a cloud-based graphics processing unit (GPU).

The proposed model based on NASNet was trained for five to 50 epochs with
elements as mentioned above. The best result was achieved for 50 epochs. The loss
fiction result was 0.04, the accuracy value was 98.16%. The result for feeding 20
unseen healthy and glaucoma cases was 90%. The result indicates that our model
learned to predict binary classification based on the data set. Some of the results for
the test data set are shown in Fig. 7.6.

All results are shown in Table 7.2. “Test ACC” refers to the accuracy of twenty
images randomly selected from RIM-ONE, which were unknown for the proposed
system. We used a loop with checking thirty different seed random values to choose
the highest accuracy with the lowest loss value. Then, we fixed the seed to have a
reproducible result to test and retest our proposed model.

When checking the twenty test DFIs, an ophthalmologist was able to detect 70%
of them correctly based on the given low-resolution fundus images provided on
RIM-ONE as a test set. Expectedly, our proposed method can detect with 18 images
correctly out of 20. This method has got 90% accuracy and you can see the results of
the proposed method in the highlighted row in Table 7.2.

Of the total of 455 cases extracted from the RIM-ONE public data set (version
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Figure 7.6: Detected glaucoma (left) and healthy cases (right) on test ODCRs in the
RIM-ONE data set with the proposed model based on NASNet.

Table 7.2: Glaucoma detection results for different deep learning methods and “–”
indicates that a result is not provided because of over-fitting.

Results in comparison with each other
Classifier Best epoch Train ACC (%) Train loss Test ACC (%)

MNN – 97.25 0.10 50.00
CNN – 64.31 0.65 50.00
VGG – 88.77 0.27 50.00

InceptionResNet 10 82.56 0.41 85.00
Xception 20 79.14 0.43 90.00

Proposed model 50 98.16 0.04 90.00

2), consisting of 348 training, 87 validation and 20 test cases, the proposed
approach classified images with a training accuracy of 98.16%. We hypothesise that
this approach can support the clinical decision algorithm in the diagnosis of
glaucomatous optic neuropathy.

In this research, InceptionResNet-V2 model has got a much deeper architecture
than the VGG model that could generate more accurate outcomes [178, 181].

7.7 Identification of Clinically Relevant Biomarkers

Several deep learning methods are proposed for glaucoma identification from
retinal fundus images, however, most of these models provide a black box rather
than an interpretable approach. We propose a deep learning approach for
glaucoma screening using an interpretable approach to develop a deep learning
framework that can automatically identify glaucoma and can identify and localize
clinically relevant glaucoma biomarkers on fundus images rather than performing
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merely as a black box.
Fundus photographs from 267 healthy eyes and 160 eyes with glaucoma were

included. We developed a deep learning model based on the pre-trained NASNet
and used a heat map technique to assess parts of the fundus image that were
driving the classification, thus allowing localization of clinically relevant objects on
retinal fundus images. After training the model, all 427 fundus images were used
as preprocessed inputs [67] to the proposed model (based on a deep pre-trained
classifier) consisting of the region of interest on fundus photographs. The clinical
diagnosis labels of fundus images were validated by a glaucoma specialist and the
outcome of deep learning was assessed by experts to assure clinical relevance. We
used another independent data set including fundus photographs from 455 eyes
for validating the model.

To develop the proposed model; firstly, fundus images were enhanced prior
feeding to the deep learning model by a mixed noise removal algorithm based on
the super-resolution algorithm and CNN [67]. Then, different augmentations were
used such as shift, shear, zoom, and channel shift range, with horizontal flip and
nearest fill mode. Deep pre-trained NasNet was used to distinguish fundus images
of healthy eyes from fundus images of eyes with glaucoma.

Finally, the heat map technique identifies regions in fundus photographs that
are major drivers of glaucoma identification and thence localizes glaucoma
signatures. It consists of multiple maps (heat-maps) in different activation and
convolution layers.

Note that the deep learning model, a supervised deep pre-trained learning
model was applied to the data in the limited fundus images to identify distinct
structures literally.

For validation of clinically relevant signatures, we validated the approach using
sample fundus images from eyes with glaucoma from the UCLA data set [181]. The
clinical diagnosis labels of fundus images were validated by a glaucoma specialist
and the outcome of deep learning was assessed by experts to assure clinical
relevance.

