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Abstract 

As BCI has been widely studied in recent years, lots of BCI applications have been de-

veloped. In this thesis, to implement BCI into individual devices is simulated by con-

trolling a robot. Before discussing the experiment, a literature review is outlined. As the 

experiment is based on the Emotiv system, a framework of implementing the Emotiv 

system on NeuCube is stated. The objective is to develop a new feature on NeuCube, 

which can record EEG data in real-time through the Emotiv headset. The limitations and 

potential future research areas are highlighted at the end. 
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Chapter 1. Introduction 

Human-Computer Interaction (HCI) is the communication between humans and com-

puters. HCI has been developed extensively for decades, from cards and records in early 

days to mouse and touchpads in recent times. Novel interfaces have been studied and 

developed for humans to have a better user experience on controlling computers. 

Stephan and Khudayer (2010) showed a design of a gesture recognition HCI prototype 

based on shape analysis for PC applications. Rogers (2012) gave an overview on HCI, 

including gesture recognition, speech recognition, and Brain-Computer Interface (BCI). 

As the gesture recognition and speech recognition have been widely implement on ter-

minals such like PC, pads, and smartphones, BCI is still not satisfactory for industrial 

application. However, BCI is a rich field for studying. In 2010, Tan and Nijholt defined 

BCI as the real time interaction system which builds a direct communication panel be-

tween the human brain and computers. The first appearance of BCI in scientific litera-

ture was in the 1970s by Vidal (1973). After 40 years of studying, researchers have de-

veloped several systems for BCI application, including the NeuCube system. 

NeuCube is a system used for mapping, learning and analyzing spatio-temporal brain 

data. It was introduced by Nikola Kasabov and developed by Knowledge Engineering 

and Discovery Research Institute (KEDRI). There is an introduction to NeuCube in 

Chapter 5, and the development of a new feature for NeuCube is the main focus of this 

thesis.  

In the rest of this chapter, the motivation of this study is presented, as well as the re-

search focus. The research questions are discussed following that. Then the contribution 

of this study is pointed out. Finally, the structure of this thesis is shown.  

1.1. Motivation 

BCI is a novel communication method that connects humans and computers. People can 

control computers using BCI without verbal or body language, including with the origi-

nal input methods, such as mouse, keyboard or touch screen. With this feature, disabled 

people are able to operate computers by themselves. Over 2 million patients suffer from 

Amyotrophic Lateral Sclerosis (ALS) in America, and there are 5000 more cases diag-

nosed annually (Felbecker, 2010). The patients with ALS cannot move their bodies, or 
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even make any sounds. The BCI is one of the solution that helping patients express 

themselves.  

1.2. Research Focus 

As NeuCube is designed for spatio- and spectro-temporal brain data (STBD), it could be 

helpful to fully develop the system, making it work as a BCI system. To build a feature 

which reveal EEG data on the NeuCube system is developing a potential study area. To 

control a robot by using a NeuCube based BCI system is what this study is focusing on.  

1.3. Study Question 

As mentioned previously, the main objective of this study is to control a robot, which 

simulates a wheel chair, by using the NeuCube system, and to describe the framework. 

Consequently, the study questions are as following: 

1. What is BCI? How does it work? 

2. How can a robot be controlled by using BCI? 

3. How can a robot be controlled by using NeuCube with EEG recording devices? 

1.4. Contribution of the Study 

The contributions of this study are generalized below: 

A critical literature review is given, which gives an overview of the existing BCI appli-

cations and discusses the technologies.  

An experiment by which to control a robot using the Emotiv system is discussed.  

A framework implementing the Emotiv headset (EEG data detector) to the NeuCube 

system is shown.  

1.5. Study Structure 

In this part, the structure of this thesis is stated below: 
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In Chapter 2, an overview of BCI technology is provided. The definition, principle, and 

the latest developments are described. In addition, several examples of existing BCI re-

search are introduced.  

Chapter 3 discusses a BCI system prototype. The methodology of design of a BCI sys-

tem is shown. 

Chapter 4 summarizes an experiment to control a robot by using the Emotiv BCI sys-

tem.  

In Chapter 5, the NeuCube system is described particularly, and a framework of imple-

menting NeuCube with an EEG data recording feature is stated. 

