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Abstract 

 

The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) 

domain presents a challenging problem due to presence of spatial and temporal 

aspects inherent in the EEG data. Many studies either transform the data into a 

temporal or spatial problem for analysis. This approach results in loss of 

significant information since these methods fail to consider the correlation present 

within the spatial and temporal aspect of the EEG data. However, Spiking Neural 

Network (SNN) naturally takes into consideration the correlation present within 

the spatiotemporal data. Hence by applying the proposed SNN based novel 

methods on EEG, the thesis provide improved analytic on EEG data. This thesis 

introduces novel methods and architectures for spatio-temporal data modelling 

and classification using SNN. More specifically, SNN is used for analysis and 

classification of spatiotemporal EEG data. 

In this thesis, for the first time, Ben Spiker Encoder Algorithm (BSA) is applied 

on EEG data and its applicability is demonstrated successfully. Moreover, three 

new stochastic neural models are introduced; namely, Stochastic Noisy Reset 

(NR), Stochastic step-wise noisy threshold model (ST) and Continuous stochastic 

threshold (CT). The stochastic models mimic activity of biological neurons while 

retaining low implementation cost. Also, a modification of precise-time spike 

pattern association neuron (SPAN) called stochastic precise-time spike pattern 



 

xviii 
 

association neuron (SSPAN) is introduced. The SSPAN demonstrates superior 

performance than SPAN, especially when used with stochastic neural models.   

A novel Dynamic Evolving Probabilistic Spiking Neural Network (DepSNN) is 

introduced as an extension of the eSNN model. Five novel variants of DepSNN 

(DepSNNm, DepSNNs, NR-DepSNNs, ST-DepSNNs, and CT-DepSNNs) are 

presented and the results show that it requires high density of input spikes if SDSP 

learning is to be made efficient. 

The thesis then offers a critical analysis of Electroencephalography (EEG) data 

analysis and classification methods used to date. The developed SNN methods 

have been adopted in EEG analysis and classification investigated on two datasets 

(real-world audio-visual stimuli perception EEG dataset and P300 based BCI 

dataset), with promising results relative to other methods.  

Furthermore, the proposed novel SNN architecture for spatio-temporal data 

termed evolving probabilistic SNN reservoir (epSNNr) shows enhanced 

performance when integrated with stochastic neural models. The utilization of 3D 

Localization mapping along with DepSNN as a readout unit, showed very 

outstanding results especially on P300 based BCI application. 

 

 

 

 



 
 

Chapter 1 

Introduction 

 

Spiking Neural Networks (SNN) is the third generation of Artificial Neural 

Networks (ANN). Artificial Neural Networks have been successfully applied to 

problems in classification and medical decision support, among others. 

Throughout the past decade, neural network research has tended towards more 

biologically realistic models and the need to better comprehend the significant 

information processing competencies of the mammalian brain. This current focus 

has culminated in more complicated and biologically probable connectionist 

models, including Spiking Neural Networks (SNN). A defining characteristic of 

SNNs is that they prototype the transmission of the biological network in time and 

hence by themselves constitute a continual dynamic system. This makes them 

particularly applicable to sequential patterns and, as such, they are suitable 

alternatives to the HMM method.  

 

SNN, which simulates information-processing by biological neurons, possesses 

two major characteristics. First, the weights in SNN are of different strength and 

secondly, a spike is released when the signal threshold is exceeded.  A detailed 

discussion of SNN models (SNM), including LIF and Hodgkin Huxley models, is 

available in Gerstner and Kistler (2002). Nevertheless, SNN theory makes no 

provision for the processing of temporal prototypes. The currently accessible 
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learning algorithms for Spiking Neural Networks can process non-temporal vector 

data only. The learning rule requires that free parameters in the Spiking Neural 

Networks models are alterable, enabling the SNN to learn a suitable output for a 

given collection of spatio-temporal inputs. 

 

This research aims to develop modules and a simulator for Probabilistic Spiking 

Neuron Model (pSNM). This simulator will be used to model the evolving 

connectivity of pSNN on a larger scale, dealing with spatiotemporal data. The 

approach will be tested on a case study of EEG, which is a type of spatio-temporal 

brain data. 

 

1.1 Statement of the Problem 

In previous research, network structures have been evolved using standard SNN, 

which limits the functionality of the network during a learning process.  New 

types of SNN, termed probabilistic SNN (pSNN), were recently proposed in by 

Kasabov, offering greater flexibility in both neural functions and connectivity 

(Kasabov, 2010). Spatiotemporal pattern recognition is crucial in improving the 

accuracy of data mining approaches. However, neither SNN nor pSNN have been 

applied to spatiotemporal data processing. In particular, application to human 

EEG data would contribute to the development of a brain computer interface 

(BCI). Therefore, this study aims to develop modules and a simulator for pSNM 

and to use this simulator to model the evolving connectivity of pSNN on a large 

scale, dealing with spatiotemporal data. The modules will be tested on an EEG 
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case study. 

 

1.2 Objectives of the Study 

The objectives of this study are as follows: 

(1) Investigate and apply a suitable spike encoding method for EEG data 

analysis. 

(2) Develop new models of SNN inspired by the Probabilistic Spiking Neural 

model. 

(3) Develop a new model of SNN for spatio-temporal data (STD) processing, 

including methods for online learning. 

(4) Develop a new model of SNN utilizing the reservoir approach for spatio-

temporal data (STD) processing, including methods for adaptive learning 

and visualization.  

(5) Develop an SNN system for processing brain EEG data as spatial-temporal 

inputs, and evaluate the efficiency of the system. 

(6) Apply the developed SNN and systems to the design of a novel BCI.   

 

1.3 Significance of the Study 

Determining suitable spatiotemporal pattern recognition approaches are crucial for 

improving the accuracy and decreasing processing time of data mining 

approaches. So far the applicability of spatiotemporal data processing approaches 

such as SNN (which are capable of naturally processing spatiotemporal data) has 

not been investigated thoroughly. Therefore, this research aims to develop novel 
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spatiotemporal pattern recognition techniques utilizing SNN. Also, the existing 

SNM has limited functionality in terms of learning process. Hence, new models of 

SNM, inspired by Kasabov’s pSNM, are introduced in this study, particularly for 

application on human EEG data.                                                                                                                                                                                                                                                                                                     

Appropriate spike representation of data is also important since SNN processes 

spatiotemporal data as spikes. Therefore, besides the development of novel 

spatiotemporal processing techniques based on eSNN, suitable fast spike encoding 

methods for human EEG data is also essential. An encoder that appropriately 

represents the data into spikes along with novel SNN methods will greatly 

contribute to the further development of brain computer interfaces (BCI).  

Furthermore, the software simulator used in this research will provide insights 

into the brain activities and its functions. This will result in more efficient and 

effective simulation of spiking neuron connectivity during spatiotemporal data 

processing.  

 

1.4 Research Questions 

The following research questions will be addressed: 

(1) How can new models of SNN, inspired by the Probabilistic Spiking neural 

model, be developed? 

(2) How should we proceed with adapting the new SNN for spatio-temporal 

data (STD) processing? 

(3) How can the new SNN utilizing reservoir approach be developed for 

spatio-temporal data (STD) processing? 
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(4) How can the new SNN systems be developed for processing EEG data as 

spatial-temporal input?  How will the efficiency of these systems be 

evaluated? 

(5) How can the new SNN systems be used to design a novel BCI? 

(6) How can the new SNN models be utilized for brain data modeling? 

 

1.5 Methodology 

Corresponding to the research objectives, the following methodology is derived.   

Firstly, a literature review based on past and current SNN based approaches is 

carried out. This allows in better understanding of the advantages and limitations 

present in the existing approaches and its functions such as the dynamicity of a 

synapse, learning rules, spike encoding methods, characteristic of EEG, and its 

applications. This in turn results in the development of new SNN approaches for 

spatiotemporal pattern recognition such as the novel pSNM.  

Second is the implementation phase, considered as one of the most important 

steps in this study. In this phase designs for new SNN architectures for spatio-

temporal pattern recognition of EEG needs to be determined. This is achieved 

through initial pilot studies. The new models are developed in Python language 

because it is open source, platform independent and has large collection of SNN 

libraries.  

The last phase is testing and validation. Each method is first evaluated on 

synthetic dataset so that the performance and characteristics of the proposed 

system can be investigated. Then partial real world EEG datasets were used for 
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optimizing parameters of the proposed SNN methods. Corresponding to the main 

objective of this study, the proposed methods design focuses on online processing 

capability and its suitability for BCI based applications. In this study, each dataset 

was split into training set and testing set for evaluation. The performance of the 

SNN models is evaluated in terms of classification accuracy and compared to 

traditional methods. 

Hence, the methodology of this study is concluded in a research framework 

demonstrated in figure 1.1, which consists of 4 main stages of information 

processing those need to be explored and developed: (a) datasets; (b) converting 

continuous inputs into spikes; (c) spatio-temporal pattern recognition; (d) quality 

evaluation. 

 

         
Figure 1.1: Research Framework 

 

1.6 Outline of the Research 
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The research comprises the following twelve chapters: 

Chapter 1 – Introduces the research, defines the problem, highlights the 

objectives and significance of the study, poses the research questions and outlines 

the methodology. 

Chapter 2 - This chapter discusses the mechanisms of biological neurons which 

have inspired the development of SNN.  

Chapter 3 - This chapter proposes the novel stochastic spiking neural models and 

describes an initial exploration of their behaviours. 

Chapter 4 - In this chapter, the Stochastic Precise-time Spike Pattern Association 

Neuron (SSPAN) is introduced and its behaviour is investigated. This model is a 

modification of SPAN: Precise-time Spike Pattern Association Neuron, in which 

the deterministic LIF model has been replaced with the stochastic spiking neural 

models introduced in Chapter 3.                                                                      

Chapter 5 - This chapter introduces Dynamic Evolving Probabilistic Spiking 

Neural Network (DepSNN), an extension of the eSNN model, in which both 

deterministic LIF and the stochastic models are utilized. 

Chapter 6 - This chapter introduces Spiking Neural Network Reservoir 

(epSNNr), in which stochastic neural models have not only replaced deterministic 

LIF, but are used to introduce a non-deterministic component into a liquid state 

machine.  

Chapter 7 - This chapter briefly introduces EEG and reviews the current situation 

regarding EEG and SNN-based EEG applications. 
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Chapter 8 - This chapter investigates the proposed spike encoding method, with 

emphasis on its suitability for EEG and the novel approach of transforming EEG 

data into spikes. 

Chapter 9 - This chapter proposes the network architectures for EEG Spatio-

temporal Pattern Recognition on Stochastic Precise-time Spike Pattern 

Association Neuron (SSPAN), and proposes the frameworks for online EEG 

Spatio-temporal Pattern Recognition on DepSNN and Online EEG Spatio-

temporal Pattern Recognition on epSNNr. 

Chapter 10 - This chapter discusses the implementation and investigates the 

feasibility and performance of Spatio-temporal Pattern Recognition (SSPAN, 

DepSNN, epSNNr and mixed methods) during processing of real-world audio-

visual stimuli perception EEG data. 

Chapter 11 - This chapter discusses the implementation and investigates the 

feasibility and performance of DepSNN on a P300 based BCI. The results are 

compared with those of an existing method applied to the same dataset.  

Chapter 12 - This chapter concludes the research and discusses the contribution 

of this thesis to SNN research. This chapter also provides recommendations for 

future improvements. 

 

1.7 Contribution of the Research Published as Peer-reviewed Journal and 

Conference Papers 
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Most of experiments in this study have been shared with the scientific community 

in six blind peer-review international academic papers and one poster as the 

following: 

(1) Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic 

Evolving Spiking Neural Networks for On-line Spatio- and Spectro-

Temporal Pattern Recognition. Neural Networks(Autonomous Machine 

Learning). 

Contribution involves: 

- Application and performance evaluation of DepSNN on real-world 

EEG. 

- Application of BSA spike encoding for EEG data. 

- Application of Rank Order Code. 

- Application of STDP/SDSP learning in DepSNN. 

  

(2) Dhoble, K., Nuntalid, N., Indiveri, G., & Kasabov, N. (2012, 10-15 June 

2012). Online spatio-temporal pattern recognition with evolving spiking 

neural networks utilising address event representation, rank order, and 

temporal spike learning Symposium conducted at the meeting of the 

Neural Networks (IJCNN), The 2012 International Joint Conference on 

doi:10.1109/ijcnn.2012.6252439. 

Contribution involves:  

- Application of Rank Order Code. 
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- Application of STDP/SDSP learning in DepSNN. 

- Performance evaluation of DepSNN and its variants. 

  

(3) Nuntalid, N., Dhoble, K., & Kasabov, N. (2011). EEG Classification with 

BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural 

Network [Proceedings of the 18th international conference on Neural 

information processing: theory and algorithms - Volume Part I]. Changhai, 

China: Springer. 

Contribution involves:  

- Integration and application of Stochastic Neural Models in epSNNr. 

- Application of epSNNr on real-world Riken EEG dataset. 

- Evaluation of epSNNr for online learning. 

  

(4) Kasabov, N., Dhoble, K., Nuntalid, N., & Mohemmed, A. (2011). 

Evolving Probabilistic Spiking Neural Networks for Spatio-temporal 

Pattern Recognition: A Preliminary Study on Moving Object Recognition 

[Proceedings of the 18th international conference on Neural information 

processing: theory and algorithms - Volume Part 3]. Changhai, China: 

Springer. 

Contribution involves:  

- Evaluation of LSM based epSNNr on synthetic data. 

- Characteristics and parameters tuning of stochastic reservoir. 
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-  Performance comparison with non-SNN based approaches. 

 

(5) Schliebs, S., Nuntalid, N., & Kasabov, N. (2010). Towards spatio-

temporal pattern recognition using evolving spiking neural networks 

[Proceedings of the 17th international conference on Neural information 

processing: theory and algorithms - Volume Part I]. Sydney, Australia: 

Springer-Verlag. 

Contribution involves:  

- Proposal of Stochastic Neural Models. 

- Performance comparison of stochastic against non-deterministic neural 

models. 

- Integration and performance evaluation of reservoir with and without 

Stochastic Neural Models.  

 

(6) Nuntalid, N., Kasabov, N. (in progress). Dynamic Probabilistic Evolving 

Spiking Neural Networks for Spatial-temporal EEG Pattern Recognition. 

Evolving Connectionist System (ECOS).   

Contribution involves:  

- Integration and performance evaluation of reservoir with and without 

Stochastic Neural Models.  

- Integration and performance evaluation of DepSNN with and without 

Stochastic Neural Models.  

- Integrate and performance evaluation of reservoir utilizing 3D 

localization mapping and depSNN in the readout unit. 
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- Application of above contribution on real-world P300 EEG based BCI 

dataset. 

 

The following diagram summarises these contributions in terms of the datasets, 

problems to be solved and proposed models: 

Thesis

Data Problems Methods

Synthetic Data for SSPAN

Synthetic Data for DepSNN

Synthetic Data for epSNNr

audio-visual stimuli perception 

EEG

EEG P300 based BCI 

Classification/Pattern 

Recognition

Cognition

BCI

Spike Encoding for EEG

Stochastic Spiking Neural 

Models 

SSPAN

DepSNN

epSNNr

 

Figure 1.2: Schematic illustrating the contributions of this thesis to SNN research, in terms 

of problems solved, methods developed and dataset. 



 
 

Chapter 2 

Spiking Neural Networks 

 

Artificial Neural Networks (ANNs) models are mathematical models comprising 

an interconnected group of artificial neurons based on biological neural networks. 

Information is processed using a computational connectionist approach. In ANNs, 

the artificial nodes are known as neurons. ANNs have been successfully applied 

to data intensive problems such as classification, medical decision support, data 

mining, sales forecasting and target marketing, forecasting economic indicators 

and pattern recognition.  

 

In this chapter, the relevant background information is introduced, including 

previous and current research on Spiking Neural Networks (SNN), the reservoir 

computing approach and SNN learning rules. Certain aspects of SNNs are highly 

relevant to this study and have inspired the development of probabilistic Spiking 

Neural Models (pSNM).  