Results

Moreover, the accuracy of the deep learning model to identify biomarkers in
discriminating healthy eyes from eyes with glaucoma was 92%. The validation
accuracy on an independent data set of 455 images was 90%. Among fundus
images that had been classified to glaucoma group, we observed that deep learning
had identified significant features mostly in the superior/inferior peripapillary
regions, within the optic nerve head, as well as in their pattern of the large blood
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vessel structure.
The heat map model identified the following major signatures for identifying

glaucoma:

• Selected boundaries located towards the right side of the optic disc nerve head
on fundus images

• The overall optic nerve head structure (Fig. 7.7)

• The overall structure of large blood vessels (Fig. 7.8–Top)

• Neuroretinal rim structures (Fig. 7.8–Bottom)

7.8 Summary

We developed a deep pre-trained model for detection of glaucoma from retinal
fundus images using InceptionResNetV2 glaucoma.

We used transfer learning to overcome the over-fitting problem caused by the
limited number of input images. We used two independent data sets for training
and retesting of the model to assure generalisability of the proposed model.

Figure 7.7: The utility of optic nerve head structure region in detecting glaucoma.
Left: Optic nerve head structures identified as a significant feature for the detection
of glaucoma based on the proposed deep learning model,
Right: A sample input fundus image overlaid on the optic nerve head structure in
the left panel.
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Figure 7.8: Relevant glaucoma biomarkers.
Top: The utility of blood vessel structure feature in detecting glaucoma.
Top left: Blood vessels structure identified as a significant feature for glaucoma
detection.
Top right: The input fundus image overlaid on the blood vessel structure in the left
panel.
Bottom: Neuroretinal rim was identified as a significant feature for detecting
glaucoma.
Bottom left: Neuroretinal rim structures identified by deep learning as a significant
feature for detection of glaucoma.
Bottom right: Input fundus image overlaid on the neuroretinal rim shown in the left
panel.

InceptionResNet-V2 provides acceptable accuracy for validation, test, and retest
data sets.

The average specificity and sensitivity of InceptionResNet-V2 on test and retest
data sets were over 100%, 90.1%, 90.9% and 93.3%, respectively.
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The proposed framework could be used in clinical and research settings for
automated glaucoma diagnosis.

Moreover, in this chapter, we propose a method based on the NASNet model that
was trained accurately on 75% of the RIM-ONE V2 data set and gained the least loss
score for 50 epochs training. It was evaluated on a test data set which included 20
unseen images. It was successful in classifying glaucoma and suspected glaucoma
versus healthy with 90% accuracy.

Totally, six models were trained and compared with each other where three of
them (MNN, CNN, and VGG19) had an over-fitting problem. Also, three other
models (InceptionResNet, Xception, and proposed method) were deployed to
corroborate the performance of the transfer learning models; results were
compared to each other. Contributions of this part are as follows:

1. We propose a strategy of using transfer learning techniques for detecting
glaucoma. Transfer learning is an opportunity to use and test this method for
the detection of healthy versus glaucoma fundus images.

2. Transfer learning models, CNN, and MNN were applied to investigate results
in up to one hundred epochs. Moreover, the comparison of results indicates
that the proposed method based on NASNet is an eminent method which is
applicable to categorize data accurately (with 90% accuracy).

3. In this part, the study was done on a publicly available data set (RIM-ONE).
This data set allowed us to evaluate images and extract different features
locally or in the cloud. Reliable results are achieved despite the low quality
and the small size of fundus images.

Overall, this chapter points toward an appropriate path for glaucoma detection
using deep transfer learning.

In future work, we will compare the reported results with a number of classical
machine learning and deep learning methods to identify the best performing
approach through the multi-modal data. We plan to provide a refined statistical
analysis for the performance of the proposed model.

Additionally, fundus photographs can be mined using transfer deep learning
techniques to provide critical knowledge about glaucoma onset. Deep learning
models based on pre-trained parameters can detect clinically relevant glaucoma
signatures from fundus images with high accuracy. Clinically relevant glaucoma
signatures can be visualized using the proposed deep learning and heat map
framework. The proposed framework provides a step towards more interpretable
deep learning approaches rather than black–box approaches. Moreover, we
developed the proposed deep learning model based on pre-trained parameters that
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were able to detect clinically relevant glaucoma features from fundus images with
high accuracy. This approach could be useful in glaucoma clinics as well as in
general practice settings as an assistive tool for screening glaucoma in the absence
of glaucoma clinicians. Validation of our findings in an independent cohort with
larger number of fundus images is required.



Chapter 8

Discussion and Conclusions

This chapter discusses the key contributions and achievements of this thesis and further
articulates the research questions, posed in Chapter 1. We also addressed all research
questions as stated in Chapter 1. Some main limitations of this work are then discussed
along with an overview of future directions.

Discussion

We discuss the research questions and how we got the solution that is approved by
ophthalmologists . The research questions of this study are listed as follows:

How can we detect changes on retinas in the rim area of ONH with stereo and
monocular images?

