

Evolving Probabilistic Spiking Neural Networks

for Modelling and Pattern Recognition of

Spatio-temporal Data on the Case Study of

Electroencephalography (EEG) Brain Data

Nuttapod Nuntalid

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

2012

Knowledge Engineering and Discovery Research Institute

Faculty of Design and Creative Technologies

Primary Supervisor: Prof. Nikola Kasabov

Secondary Supervisor: Assoc. Prof. Petia Goergieva

Evolving Probabilistic Spiking Neural Networks

for Modelling and Pattern Recognition of

Spatio-temporal Data on the Case Study of

Electroencephalography (EEG) Brain Data

Nuttapod Nuntalid

A thesis submitted to

Auckland University of Technology

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

2012

Knowledge Engineering and Discovery Research Institute

iii

Table of Contents

Chapter 1: Introduction 1

1.1 Statement of the Problem 2

1.2 Objectives of the Study 3

1.3 Significance of the Study 3

1.4 Research Questions 4

1.5 Methodology 5

1.6 Outline of the Research 6

1.7 Contribution of the Research Published as Peer-reviewed Journal and

Conference Papers

8

Chapter 2: Spiking Neural Networks 13

2.1 Spiking Neurons 13

 2.1.1 Biological Neurons 16

 2.1.2 Neural Models 18

 2.1.3 Hodgkin Huxley model 22

 2.1.4 Izhikevich Spiking Model 24

 2.1.5 Leaky Integrate and Fire Model (LIF) 26

 2.1.6 Probabilistic Spiking Neural Model (PSNM) 28

2.2 Coding of information for neuro-computation 30

 2.2.1 Pulse codes 30

 2.2.2 Rate codes 31

2.3 Learning Rules 34

 2.3.1 Spike-Timing Dependent Plasticity (STDP) 35

 2.3.2 Spike Back-Propagation (Spike-Prop) 38

iv

 2.3.3 Remote Supervised Method (ReSuMe) 39

 2.3.4 The Fusi’s spike driven synaptic plasticity (SDSP) learning rule 41

 2.3.5 Evolving Spiking Neural Networks 44

 2.3.5.1 Thorpe model 44

 2.3.5.2 Population encoding 44

 2.3.5.3 One-Pass Learning 45

2.4 Conclusion 49

Chapter 3:Novel Stochastic Spiking Neural Models 53

3.1 Stochastic Spiking Neural Models 53

 3.1.1 Stochastic Noisy Reset (NR) 59

 3.1.2 Stochastic Step-wise Noisy Threshold Model (ST) 60

 3.1.3 Continuous Stochastic Threshold (CT) 61

3.2 Conclusion 62

Chapter 4: SSPAN: Stochastic Precise-Time Spike Pattern Association

Neuron

613

4.1 SPAN: Precise-Time Spike Pattern Association Neuron 63

4.2 Stochastic Precise Time Spike Pattern Association Neuron (SSPAN) 67

4.3 A Comparison between SPAN and SSPAN 69

4.4 Conclusion 75

Chapter 5: DepSNN: Dynamic Evolving Probabilistic Spiking Neural

Networks

77

5.1 Rank Order Learning (RO) 78

5.2 The Fusi’s spike driven synaptic plasticity (SDSP) learning rule 81

5.3 Dynamic Evolving Probabilistic Spiking Neural Network (DepSNN) 83

5.4 Conclusion 88

v

Chapter 6: epSNNr : Evolving Probabilistic Spiking Neural Network

Reservoir

90

6.1 Introduction to Reservoir Computing 90

6.2 Frameworks of the Evolving Probabilistic Spiking Neural Network

Reservoir

 (epSNNr)

96

 6.2.1 Design of the encoder 96

 6.2.2 Design of the Spatiotemporal Filter 96

 6.2.3 Design of State Vector 97

 6.2.4 Design of the classifier 98

6.3 Deterministic LSM Versus epSNNr 98

6.4 Conclusion 103

Chapter 7: Electroencephalography 105

7.1 Electroencephalography (EEG) 105

7.2 EEG Applications 110

7.3 Spiking Neural Networks Applications on EEG 115

7.4 Conclusion 118

Chapter 8: Novel Algorithm for EEG Transformation to Spikes 120

8.1 Paralleled Spike Encoding Function 120

8.2 Finite Impulse Response Filter (FIR) 122

8.3 Ben Spike Encoder Algorithm (BSA) 124

8.4 Conclusion 133

Chapter 9: Proposed Architectures for EEG Spatio-temporal Pattern

Recognition

134

9.1 Proposed Architecture for EEG Spatio-temporal Pattern Recognition on

Stochastic Precise-time Spike Pattern Association Neuron (SSPAN)

135

9.2 A Novel Architecture for Online EEG Spatio-temporal Pattern

Recognition Utilizing the Dynamic Evolving Spiking Neural Network

(DepSNN)

136

vi

9.3 A Novel Architecture for Online EEG Spatio-temporal Pattern

Recognition Utilizing the Evolving Probabilistic Spiking Neural Network

Reservoir (epSNNr)

138

9.4 Conclusion 143

Chapter 10: Spatio-temporal Pattern Recognition of Audio–Visual

Stimuli Perception EEG

144

10.1 Audio-Visual Stimuli Perception EEG Dataset 144

10.2 SSPAN on Audio-Visual Stimuli Perception EEG Dataset 148

10.3 DepSNN for Audio-visual Stimuli Perception EEG Dataset 153

10.4 epSNNr for Audio-Visual Stimuli Perception EEG Dataset 157

10.5 epSNNr utilizing DepSNN as a Readout Unit on Audio-Visual Stimuli

Perception EEG Dataset

161

10.6 Conclusion 164

Chapter 11: Spatio-temporal Pattern Recognition on P300 EEG

application

168

11.1 What is Brain Computer Interface (BCI)? 169

 11.1.1 P300 EEG application 170

 11.1.2 The P300 Dataset Description and Former Investigations 170

11.2 DepSNN on P300 EEG Application 173

11.3 epSNNr with EEG localization mapping on P300 EEG Application

183

 11.4 Conclusion 187

Chapter 12: Conclusions and Recommendations 190

12.1 Conclusions 192

12.2 Contributions 195

12.3 Recommendations and Future Prospects 197

vii

Appendix A 200

Appendix B 206

Appendix C 208

Appendix D 212

Appendix E 214

References 216

viii

List of Figures

Figure 1.1 Research Framework 6

Figure 1.2 Schematic illustrating the contributions of this thesis to SNN

research, in terms problems solved, methods developed and datasets

12

Figure 2.1 Images of Biological Neurons 16

Figure 2.2 Sigmoid Unit (Neural Model) 20

Figure 2.3 Schematic of Spiking Neurons 22

Figure 2.4 Electrical Circuit of the Hodgkin- Huxley model 23

Figure 2.5 The Dynamics of the Izhikevich Model 25

Figure 2.6 Leaky Integrate and Fire Model 27

Figure 2.7 Probabilistic Spiking Neural Model 29

Figure 2.8 Pre-synaptic Neurons 33

Figure 2.9 STDP Learning Window 37

Figure 2.10 The Remote Supervised Method (ReSuMe) Approch 41

Figure 2.11 Population Encoding Based on Gaussian Receptive Fields 45

Figure 2.12 Architecture of Evolving Spiking Neural Network architecture

(eSNN)

49

Figure 3.1 The flexibility of use of different SNMs 55

Figure 3.2 Evolution of membrane potentials in the Hodgkin-Huxley Model 57

Figure 3.3 Slow noise in the probability parameters 57

Figure 3.4 Comparisons between stochastic versions of models 59

Figure 4.1 Demonstration of learning rule in SPAN 66

Figure 4.2 Graphical illustration of one sample of a class from the synthetic

dataset

70

Figure 4.3 True spike output and desired spike output of SSPAN 72

Figure 4.4 Error(E) dynamic of SSPAN 74

Figure 5.1 Spike Raster Plot Weight and PSP evolution for a slow spike rate 86

ix

Figure 5.2 Spike Raster Plot Weight and PSP evolution for a fast spike rate 88

Figure 6.1 Block diagram of Reservoir Computing 91

Figure 6.2 Mechanism of Liquid State Machine (LSM) 93

Figure 6.3 Example of a liquid unit of a LSM 94

Figure 6.4 epSNNr: Evolving probabilistic spiking neural network reservoir 96

Figure 6.5 a) Raster plot of the neural response. b) PSTH for each raster plot 100

Figure 6.6 Averaged spike response of reservoirs 102

Figure 6.7 Illustration of a liquid possessing a small-world interconnectivity 102

Figure 6.8 The epSNNr visualization 103

Figure 7.1 Electroencephalography (EEG) Equipment 106

Figure 7.2 Spatial Positioning of the EEG Electrodes 107

Figure 7.3 An illustration of EEG in Delta oscillation 108

Figure 7.4 An illustration of EEG in Theta oscillation 108

Figure 7.5 An illustration of EEG in Alpha oscillation 109

Figure 7.6 An Illustration of EEG in Beta Oscillation 109

Figure 7.7 An Illustration of EEG in Gamma Oscillation 110

Figure 7.8 BCI Controlled Robot 112

Figure 7.9 Mind Controlled Wheelchair 113

Figure 7.10 Evoked Potential Duration (EPD) 118

Figure 7.11 Illustration of the EPD 118

Figure 8.1 The Chaotic Spiking Neuron: CSN 122

Figure 8.2 Ben Spike Encoder Algorithm (BSA) 131

Figure 8.3 EEG signal, spike representation and actual one channel EEG 132

Figure 9.1 SSPAN for EEG 135

Figure 9.2 DepSNN for EEG 137

Figure 9.3 epSNNr for EEG 139

Figure 9.4: 3D EEG head map localization and 3D LSM visualization 140

x

Figure 10.1 Single Channel EEG, Spike Representation and Actual EEG 145

Figure 10.2 Optimal BSA Threshold on EEG 146

Figure 10.3 Samples of Input Stimuli Transformed to Spike Using BSA 147

Figure 10.4 Kernel Graphs of Actual and Desired Spike 150

Figure 10.5 Desired spike of a SSPAN with no firing activity 151

Figure 10.6 Input EEG Spike Form Raster Plot and synaptic weights 153

Figure 10.7 Spike raster plot, synaptic weights and PSP evolutions 155

Figure 10.8 Classification Accuracy of Different DeSNN Models 156

Figure 10.9 Liquid Response of the Network 159

Figure 10.10 Root Mean Squared Error (RMSE) in epSNNr models 159

Figure 11.1 Imaged Used for Evoking the P300 171

Figure 11.2 Percentage of Correctly Categorized Tests for Varying M 172

Figure 11.3 Percentage of Accurately for Varying Boosting Iterations 174

Figure 11.4 EEG and transformed spikes for a Duration of 1000 ms 175

Figure 11.5 Encoded Spike Trains of the P300 for Non-Target Class 178

Figure 11.6 Encoded Spike Trains of the P300 for Target Class 178

Figure 11.7 Weights and Post Synaptic Potential Changes of DepSNNm 179

Figure 11.8 Weights Changes for the DepSNNs 180

Figure 11.9 Raster plot of EEG before and after injecting into epSNNr 185

xi

List of Tables

Table 4.1 Parameter setup for a performance test of SPAN and SSPAN 71

Table 4.2 Classification accuracy of stochastic LIF-based models 73

Table 5.1 DepSNN Algorithm 87

Table 8.1 Convolution function for transforming spikes into original wave 127

Table 8.2 A the pseudo-code of BSA algorithm on EEG

130

Table 9.1 Mapping table of 64 EEG channels matched with neuron number 142

Table 10.1 SSPAN Parameter Setup 149

Table 10.2 SSPAN performance results

152

Table 10.3 Parameters for Neurons, Synapses and Learning Parameters

154

Table 10.4 :Lists the parameters setting used in the epSNNr experiments

158

Table 10.5 Classification Accuracy

160

Table 10.6 EEG Classification Accuracy (%), for two types of DepSNN

with Various epSNNr Neural Models

162

Table 10.7 Classification accuracy (%) of epSNNr with DepSNN as a

readout and EEG localization input mapping

163

Table 11.1 Setup of DepSNN Parameters

176

Table 11.2 Parameter settings for the Stochastic Spiking Neural Models

177

Table 11.3 Classification Accuracy of a subset P300 based BCI Data

182

Table 11.4 Classification Accuracy of the Full P300 based BCI Data

182

Table 11.5 Parameter settings in the experimental setup for the epSNNr

184

Table 11.6 Mapping table of 32 EEG channels name mapped to neurons 185

Table 11.7 Experimental results

186

xii

List of Abbreviations

µ Gaussian Distribution Mean

ANN Artificial Neural Network

BCI Brain Computer Interface

BSA Ben Spike Encoder Algorithm

CNGM Computation Neuro-genetic Models

CSN Chaotic Spiking Neuron

CT Continuous Stochastic Threshold Model

DepSNN Dynamic Evolving Probabilistic Spiking Neural Network

DepSNNm Dynamic Evolving Probabilistic Spiking Neural Network

(membrane potentials)

DepSNNs Dynamic Evolving Probabilistic Spiking Neural Network (synapses)

E Error

EEG Electroencephalography

EPD Evoked Potential Duration

epSNNr Evolving Probabilistic Spiking Neural Network Reservoir

eSNN Evolving Spiking Neural Network

Ex Excitatory

FIR Finite Impulse Response Filter

GRN Gene Regulatory Network

HMM Hidden Markov Model

HAS Hough Spiker Algorithm

IF Integrate-and-Fire Model

Inh Inhibitory

LIF Leaky Integrate and Fire Model

xiii

LSM Liquid State Machine

LTD Long-term Depression

LTP Long-term Potentiation

MLP Multi-layer Perceptron

NR Stochastic Noisy Reset Model

POC Population Coding

pSNM Probabilistic Spiking Neural Model

pSNN Probabilistic Spiking Neural Network

PSTH Peristimulus Time Histograms

ReSuMe Remote Supervised Method

RO Rank Order

ROC Rank Order Coding

SDSP Spike Driven Synaptic Plasticity

SNM Spiking Neural Model

SNN Spiking Neural Network

SPAN Precise-time Spike Pattern Association Neuron

SSPAN Stochastic Precise-time Spike Pattern Association Neuron

ST Stochastic Step-wise Noisy Threshold Model

STD Spatio-temporal Data

STDP Spike-time Dependent Plasticity

Σ Standard Deviation

xiv

Declaration

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly stated in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any

other degree or diploma of a university or other institution of higher learning.”

Auckland, 2012

 Nuttapod Nuntalid

xv

Acknowledgements

First of all, I am really grateful to God Almighty who has given me inspiration to

complete this study.

I am deeply grateful to my primary supervisor, Prof. Nikola Kasabov, for his

sincere guidance, support and patience. Without his support, this thesis would not

have been accomplished.

Many thanks to my secondary supervisor, Assoc.Prof. Petia Goergieva, for

supplying fundamental information on EEG and BCI.

I also extend thanks to the past and present members of KEDRI (Knowledge

Engineering and Discovery Research Institute) at the Auckland University of

Technology, who directly or indirectly provided me with the conditions required

for completion. From the valuable information provided by them, I have

accumulated important knowledge related to the research.

I am very grateful to Joyce D’Mello, the manager of KEDRI, for all her kindness

and support which she has offered me since before the time I joined KEDRI.

I am delighted to thank my parents for their support, all the things I’ve learnt,

what you have taught me remains by far the most important.

I would also like to thank the many researchers, whom I directly contacted

regarding methods related to this study and their technical suggestion and support

such as Prof. Benjamin Schrauwen, Prof. Hiroyuki Torikai, Dr. Stefan Schilibs

and Dr. Ammar Mohammed.

xvi

I also thanks to my reviewers for their time and effort including Prof. Bogdan

Gabrys, Prof. Zeng-Guang Hou and Dr. George Coghill.

Finally, I wish to pass on my sincere thanks to many researchers and scholars

worldwide whose works have been consulted and drawn upon during the research.

xvii

Abstract

The use of Electroencephalography (EEG) in Brain Computer Interface (BCI)

domain presents a challenging problem due to presence of spatial and temporal

aspects inherent in the EEG data. Many studies either transform the data into a

temporal or spatial problem for analysis. This approach results in loss of

significant information since these methods fail to consider the correlation present

within the spatial and temporal aspect of the EEG data. However, Spiking Neural

Network (SNN) naturally takes into consideration the correlation present within

the spatiotemporal data. Hence by applying the proposed SNN based novel

methods on EEG, the thesis provide improved analytic on EEG data. This thesis

introduces novel methods and architectures for spatio-temporal data modelling

and classification using SNN. More specifically, SNN is used for analysis and

classification of spatiotemporal EEG data.

In this thesis, for the first time, Ben Spiker Encoder Algorithm (BSA) is applied

on EEG data and its applicability is demonstrated successfully. Moreover, three

new stochastic neural models are introduced; namely, Stochastic Noisy Reset

(NR), Stochastic step-wise noisy threshold model (ST) and Continuous stochastic

threshold (CT). The stochastic models mimic activity of biological neurons while

retaining low implementation cost. Also, a modification of precise-time spike

pattern association neuron (SPAN) called stochastic precise-time spike pattern

xviii

association neuron (SSPAN) is introduced. The SSPAN demonstrates superior

performance than SPAN, especially when used with stochastic neural models.

A novel Dynamic Evolving Probabilistic Spiking Neural Network (DepSNN) is

introduced as an extension of the eSNN model. Five novel variants of DepSNN

(DepSNNm, DepSNNs, NR-DepSNNs, ST-DepSNNs, and CT-DepSNNs) are

presented and the results show that it requires high density of input spikes if SDSP

learning is to be made efficient.

The thesis then offers a critical analysis of Electroencephalography (EEG) data

analysis and classification methods used to date. The developed SNN methods

have been adopted in EEG analysis and classification investigated on two datasets

(real-world audio-visual stimuli perception EEG dataset and P300 based BCI

dataset), with promising results relative to other methods.

Furthermore, the proposed novel SNN architecture for spatio-temporal data

termed evolving probabilistic SNN reservoir (epSNNr) shows enhanced

performance when integrated with stochastic neural models. The utilization of 3D

Localization mapping along with DepSNN as a readout unit, showed very

outstanding results especially on P300 based BCI application.

Chapter 1

Introduction

Spiking Neural Networks (SNN) is the third generation of Artificial Neural

Networks (ANN). Artificial Neural Networks have been successfully applied to

problems in classification and medical decision support, among others.

Throughout the past decade, neural network research has tended towards more

biologically realistic models and the need to better comprehend the significant

information processing competencies of the mammalian brain. This current focus

has culminated in more complicated and biologically probable connectionist

models, including Spiking Neural Networks (SNN). A defining characteristic of

SNNs is that they prototype the transmission of the biological network in time and

hence by themselves constitute a continual dynamic system. This makes them

particularly applicable to sequential patterns and, as such, they are suitable

alternatives to the HMM method.

SNN, which simulates information-processing by biological neurons, possesses

two major characteristics. First, the weights in SNN are of different strength and

secondly, a spike is released when the signal threshold is exceeded. A detailed

discussion of SNN models (SNM), including LIF and Hodgkin Huxley models, is

available in Gerstner and Kistler (2002). Nevertheless, SNN theory makes no

provision for the processing of temporal prototypes. The currently accessible

2

learning algorithms for Spiking Neural Networks can process non-temporal vector

data only. The learning rule requires that free parameters in the Spiking Neural

Networks models are alterable, enabling the SNN to learn a suitable output for a

given collection of spatio-temporal inputs.

This research aims to develop modules and a simulator for Probabilistic Spiking

Neuron Model (pSNM). This simulator will be used to model the evolving

connectivity of pSNN on a larger scale, dealing with spatiotemporal data. The

approach will be tested on a case study of EEG, which is a type of spatio-temporal

brain data.

1.1 Statement of the Problem

In previous research, network structures have been evolved using standard SNN,

which limits the functionality of the network during a learning process. New

types of SNN, termed probabilistic SNN (pSNN), were recently proposed in by

Kasabov, offering greater flexibility in both neural functions and connectivity

(Kasabov, 2010). Spatiotemporal pattern recognition is crucial in improving the

accuracy of data mining approaches. However, neither SNN nor pSNN have been

applied to spatiotemporal data processing. In particular, application to human

EEG data would contribute to the development of a brain computer interface

(BCI). Therefore, this study aims to develop modules and a simulator for pSNM

and to use this simulator to model the evolving connectivity of pSNN on a large

scale, dealing with spatiotemporal data. The modules will be tested on an EEG

3

case study.

1.2 Objectives of the Study

The objectives of this study are as follows:

(1) Investigate and apply a suitable spike encoding method for EEG data

analysis.

(2) Develop new models of SNN inspired by the Probabilistic Spiking Neural

model.

(3) Develop a new model of SNN for spatio-temporal data (STD) processing,

including methods for online learning.

(4) Develop a new model of SNN utilizing the reservoir approach for spatio-

temporal data (STD) processing, including methods for adaptive learning

and visualization.

(5) Develop an SNN system for processing brain EEG data as spatial-temporal

inputs, and evaluate the efficiency of the system.

(6) Apply the developed SNN and systems to the design of a novel BCI.

1.3 Significance of the Study

Determining suitable spatiotemporal pattern recognition approaches are crucial for

improving the accuracy and decreasing processing time of data mining

approaches. So far the applicability of spatiotemporal data processing approaches

such as SNN (which are capable of naturally processing spatiotemporal data) has

not been investigated thoroughly. Therefore, this research aims to develop novel

4

spatiotemporal pattern recognition techniques utilizing SNN. Also, the existing

SNM has limited functionality in terms of learning process. Hence, new models of

SNM, inspired by Kasabov’s pSNM, are introduced in this study, particularly for

application on human EEG data.

Appropriate spike representation of data is also important since SNN processes

spatiotemporal data as spikes. Therefore, besides the development of novel

spatiotemporal processing techniques based on eSNN, suitable fast spike encoding

methods for human EEG data is also essential. An encoder that appropriately

represents the data into spikes along with novel SNN methods will greatly

contribute to the further development of brain computer interfaces (BCI).

Furthermore, the software simulator used in this research will provide insights

into the brain activities and its functions. This will result in more efficient and

effective simulation of spiking neuron connectivity during spatiotemporal data

processing.

1.4 Research Questions

The following research questions will be addressed:

(1) How can new models of SNN, inspired by the Probabilistic Spiking neural

model, be developed?

(2) How should we proceed with adapting the new SNN for spatio-temporal

data (STD) processing?

(3) How can the new SNN utilizing reservoir approach be developed for

spatio-temporal data (STD) processing?

5

(4) How can the new SNN systems be developed for processing EEG data as

spatial-temporal input? How will the efficiency of these systems be

evaluated?

(5) How can the new SNN systems be used to design a novel BCI?

(6) How can the new SNN models be utilized for brain data modeling?

1.5 Methodology

Corresponding to the research objectives, the following methodology is derived.

Firstly, a literature review based on past and current SNN based approaches is

carried out. This allows in better understanding of the advantages and limitations

present in the existing approaches and its functions such as the dynamicity of a

synapse, learning rules, spike encoding methods, characteristic of EEG, and its

applications. This in turn results in the development of new SNN approaches for

spatiotemporal pattern recognition such as the novel pSNM.

Second is the implementation phase, considered as one of the most important

steps in this study. In this phase designs for new SNN architectures for spatio-

temporal pattern recognition of EEG needs to be determined. This is achieved

through initial pilot studies. The new models are developed in Python language

because it is open source, platform independent and has large collection of SNN

libraries.

The last phase is testing and validation. Each method is first evaluated on

synthetic dataset so that the performance and characteristics of the proposed

system can be investigated. Then partial real world EEG datasets were used for

6

optimizing parameters of the proposed SNN methods. Corresponding to the main

objective of this study, the proposed methods design focuses on online processing

capability and its suitability for BCI based applications. In this study, each dataset

was split into training set and testing set for evaluation. The performance of the

SNN models is evaluated in terms of classification accuracy and compared to

traditional methods.

Hence, the methodology of this study is concluded in a research framework

demonstrated in figure 1.1, which consists of 4 main stages of information

processing those need to be explored and developed: (a) datasets; (b) converting

continuous inputs into spikes; (c) spatio-temporal pattern recognition; (d) quality

evaluation.

Figure 1.1: Research Framework

1.6 Outline of the Research

7

The research comprises the following twelve chapters:

Chapter 1 – Introduces the research, defines the problem, highlights the

objectives and significance of the study, poses the research questions and outlines

the methodology.

Chapter 2 - This chapter discusses the mechanisms of biological neurons which

have inspired the development of SNN.

Chapter 3 - This chapter proposes the novel stochastic spiking neural models and

describes an initial exploration of their behaviours.

Chapter 4 - In this chapter, the Stochastic Precise-time Spike Pattern Association

Neuron (SSPAN) is introduced and its behaviour is investigated. This model is a

modification of SPAN: Precise-time Spike Pattern Association Neuron, in which

the deterministic LIF model has been replaced with the stochastic spiking neural

models introduced in Chapter 3.

Chapter 5 - This chapter introduces Dynamic Evolving Probabilistic Spiking

Neural Network (DepSNN), an extension of the eSNN model, in which both

deterministic LIF and the stochastic models are utilized.

Chapter 6 - This chapter introduces Spiking Neural Network Reservoir

(epSNNr), in which stochastic neural models have not only replaced deterministic

LIF, but are used to introduce a non-deterministic component into a liquid state

machine.

Chapter 7 - This chapter briefly introduces EEG and reviews the current situation

regarding EEG and SNN-based EEG applications.

8

Chapter 8 - This chapter investigates the proposed spike encoding method, with

emphasis on its suitability for EEG and the novel approach of transforming EEG

data into spikes.

Chapter 9 - This chapter proposes the network architectures for EEG Spatio-

temporal Pattern Recognition on Stochastic Precise-time Spike Pattern

Association Neuron (SSPAN), and proposes the frameworks for online EEG

Spatio-temporal Pattern Recognition on DepSNN and Online EEG Spatio-

temporal Pattern Recognition on epSNNr.

Chapter 10 - This chapter discusses the implementation and investigates the

feasibility and performance of Spatio-temporal Pattern Recognition (SSPAN,

DepSNN, epSNNr and mixed methods) during processing of real-world audio-

visual stimuli perception EEG data.

Chapter 11 - This chapter discusses the implementation and investigates the

feasibility and performance of DepSNN on a P300 based BCI. The results are

compared with those of an existing method applied to the same dataset.

Chapter 12 - This chapter concludes the research and discusses the contribution

of this thesis to SNN research. This chapter also provides recommendations for

future improvements.

1.7 Contribution of the Research Published as Peer-reviewed Journal and

Conference Papers

9

Most of experiments in this study have been shared with the scientific community

in six blind peer-review international academic papers and one poster as the

following:

(1) Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic

Evolving Spiking Neural Networks for On-line Spatio- and Spectro-

Temporal Pattern Recognition. Neural Networks(Autonomous Machine

Learning).

Contribution involves:

- Application and performance evaluation of DepSNN on real-world

EEG.

- Application of BSA spike encoding for EEG data.

- Application of Rank Order Code.

- Application of STDP/SDSP learning in DepSNN.

(2) Dhoble, K., Nuntalid, N., Indiveri, G., & Kasabov, N. (2012, 10-15 June

2012). Online spatio-temporal pattern recognition with evolving spiking

neural networks utilising address event representation, rank order, and

temporal spike learning Symposium conducted at the meeting of the

Neural Networks (IJCNN), The 2012 International Joint Conference on

doi:10.1109/ijcnn.2012.6252439.

Contribution involves:

- Application of Rank Order Code.

10

- Application of STDP/SDSP learning in DepSNN.

- Performance evaluation of DepSNN and its variants.

(3) Nuntalid, N., Dhoble, K., & Kasabov, N. (2011). EEG Classification with

BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural

Network [Proceedings of the 18th international conference on Neural

information processing: theory and algorithms - Volume Part I]. Changhai,

China: Springer.

Contribution involves:

- Integration and application of Stochastic Neural Models in epSNNr.

- Application of epSNNr on real-world Riken EEG dataset.

- Evaluation of epSNNr for online learning.

(4) Kasabov, N., Dhoble, K., Nuntalid, N., & Mohemmed, A. (2011).

Evolving Probabilistic Spiking Neural Networks for Spatio-temporal

Pattern Recognition: A Preliminary Study on Moving Object Recognition

[Proceedings of the 18th international conference on Neural information

processing: theory and algorithms - Volume Part 3]. Changhai, China:

Springer.

Contribution involves:

- Evaluation of LSM based epSNNr on synthetic data.

- Characteristics and parameters tuning of stochastic reservoir.

11

- Performance comparison with non-SNN based approaches.

(5) Schliebs, S., Nuntalid, N., & Kasabov, N. (2010). Towards spatio-

temporal pattern recognition using evolving spiking neural networks

[Proceedings of the 17th international conference on Neural information

processing: theory and algorithms - Volume Part I]. Sydney, Australia:

Springer-Verlag.

Contribution involves:

- Proposal of Stochastic Neural Models.

- Performance comparison of stochastic against non-deterministic neural

models.

- Integration and performance evaluation of reservoir with and without

Stochastic Neural Models.

(6) Nuntalid, N., Kasabov, N. (in progress). Dynamic Probabilistic Evolving

Spiking Neural Networks for Spatial-temporal EEG Pattern Recognition.

Evolving Connectionist System (ECOS).

Contribution involves:

- Integration and performance evaluation of reservoir with and without

Stochastic Neural Models.

- Integration and performance evaluation of DepSNN with and without

Stochastic Neural Models.

- Integrate and performance evaluation of reservoir utilizing 3D

localization mapping and depSNN in the readout unit.

12

- Application of above contribution on real-world P300 EEG based BCI

dataset.

The following diagram summarises these contributions in terms of the datasets,

problems to be solved and proposed models:

Thesis

Data Problems Methods

Synthetic Data for SSPAN

Synthetic Data for DepSNN

Synthetic Data for epSNNr

audio-visual stimuli perception

EEG

EEG P300 based BCI

Classification/Pattern

Recognition

Cognition

BCI

Spike Encoding for EEG

Stochastic Spiking Neural

Models

SSPAN

DepSNN

epSNNr

Figure 1.2: Schematic illustrating the contributions of this thesis to SNN research, in terms

of problems solved, methods developed and dataset.

Chapter 2

Spiking Neural Networks

Artificial Neural Networks (ANNs) models are mathematical models comprising

an interconnected group of artificial neurons based on biological neural networks.

Information is processed using a computational connectionist approach. In ANNs,

the artificial nodes are known as neurons. ANNs have been successfully applied

to data intensive problems such as classification, medical decision support, data

mining, sales forecasting and target marketing, forecasting economic indicators

and pattern recognition.

In this chapter, the relevant background information is introduced, including

previous and current research on Spiking Neural Networks (SNN), the reservoir

computing approach and SNN learning rules. Certain aspects of SNNs are highly

relevant to this study and have inspired the development of probabilistic Spiking

Neural Models (pSNM).

2.1 Spiking Neurons

The brain is a specially-adapted organ through which sentient organisms interact

with their environment. This complex organ can intercept and process vast

streams of input information in a highly efficient way. A machine modelled on the

14

human brain, which can be utilized for multiple languages, is the ultimate goal of

Artificial Intelligence (AI) research. On close examination, the brain comprises a

large number of nerve cells known as neurons. These neurons establish

connections with each other to form a live Neural Network. Artificial Neural

Networks, which constitute a sub-field of Artificial Intelligence, attempt to

prototype these biological neurons and to emulate the brain’s processing efficacy

by establishing networks between these model neurons (Booij, 2004).