 

2.1 Spiking Neurons 

The brain is a specially-adapted organ through which sentient organisms interact 

with their environment. This complex organ can intercept and process vast 

streams of input information in a highly efficient way. A machine modelled on the 
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human brain, which can be utilized for multiple languages, is the ultimate goal of 

Artificial Intelligence (AI) research. On close examination, the brain comprises a 

large number of nerve cells known as neurons. These neurons establish 

connections with each other to form a live Neural Network. Artificial Neural 

Networks, which constitute a sub-field of Artificial Intelligence, attempt to 

prototype these biological neurons and to emulate the brain’s processing efficacy 

by establishing networks between these model neurons (Booij, 2004).   

 

Mass and colleagues (2001) proposed that computational spiking neural networks 

are innately embedded in time (Maass, Natschläger, & Markram, 2002). 

According to Brader and his colleagues, if a neuron receives the same sequence of 

spikes, it will reside in the same final state with no interference from other 

parameters. Two types of neurons have been described; efferent (motor neurons, 

which stimulate movement) and afferent (sensory neurons, through which 

sensation is perceived). A causal relation may exist between these entities and the 

neuron of interest may lie beyond the transmission delay (in the past or future). 

Given that the past spiking activity of a neuron affects its membrane potential and 

influences its reaction to the next spike, the neuron is itself causally linked to 

transmission delay. This linkage provides a unified framework for the current 

neuron connected to all of its efferent and afferent neurons (Brader, Senn, & Fusi, 

2007). 
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From biological observation, real SNN neurons are known to be sparsely and 

irregularly connected in space, and the variability of their spike flows implies that 

they communicate irregularly in time with a low average activity. The nodal 

spatial distribution and temporal activity describe the network topology and the 

network dynamics of the SNN, respectively.  Moisy and Bohte stated that "It is 

important to note that the network topology becomes a simple underlying support 

to the neural dynamics, but that only active neurons are contributing to 

information processing. The novelty of the concept of SNNs means that many 

lines of research are still open and are actively being pursued" (Paugam-Moisy & 

Bohte, 2009).  When performing a perceptual task, precision pooling occurs when 

an organism’s decisions are based on the activities of a small set of highly 

informative neurons. The global pooling hypothesis states that the activities of all 

active neurons (or perhaps all active neurons in a particular brain region) 

contribute to an organism’s perception and thus, to an organism’s perceptual 

decision (Shadlen & Newsome, 1996). 

 

Hence, the model studied in this research is focussed mainly on the Spiking 

Neural Model, which is currently attracting much attention in the ANN discipline. 

A formal definition of neural networks is presented in this chapter, together with 

descriptions on how they are modelled. Section 2.1.1 explains the working 

mechanism of biological neurons. Section 2.1.2 outlines the different approaches 

to modelling these neurons.  Section 2.1.3 introduces the Spiking Neural Models 

and their applications. Section 2.1.4 presents the general architecture of the 
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network, while 2.1.5 describes the likely coding patterns for altering an input 

signal so that it can be provided to a neural network. Section 2.1.6 provides an 

overview of SNN applications.  

 

2.1.1 Biological neurons 

 

 

 

 

Figure 2.1: Images of Biological Neurons 

 

To emulate complex biological neural networks such as occur in the brain, one 

must comprehend biological neurons, the languages of neural networks. Indeed, 

Axon 

Soma 

Dendrites 
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most of the ANN vocabulary derives from the biological equivalents of artificial 

components. In this section, biological neurons and their functioning are 

discussed. Neurons, which constitute the real processing units of the brain, 

perform simple calculations but compared to silicon chips their processing speed 

is very slow.  

Nevertheless, large quantities of these simple units produce a powerful network. 

A silicon based computer typically has a single processing unit; within a neural 

network the entire set of neurons operates in parallel. To establish this network 

every neuron is connected to, on average, thousands of other neurons. Though 

various types of neurons exist in the brain, their basic structure is the same. The 

cell-body or the soma of the neuron radiates numerous refined networking fibres 

known as dendrites, together with one or more axons that branch from the base 

before extending towards other neurons, as shown in Figure 2.1. Towards the 

bottom of that figure, the triangular soma is indicated, with the dendrite tree 

surrounding it. The axon spreads up and branches towards the top of the image. 

The basic functioning of a neuron is described below. 

Neurons hold a small negative electrical charge of -70 mV, known as their 

inactive capacity. This capacity is enhanced by incitements from other neurons. 

When the capacity reaches a limit, normally around -55 mV, the neuron shoots an 

electrical pulse along its axon, termed a spike. At the termination of the axon, the 

axon-branches link to dendrites of other neurons. This linkage between the 

neurons is known as a synapse. When a spike touches such a synapse it alters the 

electrical capacity in the dendrites of the recipient neuron. Because this procedure 



 

 
 

18 

is comparatively time- consuming, the influence is deferred by a specific time 

which is typical for that synapse. The transmitter and receiver of the spike are 

termed the presynaptic and postsynaptic neuron, respectively. Depending on type 

of synapse, this alteration can cause the capacity of the postsynaptic neuron 

capacity to rise (positive effect), or drop (negative effect). A positive effect 

induces propulsion of the neuron; in this case the synapse is known as excitatory, 

whereas in the opposite case the synapse is known as inhibitory. The influence of 

the capacity-alteration is temporary; after some time it disappears as the default 

state of the neuron is its inactive capacity. Having fired a spike, a neuron requires 

some time to recuperate before it can spike again. This time interim is known as 

the refractory period. The type of synapse, whether inhibitory or excitatory, is 

fixed, but the intensity of the capacity-alteration it creates can vary. This effect, 

termed synaptic plasticity, allows the network to gain from previous practice.  

 

Bio-neurological research has revealed the changes occurring in synapses over 

time (Maass et al., 2002; Maass & Zador, 1999). However, this knowledge is 

gleaned from remote neurons rather than the bigger network. How biological 

neural networks interact to learn like the human brain remains poorly understood. 

Among the numerous types of neurons and synapses, certain ones possess 

extremely long axons which can exert long-range effects. Other neurons are 

adapted to regional processing, possessing both a small axon and small dendrites. 

Yet others develop inhibitory or excitatory synapses, but not both. Axons do not 

establish synapses with dendrites at all times. Certain synapse with the cell body 
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of another neuron, enabling them to exert a strong effect. Some neurons establish 

inhibitory synapses to other axons, which prohibits those axons from spreading 

their spikes. Biological neural networks always constitute a conglomerate of 

different neurons. No fragment in the human brain contains a homogenous pool of 

a single neuron type. In addition, biological neural networks are extremely 

recurrent; that is, numerous loops exist within the network assist positive and 

negative responses (Maass, Natschläger, & Markram, 2004). Obviously, a solitary 

biological neuron is part of a very complicated vibrant system. It is extremely 

difficult to copy the features and behaviour of a neuron in its entirety. 

 

2.1.2 Neural Models 

This section discusses some current models of biological neural activity. It 

focuses on the sigmoid and the spiking neural models and the differences between 

them. One model is not essentially superior to another, but models vary widely in 

their level of abstraction. Some models generate precise incitation of the neuron, 

incorporating all dissimilar biochemical information (Koch & Segev, 1989; 

MacGregor, 1987). These models are generally not aimed at neural network 

building, but at accurately simulating the behaviour of single neurons. Other 

models are more conceptual and depict the condition of a neuron by a real 

number, termed its activation, in the absence of any molecular consideration 

(Rosenblatt, 1962; Rumelhart & McClelland, 1986). From these types of models, 

it is simpler to create a network and to deduce a learning algorithm for it. The 

most famous neural-model is the sigmoid unit (Rumelhart & McClelland, 1986), 
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depicted in Figure 2.2. In this model, the output or stimulation of a neuron is 

assigned a single variable, generally between 0 and 1. The synapse bridging the 

two neurons is modelled by a weight variable describing the magnitude of the 

influence on the postsynaptic neuron. These weights may be positive (denoting an 

excitatory synapse) or negative (inhibitory synapse). The capacity of the sigmoid 

neuron is obtained by summing the weighted ejecting rates of its presynaptic 

neurons. From this potential, the activation is calculated by an activation function.  

 

Figure 2.2: Sigmoid Unit (Neural Model) 

 

The primary functioning steps of a sigmoid unit are addition of its input and its 

stimulation. The productivity of neuron   is weighted by the synapse linking 

neuron i to its adjoining neuron j, determined as the weighted input      . The 

capacity ui is obtained by summing all j neuron inputs; then the activation    is 

computed from the sigmoid function F(·). The sigmoid neuron is named after the 

sigmoidal form of its stimulation function, as shown in Figure 2.2 for neuron  . 

The stimulation variable in this model is the rate at which the neuron ejects its 
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spikes; i.e., the number of spikes in a specific time window. This has long been 

considered as the only information shared between two biological neurons (Fred 

Rieke, Warland, Rob, & Bialek, 1997). The neural code of the neural-network is 

known as the firing rate. Researchers argued that the firing rate cannot be the sole 

neural code. Psychological experiments have shown that some neural processing 

is too quick to be modelled by this type of calculation (Thorpe, Delorme, & Van 

Rullen, 2001). 

 

Real neurons could not have computed the average number of spikes in such a 

short time period. Numerous neurobiological studies have determined another 

type of neural-code (Fred Rieke et al., 1997);  accurately timed spikes. In this 

scenario, information passed from neuron to neuron is not encoded in the ejecting 

rate of the spikes, but in their accurate timing, leading to high speed neural 

processing. Spiking neural networks (SNN) (also pulse-coupled or integrate-and-

fire networks) are comprehensive models which utilize this neural-code of 

accurately timed spikes (W. Gerstner & Kistler, 2002). The input and output of a 

spiking neuron is exhibited by a sequence of ejecting times known as a spike-

train. A spiking train is illustrated diagrammatically in Figure 2.3. The ejecting 

time is depicted by the vertical bars. 

 

A single ejecting time is the time at which a neuron has released a pulse. 

Additional pulses of the same form are ignored, since the pulses emitted by a 

specific type of neuron appear similar. The capacity of a spiking neuron is 
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expressed as an active variable and operates as a leaky integrator of the receiving 

spikes: newer spikes exert stronger influence over the potential than the older 

spikes. If this addition exceeds a predefined threshold, the neuron ejects a spike. 

SNN also accounts for the refractory interlude and synaptic interval. 

Consequently, an SNN is a dynamic system, unlike sigmoid neural networks, 

enabling time-dependent calculations in a very natural manner. 

 

 

 

Figure 2.3: Schematic of Spiking Neurons 

 

2.1.3 Hodgkin Huxley model 

Most of the SNN models have been well explained by Gerstner and Kistler 

(2002). The Hodgkin Huxley model, introduced by Hodgkin and Huxley in 1952, 

is based on their experiment on squid giant axons. They discovered the presence 

of three ion channels in a neuron; sodium, potassium and a leakage channel. The 

Hodgkin Huxley model is a complex model which simulates the role of ionic 

mechanisms in calculation and propagation of the potential in the neurons. 
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Figure 2.4: Electrical Circuit of the Hodgkin- Huxley model (Gerstner & Kistler, 

2002) 

 

The membrane potential Iion is calculated in the standard Hodgkin - Huxley model 

as: 
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where NAG , KG and LG  denote sodium, potassium and a leakage channel 

respectively, while NAE , KE  and LE are constants called reversed potentials. 

Blockage of a channel is controlled by the additional variables m and n for the 

aN channel and h for the K channel.  and  are empirical functions of mV  chosen 

to fit the data of the huge squid axon. Although this model is commonly used to 

estimate the parameters of a neural ionic channel, it also has some disadvantages 

resulting from the approximations required. 

 

2.1.4 Izhikevich model  

In 2003, Izhikevich proposed a simple spiking model which combines the 

biological credibility of the Hodgkin-Huxley model with the computational 

competency of integrate and fire models (Izhikevich, 2003). The Izhikevich model 

defines four parameters (a, b, c, d) which reproduce spike bursting behaviour. A 

further two variables ( v and u ) represent respectively the membrane capacity 

(post synaptic potential: PSP) and reset potential, which accounts for the 

potassium ion activation and sodium ion deactivation. This model encapsulates 

many biophysically accurate Hodgkin–Huxley-type neural models in the 

following formula: 

 

Iuvv
dt

dv
 140504.0 2

 
where )( uvba

dt

du
                  (2.5) 
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Reset potential after-spike: 










duu

cv
thenmVvif 30                     (2.6) 

 

After the spike reaches the threshold (30 mV), the membrane voltage ( v ) and the 

recovery variable ( u ) are rearranged according to equation (2.6).  

 

 

 

 

Figure 2.5: The Dynamics of the Izhikevich Model (Izhikevich, 2003) 
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The equation describing membrane potential dynamics,

Iuvv
dt

dv
 140504.0 2

, is sometimes regarded as a quadratic 

integrate. It governs the firing of a neuron and is activated by installing the spike, 

thus commencing the dynamics of a cortical neuron. The reset u  is between -60 

and -70 mV depending on the value of b. In imitation of biological neurons, the 

threshold is not fixed, but is allowed to vary between -55 and -40 mV.  The 

parameter a (typically 0.02) sets the time scale ofu , b (also 0.02) describes the 

sensitivity of u  to v , while c  and d  influence the value of v  after spiking by 

altering the settings of the factors a, b, c and d, different neural characteristics can 

be modelled.  

 

2.1.5 Leaky Integrate and Fire Model (LIF) 

The Leaky Integrate and Fire (LIF) model is also comprehensively described in 

Gerstner and Kistler (2002). In this model, a neuron is considered as an electrical 

circuit and the current potential is calculated by an appropriate equation. 

Conceptually, the LIF model is typified by an electrical circuit as shown in Figure 

2.6, comprising a capacitor C in parallel with a resistor R through which a current 

I (t) flows. The current I (t) splits into two components, IR and IC. The IR flows 

through the linear resistor R while the current IC charges the capacitor C. IR is 

computed from Ohm's law as IR = u/R. IC = q/u (where q is the charge and u the 

voltage), The current across the capacitor increases with time as 
dt

du
CIC  .  
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Figure 2.6: Leaky Integrate and Fire Model (Gerstner & Kistler, 2002) 

 

The current )(tI can be divided into two components, RC IItI )( . CI
 
charges 

the capacitor C  and RI  passes through the resistor R . Using the Ohm's law, 

uqC / where q is the charge, u  is the voltage and RuI R / , the capacitive 

current 
dt

du
CIC  , therefore:  

 

dt

du
C

R

tu
tI 

)(
)(                                   (2.7) 

 

Multiplying equation (2.7) by R and defining the time constant of the leaky 

integrator as RCTm  , we  obtain the formulation of the LIF model: 

)()( tRItu
dt

du
Tm                        (2.8) 

 



 

 
 

28 

u  refers to the membrane capacity and mT  is the time constant of the neural 

membrane. When the membrane capacity reaches the firing threshold, the neuron 

spikes and the membrane potential is reset to its resting potential. The LIF and 

Izhikevich models differ in their treatment of the threshold; in the former it is 

fixed whereas in the latter it fluctuates. LIF is more computationally efficient than 

Izhikevich, however, because it contains fewer biological parameters. Since LIF is 

simple as well as computationally efficient, it can be applied to large networks. 

 

2.1.6 Probabilistic Spiking Neural Model (pSNM) 

This model, suggested by Kasabov (Kasabov, 2010),  is diagrammatically 

presented in Figure 2.7.  In pSNM, a neuron (nj) receives input spikes from a pre-

synaptic neuron ni(i=1,2,…,m). The state of the neuron nj is the sum of the inputs 

received from each of the m synapses – the postsynaptic potential, PSPj(t). When 

PSPj(t) reaches the firing threshold j(t), neuron nj fires, i.e. releases a spike. 

The linked synapses are associated with connection weights (wi,j , i=1,2,...,m), 

formed during learning from Thorpe’s rule: )(

, mod iorder

jiw  , where mod is 

a modulation aspect (a constraint value between 0 and 1) and order(i) is the 

sequence in which the spike from neuron ni reaches the synapse si,j  relative to the 

spike entrance from other neurons, after neuron nj has ejected a spike. Thorpe’s 

rule is a quick learning rule that requires data to be broadcasted once only.  
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Figure 2.7: Probabilistic Spiking Neural Model 

 

Supplementary to the connection weights wi,j (t), the pSNM has three new 

probabilistic constraints. First is a probability parameter pci,j(t) denoting the 

likelihood that a spike ejected from neuron ni will reach neuron nj at a time t at the 

synapse si,j through connecting the two neurons. The probability constraint models 

the structural and functional integrity of each neural connection. If pci,j(t)=0, no 

connection exists and no spike is broadcast.  