Stereo optic-disc imaging improves intra and inter-observer agreement in the
detection of optic disc abnormalities. We proposed a robust method to help
the specialist in detecting some abnormalities in stereo optic-disc images
using stereo vision and superpixel segmentation concepts. A stereo vision
system produces a disparity map for the input stereo images of the retina in
which abnormalities are more distinguishable. In the region of interest in the
disparity map, we can clearly visually recognize all abnormalities because of
changes in distances for abnormality parts in glaucoma patients. The
produced disparity map with the SP1 system shows and magnifies the
changes in the rim section. It is also segmented using two different
superpixel segmentation algorithms (simple linear-iterative clustering and
simple non-iterative clustering) to detect abnormalities. The original stereo
images are also segmented using the same concept; results are compared
with the segmented disparity map.

Moreover, measuring the cup-to-disc ratio (CDR) is a common approach for
glaucoma detection. Glaucoma can be specified by thinning of the rim area
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that identifies the CDR value. Clustering and image segmentation can simply
divide fundus images into distinct areas to estimate the optic disc (OD) and
the optic cup (OC). This paper is based on a robust method, using the
improved chaotic imperialistic competition algorithm (ICICA) for
determining the position of the OD and OC on colour fundus images for
glaucoma detection. The predicted OD and OC boundaries are then used to
estimate the CDR for glaucoma diagnosis. The performance of the proposed
method was evaluated by using the publicly available RIGA dataset. It was
found that some of the common problems of the K-means clustering
algorithm can be addressed by the proposed method for achieving better
results. Moreover, the OC and OD regions can be precisely separated from
the colour image so that ophthalmologists can measure OC and OD areas
more accurately.

How can a deep learning model be optimized for glaucoma detection and cope
with the lack of fundus data to have a high-performance?

We developed a deep learning algorithm for identifying glaucoma on optic
nerve head (ONH) photographs. We applied transfer learning to overcome
over-fitting on the small training sample size that we employed. The transfer
learning framework that was previously trained on large datasets such as
ImageNet, uses the initial parameters and makes the approach applicable to
small sample sizes. We then classified the input ONH photographs as
“healthy” or “glaucoma”. The proposed approach achieved a validation
accuracy of 92.3% on a dataset of 277 ONH photographs from normal eyes
and 170 ONH photographs from eyes with glaucoma. In order to retest the
accuracy and generalisability of the proposed approach, we retested the
algorithm using an independent dataset of 30 ONH photographs. The retest
accuracy was 80.0% on average.

Additionally, we described a method aimed at both detecting pathologic
changes, characteristic of glaucomatous optic neuropathy in optic disc
images, and classification of images into categories glaucomatous/suspect or
normal optic discs. Three different deep-learning algorithms used are transfer
learning, deep convolutional neural network, and deep multilayer neural
network that extract features automatically based on clinically relevant
optic-disc features. Of the total of 455 cases extracted from the RIM-ONE
public dataset (version 2), consisting of 348 training, 87 validation and 20 test
cases, the proposed approach classified images with a training accuracy of
98.16%. We hypothesise that this approach can support the clinical decision
algorithm in the diagnosis of glaucomatous optic neuropathy.
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How can we develop a deep learning model to identify the biomarkers for
glaucoma detection and find a method for glaucoma screening?

To develop a deep learning framework that can automatically identify
clinically relevant features on glaucoma fundus images. The accuracy of the
method in discriminating normal eyes from eyes with glaucoma was 92%.
The validation accuracy on an independent dataset of 455 images was 90%.
Among fundus images that had been classified to the glaucoma group, we
observed that deep learning had identified significant features mostly in the
superior/inferior peripapillary regions, within the optic nerve head, as well
as in their pattern of large blood vessel structure. We developed a deep
learning model based on pre-trained parameters that was able to detect
clinically relevant glaucoma features from fundus images with high accuracy.
This approach could be useful in glaucoma clinics as well as in general
practice settings as an assistive tool for screening glaucoma in the absence of
glaucoma clinicians. Validation of our findings in an independent cohort
with a larger number of fundus images is required.

How can reliability and performance rate be optimized for a model with a
thickness of retina data and apply RNFL for glaucoma screening?

We aimed at evaluating the relationship between RNFL thickness and
glaucoma patients. Thus, we developed a fused pattern recognition model
with 26 classifiers to detect healthy vs. glaucoma patients. We also achieved
an F1 score of 0.82 and an accuracy of 82% using 5-fold cross-validation on a
data set of 107 RNFL data from healthy eyes and 68 RNFL data from eyes
with glaucoma; 25% of data have been selected randomly for testing. The
proposed fused the model based on a stack of top ten supervised classifiers
combined by an ensemble learning method to achieve a robust and
generalised model for glaucoma detection in the early stages. Additionally,
we implemented an unsupervised model based on the K-means clustering
with 80% accuracy for glaucoma screening. In this research, we have
followed two purposes: first, to assist the ophthalmologists in their daily
patient examination to confirm their diagnosis, thereby increasing the
accuracy of diagnosis. The second usage is glaucoma screening by
optometrists in order to perform more eye tests and better glaucoma
diagnosis. Therefore, our experimental tests illustrate that having only one
data set still allows us to obtain highly accurate results by applying both
supervised and unsupervised models. In future, the developed model will be
retested on more substantial and diverse data sets.