Finally, the conclusion is given in Chapter 6. Both contributions and limitations of this 

study are highlighted. In addition the potential areas of future research are also pointed 

out. 
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Chapter 2. Literature review 

BCI is a communication method which creates a direct connection path between a hu-

man (or animal) brain and external devices. In this definition, the “brain” refers to an or-

ganic form of a real brain or nervous system, not the abstract “mental mind”. The “com-

puter” means any processing or computing device, which can be implemented as a sim-

ple circuit to a computer system. In this chapter, a brief review of BCI studies will be 

shown. 

2.1. Review of BCI 

In general, BCI can be assorted into three types: invasive, part-invasive, and non-inva-

sive.  

2.1.1. Invasive BCI and Part-invasive BCI 

Invasive BCI is mainly used for the reconstruction of special senses, vision for example, 

or motor function in paralyzed patients. As the invasive BCIs are typically implanted 

into the ectocinerea directly, the quality of acquitted neural signals is relatively high. 

Part-invasive BCI is generally implanted into the skull, but located outside the ecto-

cinerea. 

In 2002, Jens Naumann, who was blinded in adulthood, implanted an invasive BCI de-

vice to help him rehabilitate his vision. The device was developed by William Dobelle, 

one of the first scientists in the BCI area. The device was a single-array BCI containing 

68 electrodes that was implanted onto Naumann’s brain to produce phosphenes (sense 

of light) a short time after the device was implanted.  

Naumann was able to drive an automobile slowly at the research institute. (Naumann, 

2012) 

However, the invasive BCI needs users to have surgery to implant the chips into the 

body. Also, some patients’ bodies may reject the electrodes, which means the invasive 

BCI does not work. The most important reason why invasive BCI is not widely used is 

that the invasive BCI devices and the surgery are too expensive, while the non-invasive 
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BCIs are cheaper and portable. This is a main reason why this study focuses on EEG 

based BCI.  

 

Figure 2.1. Jens Naumman with invasive BCI (Wikipedia, 2014) 

2.1.2. Non-invasive BCI 

Non-invasive BCI devices are not implanted into the human body. They use non-inva-

sive neuroimaging technologies, such like Electroencephalography (EEG), Magne-

toencephalography (MEG) and functional magnetic resonance imaging (fMRI). In this 

way, the BCI devices are easy to wear and do not hurt the user’s body generally. How-

ever, the signal can be reduced by skull and skin disturbance.  

BCI based on EEG has been studied extensively as a great potential solution to reduce 

the cost because of the good temporal resolution, ease of use, low cost and portability. 

But EEG data would be disturbed easily by any user’s motion or lost attention. This re-

quires the user practicing hard for operating the BCI system proficiently. 
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Figure 2.2. EEG detector and EEG spike graph (Wikipedia, 2014). 

In 2000, a study based on the P300 signal showed that users without specialized training 

can use the BCI system. The P300 signal is generated autonomously when people see 

familiar objects. Bayliss(2000) showed that subjects can control some objects in virtual 

reality though the P300 signal; for example, switching a light on or off, or manipulating 

a virtual car. 

By applying an artificial neural network, a computer can share the patient’s burden of 

learning BCI. The Fraunhorfer Society (2004) reduced required training time of BCI 

systems significantly by using artificial neural networks.  

Doud et al. (2011) designed a BCI system which can control a virtual helicopter on a 

computer simulation. And in June 2013, the research team finished the final built of the 

system to control a four-blade helicopter to go through mission path. The system only 
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used motor imagination to control the helicopter with high accuracy. 

 

Figure 2.3. four-blade helicopter controlled by EEG-BCI (Doud, et al., 2013) 

Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) 

have both proved that they are good carriers to achieve a functioning BCI system. How-

ever, the drawbacks are easy to find. The MEG detector is too huge to relocate and the 

time delay of fMRI is too long.  

2.2. BCI system using EEG 

Due to the advantages, EEG-BCI is the richest study area of BCI. In this section, more 

information of EEG-BCI will be reviewed.  

Early in 2004, Schalk and his team created a model for general-purpose BCI system. He 

called this platform BCI2000.  
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Figure 2.4. A general structure of BCI system (Schalk et al., 2004). 