Secondly, a probability parameter psi,j(t) is added to  the PSPj(t) of synapse si,j 

once the synapse has obtained a spike from neuron ni. In future investigations, we 

will assume that the default state of psi,j =1 (i=1,..,m). The final probability 

parameter, pj(t), denotes the probability that neuron nj t outputs a spike at time t , 

once the total PSPj(t) has attained a value close to the PSP threshold. The PSPj(t) 

is now calculated as:  

 

    ( )  ∑ ∑    (     (   ))  (     (   )) 
   

 
        ( )   (    ) (2.9) 

𝑛𝑖 𝑛𝑗 

𝑃𝑖(𝑡) 

𝑃 𝑐 𝑖𝑗(𝑡) 

𝑃 𝑠 𝑖𝑗(𝑡)  𝑊 𝑖𝑗(𝑡) 

𝑃𝑗(𝑡) 
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where  ei is 1 if a spike has been ejected from neuron ni, and 0 otherwise;  g(pci,j(t)) 

is 1 with probability pci,j(t), and 0 otherwise;  f(psi.j(t)) is 1 with probability psi,j(t), 

and 0 otherwise; t0 is the time of the last spike ejected by nj; η(t-t0) is a 

supplementary expression representing degeneration in the PSP. The pSNM is 

simplified when all or few of the probability parameters are set to “1”.   

 

Other PSNM models proposed in terms of probabilistic dynamic synaptic 

weighting include the Maass Model (Maass et al., 2002), which incorporates a 

parameter equivalent to psi,j(t) in Kasabov’s model. 

 

2.2 Coding of information for neuro-computation 

This section addresses a fundamental question in Neuroscience, the code used by 

neurons to transfer information. Is it possible for an external observer to read and 

understand neural activity? Traditionally, there are two main theories of neural 

encoding – pulse codes and rate codes. Both theories are discussed below. 

 

2.2.1 Pulse codes 

The first type of neural encoding is referred to as a spike or pulse code. These 

codes assume the precise spike time as the carrier of information between 

neurons. Evidence for temporal correlations between spikes has been shown 

through computer simulations (see, for example,  (Legenstein, Naeger, & Maass, 

2005) using integrate-and-fire models, as well as through biological experiments, 

such as electrophysiological recordings and staining procedures (Nawrot, 
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Schnepel, Aertsen, & Boucsein, 2009), and  the in vivo measurements described in 

(Villa, Tetko, Hyland, & Najem, 1999), in which spatio-temporal patterns of 

neural activity are used to predict the behavioural responses of rats.  

 

A pulse code based on the timing of the first spike following a reference signal is 

discussed  (Simon Thorpe & Jacques Gautrais, 1998). This encoding is known as 

time-to-first-spike. It was argued that each neuron has time to emit only a few 

spikes that can contribute to the overall processing of a stimulus. It was further 

shown (Thorpe et al., 2001) that a new stimulus is processed within 20 to 50ms of 

its onset. Thus, earlier spikes carry most of the information contained in the 

stimulus. The Thorpe model, which emphasises the importance of early spikes, 

has been discussed in section 2.3.4.1. 

 

Other pulse codes consider correlation and synchrony to be important. Neurons 

that represent a similar concept, object or label are “labelled” by firing 

synchronously (von der Malsburg, 1983). More generally, any accurate 

spatiotemporal pulse prototype is potentially significant and may encode 

particular information. Neurons that fire with a certain relative time delay may 

signify a certain stimulus. This concept is central to the so-called rank order 

population encoding presented in section 2.6.1. Additional information on neural 

encoding can be found in the book (Fred Rieke et al., 1997). 

 

2.2.2 Rate codes 
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The second theory assumes that the mean ejecting rate of a neuron carries most, if 

not all, of the transmitted information. These codes are referred to as rate codes 

and have inspired the classical perceptron approaches. The mean firing rate   is 

usually taken as the ratio of the average number of spikes     observed over a 

specific time interval   and   itself:  

 

  
   

 
                                                                                                              (2.10) 

 

This concept has been especially successful in the context of sensory or motor 

neural systems. In a pioneering study, Adrian found a direct connection between 

the ejecting rate of stretch receptor neurons and the applied force in the muscles of 

frog legs (Adrian, 1926). Nevertheless, the idea of a mean firing rate has been 

repeatedly criticised (F. Rieke, Warland, van Steveninck, & Bialek, 1999). The 

main argument is the comparably slow transmission of information from one 

neuron to another, since each neuron must integrate the spike activity of pre-

synaptic neurons at least over time  . Especially, the extremely short response 

times of the brain for certain stimuli cannot be explained by the temporal 

averaging of spikes. For example, Thorpe et al. (1996) reported that the human 

brain can recognise a visual stimulus in approximately 150ms. Since a moderate 

number of neural layers are involved in the processing of visual stimuli, if every 

layer had to wait a period   to receive the information from the previous layer, the 

recognition time would be much extended. 
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An alternative interpretation defines the mean firing rate as the average spike 

activity over a population of neurons. The principle of this interpretation is 

explained in Figure 2.8. A post-synaptic neuron receives stimulating inputs in the 

form of spikes emitted by a population of pre-synaptic neurons. This population 

produces a  spike activity  , defined as the fraction of neurons being active within 

a short interval          divided by the population size   and the time period    

(W. Gerstner & Kistler, 2002). 

  

  
 

  
 

    (      )

 
                                                                                          (2.11) 

 

A neuron attains input spikes from a population of pre-synaptic neurons 

producing a certain activity  . The activity is defined as the fraction of neurons 

being active within a short interval        , divided by the population size 

  and the time period    (W. Gerstner & Kistler, 2002). 

 

Figure 2.8: Pre-synaptic Neurons (Gerstner &Kistler, 2002) 
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Here,     (      ) denotes the number of active neurons in interval          

and   is the total number of neurons in the population. The activity of a 

population may vary rapidly, enabling fast responses of the neurons to changing 

stimuli (Wulfram  Gerstner, 2000) and (Brunel, Chance, Fourcaud, & Abbott, 

2001). 

 

2.3 Learning Rules 

This section presents some typical learning methods including spiking neural 

network architectures, which are related to particular learning rules, in the context 

of spiking neurons. Diverse problems weaken the development of learning 

procedures for SNN. The precise time reliance causes asynchronous information 

inputs that often require complicated software and/or hardware applications before 

the neural network can function. The repeated network topologies typically used 

in SNN preclude the creation of an uncomplicated learning method such as back-

propagation using MLP. Similar to traditional neural networks, three different 

learning paradigms can be distinguished in SNN, namely, unsupervised, 

reinforcement and supervised learning. Reinforcement learning in SNN is 

probably the least common of the three. Some algorithms have been successfully 

applied to robotics (R. V. Florian, 2005), as well as being theoretically analysed 

(Z. V. Florian, 2007), (Seung & Hughes, 2003) and (Xie & Seung, 2003). 

Unsupervised learning in the form of Hebbian learning is the most biologically 

realistic learning scenario (Cooper, 2005). The so-called Spike-Timing Dependent 

Plasticity (STDP) belongs to this category and is discussed in the next section. 
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Supervised techniques impose a certain input-output mapping on the network 

which is essential in SNN practical applications. Two supervised learning 

methods are discussed in greater detail in following sections. The learning 

algorithm employed in the eSNN architecture is discussed separately in section 

2.6.2. An excellent comparison between supervised learning methods developed 

for SNN can be found in (Ponulak & Kasiski, 2010). 

 

2.3.1 Spike-Timing Dependent Plasticity (STDP) 

The concept of spike-timing dependent plasticity was inspired by the experiments 

of Donald O. Hebb, published in his famous book “The Organisation of 

Behaviour” (Hebb, 1949). His essential postulate is often referred to as Hebb’s 

Law: 

 

“When an axon of cell A is near enough to excite cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A’s efficiency, as one of the cells firing B, is 

increased.” 

 

The first experimental evidence of Hebb’s postulate was published twenty years 

later in (T. V. Bliss & Lomo, 1970) and (T. Bliss & Lomo, 1973). Today, the 

change of synaptic efficacy in the brain is known to be correlated with the timing 

of pre- and post-synaptic activity of a neuron (Bell, Han, Sugawara, & Grant, 

1999; Bi & Poo, 2001; Markram, Lübke, Frotscher, & Sakmann, 1997). 
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Reinforcement or decline in synaptic efficacy is known as long-term potentiation 

(LTP) or long-term depression (LTD), respectively. STDP is described by a 

function  (          ) that determines the fractional change of the synaptic 

weight in terms of the difference between the arrival time     of a pre-synaptic 

spike and the time       of an activity emitted by the neuron. Function   is also 

known as the STDP window.   is typically expressed as: 

 

 (          )  {
     (

          

  
)                 

     ( 
          

  
)                 

                           (2.12) 

 

where parameters    and   delineate the temporal range of the pre- and 

postsynaptic time interval, while    and   denote the maximum fractions of 

synaptic modification, at           close to zero. Figure 2.9 presents the STDP 

window   generated by Equation 2.12. 

 

The parameters   ,   ,    and    can be adjusted to suit the neuron of interest. 

The window W is usually temporally asymmetric (      and      ), but 

exceptions exist. For instance, the synapses of layer 4 spiny-stellate neurons in the 

rat barrel cortex appear to have a symmetric window  (Egger et al., 1999). 

 

The dynamics of synaptic pruning consequential to the STDP learning rule have 

been investigated (J. Iglesias, Eriksson, Grize, Tomassini, & Villa, 2006). 
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Figure 2.9: STDP Learning Window   (Egger, Feldmeyer, & Sakmann, 1999) 

 

Figure 2.9 was generated by setting    = 0.9,    = 0.75,    = 20, and    = 5 in 

Equation 2.12. 

  

Synaptic pruning is a generic feature of mammalian brain maturation, in which 

the embryonic nervous system is refined by removal of inappropriate synaptic 

connections between neurons, while preserving appropriate ones. Later studies 

extended this work by bringing apoptosis (genetically programmed cell death) 

into the analysis. The emergence of cell assemblies has been verified by 

identification of spatio-temporal patterns in the pruned network (Javier Iglesias & 
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Villa, 2006). More information on STDP can be found in the excellent review by 

(Bi & Poo, 2001) and in (Wulfram  Gerstner, 2000; W. Gerstner & Kistler, 2002; 

Kempter, Gerstner, & van Hemmen, 1999). 

 

2.3.2 Spike Back-Propagation (Spike-Prop) 

Traditional neural networks, like the multi-layer perceptron, usually adopt some 

form of gradient based descent, namely error back-propagation, to modify 

synaptic weights. This action results in a particular input-output representation of 

the network. However, the topological recurrence of SNNs and their explicit time 

dependence allow no straightforward evaluation of the gradient in the network. 

Special assumptions are required before back-propagation can be applied to 

spiking neurons. 

 

In (Bohte et al., 2002; Bohtem, Poutre, & Kok, 2000) a back-propagation 

algorithm called Spike-Prop is proposed, which is suitable for training SNN. 

Under this method, SNN learns a set of desired firing times   
  of all output 

neurons   for a given input pattern. Spike-Prop minimises the error  , defined as 

the squared difference between all network output times tout  and the desired 

output time   
 . 

 

  
 

 
∑ (  

      
 )

 

                                                                                          (2.13) 
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with respect to the weights    
 of each synaptic input: 

 

    
    

  

    
                                                                                                  (2.14) 

 

With   defining the learning rate of the update step.  

 

A limitation of the algorithm is that, like the Thorpe neural model presented in 

section 2.3.5.1, each neuron is allowed to fire once only. Consequently, the error 

function defined in Equation 2.13 depends entirely on the difference between 

actual and desired spike times, so that Spike-Prop is suitable only for time-to-first-

spike encoding. 

 

2.3.3 Remote Supervised Method (ReSuMe) 

Here we discuss the Remote Supervised Method (ReSuMe) introduced in 2010 by 

Ponulak & Kasiski. ReSuMe aims to enforce a required input-output spike pattern 

on a SNN, i.e. to produce target spike trains in reaction to a given input stimulus. 

This approach is based on the STDP learning windows presented in section 2.3.1. 

The synaptic weights are balanced by two opposite update rules. Additional 

teacher neurons, which remotely supervise the evolution of the synaptic weight, 

are assigned to each synapse. The teacher neuron is not explicitly connected to the 

network, but generates a reference spike signal by which connection weight is 
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updated in a STDP-like fashion. The post-synaptic neuron, whose activity is 

influenced by the weight update, is termed the learning neuron. 

 

The synaptic change depends on the correlation of spike activities between input, 

teaching and learning neurons. Figure 2.10 illustrates the ReSuMe principle of 

organized learning in spiking neural networks (Ponulak & Kasiski, 2010),which 

regards spiking neural networks as a readout function of LSM.  Let   
 denote the 

learning neuron receiving spike sequences from a pre-synaptic neuron   
  ( ) with 

corresponding synaptic weight    , and let neuron   ( ) be the teacher for weight 

   . If input neuron   
  ( ) emits a spike which is followed by a spike of the 

teacher neuron   ( ), the synaptic weight     is increased. On the other hand, if 

  
  ( ) spikes before the learning neuron   

  is activated, the synaptic weight is 

decreased. The amplitude of the synaptic change is determined by two functions 

  (  ) and   (  ), where   is the temporal variance between the spike times of 

teacher neuron and input neuron, while   describes the difference between the 

spike times of learning neuron and input neuron. Thus, the precise time difference 

of spiking activity defines the strength of the synaptic change. 

 

Figure 2.10 illustrates the principle of organized learning in spiking neural 

networks, namely ReSuMe (Ponulak & Kasiski, 2010) which is an example of 

spiking neural networks as a readout function of LSM.  Let   
 denote the learning 

neuron which receives spike sequences from pre-synaptic neuron   
  ( ), the 
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correspondingsynaptic weight being    and neuron   ( ) being the teacher for 

weight    . If input neuron   
  ( ) emits a spike which is followed by a spike of 

the teacher neuron   ( ), the synaptic weight    is increased. On the other hand, 

if   
  ( )spikes before the learning neuron   

  is activated, the synaptic weight is 

decreased. The amplitude of the synaptic change is determined by two functions 

  (  ) and   (  ), where   is the temporal variance between the spike times of 

teacher neuron and input neuron, while   describes the difference between the 

spike times of learning neuron and input neuron. Thus, the precise time difference 

of spiking activity defines the strength of the synaptic change. 

 

 

 

Figure 2.10: The Remote Supervised Method (ReSuMe) Approach  (Ponulak & Kasiski, 

2010) 

 

 

2.3.4 The Fusi’s spike driven synaptic plasticity (SDSP) learning rule 
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The SDSP, a modification of STDP (Song, Miller, Abbott, & others, 2000) which 

has been described as an unsupervised learning method (Fusi, Annunziato, 

Badoni, Salamon, & Amit, 2000). SDSP models the synaptic plasticity Vw0 of a 

synapse w0 contingent at the time of spiking of the pre-synaptic and post-synaptic 

neurons. Vw0 rises or reduces depending on the comparative timing of the pre and 

post synaptic spikes.  

When a pre-synaptic spike reaches the synaptic station before a postsynaptic spike 

within a specified time window, the synaptic efficiency is enhanced. If the post-

synaptic spike is ejected immediately after the pre-synaptic spike, synaptic 

efficiency is reduced. This plastic synaptic efficiency is embodied in the following 

equations: 

 

spk
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postpot

w t
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iftpre<tpost                                                                                                            (2.15)  
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0

iftpost<tpre                                                                                                        (2.16)  

 

where Δtspk  is the pre and post synaptic spike time window. 

 

The SDSP rule can be applied to a supervised learning algorithm, when a trainer 

signal imitating the required output spiking order is inserted together with the 

training spike pattern, but without any alteration of the trainer input weights. In a 

study by Brader and colleagues (2007), a SDSP-driven SNN learned to recognise 
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293 characters (classes). Each character (a static image) was encoded as a 2000 bit 

feature vector, and each bit was transformed into a spike rate, with binary values 0 

and 1 corresponding to 0 Hz and 50 Hz, respectively (Brader et al., 2007). For 

each class, 20 distinct training designs were utilized and 20 neurons were 

assigned, one for each pattern, and trained for hundreds of reiterations. The SDSP 

model is implemented in the INI analogue SNN silicon chip (Indiveri et al., 2011). 