How can we use the eye-tracking to detect glaucoma?
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We developed a model to detect a particular movement of the pupil (OKN)
that may be helpful to detect glaucoma in the early stages. Optokinetic
nystagmus (OKN) is an involuntary repeated “beating” of the eye, comprised
of sequences of slow tracking (slow phase) and subsequent quick re-fixation
events (quick phase) that occur in response to (typically horizontally) drifting
stimuli. OKN has a characteristic saw-tooth pattern that we detected here
using a state-machine approach applied to the eye-tracking signal. Our
algorithm transitions through the slow/quick phases of nystagmus (and a
final state) in order to register the start, peak and endpoints of individual
sawtooth events. The method generates duration, amplitude, and velocity
estimates for candidate events, as well as repetition estimates from the signal.
We tested the method on a small group of participants. The results suggest
that false positive detections occur as single isolated events in feature space.
As a result of this observation we applied simple criteria based on the
repetitious “beating” of the eye. The number of true positives is high (94%)
and false OKN detections are low (2%). We will aim to optimize and
rigorously validate the proof-of-concept framework we propose.

We summarized selected latest research on glaucoma detection with our results
which were shown in Table 2.2 and 2.3 in chapter2. Also, our study focused on
developing a glaucoma detection and biomarkers visualisation model. Moreover,
pattern recognition based on OKN detection with signal processing as a hypothesis
may assist researchers in the machine learning area for glaucoma detection that is
discussed in Appendix A. Thus, we were performing a software application to
detect OKN with a specific pattern on eye movement that can show us any changes
in VF data and quality of vision.

Summary of Remarks

Our goals of the PhD thesis have been achieved with novel research
work [67, 175, 177–182] utilising deep learning, transfer learning, hybrid model and
stereo matching to detect glaucoma at its early stages. These models exist in the
literature and targeting glaucoma detection with high performance and low
cost [135, 225]. Thus, we applied many traditional and deep machine learning
algorithms to achieve our goals.

The proposed computer-aid application which was implemented in Python,
Matlab and C/C++ using available GPU hardware at AUT (CeRV lab and Colab)
through the Anaconda and Spyder, Jupyter and Pycharm IDEs integrated
development environment to simplify deep learning design and reduce development
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effort and time. The implemented system is considered the first transfer learning
that exists at present.

The primary research contributions of the thesis can be summarised as follows:

• Describing publicly available and labelled glaucoma fundus image
databases, highlighting different performance evaluation measures
commonly used within the field, and outlining current approaches in
feature-based fundus image classification.

• Not only providing a better understanding of deep CNN architectures but also
facilitating future research activities and application developments in the field
of traditional classifiers and transfer learning for glaucoma detection.

• Proposing the ICICA clustering algorithm for segmentation to avoid the
common problems of K-means clustering algorithms, such as dependence on
initial values and early convergence that cause poor results.

• Offering rim area segmentation on fundus images with stereo matching and
disparity map calculations to support the early detection of (small)
abnormalities.

• Proposing the classification of healthy versus glaucoma patients through
RNFL data in two private data sets with high accuracy.

• Data visualization of the complex RNFL data with statistical analysis such as
PCA and Z-score.

• Robustness improvement through results combination of traditional classifiers
to generate the hybrid.

• Using transfer learning with regularization to overcome the over-fitting
problem caused by the limited number of input images.

• Proposing different deep learning models that were trained and compared
with each other to get the best accuracy.

Limitations and Future Directions

Besides the remarks that have been made hitherto, there are a number of avenues
that could be further improved and extended toward a number of directions in the
future as follows:
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• Lack of data in particular multi-modal data for glaucoma detection. Thus, the
RNFL trained models can only be valid on the defined data scope and this is
not yet generalised to be tested on any new person’s data stream.

• Develop a data type conversion model to transform the thickness of retina data
to the images and deploy the deep convocational neural network to detect
glaucoma.

• Detection any changes on the rim area with deep learning on segmented
fundus data sets annotated by ophthalmologists.

• Using the pupil tracking technique to detect the number of healthy ganglion
cells.

• The developed hybrid model will be retested on more substantial and diverse
data sets to be trustworthy for use in medical tests.