Mass and colleagues (2001) proposed that computational spiking neural networks

are innately embedded in time (Maass, Natschläger, & Markram, 2002).

According to Brader and his colleagues, if a neuron receives the same sequence of

spikes, it will reside in the same final state with no interference from other

parameters. Two types of neurons have been described; efferent (motor neurons,

which stimulate movement) and afferent (sensory neurons, through which

sensation is perceived). A causal relation may exist between these entities and the

neuron of interest may lie beyond the transmission delay (in the past or future).

Given that the past spiking activity of a neuron affects its membrane potential and

influences its reaction to the next spike, the neuron is itself causally linked to

transmission delay. This linkage provides a unified framework for the current

neuron connected to all of its efferent and afferent neurons (Brader, Senn, & Fusi,

2007).

15

From biological observation, real SNN neurons are known to be sparsely and

irregularly connected in space, and the variability of their spike flows implies that

they communicate irregularly in time with a low average activity. The nodal

spatial distribution and temporal activity describe the network topology and the

network dynamics of the SNN, respectively. Moisy and Bohte stated that "It is

important to note that the network topology becomes a simple underlying support

to the neural dynamics, but that only active neurons are contributing to

information processing. The novelty of the concept of SNNs means that many

lines of research are still open and are actively being pursued" (Paugam-Moisy &

Bohte, 2009). When performing a perceptual task, precision pooling occurs when

an organism’s decisions are based on the activities of a small set of highly

informative neurons. The global pooling hypothesis states that the activities of all

active neurons (or perhaps all active neurons in a particular brain region)

contribute to an organism’s perception and thus, to an organism’s perceptual

decision (Shadlen & Newsome, 1996).

Hence, the model studied in this research is focussed mainly on the Spiking

Neural Model, which is currently attracting much attention in the ANN discipline.

A formal definition of neural networks is presented in this chapter, together with

descriptions on how they are modelled. Section 2.1.1 explains the working

mechanism of biological neurons. Section 2.1.2 outlines the different approaches

to modelling these neurons. Section 2.1.3 introduces the Spiking Neural Models

and their applications. Section 2.1.4 presents the general architecture of the

16

network, while 2.1.5 describes the likely coding patterns for altering an input

signal so that it can be provided to a neural network. Section 2.1.6 provides an

overview of SNN applications.

2.1.1 Biological neurons

Figure 2.1: Images of Biological Neurons

To emulate complex biological neural networks such as occur in the brain, one

must comprehend biological neurons, the languages of neural networks. Indeed,

Axon

Soma

Dendrites

17

most of the ANN vocabulary derives from the biological equivalents of artificial

components. In this section, biological neurons and their functioning are

discussed. Neurons, which constitute the real processing units of the brain,

perform simple calculations but compared to silicon chips their processing speed

is very slow.

Nevertheless, large quantities of these simple units produce a powerful network.

A silicon based computer typically has a single processing unit; within a neural

network the entire set of neurons operates in parallel. To establish this network

every neuron is connected to, on average, thousands of other neurons. Though

various types of neurons exist in the brain, their basic structure is the same. The

cell-body or the soma of the neuron radiates numerous refined networking fibres

known as dendrites, together with one or more axons that branch from the base

before extending towards other neurons, as shown in Figure 2.1. Towards the

bottom of that figure, the triangular soma is indicated, with the dendrite tree

surrounding it. The axon spreads up and branches towards the top of the image.

The basic functioning of a neuron is described below.

Neurons hold a small negative electrical charge of -70 mV, known as their

inactive capacity. This capacity is enhanced by incitements from other neurons.

When the capacity reaches a limit, normally around -55 mV, the neuron shoots an

electrical pulse along its axon, termed a spike. At the termination of the axon, the

axon-branches link to dendrites of other neurons. This linkage between the

neurons is known as a synapse. When a spike touches such a synapse it alters the

electrical capacity in the dendrites of the recipient neuron. Because this procedure

18

is comparatively time- consuming, the influence is deferred by a specific time

which is typical for that synapse. The transmitter and receiver of the spike are

termed the presynaptic and postsynaptic neuron, respectively. Depending on type

of synapse, this alteration can cause the capacity of the postsynaptic neuron

capacity to rise (positive effect), or drop (negative effect). A positive effect

induces propulsion of the neuron; in this case the synapse is known as excitatory,

whereas in the opposite case the synapse is known as inhibitory. The influence of

the capacity-alteration is temporary; after some time it disappears as the default

state of the neuron is its inactive capacity. Having fired a spike, a neuron requires

some time to recuperate before it can spike again. This time interim is known as

the refractory period. The type of synapse, whether inhibitory or excitatory, is

fixed, but the intensity of the capacity-alteration it creates can vary. This effect,

termed synaptic plasticity, allows the network to gain from previous practice.

Bio-neurological research has revealed the changes occurring in synapses over

time (Maass et al., 2002; Maass & Zador, 1999). However, this knowledge is

gleaned from remote neurons rather than the bigger network. How biological

neural networks interact to learn like the human brain remains poorly understood.

Among the numerous types of neurons and synapses, certain ones possess

extremely long axons which can exert long-range effects. Other neurons are

adapted to regional processing, possessing both a small axon and small dendrites.

Yet others develop inhibitory or excitatory synapses, but not both. Axons do not

establish synapses with dendrites at all times. Certain synapse with the cell body

19

of another neuron, enabling them to exert a strong effect. Some neurons establish

inhibitory synapses to other axons, which prohibits those axons from spreading

their spikes. Biological neural networks always constitute a conglomerate of

different neurons. No fragment in the human brain contains a homogenous pool of

a single neuron type. In addition, biological neural networks are extremely

recurrent; that is, numerous loops exist within the network assist positive and

negative responses (Maass, Natschläger, & Markram, 2004). Obviously, a solitary

biological neuron is part of a very complicated vibrant system. It is extremely

difficult to copy the features and behaviour of a neuron in its entirety.

2.1.2 Neural Models

This section discusses some current models of biological neural activity. It

focuses on the sigmoid and the spiking neural models and the differences between

them. One model is not essentially superior to another, but models vary widely in

their level of abstraction. Some models generate precise incitation of the neuron,

incorporating all dissimilar biochemical information (Koch & Segev, 1989;

MacGregor, 1987). These models are generally not aimed at neural network

building, but at accurately simulating the behaviour of single neurons. Other

models are more conceptual and depict the condition of a neuron by a real

number, termed its activation, in the absence of any molecular consideration

(Rosenblatt, 1962; Rumelhart & McClelland, 1986). From these types of models,

it is simpler to create a network and to deduce a learning algorithm for it. The

most famous neural-model is the sigmoid unit (Rumelhart & McClelland, 1986),

20

depicted in Figure 2.2. In this model, the output or stimulation of a neuron is

assigned a single variable, generally between 0 and 1. The synapse bridging the

two neurons is modelled by a weight variable describing the magnitude of the

influence on the postsynaptic neuron. These weights may be positive (denoting an

excitatory synapse) or negative (inhibitory synapse). The capacity of the sigmoid

neuron is obtained by summing the weighted ejecting rates of its presynaptic

neurons. From this potential, the activation is calculated by an activation function.

Figure 2.2: Sigmoid Unit (Neural Model)

The primary functioning steps of a sigmoid unit are addition of its input and its

stimulation. The productivity of neuron is weighted by the synapse linking

neuron i to its adjoining neuron j, determined as the weighted input . The

capacity ui is obtained by summing all j neuron inputs; then the activation is

computed from the sigmoid function F(·). The sigmoid neuron is named after the

sigmoidal form of its stimulation function, as shown in Figure 2.2 for neuron .

The stimulation variable in this model is the rate at which the neuron ejects its

21

spikes; i.e., the number of spikes in a specific time window. This has long been

considered as the only information shared between two biological neurons (Fred

Rieke, Warland, Rob, & Bialek, 1997). The neural code of the neural-network is

known as the firing rate. Researchers argued that the firing rate cannot be the sole

neural code. Psychological experiments have shown that some neural processing

is too quick to be modelled by this type of calculation (Thorpe, Delorme, & Van

Rullen, 2001).

Real neurons could not have computed the average number of spikes in such a

short time period. Numerous neurobiological studies have determined another

type of neural-code (Fred Rieke et al., 1997); accurately timed spikes. In this

scenario, information passed from neuron to neuron is not encoded in the ejecting

rate of the spikes, but in their accurate timing, leading to high speed neural

processing. Spiking neural networks (SNN) (also pulse-coupled or integrate-and-

fire networks) are comprehensive models which utilize this neural-code of

accurately timed spikes (W. Gerstner & Kistler, 2002). The input and output of a

spiking neuron is exhibited by a sequence of ejecting times known as a spike-

train. A spiking train is illustrated diagrammatically in Figure 2.3. The ejecting

time is depicted by the vertical bars.

A single ejecting time is the time at which a neuron has released a pulse.

Additional pulses of the same form are ignored, since the pulses emitted by a

specific type of neuron appear similar. The capacity of a spiking neuron is

22

expressed as an active variable and operates as a leaky integrator of the receiving

spikes: newer spikes exert stronger influence over the potential than the older

spikes. If this addition exceeds a predefined threshold, the neuron ejects a spike.

SNN also accounts for the refractory interlude and synaptic interval.

Consequently, an SNN is a dynamic system, unlike sigmoid neural networks,

enabling time-dependent calculations in a very natural manner.

Figure 2.3: Schematic of Spiking Neurons

2.1.3 Hodgkin Huxley model

Most of the SNN models have been well explained by Gerstner and Kistler

(2002). The Hodgkin Huxley model, introduced by Hodgkin and Huxley in 1952,

is based on their experiment on squid giant axons. They discovered the presence

of three ion channels in a neuron; sodium, potassium and a leakage channel. The

Hodgkin Huxley model is a complex model which simulates the role of ionic

mechanisms in calculation and propagation of the potential in the neurons.

23

Figure 2.4: Electrical Circuit of the Hodgkin- Huxley model (Gerstner & Kistler,

2002)

The membrane potential Iion is calculated in the standard Hodgkin - Huxley model

as:

)()()(43

LMLKMKNAMNAion EVGEVnGEVhmGI  (2.1)

mVmv
dt

dm
mm )()1()( (2.2)

hVhv
dt

dh
hh )()1()( (2.3)

nVnv
dt

dn
nn )()1()( (2.4)

24

where NAG , KG and LG denote sodium, potassium and a leakage channel

respectively, while NAE , KE and LE are constants called reversed potentials.

Blockage of a channel is controlled by the additional variables m and n for the

aN channel and h for the K channel.  and  are empirical functions of mV chosen

to fit the data of the huge squid axon. Although this model is commonly used to

estimate the parameters of a neural ionic channel, it also has some disadvantages

resulting from the approximations required.

2.1.4 Izhikevich model

In 2003, Izhikevich proposed a simple spiking model which combines the

biological credibility of the Hodgkin-Huxley model with the computational

competency of integrate and fire models (Izhikevich, 2003). The Izhikevich model

defines four parameters (a, b, c, d) which reproduce spike bursting behaviour. A

further two variables (v and u) represent respectively the membrane capacity

(post synaptic potential: PSP) and reset potential, which accounts for the

potassium ion activation and sodium ion deactivation. This model encapsulates

many biophysically accurate Hodgkin–Huxley-type neural models in the

following formula:

Iuvv
dt

dv
 140504.0 2

where)(uvba

dt

du
 (2.5)

25

Reset potential after-spike:










duu

cv
thenmVvif 30 (2.6)

After the spike reaches the threshold (30 mV), the membrane voltage (v) and the

recovery variable (u) are rearranged according to equation (2.6).

Figure 2.5: The Dynamics of the Izhikevich Model (Izhikevich, 2003)

26

The equation describing membrane potential dynamics,

Iuvv
dt

dv
 140504.0 2

, is sometimes regarded as a quadratic

integrate. It governs the firing of a neuron and is activated by installing the spike,

thus commencing the dynamics of a cortical neuron. The reset u is between -60

and -70 mV depending on the value of b. In imitation of biological neurons, the

threshold is not fixed, but is allowed to vary between -55 and -40 mV. The

parameter a (typically 0.02) sets the time scale ofu , b (also 0.02) describes the

sensitivity of u to v , while c and d influence the value of v after spiking by

altering the settings of the factors a, b, c and d, different neural characteristics can

be modelled.

2.1.5 Leaky Integrate and Fire Model (LIF)

The Leaky Integrate and Fire (LIF) model is also comprehensively described in

Gerstner and Kistler (2002). In this model, a neuron is considered as an electrical

circuit and the current potential is calculated by an appropriate equation.

Conceptually, the LIF model is typified by an electrical circuit as shown in Figure

2.6, comprising a capacitor C in parallel with a resistor R through which a current

I (t) flows. The current I (t) splits into two components, IR and IC. The IR flows

through the linear resistor R while the current IC charges the capacitor C. IR is

computed from Ohm's law as IR = u/R. IC = q/u (where q is the charge and u the

voltage), The current across the capacitor increases with time as
dt

du
CIC  .

27

Figure 2.6: Leaky Integrate and Fire Model (Gerstner & Kistler, 2002)

The current)(tI can be divided into two components, RC IItI )(. CI

charges

the capacitor C and RI passes through the resistor R . Using the Ohm's law,

uqC / where q is the charge, u is the voltage and RuI R / , the capacitive

current
dt

du
CIC  , therefore:

dt

du
C

R

tu
tI 

)(
)((2.7)

Multiplying equation (2.7) by R and defining the time constant of the leaky

integrator as RCTm  , we obtain the formulation of the LIF model:

)()(tRItu
dt

du
Tm  (2.8)

28

u refers to the membrane capacity and mT is the time constant of the neural

membrane. When the membrane capacity reaches the firing threshold, the neuron

spikes and the membrane potential is reset to its resting potential. The LIF and

Izhikevich models differ in their treatment of the threshold; in the former it is

fixed whereas in the latter it fluctuates. LIF is more computationally efficient than

Izhikevich, however, because it contains fewer biological parameters. Since LIF is

simple as well as computationally efficient, it can be applied to large networks.

2.1.6 Probabilistic Spiking Neural Model (pSNM)

This model, suggested by Kasabov (Kasabov, 2010), is diagrammatically

presented in Figure 2.7. In pSNM, a neuron (nj) receives input spikes from a pre-

synaptic neuron ni(i=1,2,…,m). The state of the neuron nj is the sum of the inputs

received from each of the m synapses – the postsynaptic potential, PSPj(t). When

PSPj(t) reaches the firing threshold j(t), neuron nj fires, i.e. releases a spike.

The linked synapses are associated with connection weights (wi,j , i=1,2,...,m),

formed during learning from Thorpe’s rule:)(

, mod iorder

jiw  , where mod is

a modulation aspect (a constraint value between 0 and 1) and order(i) is the

sequence in which the spike from neuron ni reaches the synapse si,j relative to the

spike entrance from other neurons, after neuron nj has ejected a spike. Thorpe’s

rule is a quick learning rule that requires data to be broadcasted once only.

29

Figure 2.7: Probabilistic Spiking Neural Model

Supplementary to the connection weights wi,j (t), the pSNM has three new

probabilistic constraints. First is a probability parameter pci,j(t) denoting the

likelihood that a spike ejected from neuron ni will reach neuron nj at a time t at the

synapse si,j through connecting the two neurons. The probability constraint models

the structural and functional integrity of each neural connection. If pci,j(t)=0, no

connection exists and no spike is broadcast.

Secondly, a probability parameter psi,j(t) is added to the PSPj(t) of synapse si,j

once the synapse has obtained a spike from neuron ni. In future investigations, we

will assume that the default state of psi,j =1 (i=1,..,m). The final probability

parameter, pj(t), denotes the probability that neuron nj t outputs a spike at time t ,

once the total PSPj(t) has attained a value close to the PSP threshold. The PSPj(t)

is now calculated as:

 () ∑ ∑ (()) (())

 () () (2.9)

𝑛𝑖 𝑛𝑗

𝑃𝑖(𝑡)

𝑃 𝑐 𝑖𝑗(𝑡)

𝑃 𝑠 𝑖𝑗(𝑡) 𝑊 𝑖𝑗(𝑡)

𝑃𝑗(𝑡)

30

where ei is 1 if a spike has been ejected from neuron ni, and 0 otherwise; g(pci,j(t))

is 1 with probability pci,j(t), and 0 otherwise; f(psi.j(t)) is 1 with probability psi,j(t),

and 0 otherwise; t0 is the time of the last spike ejected by nj; η(t-t0) is a

supplementary expression representing degeneration in the PSP. The pSNM is

simplified when all or few of the probability parameters are set to “1”.

Other PSNM models proposed in terms of probabilistic dynamic synaptic

weighting include the Maass Model (Maass et al., 2002), which incorporates a

parameter equivalent to psi,j(t) in Kasabov’s model.

2.2 Coding of information for neuro-computation

This section addresses a fundamental question in Neuroscience, the code used by

neurons to transfer information. Is it possible for an external observer to read and

understand neural activity? Traditionally, there are two main theories of neural

encoding – pulse codes and rate codes. Both theories are discussed below.

2.2.1 Pulse codes

The first type of neural encoding is referred to as a spike or pulse code. These

codes assume the precise spike time as the carrier of information between

neurons. Evidence for temporal correlations between spikes has been shown

through computer simulations (see, for example, (Legenstein, Naeger, & Maass,

2005) using integrate-and-fire models, as well as through biological experiments,

such as electrophysiological recordings and staining procedures (Nawrot,

31

Schnepel, Aertsen, & Boucsein, 2009), and the in vivo measurements described in

(Villa, Tetko, Hyland, & Najem, 1999), in which spatio-temporal patterns of

neural activity are used to predict the behavioural responses of rats.

A pulse code based on the timing of the first spike following a reference signal is

discussed (Simon Thorpe & Jacques Gautrais, 1998). This encoding is known as

time-to-first-spike. It was argued that each neuron has time to emit only a few

spikes that can contribute to the overall processing of a stimulus. It was further

shown (Thorpe et al., 2001) that a new stimulus is processed within 20 to 50ms of

its onset. Thus, earlier spikes carry most of the information contained in the

stimulus. The Thorpe model, which emphasises the importance of early spikes,

has been discussed in section 2.3.4.1.

Other pulse codes consider correlation and synchrony to be important. Neurons

that represent a similar concept, object or label are “labelled” by firing

synchronously (von der Malsburg, 1983). More generally, any accurate

spatiotemporal pulse prototype is potentially significant and may encode

particular information. Neurons that fire with a certain relative time delay may

signify a certain stimulus. This concept is central to the so-called rank order

population encoding presented in section 2.6.1. Additional information on neural

encoding can be found in the book (Fred Rieke et al., 1997).

2.2.2 Rate codes

32

The second theory assumes that the mean ejecting rate of a neuron carries most, if

not all, of the transmitted information. These codes are referred to as rate codes

and have inspired the classical perceptron approaches. The mean firing rate is

usually taken as the ratio of the average number of spikes observed over a

specific time interval and itself:

 (2.10)

This concept has been especially successful in the context of sensory or motor

neural systems. In a pioneering study, Adrian found a direct connection between

the ejecting rate of stretch receptor neurons and the applied force in the muscles of

frog legs (Adrian, 1926). Nevertheless, the idea of a mean firing rate has been

repeatedly criticised (F. Rieke, Warland, van Steveninck, & Bialek, 1999). The

main argument is the comparably slow transmission of information from one

neuron to another, since each neuron must integrate the spike activity of pre-

synaptic neurons at least over time . Especially, the extremely short response

times of the brain for certain stimuli cannot be explained by the temporal

averaging of spikes. For example, Thorpe et al. (1996) reported that the human

brain can recognise a visual stimulus in approximately 150ms. Since a moderate

number of neural layers are involved in the processing of visual stimuli, if every

layer had to wait a period to receive the information from the previous layer, the

recognition time would be much extended.

33

An alternative interpretation defines the mean firing rate as the average spike

activity over a population of neurons. The principle of this interpretation is

explained in Figure 2.8. A post-synaptic neuron receives stimulating inputs in the

form of spikes emitted by a population of pre-synaptic neurons. This population

produces a spike activity , defined as the fraction of neurons being active within

a short interval divided by the population size and the time period

(W. Gerstner & Kistler, 2002).

 ()

 (2.11)

A neuron attains input spikes from a population of pre-synaptic neurons

producing a certain activity . The activity is defined as the fraction of neurons

being active within a short interval , divided by the population size

 and the time period (W. Gerstner & Kistler, 2002).

Figure 2.8: Pre-synaptic Neurons (Gerstner &Kistler, 2002)

34

Here, () denotes the number of active neurons in interval

and is the total number of neurons in the population. The activity of a

population may vary rapidly, enabling fast responses of the neurons to changing

stimuli (Wulfram Gerstner, 2000) and (Brunel, Chance, Fourcaud, & Abbott,

2001).

2.3 Learning Rules

This section presents some typical learning methods including spiking neural

network architectures, which are related to particular learning rules, in the context

of spiking neurons. Diverse problems weaken the development of learning

procedures for SNN. The precise time reliance causes asynchronous information

inputs that often require complicated software and/or hardware applications before

the neural network can function. The repeated network topologies typically used

in SNN preclude the creation of an uncomplicated learning method such as back-

propagation using MLP. Similar to traditional neural networks, three different

learning paradigms can be distinguished in SNN, namely, unsupervised,

reinforcement and supervised learning. Reinforcement learning in SNN is

probably the least common of the three. Some algorithms have been successfully

applied to robotics (R. V. Florian, 2005), as well as being theoretically analysed

(Z. V. Florian, 2007), (Seung & Hughes, 2003) and (Xie & Seung, 2003).

Unsupervised learning in the form of Hebbian learning is the most biologically

realistic learning scenario (Cooper, 2005). The so-called Spike-Timing Dependent

Plasticity (STDP) belongs to this category and is discussed in the next section.

35

Supervised techniques impose a certain input-output mapping on the network

which is essential in SNN practical applications. Two supervised learning

methods are discussed in greater detail in following sections. The learning

algorithm employed in the eSNN architecture is discussed separately in section

2.6.2. An excellent comparison between supervised learning methods developed

for SNN can be found in (Ponulak & Kasiski, 2010).

2.3.1 Spike-Timing Dependent Plasticity (STDP)

The concept of spike-timing dependent plasticity was inspired by the experiments

of Donald O. Hebb, published in his famous book “The Organisation of

Behaviour” (Hebb, 1949). His essential postulate is often referred to as Hebb’s

Law:

“When an axon of cell A is near enough to excite cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased.”

The first experimental evidence of Hebb’s postulate was published twenty years

later in (T. V. Bliss & Lomo, 1970) and (T. Bliss & Lomo, 1973). Today, the

change of synaptic efficacy in the brain is known to be correlated with the timing

of pre- and post-synaptic activity of a neuron (Bell, Han, Sugawara, & Grant,

1999; Bi & Poo, 2001; Markram, Lübke, Frotscher, & Sakmann, 1997).

36

Reinforcement or decline in synaptic efficacy is known as long-term potentiation

(LTP) or long-term depression (LTD), respectively. STDP is described by a

function () that determines the fractional change of the synaptic

weight in terms of the difference between the arrival time of a pre-synaptic

spike and the time of an activity emitted by the neuron. Function is also

known as the STDP window. is typically expressed as:

 () {
 (

)

 (

)

 (2.12)

where parameters and delineate the temporal range of the pre- and

postsynaptic time interval, while and denote the maximum fractions of

synaptic modification, at close to zero. Figure 2.9 presents the STDP

window generated by Equation 2.12.

The parameters , , and can be adjusted to suit the neuron of interest.

The window W is usually temporally asymmetric (and), but

exceptions exist. For instance, the synapses of layer 4 spiny-stellate neurons in the

rat barrel cortex appear to have a symmetric window (Egger et al., 1999).

The dynamics of synaptic pruning consequential to the STDP learning rule have

been investigated (J. Iglesias, Eriksson, Grize, Tomassini, & Villa, 2006).

37

Figure 2.9: STDP Learning Window (Egger, Feldmeyer, & Sakmann, 1999)

Figure 2.9 was generated by setting = 0.9, = 0.75, = 20, and = 5 in

Equation 2.12.

Synaptic pruning is a generic feature of mammalian brain maturation, in which

the embryonic nervous system is refined by removal of inappropriate synaptic

connections between neurons, while preserving appropriate ones. Later studies

extended this work by bringing apoptosis (genetically programmed cell death)

into the analysis. The emergence of cell assemblies has been verified by

identification of spatio-temporal patterns in the pruned network (Javier Iglesias &

38

Villa, 2006). More information on STDP can be found in the excellent review by

(Bi & Poo, 2001) and in (Wulfram Gerstner, 2000; W. Gerstner & Kistler, 2002;

Kempter, Gerstner, & van Hemmen, 1999).

2.3.2 Spike Back-Propagation (Spike-Prop)

Traditional neural networks, like the multi-layer perceptron, usually adopt some

form of gradient based descent, namely error back-propagation, to modify

synaptic weights. This action results in a particular input-output representation of

the network. However, the topological recurrence of SNNs and their explicit time

dependence allow no straightforward evaluation of the gradient in the network.

Special assumptions are required before back-propagation can be applied to

spiking neurons.

In (Bohte et al., 2002; Bohtem, Poutre, & Kok, 2000) a back-propagation

algorithm called Spike-Prop is proposed, which is suitable for training SNN.

Under this method, SNN learns a set of desired firing times
 of all output

neurons for a given input pattern. Spike-Prop minimises the error , defined as

the squared difference between all network output times tout and the desired

output time
 .

∑ (

)

 (2.13)

39

with respect to the weights
 of each synaptic input:

 (2.14)

With defining the learning rate of the update step.

A limitation of the algorithm is that, like the Thorpe neural model presented in

section 2.3.5.1, each neuron is allowed to fire once only. Consequently, the error

function defined in Equation 2.13 depends entirely on the difference between

actual and desired spike times, so that Spike-Prop is suitable only for time-to-first-

spike encoding.

2.3.3 Remote Supervised Method (ReSuMe)

Here we discuss the Remote Supervised Method (ReSuMe) introduced in 2010 by

Ponulak & Kasiski. ReSuMe aims to enforce a required input-output spike pattern

on a SNN, i.e. to produce target spike trains in reaction to a given input stimulus.

This approach is based on the STDP learning windows presented in section 2.3.1.

The synaptic weights are balanced by two opposite update rules. Additional

teacher neurons, which remotely supervise the evolution of the synaptic weight,

are assigned to each synapse. The teacher neuron is not explicitly connected to the

network, but generates a reference spike signal by which connection weight is

40

updated in a STDP-like fashion. The post-synaptic neuron, whose activity is

influenced by the weight update, is termed the learning neuron.

The synaptic change depends on the correlation of spike activities between input,

teaching and learning neurons. Figure 2.10 illustrates the ReSuMe principle of

organized learning in spiking neural networks (Ponulak & Kasiski, 2010),which

regards spiking neural networks as a readout function of LSM. Let
 denote the

learning neuron receiving spike sequences from a pre-synaptic neuron
 () with

corresponding synaptic weight , and let neuron () be the teacher for weight

 . If input neuron
 () emits a spike which is followed by a spike of the

teacher neuron (), the synaptic weight is increased. On the other hand, if

 () spikes before the learning neuron

 is activated, the synaptic weight is

decreased. The amplitude of the synaptic change is determined by two functions

 () and (), where is the temporal variance between the spike times of

teacher neuron and input neuron, while describes the difference between the

spike times of learning neuron and input neuron. Thus, the precise time difference

of spiking activity defines the strength of the synaptic change.

Figure 2.10 illustrates the principle of organized learning in spiking neural

networks, namely ReSuMe (Ponulak & Kasiski, 2010) which is an example of

spiking neural networks as a readout function of LSM. Let
 denote the learning

neuron which receives spike sequences from pre-synaptic neuron
 (), the

41

correspondingsynaptic weight being and neuron () being the teacher for

weight . If input neuron
 () emits a spike which is followed by a spike of

the teacher neuron (), the synaptic weight is increased. On the other hand,

if
 ()spikes before the learning neuron

 is activated, the synaptic weight is

decreased. The amplitude of the synaptic change is determined by two functions

 () and (), where is the temporal variance between the spike times of

teacher neuron and input neuron, while describes the difference between the

spike times of learning neuron and input neuron. Thus, the precise time difference

of spiking activity defines the strength of the synaptic change.

Figure 2.10: The Remote Supervised Method (ReSuMe) Approach (Ponulak & Kasiski,

2010)

2.3.4 The Fusi’s spike driven synaptic plasticity (SDSP) learning rule

42

The SDSP, a modification of STDP (Song, Miller, Abbott, & others, 2000) which

has been described as an unsupervised learning method (Fusi, Annunziato,

Badoni, Salamon, & Amit, 2000). SDSP models the synaptic plasticity Vw0 of a

synapse w0 contingent at the time of spiking of the pre-synaptic and post-synaptic

neurons. Vw0 rises or reduces depending on the comparative timing of the pre and

post synaptic spikes.

When a pre-synaptic spike reaches the synaptic station before a postsynaptic spike

within a specified time window, the synaptic efficiency is enhanced. If the post-

synaptic spike is ejected immediately after the pre-synaptic spike, synaptic

efficiency is reduced. This plastic synaptic efficiency is embodied in the following

equations:

spk

p

postpot

w t
C

tI
V 

)(
0

iftpre<tpost (2.15)

spk

d

postdep

w t
C

tI
V 

)(
0

iftpost<tpre (2.16)

where Δtspk is the pre and post synaptic spike time window.

The SDSP rule can be applied to a supervised learning algorithm, when a trainer

signal imitating the required output spiking order is inserted together with the

training spike pattern, but without any alteration of the trainer input weights. In a

study by Brader and colleagues (2007), a SDSP-driven SNN learned to recognise

43

293 characters (classes). Each character (a static image) was encoded as a 2000 bit

feature vector, and each bit was transformed into a spike rate, with binary values 0

and 1 corresponding to 0 Hz and 50 Hz, respectively (Brader et al., 2007). For

each class, 20 distinct training designs were utilized and 20 neurons were

assigned, one for each pattern, and trained for hundreds of reiterations. The SDSP

model is implemented in the INI analogue SNN silicon chip (Indiveri et al., 2011).

The silicon synapses are composed of bi-stability circuits that assign a synaptic

weight to one of two likely analogue values (either increased or decreased). These

circuits push the synaptic weight voltage by a positive or negative current

superimposed on that produced by the STDP. Within a short time frame, the

synaptic weight is increased above a set threshold by the network activity via the

STDP learning mechanism. The bi-stability circuits generate a constant weak

positive activity. In the absence of a current (and also in the learning phase) this

background current will drive the weight toward its potentiated state. If the STDP

decreases the synaptic weight below the threshold, the bi-stability circuits

generate a negative current that inhibits spiking activity and vigorously drives the

weight toward its analogue value. The synapse is now in a depressed state. The

STDP and bi-stability circuits simplify the simulation of both long term and short

term memory.

Although SDSP is effective at identifying generally static patterns, the potential of

the SDSP SNN model and its accompanying hardware has not been completely

investigated in spatiotemporal pattern recognition, particularly in fast on-line

learning.

44

2.3.5 Evolving Spiking Neural Networks

In this section, the encoding principle used in the eSNN and Thope models

(Thorpe et al., 2001) are presented, followed by a description of the one-pass

learning method and the overall functioning of the eSNN method.