The silicon synapses are composed of bi-stability circuits that assign a synaptic 

weight to one of two likely analogue values (either increased or decreased). These 

circuits push the synaptic weight voltage by a positive or negative current 

superimposed on that produced by the STDP. Within a short time frame, the 

synaptic weight is increased above a set threshold by the network activity via the 

STDP learning mechanism. The bi-stability circuits generate a constant weak 

positive activity. In the absence of a current (and also in the learning phase) this 

background current will drive the weight toward its potentiated state. If the STDP 

decreases the synaptic weight below the threshold, the bi-stability circuits 

generate a negative current that inhibits spiking activity and vigorously drives the 

weight toward its analogue value. The synapse is now in a depressed state. The 

STDP and bi-stability circuits simplify the simulation of both long term and short 

term memory.  

Although SDSP is effective at identifying generally static patterns, the potential of 

the SDSP SNN model and its accompanying hardware has not been completely 

investigated in spatiotemporal pattern recognition, particularly in fast on-line 

learning.  
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2.3.5 Evolving Spiking Neural Networks 

In this section, the encoding principle used in the eSNN and Thope models 

(Thorpe et al., 2001) are presented, followed by a description of the one-pass 

learning method and the overall functioning of the eSNN method.  

 

2.3.5.1 Thorpe model 

The Thorpe model is a simplified Integrate and Fire spiking neural model (Thorpe 

et al., 2001). The model adopts the LIF concept but simplifies the leaky operation 

of the computational neuron. The potential of a given neuron is either disabled or 

reset to the level at which it fires a spike. In this model, each neuron is allowed to 

fire once before being disabled. Because of its low computational cost and 

efficiency, this model has become the most widely used ( Kasabov 2007; Schliebs, 

Defoin-Platel, Worner, & Kasabov, 2009; Wysoski, Benuskova, & Kasabov, 

2010). 

 

2.3.5.2 Population encoding 

Population Coding (POC) is a well-known -spike encoding technique initially 

proposed by Thorpe and Gautrais (S. Thorpe & J. Gautrais, 1998), and fully 

proposed by Bohtem (Bohtem et al., 2000). A single input is distributed to 

multiple input neurons. In POC, each input neuron is associated with a particular 

spike time. The firing time of input neuron i is computed by engaging conjoint 

Gaussian functions in which the centre and the width are calculated from 

Equations 2.17 and 2.18 respectively, within the variable interlude [Imin, Imax]. The 
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width of each Gaussian receptive field is controlled by the parameter β. The POC 

process, proposed in 2009 (Schliebs et al., 2009), is illustrated in Figure 2.11. 

 

)2/()(*2/)3*2( minmaxmin  MIIiI                    (2.17) 

)2/()(/1 minmax  MII where 21       (2.18) 

 

For an input value of 0.75, (thick vertical line in top figure) the intersections with 

each Gaussian are calculated (triangles), which are then interpreted into spike time 

intervals.(Schliebs et al., 2009). 

 

Figure 2.11: Population Encoding Based on Gaussian Receptive Fields (Schliebs et al., 2009) 

 

2.3.5.3 One-Pass Learning 
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The aim of this learning method is to create output neurons, each labelled with a 

certain class label    . The number and value of class labels depends on the 

classification problem of interest. L denotes the set of class labels of the given 

data set. Following presentation of a specified input sample to the network, the 

corresponding spike train is propagated through the SNN, triggering a subset of 

output neurons to fire. It is possible that no output neuron is activated and the 

network remains silent. In this case, the classification result is undetermined. If 

one or more output neurons have emitted a spike, the neuron with the shortest 

response time (earliest spike time) determines the classification. The label of this 

neuron is then the classification result for the presented input sample. 

 

During training, the learning algorithm consecutively forms a repository of 

proficient output neurons. For every class label     an individual repository is 

evolved. For each training sample i with class label    , a new output neuron is 

created and is fully linked to the previous layer of neurons, resulting in a real-

valued weight vector  ( ), with   
( )

    denoting the connection between the 

pre-synaptic neuron j and the created neuron  . In the next step, the input spikes 

are propagated through the network and the value of weight   
( )

is computed 

according to the order of spike transmission through a synapse  : 

 

  
( )

 (  )
     ( )                                                                (2.19) 
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The parameter    is the modulation factor of the Thorpe neural model. 

Differently labelled output neurons may have different modulation factors   . 

The function      ( ) reflects the position of the spike produced by neuron j. For 

instance,       ( ) is assigned a rank of zero if neuron   is the foremost arrival of 

all spiking pre-synaptic neurons of  . In the same way, the spikes of all pre-

synaptic neurons are positioned prior to weighting.  

 

The firing threshold  ( ) of the created neuron   is defined as some fraction 

           , of the maximal possible potential     
( )

: 

  

 ( )        
( )

                                                                                                    (2.20) 

    
( )

  ∑   
( )(  )

     ( )
                                                                             (2.21) 

 

The fraction    is a parameter of the model and can be separately specified for 

each class label    . The weight vector of the proficient neuron is then 

compared to those of neurons that are already in the repository. If the minimal 

Euclidean distance between the weight vectors of neuron   and an existing neuron 

  is smaller than a specified similarity threshold    , the two neurons are 

considered too similar to be treated individually, and their firing thresholds and 

weight vectors are merged according to: 
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( )

 
  
( )
    

( )

 ( )   ( )

   

                                                                   (2.22) 

 ( )  
 ( )   ( )

   
                                                                                               (2.23) 

 

Integer   denotes the number of samples previously used to update neuron  . The 

merging process involves the (continuing) average of the connection weights, and 

the (continuing) average of the two ejecting thresholds. Following merging, the 

trained neuron   is discarded and the next sample processed. If no other neuron in 

the repository is similar to the trained neuron  , that neuron is added to the 

repository as the latest output neuron. 

 

Figure 2.12 illustrates the architecture of the evolving Spiking Neural Network 

architecture (eSNN). Real-valued vector elements are transformed into the time 

domain via rank order population encoding founded on Gaussian receptive fields. 

As a result of this transformation, input neurons eject spikes at pre-defined firing 

times, inciting the one-pass learning algorithm of the Spiking Neural Network 

architecture. The learning iteratively generates a repository of output neurons for 

each separate class. The developing nature of the network enables accretion of 

knowledge as it becomes available, without the need to re-train with previously 

learnt samples. 
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Figure 2.12: Architecture of Evolving Spiking Neural Network architecture (eSNN) (Schliebs 

et al., 2009) 

 

2.4 Conclusion 

The eSNN architecture exhibits a rapid one-pass learning mechanism; however, 

some further require further consideration. 

Firstly, eSNN commonly employs the Thorpe Model (Thorpe et al., 2001), which 

includes the least number of biological activities and which behaves similarly to a 

summation function. Hence, satisfactory classification is achieved only when a 

number of neural and learning parameters have been selected appropriately. 

Configuring these parameters can quickly become a challenging task, since the 

influence of each parameter must usually be precisely known. Parameters that are 

linked to other parameters should not be chosen independently. For example, 

modifying the modulation factor of the Thorpe neural model should also involve 

careful choice of the firing threshold. A small modulation factor significantly 
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increases the sensitivity of the neuron to the input, thus the threshold has to be 

adapted accordingly to prevent the neuron from becoming over-specialised for a 

certain input. The situation is complicated further when many class labels exist, 

since the number of parameters increases linearly with number of classes. All of 

the above–mentioned examples require a careful manual tuning of the eSNN 

parameters (Schliebs et al., 2009; Wysoski et al., 2010). 

 

Secondly, the importance of rank order coding in eSNN cannot be over-

emphasised. Population encoding, in which information is basically encoded 

vector by vector, increases the number of inputs to eSNN, to the extent that eSNN 

must process more data than are originally input. Thus, population encoding is not 

suitable for massive spatio-temporal datasets. 

 

Furthermore, the above–cited studies used standard eSNN, which has limited 

structure-evolving efficacy and is therefore of reduced functionality during a 

learning process.  New types of SNN have been recently proposed in (Kasabov, 

2010), which offer more flexible neural functioning and connectivity. These new 

algorithms are termed probabilistic SNN (pSNN).  

 

The Spiking Neural Network architecture classifier maps a single data vector to a 

particular class label. This behaviour is appropriate for the categorizing of time-

invariant data. However, most current data volumes are updated continuously, 

imposing an additional time dimension on the data sets. The categorizing of 
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spatio-temporal patterns remains a major challenge in data mining approaches. 

Most of the data vectors are successively input to an algorithm which determines 

the mapping of this succession to a particular class label. In its present form, 

Spiking Neural Network architecture does not permit categorization of spatial 

time-based data. 

 

Hence, this study addresses the following issues: 

- Exploration and development of new probabilistic spiking neural models 

(Chapter 3 and research question 1)  

- An extension of the new Spiking Neural Network architecture is 

suggested that permits the technique to acquire spatiotemporal 

knowledge. A supplementary layer is inserted into the network 

architecture that converts the spatio-temporal input prototype into a 

single high-dimensional network condition using the latest reservoir 

computing paradigm, termed Liquid State Machine (LSM). This 

intermediate condition is then assigned a required class label by the 

original one-pass learning algorithm of Spiking Neural Network 

architecture (Chapters 5 and 6, research question 3). 

- Exploration and development of new learning rules, including a novel 

one-pass learning algorithm for spatio-temporal patterns recognition 

processing (Chapter 6, research question 2). 
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- Exploration of a suitable encoding method for spatio-temporal patterns 

recognition processing, especially human EEG data (Chapter 8, partial 

of research question 4). 

- Evaluation of proposed methods for further development of EEG spatio-

temporal patterns recognition processing and brain-computer interface 

(Chapter 10 and 11, research question 4, 5 and 6). 

 

 

 

  

 

 

 

 

 



 
 

Chapter 3 

Novel Stochastic Spiking Neural Models 

 

This chapter introduces three new Models of Spiking Neural Networks inspired 

by the probabilistic spiking neural model proposed in 2010 (Kasabov, 2010). 

Section 3.1 includes relevant background and motivation for developing the 

models.  

Corresponding to the first research question, the contributions involve three novel 

Stochastic Spiking Neural Models, namely; Noisy Reset (NR), Step-Wise Noisy 

Threshold (ST) and Continuous Stochastic Threshold (CT), the stochastic models 

of this chapter also has been shared to international neural network community in 

2010 (Nuntalid, Schliebs, & Kasabov, 2010). The details of each stochastic model 

are presented in sections 3.1.1- 3.1.3. Section 3.2 concludes the chapter.  

 

3.1 Stochastic Spiking Neural Models 

Spiking neural models (SNM) differ in their biological parameters and 

implementation cost. Figure 3.1 illustrates the recreated figure of the quality-cost 

tradeoff between various SNMs that inspired by Izhikevich in 2003 (Izhikevich, 

2003).  After 2003 most development in this area has been mainly focused on as 

the following: 
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-  dynamicity of synapses (Bi & Poo, 2001; Brunel, Chance, Fourcaud, 

& Abbott, 2001; Gerstner & Kistler, 2002; Indiveri & Horiuchi, 2011; 

Indiveri et al., 2011; Izhikevich & Edelman, 2008; Kasabov, 2010; 

Maass, Natschläger, & Markram, 2002; Maass et al., 2004; Maass & 

Zador, 1999; Markram, Lübke, Frotscher, & Sakmann, 1997; Pecevski, 

Natschläger, & Schuch, 2009; Seung & Hughes, 2003). 

 

- hardware implementation (Delbruck, 2007; Faiña, Bellas, Souto, & 

Duro, 2011; Indiveri & Horiuchi, 2011; Indiveri et al., 2011; Lalor et 

al., 2005; Misra & Saha, 2010; Schrauwen, D'Haene, Verstraeten, & 

Campenhout, 2008; Van Schaik & Liu, 2005). 

 

- Learning rules/architecture and optimization related learning 

mechanism (Brader, Senn, & Fusi, 2007; Cooper, 2005; Dhoble, 

Nuntalid, Indiveri, & Kasabov, 2012; Florian, 2005; Ghosh-Dastidar & 

Adeli, 2009; Hamed, Kasabov, & Shamsuddin, 2012; Iglesias, 

Eriksson, Grize, Tomassini, & Villa, 2006; J. Iglesias & A. E. P. Villa, 

2006; J. Iglesias & A. P. Villa, 2006; Izhikevich & Edelman, 2008; 

Kasabov, 2007; Kasabov, 2012a, 2012b; Kasabov, Dhoble, Nuntalid, 

& Indiveri, 2012; Kasabov, Dhoble, Nuntalid, & Mohemmed, 2011; 

Kasabov & Hu, 2010; Kasabov, Schliebs, & Kojima, 2011; 

Legenstein, Naeger, & Maass, 2005; Maass, Natschläger, & Markram, 

2004; Meng, Jin, & Yin, 2011; Mohemmed, Schliebs, & Kasabov, 
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2011; Mohemmed, Schliebs, Matsuda, & Kasabov, 2011; Nawrot, 

Schnepel, Aertsen, & Boucsein, 2009; Norton & Ventura, 2009; 

Nuntalid, Dhoble, & Kasabov, 2011; Ponulak & Kasiski, 2010; 

Schliebs, Defoin-Platel, Worner, & Kasabov, 2009; Schliebs, Nuntalid, 

& Kasabov, 2010; Schrauwen, Verstraeten, & Campenhout, 2007; 

Seung & Hughes, 2003; Toups, Fellous, Thomas, & Sejnowski, 2012; 

Xie & Seung, 2003; Yamazaki & Tanaka, 2007). 

 

From Figure 3.1, the y axis indicates the biological possibility (features and 

parameters) of the models, while the x axis indicates implementation cost. Models 

with fewer biological features (such as the Integrate-and-Fire model) demand 

much less processing time. By contrast, the Hodgkin-Huxley model mimics 

biological neurons with high accuracy but at prohibitive implementation cost. 

 

 

Figure 3.1: The flexibility of use of different SNM. 
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This thesis focuses on spatio-temporal pattern recognition on EEG data with 

potential applications to brain computer interface (BCI). BCI requires both fast 

processing and low implementation cost. To this end, we consider whether models 

such as Integrate-and-Fire model (IF) and Leaky Integrate-and-Fire model (LIF) 

can mimic the more realistic behaviors of the Hodgkin-Huxley model without 

compromising their implementation cost. An output of a Hodgkin-Huxley model, 

showing the evolution of simulated post synaptic potential, is depicted in Figure 

3.2.  The figure demonstrates that when a neuron receives an incoming spike, its 

membrane potential increases up to a threshold. When the threshold is reached, a 

neuron is fired and the potential drops to a (flexible) reset value. The flexibility in 

the reset potential of neurons leads to the visible difference between the LIF and 

Hodgkin-Huxley models. 

 

The activity shown in Figure 3.2 is also linked to the Kasabov model (Kasabov, 

2010), outlined in figure 2.7.  In this model, Pi(t) and Pj(t) define the probability 

of release associated with the threshold and reset potential of neurons i and j, 

respectively. 

 

Theoretical values of the probability parameters, determined by adding slow noise 

to the network, were proposed in 2002 by Gerstner and Kistler (W. Gerstner & 

Kistler, 2002). They explained that a completely different noisy model results if 

the value of a constraint is altered after every spike. This implies that constraints 

such as threshold, reset potential or the length of the refractory interlude can 
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provide this type of noise. Figure 3.3 shows membrane potential activity when 

noise is added to the threshold and reset potentials of a neural model. The noise 

forces these parameters to change every time a neuron fires. 

 

 

Figure 3.2: Evolution of membrane potentials in the Hodgkin-Huxley Model. The horizontal 

axis represents the number of time steps, while the vertical axis displays the membrane 

potential in mV. 

 

 

Figure 3.3: Slow noise in the probability parameters (W. Gerstner & Kistler, 2002) 
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With each neuron ejection, either the reset value (A) or the ejecting threshold (B) 

is set to a new randomly selected value. Hence, stochastic spiking neural models 

are a modification of standard LIF, which evolves according to equation 3.1, in 

which the threshold and reset potentials are modulated by a noise parameter. 

Stochastic LIF mimics the activity of biologically plausible SNM while 

maintaining low implementation cost.  

 

  
  

  
   ( )    ( )                                                                                       (3.1) 

 

In equation 3.1, u  refers to the membrane potential and m represents the 

membrane time constant of the neuron. Whenever the membrane capacity reaches 

the specified threshold, the neuron spikes and the membrane capacity is reset. 