• We will check the proposed model based on time series or longitudinal of
retina’s thickness.

• Utilising TensorFlow Quantum [42] to optimize our proposed model while
using the longitudinal and big data.

Longitudinal is a sort of time series data which can aid ophthalmologists to
glaucoma prognosis at its early stages. Time-series data typically arises from the
collection of many data points over time from a single source, such as from
“glaucoma suspected patient”. Longitudinal data typically arise from collecting a
few observations over time from many sources. For example, collecting a few
blood pressure measurements from “many people”.

Finally, one of the keys to future research directions will be using real-time
pupil tracking techniques to detect glaucoma based on the quality of vision
through pattern recognition algorithms. The quality of vision including different
patterns may cause identification of the number of healthy ganglion cells on the
retina for glaucoma detection.
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Real-time Pupil Tracking for Detecting
Optokinetic Nystagmus

Optokinetic nystagmus (OKN) is an involuntary repeated “beating” of the eye, comprised
of sequences of slow tracking (slow phase) and subsequent quick re-fixation events (quick
phase) that occur in response to (typically horizontally) drifting stimuli. OKN has a
characteristic saw-tooth pattern that we detect here using a state-machine approach applied
to the eye-tracking signal. Our algorithm transitions through the slow/quick phases of
nystagmus (and a final state) in order to register the start, peak and endpoints of individual
sawtooth events. The method generates duration, amplitude, velocity estimates for
candidate events, as well as repetition estimates from the signal.

We test the method on a small group of participants. The results suggest that false
positive detections occur as single isolated events in feature space. As a result of this
observation, we apply simple criteria based on the repetitious “beating” of the eye. The
number of true positives is high (94%) and false OKN detections are low (2%). Future work
will aim to optimize and rigorously validate the proof-of-concept framework we propose.

In the previous chapters, we applied different data modalities to detect glaucoma that is
valuable and well-noun for glaucoma detection. In this chapter, we promote a new trend of
glaucoma detection by using the pattern of pupil movements. Therefore, there is a potential
to have a glaucoma detection in the early stages via pupil tracking based on machine learning
techniques with specific patterns [23, 24, 118, 148, 189]. Material discussed in this chapter
has been published in my publication [176].

A.1 Optokinetic Nystagmus

Optokinetic nystagmus (OKN) is an involuntary movement of the eye that occurs as
a person views a drifting stimulus. It is characterised by a slow tracking (the slow
phase) and a subsequent resetting motion in the opposite direction (the quick
phase) that allows the eye to fixate and track a different stimulus feature. The
overall visual appearance of OKN, typically elicited by drifting vertical bars, is a
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repeated “beating” of the eye, that appears as sawtooth eye movements in the
horizontal displacement signal (see Fig. A.1).

Figure A.1: An example of the horizontal displacement signal (coordinates
normalised to the eye camera image) showing OKN. Also indicated on the figure
is the direction of the stimulus (i.e., in this case, L = leftward, R = rightward,
synchronised to eye data.

OKN is an established means to detecting deficits along the visual pathway [68,
245,246]. The literature suggests [8,49,104,116,206] the presence/absence of OKN (in
response to carefully designed stimulus) can be used to detect clinically significant
deficits in visual acuity (VA), the (self-reported) ability of the eye to see fine detail.
Visual acuity can be difficult to obtain in non-verbal patients, such as young children
[13] and the involuntary nature of OKN presents a potential method for rapidly and
accurately assessing VA in these patients.

The automated detection of the slow/quick phases of the optokinetic and
related vestibulo-ocular reflexes have been studied by a number of authors.
Velocity threshold was used to determine the saccadic portion of the
signal [128, 188]. We found threshold of the velocity signal to be effective in an
off-line situation in which a consumer grade camera was used to record video of
the eye performing OKN in adult participants [243] as well as children [212].
Alternate approaches include a recursive digital filter that responds to the changes
of phase of the signal obtained using electronystagmography (ENG) [128], and an
system identification approach utilising ARX model for identifying the relationship
between fast phase and slow phase velocity [207]. Recently, Ranjabaran et al.
demonstrated a fully objective approach based on K-means clustering to provide
an initial classification of data as belonging to fast/slow phase or non-slow phase
followed by a system identification approach using ENG [202].
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The major focus of this chapter is to provide proof-of-concept for a simple
approach to OKN detection; highly suited for real-time application. Our method
takes as input the horizontal eye displacement obtained from a head-mounted eye
tracking system. The method generates time points corresponding to the
onset/peak and end of triangular “sawtooth” features characteristic of OKN from
the incoming signal. The resulting feature vectors are filtered using heuristic rules
to determine whether they are legitimate candidates for OKN. From this process,
we find that the repetitive nature of OKN appears to be a discriminative factor for
the presence/absence of OKN. Our overall finding is a high true positive rate and
low false detection rate using this as a discriminating criteria.