Figure 2.4 shows the basic structure of a BCI system. Researchers use a device to detect 

the human brain signal, then, the digitized signal will be processed. In the processing, 

the feature of an EEG graph will be extracted, and this allows the computer to classify 

brain activity. With a contrast about the feature and datasets, the “idea” of the human 

brain will be translated into device commands, to order the devices to finish this interac-

tion. 

Schalk et al. (2004) also noted that the main goal of BCI development is to offer a solu-

tion to people with severe motor disabilities to improve communication and control ca-

pabilities. The whole system including classification of brain signals, recording meth-

ods, processing algorithms, output formats, and operating protocols should be studied 

and improved. And the model could be uniform. Schalk et al. (2004) developed the 

BCI2000 system as a general-purpose BCI research and development platform. Several 

successful BCI systems based on the BCI2000 platform were implemented for a variety 

of brain signals, processing algorithms and applications. The six essential features of the 

BCI2000 system are: (1) Common model. BCI2000 is designed to be a standard proto-

type which can be implemented by different methods. (2) Interchageability and inde-

pendence. The modules of BCI2000 can be exchanged with other systems. (3) Scalabil-

ity. BCI2000 can be updated to improve the performance. (4) Real-time capability. 

BCI2000 can read and process the brain signals in real time and with high accuracy. (5) 
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Support and facilitation of offline analyses. The data needs to be stored and can be ana-

lyzed without converting the storage format. (6) Practicality. BCI2000 is very easy to 

implement with different approaches.  

However, the Signal-to-Noise ratio of EEG graph is low; it not easy to extract the fea-

tures with high accuracy using some simple methods. Researchers are focusing on im-

proving the accuracy of EEG graph classification. Arvaneh (2011) noticed that optimiz-

ing the channel selection with a novel sparse common spatial pattern (SCSP) algorithm 

could increase the accuracy of the EEG classification by about 10%. Another improve-

ment was provided by Li and Zhang (2010). They discovered that using a regularized 

tensor discriminant analysis (RTDA) algorithm to extract tensor-represented EEG data 

was highly accurate. 

In Li and Zhang’s study, the EEG signals were converted into third order tensors in the 

spatial-spectral-temporal domain using wavelet transform. After this, a multi-way dis-

criminative subspace extraction from EEG data was proposed by using a RTDA algo-

rithm. Li and Zhang also maintained the Superiority of their scheme more than the 

Common Spatial Pattern (CSP) algorithm: First, the optimal multi-way discriminative 

subspace could be extracted; second, it could identify discriminative characteristics ro-

bustly and do well without prior neurophysiologic knowledge; third, it was able to find 

the most significant channels from EEG data for classification. As a result, the proposed 

scheme provided a great increase on performance. 

The accuracy can be improved both in feature extraction and feature classification. For 

years, researchers have been testing different algorithms to find better algorithms for 

different requirements. Vijay (2010) compared three classifiers’ performances, which 

were Multilayer Back Propagation Neural Network (MBP), Support Vector Machine 

(SVM) and Radial Basis Function Neural Network (RBF). The feature extraction was 

based on Wavelet Packet Transform (WPT). The RBF neural work had the best perfor-

mance in his research with 100% accuracy.   
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Chapter 3. Methodology 

In Chapter 3, the framework of the BCI controlling system will be introduced. The main 

structure is shown below: 

 

Figure 3.1. Structure of an EEG-BCI system 

The process of the whole system is as follows: 
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3.1. EEG Detector  

 

Figure 3.2. Emotiv headset, EEG detector. 

First step is the EEG detector acquires EEG signal from user and digitizes the signal 

into digital data. The EEG is a record of electrical activity along the scalp. The EEG de-

tecting device can measure voltage changes of human brain neurons, resulting in curve 

graphs. The detector of EEG data uses electrodes to record brain spikes. The spikes will 

be converted into digital data at the terminal, then the data will be stored in the system 

buffer or form files.  

3.2. Digitization Module 

As digitization, real-number signals of continuous value are converted into spike trains. 