2.3.5.1 Thorpe model

The Thorpe model is a simplified Integrate and Fire spiking neural model (Thorpe

et al., 2001). The model adopts the LIF concept but simplifies the leaky operation

of the computational neuron. The potential of a given neuron is either disabled or

reset to the level at which it fires a spike. In this model, each neuron is allowed to

fire once before being disabled. Because of its low computational cost and

efficiency, this model has become the most widely used (Kasabov 2007; Schliebs,

Defoin-Platel, Worner, & Kasabov, 2009; Wysoski, Benuskova, & Kasabov,

2010).

2.3.5.2 Population encoding

Population Coding (POC) is a well-known -spike encoding technique initially

proposed by Thorpe and Gautrais (S. Thorpe & J. Gautrais, 1998), and fully

proposed by Bohtem (Bohtem et al., 2000). A single input is distributed to

multiple input neurons. In POC, each input neuron is associated with a particular

spike time. The firing time of input neuron i is computed by engaging conjoint

Gaussian functions in which the centre and the width are calculated from

Equations 2.17 and 2.18 respectively, within the variable interlude [Imin, Imax]. The

45

width of each Gaussian receptive field is controlled by the parameter β. The POC

process, proposed in 2009 (Schliebs et al., 2009), is illustrated in Figure 2.11.

)2/()(*2/)3*2(minmaxmin  MIIiI (2.17)

)2/()(/1 minmax  MII where 21   (2.18)

For an input value of 0.75, (thick vertical line in top figure) the intersections with

each Gaussian are calculated (triangles), which are then interpreted into spike time

intervals.(Schliebs et al., 2009).

Figure 2.11: Population Encoding Based on Gaussian Receptive Fields (Schliebs et al., 2009)

2.3.5.3 One-Pass Learning

46

The aim of this learning method is to create output neurons, each labelled with a

certain class label . The number and value of class labels depends on the

classification problem of interest. L denotes the set of class labels of the given

data set. Following presentation of a specified input sample to the network, the

corresponding spike train is propagated through the SNN, triggering a subset of

output neurons to fire. It is possible that no output neuron is activated and the

network remains silent. In this case, the classification result is undetermined. If

one or more output neurons have emitted a spike, the neuron with the shortest

response time (earliest spike time) determines the classification. The label of this

neuron is then the classification result for the presented input sample.

During training, the learning algorithm consecutively forms a repository of

proficient output neurons. For every class label an individual repository is

evolved. For each training sample i with class label , a new output neuron is

created and is fully linked to the previous layer of neurons, resulting in a real-

valued weight vector (), with
()

 denoting the connection between the

pre-synaptic neuron j and the created neuron . In the next step, the input spikes

are propagated through the network and the value of weight
()

is computed

according to the order of spike transmission through a synapse :

()

 ()
 () (2.19)

47

The parameter is the modulation factor of the Thorpe neural model.

Differently labelled output neurons may have different modulation factors .

The function () reflects the position of the spike produced by neuron j. For

instance, () is assigned a rank of zero if neuron is the foremost arrival of

all spiking pre-synaptic neurons of . In the same way, the spikes of all pre-

synaptic neurons are positioned prior to weighting.

The firing threshold () of the created neuron is defined as some fraction

 , of the maximal possible potential
()

:

 ()
()

 (2.20)

()

 ∑
()()

 ()
 (2.21)

The fraction is a parameter of the model and can be separately specified for

each class label . The weight vector of the proficient neuron is then

compared to those of neurons that are already in the repository. If the minimal

Euclidean distance between the weight vectors of neuron and an existing neuron

 is smaller than a specified similarity threshold , the two neurons are

considered too similar to be treated individually, and their firing thresholds and

weight vectors are merged according to:

48

()

()

()

 () ()

 (2.22)

 ()
 () ()

 (2.23)

Integer denotes the number of samples previously used to update neuron . The

merging process involves the (continuing) average of the connection weights, and

the (continuing) average of the two ejecting thresholds. Following merging, the

trained neuron is discarded and the next sample processed. If no other neuron in

the repository is similar to the trained neuron , that neuron is added to the

repository as the latest output neuron.

Figure 2.12 illustrates the architecture of the evolving Spiking Neural Network

architecture (eSNN). Real-valued vector elements are transformed into the time

domain via rank order population encoding founded on Gaussian receptive fields.

As a result of this transformation, input neurons eject spikes at pre-defined firing

times, inciting the one-pass learning algorithm of the Spiking Neural Network

architecture. The learning iteratively generates a repository of output neurons for

each separate class. The developing nature of the network enables accretion of

knowledge as it becomes available, without the need to re-train with previously

learnt samples.

49

Figure 2.12: Architecture of Evolving Spiking Neural Network architecture (eSNN) (Schliebs

et al., 2009)

2.4 Conclusion

The eSNN architecture exhibits a rapid one-pass learning mechanism; however,

some further require further consideration.

Firstly, eSNN commonly employs the Thorpe Model (Thorpe et al., 2001), which

includes the least number of biological activities and which behaves similarly to a

summation function. Hence, satisfactory classification is achieved only when a

number of neural and learning parameters have been selected appropriately.

Configuring these parameters can quickly become a challenging task, since the

influence of each parameter must usually be precisely known. Parameters that are

linked to other parameters should not be chosen independently. For example,

modifying the modulation factor of the Thorpe neural model should also involve

careful choice of the firing threshold. A small modulation factor significantly

50

increases the sensitivity of the neuron to the input, thus the threshold has to be

adapted accordingly to prevent the neuron from becoming over-specialised for a

certain input. The situation is complicated further when many class labels exist,

since the number of parameters increases linearly with number of classes. All of

the above–mentioned examples require a careful manual tuning of the eSNN

parameters (Schliebs et al., 2009; Wysoski et al., 2010).

Secondly, the importance of rank order coding in eSNN cannot be over-

emphasised. Population encoding, in which information is basically encoded

vector by vector, increases the number of inputs to eSNN, to the extent that eSNN

must process more data than are originally input. Thus, population encoding is not

suitable for massive spatio-temporal datasets.

Furthermore, the above–cited studies used standard eSNN, which has limited

structure-evolving efficacy and is therefore of reduced functionality during a

learning process. New types of SNN have been recently proposed in (Kasabov,

2010), which offer more flexible neural functioning and connectivity. These new

algorithms are termed probabilistic SNN (pSNN).

The Spiking Neural Network architecture classifier maps a single data vector to a

particular class label. This behaviour is appropriate for the categorizing of time-

invariant data. However, most current data volumes are updated continuously,

imposing an additional time dimension on the data sets. The categorizing of

51

spatio-temporal patterns remains a major challenge in data mining approaches.

Most of the data vectors are successively input to an algorithm which determines

the mapping of this succession to a particular class label. In its present form,

Spiking Neural Network architecture does not permit categorization of spatial

time-based data.

Hence, this study addresses the following issues:

- Exploration and development of new probabilistic spiking neural models

(Chapter 3 and research question 1)

- An extension of the new Spiking Neural Network architecture is

suggested that permits the technique to acquire spatiotemporal

knowledge. A supplementary layer is inserted into the network

architecture that converts the spatio-temporal input prototype into a

single high-dimensional network condition using the latest reservoir

computing paradigm, termed Liquid State Machine (LSM). This

intermediate condition is then assigned a required class label by the

original one-pass learning algorithm of Spiking Neural Network

architecture (Chapters 5 and 6, research question 3).

- Exploration and development of new learning rules, including a novel

one-pass learning algorithm for spatio-temporal patterns recognition

processing (Chapter 6, research question 2).

52

- Exploration of a suitable encoding method for spatio-temporal patterns

recognition processing, especially human EEG data (Chapter 8, partial

of research question 4).

- Evaluation of proposed methods for further development of EEG spatio-

temporal patterns recognition processing and brain-computer interface

(Chapter 10 and 11, research question 4, 5 and 6).

Chapter 3

Novel Stochastic Spiking Neural Models

This chapter introduces three new Models of Spiking Neural Networks inspired

by the probabilistic spiking neural model proposed in 2010 (Kasabov, 2010).

Section 3.1 includes relevant background and motivation for developing the

models.

Corresponding to the first research question, the contributions involve three novel

Stochastic Spiking Neural Models, namely; Noisy Reset (NR), Step-Wise Noisy

Threshold (ST) and Continuous Stochastic Threshold (CT), the stochastic models

of this chapter also has been shared to international neural network community in

2010 (Nuntalid, Schliebs, & Kasabov, 2010). The details of each stochastic model

are presented in sections 3.1.1- 3.1.3. Section 3.2 concludes the chapter.

3.1 Stochastic Spiking Neural Models

Spiking neural models (SNM) differ in their biological parameters and

implementation cost. Figure 3.1 illustrates the recreated figure of the quality-cost

tradeoff between various SNMs that inspired by Izhikevich in 2003 (Izhikevich,

2003). After 2003 most development in this area has been mainly focused on as

the following:

54

- dynamicity of synapses (Bi & Poo, 2001; Brunel, Chance, Fourcaud,

& Abbott, 2001; Gerstner & Kistler, 2002; Indiveri & Horiuchi, 2011;

Indiveri et al., 2011; Izhikevich & Edelman, 2008; Kasabov, 2010;

Maass, Natschläger, & Markram, 2002; Maass et al., 2004; Maass &

Zador, 1999; Markram, Lübke, Frotscher, & Sakmann, 1997; Pecevski,

Natschläger, & Schuch, 2009; Seung & Hughes, 2003).

- hardware implementation (Delbruck, 2007; Faiña, Bellas, Souto, &

Duro, 2011; Indiveri & Horiuchi, 2011; Indiveri et al., 2011; Lalor et

al., 2005; Misra & Saha, 2010; Schrauwen, D'Haene, Verstraeten, &

Campenhout, 2008; Van Schaik & Liu, 2005).

- Learning rules/architecture and optimization related learning

mechanism (Brader, Senn, & Fusi, 2007; Cooper, 2005; Dhoble,

Nuntalid, Indiveri, & Kasabov, 2012; Florian, 2005; Ghosh-Dastidar &

Adeli, 2009; Hamed, Kasabov, & Shamsuddin, 2012; Iglesias,

Eriksson, Grize, Tomassini, & Villa, 2006; J. Iglesias & A. E. P. Villa,

2006; J. Iglesias & A. P. Villa, 2006; Izhikevich & Edelman, 2008;

Kasabov, 2007; Kasabov, 2012a, 2012b; Kasabov, Dhoble, Nuntalid,

& Indiveri, 2012; Kasabov, Dhoble, Nuntalid, & Mohemmed, 2011;

Kasabov & Hu, 2010; Kasabov, Schliebs, & Kojima, 2011;

Legenstein, Naeger, & Maass, 2005; Maass, Natschläger, & Markram,

2004; Meng, Jin, & Yin, 2011; Mohemmed, Schliebs, & Kasabov,

55

2011; Mohemmed, Schliebs, Matsuda, & Kasabov, 2011; Nawrot,

Schnepel, Aertsen, & Boucsein, 2009; Norton & Ventura, 2009;

Nuntalid, Dhoble, & Kasabov, 2011; Ponulak & Kasiski, 2010;

Schliebs, Defoin-Platel, Worner, & Kasabov, 2009; Schliebs, Nuntalid,

& Kasabov, 2010; Schrauwen, Verstraeten, & Campenhout, 2007;

Seung & Hughes, 2003; Toups, Fellous, Thomas, & Sejnowski, 2012;

Xie & Seung, 2003; Yamazaki & Tanaka, 2007).

From Figure 3.1, the y axis indicates the biological possibility (features and

parameters) of the models, while the x axis indicates implementation cost. Models

with fewer biological features (such as the Integrate-and-Fire model) demand

much less processing time. By contrast, the Hodgkin-Huxley model mimics

biological neurons with high accuracy but at prohibitive implementation cost.

Figure 3.1: The flexibility of use of different SNM.

56

This thesis focuses on spatio-temporal pattern recognition on EEG data with

potential applications to brain computer interface (BCI). BCI requires both fast

processing and low implementation cost. To this end, we consider whether models

such as Integrate-and-Fire model (IF) and Leaky Integrate-and-Fire model (LIF)

can mimic the more realistic behaviors of the Hodgkin-Huxley model without

compromising their implementation cost. An output of a Hodgkin-Huxley model,

showing the evolution of simulated post synaptic potential, is depicted in Figure

3.2. The figure demonstrates that when a neuron receives an incoming spike, its

membrane potential increases up to a threshold. When the threshold is reached, a

neuron is fired and the potential drops to a (flexible) reset value. The flexibility in

the reset potential of neurons leads to the visible difference between the LIF and

Hodgkin-Huxley models.

The activity shown in Figure 3.2 is also linked to the Kasabov model (Kasabov,

2010), outlined in figure 2.7. In this model, Pi(t) and Pj(t) define the probability

of release associated with the threshold and reset potential of neurons i and j,

respectively.

Theoretical values of the probability parameters, determined by adding slow noise

to the network, were proposed in 2002 by Gerstner and Kistler (W. Gerstner &

Kistler, 2002). They explained that a completely different noisy model results if

the value of a constraint is altered after every spike. This implies that constraints

such as threshold, reset potential or the length of the refractory interlude can

57

provide this type of noise. Figure 3.3 shows membrane potential activity when

noise is added to the threshold and reset potentials of a neural model. The noise

forces these parameters to change every time a neuron fires.

Figure 3.2: Evolution of membrane potentials in the Hodgkin-Huxley Model. The horizontal

axis represents the number of time steps, while the vertical axis displays the membrane

potential in mV.

Figure 3.3: Slow noise in the probability parameters (W. Gerstner & Kistler, 2002)

58

With each neuron ejection, either the reset value (A) or the ejecting threshold (B)

is set to a new randomly selected value. Hence, stochastic spiking neural models

are a modification of standard LIF, which evolves according to equation 3.1, in

which the threshold and reset potentials are modulated by a noise parameter.

Stochastic LIF mimics the activity of biologically plausible SNM while

maintaining low implementation cost.

 () () (3.1)

In equation 3.1, u refers to the membrane potential and m represents the

membrane time constant of the neuron. Whenever the membrane capacity reaches

the specified threshold, the neuron spikes and the membrane capacity is reset.

This equation underpins the three stochastic models in sections 3.1.1, 3.1.2 and

3.1.3. The outputs of these models are compared in Figure 3.4.

Development of the post-synaptic potential u(t) and the ejecting threshold ϑ(t)

over time (blue and red curves in figure 3.4, respectively) are recorded from a

single neuron of each neural model. The input stimulus to the neurons is depicted

at the top of the figure. The thick black vertical lines above the related threshold

curve indicate the output spikes of each neuron.

59

Figure 3.4: Comparisons between stochastic versions of models based on equation 3.1 (see

text for details).

3.1.1 Stochastic Noisy Reset Model (NR)

The stochastic noisy reset model modified from deterministic LIF inspired the

concept of slow noise model (W. Gerstner & Kistler, 2002). An entirely different

concept of noise models is possible whereby the value of a parameter is altered

after each spike. In standard LIF, membrane potential always reverts to its reset

potential resetu (commonly equal to zero). In noisy reset mode, the reset potentials

resetu are Gaussian distributed mean and standard deviation , as shown in the

upper panel of Figure 3.4.

The NR model replaces the deterministic reset potential of LIF with a stochastic

equivalent. Let t(f) : u(t(f)) = ϑ be the firing time of a LIF neuron, after which the

post-synaptic capacity is rearranged. N (μ, σ) is a Gaussian dispersed random

60

variable with mean μ and standard deviation σ. Variable σNR denotes a parameter

of the model (equation 3.2).

 () () () () (3.2)

3.1.2 Stochastic Step-wise Noisy Threshold Model (ST)

The stochastic step-wise noisy threshold model (ST) is similar to the NR model

described in Section 3.1.1, but resetu is now fixed, while a new threshold value is

chosen at each firing time step.

This model replaces the constant ejecting threshold ϑ of the LIF model with a

stochastic one. Again, let t(f) be the ejecting time of a LIF neuron. The dynamics

of the threshold update are governed by equation 3.3.

 () () () () (3.3)

Variable σST is the standard deviation of ϑ(t) and is a constraint of the model. In

equation 3.3, the threshold is a ϑ0-centered Gaussian random variable which is

sampled whenever the neuron fires. This model does not permit immediate spike

movement. Particularly, the neuron can only eject at time t(f) while

simultaneously receiving a pre-synaptic input spike at t(f); without such a spur, a

spike output is impossible.

61

3.1.3 Continuous Stochastic Threshold Model (CT)

The Continuous Stochastic threshold (CT) model, inspired by the stochastic spike

arrival model of the hazard model, was described by Gerstner and Kistler (W.

Gerstner & Kistler, 2002). In the CT model, the threshold ϑ(t) is revised

continuously over time. Hence, this model permits immediate spike movement,

that is; a neuron may eject at time t(f) even in the absence of a pre-synaptic input

spike at t(f). The threshold is given by equation 3.4.

 () √  () (3.4)

The noise term  follows a Gaussian White Noise distribution with zero mean and

unit standard deviation. Variable σCT denotes the standard deviation of the

fluctuations of ϑ(t) and is a constraint of the model. ϑ(t) tends exponentially

towards a mean value ϑ0 at rate τϑ, while the magnitude of ϑ(t) is always directly

proportional to the distance ϑ0− ϑ(t).

As is evident from equation 3.5, the CT model is of similar form to the stochastic

LIF model.

 () √  () (3.5)

62

u refers to the membrane potential and m is the membrane time constant of the

neuron.

3.2 Conclusion

Although sophisticated spiking neural models (SNMs) such as the Hodgkin-

Huxley model can simulate realistic biological behaviours, they incur high

implementation cost and processing time in spatiotemporal patterns recognition,

especially on EEG data. This chapter introduced three stochastic modifications of

the standard LIF model, in which threshold and reset potential are perturbed by a

noise parameter. The stochastic LIF models can imitate the biologically plausible

activity of SNMs while preserving the low implementation cost of standard LIF.

In Chapters 6-11, the feasibilities and performances of the three stochastic models

will be compared to those of the deterministic LIF model.

Chapter 4

SSPAN: Stochastic Precise-Time Spike

Pattern Association Neuron

In this chapter, the stochastic neural model for the precise-time Spike Pattern

Association Neuron (SSPAN) is introduced. SSPAN is a modification of SPAN,

designed for the precise-time spike pattern association neuron (Mohemmed,

Schliebs, & Kasabov, 2011; Mohemmed, Schliebs, Matsuda, & Kasabov, 2011),

The deterministic LIF model is replaced with the stochastic spiking neural models

described in Chapter 3; namely, the NR, ST and CT models, and the amendment

of architecture contributing to the decrease of training iterations. The above

mentioned corresponds with the second research question.

Section 4.1 introduces the original SPAN concept. SSPAN is detailed in Section

4.2. Section 4.3 compares the feasibility and performance of SSPAN and original

SPAN, in an experiment using a synthetic dataset. The chapter concludes with

Section 4.4.

4.1 SPAN: Precise-Time Spike Pattern Association Neuron

64

SPAN, precise-time spike pattern association neuron, was proposed in 2011

(Mohemmed, Schliebs, & Kasabov, 2011; Mohemmed, Schliebs, Matsuda, et al.,

2011). SPAN aims to explore how a LIF neuron can memorize patterns. The spike

trains are converted into analogue signals which are convolved with a kernel

function into a continuous-value signal. This processing step enables standard

subtraction and multiplication operations which can easily employ existing

methods for developing supervised-learning rules in spiking neurons.

The dynamics of SPAN are governed by Equation 4.1. Note the similarity of this

equation to that of the LIF model (see Chapters 2 and 3 for a more detailed

description of the LIF model).

 ()

() (4.1)

The ejecting times must be calculated. The synaptic current

of neuron i is

modelled using an α-kernel as shown in Equations 4.2 and 4.3.

 () ∑ ∑ (

()
) (4.2)

 ()
 () (4.3)

wij is the synaptic weight denoting the strength of the connection between neuron i

and its pre-synaptic neuron j, Θ(t) in Equation 4.3 is the Heaviside function and τs

is the synaptic time constant. Although spike trains are converted to continuous

65

values, the learning rule of SPAN can be defined as for other artificial neural

networks using established training algorithms. The synaptic weights of SPAN are

modified to create a required spike design. To modify the weight of a synapse I,

the common Widrow-Hoff rule (Equation 4.4) is employed.

 () (4.4)

where λ is a learning rate whose value cannot exceed 1, is the input transmitted

via synapse , and and denote the desired and actual output spike outputs,

respectively. In defining the distance between spike trains, each spike train is

convolved with the α-kernel function (Equation 4.3). The convolved input spike

train
()

 is described by Equation 4.5.

 () ∑ (
()
) (4.5)

The transformation from spikes to function permits the algorithm to subtract and

multiply or calculate the difference between spike sequences. The desired spike

output and actual spike output are determined by Equations 4.6 and 4.7,

respectively.

 () ∑ (
()
) (4.6)

 () ∑ (
()

) (4.7)

66

 updates the weight of synapse i, and is obtained by integrating
 .

 ∫ ()(() ()) (4.8)

In Figure 4.1, plots (D) and (E) are graphical illustrations of Equation 4.9. Three

presented stimuli induce the three output spikes t0, t1 and t2. t0 equals the required

spike time t0
d
 in Figure 4.1 (C). An anomalous spike time will generate errors, as

evidenced in Figure 4.1(D). This error will be incorporated into via equation

4.8, as shown in Figure 4.1(E).

Figure 4.1: Demonstration of learning rule in SPAN(Mohemmed, Schliebs, & Kasabov,

2011)

67

The error E between the desired and actual spike time, which equals the area

under the horizontal axis in figure 4.1, is calculated from equation 4.9.

 ∫ () () (4.9)

As the number of synapses increases, the SPAN can acquire more memory in the

training process. Increasing the number of training iterations can also enhance the

result, but at the cost of increased processing time.

4.2 Stochastic Precise-time Spike Pattern Association Neuron (SSPAN)

The deterministic LIF model is probably not be able to ill-equipped to deal with

noisy and stochastic data such as EEG very well. Moreover, in the original SPAN,

many synapses are required for multiple pattern recognition; especially when the

patterns are spatiotemporal. SPAN adating a single neuron for patterns

recognition may become problematic when few input streams arrive, activating a

low number of synapses. Therefore, the main purposes of SSPAN are to:

(1) Replace the deterministic LIF model by a stochastic neural model (NR, ST

or CT), whose details are provided in Chapter 5. This may improve the

performance of SPAN in handling noisy stochastic natural data, especially

EEG.

(2) Employ one output spiking neuron for each class instead of using a single

neuron for all classes. This ensures that the more output neurons, the more

synaptic weights. For instance, assume that 4 classes of EEG data exist

68

and that 19 channels are output. In this instance, 76 synapses (19 × 4) will

be obtained in SSPAN because the algorithm uses one neuron per class.

SSPAN employs the three stochastic neural models described in Chapter 5;

namely, stochastic noisy reset (NR) model, stochastic step-wise noisy threshold

model (ST) and continuous stochastic threshold (CT). Equations 4.4, 4.6, 4.8, and

4.9 must be adapted to handle multiple output neurons; otherwise, the learning

rules of SSPAN are very similar to those of original SPAN.

To modify the weight of a synapse I in SSPAN, Equation 4.4 is replaced by

equation 4.10 below.

 () (4.10)

where λ is a learning rate whose value does not exceed 1. k =1, 2 …n where n is

the number of classes in a particular dataset. and denote the required

and true spike outputs of a neuron in class k, respectively, determined by Equation

4.11 and 4.12. Here
()

 and
()

 are the desired and true spike times of a class

k output neuron, respectively.

 () ∑ (
()
) (4.11)

 () ∑ (
()

) (4.12)

69

The weights are updated according to Equation 4.13, where is the weight

change of synaptic connection i of a class k output neuron, obtained by

integrating
 .

 ∫ ()(() ()) (4.13)

The error E between the desired and actual spike times of neuron in class k is

determined as (Equation 4.14).

 ∫| () ()| (4.14)

4.3 A Comparison between SPAN and SSPAN

To investigate the feasibility and performance of SPAN (Section 4.1) and SSPAN

(Section 4.2), both methods are tested on a synthetic dataset comprising three

classes. The classification accuracy of the methods is compared in table 4.2.

Figure 4.2 demonstrated an input sample of a class in term of spike activity of the

overall different 3 classes. The data, comprising 140 input spike trains with spikes

scattered over the time period, were generated over 500 ms. In order to generate

extra data samples for testing and training each class sample was then perturbed

by 35% noise, to yield 4 and 16 samples respectively.

70

Figure 4.2: Graphical illustration of one sample of a class from the synthetic dataset.

The jitter mechanism employed to create this synthetic dataset was different to

that of the original SPAN experiment (Mohemmed, Schliebs, & Kasabov, 2011;

Mohemmed, Schliebs, Matsuda, et al., 2011), because the recognition of patterns

which change by spike time jitter alone may not fully test the algorithm

performance.

The parameter setup of this experiment is summarised in Table 4.1. In this

experiment, deterministic LIF with a single output neuron was used in SPAN. The

target spike times (desired spike times) were 510 ms, 540 ms, and 560 ms for

classes 1, 2 and 3 respectively. The spike time of the output neuron was

71

considered to be correctly classified when it was within 10 ms of the desired spike

time.

Table 4.1: Parameter setup for a performance test of SPAN and SSPAN

Methods/Parameters SPAN SSPAN

Neural model LIF LIF,NR, ST, CT

Output neuron 1 neuron 3 neurons (of each model experiment)

Input spike train 140 spike trains 140 spike trains

Membrane time constant 10 ms 10 ms

Reset potential 0 mV 0 mV

Firing threshold 30 mV 30 mV

Input weight 1.62 mV 1.62 mV

Reset μ 0 mV

Reset σ 3.0 mV

Threshold σ 2.0 mV

Noisy time constant 10 ms

Synaptic time constant 10 ms 10 ms

Simulation time 600 ms 600 ms

Simulation time step 0.1 ms 0.1 ms

Training iteration 60 60

The three stochastic models (NR, ST, and CT), plus deterministic LIF, were then

used in SSPAN. Three output neurons, each with target spike time 515 ms, were

employed. In the testing process, every output spike may be able to fire but not

necessarily at the same time. Consequently, the spike output of the output neuron

72

that fires closest to the desired spike time was assigned to that class. For instance,

if the spike of output neuron 2 is closer to 515 ms than that of the other neurons,

this testing sample will be classified as Class 2.

Figure 4.3: True spike output (blue) and desired spike output (green) of SSPAN using the CT

model

In Table 4.1, reset μ and reset σ are parameters of the NR model. Threshold σ is a

parameter of the ST and CT models, while noisy time constant is a parameter of

73

the CT model only. The simulation time exceeded the stimulus time of 100 ms to

allow all spikes in the stimulus to be presented to SPAN and SSPAN before the

desired spike time. This ensures that all stimulating information is processed.

The upper panel of Figure 4.3 plots the α curves at the first training iteration, and

the lower demonstrates the curves at the last iteration of training (number of

iterations = 60).

Table 4.2: Classification accuracy of stochastic LIF-based models

SPAN SSPAN(LIF) SSPAN(NR) SSPAN(ST) SSPAN(CT)

33.33% 50% 66.67% 66.67% 83.33%

The upper panel of Figure 4.4 shows the error curve at the first iteration of

training, while the lower panel depicts the error curve at the 60
th

 training iteration.

The percentage classification accuracies of each method are presented in Table

4.2. After 60 training iterations, all of the stochastic SSPAN models exceeded

SPAN in terms of accuracy. CT-modelled SSPAN excelled for this synthetic

dataset, with a percentage accuracy of 83.33%. Besides, the classification

accuracy improved when the deterministic model (LIF model) was replaced with

stochastic neural models in SSPAN. SPAN may require more training iterations,

possibly as many as 500 (Mohemmed, Schliebs, & Kasabov, 2011; Mohemmed,

Schliebs, Matsuda, et al., 2011), which may take around 26 hours (200-260

74

msec/sample) in system training process and may take longer about 5-7 times in

real world application such as EEG because of the higher density of spikes.

Figure 4.4: Error (E) dynamics of SSPAN using the CT model

Figure 4.3 illustrates the α-transformed true spike output (blue) and desired spike

output (green), the spikes were transformed via equation 4.3 of SSPAN using CT

model. The upper panel shows the α curves at the first training iteration, where the

75

actual and desired spikes occur at 40.0 ms and 515 ms, respectively. The lower

panel illustrates the α curves at the last training iteration (the 60
th

 iteration). Note

that the true spike has shifted towards the desired spike (final spike time is 477.2

ms).

The error (E) dynamics of SSPAN using CT model are displayed in Figure 4.4.

The curves have converged and the error is decreased after multiple training

sessions. The upper panel illustrates the error curve at the first training iteration,

where E = 53.34 .After the final training iteration (60
th

 iteration; bottom panel of

Figure 4.4), E = 48.67. The error is determined from Equation 4.14.

4.4 Conclusion

This chapter describes the stochastic precise-time spike pattern association neuron

(SSPAN), designed to enhance the performance of SPAN: precise-time spike

pattern association neuron proposed in 2011 (Mohemmed, Schliebs, & Kasabov,

2011; Mohemmed, Schliebs, Matsuda, et al., 2011).

The performances of both model types were investigated and compared on a

synthetic dataset. SSPAN exhibited improved performance over the original

SPAN, especially when incorporating the CT model. Moreover, the classification

accuracy improved when the deterministic model (LIF model) was replaced with

stochastic neural models in SSPAN. However, SPAN may require more training

iterations, possibly as many as 500 (Mohemmed, Schliebs, & Kasabov, 2011;

76

Mohemmed, Schliebs, Matsuda, et al., 2011), before exemplary results are

obtained. Hence, we conclude this chapter with the following points:

(1) More synapses can memorize more patterns, leading to increased

performance; SSPAN has 420 synapses versus 140 synapses in SPAN.

(2) Stochastic neural models can improve the performance of SPAN

(3) Stochastic neural models are better equipped than deterministic models to

deal with noisy stochastic data.

Chapter 5

DepSNN: Dynamic Evolving Probabilistic

Spiking Neural Networks

Aside from being computationally inexpensive, the eSNN enhances the

significance of the order in which input spikes reach the output neuron; hence

eSNN may be prepared using on-line learning. The disadvantages of eSNN are as

follows;

(1) No method is known to handle multiple spikes reaching the same synapse

at different times and demonstrating the same spatiotemporal design. Such

a method is required for spatiotemporal patterns recognition. Although the

synapses seize long term memory at the learning stage, their short-term

memory is acquired solely through post-synaptic potential growth.

Unrestricted short-term memory acquisition is vital for complicated

spatiotemporal patterns recognition tasks.

(2) eSNN is appropriate and employs population encoding alone (see Chapter

2 for details) to transform original data into spike trains. Under eSNN, a

value is encoded into at least 3 spikes; that is, population encoding may

introduce more information to the system than originally exists. For

example, at three spikes per datum, population encoding will produce 300

spikes for a data vector containing 100 features.

78

(3) This thesis focuses heavily on EEG spatio-temporal pattern recognition,

which is not suitable for eSNN with population encoding at least 19

channels are present in clinical EEG, which would introduce at least 57

input spike trains to an eSNN, rather than the desired 19 spike trains.

This chapter introduces a new method, namely DepSNN: Dynamic Evolving

Probabilistic Spiking Neural Network, which overcomes these limitations.