This equation underpins the three stochastic models in sections 3.1.1, 3.1.2 and 

3.1.3. The outputs of these models are compared in Figure 3.4.  

 

Development of the post-synaptic potential u(t) and the ejecting threshold ϑ(t) 

over time (blue and red curves in figure 3.4, respectively) are recorded from a 

single neuron of each neural model. The input stimulus to the neurons is depicted 

at the top of the figure. The thick black vertical lines above the related threshold 

curve indicate the output spikes of each neuron. 
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Figure 3.4: Comparisons between stochastic versions of models based on equation 3.1 (see 

text for details). 

 

 

3.1.1 Stochastic Noisy Reset Model (NR) 

The stochastic noisy reset model modified from deterministic LIF inspired the 

concept of slow noise model (W. Gerstner & Kistler, 2002). An entirely different 

concept of noise models is possible whereby the value of a parameter is altered 

after each spike. In standard LIF, membrane potential always reverts to its reset 

potential resetu   (commonly equal to zero). In noisy reset mode, the reset potentials 

resetu are Gaussian distributed mean and standard deviation , as shown in the 

upper panel of Figure 3.4. 

The NR model replaces the deterministic reset potential of LIF with a stochastic 

equivalent. Let t(f) : u(t(f)) = ϑ be the firing time of a LIF neuron, after which the 

post-synaptic capacity is rearranged. N (μ, σ) is a Gaussian dispersed random 
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variable with mean μ and standard deviation σ. Variable σNR denotes a parameter 

of the model (equation 3.2). 

 

       ( )    ( )  ( )   (      )                                                                    (3.2) 

 

3.1.2 Stochastic Step-wise Noisy Threshold Model (ST) 

The stochastic step-wise noisy threshold model (ST) is similar to the NR model 

described in Section 3.1.1, but resetu is now fixed, while a new threshold value is 

chosen at each firing time step. 

This model replaces the constant ejecting threshold ϑ of the LIF model with a 

stochastic one. Again, let t(f) be the ejecting time of a LIF neuron. The dynamics 

of the threshold update are governed by equation 3.3. 

 

       ( )    ( )  ( )   (      )                                                                     (3.3) 

 

Variable σST is the standard deviation of ϑ(t) and is a constraint of the model. In 

equation 3.3, the threshold is a ϑ0-centered Gaussian random variable which is 

sampled whenever the neuron fires. This model does not permit immediate spike 

movement. Particularly, the neuron can only eject at time t(f) while 

simultaneously receiving a pre-synaptic input spike at t(f); without such a spur, a 

spike output is impossible. 



 

 
 

61 

3.1.3 Continuous Stochastic Threshold Model (CT) 

The Continuous Stochastic threshold (CT) model, inspired by the stochastic spike 

arrival model of the hazard model, was described by Gerstner and Kistler (W. 

Gerstner & Kistler, 2002).  In the CT model, the threshold ϑ(t) is revised 

continuously over time. Hence, this model permits immediate spike movement, 

that is; a neuron may eject at time t(f) even in the absence of a pre-synaptic input 

spike at t(f). The threshold is given by equation 3.4. 

 

  
  

  
     ( )     √    ( )                                                                  (3.4) 

 

The noise term  follows a Gaussian White Noise distribution with zero mean and 

unit standard deviation. Variable σCT denotes the standard deviation of the 

fluctuations of ϑ(t) and is a constraint of the model. ϑ(t) tends exponentially 

towards a mean value ϑ0 at rate τϑ, while the magnitude of ϑ(t) is always directly 

proportional to the distance ϑ0− ϑ(t). 

As is evident from equation 3.5, the CT model is of similar form to the stochastic 

LIF model. 

 

  
  

  
   ( )     √   ( )                                                                         (3.5) 
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u  refers to the membrane potential and m  is the membrane time constant of the 

neuron. 

 

3.2 Conclusion 

Although sophisticated spiking neural models (SNMs) such as the Hodgkin-

Huxley model can simulate realistic biological behaviours, they incur high 

implementation cost and processing time in spatiotemporal patterns recognition, 

especially on EEG data. This chapter introduced three stochastic modifications of 

the standard LIF model, in which threshold and reset potential are perturbed by a 

noise parameter. The stochastic LIF models can imitate the biologically plausible 

activity of SNMs while preserving the low implementation cost of standard LIF. 

In Chapters 6-11, the feasibilities and performances of the three stochastic models 

will be compared to those of the deterministic LIF model.   

 



 
 

Chapter 4 

SSPAN: Stochastic Precise-Time Spike 

Pattern Association Neuron 

 

In this chapter, the stochastic neural model for the precise-time Spike Pattern 

Association Neuron (SSPAN) is introduced. SSPAN is a modification of SPAN, 

designed for the precise-time spike pattern association neuron (Mohemmed, 

Schliebs, & Kasabov, 2011; Mohemmed, Schliebs, Matsuda, & Kasabov, 2011),  

 

The deterministic LIF model is replaced with the stochastic spiking neural models 

described in Chapter 3; namely, the NR, ST and CT models, and the amendment 

of architecture contributing to the decrease of training iterations. The above 

mentioned corresponds with the second research question. 

 

Section 4.1 introduces the original SPAN concept. SSPAN is detailed in Section 

4.2. Section 4.3 compares the feasibility and performance of SSPAN and original 

SPAN, in an experiment using a synthetic dataset. The chapter concludes with 

Section 4.4. 

 

4.1 SPAN: Precise-Time Spike Pattern Association Neuron 
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SPAN, precise-time spike pattern association neuron, was proposed in 2011 

(Mohemmed, Schliebs, & Kasabov, 2011; Mohemmed, Schliebs, Matsuda, et al., 

2011). SPAN aims to explore how a LIF neuron can memorize patterns. The spike 

trains are converted into analogue signals which are convolved with a kernel 

function into a continuous-value signal. This processing step enables standard 

subtraction and multiplication operations which can easily employ existing 

methods for developing supervised-learning rules in spiking neurons.  

The dynamics of SPAN are governed by Equation 4.1. Note the similarity of this 

equation to that of the LIF model (see Chapters 2 and 3 for a more detailed 

description of the LIF model). 

 

  
   

  
    ( )     

   
( )                                                                                (4.1) 

 

The ejecting times must be calculated. The synaptic current   
   

of neuron i is 

modelled using an α-kernel as shown in Equations 4.2 and 4.3. 

 

  
   ( )  ∑     ∑   (    

( )
)                                                                        (4.2) 

 ( )     
          ( )                                                                                    (4.3) 

 

wij is the synaptic weight denoting the strength of the connection between neuron i 

and its pre-synaptic neuron  j, Θ(t) in Equation 4.3 is the Heaviside function and τs 

is the synaptic time constant. Although spike trains are converted to continuous 
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values, the learning rule of SPAN can be defined as for other artificial neural 

networks using established training algorithms. The synaptic weights of SPAN are 

modified to create a required spike design. To modify the weight of a synapse I, 

the common Widrow-Hoff rule (Equation 4.4) is employed.  

   
      (       )                                                                                   (4.4) 

 

where λ is a learning rate whose value cannot exceed 1,    is the input transmitted 

via synapse  , and   and     denote the desired and actual output spike outputs, 

respectively. In defining the distance between spike trains, each spike train is 

convolved with the α-kernel function (Equation 4.3). The convolved input spike 

train   
( )

 is described by Equation 4.5. 

 

  ( )  ∑  (    
( )
)                                                                                        (4.5) 

 

The transformation from spikes to function permits the algorithm to subtract and 

multiply or calculate the difference between spike sequences. The desired spike 

output and actual spike output are determined by Equations 4.6 and 4.7, 

respectively. 

 

  ( )  ∑  (    
( )
)                                                                                       (4.6) 

    ( )  ∑  (      
( )

)                                                                                    (4.7) 
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    updates the weight of synapse i, and is  obtained by integrating    
  . 

 

     ∫  ( )(  ( )      ( ))                                                                  (4.8) 

 

In Figure 4.1, plots (D) and (E) are graphical illustrations of Equation 4.9. Three 

presented stimuli induce the three output spikes t0, t1 and t2.  t0 equals the required 

spike time t0
d
 in Figure 4.1 (C). An anomalous spike time will generate errors, as 

evidenced in Figure 4.1(D). This error will be incorporated into     via equation 

4.8, as shown in Figure 4.1(E). 

 

 

Figure 4.1: Demonstration of learning rule in SPAN(Mohemmed, Schliebs, & Kasabov, 

2011) 
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The error E between the desired and actual spike time, which equals the area 

under the horizontal axis in figure 4.1, is calculated from equation 4.9. 

 

  ∫   ( )      ( )                                                                                    (4.9) 

As the number of synapses increases, the SPAN can acquire more memory in the 

training process. Increasing the number of training iterations can also enhance the 

result, but at the cost of increased processing time.  

  

4.2 Stochastic Precise-time Spike Pattern Association Neuron (SSPAN) 

The deterministic LIF model is probably not be able to ill-equipped to deal with 

noisy and stochastic data such as EEG very well. Moreover, in the original SPAN, 

many synapses are required for multiple pattern recognition; especially when the 

patterns are spatiotemporal. SPAN adating a single neuron for patterns 

recognition may become problematic when few input streams arrive, activating a 

low number of synapses. Therefore, the main purposes of SSPAN are to: 

(1) Replace the deterministic LIF model by a stochastic neural model (NR, ST 

or CT), whose details are provided in Chapter 5. This may improve the 

performance of SPAN in handling noisy stochastic natural data, especially 

EEG. 

(2) Employ one output spiking neuron for each class instead of using a single 

neuron for all classes. This ensures that the more output neurons, the more 

synaptic weights. For instance, assume that 4 classes of EEG data exist 
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and that 19 channels are output. In this instance, 76 synapses (19 × 4) will 

be obtained in SSPAN because the algorithm uses one neuron per class.   

 

SSPAN employs the three stochastic neural models described in Chapter 5; 

namely, stochastic noisy reset (NR) model, stochastic step-wise noisy threshold 

model (ST) and continuous stochastic threshold (CT). Equations 4.4, 4.6, 4.8, and 

4.9 must be adapted to handle multiple output neurons; otherwise, the learning 

rules of SSPAN are very similar to those of original SPAN. 

To modify the weight of a synapse I in SSPAN, Equation 4.4 is replaced by 

equation 4.10 below.  

 

     
      (           )                                                                             (4.10) 

 

where λ is a learning rate whose value does not exceed 1. k =1, 2 …n where n is 

the number of classes in a particular dataset.     and        denote the required 

and true spike outputs of a neuron in class k, respectively, determined by Equation 

4.11 and 4.12. Here      
( )

 and       
( )

 are the desired and true spike times of a class 

k output neuron, respectively.  

 

    ( )  ∑  (      
( )
)                                                                                   (4.11) 

      ( )  ∑  (        
( )

)                                                                             (4.12) 
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The weights are updated according to Equation 4.13, where       is the weight 

change of synaptic connection i of a class k output neuron, obtained by 

integrating      
  . 

 

       ∫   ( )(    ( )        ( ))                                                         (4.13) 

The error E between the desired and actual spike times of neuron in class k is 

determined as (Equation 4.14). 

 

  ∫|    ( )        ( )|                                                                             (4.14) 

 

4.3 A Comparison between SPAN and SSPAN 

To investigate the feasibility and performance of SPAN (Section 4.1) and SSPAN 

(Section 4.2), both methods are tested on a synthetic dataset comprising three 

classes. The classification accuracy of the methods is compared in table 4.2.  

 

Figure 4.2 demonstrated an input sample of a class in term of spike activity of the 

overall different 3 classes. The data, comprising 140 input spike trains with spikes 

scattered over the time period, were generated over 500 ms. In order to generate 

extra data samples for testing and training each class sample was then perturbed 

by 35% noise, to yield 4 and 16 samples respectively. 
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Figure 4.2: Graphical illustration of one sample of a class from the synthetic dataset. 

 

The jitter mechanism employed to create this synthetic dataset was different to 

that of the original SPAN experiment (Mohemmed, Schliebs, & Kasabov, 2011; 

Mohemmed, Schliebs, Matsuda, et al., 2011), because the recognition of  patterns 

which change by spike time jitter alone may not fully test the algorithm 

performance. 

 

The parameter setup of this experiment is summarised in Table 4.1. In this 

experiment, deterministic LIF with a single output neuron was used in SPAN. The 

target spike times (desired spike times) were 510 ms, 540 ms, and 560 ms for 

classes 1, 2 and 3 respectively. The spike time of the output neuron was 
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considered to be correctly classified when it was within 10 ms of the desired spike 

time. 

 

Table 4.1: Parameter setup for a performance test of SPAN and SSPAN 

Methods/Parameters SPAN SSPAN 

Neural model LIF LIF,NR, ST, CT 

Output neuron 1 neuron 3 neurons (of each model experiment) 

Input spike train 140 spike trains 140 spike trains 

Membrane time constant 10 ms 10 ms 

Reset potential 0 mV 0 mV 

Firing threshold 30 mV 30 mV 

Input weight 1.62 mV 1.62 mV 

Reset μ  0 mV 

Reset σ  3.0 mV 

Threshold σ  2.0 mV 

Noisy time constant  10 ms 

Synaptic time constant  10 ms 10 ms 

Simulation time  600 ms 600 ms 

Simulation time step 0.1 ms 0.1 ms 

Training iteration  60 60 

 

 

The three stochastic models (NR, ST, and CT), plus deterministic LIF, were then 

used in SSPAN. Three output neurons, each with target spike time 515 ms, were 

employed. In the testing process, every output spike may be able to fire but not 

necessarily at the same time. Consequently, the spike output of the output neuron 
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that fires closest to the desired spike time was assigned to that class. For instance, 

if the spike of output neuron 2 is closer to 515 ms than that of the other neurons, 

this testing sample will be classified as Class 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: True spike output (blue) and desired spike output (green) of SSPAN using the CT 

model 

 

In Table 4.1, reset μ and reset σ are parameters of the NR model. Threshold σ is a 

parameter of the ST and CT models, while noisy time constant is a parameter of 
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the CT model only. The simulation time exceeded the stimulus time of 100 ms to 

allow all spikes in the stimulus to be presented to SPAN and SSPAN before the 

desired spike time. This ensures that all stimulating information is processed. 

 

The upper panel of Figure 4.3 plots the α curves at the first training iteration, and 

the lower demonstrates the curves at the last iteration of training (number of 

iterations = 60). 

 

Table 4.2: Classification accuracy of stochastic LIF-based models 

SPAN SSPAN(LIF) SSPAN(NR) SSPAN(ST) SSPAN(CT) 

33.33% 50% 66.67% 66.67% 83.33% 

 

The upper panel of Figure 4.4 shows the error curve at the first iteration of 

training, while the lower panel depicts the error curve at the 60
th

 training iteration. 

 

The percentage classification accuracies of each method are presented in Table 

4.2. After 60 training iterations, all of the stochastic SSPAN models exceeded 

SPAN in terms of accuracy. CT-modelled SSPAN excelled for this synthetic 

dataset, with a percentage accuracy of 83.33%. Besides, the classification 

accuracy improved when the deterministic model (LIF model) was replaced with 

stochastic neural models in SSPAN. SPAN may require more training iterations, 

possibly as many as 500 (Mohemmed, Schliebs, & Kasabov, 2011; Mohemmed, 

Schliebs, Matsuda, et al., 2011), which may take around 26 hours (200-260 
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msec/sample) in system training process and may take longer about 5-7 times in 

real world application such as EEG because of the higher density of spikes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Error (E) dynamics of SSPAN using the CT model 

 

Figure 4.3 illustrates the α-transformed true spike output (blue) and desired spike 

output (green), the spikes were transformed via equation 4.3 of SSPAN using CT 

model. The upper panel shows the α curves at the first training iteration, where the 
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actual and desired spikes occur at 40.0 ms and 515 ms, respectively. The lower 

panel illustrates the α curves at the last training iteration (the 60
th

 iteration). Note 

that the true spike has shifted towards the desired spike (final spike time is 477.2 

ms). 

 

The error (E) dynamics of SSPAN using CT model are displayed in Figure 4.4. 

The curves have converged and the error is decreased after multiple training 

sessions. The upper panel illustrates the error curve at the first training iteration, 

where E = 53.34 .After the final training iteration (60
th

 iteration; bottom panel of 

Figure 4.4), E = 48.67. The error is determined from Equation 4.14. 