The EEG data is normalized into the range of [0 1] firstly. Then the normalized data is 

transformed into spike trains with Ben’s Spike Algorithm (BSA) encoding method. (Hu 

et al., 2014) 

3.3. EEG Data 

Second step, the pre-processed digital EEG data is sent to the classifier to identify the 

class of it. The captured EEG data will be pre-processed first. Feature extraction algo-

rithms will be used in this step to increase the value of the data, including decreasing the 

computation time, the detector preparation time and the noise of data. For example, the 
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Optimum Spatio-Spectral Filtering Network (OSSFN) could increase the accuracy by 

10-36% with minimized costs (Haihong et al., 2011). 

3.4. Classification Algorithms 

Third step, the data will be classified. The classification algorithms can be Linear Dis-

criminant Analysis (LDA) algorithm, SVM algorithm, or NeuCube. The LDA algorithm 

and SVM algorithm are well-known mining algorithms, and they are widely used in 

BCI applications. These two algorithms are introduced in detail below.  

3.4.1. Linear Discriminant Analysis (LDA) Algorithm 

LDA is a well-known mining algorithm. It has been widely applied in numerous differ-

ent classification problems. It is simple to use and requires a very low computational 

time.  

According to Yoon, Roberts, Dyson and Gan (2011), the LDA classifier aims to sepa-

rate the dataset into two classes using hyper planes. The class of a sample is determined 

by the side of the hyper plane in which a sample, or a feature vector, is placed on, as 

shown in Figure 3.3. 

 
Figure 3.3. A hyperplane created by the LDA algorithm to split the data into two clas-

ses. (Yonn et al., 2011) 

The LDA algorithm assumes normal distribution of the conditional probability density 

function 𝑃(𝑋⃑|𝑦 = 0), and mean of 𝑃(𝑋⃑|𝑦 = 1). Based on that, samples are associated 

with the second class if the long-likelihoods ratio s is below the scale T. 

(𝑋⃗ − 𝑀⃗⃗⃗0)
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𝑇
∑ (𝑋⃗ − 𝑀⃗⃗⃗1)
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𝑦−1
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𝑦−1
| < 𝑇 
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3.4.2. Support Vector Machine (SVM) Algorithm 

Linear SVM is a powerful classification scheme. It was originally introduced by Vapnik 

(1998). This algorithm has been successfully applied in different BCI applications and 

general classifying problems. 

To classify a set of binary labeled data, this algorithm also uses a hyper plane to sepa-

rate the data into two classes. After training the algorithm on a given dataset, the dis-

criminate hyper plane is optimized and selected based on the maximum margins be-

tween the hyper plane and the data. This is done through transforming the data from the 

input space into feature space in which linear classification is achievable. This can be 

achieved through accommodating outliers and allowing errors during the training stage 

(Bashashati, Fatourechi, Ward, and Birch, 2007); see Figure 3.4. 

 
Figure 3.4. Overview of linear SVM algorithm (Liang, 2009). 

SVM is mathematically formulated to the following formula to classify the data set D: 

𝐷 = {((𝑥1, 𝑦1),…… (𝑥𝑖, 𝑦𝑖))|𝑥 ∈ 𝑅𝑛, 𝑦 ∈ {−1,1}}𝑖−1
𝑚  

where x is the n-dimensional vector. The class’ name that x belongs to is represented by 

y, and the hyper plane is defined by the following equation: 

𝑊𝑇(𝑤1, …… ,𝑤𝑛) × 𝑥 + 𝑏 = 0 

in which w is the weight vector: w(Ʌ) = min C(w, b, Ʌ) and b is the scalar.  
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3.5. Analyzing Module 

 After classification, the digitalized EEG data will be analyzed and compared with an 

existed EEG mapping dataset, which includes classified EEG trigger data. The incom-

ing data will be checked with flag events, as the events triggered, commands sent to the 

controlling application. 

 

3.6. Controlling Software 

Finally, the classified results will be sent to the robot-controlling software. After the 

data is classified, flags will be set as action triggers. The EEG readings when user 

blinks, smiles, or any other activity, could be used to make the robot work. The robot, a 

WITH robot produced by Kyushu Institute of Technology for example, will receive the 

commands sent from the console system. With different commands received, the robot 

can react, like move or turn.  

 

Figure 3.5. The WITH robot produced by the Kyushu Institute of Technology. 
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In the console system, the trained model is used as the commands list. When the EEG 

headset records the data, the console system analyzes this data to communicate with the 

robot. When one trigger happens, the console sends a combination command to the ro-

bot, and the robot can act following the command. More details of the WITH robot will 

be described in Chapter 4.   