DepSNN is an extended eSNN model which utilises the Rank order learning (RO)

(see Section 5.1) and the Fusi’s spike driven synaptic plasticity (SDSP) learning

rule (see Section 5.2). Section 5.3 provides details of DepSNN using the

deterministic LIF model and the three stochastic models NR, ST and CT,

introduced in Chapter 3. Rank order learning fixes the original connection weights

for a given spatiotemporal pattern using the existing event order information. The

SDSP rule then regulates these connection weights as further spikes (occurrences)

enter as segments of the same spatiotemporal pattern. The BSA encoding method

is employed for transforming EEG data to spikes (as explained in Chapter 8). The

chapter concludes with Section 5.4.

This proposed solution addresses the contribution stated in the second research

question.

5.1 Rank Order Learning (RO)

The Rank order learning rule enables the neuron to recognize a pattern of neuron

links as a positive model. The neurons form centralised clusters in the region of

79

the synaptic weights. In some applications, alike neurons are combined (Kasabov,

2007; Wysoski et al., 2010). In this way, very rapid learning is possible in an

eSNN (a single pass may be sufficient), both in an organized and an unorganized

mode. In an unsupervised mode, the evolved neurons represent a learned pattern

(or a prototype of patterns). The neurons can be labelled and assigned to the same

class if the model performs a classification task in a supervised mode of learning.

The postsynaptic potential of a neuron i at time t is computed as follows:

ij

jorder WtiPSP ,

)(mod),( (5.1)

where: mod is a modulation factor; j is the index of the received spike at synapse

j,i and wj,i is the related synaptic weight; order(j) denotes the order (the position)

in which the spike occurs at synapse j,i, relative to all spikes input from all m

synapses to neuron i. The order(j) is 0 for the first spike and grows concurring to

the input spike sequence. An output spike is produced by neuron i if the PSP (i,t)

exceeds a threshold PSPTh.

Throughout the preparation process, for every training input design a new output

neuron is generated and the linked weights are computed based on the sequence of

the arriving spikes. In eSNN, the weights of on-line links generated between a

neuron ni and its connections form an input pattern of a recognized class, from

80

which an activated input (aspect) neuron nj is created utilizing the Rank order

learning rule:

))(,(

, mod tijorder

ijW  (5.2)

When the overall input pattern is given, the threshold of the neuron ni is set such

that the neuron ejects when the same ST pattern is presented again in the

recollection form. The threshold is computed as a fraction (C) of the total PSP:


 


m

j

T

t

tij

tijorder WPSP
1 1

)(,

))(,(

max)(mod , for j=1,2,…m; t=1,2,…,T (5.3)

max*PSPCPSPTh  (5.4)

If the linked weight vector of the prepared neuron is akin to that of the already

prepared neuron in a repository of outcome neurons characterising the similar

class, the novel neuron will combine with the most similar neuron, averaging the

linked weights and the threshold of the two neurons (Kasabov, 2007; Wysoski et

al., 2010). Otherwise, the novel neuron supplements the established set of neurons

(or the related class repository of neurons when a supervised learning for

categorization is undertaken). The resemblance between the newly generated

neuron and a trained neuron is calculated as the inverse of the Euclidean distance

between the weight matrices of the two neurons.

81

Two algorithms are commonly used in the recall process:

(1) The foremost is used when Rank order learning is applied to a new input

pattern (either for recalling or testing; see Equation 5.2). The linked

weight vector for this input is matched with the patterns of prevailing

neurons for which the output class is generated throughout training. The

neighboring neuron is the ‘winner’ that determines the class of the new

input design. This algorithm utilizes transductive interpretation codes and

closest neighbor categorization. It matches the synaptic weight vectors of a

novel neuron acquiring a new input pattern with prevailing weight vectors.

This model will be designated eSNNs.

(2) An alteration of the above algorithm is implemented when a new input

pattern of spikes is broadcasted as the spikes reach all of the trained

neurons. The foremost ejecting neuron (whose PSP exceeds its threshold)

determines the class. This algorithm supposes that the fastest ejecting

neuron best categorizes the input ST pattern. This eSNN is designated

eSNNm.

5.2 The Fusi’s spike driven synaptic plasticity (SDSP) learning rule

The SDSP, a modification of STDP (Song, Miller, Abbott, & others, 2000) which

has been described as an unsupervised learning method (Fusi, Annunziato,

Badoni, Salamon, & Amit, 2000). SDSP models the synaptic plasticity Vw0 of a

synapse w0 contingent at the time of spiking of the pre-synaptic and post-synaptic

82

neurons. Vw0 rises or reduces depending on the comparative timing of the pre and

post synaptic spikes.

When a pre-synaptic spike reaches the synaptic station before a postsynaptic spike

within a specified time window, the synaptic efficiency is enhanced. If the post-

synaptic spike is ejected immediately after the pre-synaptic spike, synaptic

efficiency is reduced. This plastic synaptic efficiency is embodied in the following

equations:

spk

p

postpot

w t
C

tI
V 

)(
0

iftpre<tpost (5.5)

spk

d

postdep

w t
C

tI
V 

)(
0

iftpost<tpre (5.6)

where Δtspk is the pre and post synaptic spike time window.

The SDSP rule can be applied to a supervised learning algorithm, when a trainer

signal imitating the required output spiking order is inserted together with the

training spike pattern, but without any alteration of the trainer input weights. In a

study by Brader and colleagues (2007), a SDSP-driven SNN learned to recognise

293 characters (classes). Each character (a static image) was encoded as a 2000 bit

feature vector, and each bit was transformed into a spike rate, with binary values 0

and 1 corresponding to 0 Hz and 50 Hz, respectively (Brader et al., 2007). For

each class, 20 distinct training designs were utilized and 20 neurons were

83

assigned, one for each pattern, and trained for hundreds of reiterations. The SDSP

model is implemented in the INI analogue SNN silicon chip (Indiveri et al., 2011).

The silicon synapses are composed of bi-stability circuits that assign a synaptic

weight to one of two likely analogue values (either increased or decreased). These

circuits push the synaptic weight voltage by a positive or negative current

superimposed on that produced by the STDP. Within a short time frame, the

synaptic weight is increased above a set threshold by the network activity via the

STDP learning mechanism. The bi-stability circuits generate a constant weak

positive activity. In the absence of a current (and also in the learning phase) this

background current will drive the weight toward its potentiated state. If the STDP

decreases the synaptic weight below the threshold, the bi-stability circuits

generate a negative current that inhibits spiking activity and vigorously drives the

weight toward its analogue value. The synapse is now in a depressed state. The

STDP and bi-stability circuits simplify the simulation of both long term and short

term memory.

Although SDSP is effective at identifying generally static patterns, the potential of

the SDSP SNN model and its accompanying hardware has not been completely

investigated in spatiotemporal pattern recognition, particularly in fast on-line

learning.

5.3 Dynamic Evolving Probabilistic Spiking Neural Network (DepSNN)

Non-stochastic DepSNN is also known as DeSNN (Dynamic Evolving Spiking

Neural Network) (Dhoble, Nuntalid, Indiveri, & Kasabov, 2012).

84

Five types of DepSNN (namely DepSNNm, DepSNNs, NR-DepSNNs, ST-

DepSNNs, and CT-DepSNNs) are proposed in this study. The models, based on

the ideas presented in Section 5.1, are the eSNN equivalents of the stochastic

models introduced in Chapter 5. They differ in their recall algorithms and type of

eSNN (eSNNs or eSNNm). The essences of the five models are outlined below:

(1) DepSNNm

In this model, every new spatiotemporal pattern to be recognized or associated

with a previously learned spatiotemporal pattern is propagated to all neurons

created during the training session. The first neuron to spike indicates the desired

association (or class, in classification tasks). The neurons in the DepSNNm can be

designed to inhibit each other (the so-called ‘winner takes all’ – WTA

connection), so that a firing neuron will prevent other neurons from firing (both

during recall and training) (Tymoshchuk & Kaszkurewicz, 2005). In this case the

firing neuron represents the recognized spatiotemporal pattern (a concept neuron).

(2) DepSNNs

This model, the dynamic equivalent of eSNNs, compares the connection weights

of a newly created neuron (representing a new spatiotemporal pattern to be

recognized) with the connection weights of the neurons created during training.

The new spatiotemporal pattern becomes associated with the closest neuron. This

model demonstrates superior performance over DepSNNm in preliminary tests of

EEG spatiotemporal pattern classification.

85

(3) NR-DepSNNs

In this model, the deterministic LIF model in conventional DepSNNs is replaced

by the stochastic noisy reset model (see Section 3.1.1), in which the reset potential

is refreshed after every spike.

(4) ST-DepSNNs

Like NR-DepSNNs, this model is conceptually analogous to standard DepSNNs;

however, the deterministic LIF model is replaced by the stochastic step-wise noisy

threshold model (see Section 3.1.2), in which the reset potential value (resetu) is

fixed while a new threshold is selected at each firing time step.

(5) CT-DepSNNs

In this model, the deterministic LIF model in standard DepSNNs is replaced by

the continuous stochastic threshold (see Section 3.1.3), in which the threshold ϑ(t)

is revised continuously over time. This model allows spontaneous spike activity,

i.e. a neuron may fire at time t(f) even if no pre-synaptic input spike presents at

that time (Schliebs, Nuntalid, & Kasabov, 2010).

Figures 5.1 and 5.2 show how DepSNN responds to different input spike trains.

The spike raster is plotted in the top panel of each figure. The central panels

illustrate the change in weights over time (blue curves) for the DepSNNm. The

initial weights are defined by rank order. The green curves display the weights

86

modified by SDSP dynamics over the simulation time (note that, in Figure 5.1, the

green and blue curves almost overlap, so the green curve is scarcely visible). The

bottom panels illustrate the evolution of post synaptic potential of the first neuron.

Figure 5.1: Spike Raster Plot (top panel), Weight and PSP evolution (centre panel) and

changes in post-synaptic potential of the first firing neuron (bottom panel), for a slow rate of

input spikes to a DepSNNm model

DepSNN requires high firing activity in the spike trains to activate a SDSP

synapse. This is clearly illustrated in Figure 5.1, where spiking activity is low. In

contrast to the case of high spiking activity (Figure 5.2), the initial and final

synaptic weights remain similar throughout the evolution time.

87

The DepSNN algorithm is provided in Table 5.1.

Table 5.1: DepSNN Algorithm

1: Set DepSNN constraints (comprising of: Mod, C, Sim and the SDSP

constraints)

2: For every input STP i demonstrated as BSA Do

 2a. Generate a new output neuron j for this pattern and compute the

starting values of connection weights utilizing the RO learning rule:

()
()

order j
w Modj 

2b. Modify the connection weights wj for successive spikes on the

related synapses utilizing the SDSP learning rule.

 2c. Compute PSPmax

2d. Compute the threshold value *max()PSP Ci i 

 2e. If the new neuron j weight vector wj is alike to the weight vector of

previously trained output neuron utilizing the Euclidean distance and a

threshold Sim, then combine the two neurons (elective):

*

1

w w Nnew
w

N




 ,

*

1

Nnew

N

 







 where N is the number of all previous merges of the merged neuron

 Else

 Add the new neuron to the output neuron repository for the same

class (if a classification task is considered).

 End If

3. End For (Repeat to all input STP)

88

Figure 5.2: Spike Raster Plot (top panel), Weight and PSP evolution (centre panel) and

changes in post-synaptic potential of the first firing neuron (bottom panel), for a fast rate of

input spikes to a DepSNNm model

5.4 Conclusion

This chapter has introduced five types of Dynamic evolving probabilistic spiking

neural network (DepSNN), namely, DepSNNm, DepSNNs, NR-DepSNNs, ST-

DepSNNs, and CT-DepSNNs. As an initial investigation of DepSNN behaviour,

the model was tested on two sets of synthetic input spike trains. The results

(Figures 5.1 and 5.2) show that high levels of spiking activity are required in the

spike trains before a SDSP synapse is activated in DepSNN. This is revealed in

89

the curves showing modification of synaptic weights. Thus, DepSNN may be

suitable for processing BSA-encoded EEG data, provided that the encoded data

spike frequently. In Chapters 10 and 11, the performance and feasibility of

DepSNN is further explored on two real-world EEG datasets.

Chapter 6

epSNNr: Evolving Probabilistic Spiking

Neural Network Reservoir

The latest reservoir computing paradigm, Liquid State Machine (LSM), was

developed to process pattern recognition tasks on spatio-temporal information.

LSM is a recurring network of ejecting neurons that converts a spatio-temporal

input pattern into a single intermediary high-dimensional network state which first

proposed by Maass (Maass et al., 2002).

As a result, an evolving probabilistic spiking neural network reservoir (epSNNr)

emerges. Replacing the deterministic LIF model with stochastic neural models

introduces a non-deterministic component into the LSM.

Partial information in this chapter has been shared and published to international

neural network community in 2010 (Schliebs, Nuntalid, & Kasabov, 2010). The

proposed epSNNr is a contribution that answers to the third research question.

The principle of LSM is presented in Section 6.1, followed by a proof of concept

in Section 6.2. An improved separation capability of the epSNNr is demonstrated

in section 6.3. Section 6.4 concludes the chapter.

6.1 Introduction to Reservoir Computing

91

The general architecture of reservoir computing is illustrated in Figure 6.1. The

structure is analogous to that of a neural network. Essentially, a signal is input to a

static dynamic system (the reservoir) and the dynamics of the reservoir transform

the input to a greater state. A straightforward readout function is then trained to

convert the response state (higher dimension) into the required output. The major

benefit is that the learning procedure is conducted only at the readout step. Two

major types of reservoir computing are liquid-state machines and echo state

networks. Backpropagation-Decorrelation and Temporal Recurrent Networks

(Benjamin Schrauwen et al., 2007) also belong to reservoir computing.

Figure 6.1: Block diagram of Reservoir Computing

The LSM was first proposed by Maass (Maass et al., 2002) and has been widely

investigated both conceptually and practically as a new framework for neural

computation in machine learning (Benuskova & Kasabov, 2007; Brader et al.,

2007; Buteneers et al., 2009; Maass et al., 2002; Maass & Zador, 1999; Norton &

Ventura, 2009; Benjamin Schrauwen et al., 2007; Verstraten, Schrauwen,

Stroobandt, & Van Campenhout, 2005; Yamazaki & Tanaka, 2007) . LSM has

also been proposed for solving time-series problems, since it is free of the

92

complications which persist in recurrent neural networks and cause problems with

learning methods. LSM is typically applied to nonlinear problems and is

frequently used in conjunction with LIF models. The readout is normally linear.

By default, the batch training methods use linear regression to determine the

output weights. A least mean squares algorithm is adopted for online training of

the traditional reservoir.

A LSM uses an excitable medium (recurrent networks of spiking neurons), to

transform multi-dimensional inputs to a single linear dimension. Simple readout

units can then extract detailed temporal information from the translated data.

Furthermore, LSM mimics the mammalian brain process, lending a certain

biological plausibility to the LSM approach. Some areas of the brain may perform

as a liquid generator while others learn how the liquid responds to external

sensory incentives.

To visualise the LSM concept, imagine a pool of water into which various objects

are dropped. The resulting splashes and ripples that fade away over time can be

transformed into a spatiotemporal pattern of liquid (liquid state). In other words,

the water can retain information about recent events. Real-time events, therefore,

should be tractable by reading the water surface of the pool.

LSM comprises two main parts, a liquid unit (a reservoir for transforming the

input time series into liquid states or state vectors) and a readout unit (simple

function(s) which map(s) the liquid state at time t onto the output). The LSM

93

mechanism proposed by Maass (Maass et al., 2002) is shown schematically in

Figure 6.2. Here, (.)u is a continuous input stream (spatiotemporal data) of

disturbances which is injected into medium ML that acts as a spatiotemporal filter

(liquid filter). The “liquid” constitutes anything that generates a readable liquid

state)(txM
at each time step t . The liquid state is mapped to the desired output

function)(ty . The readout functions Mf (multiple readouts are permitted)

extract different task specifications (e.g. classification, clustering, prediction) in

parallel from the current output of ML .

Figure 6.2: Mechanism of Liquid State Machine (LSM)

The liquid unit is typically implemented by a recurrent SNN. Any spiking neural

model can be used as a liquid, with generation of different network states resulting

in different readouts (Grzyb, Chinellato, Wojcik, & Kaminski, 2009). The liquid

unit is a non-linear stochastic system composed of a pool of spiking neurons

𝑢(.)

𝐿𝑀

𝑥𝑀(𝑡)

𝑦(𝑡)

𝑓𝑀

94

which receives temporal input and transforms it into significantly different liquid

states. The readout unit is a task-dependent portion that can be trained to extract

information from liquid states. The pool of spiking neurons is set up on a regular

3D grid space (zyx nnnN  neurons), where, yx nn , and
zn signify the

number of neurons assigned to the x, y, and z axes respectively (Burgsteiner,

Kroll, Leopold, & Steinbauer, 2007).

Figure 6.3: Example of a liquid unit of a LSM containing 633  neurons

Figure 6.3 illustrates the configuration of a pool of spikes in a hypothetical LSM.

This figure was created by PCSIM interfaced to the Python programming

language (Neural Microcircuit library for Python) (Pecevski, Natschläger, &

Schuch, 2009).

95

The readout unit must be able to detect features from a set of patterns. This unit

receives a single linear input from the liquid unit. By its capacity to interpret

numerous linear algorithms, the unit can be instructed to execute a particular task.

When the spatiotemporal input (.)u is fed into the reservoir, the spiking neurons

in the pool are activated. The pool then acts as a filter that transforms the data into

the liquid state. Samples of the liquid state are combined into a state vector, which

is input to the trained readout unit to perform a specific task.

6.2 Frameworks of the Evolving Probabilistic Spiking Neural Network

Reservoir (epSNNr)

The Evolving Probabilistic Spiking Neural Network Reservoir (epSNNr)

categorises spatiotemporal data founded on a probabilistic reservoir computing

pattern. The framework of epSNNr is presented in Figure 6.4. Noise diminution or

feature withdrawal is possibly applied at the pre-processing stage.

In the first step, every spatial/spectral-temporal data channel is converted to a

spike train by the BSA spike encoding method described in Chapter 4. Spike

encoding may process whole temporal data or chunks of data. Next, the spike

trains are dispersed through a LSM-based spatiotemporal filter. In this study, the

conventional LIF model as liquid generator has been replaced by the stochastic

neural models proposed in chapter 5. At each time step, the liquid state generated

by the filter is collected into a linear state vector. The Classifier will use this state

96

vector to perform classification or pattern recognition tasks, possibly in both batch

and real-time.

The data in the state vectors is fed into the readout unit as a time-dependent vector

or as a whole liquid state pattern. The Classification can comprise any linear

classifier or a second trainable neural network.

Figure 6.4: epSNNr: Framework of evolving probabilistic spiking neural network reservoir

6.2.1 Design of the encoder

This study focuses on EEG spatio-temporal pattern recognition using the Ben

Spiker Algorithm (BSA) introduced in Chapter 4. Because BSA generates spike

trains by mimicking input waveforms, it is inherently suitable for EEG data

processing, and it should retain information during data transformation to spikes.

6.2.2 Design of the Spatiotemporal Filter

At this stage, the LIF model is replaced by the stochastic models (see Chapter 5

for details); namely the NR, ST, and CT models inspired by probabilistic models

97

(Kasabov, 2010). A schematic of the probabilistic SNN is shown in Figure 2.7

(Chapter 2). As mentioned in Section 3.1 (Chapter 3), the Pj(t) and Pi(t)

parameters define the probabilities of release that are directly associated with

neural threshold and reset potential value, respectively. The probability of

connection Pcij(t) between two neurons i and j is given by:

2

),(

),(

jid

eCjiP



 (6.1)

where),(jid is the Euclidean distance between neuron i and j and  represents

the density of connections (defaulted to  =2 for LSM). The probability of

connection increases with decreasing distance between neurons.C is a constant

whose value depends on neural type(excitatory (ex) or inhibitory (inh).

6.2.3 Design of State Vector

Once the spatiotemporal filter has transformed the data into the liquid state, the

liquid state is sampled and input to a time-dependent sequence or vector, namely

the state vector. The responses of active neurons are used to train the readout unit

(Classifier) to perform a classification or pattern recognition task. In this study,

the output spikes of the LSM (state vector) are transformed into a binary data

representation of N parallel spike trains covering a data stretch of T bins, each of

time-width h (Grun, Diesmann, & Aertsen, 2010), where h is chosen to suit the

dataset under consideration. Next, the binary data are mapped, either by a simple

linear mapping or by distribution of coincidence, onto a single binary vector

98

which is an input to a readout function (classifiers). When spiking neural

networks are used as readout functions e.g. DepSNN or stochastic SPAN

(SSPAN) (see Chapters 6 and 7 for details), the entire dynamic sample of spike

responses from the LSM can be fed directly to classifiers.

6.2.4 Design of the classifier

The classifier in Figure 6.4, constituting the readout functions of LSM, can extract

different task specifications (such as classification, clustering and prediction) in

parallel from the state vector. At a given time t, the state vector linearizes the

high-dimensional inputs via a simple linear mapping, or uses distribution of

coincidence to map binary vectors into a single binary vector within a specific

time bin. This unit can implement diverse linear pattern recognition methods such

as Naïve Bays, MLP, or another trainable SNN.

6.3 Deterministic LSM Versus epSNNr

The appropriateness of the suggested epSNNr can be assessed by demonstrating

the separation ability of the model. Experiments in this section were inspired by a

2009 study of various neural models in a LSM context (Grzyb et al., 2009). Grzyb

and colleagues demonstrated that the departing capability of the liquid depends

upon the selected neural model. The following constraints were placed on the

neural models: the membrane time constant (τ) = 10ms, the reposing potential

resetu = 0 mV, the ejecting threshold ϑ0 = 10mV, the after-spike refractory period

99

Δabs = 5ms, the standard deviation of reset variations σNR = 3mV, the standard

deviation of step-wise ejecting threshold σST = 2mV and the standard deviation of

continuous ejecting threshold σCT = 1mV.

To investigate the differences in neural reaction between the stochastic models, a

random spike train produced by a Poisson process with mean rate 150Hz was

provided to each model as neural input. After 1000 iterations of each model, the

related Peristimulus Time Histograms (PSTH) were computed. The PSTH

generates a histogram of spikes arising in a raster plot. A frequency vector is

calculated which is standardized by dividing each vector element by the number

of repetitions and by the size of the time bin (here 1ms). Maass et al. (2002) used

a window width of 10ms to Gaussian-smooth the raw PSTH. In a second

experiment, they constructed a liquid possessing a small-world inter-connectivity

pattern.

In this study, a repetitive SNN is created by associating 1000 neurons in a three

dimensional grid of size 10 × 10 × 10 neurons. Links between any two neurons in

this grid are established with association probability given by Equation 6.1, with

 =2 in all simulations. Parameter C is a constant whose value relies on proportion

of links between excitatory (ex) and inhibitory (inh) neurons as defined below:

exexC  =0.3, inhexC  =0.2, exinhC  =0.5, and inhinhC  0.1. A network comprising 80%

and 20% excitatory and inhibitory neurons respectively typifies the biological

neurons in the mammalian brain (Schliebs et al., 2010).

100

Figure 6.5: a) Raster plot of the neural response. b) PSTH for each raster plot

Figure 6.5 a) shows the Raster plot of the neural response of deterministic LIF

neurons and stochastic neurons documented over 1000 repetitions. Figure 6.6 b)

shows the related smoothed PSTH for each raster plot. Each column relates to the

neural model specified in the plot title. As evidenced in Figure 6.5, the non-

deterministic neural dynamics exerts a strong effect on the output response. Some

of the spikes appear in every repetition, causing sharp peaks in the PSTH.

Four repetitive SNN are created, each utilizing a different neural model. All

networks possess similar network topology and a similar link weight matrix. The

created networks are incited by two input spike trains separately created by a

Poisson procedure with a mean rate of 150 Hz for the first stimulus (Stimulus A)

and 200Hz for the second (Stimulus B). The reaction of each network was

recorded over 25 repetitions. The averaged reaction of the networks is illustrated

in Figure 6.6. The upper and central panels of the figure depict the average raster

plots of the spike movement under stimuli A and B, respectively. The darker the

101

shade in these plots, the more likely the related neuron ejected within the

permitted time bin during the 25 runs. The size of a single time bin is 1 ms. White

areas indicate time bins in which no neural movement was detected in any run.

Similar to the raster plots of Figure 6.5, some reliable spikes are observed in the

response, corresponding to the very dark shades in the plots.

Figure 6.6 illustrates the average spike response of the reservoirs using different

neural models. Responses to input stimuli A and B recorded over 25 independent

runs are displayed in the upper and central panels, respectively. The bottom panel

shows the averaged normalized Euclidean distances between two reactions for

each time bin (bin size 1 ms). Similar distance calculations were used by Grzyb

(Grzyb et al., 2009) to evaluate differences in response patterns. We note the

comparably low separation ability of the deterministic LIF model, which confirms

the findings of Grzyb and colleagues (Grzyb et al., 2009). The results indicate that

stochastic models can potentially enhance the separation ability of the reservoir.

However, further experimental analysis is needed to provide strong statistical

proof of this claim.

Figures 6.7 and 6.8 show the configuration of the 1000 neurons in the 3D grid of

size 101010  . The yellow and green lines represent links to excitatory and

inhibitory synapses respectively. A liquid possessing a small-world inter-

connectivity pattern, in which most neurons are connected locally, was

102

constructed according to equation 6.1. The red lines show the connections

between input stimuli and liquid.

Figure 6.6: Averaged spike response of reservoirs using different neural models. Upper and

central panels show the dynamic responses to Stimuli A and B, respectively, while the bottom

panel displays the average Euclidean distance between paired reactions (see text for details).

Figure 6.7: Illustration of a liquid possessing a small-world inter-connectivity pattern (see

text for details).

103

Figure 6.8: Evolving probabilistic spiking neural network (epSNNr) visualization

Figures 6.7 and 6.8 were produced by code written in the pure Python

programming language. The synaptic connection information was obtained from

the Brian library for SNN simulation (Goodman & Brette, 2008).

6.4 Conclusion

An epSNNr framework was proposed that allows the method to develop

spatiotemporal data. epSNNr protrudes a spatiotemporal signal onto a single

higher-dimensional network condition that can be learned by a linear readout

function or another SNN network. A preliminary feasibility investigation was

undertaken on the proposed epSNNr approach. Probabilistic neural models

(stochastic models) proved to be primarily appropriate reservoirs with enhanced

capacity to increase the separation capability of the system. Further studies will

explore the features of the epSNNr on general benchmark functions. Moreover,

104

the approach is anticipated to be extendable to real world EEG data sets, as

suggested in successive chapter 9, 10 and 11.

Chapter 7

Electroencephalography

This chapter explains the principles of Electroencephalography (EEG), the data of

which are used throughout the remaining of this thesis. An overview of EEG and

a broad outline of its applications are presented in Section 7.1. Section 7.2

introduces several applications of EEG to the computer science field. Section 7.3

presents the application of Spiking Neural Networks on EEG. The chapter

concludes with Section 7.4.

7.1 Electroencephalography (EEG)

Electroencephalography (EEG) involves the recording of neural-generated

electrical brain signals as they move along the scalp. The essential EEG apparatus

is shown in Figure 7.1. EEG has been utilized in clinical recordings of cerebral

electrical movement over specified periods of time. It collects data from nineteen

electrodes positioned strategically across the head. In neurology, EEG is widely

adopted to investigate epilepsy, since epileptic movement can generate distinct

spike movement on standard EEG equipment (Niedermeyer & Da Silva, 2005;

Tatum, 2007). EEG is commonly used to determine the type and position of brain

activity movement during a spasm. It is also used to examine individuals with

brain functioning problems such as coma, tumours, short term memory, or

106

weakening of particular parts of the body such as occurs in stroke (Niedermeyer

& Da Silva, 2005; Tatum, 2007).

Figure 7.1: Electroencephalography (EEG) Equipment (Berber, 2011; Murph, 2007)

The left image of Figure 7.1 shows the standard EEG equipment with 256 and 64

electrodes (channels) (Berber, 2011). The wireless EEG equipment is

photographed in the right image. The EEG signals are sourced from billions of

neurons (approximately 10
10

of them) (Murph, 2007). Neurons are electrically

charged (or "polarized") by sodium and potassium ion pumps that operate across

their membranes. When a neuron receives an action potential signal from other

neurons, many neurons emit ions simultaneously and inhibit neighbour neurons in

a wave-like fashion. Therefore, when a wave of ions intercepts the electrodes on

the scalp, it repels or attracts electrons on the metal of the electrodes. As metals

are strong conductors of electrons, the repulsion or attraction induces a voltage

between two electrodes, which can be detected by a voltmeter. The EEG is a

This image has been removed by the author of this thesis for

copyright reasons.

107

record of these changing voltages over a specified time (Yamazaki & Tanaka,

2007).

EEG was pioneered in 1842, when a physician practicing in Liverpool attempted

to measure the electrical activity of cerebral hemispheres of rabbits and monkeys.

At that time, electrodes needed to be directly inserted into specific brain regions.

A prototype of modern EEG was tested on dogs in 1912, and applied to humans

too later to investigate seizures (Swartz & Goldensohn, 1998).

Figure 7.2: Spatial Positioning of the EEG Electrodes over the Frontal, Central and Parietal

Lopes (Ferreira, Almeida, Georgieva, Tomé, & Silva, 2010)

Figure 7.2 illustrates a sample (21 channels) of EEG location over the frontal,

central and parietal lobes of the brain. EEG is generally explained in terms of

rhythmic movement and is divided into five frequency bands (Lotze et al., 1999).

The characteristics of these bands are described below:

108

(1) Delta Waves

Delta waves are brainwaves of 4Hz or less. These waves, generated by the

thalamus, convey cross-referenced information from several sensory systems and

transmit it to the cerebral cortex. In adults, Delta waves are presented only during

sleep, whereas in infants they are present during sleeping and waking periods.

Figure 7.3: An illustration of EEG in Delta oscillation(Gamboa, 2005)

(2) Theta Waves

The frequency of theta waves ranges from 4 to 7 Hz. Theta waves are generated

by the hippocampus, which is vital for memory formation and spatial movement.

Theta waves appear during dreaming and REM (Rapid Eye Movement) sleep, and

also during deep meditation. Together with delta waves, theta waves characterize

the EEG of sleeping adults.

 Figure 7.4: An illustration of EEG in Theta oscillation (Gamboa, 2005)

109

(3) Alpha Waves

Alpha waves possess frequencies ranging from 8 to 12Hz. Thoughts, reasoning,

judgment, associative thinking and fantasizing are all associated with alpha

movement. Alpha waves appear during relaxation and alpha movement is

immediately provoked by closing the eyes while one is awake.

 Figure 7.5: An illustration of EEG in Alpha oscillation (Gamboa, 2005)

(4) Beta Waves

The frequency of beta waves ranges from12to 30Hz. Alpha and beta waves

collectively characterize the waking EEG of adults. While alpha waves signify a

relaxed state, beta waves are associated with readiness and attentiveness. They are

also linked to general movement and logical reasoning, and also to motor

behaviour such as active movement.

Figure 7.6: An Illustration of EEG in Beta Oscillation (Gamboa, 2005)

110

(5) Gamma Waves

Gamma waves possess frequencies of 40Hz or higher. These appear during

sophisticated mental activities such as insight seeking and problem solving.