A.2 Background for Detecting OKN

We denote the input signal vector by x(t) = (d(t), v(t), γ(t)); the concatenation of the
(horizontal) displacement of the eye d(t), the velocity v(t) and auxiliary information,
γ(t) (consisting of the direction of the stimulus and data quality). Our aim is to
determine the start xs, peak xp and end points xe of triangular features from x(t),
and to test the resulting feature vector (xs, xp, xe) using reasonable decision criteria,
to be described, to eliminate unlikely sawtooth candidates.

Consider a sample of d(t) containing OKN as shown in Fig. A.2. The onset of a
sawtooth is given by the point xs = (ts, ds), the point where a rising displacement
in the eye signal is first detected, the peak of the sawtooth by xp = (tp, dp) which
occurs as the eye transitions to the quick resetting eye motion, and the end of the
sawtooth by xe = (te, de) where the descending edge now transitions to rising or
stationary. These points yield the (average) slow/quick phase velocities, vSP and
vQP :

vSP =
4dSP

4tSP
=
dp − ds
tp − ts

(A.1)

vQP =
4dQP

4tQP
=
de − dp
te − tp

(A.2)

where 4tSP and 4tQP are the slow/quick phase durations, and 4dSP and 4dQP

are slow/quick phase amplitudes. Figure A.2 illustrates basic consistency
constraints summarised by Table A.1(a). The durations (4tSP/QP ) should be
positive and non-zero: the quick phase duration must be shorter than the slow
phase duration. The slow/quick phase velocities (vSP/QP must be non-zero and of
opposite sign. The magnitude of the quick phase velocity should not exceed that of
the slow phase. Furthermore, additional empirically based thresholds were applied



120 A. Real-time Pupil Tracking for Detecting Optokinetic Nystagmus

Figure A.2: Components of the OKN displacement signal

(a) Consistency constraints

Number Constraint

1 0 < 4tQP ≤ 4tSP )

2 vSP · vQP < 0

3 |vSP | < |vQP |

(b) Thresholded constraints

Number Description Variable Lower limit Upper limit

4 QP duration 4tQP 0.1 2.0
5 SP velocitya |vSP | 0.05 0.40
6 QP/SP amplitude |4dQP/SP | 0.004 0.2

aAssumes the slow-phase velocity is the same as the stimulus direction

Table A.1: Constraints applied to the detected sawtooth features

as summarised by Table A.1(b). This thresholding was used to eliminate potential
OKN candidates based on lower and upper estimates for quick/slow phase
amplitude/duration and speed.
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Figure A.3: State description of the algorithm.

State-machine description of algorithm

The optokinetic response is generated physiologically by independent slow phase
and quick phase systems [250]. This behaviour naturally suggests a state-machine
solution to detection; which is also highly suited for real-time implementation. Our
algorithm is now explained. In broad terms, the input data stream x(t) (dataset was
presented in chapter 3) drives our machine through three states (either slow phase
detection, quick phase detection or finalise as shown in Fig. A.3)

The purpose of the slow phase detection state is to find a rising edge of
sufficient duration; if this is found then the start point of the rising edge is
registered as the beginning of a sawtooth (ts, ds) and the machine transitions to the
extend edge state. Whilst in the extension phase, the machine now looks for a
falling edge to indicate the end of the slow phase, whereupon the end of SP/start
of QP (tp, dp) will be registered. Any failure (for example, due to lost data caused
by blinking) will discard the candidate and cause a reset to the find rising edge
state (and also increment a chain group counter to be explained presently). In any
event, given a successful detection for the start of a QP, the machine will transition
to the QP phase. The machine now looks for a non-decreasing edge indicating the
end of the QP (te, de).

Once the end is found, and given the points of the sawtooth, the machine
transitions to the finalize state: the purpose of which is to retain OKN like
sawtooth features and discard candidates unlikely to be due to OKN. We do this by
applying the criteria described in Table A.1.

We measured also contiguous groupings of sawtooth features, using a chain
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Figure A.4: Left: Experimental setup. Right: Used head-mounted eye tracking
system [305].

group counter. This counter value was carried across to each new sawtooth
candidate. In the case of a failure (i.e., reset event) the group counter advanced
thereby indicating a new group. This labelled each repeated sawtooth as belonging
to a particular group, and the number of features belonging to a group gave the
chain length as shown by variable CL in Fig. A.2. In this example, the chain length
is CL = 2 the number of complete sawtooth features detected.