26 

 

Chapter 4. An experiment by using the Emotiv built-in system 

The first experiment was implemented by using the Emotiv system. 

 

Figure 4.1. Emotiv EEG headset (Emotiv Systems, 2013) 

Emotiv Systems (2013) developed this EEG system as an individual BCI solution. It is 

very easy to setup and is portable. The headset has 14 saline sensors with optimal posi-

tioning to capture the spatial EEG signal. The headset is wireless and connect to the 

computer with an USB dongle. 

 

Figure 4.2. Emotiv software environment (Emotiv Systems, 2013) 
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The classifier of this system is EmoKey, a classification program provided by Emotiv 

Systems. It includes a common expression classification database for users, which al-

lows users to use the system without any particular training.  

 

Figure 4.3. Framework of Emotiv experiment. 

As the EmoKey database mainly works on expressions, the triggers to robot controlling 

commands are shown below. 

Table 4.1. Robot controlling Commands set 

Command Trigger 

Move forward Frown 

Stop Blink once 

Turn left Looking left 

Turn right Looking right 
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Figure 4.4. Controlling WITH robot with Emotiv system at KEDRI. 

As shown in Figure 4.4, the experiment succeeded. The WITH robot was controlled by 

the Emotiv system to move and turn. However the result was not satisfactory. By using 

the common expression classification database, the controlling accuracy was far from 

satisfactory. Generally, the system worked well on moving forward and stopping, but it 

was confused on turning. In addition, the emotion of the user had an impact on the re-

sult. In a perfect state, the user should focus his mind on controlling the robot and not be 

distracted.  
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Chapter 5. A Framework to Implement the Emotiv system on 

NeuCube 

Human brains work like a spatio-temporal information processing machine. Generally, 

spatio- and spectro-temporal brain data (STBD) are collected to measure brain activi-

ties. There are various STBD in human brain studies, such as EEG, MEG, fMRI, DTI, 

genetic and NIRS. According to Kasabov (2014), the spiking neural networks (SNN) 

are considered suitable to create a computational framework for learning and under-

standing STBD. The NeuCube system is one of them.  In this chapter, the NeuCube is 

introduced in detail.  

5.1. The NeuCube System 

The main objective of creating NeuCube system is integrating different modules in one 

system to recognize brain signals, while the system can consist of different neuronal 

types and genetic parameters from different parts of the human brain and different 

senses. 

 

5.1.1. Overall Architecture and Main Principles 
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Figure 5.1. A diagram of the general NeuCube architecture, consisting of: input data en-

coding module; NeuCube module; output function module (e.g., for classification or 

prediction); and gene regulatory networks (GRN) module (optional) (Kasabov, 2014). 

As shown in Figure 5.1, a NeuCube system includes four modules: input data encoding 

module; 3D SNN reservoir module (SNNr); output function (classification) module; and 

gene regulatory network (GRN) module (optional). 

The principle of generating a NeuCube model for a given STBD is as follows: 

a. Encode the STBD into spike sequences: Continuous value input information is en-

coded into trains of spikes; 

b. Construct and train in an unsupervised mode a recurrent 3D SNN reservoir (SNNr), 

to learn the spike sequences that represent individual input patterns; 

c. Construct and train in a supervised mode an evolving SNN classifier to learn to clas-

sify different dynamic patterns of the SNNr activities that represent different input pat-

terns from SSTD that belong to different classes; 

d. Optimize the model through several iterations of steps (a)–(c) above for different pa-

rameter values until maximum accuracy is achieved; 

e. Recall the model on new data (Kasabov, 2014). 

The detailed description of each module is given below. 

5.1.2. Input Encoding Module 

The main work of the input encoding module is converting input data into trains of 

spikes, and the converted spike trains will be sent to the corresponding areas of the Neu-

Cube system. There are two methods for transferring from STBD to spike trains: popu-

lation rank coding and Address Event Representation (AER). 

In the population rank coding method, continuous value input data is transferred into 

spikes. The value of different input variables, such as pixel, EEG channel, and voxel, is 

joined a population of spiking neurons emitting spikes by their receptive fields (Figure 

5.2 a). The higher the membership degree, the earlier a pike is generated (Bohte, 2004). 
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Population rank coding is suitable when the input data is presented as a sequence of 

frames. 