Spontaneous eruptions of gamma movement accompany quick sparks of vision or

perception (so-called “a-ha” moments). Children with higher than average

attention spans, reasoning abilities and language capabilities exhibit strong

gamma wave movement, whereas adults with high gamma wave activity possess

above-average intelligence. High gamma wave activity can also arise from

meditation.

Dominant band frequency has been used as a diagnostic tool; in particular, alpha

band activity in the temporal or frontal lobes.

Figure 7.7: An Illustration of EEG in Gamma Oscillation (Gamboa, 2005)

7.2 EEG Application

During the past decade, neurological advances have clarified that a direct interface

exists between the human brain and an artificial system, known as the Brain

Computer Interface (BCI). Although the BCI is a feasible concept, considerable

111

research and development is required before these technologies can be put to

everyday practical use (Berger et al., 2008).

There have been various data analysis and machine learning techniques

successfully used with EEG and BCI application such as independent component

analysis (ICA) for P300 detection (Xu et al., 2004), 3D game based BCI utilizing

the steady-state visual evoked potential (SSVEP) and power-spectrum estimation

methods for feature extraction in a series of offline classification tests (Lalor et al.,

2005), EEG-based Brain-Computer Interfaces for Control and biometry utilizing

Principle Component Analysis (PCA) for noise reduction and Support Vector

Machine (SVM) feature space mapping functions with Radial Basis Function

(RBF) for the nonlinear SVM version (Ferreira et al., 2010; Marcel & Millán,

2007; Palaniappan & Mandic, 2007).

Figures 7.8 and 7.9 respectively illustrate the use of BCI in controlling a Honda

robot (Binns, 2009) and a mind-controlled wheelchair developed by Toyota and

RIKEN Brain Science Institute in Japan (Abolfathi, 2009).

The principle of BCI is prototyping of brain activity fluctuations and recording

them into some form of actuation or command at an aimed output, such as a

computer interface or a robotic system. BCI research is presently motivated

chiefly by the potential advantages to those with severe motor disabilities, such as

“brainstem stroke, amyotrophic lateral sclerosis or severe cerebral palsy.” (P.

112

Goel, Liu, Brown, & Datta, 2008; Marcel & Millán, 2007; Yamazaki & Tanaka,

2007)

Figure 7.8: BCI -controlled Robot by Honda, Japan (Binns, 2009)

The most effective means of analysing the physiological activity of the brain is

recording the EEG signals from the cortex, whose sources are the action potentials

of the cerebral nerve cells. This is because cortex EEG signals comprise waves

spanning the 0-60 Hz frequency band and distinct brain activity movements can

be recognized based on the recorded fluctuations. For example, signals within the

delta band (below 4 Hz) correspond to deep sleep, theta band (4-8 Hz) signals

typify a dreamlike state, alpha frequencies (8-13 Hz) correspond to relaxed states

with closed eyes, beta frequencies (13-20 Hz) are associated with waking activity,

while gamma frequencies (40 Hz and higher) characterise mental activities such

as perception and problem solving (Niedermeyer & Da Silva, 2005).

This image has been removed by the author of

this thesis for copyright reasons.

113

Figure 7.9: Mind Controlled Wheelchair Developed by Toyata and RIKEN Brian Science

Institute in Japan (Abolfathi, 2009)

Present research interest lies in acquiring knowledge hidden in the EEG signals as

well as developing EEG-based implementations. BCIs for motor control and

biometry are the latest EEG-based applications in computational neuro-

engineering. The BCI concept initiated from observations of alpha band activity in

a subject performing real and imaginary movement, for which EEG data are not

significantly different. Since this discovery, EEG has been extensively applied in

BCI competitions (Piyush Goel, Liu, Brown, & Datta, 2006; Xu et al., 2004) and

mind-controlled machines, such as robot, wheelchair and mind games (Abolfathi,

2009; Binns, 2009). Of equal interest is EEG data analysis, because the efficiency

and accuracy of classification and pattern recognition methods are necessary not

only in BCI but also for improved understanding of the remarkable information

processing abilities of mammalian brains.

This image has been removed by the author of this

thesis for copyright reasons.

114

EEG-based biometry has become a new paradigm by which to investigate

biometric systems (Ferreira et al., 2010; Marcel & Millán, 2007; Palaniappan &

Mandic, 2007). Because individual human brain wave patterns are unique, EEG

can be used as a personal identification tool or as an alternative verification

system. A few studies have investigated the efficacy of brain signals in identifying

individuals (Ferreira et al., 2010). EEG identification aims to extract the identity

of a given individual from a restricted list of persons (one from many), whereas

verification attempts to validate or reject an individual’s claimed identity (one to

one matching; (Marcel & Millán, 2007). The identified person is subjected to a

incitement (generally visual or auditory) for a certain period of time and the EEG

signals originating from a number of electrodes arranged around the subject’s

head are gathered and entered into the biometry system. Initial tests have shown

that the “type of stimulus (for example mental task, motor task, image

presentation or a combination of these) is crucial for reliable extraction of

personal characteristics. It seems that some mental tasks are more appropriate than

others. At the same time, experiments with combinations of stimuli appear to be

more advantageous for the personal uniqueness of the EEG patterns” (Ferreira et

al., 2010).

7.3 Spiking Neural Networks Applications on EEG

Studies in which spiking neural networks (SNN) have been used for EEG

analysis, have achieved remarkable success in categorization tasks, compared to

other alternative methodologies. Recently, Goel and colleagues (P. Goel et al.,

115

2008; Piyush Goel et al., 2006) presented a classification scheme of continuous

EEG data using SNN, which engages pulse and rate encoding to transform data to

spike trains.

The data set of this study was provided by EEG signals recorded during spell

checking, downloaded from the BCI Competition website. The data comprise two

classes: the target group (P300: slow positive potential which builds up over

approximately 250-500 ms), and a non-target group (potential build up over 250-

500 ms). Feature selection and extraction employed a Wavelet Transform to

eliminate the noise and to obtain the low frequency signal. This system utilises the

LIF model as nodes in a multi-layered structure (2 layers) to form a weak

classifier; each node contributes to its own classification in generating its overall

classification. Layer One includes 2 networks; the input network (LIF neurons

receiving EEG input), and bias network (a single network with strong connection

weight). The secondly, termed the γ-neuron, receives as input the output from the

first layer, and spikes whenever synchrony exists within the two networks. The

higher the number of γ-spikes, the more similarity between the input signal and

the bias current. Goel and colleagues compared the performance of this approach

with that of two others; Support Vector Machine (SVM), and log sampling, low-

pass filtering and Continuous Wavelet Transform (CWT) for pre-processing and

filtering EEG input data, followed by Linear Discriminate Analysis. The SNN-

based approach improved (incomparison to SVM and CWT) the classification

accuracy to 94.7% and 83.68% for target and non-target groups, respectively.

116

Goel et al. (2007) commented that their approach could be made more accurate

and flexible if a biological stimulus response was built into the network, more

parameters were added or the existing probability parameters in SNN adjusted. A

couple of years later, Ghosh-Dastidar and Adeli (Ghosh-Dastidar & Adeli, 2009)

suggested a method for improving SNNs performance in categorising EEG data

and detecting epilepsy and epileptic seizures. Three SNN training algorithms were

investigated and compared; Spike Propagation (SpikeProp), Quick Propagation

(QuickProp) and Resilient Propagation (Rprop). The data sets for assessing the

performance of the training algorithms were XOR, Fisher Iris benchmark and

EEG data. Three aspects of computational efficiency and classification accuracy

were investigated. Epilepsy and epileptic seizure detection data were divided into

3 classes; namely, healthy individuals, relapsed epileptic individuals and epileptic

individuals during an attack. During processing of XOR and Fisher Iris data,

RProp yielded the highest classification accuracy (92.5%), especially for training

datasets. RProp was thus selected as the SNN training algorithm and for

generating EEG data classification networks. The experiments of Ghosh-Dastidar

and Adeli (2009) used a feed forward architecture (input layer, hidden layer and

output layer) to achieve average classification accuracy around 90.7%. However,

as mentioned by the authors, introducing spike time dependent and plasticity

(STDP) into the SNN training algorithm would enhance the biological plausibility

of the algorithm, similarly to Hebbian rules.

117

A study aimed at processing rat EEG data using a reservoir approach was

proposed in 2008 and published in 2009 (Buteneers, Schrauwen, Verstraeten, &

Stroobandt, 2009). This study showed that introducing a reservoir for real-time

epileptic seizure detection in 4 channels of rat EEG markedly improved model

performance. In this experiment, 200 Leaky-Integrator neurons were deposited in

the reservoir. From 20%-80% of data, two classes, detection seizure and tonic

seizure, were extracted by training and analysis respectively. The reservoir was

found to enhance the detection time performance to approximately 85% for 0.5

seconds attack time and 85% for 3 seconds tonic seizure time. Because this study

utilised EEG rat data which engaged only 4 channels, limited frequency

information was available.

The above studies paved the way for the development of the Liquid State

Machine, a reservoir apparatus that was applied to EEG data for the first time in

2011 (Nuntalid, Dhoble, & Kasabov, 2011).

Figure 7.10 shows the six time steps of the Evoked Potential Duration (EPD) in a

single subject. EPD transforms the original EEG signal into a power spectrum that

changes over time in response to varying stimulus. The EPD in the same subject

undergoing similar stimuli over nine time steps is shown in Figure 7.11.

Comparing Figures 7.10 and 7.11, we observe that increasing the number of time

steps, enables more information to be extracted from EEG data. Therefore,

processing information in vector format may not be efficient for complex EEG

pattern recognition.

118

Figure 7.10: Evoked Potential Duration (EPD) of a subject responding to a stimulus

Figure 7.11: Illustration of the EPD of a subject responding to a stimulus in nine time steps

Figure 7.10 and 7.11 were produced utilizing MATLAB (R2011) with EEGlab

library (Arnaud Delorme & Scott Makeig, 2004).

119

7.4 Conclusion

From previous SNN studies, it appears that the development of probabilistic

spiking neural models and spatiotemporal pattern recognition of human EEG data

other than that arising from epileptic seizure is complex and challenging. Further

investigation into these aspects is the aim of this study. In particular, EEG-based

spatiotemporal pattern recognition may improve the performance of SNN, lead to

a better understanding of the human brain and make significant contributions to

neuroscience.

 Chapter 8

Novel Algorithm for EEG Transformation

to Spikes

This chapter discusses the possible encoding methods applicable to EEG data and

to hardware development of a BCI with a fast processing mechanism. Section 8.1

focusses on the Paralleled Spike Encoding Function, which is well designed and

implemented in hardware but is less practical for software implementation. A

more software-friendly approach, the Finite Impulse Response filter (FIR), is

discussed in Section 8.2. FIR underlies the Ben Spike Encoder Algorithm (BSA)

presented in Section 8.3. The last section concludes the chapter.

In this study, BSA is selected as an encoding method for EEG because it can be

practically implemented in both hardware and software. The contribution involves

novel application of the existing BSA encoding scheme on EEG data, and

partially corresponds to the forth research question.

8.1 Paralleled Spike Encoding Function

Torikai and Nishigami proposed a spiking neural model and a corresponding

encoding function, termed Chaotic Spiking Neuron (CSN) and Paralleled Spiking

Encoding respectively (Torikai & Nishigami, 2009). CSN was inspired by the

121

reliable encrypting mechanism of the mammalian spiral ganglion cell. Essentially,

CSN is a small network of LIF neurons, whose mechanism is depicted in Figure

8.1. CSN includes two units, the Base Unit and the Neural Unit, both operating

under an electrical circuit mechanism similar to the LIF model. The current)(tI ,

input to both units, can vary in waveform. The capacitor voltage of base unit B is

increased by an amount depending on the integration of)(tI and internal current

0I . When B exceeds the firing threshold V , it is reset to zero. The neural unit

works similarly to the base unit, where iV (i=1, 2, 3..., N) denotes the membrane

potential. The V is the neural threshold of neuron increased by an amount

dependent on)(tI + integration of)(tI + 0I + output of base unit. If)(tVi fires, its

potential is reset to)(tB .

The CSN encoding function imitates the mechanism of ganglion cells by the spike

density of summed trains of spikes )()(tYtY ii (i=1, 2, 3..., N), which is

equivalent to the periodic sinusoidal waveforms received by inner hair cells. In

this research, we show that CSNs can encode not only periodic sinusoidal input

but a wide variety of inputs such as constant, random, and the non-periodic

waveforms characteristic of human EEG data.

CSN is designed primarily for hardware implementation, which is very simple and

convenient. In contrast, it is unsuitably inflexible for software implementation

122

because swapping the potential of the base unit is outside of the LIF rules which

the model need to be changed for software development. Therefore, to adapt CSN

to software implementation, a new neural model for the base unit must be

constructed.

Figure 8.1: The Chaotic Spiking Neuron: CSN (Torikai & Nishigami, 2009)

8.2 Finite Impulse Response filter (FIR)

A causal filter with a finite impulse response calculates the output signal as a

weighted addition of the real and earlier input samples , where is the

123

order of the filter. Consequently, the link between input and output can be

modelled by the following variance equation 8.1:

 ∑
 (8.1)

The result is the discrete convolution of with a (finite) impulse response.

 {
 .

 (8.2)

If the filter order is M, then the impulse response has coefficients.

The -transform of the impulse response of a fundamental FIR filter

has zeros, whose positions are found by the coefficients bk and an -fold pole

at the origin (i.e., z = 0). Thus, an FIR filter is inherently stable. Nevertheless, the

constancy condition, related to the location of the poles, must also be satisfied i.e.

∑
 . This condition is automatically fulfilled for FIR. Because the

transfer operation of the filter is entirely calculated by the location of the zeros,

FIR filters are known as ‘all-zero filters’.

Linear-Phase Filter property is another property unique to FIR filters. It can be

demonstrated that if the impulse response h[n] of the filter is symmetric, i.e.

 . . (even symmetry, cosine terms only) or

 . . (odd symmetry, sine terms only), the

phase function () of the system’s frequency response

124

 (

) | (

)| (

)
 is linear. If the symmetry condition is fulfilled, the

following holds:

 () (

)

 (8.3)

In this instance, the filter has a continuous group delay of

 ()
 ()

 Samples

or

 ()
 ()

 () Seconds

8.3 Ben Spike Encoder Algorithm (BSA)

Almost all real-world data signals, and especially EEG signals, are analogue. To

use spiking neural networks to process analogue values, we need to transform the

signals to spike-trains, in such a way that errors and information loss induced by

the transformation process are minimised. In this study, we incorporate the BSA

spike encoding scheme to transform EEG data into trains of spikes. BSA is a very

fast and stable encoder. Moreover, because it is based on FIR, the encoded spike

trains can be back-transformed into their original waveforms. In this way, one can

check the extent to which the encoded spike trains mimic the original wave. A

hardware implementation of BSA has been shown to produce superior results to

other encoding methods (such as population encoding) in speech recognition

(Benjamin Schrauwen, D'Haene, Verstraeten, & Campenhout, 2008) .

125

To date, this encoding scheme has been applied to complete data only. Because

EEG signals exist in the frequency as well as the time domain, it has been

conjectured that BSA encoding can convert EEG signals into spikes. The main

advantage of BSA is that the frequency and amplitude characteristics are more

tractable than those of the HSA (Hough Spiker Algorithm) spike encoding

scheme, which has been employed in a Robot (Garis, Korkin, & Fehr, 2001). Due

to the smoother threshold optimization curve, BSA is also less susceptible to

changes in the filter and the threshold. Studies have shown that BSA offers an

improvement of 10dB-15dB over the HSA spike encoding scheme (B. Schrauwen

& Van Campenhout, 2003).

Indicated below are samples that show how FIR filters transform a waveform into

spikes. The original waveform is subtracted iteratively by FIR filters with a 1 bit

shift per iteration, until all results are zeros. When the first FIR bit exceeds the

first bit of the original wave, a spike is emitted (1). In contrast, if the first FIR bit

is equal to or less then the first bit of the original wave, no spike is emitted (0).

-Assume analogue waveform values of {1 5 13 15 7 7 6 2 9 5 -2}, and

FIR filter values of {1 4 9 5 -2}.

Iteration 1: Spikes is {1}.

1 5 13 15 7 7 6 2 9 5 -2

1 4 9 5 -2

126

Iteration 2: Spikes is {1 1}.

0 1 4 10 9 7 6 2 9 5 -2

 1 4 9 5 -2

Iteration 3: Spikes is {1 1 0}.

0 0 0 1 4 9 6 2 9 5 -2

 1 4 9 5 -2

Iteration 4: Spikes is {1 1 0 1}.

0 0 0 0 0 0 1 4 9 5 -2

 1 4 9 5 -2

Iteration 5: Spikes is {1 1 0 1 0}.

0 0 0 0 0 0 1 4 9 5 -2

 1 4 9 5 -2

Iteration 6: Spikes is {1 1 0 1 0 0}.

0 0 0 0 0 0 1 4 9 5 -2

 1 4 9 5 -2

127

Iteration 7: Spikes is {1 1 0 1 0 0 1} (the original spiking pattern).

0 0 0 0 0 0 1 4 9 5 -2

 1 4 9 5 -2

0 0 0 0 0 0 0 0 0 0 0

Therefore, the result {1 1 0 1 0 0 1} is obtained from original waveform.

Table 8.1: Convolution function for transforming train of spikes into original waveform

Spikes

Iterations

0 1 2 3 4 5 6 7 8 9 10

1 1 4 9 5 -2

1 1 4 9 5 -2

0 0 0 0 0 0

1 1 4 9 5 -2

0 0 0 0 0 0

0 0 0 0 0 0

1 1 4 9 5 -2

Result 1 5 13 15 7 7 6 2 9 5 -2

128

The original waveform can be recovered from the spikes using the same FIR filter

and employing the convolution function, as shown in Table 8.1. Given that the

spike train is {1 0 0 1 0 1 1} and the FIR filter is {1 4 9 5 -2}, the mask filter,

which must be the same length as the FIR filter, is {0 0 0 0 0}.

The spike train is first bit-reversed aligned into the first column. The FIR filter is

inserted into the first row and shunted down the rows, shifting by 1 bit from left to

right each time, until the end of the spike train is reached. If the value of Spikes

for a given row is 1, apply the FIR filter; otherwise, apply the mask filter. Finally,

sum the values in each column to retrieve the original wave {1 5 13 15 7 7 6 2

9 5 -2}, as shown in the last row of Table 8.1.

The above analysis highlights the importance of a stable filter. In BSA the

incitement is calculated from the spike train by equation 8.4, similarly to HSA.

 







N

k

kest tthdhtxtxhs
1

)()())((
 (8.4)

In table 8.1, the spike train is {1 0 0 1 0 1 1} and the FIR filter is {1 4 9 5 -2}. If tk

represents the neuron firing time, h(t) denotes the linear filter impulse response, tk

is the set of firing times of the neuron, then the neuron spike x(t) is determined as

129

 



N

k

ktttx
1

)(

(8.5)

BSA additionally calculates two error metrics for each time , as revealed in

Table 8.2. The first error metric is

∑ (() ())
 (8.6)

while the second is

∑ (())
 (8.7)

If the first error metric is smaller than the second minus threshold, then eject a

spike and subtract the FIR filter from the input wave (if not, do nothing). The

above error metrics calculation smoothes the frequency and amplitude in BSA,

rendering those features less vulnerable to changes in the filter and threshold, in

contrast to the HSA algorithm (Benjamin Schrauwen, Verstraeten, &

Campenhout, 2007).

The pseudo-code of BSA is displayed in Table 8.2. The binary spikes output is

readily transformed to spike time of EEG data by dividing output(i)=1 by (sample

rate of EEG/real time of recoding) , ignoring output(i)=0 because, in general, only

the times of spikes are required in forming the spike trains.

130

Table 8.2: A pseudo-code of BSA algorithm on EEG data

BSA Algorithm

for (i=1 to size (input_signal))

 error_matrix_1=0

 error_matrix_2=0

for (j=1 to size(FIR_filter))

if ((i+j-1) <= size(input_signal))

 error_matrix_1+= abs(input_signal(i+j-1) – FIR_filter(j))

 error_matrix_2+= abs(input_signal(i+j-1)

end if

 end for

if (error_matrix_1 <= (error_matrix_2-BSA threshold))

 output(i)=1;

for (j=1 to size(FIR_filter))

if ((i+j-1) <= size (input_signal))

input_signal(i+j-1) - = FIR_filter

end if

end for

else

 output(i)=0

end if

end for

In this specific synthetic dataset, the Finite Impulse Response (FIR) filter size is

set to 20 and the BSA threshold to 0.86. These values generate the lowest

131

Euclidian distance (14.3) between the original EEG signal and the re-transformed

spikes recovered from the convolution function using the same FIR filter. The

dependence of Euclidean distance on threshold is shown in Figure 8.2. In the

original BSA, the optimal threshold was found by minimising the SNR (signal

noise ratio), to enable direct comparison with the HSA algorithm.

Convolving the spike train x(t) with a discrete FIR filter, Eq.8.5 becomes

 



M

k

khktxtxhto
0

)())(()(

(8.8)

where M represents the number of filter taps. (Benjamin Schrauwen et al., 2007).

Figure 8.2: Ben Spike Encoder Algorithm (BSA)

132

Figure 8.3: EEG signal, spike representation and actual one channel EEG signal

The y axis of Figure 8.2 is the Euclidian distance between the original EEG signal

and the signal recovered from the spikes. The x axis is threshold value of BSA

algorithm, which ranges from 0.0 to 1.0.

In Figure 8.3 a synthetic EEG signal, created by adding noise to a sine wave

(duration 1600 ms), is compared with a true single-channel EEG signal (duration

1.6 s). Synthetic and true signals are displayed in the top and bottom panels of 8.3,

respectively. The centre panel is the spike representation of the top figure attained

from BSA. In the bottom panel, the true single-channel EEG signal has been

overlaid with another signal (dashed lines) showing the EEG signal rebuilt from

133

the BSA-encrypted spikes. The clear resemblance between the two signals

indicates that the modified BSA is suitable for EEG spike encryption.

8.4 Conclusion

BSA may be suitable for transforming EEG into spike trains due to the following

advantages of this method over other existing methods:

(1) It presents as a fast, stable and practical encoder because it has hardware

support yet is readily implemented in software.

(2) Because BSA is based on FIR, the encoded spike trains can be back-

transformed to their original form to determine how closely the encoded

spike trains match the original wave.

(3) It requires fewer data vector inputs than other approaches (c.f. population

encoding, detailed in Chapter 2), enabling much faster and more efficient

processing; this is a primary advantage of SNNs in general.

(4) The only parameters that require optimizing are FIR filter size and BSA

threshold. In addition, these parameters are relatively robust, ensuring a

stable system.

Chapter 9

Proposed Architectures for EEG Spatio-

temporal Pattern Recognition

Section 9.1 of this chapter describes a proposed architecture for EEG Spatio-

temporal Pattern Recognition on Stochastic Precise-time Spike Pattern

Association Neuron (SSPAN). Section 9.2 explains the architecture for online

EEG Spatio-temporal Pattern Recognition Utilizing the DepSNN and Section 9.3

describes the architecture for online EEG Spatio-temporal Pattern Recognition

Utilizing epSNNr. In each of these architectures, the encoder is BSA (described in

Chapter 8) and the neural models are LIF and stochastic (described in Chapter 3).

The chapter concludes with Section 9.4.

This chapter consist of the above mention three main contributions specifically

designed spatiotemporal EEG processing. These contributions are in line with the

fourth and last research question.

The architectures proposed in this chapter will be investigated on two real world

EEG datasets; the Audio–Visual Stimuli Perception EEG dataset, whose details

are presented in Chapter 10, and the P300 EEG dataset, which is discussed in

Chapter 11.

135

In some states, a portion of each dataset may be required for parameter adjustment

before the feasibility of each method can be assessed on the full datasets.

9.1 Proposed Architecture for EEG Spatio-temporal Pattern Recognition on

Stochastic Precise-time Spike Pattern Association Neuron (SSPAN)

Figure 9.1: SSPAN: Stochastic Precise-time Spike Pattern Association Neuron for EEG

A recent study mentioned that neurons respond at precise times to fluctuating

current injections, leading to peaks in ensemble firing rate. The structure of spike

events provides a compact description of the neural response (Toups, Fellous,

Thomas, & Sejnowski, 2012).

136

Hence, in this architecture, SSPAN is employed to investigate EEG datasets, as

explained in Chapter 4. This simple architecture is mainly focussed on the

spatiotemporal learning process and spike timing.

In the first step, each EEG data channel is transformed into trains of spikes by the

spike encoding methods (BSA) described in Chapter 8.

The spike input signals are then injected to output neurons. The number of output

neurons is based on the number of available classes in the dataset. An output

neuron is connected to every incoming input signal from a particular class.

Because EEG data are both noisy and stochastic, the stochastic SNN models are

beneficial to in the investigation and might produce some interesting results and

knowledge discovery.

Four SNN models are utilized for output neurons; the deterministic LIF model,

Stochastic Noisy Reset model (NR), Stochastic Step-wise Noisy Threshold model

(ST) and Continuous Stochastic Threshold Model (CT).

9.2 A Novel Architecture for Online EEG Spatio-temporal Pattern

Recognition Utilizing the Dynamic Evolving Spiking Neural Network

(DepSNN)

The major advantage of Evolving Spiking Neural Networks (eSNN) is that the

trained network responds to newly introduced samples without the need for

retraining (Hamed, Kasabov, & Shamsuddin, 2012).

Currently, however, ESNN cannot handle multiple spikes reaching the same

synapse at different times. The need to process such data has inspired the

137

development of DepSNN, an extension of eSNN that can handle spatiotemporal

input.

The architecture presented in this section enables DepSNN to be investigated on a

real world EEG dataset. The results provide new insights into spatiotemporal

learning. This method has been recently published in the journal Neural Networks

(Kasabov, Dhoble, Nuntalid, & Indiveri, 2012).

Figure 9.2: DepSNN: Dynamic Evolving Probabilistic Spiking Neural Network for EEG

Figure 9.2 illustrates the architecture of DepSNN for EEG data processing. EEG

data is first encoded into spike trains by the BSA spike encoding algorithms. To

define the initial synaptic weights, the spike input signals are ranked from the time

of first spike of each EEG channel Details of the calculation are presented in

Chapter 5.

138

The SDSP rule then adjusts the synaptic weights based on incoming spikes. The

mapping of the output spikes onto the desired class label is learned using a one-

pass learning mechanism. A repository of trained output neurons is also created in

the learning process. A new neuron is trained and compared to one stored in the

neuron repository. If the new neuron displays similar synaptic weights patterns

over time to an existing neuron (within an adjustable similarity threshold), the two

neurons will be merged. Otherwise, the new neuron is added to the neural

repository.

The feasibility and performance of DepSNN on EEG data is assessed for the five

DepSNN models described in Chapter 5; namely, DepSNNm, DepSNNs, NR-

DepSNNs, ST-DepSNNs, and CT-DepSNNs.

9.3 A Novel Architecture for Online EEG Spatio-temporal Pattern

Recognition Utilizing the Evolving Probabilistic Spiking Neural Network

Reservoir (epSNNr)

The structure of the Evolving Probabilistic Spiking Neural Network Reservoir

(epSNNr) for categorization of spatiotemporal data founded on probabilistic

reservoir computing pattern is explained in Chapter 6. In this chapter, epSNNr is

investigated for its efficacy on real world EEG data. The architecture of the

system is shown in Figure 9.3.

139

The state vector in Figure 9.3 is specified only for non-SNN classifiers (readout

functions), because the SNN classifier of DepSNN can receive time-dependent

spike information directly from the spatiotemporal filter.

Figure 9.3: epSNNr: Evolving Probabilistic Spiking Neural Network Reservoir for EEG

In the first processing step, each EEG data channel is transformed into trains of

spikes by the BSA spike encoding methods. The spike trains are then dispersed

into the spatiotemporal filter, which employs the Liquid State Machine (LSM).

In this architecture, the deterministic SNN model (LIF) and stochastic models

(Noisy Reset model, Step-wise Noisy Threshold model and Continuous Stochastic

Threshold) generate the liquid for the spatiotemporal filter.

The data in the state vectors are fed into a readout unit (the processing of state

vectors is detailed in Chapter 6). In this study, Naïve Bay and Multi-Layer

Perception (MLP) are employed for non-SNN classifier exploration. DepSNN or

SSPAN might improve the performance of this architecture, because the

spatiotemporal filter can inject its output directly into DepSNN or SSPAN, unlike

140

the situation for non-SNN classifiers (Nuntalid et al., 2011) or eSNN (Schliebs,

Nuzly Abdull Hamed, & Kasabov, 2011).

(a) (b)

(c) (d)

Figure 9.4: Demonstration of 3D EEG head map localization and 3D LSM visualization.

During processing of real EEG data, the way of in which input spikes into are fed

into spatiotemporal filter may vary. This study uses two approaches of input

141

signal projection; standard LSM in which data are normally randomly distributed

with a certain probability of connection, and EEG localization mapping to LSM

(as shown in figure 9.4). Before the SNN is trained on data, the spatiality

distributed EEG channels are mapped onto allocated spatially distributed neurons

in a 3D SNN reservoir, in which the idea is first published in (Kasabov, 2012b).

Figure 9.4 (a) and (b) show standard EEG channel names on a human head and

the location of each EEG channel in 3D space, respectively. Figure 9.4 (c) is a 3D

view of LSM comprising 125 neurons (5×5×5), the likely size of an EEG system

containing 64 channels or less. The green and yellow lines show connections to

inhibitory and excitatory synapses, respectively. Figure 9.4 (d) illustrates the

alignment of neuron numbers on the LSM.

Figure 9.4 (a) and (b) were created using the EEGLAB library (A Delorme & S

Makeig, 2004), while Figure 9.4 (c) and (d) were generated from pure Python

programming code using synaptic connection information obtained from the Brian

library for SNN simulation (Goodman & Brette, 2008).

Table 9.1 shows the LSM mapping of 64 standard EEG channels arranged in real-

time according to Fig. 9.4 (a). The centres of EEG and LSM channels Cz and

neuron 65 (the central neuron of the top layer of LSM) respectively, are the

reference points for mapping. The centre channels (FPz, AFz, Fz, FCz, Cz, CPz,

Pz, POz, Oz and Iz) are firstly mapped to LSM neurons (3, 4, 5, 35, 65, 95, 125,

142

124, 123 and 122), whose numbers denote the electrodes placed along the midline

of the skull.

Table 9.1: Mapping table of standard 64 EEG channels matched to neuron number in

epSNNr (size 5×5×5 neurons)

EEG

channel

Neuron

number in

LSM

EEG

channel

Neuron

number in

LSM

EEG

channel

Neuron

number in

LSM

EEG

channel

Neuron

number in

LSM

FPz 3 C4 25 CP2 70 P2 75

AFz 4 C6 24 CP4 50 P4 74

Fz 5 T8 23 CP6 49 P6 73

FCz 35 T10 22 TP8 48 P8 72

Cz 65 FTz 78 F7 52 AF7 29

CPz 95 FC5 79 F5 53 AF3 30

Pz 125 FC3 80 F3 54 AF4 10

POz 124 FC1 60 F1 55 AF8 9

Oz 123 FC2 40 F2 15 PO7 119

Iz 122 FC4 20 F4 14 PO3 120

T9 102 FC6 19 F6 13 PO4 100

T7 103 FT8 18 F8 12 PO8 99

C5 104 TP7 108 P7 112 FP1 28

C3 105 CP5 109 P5 113 FP2 8

C1 85 CP3 110 P3 114 O1 118

C2 45 CP1 90 P1 115 O2 98

From table 9.1 and Figure 9.4 (a), we observe that the letter identifies the brain

functional area of each EEG channel while the number identifies the brain

hemisphere (left or right). Letters F, T, C, P and O represent frontal, temporal,

central, parietal, and occipital lobes, respectively. The C region is introduced for

identification purposes only; no central lobe exists in the human brain. Lower-

case z refers to an electrode placed on the midline. Even numbers (2, 4, 6, 8) refer

143

to the right hemisphere of the brain, while odd numbers (1, 3, 5, 7, 9) refer to the

left hemisphere (Niedermeyer & Da Silva, 2005).