 

4.4 Conclusion 

This chapter describes the stochastic precise-time spike pattern association neuron 

(SSPAN), designed to enhance the performance of SPAN: precise-time spike 

pattern association neuron proposed in 2011 (Mohemmed, Schliebs, & Kasabov, 

2011; Mohemmed, Schliebs, Matsuda, et al., 2011).  

The performances of both model types were investigated and compared on a 

synthetic dataset. SSPAN exhibited improved performance over the original 

SPAN, especially when incorporating the CT model. Moreover, the classification 

accuracy improved when the deterministic model (LIF model) was replaced with 

stochastic neural models in SSPAN. However, SPAN may require more training 

iterations, possibly as many as 500 (Mohemmed, Schliebs, & Kasabov, 2011; 
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Mohemmed, Schliebs, Matsuda, et al., 2011), before exemplary results are 

obtained. Hence, we conclude this chapter with the following points: 

(1) More synapses can memorize more patterns, leading to increased 

performance; SSPAN has 420 synapses versus 140 synapses in SPAN.   

(2) Stochastic neural models can improve the performance of  SPAN 

(3) Stochastic neural models are better equipped than deterministic models to 

deal with noisy stochastic data.   

 

 

 



 
 

Chapter 5 

DepSNN: Dynamic Evolving Probabilistic 

Spiking Neural Networks 

 

Aside from being computationally inexpensive, the eSNN enhances the 

significance of the order in which input spikes reach the output neuron; hence 

eSNN may be prepared using on-line learning. The disadvantages of eSNN are as 

follows; 

(1) No method is known to handle multiple spikes reaching the same synapse 

at different times and demonstrating the same spatiotemporal design. Such 

a method is required for spatiotemporal patterns recognition. Although the 

synapses seize long term memory at the learning stage, their short-term 

memory is acquired solely through post-synaptic potential growth.  

Unrestricted short-term memory acquisition is vital for complicated 

spatiotemporal patterns recognition tasks. 

(2) eSNN is appropriate and employs population encoding alone (see Chapter 

2 for details) to transform original data into spike trains. Under eSNN, a 

value is encoded into at least 3 spikes; that is, population encoding may 

introduce more information to the system than originally exists. For 

example, at three spikes per datum, population encoding will produce 300 

spikes for a data vector containing 100 features.  
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(3) This thesis focuses heavily on EEG spatio-temporal pattern recognition, 

which is not suitable for eSNN with population encoding at least 19 

channels are present in clinical EEG, which would introduce at least 57 

input spike trains to an eSNN, rather than the desired 19 spike trains.  

 

This chapter introduces a new method, namely DepSNN: Dynamic Evolving 

Probabilistic Spiking Neural Network, which overcomes these limitations. 

DepSNN is an extended eSNN model which utilises the Rank order learning (RO) 

(see Section 5.1) and the Fusi’s spike driven synaptic plasticity (SDSP) learning 

rule (see Section 5.2). Section 5.3 provides details of DepSNN using the 

deterministic LIF model and the three stochastic models NR, ST and CT, 

introduced in Chapter 3. Rank order learning fixes the original connection weights 

for a given spatiotemporal pattern using the existing event order information. The 

SDSP rule then regulates these connection weights as further spikes (occurrences) 

enter as segments of the same spatiotemporal pattern. The BSA encoding method 

is employed for transforming EEG data to spikes (as explained in Chapter 8). The 

chapter concludes with Section 5.4. 

This proposed solution addresses the contribution stated in the second research 

question. 

 

5.1 Rank Order Learning (RO) 

The Rank order learning rule enables the neuron to recognize a pattern of neuron 

links as a positive model. The neurons form centralised clusters in the region of 
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the synaptic weights. In some applications, alike neurons are combined (Kasabov, 

2007; Wysoski et al., 2010). In this way, very rapid learning is possible in an 

eSNN (a single pass may be sufficient), both in an organized and an unorganized 

mode. In an unsupervised mode, the evolved neurons represent a learned pattern 

(or a prototype of patterns). The neurons can be labelled and assigned to the same 

class if the model performs a classification task in a supervised mode of learning. 

 

The postsynaptic potential of a neuron i at time t is computed as follows: 

 

ij

jorder WtiPSP ,

)(mod),(                                                                                 (5.1)  

 

where: mod  is a modulation factor; j is the index of the received spike at synapse 

j,i and wj,i is the related synaptic weight; order(j) denotes the order (the position) 

in which the spike occurs  at synapse j,i, relative to all spikes input from all m 

synapses to neuron i. The order(j) is 0 for the first spike and grows concurring to 

the input spike sequence. An output spike is produced by neuron i if the PSP (i,t) 

exceeds a threshold PSPTh. 

 

Throughout the preparation process, for every training input design a new output 

neuron is generated and the linked weights are computed based on the sequence of 

the arriving spikes. In eSNN, the weights of on-line links generated between a 

neuron ni and its connections form an input pattern of a recognized class, from 
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which an activated input (aspect) neuron nj is created utilizing the Rank order 

learning rule: 

 

))(,(

, mod tijorder

ijW                                                                                             (5.2)        

                                                                                                                                                                   

When the overall input pattern is given, the threshold of the neuron ni is set such 

that the neuron ejects when the same ST pattern is presented again in the 

recollection form. The threshold is computed as a fraction (C) of the total PSP: 

 


 


m

j

T

t

tij

tijorder WPSP
1 1

)(,

))(,(

max )(mod    , for j=1,2,…m;  t=1,2,…,T                    (5.3)                        

max*PSPCPSPTh                                                                                                (5.4)            

 

If the linked weight vector of the prepared neuron is akin to that of the already 

prepared neuron in a repository of outcome neurons characterising the similar 

class, the novel neuron will combine with the most similar neuron, averaging the 

linked weights and the threshold of the two neurons (Kasabov, 2007; Wysoski et 

al., 2010). Otherwise, the novel neuron supplements the established set of neurons 

(or the related class repository of neurons when a supervised learning for 

categorization is undertaken). The resemblance between the newly generated 

neuron and a trained neuron is calculated as the inverse of the Euclidean distance 

between the weight matrices of the two neurons. 
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Two algorithms are commonly used in the recall process: 

(1) The foremost is used when Rank order learning is applied to a new input 

pattern (either for recalling or testing; see Equation 5.2). The linked 

weight vector for this input is matched with the patterns of prevailing 

neurons for which the output class is generated throughout training. The 

neighboring neuron is the ‘winner’ that determines the class of the new 

input design. This algorithm utilizes transductive interpretation codes and 

closest neighbor categorization. It matches the synaptic weight vectors of a 

novel neuron acquiring a new input pattern with prevailing weight vectors. 

This model will be designated eSNNs. 

(2) An alteration of the above algorithm is implemented when a new input 

pattern of spikes is broadcasted as the spikes reach all of the trained 

neurons. The foremost ejecting neuron (whose PSP exceeds its threshold) 

determines the class. This algorithm supposes that the fastest ejecting 

neuron best categorizes the input ST pattern. This eSNN is designated 

eSNNm. 

 

5.2 The Fusi’s spike driven synaptic plasticity (SDSP) learning rule 

The SDSP, a modification of STDP (Song, Miller, Abbott, & others, 2000) which 

has been described as an unsupervised learning method (Fusi, Annunziato, 

Badoni, Salamon, & Amit, 2000). SDSP models the synaptic plasticity Vw0 of a 

synapse w0 contingent at the time of spiking of the pre-synaptic and post-synaptic 
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neurons. Vw0 rises or reduces depending on the comparative timing of the pre and 

post synaptic spikes.  

When a pre-synaptic spike reaches the synaptic station before a postsynaptic spike 

within a specified time window, the synaptic efficiency is enhanced. If the post-

synaptic spike is ejected immediately after the pre-synaptic spike, synaptic 

efficiency is reduced. This plastic synaptic efficiency is embodied in the following 

equations: 

 

spk

p

postpot

w t
C

tI
V 

)(
0

iftpre<tpost                                                                                                            (5.5)  

spk

d

postdep

w t
C

tI
V 

)(
0

iftpost<tpre                                                                                                        (5.6)  

 

where Δtspk  is the pre and post synaptic spike time window. 

 

The SDSP rule can be applied to a supervised learning algorithm, when a trainer 

signal imitating the required output spiking order is inserted together with the 

training spike pattern, but without any alteration of the trainer input weights. In a 

study by Brader and colleagues (2007), a SDSP-driven SNN learned to recognise 

293 characters (classes). Each character (a static image) was encoded as a 2000 bit 

feature vector, and each bit was transformed into a spike rate, with binary values 0 

and 1 corresponding to 0 Hz and 50 Hz, respectively (Brader et al., 2007). For 

each class, 20 distinct training designs were utilized and 20 neurons were 
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assigned, one for each pattern, and trained for hundreds of reiterations. The SDSP 

model is implemented in the INI analogue SNN silicon chip (Indiveri et al., 2011). 

The silicon synapses are composed of bi-stability circuits that assign a synaptic 

weight to one of two likely analogue values (either increased or decreased). These 

circuits push the synaptic weight voltage by a positive or negative current 

superimposed on that produced by the STDP. Within a short time frame, the 

synaptic weight is increased above a set threshold by the network activity via the 

STDP learning mechanism. The bi-stability circuits generate a constant weak 

positive activity. In the absence of a current (and also in the learning phase) this 

background current will drive the weight toward its potentiated state. If the STDP 

decreases the synaptic weight below the threshold, the bi-stability circuits 

generate a negative current that inhibits spiking activity and vigorously drives the 

weight toward its analogue value. The synapse is now in a depressed state. The 

STDP and bi-stability circuits simplify the simulation of both long term and short 

term memory.  

Although SDSP is effective at identifying generally static patterns, the potential of 

the SDSP SNN model and its accompanying hardware has not been completely 

investigated in spatiotemporal pattern recognition, particularly in fast on-line 

learning.  

 

5.3 Dynamic Evolving Probabilistic Spiking Neural Network (DepSNN)  

Non-stochastic DepSNN is also known as DeSNN (Dynamic Evolving Spiking 

Neural Network) (Dhoble, Nuntalid, Indiveri, & Kasabov, 2012). 
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Five types of DepSNN (namely DepSNNm, DepSNNs, NR-DepSNNs, ST-

DepSNNs, and CT-DepSNNs) are proposed in this study. The models, based on 

the ideas presented in Section 5.1, are the eSNN equivalents of the stochastic 

models introduced in Chapter 5. They differ in their recall algorithms and type of 

eSNN (eSNNs or eSNNm). The essences of the five models are outlined below: 

 

(1) DepSNNm 

In this model, every new spatiotemporal pattern to be recognized or associated 

with a previously learned spatiotemporal pattern is propagated to all neurons 

created during the training session. The first neuron to spike indicates the desired 

association (or class, in classification tasks). The neurons in the DepSNNm can be 

designed to inhibit each other (the so-called ‘winner takes all’ – WTA 

connection), so that a firing neuron will prevent other neurons from firing (both 

during recall and training) (Tymoshchuk & Kaszkurewicz, 2005). In this case the 

firing neuron represents the recognized spatiotemporal pattern (a concept neuron). 

 

(2) DepSNNs 

This model, the dynamic equivalent of eSNNs, compares the connection weights 

of a newly created neuron (representing a new spatiotemporal pattern to be 

recognized) with the connection weights of the neurons created during training. 

The new spatiotemporal pattern becomes associated with the closest neuron. This 

model demonstrates superior performance over DepSNNm in preliminary tests of 

EEG spatiotemporal pattern classification. 
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(3) NR-DepSNNs 

In this model, the deterministic LIF model in conventional DepSNNs is replaced 

by the stochastic noisy reset model (see Section 3.1.1), in which the reset potential 

is refreshed after every spike. 

 

(4) ST-DepSNNs 

Like NR-DepSNNs, this model is conceptually analogous to standard DepSNNs; 

however, the deterministic LIF model is replaced by the stochastic step-wise noisy 

threshold model (see Section 3.1.2), in which the reset potential value ( resetu ) is 

fixed while a new threshold is selected at each firing time step. 

 

(5) CT-DepSNNs 

In this model, the deterministic LIF model in standard DepSNNs is replaced by 

the continuous stochastic threshold (see Section 3.1.3), in which the threshold ϑ(t) 

is revised continuously over time. This model allows spontaneous spike activity, 

i.e. a neuron may fire at time t(f) even  if no pre-synaptic input spike presents at 

that time (Schliebs, Nuntalid, & Kasabov, 2010). 

 

Figures 5.1 and 5.2 show how DepSNN responds to different input spike trains. 

The spike raster is plotted in the top panel of each figure. The central panels 

illustrate the change in weights over time (blue curves) for the DepSNNm. The 

initial weights are defined by rank order. The green curves display the weights 
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modified by SDSP dynamics over the simulation time (note that, in Figure 5.1, the 

green and blue curves almost overlap, so the green curve is scarcely visible). The 

bottom panels illustrate the evolution of post synaptic potential of the first neuron. 

 

Figure 5.1: Spike Raster Plot (top panel), Weight and PSP evolution (centre panel) and 

changes in post-synaptic potential of the first firing neuron (bottom panel), for a slow rate of 

input spikes to a DepSNNm model 

 

DepSNN requires high firing activity in the spike trains to activate a SDSP 

synapse. This is clearly illustrated in Figure 5.1, where spiking activity is low. In 

contrast to the case of high spiking activity (Figure 5.2), the initial and final 

synaptic weights remain similar throughout the evolution time. 
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The DepSNN algorithm is provided in Table 5.1. 

 

Table 5.1: DepSNN Algorithm 

1: Set DepSNN constraints (comprising of: Mod, C, Sim and the SDSP 

constraints) 

2: For  every input STP i demonstrated as BSA Do 

  2a. Generate a new output neuron j for this pattern and compute the 

starting values of connection weights utilizing the RO learning rule: 

( )
( )

order j
w Modj   

2b. Modify the connection weights wj for successive spikes on the 

related synapses utilizing the SDSP learning rule.   

  2c. Compute PSPmax 

  
2d. Compute the threshold value *max( )PSP Ci i   

  2e. If the new neuron j weight vector wj is alike to the weight vector of 

previously trained output neuron utilizing the Euclidean distance and a 

threshold Sim, then combine the two neurons (elective):  

*

1

w w Nnew
w

N




 ,   

*

1

Nnew

N

 






 

   where N  is the number of all previous merges of the merged neuron 

   Else 

   Add the new neuron to the output neuron repository for the same 

class (if a classification task is considered). 

   End If 

3.  End For (Repeat  to all input STP) 
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Figure 5.2: Spike Raster Plot (top panel), Weight and PSP evolution (centre panel) and 

changes in post-synaptic potential of the first firing neuron (bottom panel), for a fast rate of 

input spikes to a DepSNNm model 

 

 

5.4 Conclusion 

This chapter has introduced five types of Dynamic evolving probabilistic spiking 

neural network (DepSNN), namely, DepSNNm, DepSNNs, NR-DepSNNs, ST-

DepSNNs, and CT-DepSNNs. As an initial investigation of DepSNN behaviour, 

the model was tested on two sets of synthetic input spike trains.  The results 

(Figures 5.1 and 5.2) show that high levels of spiking activity are required in the 

spike trains before a SDSP synapse is activated in DepSNN. This is revealed in 
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the curves showing modification of synaptic weights. Thus, DepSNN may be 

suitable for processing BSA-encoded EEG data, provided that the encoded data 

spike frequently. In Chapters 10 and 11, the performance and feasibility of 

DepSNN is further explored on two real-world EEG datasets. 

 

                                                      

 

 

 

 

 

 



 
 

Chapter 6 

epSNNr: Evolving Probabilistic Spiking 

Neural Network Reservoir 

 

The latest reservoir computing paradigm, Liquid State Machine (LSM), was 

developed to process pattern recognition tasks on spatio-temporal information. 

LSM is a recurring network of ejecting neurons that converts a spatio-temporal 

input pattern into a single intermediary high-dimensional network state which first 

proposed by Maass (Maass et al., 2002).  

 

As a result, an evolving probabilistic spiking neural network reservoir (epSNNr) 

emerges. Replacing the deterministic LIF model with stochastic neural models 

introduces a non-deterministic component into the LSM.  

 

Partial information in this chapter has been shared and published to international 

neural network community in 2010 (Schliebs, Nuntalid, & Kasabov, 2010). The 

proposed epSNNr is a contribution that answers to the third research question. 

 

The principle of LSM is presented in Section 6.1, followed by a proof of concept 

in Section 6.2. An improved separation capability of the epSNNr is demonstrated 

in section 6.3. Section 6.4 concludes the chapter. 