 

Figure 5.2. (a) Population rank order coding of input information; (b) Address Event 

Representations (AER) of continuous value time series input data into spike trains and 

recovery of the signals from the spike train (Delbruck, 2007). 

The AER is based on thresholding the difference between two consecutive values of the 

same input variable over time (Delbruck, 2007). AER is suitable for input data stream, 

as it is only processing the changes in consecutive values.  

5.1.3. The NeuCube Module 

The structure of the NeuCube is a 3D approximate map of brain areas of the senses. The 

connections of neurons are initialized by small-world connections. The structure can be 

expanded by creating new neurons and new connections based on the STBD with the 

ECOS principles (Kasabov, 2014). The latest version of the NeuCube system can create 

a 3D structure connecting Leaky-Integrate and Fire Model (LIFM) spiking neurons with 

recurrent connections. Figure 5.3 shows how NeuCube visualizes converting spiking ac-

tivity into neurons and connectivity.  
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Figure 5.3. Illustrative visualization of connectivity and spiking activity of a SNNr: (a) 

spiking activity-active neurons are represented in a large area of red; (b) connectivity 

before training – small world connections – positive connections are represented in blue 

and negative- in red; (c) connectivity after training; (d) connectivity of a NeuCube with 

2.4M neurons; (e) zoomed-in visualization of connectivity of a small internal section 

from the NeuCube (Kasabov, 2014).  

5.1.4. Output Function Module 

After the mapping is completed in the NeuCube module, the input STBD is learned. 

These NeuCube patterns will be associated in a classifier of the output function module, 

or communicated to other terminals.  

5.2. Framework of implementing Emotiv in NeuCube 

In this section, a framework to connect the Emotiv input headset with the NeuCube in-

put module is stated.  
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5.2.1. Emotiv input module 

The Emotiv system is easy to develop. The Emotiv headset has 14 channels to collect 

EEG data. An EEG logger will be designed to record EEG data by C++. 

// ... print some instructions... 

std::string input; 

std::getline(std::cin, input, '\n'); 

option = atoi(input.c_str()); 

switch (option) { 

case 1: { 

if (EE_EngineConnect() != EDK_OK) { 

throw exception("Emotiv Engine start up failed."); 

} 

break; 

} 

case 2: { 

std::cout << "Target IP of EmoComposer? [127.0.0.1] "; 

std::getline(std::cin, input, '\n'); 

if (input.empty()) { 

input = std::string("127.0.0.1"); 

} 

if (EE_EngineRemoteConnect(input.c_str(), 1726) != EDK_OK){ 

throw exception("Cannot connect to EmoComposer!"); 

} 

break; 

} 

default: 

throw exception("Invalid option..."); 

break; 

Listing 5.1. connect to EmoEngine (Emotiv system, 2014). 
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The logger needs to initialize the connection with the Emotiv EmoEngine by calling 

EE_EngineConnect(), via EE_EngineRemoteConnect() together with the target IP ad-

dress (127.0.0.1) and the fixed port 1726. The remote connection can be established by 

verifying the return value of the EE_EngineRemoteConnect() function.  

EmoEngineEventHandle eEvent = EE_EmoEngineEventCreate(); 

EmoStateHandle eState = EE_EmoStateCreate(); 

unsigned int userID = 0; 

while (...) { 

int state = EE_EngineGetNextEvent(eEvent); 

// New event needs to be handled 

if (state == EDK_OK) { 

EE_Event_t eventType = EE_EmoEngineEventGetType(eEvent); 

EE_EmoEngineEventGetUserId(eEvent, &userID); 

// Log the EmoState if it has been updated 

if (eventType == EE_EmoStateUpdated) { 

// New EmoState from user 

EE_EmoEngineEventGetEmoState(eEvent, eState); 

// Log the new EmoState 

logEmoState(ofs, userID, eState, writeHeader); 

writeHeader = false; 

}}} 

Listing 5.2. Buffer creation and management (Emotiv system, 2014). 

A buffer is created to restore the events and states of the EmoEngine.  

float secs = 1; 

… 

DataHandle hData = EE_DataCreate(); 

DataSetBufferSizeInSec(secs); 

std::cout << "Buffer size in secs:" << secs << std::endl; 

…==> Setting Cognitiv active actions for user 0... 