The EEG electrodes are positioned relative to two anatomical landmarks; the

point between the forehead and the nose (nasion) and the lowest point of the skull

at the back of the head (inion). A prominent bump is commonly utilized as a

reference point (Niedermeyer & Da Silva, 2005).

This architecture of input projection also imitates the human brain, in that some

neurons receive information directly from a stimulus and neighbouring neurons

may respond to the transmitted information (Arbib, 2002).

9.4 Conclusion

In this chapter, three novel network architectures were proposed for EEG

spatiotemporal pattern recognition, ranging in design from simple to more

complex. BSA is utilized for transformation of EEG data into spikes. The

architectures are implemented and assessed on two real-world EEG datasets, as

discussed in the following chapters.

Chapter 10

Spatio-temporal Pattern Recognition of

Audio–Visual Stimuli Perception EEG

To investigate and evaluate the performance of a spike encoding method for EEG

and SNN for spatiotemporal pattern recognition (whose mechanisms are described

in Chapters 3-8), applications to real-world EEG datasets are required. The EEG

dataset and the method by which it is converted to spikes are described in Section

10.1. Sections 10.2, 10.3, 10.4 and 10.5 evaluate the response of SSPAN,

DepSNN, epSNNr (using DepSNN as readout unit) and mixed models

respectively, to EEG inputs. The chapter concludes with Section 10.6.

This chapter’s contribution consists of performance evaluation of the proposed

methods and architectures on real-world EEG data and corresponds to the fourth

research question.

10.1 Audio-Visual Stimuli Perception EEG Dataset

The dataset employed in this series of experiments is the audio-visual stimuli

perception EEG Dataset, archived in the RIKEN Brain Science Institute in Japan.

It comprises four stimulus states (in classification terminology, it has 4 classes).

Class 1 is Auditory stimulus, Class 2 is Visual stimulus, Class 3 is Mixed auditory

145

and visual stimuli and Class 4 lacks any stimulus. The EEG data were obtained

from a 64 electrode EEG system and were filtered by a 0.05Hz to 500 Hz band

pass filter and tested at 2 KHz. In this initial verification of the hypothesis, a small

subset of the data points was used. More precisely, for each class, 11 epochs with

similar sampling rate were selected from 50 epochs (1988 to 2153

samples/epoch/50ms, 4 classes making 44 epochs in total). It should also be noted

that the sample rate of diverse auditory and visual stimuli is not steady within a

class. 80% and 20% of data were used for training and testing, respectively.

Figure 10.1: Single Channel EEG Signal (top panel), Spike Representation (central panel)

and Actual EEG Signal superimposed on a Back-Transformed Signal (bottom panel)

The top panel of Figure 10.1 displays a single-channel EEG signal recorded over

500ms imitation time (50ms in real time). The central panel is the spike train of

146

the EEG signal acquired by BSA encoding. The bottom panel illustrates the true

EEG signal overlaid with the remodelled EEG signal, back-transformed from the

BSA encrypted spikes. The resemblance between the two signals demonstrates

that BSA conversion can accurately reconstruct EEG data.

To obtain a benchmark comparison, the above EEG dataset was applied to two

traditional methods, non-adaptive Naïve Bayes and Multi-Layered Perceptron

(MLP), with the following parameters: 139 sigmoid nodes in the hidden layer;

learning rate 0.3; momentum 0.2; 500 training repetitions and authenticate

threshold 20. The traditional methods performed poorly on this EEG dataset;

66.9% and 64.87% reconstruction accuracy was obtained for Naïve Bays and

MLP respectively.

Figure 10.2: Optimal BSA Threshold on EEG

147

Figure 10.2 shows how distance varies with threshold when spikes are back-

transformed into EEG data using the BSA algorithms. The y axis is the Euclidian

distance between the original and back-transformed EEG signals. Spikes are back-

transformed into signal via a convolution function with the same FIR filter as used

for the original transformation. The x axis gives the threshold values of BSA

algorithm (ranging from zero to one). The optimum threshold is that yielding the

lowest Euclidian distance between the original and re-transformed signal. From

the graph, this threshold appears around 0.85; a more precise estimate is 0.862

(for which the Euclidean distance is 14.288).

Figure 10.3: Samples of Input Stimuli Transformed to Spike Using BSA Algorithm. Graphs

show how number of active neurons varies with time.

148

For the EEG dataset used in this study, the finite impulse response (FIR) filter size

is set to 20, the wavelength to 0.05, and the BSA threshold to 0.862.

Several samples of input stimuli transformed to spikes using the BSA algorithm

with the above parameter setup are shown in Figure 10.3. The left and the right of

the first row display audio and visual stimuli respectively. On the bottom row, the

left plot illustrates a mixed stimulus while the right represents no stimulus.

10.2 SSPAN on Audio-Visual Stimuli Perception EEG Dataset

This section explores the use of SSPAN (see Chapter 4 for details) on the audio-

visual stimuli perception EEG dataset. Parameter setup is listed in table 10.1. The

error in Figure 10.4 (1263.23) is the error at the first training iteration. The error at

the third training iteration (27.16), during which no spikes were emitted from any

SSPAN neuron, is depicted in Figure 10.5.

The above results show that when SSPAN neurons receive many spikes in a short

time (high density of spikes), a high error results. To reduce the error rate, SSPAN

updates most of the synaptic weights into inhibitory (negative weight values),

which prohibits neurons from emitting spikes in subsequent training iterations

(figure 10.5). At least 10-20 iterations of training are required for the neurons to

become excitatory. Because the error rate in the absence of spiking is exceedingly

low, SSPAN increases the synaptic weights rather slowly.

149

This phenomenon was observed recursively in this experiment. The performances

are shown in table 10.2.

Table 10.1: SSPAN Parameter Setup

Methods/Parameters SSPAN

Neural model LIF,NR, ST, CT

Output neuron 4 neurons (of each model experiment)

Input spike train 64 spike trains

Membrane time constant 10 ms

Reset potential 0 mV

Firing threshold 10 mV

Input weight to SSPAN 0.01 mV

Reset μ 0 mV

Reset σ 3.0 mV

Threshold σ 2.0 mV

Noisy time constant 10 ms

Synaptic time constant 10 ms

Simulation time 600 ms

Simulation time step 0.1 ms

Training iteration 50

SSPAN learning rate 0.1

150

Figure 10.4: (top) Kernel Graphs of Actual (blue curve) and Desired (green curve) Spike of a

SSPAN neuron after the first training iteration; (bottom) Plot showing the error between the

desired and the obtained signal.

The upper plot of Figure 10.4 shows the desired spike (green curve) and the

output spikes of a SSPAN neuron (blue curve). The lower plot displays the error

graph which is used for updating the weight (computing Δw) in SSPAN.

151

Figure 10.5: (top) Desired (green curve) spike of a SSPAN neuron with no firing activity;

(bottom). The desired signal determines the magnitude of the error.

In Figure 10.5, the upper plot shows the kernel graph of the desired spike (green

curve). Note that, because the SSPAN neuron emits no spikes, the blue curve is

absent. The lower plot is the error graph which is used for updating the weight

(computing Δw) in SSPAN.

152

Table 10.2: SSPAN performance, Percentage of classification accuracies are between actual

and desired EEG spike after 50 iterations of training.

SSPAN(LIF) SSPAN(NR) SSPAN(ST) SSPAN(CT)

12.5% 12.5% 25.0% 37.5%

From table 10.2, it is seen that SSPAN performs no better than traditional

methods (Naïve Bay and MLP) on this EEG dataset, because SSPAN may not be

suitable for high-density spike inputs arriving in a short time frame, such activity

is characteristic of EEG data. When SSPAN neurons receive many spikes in a

short period, a high error is incurred which most of its synaptic weights (Δw) into

the inhibitory state to lower the error rate, corresponding the equation 4.13

(Chapter 4). This results in non-spikes propagation from output neurons. The

issue may take at least 10-20 iterations of training are required before the neurons

are again excited.

Increasing the number of training iterations (e.g. 500 iterations) may improve the

performance, but is vary time consuming and is not suitable especially for real-

time BCI application.

On a more positive note, Stochastic Neural models, especially Step-Wise Noisy

Threshold (ST) and Continuous Noisy Threshold (CT) models, yield better results

than the deterministic model. This trend mirrors the results of Chapter 6, when

SSPAN was investigated on a synthetic dataset.

153

10.3 DepSNN for Audio-visual Stimuli Perception EEG Dataset

In this section, the performance of five types of DepSNN, namely DepSNNm,

DepSNNs, NR-DepSNNs, ST-DepSNNs and NT DepSNN (see Chapter 5 for

details), is assessed on the audio-visual stimuli perception EEG dataset.

Figure 10.6: Input EEG (top) Spike Form Raster Plot and (bottom) evolution of synaptic

weights

The upper panel of Figure 10.6 shows the input EEG as a spike form raster plot,

while the lower panel plots the weight changes of the DepSNNs. Recall that

DepSNNs ranks weights by order, and defines initial weights based on the SDSP

dynamic synapse. EEG data are transformed into spikes using the BSA spike

encoding method, with the parameter setup described in Sections 10.1 and 10.2.

The parameters of the DepSNN trained on the EEG data are shown in Table 10.3.

154

In DepSNNm the spike threshold (Vthr) is adaptable to allow acquisition of

PSPmax, which is important for calculating the optimal threshold of DepSNNm.

Table 10.3: Parameters for Neurons, Synapses and Learning Related Parameters

Parameters for neurons and synapses

Excitatory synapse time constant 2 ms

Inhibitory synapse time constant 5 ms

Neural time constant (tau mem) 20 ms

Ejecting threshed (Vthr) 800 mV

Rearranged potential 0 mV

Inhibitory weight 0.20 V

Excitatory weight 0.40 V

Thermal voltage 25 mV

Refractory period 4 ms

Learning Related Parameters (Fusi’s Synapse, Section 7.2)

Up/Down weight jumps(Vthm) 5× (Vthr/8)

Calcium variable time constant (tau ca) 5× tau mem

Steady-state asymptote for calcium variable (wca) 50 mV

Stop-learning threshold 1(stop if Vca < threshold 1) 1.7 × wca

Stop-learning threshold 2 (stop LTD if Vca > threshold 2) 2.2 × wca

Stop-learning threshold 2 (stop LTP if Vca >threshold 3) (8 × wca) –wca

Plastic synapse (NMDA) time constant 9 ms

Plastic synapse highest value (wp hi) 6 mV

Plastic synapse lowest value (wp lo) 0 mV

Bistability drift 0.25

Delta weight 0.12 × wp hi

Other parameters

Input size (64 electrode EEG) 64 spiketrains

Simulation time 500 ms

Mod (for rank order) 0.8

Sim (DepSNN) 1

155

Figure 10.7: (top) Spike raster plot, (centre) synaptic weights and (bottom) post synaptic

potential evolutions

Figures 10.6 and 10.7 illustrate the one-pass learning method on EEG data using

DepSNNs and DepSNNm respectively. Figure 10.6 shows the synaptic weights of

DepSNNs with the spike threshold set at 800 mV. In Figure 10.7, the highest

membrane potential is seen to occur at around 200ms; this time point is taken as

PSPmax. The top panels in both figures display the spike raster plot from which the

weights changes are derived.

156

Figure 10.8: Classification Accuracy of Different DepSNN Models

From Figure10.8, it can be concluded that Rank Order Code (RO) is critical for

DepSNN. With RO not implemented in DepSNNm and DepSNNs, poor

classification accuracy (37.5%) is obtained for both methods. DepSNNs and NR-

DepSNNs yield the highest classification accuracy (75%), but DepSNNs

misclassified all no-stimulus samples. NR-DepSNNs recognised one no-stimulus

sample but misclassified an auditory-stimulus sample. In addition, DepSNN

exhibited superior performance in both computational efficiency and classification

accuracy than the SSPAN analysed in Section 10.2. DepSNNs and NR-DepSNNs

also displayed higher classification accuracy than the traditional methods (Naïve

Bay and MLP) presented in Section 10.1.

157

10.4 epSNNr for Audio-Visual Stimuli Perception EEG Dataset

The experimental setup of this investigation is presented in Table 10.4. A

reservoir possessing a small world interconnectivity pattern was constructed as

described previously (Maass et al., 2002). To ensure a valid comparison, the

recurring SNN is produced using Brian (Goodman & Brette, 2008) library with

Python programming language whose grid alignment resembles that of CSIM

(Pecevski et al., 2009) (A neural Circuit Simulation). LSM comprises 135 neurons

in a three-dimensional grid of size 9 × 5 × 3, with default positioning. In this grid,

two neurons A and B are linked with a probability given by

2

),(

),(

BAd

eCBAP



 (10.1)

where),(BAd is the Euclidean distance between the neurons and represents the

density of connections (set to the default value for LSM i.e.  =2). We expect

that the closer the two neurons, the higher the probability of connection. C is a

constant whose value depends on neural type (whether excitatory (ex) or

inhibitory (inh). We assign the following values toC : exexC  = 0.3, inhexC  = 0.2,

exinhC  = 0.5, and inhinhC  = 0.1.

The following table shows the parameter setting that has been utilized in the

experimental setup for the epSNNr.

158

Table 10.4: lists the parameter settings used in the epSNNr experiments

Parameters Value

For Neuron

Time Constance 10 ms

Reset Potential 0 mV

Firing Threshold 10 mV

Standard Deviation of NR model 3 mV

Standard Deviation of ST Model 2 mV

Standard Deviation of NT Model 1 mV

For LSM

Simulation Time 500 ms

Number of Neuron 135

Excitatory and Inhibitory Ratio 4:1

Input Neurons Connection Probability 0.02

Input Neurons Connection Weight 1.62 mV

Time-bin for Liquid Responses 25 ms

Figure 10.9 illustrates the reservoir reaction of one epoch (50 ms) of auditory

stimulus. The reservoir constitutes 135 LIF neurons, the x axis is the simulation

time (maximum 500 ms) and the y axis shows the activation of the neurons

(spikes are represented by dots). The liquid response of the network was mapped

into 25 ms time bins (25 time bins/ epoch). The details of the mapping procedure

are explained in Chapter 6 (Section 6.1.3). Figure 10.9 shows the most precise

response obtained under this experimental framework.

159

Figure 10.9: Liquid Response of the Network

Figure 10.10: Root Mean Squared Error (RMSE) in epSNNr Models with non-adaptive

Naïve Bayes and Multi-layered Perceptron Readout Functions

Two readout functions were analysed and tested in this experimentation; non-

adaptive Naïve Bayes and Multi-Layered Perceptron (MLP). The MLP parameters

160

were set to the following values: 139 sigmoid nodes in the hidden layer; learning

rate = 0.3, momentum = 0.2, number of training repetitions = 500, authentic

threshold = 20.

The performance of the epSNNr models using two types of classifier were

compared with those of the two classifiers in the absence of both reservoir and

spike representation (raw data).

The percentage classification accuracy (%) of the different methods is listed in

Table 10.5. The classifiers alone do not accurately process raw EEG data.

However, when the raw EEG is converted using BSA spike encryption and is

passed into the classifier via epSNNr with different stochastic models, the

performance of both classifiers improves markedly. Other classifiers were tested

in the research but were deemed unsuitable for processing complicated

spatiotemporal EEG data; hence they are not discussed here.

Table 10.5: Classification Accuracy

Readout Methods

Without epSNNr epSNNr Models

Accuracy LIF NR ST CT

Naïve Bays 66.9% 75% 75% 75% 75%

MLP 64.87% 50% 50% 75% 50%

The precision achieved from epSNNr with Naïve Bayes as readout function is

similar for all of the neural models (75%, misclassified no-stimulus class), but the

161

root mean squared error (RMSE) values (as shown in Figure 10.10) vary

significantly. In particular, the ST model with Naïve Bayes yields the lowest

RMSE, demonstrating the maximum operation and steadiness of this model

compared with the deterministic and other probabilistic models for this

experiment.

The key results confirm that converting EEG signals into spike trains via the BSA

spike encoding scheme considerably enhances the classification precision. Using a

stochastic neural model in the epSNNr (for example, the ST model) may further

enhance the precision, as seen in Table 10.5, epSNNr plus ST attained 75%

classification accuracy and misclassified one sample in the no-stimulus class. By

contrast, other models misclassified all samples in the no-stimulus class and some

in the visual stimulus class (see also the root mean square errors in Figure 10.10).

10.5 epSNNr utilizing DepSNN as a Readout Unit on Audio-Visual Stimuli

Perception EEG Dataset

In this section, mixed models, i.e. different epSNNr models utilizing DepSNN as

a readout unit, are investigated. The experimental design comprised two main

setups.

In the first setup, the parameters of DepSNN and epSNNr were set as listed in

Tables 10.3 and 10.4 respectively, but the number of input neurons in DepSNN

was made equal to that of epSNNr (i.e. 135 neurons).

The Time-bin for Liquid Responses parameter is not required for DepSNN

because the spikes output of epSNNr is the input of DepSNN. This may increase

162

the processing time because spike trains are input to DepSNN directly, by passing

the binary transformation linear mapping requirements of conventional methods

(Naive Bay and MLP) used as epSNNr readout functions. In addition, DepSNN

has a rapid one pass learning mechanism which precludes the need for multiple

iterations in the readout training process.

The second experimental setup investigates different ways of injecting input into

the epSNNr spatiotemporal filter. The input injection mapping of 64 EEG

channels (see Table 9.1) implies that the number of neurons in epSNNr is slightly

smaller than in the first setup (125 neurons, 5×5× 5).

However, in the second setup, the input connection weights must be increased to

8.1 mV so that information can transmit to other neurons which are not directly

connected to the input signal.

The classification accuracy for this dataset depends critically on the connection

weights of the input neurons. An optimum input weight exists for which the

classification accuracy is highest.

Table 10.6: EEG Classification Accuracy (%), for Two types of DepSNN with Various

epSNNr Neural Models.

Readout Methods Without epSNNr epSNNr Neural Models

Accuracy LIF NR ST CT

DepSNNm 62.5% 37.5% 37.5% 37.5% 50%

DepSNNs 75% 62.5% 62.5% 62.5% 62.5%

163

From section 10.4, it is seen that epSNNr together with traditional methods (Naive

Bays, MLP) as a readout function yields better classification accuracy than

traditional methods alone. Remarkably, although the processing time of mixed

models (epSNNr with DepSNN as readouts) is reduced, the classification

accuracy is worse than when DepSNN alone is used (see Table 10.6). This

behaviour results because DepSNN requires the complete spike patterns, which

are transformations of the original signals, throughout the sampling period. Thus,

temporal information is crucial for DepSNN. The mechanism of epSNNr not only

transforms input information to higher dimension but combines spatial and

temporal dimensions, changing the original patterns to several shorter temporal

patterns of closely matched signals.

Table 10.7: Classification accuracy (%) of epSNNr with DepSNN as a readout and EEG

localization input mapping.

SNN model

in epSNNr

Classifier

DepSNNs DepSNNm

LIF 25% 75% (c=1)

NR 37.50% 62.5%(c=1)

ST 25% 50% (c=9)

CT 37.50% 50% (c=3)

In contrast, when input is projected into the spatiotemporal filter unit as a

localization mapping method in epSNNr, a similar accuracy to that obtained in

Table 10.5 is obtained (75%; see Table 10.7). Recall that in Section 10.3,

164

DepSNNs alone and epSNNr with traditional methods (Section 10.4) were applied

to the same dataset. However, the method presented here tended to misclassify the

mixed-stimulus instead of the no-stimulus class.

This emphasises that DepSNN on EEG requires the whole spike patterns across

the entirety of the sampling period. The suggested EEG input projection approach

must be performed on other EEG datasets before it can be declared valid.

SSPAN was not adopted as the readout function in this section because when

SSPAN neurons receive many spikes in a short period, a high error is incurred (as

explained in Section 10.2). SSPAN updates most of its synaptic weights into the

inhibitory state (negative synaptic weights) to lower the error rate, resulting in

many idle neurons during subsequent training iterations (see Figure 10.5). At least

10-20 iterations of training are required before the neurons are again excited. Due

to the low error rate incurred by no spiking activity, SSPAN increases its synaptic

weights slowly. In this experiment the same phenomenon occurred, resulting in

the performances shown in Table 10.2.

The above-mentioned problem will be exacerbated when the input signals inject

to epSNNr, since the output of epSNNr is now the input of SSPAN, which is

larger than the original dataset but has similar spike density.

10.6 Conclusion

165

The BSA spike encrypting scheme was found to be appropriate for encrypting

EEG data stream into spike trains. In this chapter, we also addressed the question

of whether probabilistic neural models are suited to LSM reservoir computing.

From the results of the experiments, the following conclusions are drawn:

(1) The classification accuracy of epSNNr is enhanced when the deterministic

LIF model is replaced with a probabilistic neural model.

(2) The classification operation of the epSNNr depends on the type of

underlying probabilistic neural model. This suggests that an epSNNr can

be optimized by considering the neural models used and by choosing

parameters that better suit the noise and the dynamics of particular EEG

data in a changing environment.

(3) Given the same EEG data, the results of DepSNNs are similar to those of

epSNNr. However, DepSNN has a simpler structure and faster

performance. It requires no more than single-pass learning and relatively

few neurons (in this experiment a mere 33 output neurons were assigned;

32 neurons in the training process and one in the recall process).

(4) The DepSNN model is easier to realize as a specialised SNN hardware

than the epSNNr.

(5) The performance of DepSNNs differs from that of DepSNNm. The critical

parameters for for DepSNNs and DepSNNm are the threshold and the

parameter C, respectively.

(6) The processing time of mixed models (epSNNr with DepSNN as readouts)

is faster than epSNNr with traditional method as readout, but the

166

performance declines relative to DepSNN alone. However, epSNNr may

shorten the extended temporal dimension of spatiotemporal EEG samples

(which may exceed 1 minute). Combining epSNNr with DepSNN may

also prove useful in other applications involving pattern recognition and

prediction, such as video or the evolution of biological cells.

(7) The injection of input into the spatiotemporal filter in epSNNr utilizing

EEG localization mapping (DepSNN as readouts) enables higher

classification accuracy than the traditional means of projection input into

epSNNr, but depends critically on the input connection weights.

While DepSNN performed more accurately than epSNNr and the mixed models

(adopting epSNNr with DepSNN as readout functions), the latter may prove

superior when dealing with extended STP (1 second or longer). Although the

DepSNN models employ more sophisticated learning algorithms, their simple

scalar synaptic weights are limited in their ability to capture long and complex

temporal patterns.

The new models, especially DepSNN, are superior to conventional methods in

terms of learning time and accuracy, because they utilize information that is

ordered relative to the first input spike, as well as information related to the time

of arrival of consecutive spikes. These two information formats constitute a

spatiotemporal input pattern.

167

Injection into the spatiotemporal filter of epSNNr utilizing EEG localization

mapping (DepSNN as readouts) improves the classification accuracy relative to

the conventional approach. Further investigation on additional EEG datasets may

produce different and interesting results, and forms the basis of the next chapter.

Since EEG signals can vary when repeating a given task, depending on the overall

state of the brain and its local environment, the proposed methods could be used

to construct adaptive and robust Brain-Computer Interfaces (BCI). They might

also find use in other applications requiring fast encoding methods and one-pass

learning. Also in the next chapter, these approaches are investigated in DepSNN

and EEG localization mapping to epSNNr.

Chapter 11

Spatio-temporal Pattern Recognition on P300

EEG application

In Chapter 10, it was shown that using DepSNNs and NR-DeSNNs on the same

EEG data produces results similar to those of epSNNr. However, DepSNN has a

simple structure and rapid processing capacity. It requires fewer neurons (33

output neurons) and learning is achieved in a single iteration. Moreover, the

DepSNN model is easier to realize as a specialized SNN hardware than the

epSNNr. We determined that the threshold is the critical parameter for DepSNNs,

whereas the parameter C is important for DepSNNm

When epSNNr utilizing DepSNN was used as a readout unit and the EEG

localization data were mapped to the spatiotemporal filter in epSNNr, interesting

results were obtained which are worthy of further investigation.

In this chapter, the above-mentioned configuration is applied to BCI; specifically,

to the P300. The P300 is a real time EEG-based verbal communication BCI which

assists people with speaking disabilities.

The proposed methods and architecture presented in this case study reasserts the

algorithms capability and applicability in BCI domain by providing better

performance and analysis of the EEG derived brain activities. This is carried out

169

by integrating various SNN approaches such as 3D Mapping, spike encoding

schemes and stochastic reservoirs. This SNN based systems provided a unique

design and novel direction in BCI domain. This contribution is one of the

potentially BCI design approaches and answers to the fifth and last research

question.

An overview of BCI and the P300 is provided in Section 11.1, and the dataset is

described. Section 11.2 discusses the application of DepSNN to P300 EEG data,

using BSA as a spike encoding scheme. In Section 11.3, epSNNr utilizing

DepSNN as a readout unit is presented, and the mapping of EEG localization data

to the spatiotemporal filter in epSNNr is proposed. The last section (11.4)

discusses and closes the chapter.

11.1 What is a Brain Computer Interface (BCI)?

BCI provides a direct link between the computer and the human brain. It is

essential to the development of Human Computer Interfaces (HCI). Current BCI

advances include Brain Machine Interfaces (BMI), in which scientists detect

ejecting neurons with the aid of hundreds of pins inserted into the cerebral cortex.

The computer translator executes algorithms that decrypt the neural language into

computer language. The many applications of BCI include unmanned vehicles,

robotics and non-verbal communication. In EEG, the electrodes are positioned

around the scalp and signals are intercepted from the brain. In

Magnetoencephalography (MEG), the room is adorned with helium tanks and

170

super conducting magnets. MEG is very precise but requires formidable

technological advances.

11.1.1 P300 EEG application

P300 (also known as P3) is a neural-evoked potential component of EEG. It

presents as a positive voltage deflection (2-5µV) 300-600 ms following the start

of a stimulus (Ekanayake, 2010).

Major applications of P300 include the P300 BCI Spelling tool. Mak et al. (2012)

identified EEG characteristics associated with P300 reliant Brain Computer

Interface (P300 BCI) performances in people suffering from Amyotrophic Lateral

Sclerosis (ALS) (Mak et al., 2012).

11.1.2 The P300 Dataset Description and Former Investigations

A six-choice P300 paradigm was tested using six different images flashed in

random order, as shown in Figure 11.1. Electrode configurations comprised 32

electrodes (datasets and algorithms are available from the website of the Ecole

Polytechnique F´ed´erale de Lausanne, Signal Processing Institute, EPFL BCI

group http://bci.epfl.ch/p300).

Dataset acquisition involves the extraction of single trials (duration 1000 ms)

from the data. Single trials began at stimulus onset, i.e. at the initiation of the

strengthening of an image, and were completed 1000 ms later. To account for the

171

ISI of 400 ms, the final 600 ms of each trial were coincided with the first 600 ms

of the succeeding trial.

Data were strained through a sixth-order forward-backward Butterworth band

pass filter. Frequencies between1.0 Hz and 12.0 Hz were selected.

Subjects were requested to soundlessly count the instances of a presented image.

The six images were exhibited on the screen and a warning tone was released.

Four seconds following the warning tone, a random sequence of flashes was

initiated and the EEG was recorded. The order of flickers was block randomized.

Figure 11.1: Images Used for Evoking the P300 (Ulrich Hoffmann, Vesin, Ebrahimi, &

Diserens, 2008)

172

Hence, after every six flashes each image was flashed once and after twelve

flashes each image was flashed twice. This sequence cycled continuously.

Images were flashed consecutively by altering the overall brightness of the

images. This study employed the dataset of Hoffmann et al. (2005), which differs

from that of their 2008 study (Ulrich Hoffmann et al., 2008). This detail is

inconsequential because the method of data acquisition was identical in the 2005

and 2008 studies.

Fig. 11.2: Percentage of Correctly (×100) Categorized Tests for Varying Number of Boosting

iterations (U. Hoffmann, Garcia, Vesin, Diserens, & Ebrahimi, 2005)

173

Hoffmann and colleagues (2005) analysed the dataset used in this chapter by

gradient boosting, a machine learning method that creates one strong classifier

from many weak classifiers. Hoffman et al. (2005) proposed a gradient-boosting

inspired algorithm that finds event-associated potentials in single EEG samples.

The algorithm identifies the P300 in the human EEG, from which a Brain

Computer Interface (BCI), namely a spelling device, is constructed. Significant

advantages of this method are its high classification precision and easy

presentation of concept.

The application of gradient boosting to this dataset is illustrated in Figure 11.2.

Here, the maximum number of repetitions of the boosting algorithm (Mmax) was

set to 200 and the optimum numbers were computed in a 10 fold cross-validation.

11.2 DepSNN on P300 EEG Application

This section assesses the feasibility of DepSNN as a P300 BCI application. The

dataset for this experiment is similar to that mentioned in Section 11.1. Data was

recorded from 32 channels; Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC1, FC5,

FC6, FC2, T7, C3, Cz, C4, T8, CP1, CP5, CP6, CP2, P7, P3, Pz, P4, P8, PO3,

PO4, O1, Oz, O2 at 2048Hz (U. Hoffmann et al., 2005).

Epochs initiating from the commencement of a flash and remaining for 1s were

filtered from the data. Time consuming flows in the data were eradicated by least

squares fitting of a linear function applied to each channel and deduction from the

data. The data were then re-referenced to the average of channels O1, Oz and O2,

174

low- pass filtered between 0 and 9 Hz with a 7th order Butterworth filter and

down- sampled to 128Hz. The dataset is downloadable from the EPFL BCI group

website (http://bci.epfl.ch/p300).

The methodology is tested on a reduced dataset of 942 spatiotemporal samples

from a single subject, comprising 476 target samples and 466 non-target samples.

The dataset was divided into a training set (60%) and a testing set (40%).

Figure 11.3: Percentage of Accurately Categorized Tests for Varying Values of Number of

Boosting Iterations

Figure 11.3 graphs the percentage of accurately categorized tests for different

numbers of boosting iterations (M), where M was set to 500 in this experiment.

The highest accuracy (86%) was attained at around 140-150 iterations.

http://bci.epfl.ch/p300

175

In this experiment, data were converted to spikes via BSA with parameters set as

follows:

1. Finite Impulse Response filter size: 20

2. Finite Impulse Response filter wave length: 0.05

3. Optimal Threshold: 0.88 (at Euclidean distance 16.1061).

Figure 11.4: (top) EEG Signal for a Duration of 1000 ms (Simulation Time and Real Time)

Solid and dashed curves represent the true and reconstructed signal, respectively. (Bottom)

BSA-transformed signal

The top panel of Figure 11.4 represents a single-channel EEG signal sampled over

1000 ms (in both simulation time and real-time). The true EEG signal is overlaid

with the EEG signal back-transformed from the BSA encoded spikes (dashed

lines). The bottom panel is the spike transform of the true signal acquired from

BSA.