Our aim in this work was to see whether there were readily discernible patterns
in the measured parameters that would allow us to determine whether stimulus was
present or absent. We were particularly interested in whether slow phase properties
(velocity and duration) or chain-length could be of value in differentiating between
OKN present or absent cases.

A.3 Experimental Methods

The experimental setup is shown in Fig. A.4. Participants were asked to stare at the
centre of the screen with one eye covered (the protocol was repeated for each eye).
The viewing distance was 1.5m. The eye displacement was recorded using a 120
fps, head mounted eye-tracker (Pupil-Labs, Berlin, Germany). The raw horizontal
displacement was smoothed using a Savitsky-Golay (SG) filter. The SG filter
preserves high frequency content, and is conveniently specified in the time-domain
by polynomial order N and frame-length M [196]. Moreover, the velocity v(t) is
readily computed from these filter coefficients. In this work, the order was M = 2,
the region frame-length was chosen as f = 13.
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Figure A.5: The stimulus array shown to participants. The array was shown drifting
leftward/rightward or stationary.

The algorithm was run with (d(t), v(t), γ(t)) data (across all participants and for
each eye). The auxiliary function used in this work was γ(t) = (γ1(t), γ2(t))

comprising the known state of the stimulus (γ1(t) ∈ {L,R,X, F}), and data quality
measure (0 ≤ γ2(t) ≤ 1) from the eye-tracker device. The latter measure was used
to determine whether the data was of sufficient quality to be useful (maximum
quality was 1 and minimum quality was 0). The former quantity passed the a-priori
direction of the stimulus to the algorithm. Here, the potential values for γ1(t) were
L = “leftward”, R = “rightward”, X = “stationary”, or F = “fixation”) (see
Fig. A.5).

The slow phase velocity vSP , duration (4tSP ) and the chain length (CL) were
extracted and categorized as depending on whether they were obtained whilst the
stimulus was moving (i.e., trials labelled “L” or “R”) or whilst the stimulus was
stationary (i.e., trials labelled “X”). The fixation trials labelled “F” were ignored. For
trials in which the stimulus array was stationary, the algorithm was run twice. This
avoided choosing a particular direction for these trials; and allowed an unbiased
estimate of the false positive (FP) detection rate of the method.

The apparent direction of travel of the stimulus as perceived by the observer
was recorded, for comparison purposes, by asking the participant to press keys to
indicate the direction of travel as they watched the stimulus on-screen. This was
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Figure A.6: The result of an example of a horizontal displacement signal.

used to confirm that the stimulus was perceived as expected by the observer. The
eye tracking, experiment management and key-press collection where performed
on a second computer running a custom web-server application (node.js) with
an JavaScript/HTML5 interface. The display of the stimulus, ran on the primary
display by accessing the server using the chrome web-browser. Figure A.4 shows
the experimental setup used.

A.4 Results

The stimulus was seen by all observers (n=6) for all trials (N = 11 eyes) as
indicated by correct key-presses measured during the trial. Data for one eye was
excluded because stimulus direction information γ1(t) was lost. The detection
algorithm completed successfully for all other test runs/participants. The output
from the system is given by Fig. A.6. The figure shows unshaded areas
corresponding to intervals of time not identified as containing OKN, compared
with shaded green areas where OKN was detected. The labels under the graph
indicate the direction of travel as a function of time γ1(t), the numbered intervals
above the graph show the chain length computed for the data (chain lengths of 1

are not indicated). Visual inspection (by the authors, who are experienced in
identifying OKN) suggested the algorithm was effective in identifying regions
containing OKN.

A total of n = 661 sawtooth features were detected for the moving stimulus
category. A total of n = 41 sawtooth features were detected in the the stationary
category. The FP rate at the level of features detected was 5.8% of all sawtooth
detections. Figure A.7a shows the distribution of results obtained for the slow phase
speed |vSP |. The mean slow phase velocity (mean ± 2SD) were 0.024 ± 0.014 and
0.017 ± 0.016 (s−1) for the moving (n = 661) and stationary categories (n = 41)
respectively. Figure A.7b shows the distribution results obtained for the slow phase
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(a) Slow phase velocities. (b) Slow phase durations.

(c) Chain length numbers.