Listing 5.3. Access to EEG data (Emotiv system, 2014). 
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A DataHandle is created by the access requirement. The DataHandle is used to provide 

access to the underlying data. The EE_DataCreate() function can be called on to initial-

ize this DataHandle. During the measurement process, EmoEngine maintains a data 

buffer of sampled data, measured in seconds. The DataSetBufferSizeInSec() can be 

called to initialize the data buffer.  

while (…) 

state = EE_EngineGetNextEvent(eEvent); 

if (state == EDK_OK) { 

EE_Event_t eventType = 

EE_EmoEngineEventGetType(eEvent); 

EE_EmoEngineEventGetUserId(eEvent, &userID); 

// Log the EmoState if it has been updated 

if (eventType == EE_UserAdded) { 

EE_DataAcquisitionEnable(userID,true); 

readytocollect = true; 

} 

} 

Listing 5.4. Start Acquiring Data (Emotiv system, 2014). 

The system needs to register a valid user when the first connection to EmoEngine is 

made via EE_EngineConnect(). The EE_UserAdded event is the trigger for the registra-

tion. Once the user is registered, it is possible to enable data acquisition via a call to 

DataAcquisitionEnable. With this enabled, EmoEngine will start collecting EEG for the 

user, storing it in the internal EmoEngine sample buffer. 

if (readytocollect) 

… 

DataUpdateHandle (0, hData); 

unsigned int nSamplesTaken=0; 

DataGetNumberOfSample(hData,&nSamplesTaken); 

if (nSamplesTaken != 0) 

… 

double* data = new double[nSamplesTaken]; 

EE_DataGet(hData, targetChannelList[i], data, 
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nSamplesTaken); 

delete[] data; 

Listing 5.5. Acquiring Data (Emotiv system, 2014). 

To initiate retrieval of the latest EEG buffered data, a call is made to DataUpdateHan-

dle(). When this function is processed, the EmoEngine will ready the latest buffered 

data for access via the hData handle. All data captured since the last call to 

DataUpdateHandle will be retrieved. Then a call is placed to DataGetNumberOfSam-

ple() to establish how much buffered data is currently available. The number of samples 

can be used to set up a buffer for retrieval into your application. 

The EEG data received can be transferred into the NeuCube input buffer by calling the 

EE_DataGet() function. The available data channels are shown below: 

ED_COUNTER,ED_AF3, ED_F7, ED_F3, ED_FC5, ED_T7, 

ED_P7, ED_O1, ED_O2, ED_P8, ED_T8, ED_FC6, ED_F4, 

ED_F8, ED_AF4, ED_GYROX, ED_GYROY, ED_TIMESTAMP, 

ED_FUNC_ID, ED_FUNC_VALUE, ED_MARKER, ED_SYNC_SIGNAL 

Listing 5.6. Emotiv data channels (Emotiv system, 2014). 

For example, to retrieve the first sample of data held in the sensor FC5, place a call to 

EE_DataGet as follows: 

EE_DataGet(hData, ED_FC5, databuffer, 1). 

5.2.2. NeuCube input module 

To load EEG data collected by the Emotiv headset, the NeuCube system needs to set the 

input mapping first. Then calling the EmoEngine functions to load samples from the 

Emotiv headset. 
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Figure 5.4. Setting input mapping manually in NeuCube. 

As shown in Figure 5.4, the 14 features represented the 14 channels from the Emotiv 

headset. The space position of each sensor is set. Also, the connections of the sensors 

have been trained. As a trigger set, the system can record the EEG data for 128 samples 

per second by each sensor.   
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Chapter 6. Conclusion and Future Works 

In this chapter, the whole study is summarized, and the main outcome is outlined. Fur-

thermore, the limitations are stated and the potential future areas of research are indi-

cated. 

6.1. Conclusion and contribution 

BCI is a very potential study field as many BCI applications have been developed in re-

cent years. The EEG based BCI is suitable to implement on individual devices, is cheap, 

has a rapid response time, and is portable.  

A literature review was given to introduce recent BCI developments. The EEG based 

BCI studies are further described as the advantages shown above.  