176

Table 11.1: Setup of DepSNN Parameters

For Neurons and Synapses

Excitatory synapse time constant 2 ms

Inhibitory synapse time constant 5 ms

Neural time constant (tau mem) 20 ms

Firing threshed (Vthr) 800 mV

Reset potential 0 mV

Inhibitory weight 0.20 V

Excitatory weight 0.40 V

Thermal voltage 25 mV

Refractory period 4 ms

For learning related parameters

Up/Down weight jumps(Vthm) 5× (Vthr/8)

Calcium variable time constant (tau ca) 5× tau mem

Steady-state asymptote for calcium variable (wca) 50 mV

Stop-learning threshold 1(stop if Vca< threshold 1) 1.7 × wca

Stop-learning threshold 2 (stop LTD if Vca> threshold 2) 2.2 × wca

Stop-learning threshold 2 (stop LTP if Vca> threshold 3) (8 × wca) –wca

Plastic synapse (NMDA) time constant 9 ms

Plastic synapse highest value (wp hi) 6 mV

Plastic synapse lowest value (wp lo) 0 m

Bistability drift 0.25

Delta weight 0.12 × wp hi

Other parameters

Input size (32 electrode EEG) 32 spiketrains

Simulation time 1000 ms

Mod (for rank order) 0.8

Sim (DepSNN) 1

177

The clear resemblance between the original and back-transformed signals

highlights the applicability of the BSA conversion to the P300 EEG data. As also

evident from Figure 11.4, just 58 spikes are encrypted from 128 vectors

describing the original wave, implying that BSA-encoding reduces the number of

data vectors to be processed, while retaining sufficient information to reproduce

raw EEG signals.

The parameter settings of the DepSNN trained on the EEG data are listed in Table

11.1. However, as mentioned in Chapter 10 (Section 10.3), the spike threshold

(Vthr) is flexible so that DepSNNm can acquire the PSPmax which optimises the

threshold. The parameter settings of the Stochastic Spiking Neural models used in

conjunction with DepSNN are listed in Table 11.2.

Table 11.2: Parameter settings for the Stochastic Spiking Neural Models

Parameters Value

Time Constant 10 ms

Reset Potential 0 mV

Firing Threshold 10 mV

Standard Deviation of NR model 3 mV

Standard Deviation of ST Model 2 mV

Standard Deviation of CT Model 1 mV

178

Figure 11.5: Encoded Spike Trains of the BSA-encoded P300 Dataset for One Sample of the

Non-Target Class

Figure 11.6: Illustration of the Encoded Spike Trains of the BSA-encoded P300 Dataset for

One Sample of the Target Class

179

Figures 11.5 and 11.6 display the BSA-encoded spike trains of the P300 dataset

for a single sample of non-target and target data class, respectively. The top panel

of Figure 11.7 shows the weight changes in the DepSNNm (where initial weights

are ranked by order), together with the SDSP dynamic synapse. The bottom panel

plots the evolution of the post synaptic potential of DepSNNm responding to a

target class sample.

Figure 11.7: (Top panel) Weights Changes for a single neuron of the DepSNNm and (bottom

panel) Evolution of Post Synaptic Potential of DepSNNm

The top figure shows the weights change for the DepSNNm that utilizes rank

order defining initial weights along with the SDSP dynamic synapse. The bottom

figure illustrated the evolution of post synaptic potential of DepSNNm responded

to a sample of Target class.

180

Figure 11.8 plots of weights change for the various models of DepSNNs

responding to a sample of the target class, where the left of the first row is

represented the response of standard DepSNNs, the right of the first row is NR-

DepSNNs, the left of the button row is ST-DepSNNs, and the right column of the

bottom row is CT-DepSNNs.

Figure 11.8: Weights Change for the DepSNNs that Utilizes Rank Order

In this section, two main experiments were conducted. The first was undertaken

on a small dataset (32 samples) of which 60% were reserved for training and 40%

for testing. The aim was to assess DepSNN feasibility, and the results are

summarised in Table 11.3. The second experiment used the full dataset (942

samples from one subject, comprising 476 target class and 466 non-target class).

60 and 40% of the data were assigned to training and testing respectively, as

shown in Table 11.4.

181

As evidenced from Tables 11.3 and 11.4, the different DepSNN models exhibit

interesting behaviours. DepSNNm performed superbly in the small dataset (with

100% classification accuracy). In the full dataset investigation, DepSNNs

performed better than other DepSNN models (accuracy 84.41%). Similar to the

EEG data from audio-visual stimuli (Chapter 10), replacing the deterministic LIF

model with stochastic models in DepSNNs made no improvement to the

performance of the system.

We noted in Chapter 10 that Rank Order Code (RO) is critical for DepSNN. In the

absence of RO, DepSNNm and DepSNNs demonstrated poor classification

accuracy, whereas the DepSNNs and NR-DepSNNs exhibit highest classification

accuracy.

In this chapter, when DepSNN is tested on a portion of the P300 based BCI

dataset (see Table 11.3), DepSNNm exhibits higher classification accuracy than

DepSNNs.

On the full P300 based BCI dataset, however, DepSNNs out-performed

DepSNNm, in contrast to the results of the audio-visual stimuli perception EEG

dataset. This demonstrates that rank or code can perform properly with DepSNNs

when the dataset can itself perform the ranking. We note that the timing of the

first spike of each spike train differs between the two datasets. The dynamic

timing of spikes generated from the audio-visual data enables DepSNNm to

perform better on this dataset. On the full BCI dataset, DepSNNs performs better,

probably because information is acquired from more samples in the training

phase.

182

Therefore, it appears that the classification accuracy of a given DepSNN model

depends on the nature and size of the EEG dataset. However, it remains unclear

whether stochastic spiking neural models in DepSNNs offer any sizeable

advantages over traditional models.

Table 11.3: Classification Accuracy of Different Models applied to a subset of the P300 based

BCI Data

Methods Accuracy

DepSNNs 58.33%

NR-DepSNNs 50%

ST-DepSNNs 50%

CT-DepSNNs 50%

DepSNNm 100% (C=0.5)

Table 11.4: Classification Accuracy of Different Models applied to the full P300 Based BCI

Dataset

Methods Accuracy

Gradient Boosting 86%

DepSNNs 84.41%

NR-DepSNNs 48.39%

ST-DepSNNs 50%

CT-DepSNNs 50%

DepSNNm 74.19% (C=0.4)

183

Table 11.4 compares the classification accuracy between Gradient Boosting and

DepSNN applied to the P300 based BCI dataset. DepSNNs and Gradient Boosting

exhibit similar performance (84.41% and 86% respectively). However DepSNNs

requires single-pass learning where Gradient Boosting needs 150 boosting

iterations to achieve maximum accuracy. Moreover, according to Hoffmann et al.

(2005), the minimum acceptable classification accuracy of P300 based BCI data is

80%. At 84.14% accuracy, DepSNNs is a promising candidate for further BCI

application and research. The rapid processing time of DepSNNs is an additional

advantage.

11.3 epSNNr with EEG localization mapping on P300 EEG Application

In Chapter 10, we established that EEG localization mapping injected into the

spatiotemporal filter of epSNNr with DepSNN as readout provides similar

classification accuracy to DepSNN. In this section, in order to confirm the benefit

of the injection into epSNNr approach, EEG localization mapping into epSNNr

with DepSNN is applied to the P300 dataset.

The parameter setup of DepSNN remains unchanged from Table 11.1. The

epSNNr parameters are set up as shown in Table 11.5.

The epSNNr comprises 125 spiking neurons (5×5×5). 1000 ms simulation time is

assigned to each spatiotemporal sample. 32 EEG channels (input signals) were

projected into the epSNNr (see Table11.6 for details).

184

In this experiment, the input neurons connection weight parameter (Table 11.5)

must be increased to 22.68 mV to enable transmission of information to neurons

not directly connected to the input signal. The value of this parameter was

selected to yield optimal accuracy for this dataset. Higher or lower input weights

would not improve the classification accuracy of the system.

Table 11.5: Parameter settings in the experimental setup for the epSNNr

Parameters Value

For Neuron

Time Constance 10 ms

Reset Potential 0 mV

Firing Threshold 10 mV

Standard Deviation of NR model 3 mV

Standard Deviation of ST Model 2 mV

Standard Deviation of NT Model 1 mV

For LSM

Simulation Time 1000 ms

Number of Neurons 125 (5×5×5)

Excitatory and Inhibitory Ratio 4:1

Input Neurons Connection EEG Localisation mapping to LSM

Input Neurons Connection Weight 22.68 mV

185

Table 11.6: Mapping table of 32 EEG channels (from the BCI based P300 dataset); name is

mapped to neuron number in epSNNr (5×5×5)

EEG channel Neuron number in LSM EEG channel Neuron number in LSM

Fz 5 F7 52

Cz 65 F3 54

Pz 125 F4 14

Oz 123 F8 12

T7 103 P7 112

C3 105 P3 114

C4 25 P4 74

T8 23 P8 72

FC5 79 AF3 30

FC1 60 AF4 10

FC2 40 PO3 120

FC6 19 PO4 100

CP5 109 FP1 28

CP1 90 FP2 8

CP2 70 O1 118

CP6 49 O2 98

Figure 11.9: Raster plot of EEG input signel before (left) and after (right) injection into

epSNNr

The raster plot of the EEG input before and after feeding into LSM is displayed in

Figure 11.9. To the left is the raster plot of EEG signal spikes (32channels); on the

right is the response of epSNNr to the spike information under the EEG

186

localisation mapping of Chapter 9 (Figure 9.4). The spiking trends are quite

similar in specific neuron groups; for example, neurons 1 to 5 in the left plot and

neurons 0 to 20 in the right plot. However, the right plot contains extra

information referenced indirectly from the input spikes (tranmitted from other

neurons as a small-world connection in epSNNr).

Table 11.7 summarises the results of this experiment on EEG-based P300. The

classification efficiency is compared between various models utilized in epSNNr.

The input signals were projected into epSNNr by EEG localisation mapping

utilizing DepSNN as a readout function.

Table 11.7: Experimental results

epSNNr neural model Classifier

DepSNNs DepSNNm

LIF 72.58% 98.92% (C=0.3)

NR 22.04% 53.22%(C=0.6)

ST 73.66% 61.83% (C=0.5)

CT 33.87% 98.92% (C=0.3)

In Section 11.2, the classification accuracy of DepSNN was established as

84.41%, similar to that of Gradient Boosting (86%).

Interestingly, EEG localisation mapping into the spatiotemporal filter in epSNNr

with DepSNN as a readout unit yields a vastly superior result (98.92%) when LIF

187

and CT models are used in DepSNNr. The highest accuracy is achieved using

DepSNNm as readout with the C (fraction) set to 0.3.

DepSNNm as a classifier obtains better results than DepSNNs, because the

repressed spiking activity of neurons in the spatiotemporal filter leads to

ambiguity in synaptic weight patterns between two classes.

From the results of this section, we conclude that the mode of input injection into

epSNNr is crucial in deciding the efficacy of the spatiotemporal filter unit. This

projection method also imitates human brain activity, in that some neurons receive

stimulus information directly while their neighbours receive it by transmission.

Hence, DepSNN as a readout acquires more information from epSNNr than is

available from direct input. Biological brains also attempt to fill in, match and

complete partial information from stimuli (Arbib, 2002). As a practical example,

glasses designed for 3D movies trick the watchers into believing they are

enveloped by a scene which actually appears on a flat screen.

11.4 Conclusion

DepSNN is superior to conventional methods in terms of learning time and

accuracy. DepSNN also out- performed the epSNNr models, though the latter may

be better equipped to handle longer STP signals, of duration 1 second or more.

This is attributable to the simple scalar synaptic weights in DepSNN models,

which limit the extent to which DepSNN can capture long and complex temporal

patterns, despite the sophisticated learning algorithms.

188

Equally important is the method of input injection into epSNNr, as revealed in

Section 11.3.

DepSNN and epSNNr with EEG localization mapping are strong candidates for

building adaptive and robust BCIs and other systems requiring fast encoding

methods and single-pass learning processes.

To summarise, a feasibility study was conducted on DepSNN and epSNNr with

EEG localization mapping using P300 based Brain Computer Interface data. From

the results presented in this chapter, the following conclusions can be drawn:

(1) The DepSNN is superior to conventional methods (including Gradient

Boosting) in terms of learning speed and accuracy.

(2) The classification performance of each DepSNN model depends on the

nature of the dataset. Especially, if the first spike of each input spike train

arrives at a different time, the rank ordering mechanism of DepSNNs is

compromised because DepSNNs needs the correct order of initial synaptic

weight information. (This fact was confirmed by studies on the audio-

visual stimuli perception EEG dataset discussed in Chapter 10).

(3) In BCI application, subjects are always trained prior to using a system.

This causes most of the brain response to a given EEG electrode to arrive

simultaneously. Ranking is now dictated by EEG channel rather than by

time of first spike. This phenomenon is responsible for the poor

performance of DepSNNs on the P300 dataset relative to DepSNNm. The

189

same trend results when DepSNN is applied to object-movement

spatiotemporal pattern recognition (Dhoble et al., 2012).

(4) The performance of Stochastic Spiking Neural Models in DepSNNs is

worse than that of standard DepSNNs on the BCI dataset. The BCI data

require lucid information of each subject. The noise introduced by

stochastic models may lead to confusion in the classifiers. However, when

applied to audio-visual stimuli perception EEG data (see Chapter 9),

DepSNNs and NR-DepSNNs rated first equal among the tested models.

Hence, we conclude that highly complex EEG pattern recognition tasks

will likely benefit from stochastic models, but further exploration is

required to confirm this hypothesis.

(5) The injection of EEG localization mapping as input to the spatiotemporal

filter using epSNNr with DepSNN as a classifier enhances the

classification accuracy relative to DepSNN alone. This is due to the extra

information provided by the spatiotemporal filter in epSNNr, which causes

the system to mimic biological brain activity. The system’s performance

depends crucially on the input connection weights to epSNNr.

Chapter 12

Conclusion and Future Work

This chapter summarizes the work undertaken to achieve the research objectives

as specified in Chapter 1 and to answer the research questions mentioned there in.

Suggestions for future are also presented in this chapter.

This thesis describes novel algorithms for spatiotemporal data modelling and

classification using spiking neural networks (SNN). More specifically, SSN was

used to analyse and classify EEG data. The algorithms belong to the class of

evolving SNN (eSNN), the main principles of which were introduced by Kasabov

in 2007. The following points outline the highlights of the research and

contributions of the thesis:

(1) Different models of spiking neurons, learning algorithms and encoding

schemes are reviewed in Chapter 2. The thesis then offers a critical

analysis of Electroencephalography (EEG) data analysis and classification

methods used to date.

(2) Next, methods of encoding EEG data into spikes are investigated. In this

thesis, the Ben Spike Encoder Algorithm (BSA) is applied for the first

time to EEG data. This is also a part of research question 4 mentioned in

Chapter 1.

191

(3) Three new stochastic models are proposed as an extension of PSNM;

namely, Stochastic Noisy Reset (NR), Stochastic step-wise noisy threshold

model (ST) and Continuous stochastic threshold (CT). These models

extend the LIF model by introducing noise parameters into the threshold

and reset potentials, thereby mimicking activity of biological neurons

while retaining low implementation cost. This contribution corresponds to

the first research question.

(4) A stochastic precise-time spike pattern association neuron (SSPAN) is

introduced. This is a modification of SPAN, a neuron for precise-time

spike pattern association, partially answers the second research question.

(5) A new SNN model, termed Dynamic Evolving Probabilistic Spiking

Neural Network (DepSNN), is introduced as an extension of the eSNN

model. This contribution answers to the other half of the second research

question.

(6) A novel SNN architecture is proposed for processing spatiotemporal data,

termed evolving probabilistic SNN reservoir (epSNNr). The performance

of epSNNr is enhanced when a probabilistic neural model is used, as

demonstrated on EEG data in a changing environment. The developed

epSNNr answers the third research question.

(7) New SNN systems for spatiotemporal pattern recognition including

SSPAN, DepSNN and epSNNr have been developed investigated on the

real world EEG datasets including BCI. The presented solutions answer to

research questions 4, 5 and 6.

192

(8) As a future development, an epSNNr for EEG data is preliminarily

explored. The reservoir structure is an approximate 3D map of the human

brain and the data from the EEG channels are entered into corresponding

neurons from the reservoir. The reservoir connections and parameter

tuning are also crucial for exploration. These are promising approaches

that are worthy of further investigation.

12.1 Conclusions

This thesis introduces two novel SSN models; Stochastic Precise-time Spike

Pattern Association Neuron (SSPAN) and Dynamic Evolving Probabilistic

Spiking Neural Network (DepSNN). SPAN convolves the spike train output with

a kernel function to yield a continuously valued signal on which subtraction and

multiplication operations can be carried out. SSPAN can readily accommodate

existing methods for developing supervised-learning rules in spiking neurons.

Method performances were evaluated and compared on a synthetic dataset created

for that purpose. SSPAN was found to out-perform conventional SPAN,

especially when incorporating the CT model. Moreover, classification accuracy

was enhanced when the deterministic LIF model was replaced by stochastic

models in SSPAN. More synapses can memorize more patterns leading to

increased performance; SSPAN has 420 synapses while SPAN possesses a mere

140 synapses. Stochastic neural models are expected to process noisy stochastic

data such as EEG more effectively than deterministic models.

193

Five types of Dynamic evolving probabilistic spiking neural network (DepSNN)

were proposed; namely DepSNNm, DepSNNs, NR-DepSNNs, ST-DepSNNs, and

NT-DepSNNs. DepSNN requires a high density of active spikes in the spike train

before a SDSP synapse is sufficiently active to modify its synaptic weights.

Hence, DepSNN may be suitable for BSA- encoded EEG data, which are

automatically imbued with high spiking activity. epSNNr projects a

spatiotemporal signal into a linearized high-dimensional network state that can be

learned by a linear readout function or another SNN network. The epSNNr

improves when the deterministic LIF model is replaced by a probabilistic model.

The classification performance of the epSNNr depends on the type of probabilistic

neural model adopted. This suggests that an epSNNr can be optimised in terms of

neural models used and parameters that would better suit the noise and the

dynamics of particular EEG data in a changing environment.

DepSNNs and epSNNr applied to the same EEG data yield similar accuracies.

However, DepSNN has a simpler structure and performs faster. It requires fewer

neurons (33 output neurons were assigned in the experiments of this thesis) and

single-pass learning only is required. The DepSNN model is easier to realise as a

specialised SNN hardware than the epSNNr. The performance of DepSNNs and

DepSNNm differs in that the threshold is critical for DepSNNs, whereas for

DepSNNm, the parameter C is more important.

194

The processing time of mixed models (epSNNr with DepSNN as readouts) is

reduced but the classification accuracy is worse than that yielded by DepSNN

alone. However, epSNNr may reduce long-duration spatiotemporal EEG samples

(extending to1 minute or longer) to a more manageable time scale. Combined

epSNNr and DepSNN may also find a use other pattern-decoding tasks such as

video or the evolution of biological cells.

The projection of input signals to epSNNr as EEG localization mapping with

DepSNN as readout results in superior classification accuracy and performance

time. Here, the one-pass learning mechanism of DepSNN complements the

spatiotemporal epSNNr filter, which linearly transforms the input signal without

altering the trend of input signals over time. Similarly, the biological brain

attempts to fill in, match and complete information that is missing from stimuli,

but which is still decipherable. Choice of connection weights input to epSNNr is

crucial to the success of this method.

Stochastic Spiking Neural Models in DepSNNs perform poorly on BCI data

relative to standard DepSNNs because BCI data must accurately depict each

subject. The noise introduced by stochastic models may tend to confuse the

classifiers. Conversely, DepSNNs and NR-DepSNNs are equally competent at

processing audio-visual stimuli perception EEG data. Hence, in highly complex

EEG pattern recognition tasks, it is tentatively concluded that stochastic models

195

will out-perform deterministic ones. Proof of this hypothesis would come with

further testing.

Hence, projecting input signals to epSNNr as EEG localization mapping with

DepSNN as readout presents as a promising means of building adaptive and

robust Brain-Computer Interfaces (BCI), as well as other systems requiring fast

BSA-encoding and one-pass learning in DepSNN.

12.2 Contributions

The major contributions of this study are as follows:

(1) The Ben Spiker Algorithm (BSA) for transforming EEG data into spike

trains has been developed and modified (as explained in Chapter 8). This

is the first application of BSA beyond that of speech recognition.

(2) Three novel Stochastic SNN models based on the proposed pSNM - Noisy

Reset, Stepwise Noisy Threshold and Continuous Noisy Threshold - are

introduced and described in Chapter 3.

(3) An extension of the SPAN architecture and neural model, namely

Stochastic-SPAN (SSPAN: Chapter 4) has been proposed, which enables

more efficient processing of spatiotemporal data. The deterministic neural

model (LIF) in SPAN is replaced by the three stochastic SNM. One output

neuron is assigned per class rather than one neuron for all classes.

Consequently, more synapses are available in SSPAN, enabling more

patterns to be recognized and reducing the time required for learning.

196

(4) DepSNN (see Chapter 5), an improvement of eSNN that can process

spatiotemporal data, was proposed. DepSNN retains rapid single-pass

learning ability but the population encoding method has been replaced by

BSA. This modification not only reduces the number of spikes but

improves the quality of original signal imitation. The Thorpe SNM has

also been replaced by LIF model and Stochastic Models. The most

important feature of DepSNN is the inclusion of SDSP, which allows the

model to capture the temporal dimension and thereby to process

spatiotemporal data.

(5) More complex SNN structures are proposed for spatiotemporal data

processing, namely epSNNr (Chapter 6). epSNNr adopts LSM architecture

for accumulating spatial and temporal data and transforming this non-

linear information to a linear higher-dimension form. epSNNr also

employs stochastic models whose performances are superior to that of

deterministic SNM (traditional LSM).

(6) A method is introduced for injection of EEG to a spatiotemporal filter in

epSNNr by mapping EEG localization on the human head to epSNNr. The

transformed EEG data are then processed as described in Contribution (5).

epSNNr imitates biological brain functions, and demonstrates superior

performance to DepSNN or standard input injection of epSNNr.

(7) Two new SNN-based solutions to real world problems are developed;

DepSNN and epSNNr. The latter has been combined with EEG

localization mapping as described in Contribution (6). Applicability to

197

audio visual stimuli perception EEG data has been assessed in Chapter 10,

and applicability to EEG-P300 based BCI has been explored in Chapter

11.

(8) In accordance with the study objectives, all experiments in this study have

been shared with the scientific community in six blind peer-review

international academic papers and one poster.

12.3 Recommendations and Future Prospects

epSNNr with EEG localization mapping plus DepSNN as readout is particularly

effective on the EEG P300 dataset. The performance of this architecture may be

further improved by optimizing parameters. However, both methods require many

parameters to define the neural models, connections, and network topology.

Optimization algorithms such as quantum-inspired genetic algorithm (Schliebs et

al., 2009) or particle swarming (Hamed et al., 2012) may not therefore be suitable

for the proposed architecture, due to the prohibitive time requirements incurred.

Given the large number of parameters involved, epSNNr and DepSNN might be

optimized using Genetic Regulatory Networks,which was successfully used for

recurrent Neural network (Cheng et al., 2011), or computational neuro-genetic

models (CNGM) (Kasabov, 2012a) which designed especially for SNN. CNGM

combines two dynamic models; (1) a low-level gene regulatory network (GRN)

model and (2) a high-level SNN that models the dynamic interaction between

genes and spiking patterns of activity under certain conditions (Kasabov, 2012a).

198

Prior to constructing the GRN, all important parameters of DepSNN and epSNNr

must be defined.

The significant parameters which may require optimisation are:

(1) DepSNN parameters: Plastic synapse (NMDA) time constant, Plastic synapse

highest value (wp_hi), Plastic synapse lowest value (wp_lo), Bistability drift,

Delta weight, Mod, Sim and C.

(2) epSNNr parameters: Number of neurons and topology, Input Neurons

Connection Weight.

(3) Parameters for both stochastic models: Standard Deviation of NR Model,

Standard Deviation of ST Model, Standard Deviation of NT Model (SD-NT),

Neural time constant, Firing threshed, Reset potential and Refractory Period.

Two types of GRN could be incorporated into GRN-DepSNN and GRN-epSNNr :

(1) Static-GRN, in which the GRN connection is fixed but the connection

weights can be varied.

(2) Dynamic-GRN, in which the GRN connection weights are fixed but the

connection is adaptive.

By optimising the connection weights in the spatiotemporal filter of epSNNr

utilizing Spike-Time Dependent Plasticity (STDP) (Song et al., 2000), the

classification accuracy of the system might be enhanced and increased

understanding of human brain knowledge discovery may result.

199

Since the spatiotemporal filter in epSNNr employs the most recent reservoir

approach (LSM) it shares some similarity with a study on a Poisson process

conducted by Norton and Ventura (Norton & Ventura, 2009). According to this

study, incorporating STDP into LSM resolves the two main LSM problems:

(1) The Pathological Synchrony problem, in which most of the neurons

become caught in infinite excitatory firing, resulting in pattern loss.

(2) The Over-Stratification problem, in which neurons fail to propagate a

series of spikes, resulting in temporal de-coherence.

Appendix A

The core programming source code of the three Stochastic Spiking Neural

Models.

__

from brian import *

Base class for the spiking models

class SNNModel:
 '''
 Base class for all spiking neural models.
 '''

 # slot for the equation string of the model
 eqs = ''

 # slot for a dictionary containing model parameters
 modelParams = None

 # slot for the name of the model
 modeName = 'Basic SNN model'

 def __init__(self):
 pass

 def getNeuronGroup(self, nbNeurons):
 '''
 Generates a group of "nbNeurons" neurons of the model represented by this class.
 '''
 print self.eqs, self.modelParams
 return NeuronGroup(nbNeurons, model=self.eqs, **self.modelParams)

201

 def has_adaptive_threshold(self):
 return False

Deterministic LIF neuron

class LIFModel(SNNModel):
 '''
 Implements the traditional deterministic Leaky Integrate-and-Fire model.
 '''

 def __init__(self, tau, **kwargs):
 self.eqs = '''dV/dt = -V/(%s) : volt''' % tau
 self.modelParams = kwargs
 self.modelName = 'LIF'

 def getNeuronGroup(self, nbNeurons):
 group = SNNModel.getNeuronGroup(self, nbNeurons)
 return group

Step-wise noisy threshold Model (ST)

class AdaptiveThresholdStepnoise(object):
 '''
 Resets the firing threshold to a random reset value
 '''

 mu = None
 sigma = None
 reset_potential = None

 def __init__(self, reset_potential, mu, sigma):
 self.reset_potential = reset_potential
 self.mu = mu
 self.sigma = sigma

 def __call__(self,P):
 '''
 Sets the firing threshold to a random reset value.
 '''
 spikes=P.LS.lastspikes()

202

 P.V[spikes] = self.reset_potential
 for s in spikes:
 P.Vt[s] = self.mu + (self.sigma * randn(1)[0])*mV

class StepNoisyThresholdModel(SNNModel):
 '''
 Implements a Leaky Integrate-and-Fire model with a (slow) noisy step-wise threshold.
 '''

 reset_threshold = None
 sigma = None
 reset_potential = None

 def __init__(self, tau, reset_potential, reset_threshold, sigma=1., **kwargs):
 self.sigma = sigma
 self.reset_threshold = reset_threshold
 self.reset_potential = reset_potential
 self.eqs = '''
 dV/dt = -V/(%s) : volt
 dVt/dt = 0.0*mV/ms : volt ''' % tau
 self.modelParams = kwargs
 self.modelParams['threshold'] = lambda V,Vt:V>=Vt
 self.modelParams['reset'] = AdaptiveThresholdStepnoise(self.reset_potential,
self.reset_threshold, self.sigma)
 self.modelName = 'ST'

 def getNeuronGroup(self, nbNeurons):
 group = SNNModel.getNeuronGroup(self, nbNeurons)
 for n in xrange(nbNeurons):
 group.Vt[n] = self.reset_threshold + (self.sigma * randn(1)[0])*mV
 return group

 def has_adaptive_threshold(self):
 return True

Noisy Reset model (NR)

class AdaptiveThresholdNoisyReset(object):
 '''
 Resets the potential to a random reset potential
 '''

203

 mu = None
 sigma = None

 def __init__(self, mu, sigma):
 self.mu = mu
 self.sigma = sigma

 def __call__(self,P):
 '''
 Sets the membrane potential to a random reset value.
 '''
 spikes=P.LS.lastspikes()
 for s in spikes:
 P.V[s] = self.mu + (self.sigma * randn(1)[0])*mV

class NoisyResetModel(SNNModel):
 '''
 Implements a Leaky Integrate-and-Fire model with a noisy reset after spike emittance
 '''

 sigma = None
 mu = None

 def __init__(self, tau, mu=0*mV, sigma=1., **kwargs):
 self.mu = mu
 self.sigma = sigma

 self.eqs = '''dV/dt = -V/(%s) : volt''' % tau
 self.modelParams = kwargs
 self.modelParams['reset'] = AdaptiveThresholdNoisyReset(mu, sigma)
 self.modelName = 'NR'

 def getNeuronGroup(self, nbNeurons):
 group = SNNModel.getNeuronGroup(self, nbNeurons)
 for n in xrange(nbNeurons):
 group.V[n] = self.mu + (self.sigma * randn(1)[0])*mV
 return group

Continuous Stochastic Treshold Model (CT)

class AdaptiveThresholdNoisy(object):

204

 '''
 Resets the potential to resting potential
 '''

 reset_threshold = None
 reset_potential = None

 def __init__(self,reset_threshold, reset_potential):
 self.reset_threshold = reset_threshold
 self.reset_potential = reset_potential

 def __call__(self,P):
 '''
 Sets the membrane potential and the firing threshold to their reset values.
 '''
 spikes=P.LS.lastspikes()
 P.V[spikes] = self.reset_potential
 P.Vt[spikes] = self.reset_threshold

class NoisyThresholdModel(SNNModel):
 '''
 Implements a Leaky Integrate-and-Fire model with a (fast) noisy threshold
 '''

 reset_threshold = 10*mV
 reset_potential = 0*mV

 def __init__(self, tau, noisy_tau, reset_threshold, reset_potential=0*mV, **kwargs):
 self.eqs = '''
 dV/dt = -V/(%s) : volt
 dVt/dt = (xi*mV)/(%s)**.5 : volt ''' % (tau, noisy_tau)
 self.reset_threshold = reset_threshold
 self.reset_potential = reset_potential

 self.modelParams = kwargs
 self.modelParams['threshold'] = lambda V,Vt:V>=Vt
 self.modelParams['reset'] = AdaptiveThresholdNoisy(self.reset_threshold,
self.reset_potential)
 self.modelName = 'CT'

 def getNeuronGroup(self, nbNeurons):
 group = SNNModel.getNeuronGroup(self, nbNeurons)
 group.Vt = self.reset_threshold
 return group

 def has_adaptive_threshold(self):

205

 return True

Appendix B

The core programming source code of kernel transformation, kernel

operation and learning rule in SSPAN.