Figure A.7: Eye displacement signal for the first sample.

duration ∆tSP . The SP duration was 0.48±0.52 s and 0.33±0.50 s for the moving and
stationary categories. The CL (chain length) is shown in Fig. A.7c. In this instance
the mean and standard deviations were 3.10± 4.44 and 1.03± 0.30 for moving (n =

215 chains) and stationary categories (n = 40 chains). A two-sample t-test rejected
the null hypothesis (no difference between moving and still distributions) at 5%

significance level for the three parameters.
Figure A.8 summarizes all three features (SP velocity, SP duration and chain

length CL) plotted on a single graph. The n = 41 false sawtooth detections appear
as orange hued circles, compared to true detections (n = 664) shown in blue. Visual
inspection of the data (e.g., Fig. A.8) indicated that these false detections, were
shifted toward lower durations and speeds. Most visually significant was the
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Figure A.8: Illustration of the distribution of three features from two views

CL threshold TP rate FP rate

1 109 (99%) 25 (46%)

2 102 (94%) 1 (2%)

3 89 (82%) 0 (0%)

Table A.2: Per trial TP and FP rates as a function of the CL parameter.

observation that FP detections were clustered along the CL = 1 and CL = 2 planes;
indicating that CL could be a discriminating factor for OKN present/absent. The
performance of CL as an indicator of OKN present/absent is shown in Table A.2.
This table shows TP as a proportion of the total number of moving trials (n = 110)
and FP as a proportion of total stationary trials (n = 55) shown to the observer.
This table shows the reduction in FP rate for increasing CL as well as a drop in TP
rate. The table suggests that a threshold of CL = 2 was the best balance between
TP and FP for trial-by-trial detection of OKN. As a consequence of this result, the
effects of SP duration and speed were not considered further, but would be the
subject of future work.

A.5 Discussion

There is a clinical need for automated approaches able to identify the presence or
absence of optokinetic nystagmus, particularly suited to real-time application. In
this work we developed a method suitable for real-time detection of optokinetic
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nystagmus based on a simple state-machine approach. The algorithm was
developed and run on a small cohort of adult participants, who watched drifting or
stationary patterns whilst having their eye movements recorded.

Sawtooth patterns were detected readily in moving trials (n = 664 detections)
but also during some stationary trials (n = 41 detections) (a per feature FP detection
rate of 5.8%). The effects of false detections were eliminated by considering the per
trial criteria that OKN should be repetitive. For example, we found that a criteria
of CL >= 2 would identify trials with moving stimulus (TPratewas94%) whilst
eliminating false detections (FPratewas2%). We suggest that chain-length may be
a key factor in assessing the presence or absence of OKN.

It is intended that the performance be evaluated more carefully in the future.
We found that the mean slow-phase speed and durations for moving and stationary
conditions were different, but we did not analyse this finding further. In this work,
we presented data for the calibration set only, and we did not perform a robust
validation analysis. We need to perform a full ROC analysis of the method which
will the subject of further work. It is emphasised that the aim here was to present
the basic concept, which was the use of a state-machine approach to determine and
analyse OKN.

In this work we utilised a web-browser to display our stimulus. This was
facilitated by the jsPsych package (www.jsPsych.org), a web browser based API
for psychophysical trials. The jsPsych package utilises a plug-in architecture that
allows the user to perform pre-programmed tasks (e.g., show a movie, play audio,
record a reaction) or custom tasks that execute in a sequence defined by the
experimenter. We wrote a custom plugin was written that facilitated the display of
the disk stimulus for the purpose of web browser display.

The web-browser display was controlled from a second computer (the
controller) that managed the experiment. Crucially the system synchronised the
start and end of each trial of the experiment with the pupil labs eye tracker. In this
work the server code was written using node.js and the interface to the server
was written JavaScript/HTML5 thereby maintaining a non-platform specific
implementation with the possibility of distributing more widely in future work.
Furthermore, we developed a batch extraction of pupil location which can extract
the location of the pupil for many participants simultaneously. This model can
extract the (x, y) of pupil based on 2-D frame on the video stream. In the future, we
are going to have an autonomous pupil detection based on cloud computing
platform.

There are a number of limitations of the present study. It would be desirable to
increase the number of participants tested which would allow a more detailed
examination of the behaviour of participants during eye testing and to allow
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further generalisation (if possible) of the threshold we have used already. As
mentioned, we require to perform a more in-depth sensitivity-specificity analysis.
We looked at a limited set of parameters in this work (essentially chain-length and
slow phase duration/speeds), and a more in-depth analysis would be required to
indicate optimal features for quantification of OKN. Our aim is to provide these
methods for clinical use, and therefore future studies will quantify performance on
target groups such as children. Future work will now look to determine whether
the present protocols and processing approaches can be improved, and work is
under-way to examine whether machine learning approaches will benefit the
technique we have developed.

A.6 Summary

We have presented a method for detecting optokinetic nystagmus designed for
real-time applications. We have obtained encouraging results for a cohort of adult
participants (n = 11 eyes). Further research is warranted, and we will continue to
improve upon and further validate the methods presented here. In a forthcoming
publication, we will use pupil tracking model to detect glaucoma through signal
processing and machine learning techniques.
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