An experiment which controls a robot by using the Emotiv system was illustrated. This 

prototype pointed out the principle of an EEG based BCI system working. In addition, 

the framework to implement EmoEngine on the NeuCube input module was accom-

plished.  

The three research questions were answered. The BCI was introduced in detail in Chap-

ter 2, and the experiment in Chapter 4 showed the principle of the BCI system working. 

The early stage of controlling a robot by using the NeuCube system was illustrated in 

Chapter 5. This outcome provided a solution that showed the NeuCube system acquir-

ing EEG data in real-time through the Emotiv system is possible. These were the main 

outcomes of this thesis.  

6.2. Limitations and Future Works 

The third research question was about controlling the robot by using NeuCube. How-

ever, in this study, a framework was provided instead of an application. Furthermore, 

the Emotiv system was only equipped with 14 channels. In theory, the more sensors 

there are, the better classifying the result is. Another potential problem is that the pro-

cessing speed of NeuCube is much slower than the sensors acquiring speed. This may 

lead to a problem of achieving the visualization of EEG data input in real-time.  
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In future studies, the first aim could be to accomplish the program, making the Emo-

tiv system work effectively on the NeuCube system. In addition, a recognition mod-

ule should be designed and coded for outputting tasks. With this recognition module, 

the system could classify EEG data in real-time, and output commands, making the 

NeuCube system as an EEG inputting system.  
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Appendices 

A. WITH robot console pseudocode (robot.py) (Stefan Schliebs, 2012) 

Imports 

//Global constants 

set SOCKET_HOST; 

set SOCKET_PORT; 

set WITH_CONTROL_COMMANDS{LIGHTS,FORWARD,BACK-

WARD,LEFT,RIGHT,STOP}; 

class RobotController  

{ //Implements basic robot controls for the WITH robot provided by KIT via a 

TCP/IP interface. 

 def initialize(); 

 def connect(){check HOST&PORT if OK, connect to HOST; else return error;} 

 def disconnect(){disconnect from HOST; else return error;} 

 def STOP(){send stop command; else return error;} 

 def FORWARD(){send move_forward command; else return error;} 

 def BACKWARD(){send move_backward command; else return error;} 

 def LEFT(){send turn_left command; else return error;} 

 def RIGHT(){send turn_right command; else return error;} 

 def LIGHT_ON(){trun on light on robot; else return error;} 

 def LIGHT_OFF(){turn off light on robot; else return error;} 

}         

B. robot console HUD pseudocodes (Key_events.py) (Stefan Schliebs, 

2012) 

Imports  

class Application() 

{//Application window capturing keyboard events. If the arrow keys are pressed, move-

ment commands are sent to the WITH robots. 

 def app_initialize(){ 
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  build application window; 

  create buttons on this window; 

  define arrow key_mappings with buttons;} 

 def create_widgets(){ 

  setup buttons on the application window;} 

 def keys(){ 

  capture key events sent to the application window; 

  set key_events{STOP,FORWARD,BACK-

WARD,LEFT,RIGHT,LIGHT_ON,LIGHT_OFF}, else return "Error, Key pressed is 

not set." 

  } 

 def button_check(){ if button pressed, set button_background "green";} 

 

 create controller instance; 

 create Tkinter object; 

 loop Application(robot); 

 disconnect(robot); 

} 

C. EEG Logger pseudocodes (EEG_Logger.cpp) (Emotiv system, 2014, 

Edited by Jianfei Wang) 

Imports 

class EEGLogger(){ 

//reading EEG data from Emotiv device, and check flag events, then send key press 

command to the key_event application. 

 set Emotiv headset chan-

nels{AF3,F7,F3,FC5,T7,P7,O1,O2,P8,T8,FC6,F4,F8,AF4,GYROX,GY-

ROY,TIMESTAMP,FUNC_ID,FUNC_VALUE,MARKER,SYNC_SIGNAL.} 

 def logger_initialize(){ 

  check device connection, return CONNECTED; else return ERROR; 

  read Channels; 

  output buff = Channels;} 

 def Events_trigger(){ 
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  load events_dataset;} 

 def controller(){ 

  classify buff; 

  if buff == events_dataset, return key_event(events_dataset);} 

 loop controller(Application); 

 EmoEngineDisconnect(); 

 return 0; 

} 
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