__

from brian import *
import numpy
import pylab
from scipy.integrate import simps

class Updater:

 def __init__(self,sim_time,dt,tau_s):

 self.dt = dt
 self.t = numpy.arange(0,sim_time, self.dt)
 self.tau_s=tau_s

 def alpha(self, tf): # tf is firing time

 tau_s = self.tau_s

 So = numpy.e * 1. / tau_s

 v = numpy.zeros(len(self.t))

 for f in tf:

 s = (self.t-f)
 v += So * s * numpy.exp(-s / tau_s) * numpy.array(s>=0, dtype=float)
 return v

 def compute_deltas(self, stimulus, output, target):

 # transform the input spikes spike trains
 self.x = numpy.zeros((len(stimulus), len(self.t)))

207

 for i,s in enumerate(stimulus):
 self.x[i] = self.alpha(s)

 # transform the output spike train
 self.y_out = self.alpha(output)

 # transform the target spike train
 self.y_d = self.alpha(target)

 # compute the error
 self.diff = self.y_d - self.y_out
 self.error = simps(numpy.abs(self.diff), dx=self.dt)

 # compute delta w
 self.delta_w = simps(self.x * self.diff, dx=self.dt, axis = 1)

Appendix C

The core programming source code of SDSP and RO in DepSNN.

from pylab import *
from brian import *
from brian.utils.progressreporting import ProgressReporter
from time import time
from core.learner import *
from core.utils import *
import os
import operator

Parameters and constants for the training set

defaultclock.dt= 0.2 * ms

Basic neuron and synapse parameters ###
tau_exc = 2*ms # excitatory synapse time constant
tau_exc_inh = 0.2*ms # feedforward connection time constant
tau_inh = 5*ms # inhibitory synapse time constant
tau_mem = 20*ms # neuron time constant
El = 20*mV # membrane leak
Vthr = 800*mV # spike threshold
Vrst = 0*mV # reset value
winh = 0.20*volt # fixed inhibitory weight
wexc = 0.40*volt # fixed excitatory weight
#wexc_inh = 1 * volt # fixed feedforward excitatory weight
UT = 25*mV # thermal voltage
refr = 4*ms # refractory period
Learning related parameters ###
Vthm = 0.75*Vthr #5*Vthr/8. # Up/Down weight jumps
tau_ca = 5*tau_mem # Calcium variable time constant
wca = 50 * mV # Steady-state asymptote for Calcium variable
th_low = 1.7*wca # Stop-learning threshold 1 (stop if Vca<thk1)
th_down = 2.2*wca # Stop-learning threshold 2 (stop LTD if Vca>thk2)
th_up = 8*wca–wca # Stop-learning threshold 2 (stop LTP if Vca>thk3)
tau_p = 9* ms # Plastic synapse (NMDA) time constant

209

wp_hi = 0.6* volt # Plastic synapse high value
wp_lo = 0 * mvolt # Plastic synapse low value
wp_drift = .25 # Bi-stability drift
wp_thr= (wp_hi - wp_lo)/2.+wp_lo # Drift direction threshold
wp_delta = 0.12*wp_hi # Delta Weight

###########Equations#########
eqs_neurons = Equations(’’’
dv/dt=(El-v+ge+ge_p+ge_inh-gi_out)*(1./tau_mem): volt
dge_p/dt=-ge_p*(1./tau_p): volt
dge/dt=-ge*(1./tau_exc): volt
dgi/dt=-gi*(1./tau_inh): volt
dge_inh/dt=-ge_inh*(1./tau_exc_inh): volt
gi_out = gi*(1-exp(-v/UT)): volt # shunting inhibition
’’’)
eqs_reset = ’’’v=Vrst’’’

#############Parameters of the deSNN ##############
input_size = 19
neurons_class = 1 #Number of neurons in each class
number_class = 1 #Number of class in the output layer
output_size = number_class*neurons_class
out = []
#Connection weights between the input layer and the output layer
SIM_TIME = 1000 *ms
seed(1)
mod=0.8

######## Read all files from defined directory path #######

path = ‘Test/’ ## directory path of the input patterns (stimuli)
listing = os.listdir(path)
Get data Files
for infile in listing:
print ‘‘Reading from file: ‘‘ + infile,"\n###################’’

##———Spiketrain stimulus from file——-##
spiketimes=inputfile_to_spikes(path+infile)

———Rank Order Code (RO) ——-##
s=sorted(spiketimes, key=operator.itemgetter(1))
rankW=zeros((input_size,1))
for i in xrange(len(s)):
rankW[s[i][0]][0]=float(mod**i)
wp0=rankW

210

print ‘‘Rank Order Weights:\n’’,wp0

##—Convert imported/selected spike trains to Brian (spike train) format–##
inputSpikeTrain = SpikeGeneratorGroup(input_size, spiketimes)
net = Network(inputSpikeTrain)
net.reinit()

#———— Neurons —————#
Create Output layer Neurons#
neurons = NeuronGroup(N=output_size, model= eqs_neurons, threshold=
Vthr, reset= Vrst)#, refractory=refr) # Output layer

Create Inhibitory neuron group
inh_neurons = NeuronGroup(N=output_size, model = eqs_neurons, threshold
= Vthr, reset = Vrst)

#———— Connections ———–#
wexc_inh = (0.8+(rand(len(inputSpikeTrain), len(inh_neurons))*0.5)) *volt
c_inter = Connection(inputSpikeTrain, inh_neurons, ‘ge_inh’, structure =‘dense’)
c_inter.connect(inputSpikeTrain, inh_neurons, wexc_inh)
c_inh = Connection(inh_neurons, neurons, ‘gi’)
c_inh.connect_full(inh_neurons, neurons, weight = winh)
Connection between the input layer and the output layer
synapses = Connection(inputSpikeTrain, neurons, ‘ge_p’, structure =’dynamic’)
synapses.connect(inputSpikeTrain, neurons, wp0)
STDP equation
eqs_stdp=’’’
x: 1 # fictional presynaptic variable
dC/dt = -C/tau_ca: volt # your postsynaptic calcium variable
V: volt # a copy of the postsynaptic v
’’’
stdp=STDP(synapses, eqs=eqs_stdp, pre=’w += (V>Vthm)*
(C<th_up)*(th_low<C)*wp_delta - (V<=Vthm)*(C<th_down)*
(th_low<C)*wp_delta; x’, post=’C += wca; V’, wmax=wp_hi)
stdp.post_group.V = linked_var(neurons,’v’)

#————–record spike activities——————#
spikes = SpikeMonitor(inputSpikeTrain, record=True)
outspikes = SpikeMonitor(neurons, record=True)
M = StateMonitor(neurons,’v’,record=0)

#————–Bi-stable drift——————#
@network_operation
def drift_equation():

211

synapses.W = DenseConnectionMatrix(bistable_drift
(synapses.W.todense(), len(inputSpikeTrain), len(neurons)))
def bistable_drift(w, a, b):
w = w.flatten()
up_idx = w>wp_thr
down_idx = w<=wp_thr
w[up_idx] += wp_drift*defaultclock.dt
w[w>wp_hi] = wp_hi
w[down_idx] -= wp_drift*defaultclock.dt
w[w<wp_lo] = wp_lo
return w.reshape(a,b)
print ‘‘SDSP Weights: \n’’,synapses.W
run(SIM_TIME)

Appendix D

The core programming source code of epSNNr connection (spatiotemporal

filter).

import brian
import pylab
import numpy

class SmallWorldConnection(Connection):

 def connect(self, neuron_group1, neuron_group2, \
 nb_neurons, \
 grid_structure, \
 lamda=2, \
 Cex_ex=0.3, Cinh_inh=0.1, Cex_inh=0.2, Cinh_ex=0.4, \
 ratio_ex=0.8):

 W = zeros((nb_neurons, nb_neurons)) # weight matrix
 D = zeros((nb_neurons, nb_neurons)) # distance matrix
 P = zeros((nb_neurons, nb_neurons)) # connection probabilistic matrix

 #### determine all excitatory neurons ####
 is_excitatory = rand(nb_neurons) <= ratio_ex

 # unpack the grid structure
 x,y,z = grid_structure

 #### assign coordinates for each neuron in a 3D grid ####
 coordinates = []
 for i in xrange(x):
 for j in xrange(y):
 for k in xrange(z):
 coordinates += [[i,j,k]]

213

 #### compute the distance between all neurons in the grid ####
 for i in xrange(nb_neurons):
 for j in xrange(nb_neurons):
 # calculate distance
 dx = coordinates[i][0]-coordinates[j][0]#Ax-Bx
 dy = coordinates[i][1]-coordinates[j][1]#Ay-By
 dz = coordinates[i][2]-coordinates[j][2]#Az-Bz
 distance = (dx**2 + dy**2 + dz**2)**0.5

 # store the distance in the matrix
 D[i][j] = distance

 #### compute the weight matrix ####

 C = 0
 #### assign C for each neuron type connection (inhibit and exhibit) ####
 if is_excitatory[i] and is_excitatory[j]:
 C = Cex_ex
 elif is_excitatory[i] and not is_excitatory[j]:
 C = Cex_inh
 elif not is_excitatory[i] and is_excitatory[j]:
 C = Cinh_ex
 elif not is_excitatory[i] and not is_excitatory[j]:
 C = Cinh_inh

 ##### compute probabilistic connection ####
 p_conn = C * (exp(-(D[i][j]**2)/(lamda**2)))
 P[i][j]=p_conn

 if rand() < p_conn:

 if is_excitatory[i]:
 W[i][j]= 1.62 *mV
 else:
 W[i][j]= -9 *mV

 #### connect the specified two neuron groups using the generated weight matrix

 Connection.connect(self, neuron_group1, neuron_group2, W)

 ##### Return Neural distance, coordinate and synaptic weight matrix ####
 return D, coordinates, W

Appendix E

The core programming source code of BSA for EEG.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% BSA - BSA based spike encoder for EEG %%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function spikeTime = BSA(Twave, threshold)

%%%Twave is one EEG channel input nomalized to range[0,1]%%%

wave = Twave - min(Twave(:));
wave = (wave/range(wave(:)))*(1-0);
wave = wave + 0;

filter = fir1(10,0.05)
%%% for EGG need to be adjusted due to the sample rate %% %

N = length(wave);
P = length(filter);

spike = zeros(1, N);
spikeTime=[];

%%% add zeros at end so we don't have to check boundaries%%%
wave = horzcat(wave, zeros(1, P));
for i = 1:N
 segment = wave(i:i+P-1); %% pre-cutout segment for speed %%

 if sum(abs(segment - filter)) <= sum(abs(segment)) - threshold %% % BSA heuristic
 spike(i) = 1; % get spike here %%% emmit spike
 wave(i:i+P-1) = segment - filter; %%% substract filter from wave
 end

215

 if spike(i)==1

spikeTime=[spikeTime i*0.261];

%%% 0.261 is calculated by%%%
%%% ---simulation time (in msec)/ number of vectors in one EEG sample --%%%

End

References

Abolfathi, P. P. (2009). Toyota makes a wheelchair steered by brain waves.

Retrieved2011, from http://www.gizmag.com/toyota-wheelchair-powered-

brain-waves/12121/

Arbib, M. A. (2002). Handbook of brain theory and neural networks, Second

Edition: Cambridge, MA: MIT Press.

Bell, C., Han, V., Sugawara, Y., & Grant, K. (1999). Synaptic plasticity in the

mormyrid electrosensory lobe. The Journal of Experimental Biology, 202,

1339–1347.

Benuskova, L., & Kasabov, N. (2007). Computational neurogenetic modeling:

Springer Publishing Company, Incorporated.

Berber. (2011). All nighter. Retrieved May 1, 2011, from

http://fuckingepilepsy.wordpress.com/2011/01/28/all-nighter

Berger, T. W., Chapin , J. K., Gerhardt , G. A., McFarland, D. J., Principe, J. C.,

Soussou, W. V., . Tresco, P. A. (2008). Brain-Computer Interfaces: An

international assessment of research and development trends: Springer.

Bi, G., & Poo, M. (2001). Synaptic modification by correlated activity: Hebb's

postulate revisited. Annual review of neuroscience, 24(1), 139-166.

doi:citeulike-article-id:785613 doi: 10.1146/annurev.neuro.24.1.139

http://www.gizmag.com/toyota-wheelchair-powered-brain-waves/12121/
http://www.gizmag.com/toyota-wheelchair-powered-brain-waves/12121/
http://fuckingepilepsy.wordpress.com/2011/01/28/all-nighter

217

Binns, C. (2009). Control a Robot with Your Mind. Retrieved 6th may, 2011, from

http://www.popsci.com/scitech/article/2009-06/out-body-experience

Bliss, T., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission

in the dentate area of the anaesthetized rabbit following stimulation of the

perforant path. J Physiol (Lond), 232(2), 331-356.

Bliss, T. V., & Lomo, T. (1970). Plasticity in a monosynaptic cortical pathway.

The Journal of physiology, 207(2), 61P.

Bohte, S. M., Poutre, H. A. L., Kok, J. N., La, H. A., Joost, P., & Kok, N. (2002).

Error-Backpropagation in Temporally Encoded Networks of Spiking

Neurons. Neurocomputing, 48, 17-37.

Bohtem, S. M., Poutre, J. A. L., & Kok, J. N. (2000). Error-backpropagation in

temporally encoded networks of spiking neurons: CWI (Centre for

Mathematics and Computer Science)

Booij, O. (2004). Temporal Pattern Classification using Spiking Neural Networks.

University of Amsterdam, Amsterdam.

Brader, J. M., Senn, W., & Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural computation,

19(11), 2881-2912.

Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of

synaptic noise and filtering on the frequency response of spiking neurons.

Physical Review Letters, 86(10), 2186-2189. doi:citeulike-article-

id:584495

http://www.popsci.com/scitech/article/2009-06/out-body-experience

218

Burgsteiner, H., Kroll, M., Leopold, A., & Steinbauer, G. (2007). Movement

prediction from real-world images using a liquid state machine. Applied

Intelligence, 26(2), 99-109. doi:10.1007/s10489-006-0007-1

Buteneers, P., Schrauwen, B., Verstraeten, D., & Stroobandt, D. (2009). Real-time

epileptic seizure detection on intra-cranial rat data using reservoir

computing. Advances in Neuro-Information Processing, 56-63.

Cheng, L., Hou, Z.-G., Lin, Y., Tan, M., Zhang, W. C., & Wu, F.-X. (2011).

Recurrent Neural Network for Non-Smooth Convex Optimization

Problems With Application to the Identification of Genetic Regulatory

Networks. Trans. Neur. Netw., 22(5), 714-726.

doi:10.1109/tnn.2011.2109735

Cooper, S. J. (2005). Donald O. Hebb's synapse and learning rule: a history and

commentary. Neuroscience & Biobehavioral Reviews, 28(8), 851-

874. doi:10.1016/j.neubiorev.2004.09.009

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9-

21.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis.

Journal of Neuroscience Methods, 134, 9-21.

Dhoble, K., Nuntalid, N., Indiveri, G., & Kasabov, N. (2012, 10-15 June 2012).

Online spatio-temporal pattern recognition with evolving spiking neural

219

networks utilising address event representation, rank order, and temporal

spike learning Symposium conducted at the meeting of the Neural

Networks (IJCNN), The 2012 International Joint Conference on

doi:10.1109/ijcnn.2012.6252439

Egger, V., Feldmeyer, D., & Sakmann, B. (1999). Coincidence detection and

changes of synaptic e±cacy in spiny stellate neurons in rat barrel cortex.

Nature Neuro-Science, 2, 1098-1105.

Ekanayake, H. (2010). P300 and Emotiv EPOC: Does Emotiv EPOC capture real

EEG? Retrieved from

http://neurofeedback.visaduma.info/emotivresearch.htm

Ferreira, A., Almeida, C., Georgieva, P., Tomé, A., & Silva, F. (2010). Advances

in EEG-Based Biometry. Symposium conducted at the meeting of the

ICIAR (2)'10

Florian, R. V. (2005). A reinforcement learning algorithm for spiking neural

networks, Timisoara, Romania. Retrieved from

http://dx.doi.org/10.1109/SYNASC.2005.13 doi:citeulike-article-

id:8138417 doi: 10.1109/SYNASC.2005.13

Florian, Z. V. (2007). Reinforcement Learning Through Modulation of Spike-

Timing-Dependent Synaptic Plasticity. Neural Comput., 19(6), 1468-1502.

doi:10.1162/neco.2007.19.6.1468

http://neurofeedback.visaduma.info/emotivresearch.htm
http://dx.doi.org/10.1109/SYNASC.2005.13

220

Fusi, S., Annunziato, M., Badoni, D., Salamon, A., & Amit, D. J. (2000). Spike-

driven synaptic plasticity: theory, simulation, VLSI implementation.

Neural computation, 12(10), 2227-2258.

Gamboa, H. (2005). Used under GNU Free Documentation and Creative

Commons Licensing.

Garis, H. d., Korkin, M., & Fehr, G. (2001). The CAM-Brain Machine (CBM):

An FPGA Based Tool for Evolving a 75 Million Neuron Artificial Brain to

Control a Lifesized Kitten Robot. Auton. Robots, 10(3), 235-249.

doi:10.1023/a:1011286308522

Gerstner, W. (2000). Population Dynamics of Spiking Neurons: Fast Transients,

Asynchronous States, and Locking. Neural Comput., 12(1), 43-89.

doi:10.1162/089976600300015899

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons,

populations, plasticity: Cambridge Univ Pr.

Ghosh-Dastidar, S., & Adeli, H. (2009). A new supervised learning algorithm for

multiple spiking neural networks with application in epilepsy and seizure

detection. Neural Networks, 22(10), 1419-1431.

Goel, P., Liu, H., Brown, D., & Datta, A. (2008). On the use of spiking neural

network for EEG classification. International Journal of Knowledge-

Based and Intelligent Engineering Systems, 12(4), 295-304.

Goel, P., Liu, H., Brown, D. J., & Datta, A. (2006). Spiking neural network based

classification of task-evoked EEG signals. presented at the meeting of the

Proceedings of the 10th international conference on Knowledge-Based

221

Intelligent Information and Engineering Systems - Volume Part I,

Bournemouth, UK. doi:10.1007/11892960_99

Goodman, D., & Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Frontiers in neuroinformatics, 2.

doi:10.3389/neuro.11.005.2008

Grun, S., Diesmann, M., & Aertsen, A. (2010). Analysis of Parallel Spike Trains

(1 ed., Vol. 7): Springer.

Grzyb, B. J., Chinellato, E., Wojcik, G. M., & Kaminski, W. A. (2009). Which

model to use for the liquid state machine? presented at the meeting of the

Proceedings of the 2009 international joint conference on Neural

Networks, Atlanta, Georgia, USA.

Hamed, H. N. A., Kasabov, N., & Shamsuddin, S. M. (2012). Dynamic Quantum-

Inspired Particle Swarm Optimization as Feature and Parameter

Optimizer for Evolving Spiking Neural Networks. presented at the meeting

of the International Journal of Modeling and Optimization, Retrieved

from http://www.ijmo.org/papers/108-E007.pdf

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory:

Wiley. Retrieved from

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-

20&path=ASIN/0805843000. doi:citeulike-article-id:500649

Hoffmann, U., Garcia, G., Vesin, J., Diserens, K., & Ebrahimi, T. (2005). A

Boosting Approach to P300 Detection with Application to Brain-

Computer InterfacesSPIE Symposium conducted at the meeting of the

http://www.ijmo.org/papers/108-E007.pdf
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0805843000
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0805843000

222

IEEE EMBS Conference on Neural Engineering Retrieved from

http://infoscience.epfl.ch/record/87218/files/Hoffmann2005_1207.pdf

Hoffmann, U., Vesin, J.-M., Ebrahimi, T., & Diserens, K. (2008). An efficient

P300-based brain–computer interface for disabled subjects. Journal of

Neuroscience Methods, 167(1), 115-125.

doi:10.1016/j.jneumeth.2007.03.005

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., & Villa, A. E. P. (2006).

Dynamics of pruning in simulated large-scale spiking neural networks.

Biosystems, 79(1-3), 11-20.

Iglesias, J., & Villa, A. E. P. (2006). Neuronal cell death and synaptic pruning

driven by spike-timing dependent plasticity. presented at the meeting of the

Proceedings of the 16th international conference on Artificial Neural

Networks - Volume Part I, Athens, Greece. doi:10.1007/11840817_99

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., others. (2011). Neuromorphic silicon neuron

circuits. Frontiers in neuroscience, 5.

Izhikevich, E. M. (2003). Simple Model of Spiking Neurons. IEEE, 14, 1569-

1572.

Kasabov, N. (2007). Evolving connectionist systems: The knowledge engineering

approach: Springer-Verlag New York Inc.

Kasabov, N. (2010). To spike or not to spike: A probabilistic spiking neuron

model. Neural Networks, 23(1), 16-19.

http://infoscience.epfl.ch/record/87218/files/Hoffmann2005_1207.pdf

223

Kasabov, N. (2012a, January 2012). Evoving, Probabilistic Spiking Neural

Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal

Data Modelling and Pattern Recognition. Natural Intelligence: the INNS

Magazine, 1(2).

Kasabov, N. (2012b). NeuCube EvoSpike Architecture for Spatio-temporal

Modelling and Pattern Recognition of Brain Signals. In N. Mana, F.

Schwenker, & E. Trentin (Eds.), Artificial Neural Networks in Pattern

Recognition (Vol. 7477, pp. 225-243): Springer Berlin Heidelberg.

Retrieved from http://dx.doi.org/10.1007/978-3-642-33212-8_21.

doi:10.1007/978-3-642-33212-8_21

Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2012). Dynamic Evolving

Spiking Neural Networks for On-line Spatio- and Spectro-Temporal

Pattern Recognition. Neural Networks(Autonomous Machine Learning).

Kempter, R., Gerstner, W., & van Hemmen, J. L. (1999). Hebbian learning and

spiking neurons. Phys. Rev. E, 59(4), 4498--4514.

doi:10.1103/PhysRevE.59.4498

Koch, C., & Segev, I. (1989). Methods in Neuronal Modeling, from synapses to

networks. Cambridge: MIT Press.

Legenstein, R., Naeger, C., & Maass, W. (2005). What Can a Neuron Learn with

Spike-Timing-Dependent Plasticity? Neural Comput., 17(11), 2337-2382.

doi:10.1162/0899766054796888

Lotze, M., Montoya, P., Erb, M., H lsmann, E., Flor, H., Klose, U., . Grodd, W.

(1999). Activation of Cortical and Cerebellar Motor Areas during

http://dx.doi.org/10.1007/978-3-642-33212-8_21

224

Executed and Imagined Hand Movements: An fMRI Study. J. Cognitive

Neuroscience, 11(5), 491-501. doi:10.1162/089892999563553

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without

stable states: A new framework for neural computation based on

perturbations. Neural computation, 14(11), 2531-2560.

Maass, W., Natschläger, T., & Markram, H. (2004). Computational Models for

Generic Cortical Microcircuits. In Computational Neuroscience: A

Comprehensive Approach (pp. 575-605): Chapman & Hall/CRC.

Retrieved from http://infoscience.epfl.ch/record/117815

Maass, W., & Zador, A. (1999). Computing and learning with dynamic synapses.

Pulsed neural networks, 6, 321-336.

MacGregor, R. J. (1987). Neural and Brain Modeling San Diego: Academic

Press,.

Mak, J. N., McFarland, D. J., Vaughan, T. M., McCane, L. M., Tsui, P. Z., Zeitlin,

D. J., . Wolpaw, J. R. (2012). Technology-aided programs for assisting

communication and leisure engagement of persons with amyotrophic

lateral sclerosis: Two single-case studies. Research in Developmental

Disabilities, 33(5), 1605.

Marcel, S., & Millán, J. R. (2007). Person authentication using brainwaves (EEG)

and maximum a posteriori model adaptation. IEEE transactions on pattern

analysis and machine intelligence, 743-752.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of

Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs.

http://infoscience.epfl.ch/record/117815

225

Science, 275(5297), 213-215. doi:citeulike-article-id:854200 doi:

10.1126/science.275.5297.213

Mohemmed, A., Schliebs, S., & Kasabov, N. (2011). SPAN: A Neuron for

Precise-Time Spike Pattern Association [ICONIP (2)]. Springer.

Mohemmed, A., Schliebs, S., Matsuda, S., & Kasabov, N., &. (2011). Method for

Training a Spiking Neuron to Associate Input-Output Spike Trains

[EANN/AIAI (1)]. Springer.

Murph, D. (2007). IMEC reveals wireless EEG headband, Geordi La Forge

approves. Retrieved May 1, 2011, from

http://www.engadget.com/2007/11/01/imec-reveals-wireless-eeg-

headband-geordi-la-forge-approves

Nawrot, M. P., Schnepel, P., Aertsen, A., & Boucsein, C. (2009). Precisely timed

signal transmission in neocortical networks with reliable intermediate-

range projections (Vol. 3). Retrieved from

http://www.biomedsearch.com/nih/Precisely-timed-signal-transmission-

in/19225575.html

Niedermeyer, E., & Da Silva, F. H. L. (2005). Electroencephalography: basic

principles, clinical applications, and related fields: Lippincott Williams &

Wilkins.

Norton, D., & Ventura, D. (2009). Improving the separability of a reservoir

facilitates learning transfer.

http://www.engadget.com/2007/11/01/imec-reveals-wireless-eeg-headband-geordi-la-forge-approves
http://www.engadget.com/2007/11/01/imec-reveals-wireless-eeg-headband-geordi-la-forge-approves
http://www.biomedsearch.com/nih/Precisely-timed-signal-transmission-in/19225575.html
http://www.biomedsearch.com/nih/Precisely-timed-signal-transmission-in/19225575.html

226

Nuntalid, N., Dhoble, K., & Kasabov, N. (conf/iconip/NuntalidDK11). (2011).

EEG Classification with BSA Spike Encoding Algorithm and Evolving

Probabilistic Spiking Neural Network [Proceedings of the 18th

international conference on Neural information processing: theory and

algorithms - Volume Part I]. Changhai, China: Springer.

Palaniappan, R., & Mandic, D. P. (2007). EEG Based Biometric Framework for

Automatic Identity Verification. J. VLSI Signal Process. Syst., 49, 243-

250.

Paugam-Moisy, H., & Bohte, S. M. (2009, September). Handbook of Natural

ComputingSpringer-Verlag. Abstract retrieved from Liris-4305

Pecevski, D., Natschläger, T., & Schuch, K. (2009). PCSIM: a parallel simulation

environment for neural circuits fully integrated with Python [Original

Research]. Frontiers in Neuroinformatics, 3.

doi:10.3389/neuro.11.011.2009

Ponulak, F., & Kasiski, A. (2010). Supervised learning in spiking neural networks

with resume: Sequence learning, classification, and spike shifting. Neural

Comput., 22(2), 467-510. doi:10.1162/neco.2009.11-08-901

Rieke, F., Warland, D., Rob, W., & Bialek, W. (1997). Spikes: Exploring the

Neural Code. Cambridge: MIT Press.

Rieke, F., Warland, D., van Steveninck, R. R., & Bialek, W. (1999). Spikes:

exploring the neural code: MIT press.

227

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms. Washington: Spartan Books.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing:

explorations in the microstructure of cognition, vol. 1: foundations.

Cambridge: MIT Press.

Schliebs, S., Defoin-Platel, M., Worner, S. P., & Kasabov, N. (2009). Integrated

feature and parameter optimization for an evolving spiking neural

network: Exploring heterogeneous probabilistic models. Neural Networks,

22(5-6), 623-632.

Schliebs, S., Nuntalid, N., & Kasabov, N. (2010). Towards spatio-temporal

pattern recognition using evolving spiking neural networks [Proceedings

of the 17th international conference on Neural information processing:

theory and algorithms - Volume Part I]. Sydney, Australia: Springer-

Verlag.

Schliebs, S., Nuzly Abdull Hamed, H., & Kasabov, N. (2011). Reservoir-based

evolving spiking neural network for spatio-temporal pattern recognition.

presented at the meeting of the Proceedings of the 18th international

conference on Neural Information Processing Shanghai, China.

Schrauwen, B., D'Haene, M., Verstraeten, D., & Campenhout, J. V. (2008). 2008

Special Issue: Compact hardware liquid state machines on FPGA for real-

time speech recognition. Neural Netw., 21(2-3), 511-523.

doi:10.1016/j.neunet.2007.12.009

228

Schrauwen, B., & Van Campenhout, J. (2003). BSA, a fast and accurate spike

train encoding scheme [Proceedings of the International Joint Conference

on Neural Networks].

Schrauwen, B., Verstraeten, D., & Campenhout, J. V. (2007). An overview of

reservoir computing: theory, applications and implementations

[Proceedings of the 15th European Symposium on Artificial Neural

Networks].

Seung, H. S., & Hughes, H. (2003). Learning in spiking neural networks by

reinforcement of stochastic synaptic transmission. Neuron.

Shadlen, M., & Newsome, W. (1996). Motion perception: seeing and deciding

Symposium conducted at the meeting of the National Academy of

Sciences (USA)

Song, S., Miller, K. D., Abbott, L. F., & others. (2000). Competitive Hebbian

learning through spike-timing-dependent synaptic plasticity. nature

neuroscience, 3, 919-926.

Swartz, B. E., & Goldensohn, E. S. (1998). Timeline of the history of EEG and

associated fields. Electroencephalography and clinical Neurophysiology,

106(2), 173-176.

Tatum, W. O. (2007). Handbook of EEG interpretation: Demos Medical

Publishing.

Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for

rapid processing. Neural Networks, 14(6-7), 715–725.

229

Thorpe, S., & Gautrais, J. (1998). Rank order coding. Computational

neuroscience: Trends in research, 13, 113-119.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. presented at the meeting of

the Proceedings of the sixth annual conference on Computational

neuroscience : trends in research, 1998: trends in research, 1998, Big Sky,

Montana, United States.

Torikai, H., & Nishigami, T. (2009). A novel chaotic spiking neuron and its

paralleled spike encoding function [Proceedings of the 2009 international

joint conference on Neural Networks]. Atlanta, Georgia, USA: IEEE

Press.

Toups, J., Fellous, J., Thomas, P., & Sejnowski, T. (2012). Multiple Spike Time

Patterns Occur at Bifurcation Points of Membrane Potential Dynamics.

PLOS Computational Biology Organization, 8(10).

doi:10.1371/journal.pcbi.1002615

Tymoshchuk, P., & Kaszkurewicz, E. (2005). A winner-take-all circuit using

neural networks as building blocks. Neurocomput., 64, 375-396.

doi:10.1016/j.neucom.2004.08.002

Verstraten, D., Schrauwen, B., Stroobandt, D., & Van Campenhout, J. (2005).

Isolated word recognition with the liquid state machine: a case study. Inf.

Process. Lett., 95, 521-528.

Villa, A. E. P., Tetko, I. V., Hyland, B., & Najem, A. (1999). Spatiotemporal

activity patterns of rat cortical neurons predict responses in a conditioned

task. Proceedings of the National Academy of Sciences, 96(3), 1106-1111.

230

von der Malsburg, C. (1983). The Correlation Theory of Brain Function.

Retrieved from http://books.google.co.nz/books?id=U0LDtgAACAAJ

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2010). Evolving spiking neural

networks for audiovisual information processing. Neural Networks, 23(7),

819-835.

Xie, X., & Seung, H. S. (2003). Equivalence of backpropagation and contrastive

Hebbian learning in a layered network. Neural Comput., 15(2), 441-454.

doi:10.1162/089976603762552988

Xu, N., Gao, X., Hong, B., Miao, X., Gao, S., & Yang, F. (2004). BCI

Competition 2003-Data set IIb: enhancing P300 wave detection using

ICA-based subspace projections for BCI applications. IEEE transactions

on bio-medical engineering, 51(6), 1067-1072.

Yamazaki, T., & Tanaka, S. (2007). The cerebellum as a liquid state machine.

Neural Networks, 20(3), 290-297.

http://books.google.co.nz/books?id=U0LDtgAACAAJ