 

 

6.1 Introduction to Reservoir Computing 
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The general architecture of reservoir computing is illustrated in Figure 6.1. The 

structure is analogous to that of a neural network. Essentially, a signal is input to a 

static dynamic system (the reservoir) and the dynamics of the reservoir transform 

the input to a greater state. A straightforward readout function is then trained to 

convert the response state (higher dimension) into the required output. The major 

benefit is that the learning procedure is conducted only at the readout step. Two 

major types of reservoir computing are liquid-state machines and echo state 

networks. Backpropagation-Decorrelation and Temporal Recurrent Networks 

(Benjamin Schrauwen et al., 2007) also belong to reservoir computing. 

 

 

 

Figure 6.1: Block diagram of Reservoir Computing 

 

The LSM was first proposed by Maass (Maass et al., 2002)  and has been widely 

investigated both conceptually and practically as a new framework for neural 

computation in machine learning (Benuskova & Kasabov, 2007; Brader et al., 

2007; Buteneers et al., 2009; Maass et al., 2002; Maass & Zador, 1999; Norton & 

Ventura, 2009; Benjamin Schrauwen et al., 2007; Verstraten, Schrauwen, 

Stroobandt, & Van Campenhout, 2005; Yamazaki & Tanaka, 2007) .  LSM has 

also been proposed for solving time-series problems, since it is free of the 
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complications which persist in recurrent neural networks and cause problems with 

learning methods. LSM is typically applied to nonlinear problems and is 

frequently used in conjunction with LIF models. The readout is normally linear. 

By default, the batch training methods use linear regression to determine the 

output weights. A least mean squares algorithm is adopted for online training of 

the traditional reservoir. 

A LSM uses an excitable medium (recurrent networks of spiking neurons), to 

transform multi-dimensional inputs to a single linear dimension. Simple readout 

units can then extract detailed temporal information from the translated data. 

Furthermore, LSM mimics the mammalian brain process, lending a certain 

biological plausibility to the LSM approach. Some areas of the brain may perform 

as a liquid generator while others learn how the liquid responds to external 

sensory incentives. 

 

To visualise the LSM concept, imagine a pool of water into which various objects 

are dropped. The resulting splashes and ripples that fade away over time can be 

transformed into a spatiotemporal pattern of liquid (liquid state).  In other words, 

the water can retain information about recent events. Real-time events, therefore, 

should be tractable by reading the water surface of the pool.  

 

LSM comprises two main parts, a liquid unit (a reservoir for transforming the 

input time series into liquid states or state vectors) and a readout unit (simple 

function(s) which map(s) the liquid state at time t onto the output). The LSM 
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mechanism proposed by Maass (Maass et al., 2002) is shown schematically in 

Figure 6.2. Here, (.)u  is a continuous input stream (spatiotemporal data) of 

disturbances which is injected into medium ML  that acts as a spatiotemporal filter 

(liquid filter). The “liquid” constitutes anything that generates a readable liquid 

state )(txM
at each time step t . The liquid state is mapped to the desired output 

function )(ty . The readout functions Mf (multiple readouts are permitted) 

extract different task specifications (e.g. classification, clustering, prediction) in 

parallel from the current output of ML . 

 

 

 

 

 

 

 

 

Figure 6.2: Mechanism of Liquid State Machine (LSM) 

 

The liquid unit is typically implemented by a recurrent SNN. Any spiking neural 

model can be used as a liquid, with generation of different network states resulting 

in different readouts (Grzyb, Chinellato, Wojcik, & Kaminski, 2009). The liquid 

unit is a non-linear stochastic system composed of a pool of spiking neurons 

𝑢(. ) 

𝐿𝑀 

𝑥𝑀(𝑡) 

𝑦(𝑡) 

𝑓𝑀 
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which receives temporal input and transforms it into significantly different liquid 

states. The readout unit is a task-dependent portion that can be trained to extract 

information from liquid states.  The pool of spiking neurons is set up on a regular 

3D grid space ( zyx nnnN   neurons), where, yx nn , and 
zn  signify the 

number of neurons assigned to the x, y, and z axes respectively (Burgsteiner, 

Kroll, Leopold, & Steinbauer, 2007).  

 

 

Figure 6.3: Example of a liquid unit of a LSM containing 633   neurons 

 

Figure 6.3 illustrates the configuration of a pool of spikes in a hypothetical LSM. 

This figure was created by PCSIM interfaced to the Python programming 

language (Neural Microcircuit library for Python) (Pecevski, Natschläger, & 

Schuch, 2009). 
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The readout unit must be able to detect features from a set of patterns. This unit 

receives a single linear input from the liquid unit. By its capacity to interpret 

numerous linear algorithms, the unit can be instructed to execute a particular task. 

When the spatiotemporal input (.)u  is fed into the reservoir, the spiking neurons 

in the pool are activated. The pool then acts as a filter that transforms the data into 

the liquid state. Samples of the liquid state are combined into a state vector, which 

is input to the trained readout unit to perform a specific task. 

 

6.2 Frameworks of the Evolving Probabilistic Spiking Neural Network 

Reservoir (epSNNr) 

The Evolving Probabilistic Spiking Neural Network Reservoir (epSNNr) 

categorises spatiotemporal data founded on a probabilistic reservoir computing 

pattern. The framework of epSNNr is presented in Figure 6.4. Noise diminution or 

feature withdrawal is possibly applied at the pre-processing stage.  

 

In the first step, every spatial/spectral-temporal data channel is converted to a 

spike train by the BSA spike encoding method described in Chapter 4. Spike 

encoding may process whole temporal data or chunks of data. Next, the spike 

trains are dispersed through a LSM-based spatiotemporal filter. In this study, the 

conventional LIF model as liquid generator has been replaced by the stochastic 

neural models proposed in chapter 5. At each time step, the liquid state generated 

by the filter is collected into a linear state vector. The Classifier will use this state 
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vector to perform classification or pattern recognition tasks, possibly in both batch 

and real-time.  

The data in the state vectors is fed into the readout unit as a time-dependent vector 

or as a whole liquid state pattern. The Classification can comprise any linear 

classifier or a second trainable neural network.  

 

Figure 6.4: epSNNr: Framework of evolving probabilistic spiking neural network reservoir 

 

 

6.2.1 Design of the encoder 

This study focuses on EEG spatio-temporal pattern recognition using the Ben 

Spiker Algorithm (BSA) introduced in Chapter 4. Because BSA generates spike 

trains by mimicking input waveforms, it is inherently suitable for EEG data 

processing, and it should retain information during data transformation to spikes.  

 

6.2.2 Design of the Spatiotemporal Filter 

At this stage, the LIF model is replaced by the stochastic models (see Chapter 5 

for details); namely the NR, ST, and CT models inspired by probabilistic models 
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(Kasabov, 2010). A schematic of the probabilistic SNN is shown in Figure 2.7 

(Chapter 2).  As mentioned in Section 3.1 (Chapter 3), the Pj(t) and Pi(t)  

parameters define the probabilities of release that are directly associated with 

neural threshold and reset potential value, respectively. The probability of 

connection Pcij(t) between two neurons i and j is given by: 

2

),(

),( 

jid

eCjiP



                                                                                              (6.1) 

 

where ),( jid is the Euclidean distance between neuron i and j and  represents 

the density of connections (defaulted to  =2 for LSM). The probability of 

connection increases with decreasing distance between neurons.C is a constant 

whose value depends on neural type(excitatory (ex) or inhibitory (inh). 

 

6.2.3 Design of State Vector 

Once the spatiotemporal filter has transformed the data into the liquid state, the 

liquid state is sampled and input to a time-dependent sequence or vector, namely 

the state vector. The responses of active neurons are used to train the readout unit 

(Classifier) to perform a classification or pattern recognition task. In this study, 

the output spikes of the LSM (state vector) are transformed into a binary data 

representation of N parallel spike trains covering a data stretch of T bins, each of 

time-width h (Grun, Diesmann, & Aertsen, 2010), where h is chosen to suit the 

dataset under consideration. Next, the binary data are mapped, either by a simple 

linear mapping or by distribution of coincidence, onto a single binary vector 
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which is an input to a readout function (classifiers). When spiking neural 

networks are used as readout functions e.g. DepSNN or stochastic SPAN 

(SSPAN) (see Chapters 6 and 7 for details), the entire dynamic sample of spike 

responses from the LSM can be fed directly to classifiers.   

 

6.2.4 Design of the classifier  

The classifier in Figure 6.4, constituting the readout functions of LSM, can extract 

different task specifications (such as classification, clustering and prediction) in 

parallel from the state vector. At a given time t, the state vector linearizes the 

high-dimensional inputs via a simple linear mapping, or uses distribution of 

coincidence to map binary vectors into a single binary vector within a specific 

time bin. This unit can implement diverse linear pattern recognition methods such 

as Naïve Bays, MLP, or another trainable SNN. 

 

6.3 Deterministic LSM Versus epSNNr 

The appropriateness of the suggested epSNNr can be assessed by demonstrating 

the separation ability of the model. Experiments in this section were inspired by a 

2009 study of various neural models in a LSM context (Grzyb et al., 2009). Grzyb 

and colleagues demonstrated that the departing capability of the liquid depends 

upon the selected neural model. The following constraints were placed on the 

neural models: the membrane time constant (τ) = 10ms, the reposing potential 

resetu = 0 mV, the ejecting threshold ϑ0 = 10mV, the after-spike refractory period 
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Δabs = 5ms, the standard deviation of reset variations σNR = 3mV, the standard 

deviation of step-wise ejecting threshold σST = 2mV and the standard deviation of 

continuous ejecting threshold σCT  = 1mV. 

To investigate the differences in neural reaction between the stochastic models, a 

random spike train produced by a Poisson process with mean rate 150Hz was 

provided to each model as neural input. After 1000 iterations of each model, the 

related Peristimulus Time Histograms (PSTH) were computed. The PSTH 

generates a histogram of spikes arising in a raster plot. A frequency vector is 

calculated which is standardized by dividing each vector element by the number 

of repetitions and by the size of the time bin (here 1ms). Maass et al. (2002) used 

a window width of 10ms to Gaussian-smooth the raw PSTH. In a second 

experiment, they constructed a liquid possessing a small-world inter-connectivity 

pattern.  

In this study, a repetitive SNN is created by associating 1000 neurons in a three 

dimensional grid of size 10 × 10 × 10 neurons. Links between any two neurons in 

this grid are established with association probability given by Equation 6.1, with 

 =2 in all simulations. Parameter C is a constant whose value relies on proportion 

of links between excitatory (ex) and inhibitory (inh) neurons as defined below: 

exexC  =0.3, inhexC  =0.2, exinhC  =0.5, and inhinhC  0.1. A network comprising 80% 

and 20% excitatory and inhibitory neurons respectively  typifies the biological 

neurons in the mammalian brain (Schliebs et al., 2010). 
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Figure 6.5: a) Raster plot of the neural response. b) PSTH for each raster plot 

 

Figure 6.5 a) shows the Raster plot of the neural response of deterministic LIF 

neurons and stochastic neurons documented over 1000 repetitions. Figure 6.6 b) 

shows the related smoothed PSTH for each raster plot. Each column relates to the 

neural model specified in the plot title. As evidenced in Figure 6.5, the non-

deterministic neural dynamics exerts a strong effect on the output response. Some 

of the spikes appear in every repetition, causing sharp peaks in the PSTH.  

Four repetitive SNN are created, each utilizing a different neural model. All 

networks possess similar network topology and a similar link weight matrix. The 

created networks are incited by two input spike trains separately created by a 

Poisson procedure with a mean rate of 150 Hz for the first stimulus (Stimulus A) 

and 200Hz for the second (Stimulus B). The reaction of each network was 

recorded over 25 repetitions. The averaged reaction of the networks is illustrated 

in Figure 6.6. The upper and central panels of the figure depict the average raster 

plots of the spike movement under stimuli A and B, respectively. The darker the 
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shade in these plots, the more likely the related neuron ejected within the 

permitted time bin during the 25 runs. The size of a single time bin is 1 ms. White 

areas indicate time bins in which no neural movement was detected in any run. 

Similar to the raster plots of Figure 6.5, some reliable spikes are observed in the 

response, corresponding to the very dark shades in the plots. 

 

Figure 6.6 illustrates the average spike response of the reservoirs using different 

neural models. Responses to input stimuli A and B recorded over 25 independent 

runs are displayed in the upper and central panels, respectively. The bottom panel 

shows the averaged normalized Euclidean distances between two reactions for 

each time bin (bin size 1 ms). Similar distance calculations were used by Grzyb 

(Grzyb et al., 2009) to evaluate differences in response patterns. We note the 

comparably low separation ability of the deterministic LIF model, which confirms 

the findings of Grzyb and colleagues (Grzyb et al., 2009). The results indicate that 

stochastic models can potentially enhance the separation ability of the reservoir. 

However, further experimental analysis is needed to provide strong statistical 

proof of this claim. 

 

Figures 6.7 and 6.8 show the configuration of the 1000 neurons in the 3D grid of 

size 101010  . The yellow and green lines represent links to excitatory and 

inhibitory synapses respectively. A liquid possessing a small-world inter-

connectivity pattern, in which most neurons are connected locally, was 
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constructed according to equation 6.1. The red lines show the connections 

between input stimuli and liquid. 

 

 

Figure 6.6: Averaged spike response of reservoirs using different neural models. Upper and 

central panels show the dynamic responses to Stimuli A and B, respectively, while the bottom 

panel displays the average Euclidean distance between paired reactions (see text for details). 

 

Figure 6.7: Illustration of a liquid possessing a small-world inter-connectivity pattern (see 

text for details). 
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Figure 6.8: Evolving probabilistic spiking neural network (epSNNr) visualization 

 

Figures 6.7 and 6.8 were produced by code written in the pure Python 

programming language. The synaptic connection information was obtained from 

the Brian library for SNN simulation (Goodman & Brette, 2008). 

 

6.4 Conclusion 

An epSNNr framework was proposed that allows the method to develop 

spatiotemporal data. epSNNr protrudes a spatiotemporal signal onto a single 

higher-dimensional network condition that can be learned by a linear readout 

function or another SNN network. A preliminary feasibility investigation was 

undertaken on the proposed epSNNr approach. Probabilistic neural models 

(stochastic models) proved to be primarily appropriate reservoirs with enhanced 

capacity to increase the separation capability of the system. Further studies will 

explore the features of the epSNNr on general benchmark functions. Moreover, 
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the approach is anticipated to be extendable to real world EEG data sets, as 

suggested in successive chapter 9, 10 and 11.  

 

 

 

 

 

 

 

 

 



 
 

Chapter 7 

Electroencephalography 

 

This chapter explains the principles of Electroencephalography (EEG), the data of 

which are used throughout the remaining of this thesis. An overview of EEG and 

a broad outline of its applications are presented in Section 7.1. Section 7.2 

introduces several applications of EEG to the computer science field. Section 7.3 

presents the application of Spiking Neural Networks on EEG. The chapter 

concludes with Section 7.4. 

 

7.1 Electroencephalography (EEG) 

Electroencephalography (EEG) involves the recording of neural-generated 

electrical brain signals as they move along the scalp. The essential EEG apparatus 

is shown in Figure 7.1. EEG has been utilized in clinical recordings of cerebral 

electrical movement over specified periods of time. It collects data from nineteen 

electrodes positioned strategically across the head. In neurology, EEG is widely 

adopted to investigate epilepsy, since epileptic movement can generate distinct 

spike movement on standard EEG equipment (Niedermeyer & Da Silva, 2005; 

Tatum, 2007). EEG is commonly used to determine the type and position of brain 

activity movement during a spasm. It is also used to examine individuals with 

brain functioning problems such as coma, tumours, short term memory, or 
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weakening of particular parts of the body such as occurs in stroke (Niedermeyer 

& Da Silva, 2005; Tatum, 2007). 

 

 

Figure 7.1: Electroencephalography (EEG) Equipment (Berber, 2011; Murph, 2007) 

 

The left image of Figure 7.1 shows the standard EEG equipment with 256 and 64 

electrodes (channels) (Berber, 2011). The wireless EEG equipment is 

photographed in the right image. The EEG signals are sourced from billions of 

neurons (approximately 10
10

of them) (Murph, 2007). Neurons are electrically 

charged (or "polarized") by sodium and potassium ion pumps that operate across 

their membranes. When a neuron receives an action potential signal from other 

neurons, many neurons emit ions simultaneously and inhibit neighbour neurons in 

a wave-like fashion. Therefore, when a wave of ions intercepts the electrodes on 

the scalp, it repels or attracts electrons on the metal of the electrodes. As metals 

are strong conductors of electrons, the repulsion or attraction induces a voltage 

between two electrodes, which can be detected by a voltmeter. The EEG is a 

This image has been removed by the author of this thesis for 

copyright reasons. 
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record of these changing voltages over a specified time (Yamazaki & Tanaka, 

2007).  

EEG was pioneered in 1842, when a physician practicing in Liverpool attempted 

to measure the electrical activity of cerebral hemispheres of rabbits and monkeys. 

At that time, electrodes needed to be directly inserted into specific brain regions. 

A prototype of modern EEG was tested on dogs in 1912, and applied to  humans 

too later to investigate seizures (Swartz & Goldensohn, 1998). 

 

 

Figure 7.2: Spatial Positioning of the EEG Electrodes over the Frontal, Central and Parietal 

Lopes (Ferreira, Almeida, Georgieva, Tomé, & Silva, 2010) 

 

Figure 7.2 illustrates a sample (21 channels) of EEG location over the frontal, 

central and parietal lobes of the brain. EEG is generally explained in terms of 

rhythmic movement and is divided into five frequency bands (Lotze et al., 1999). 

The characteristics of these bands are described below: 

 



 

 
 

108 

(1) Delta Waves 

Delta waves are brainwaves of 4Hz or less. These waves, generated by the 

thalamus, convey cross-referenced information from several sensory systems and 

transmit it to the cerebral cortex. In adults, Delta waves are presented only during 

sleep, whereas in infants they are present during sleeping and waking periods.  

 

 

Figure 7.3: An illustration of EEG in Delta oscillation(Gamboa, 2005) 

 

(2) Theta Waves 

The frequency of theta waves ranges from 4 to 7 Hz. Theta waves are generated 

by the hippocampus, which is vital for memory formation and spatial movement. 

Theta waves appear during dreaming and REM (Rapid Eye Movement) sleep, and 

also during deep meditation. Together with delta waves, theta waves characterize 

the EEG of sleeping adults. 

 

 

         Figure 7.4: An illustration of EEG in Theta oscillation (Gamboa, 2005) 
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(3) Alpha Waves 

Alpha waves possess frequencies ranging from 8 to 12Hz. Thoughts, reasoning, 

judgment, associative thinking and fantasizing are all associated with alpha 

movement. Alpha waves appear during relaxation and alpha movement is 

immediately provoked by closing the eyes while one is awake. 

 

 

      Figure 7.5: An illustration of EEG in Alpha oscillation (Gamboa, 2005) 

 

(4) Beta Waves 

The frequency of beta waves ranges from12to 30Hz. Alpha and beta waves 

collectively characterize the waking EEG of adults. While alpha waves signify a 

relaxed state, beta waves are associated with readiness and attentiveness. They are 

also linked to general movement and logical reasoning, and also to motor 

behaviour such as active movement. 

 

 

Figure 7.6: An Illustration of EEG in Beta Oscillation (Gamboa, 2005) 
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(5) Gamma Waves 

Gamma waves possess frequencies of 40Hz or higher. These appear during 

sophisticated mental activities such as insight seeking and problem solving. 

Spontaneous eruptions of gamma movement accompany quick sparks of vision or 

perception (so-called “a-ha” moments). Children with higher than average 

attention spans, reasoning abilities and language capabilities exhibit strong 

gamma wave movement, whereas adults with high gamma wave activity possess 

above-average intelligence. High gamma wave activity can also arise from 

meditation.  

Dominant band frequency has been used as a diagnostic tool; in particular, alpha 

band activity in the temporal or frontal lobes. 

 

 

Figure 7.7: An Illustration of EEG in Gamma Oscillation (Gamboa, 2005) 

 

 

7.2 EEG Application 

During the past decade, neurological advances have clarified that a direct interface 

exists between the human brain and an artificial system, known as the Brain 

Computer Interface (BCI). Although the BCI is a feasible concept, considerable 
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research and development is required before these technologies can be put to 

everyday practical use (Berger et al., 2008).  

There have been various data analysis and machine learning techniques 

successfully used with EEG and BCI application such as  independent component 

analysis (ICA) for P300 detection (Xu et al., 2004),  3D game based BCI utilizing  

the steady-state visual evoked potential (SSVEP) and power-spectrum estimation 

methods for feature extraction in a series of offline classification tests (Lalor et al., 

2005), EEG-based Brain-Computer Interfaces for Control and biometry utilizing  

Principle Component Analysis (PCA) for noise reduction and Support Vector 

Machine (SVM) feature space mapping functions with Radial Basis Function 

(RBF)  for the nonlinear SVM version (Ferreira et al., 2010; Marcel & Millán, 

2007; Palaniappan & Mandic, 2007). 

 

Figures 7.8 and 7.9 respectively illustrate the use of BCI in controlling a Honda 

robot (Binns, 2009) and a mind-controlled wheelchair developed by Toyota and 

RIKEN Brain Science Institute in Japan (Abolfathi, 2009). 

 

The principle of BCI is prototyping of brain activity fluctuations and recording 

them into some form of actuation or command at an aimed output, such as a 

computer interface or a robotic system. BCI research is presently motivated 

chiefly by the potential advantages to those with severe motor disabilities, such as 

“brainstem stroke, amyotrophic lateral sclerosis or severe cerebral palsy.” (P. 
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Goel, Liu, Brown, & Datta, 2008; Marcel & Millán, 2007; Yamazaki & Tanaka, 

2007) 

 

 

Figure 7.8: BCI -controlled Robot by Honda, Japan (Binns, 2009) 

 

The most effective means of analysing the physiological activity of the brain is 

recording the EEG signals from the cortex, whose sources are the action potentials 

of the cerebral nerve cells. This is because cortex EEG signals comprise waves 

spanning the 0-60 Hz frequency band and distinct brain activity movements can 

be recognized based on the recorded fluctuations. For example, signals within the 

delta band (below 4 Hz) correspond to deep sleep, theta band (4-8 Hz) signals 

typify a dreamlike state, alpha frequencies (8-13 Hz) correspond to relaxed states 

with closed eyes, beta frequencies (13-20 Hz) are associated with waking activity, 

while gamma frequencies (40 Hz and higher) characterise mental activities such 

as perception and problem solving (Niedermeyer & Da Silva, 2005). 

 

This image has been removed by the author of 

this thesis for copyright reasons. 
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Figure 7.9: Mind Controlled Wheelchair Developed by Toyata and RIKEN Brian Science 

Institute in Japan (Abolfathi, 2009) 

 

Present research interest lies in acquiring knowledge hidden in the EEG signals as 

well as developing EEG-based implementations. BCIs for motor control and 

biometry are the latest EEG-based applications in computational neuro-

engineering. The BCI concept initiated from observations of alpha band activity in 

a subject performing real and imaginary movement, for which EEG data are not 

significantly different. Since this discovery, EEG has been extensively applied in 

BCI competitions (Piyush Goel, Liu, Brown, & Datta, 2006; Xu et al., 2004) and 

mind-controlled machines, such as robot, wheelchair and mind games (Abolfathi, 

2009; Binns, 2009). Of equal interest is EEG data analysis, because the efficiency 

and accuracy of classification and pattern recognition methods are necessary not 

only in BCI but also for improved understanding of the remarkable information 

processing abilities of mammalian brains.  

This image has been removed by the author of this 

thesis for copyright reasons. 
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EEG-based biometry has become a new paradigm by which to investigate 

biometric systems (Ferreira et al., 2010; Marcel & Millán, 2007; Palaniappan & 

Mandic, 2007). Because individual human brain wave patterns are unique, EEG 

can be used as a personal identification tool or as an alternative verification 

system. A few studies have investigated the efficacy of brain signals in identifying 

individuals (Ferreira et al., 2010). EEG identification aims to extract the identity 

of a given individual from a restricted list of persons (one from many), whereas 

verification attempts to validate or reject an individual’s claimed identity (one to 

one matching; (Marcel & Millán, 2007). The identified person is subjected to a 

incitement (generally visual or auditory) for a certain period of time and the EEG 

signals originating from a number of electrodes arranged around the subject’s 

head are gathered and entered into the biometry system. Initial tests have shown 

that the “type of stimulus (for example mental task, motor task, image 

presentation or a combination of these) is crucial for reliable extraction of 

personal characteristics. It seems that some mental tasks are more appropriate than 

others. At the same time, experiments with combinations of stimuli appear to be 

more advantageous for the personal uniqueness of the EEG patterns” (Ferreira et 

al., 2010). 

 

7.3 Spiking Neural Networks Applications on EEG 

Studies in which spiking neural networks (SNN) have been used for EEG 

analysis, have achieved remarkable success in categorization tasks, compared to 

other alternative methodologies. Recently, Goel and colleagues (P. Goel et al., 
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2008; Piyush Goel et al., 2006) presented a classification scheme of continuous 

EEG data using SNN, which engages pulse and rate encoding to transform data to 

spike trains.  

The data set of this study was provided by EEG signals recorded during spell 

checking, downloaded from the BCI Competition website. The data comprise two 

classes: the target group (P300: slow positive potential which builds up over 

approximately 250-500 ms), and a non-target group (potential build up over 250-

500 ms). Feature selection and extraction employed a Wavelet Transform to 

eliminate the noise and to obtain the low frequency signal. This system utilises the 

LIF model as nodes in a multi-layered structure (2 layers) to form a weak 

classifier; each node contributes to its own classification in generating its overall 

classification. Layer One includes 2 networks; the input network (LIF neurons 

receiving EEG input), and bias network (a single network with strong connection 

weight). The secondly, termed the γ-neuron, receives as input the output from the 

first layer, and spikes whenever synchrony exists within the two networks. The 

higher the number of γ-spikes, the more similarity between the input signal and 

the bias current. Goel and colleagues compared the performance of this approach 

with that of two others; Support Vector Machine (SVM), and log sampling, low-

pass filtering and Continuous Wavelet Transform (CWT) for pre-processing and 

filtering EEG input data, followed by Linear Discriminate Analysis. The SNN-

based approach improved (incomparison to SVM and CWT) the classification 

accuracy to 94.7% and 83.68% for target and non-target groups, respectively. 
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Goel et al. (2007) commented that their approach could be made more accurate 

and flexible if a biological stimulus response was built into the network, more 

parameters were added or the existing probability parameters in SNN adjusted. A 

couple of years later, Ghosh-Dastidar and Adeli (Ghosh-Dastidar & Adeli, 2009) 

suggested a method for improving SNNs performance in categorising EEG data 

and detecting epilepsy and epileptic seizures. Three SNN training algorithms were 

investigated and compared; Spike Propagation (SpikeProp), Quick Propagation 

(QuickProp) and Resilient Propagation (Rprop). The data sets for assessing the 

performance of the training algorithms were XOR, Fisher Iris benchmark and 

EEG data. Three aspects of computational efficiency and classification accuracy 

were investigated. Epilepsy and epileptic seizure detection data were divided into 

3 classes; namely, healthy individuals, relapsed epileptic individuals and epileptic 

individuals during an attack. During processing of XOR and Fisher Iris data, 

RProp yielded the highest classification accuracy (92.5%), especially for training 

datasets. RProp was thus selected as the SNN training algorithm and for 

generating EEG data classification networks. The experiments of Ghosh-Dastidar 

and Adeli (2009) used a feed forward architecture (input layer, hidden layer and 

output layer) to achieve average classification accuracy around 90.7%. However, 

as mentioned by the authors,  introducing spike time dependent and plasticity 

(STDP) into the SNN training algorithm would enhance the biological plausibility 

of the algorithm, similarly to Hebbian rules. 
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A study aimed at processing rat EEG data using a reservoir approach was 

proposed in 2008 and published in 2009 (Buteneers, Schrauwen, Verstraeten, & 

Stroobandt, 2009). This study showed that introducing a reservoir for real-time 

epileptic seizure detection in 4 channels of rat EEG markedly improved model 

performance. In this experiment, 200 Leaky-Integrator neurons were deposited in 

the reservoir. From 20%-80% of data, two classes, detection seizure and tonic 

seizure, were extracted by training and analysis respectively. The reservoir was 

found to enhance the detection time performance to approximately 85% for 0.5 

seconds attack time and 85% for 3 seconds tonic seizure time. Because this study 

utilised EEG rat data which engaged only 4 channels, limited frequency 

information was available.  

The above studies paved the way for the development of the Liquid State 

Machine, a reservoir apparatus that was applied to EEG data for the first time in 

2011 (Nuntalid, Dhoble, & Kasabov, 2011). 

 

Figure 7.10 shows the six time steps of the Evoked Potential Duration (EPD) in a 

single subject. EPD transforms the original EEG signal into a power spectrum that 

changes over time in response to varying stimulus. The EPD in the same subject 

undergoing similar stimuli over nine time steps is shown in Figure 7.11. 

Comparing Figures 7.10 and 7.11, we observe that increasing the number of time 

steps, enables more information to be extracted from EEG data. Therefore, 

processing information in vector format may not be efficient for complex EEG 

pattern recognition. 
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Figure 7.10: Evoked Potential Duration (EPD) of a subject responding to a stimulus 

 

 

 

Figure 7.11: Illustration of the EPD of a subject responding to a stimulus in nine time steps 

 

Figure 7.10 and 7.11 were produced utilizing MATLAB (R2011) with EEGlab 

library (Arnaud Delorme & Scott Makeig, 2004). 
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7.4 Conclusion 

From previous SNN studies, it appears that the development of probabilistic 

spiking neural models and spatiotemporal pattern recognition of human EEG data 

other than that arising from epileptic seizure is complex and challenging. Further 

investigation into these aspects is the aim of this study. In particular, EEG-based 

spatiotemporal pattern recognition may improve the performance of SNN, lead to 

a better understanding of the human brain and make significant contributions to 

neuroscience.  

 

 



 
 

                                                 Chapter 8 

Novel Algorithm for EEG Transformation 

to Spikes 

 

This chapter discusses the possible encoding methods applicable to EEG data and 

to hardware development of a BCI with a fast processing mechanism. Section 8.1 

focusses on the Paralleled Spike Encoding Function, which is well designed and 

implemented in hardware but is less practical for software implementation. A 

more software-friendly approach, the Finite Impulse Response filter (FIR), is 

discussed in Section 8.2. FIR underlies the Ben Spike Encoder Algorithm (BSA) 

presented in Section 8.3.  The last section concludes the chapter.  

 

In this study, BSA is selected as an encoding method for EEG because it can be 

practically implemented in both hardware and software. The contribution involves 

novel application of the existing BSA encoding scheme on EEG data, and 

partially corresponds to the forth research question.  

 

8.1 Paralleled Spike Encoding Function 

Torikai and Nishigami proposed a spiking neural model and a corresponding 

encoding function, termed Chaotic Spiking Neuron (CSN) and Paralleled Spiking 

Encoding respectively (Torikai & Nishigami, 2009). CSN was inspired by the 
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reliable encrypting mechanism of the mammalian spiral ganglion cell. Essentially, 

CSN is a small network of LIF neurons, whose mechanism is depicted in Figure 

8.1. CSN includes two units, the Base Unit and the Neural Unit, both operating 

under an electrical circuit mechanism similar to the LIF model. The current )(tI  , 

input to both units, can vary in waveform. The capacitor voltage of base unit B  is 

increased by an amount depending on the integration of )(tI and internal current

0I . When B exceeds the firing threshold V  ,  it is reset to zero. The neural unit 

works similarly to the base unit, where iV  (i=1, 2, 3..., N) denotes the membrane 

potential. The V is the neural threshold of neuron increased by an amount 

dependent on )(tI + integration of )(tI + 0I + output of base unit. If )(tVi fires, its 

potential is reset to )(tB . 

 

The CSN encoding function imitates the mechanism of ganglion cells by the spike 

density of summed trains of spikes  )()( tYtY ii (i=1, 2, 3..., N), which is 

equivalent to the periodic sinusoidal waveforms received by inner hair cells. In 

this research, we show that CSNs can encode not only periodic sinusoidal input 

but a wide variety of inputs such as constant, random, and the non-periodic 

waveforms characteristic of human EEG data.   

 

CSN is designed primarily for hardware implementation, which is very simple and 

convenient. In contrast, it is unsuitably inflexible for software implementation 
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because swapping the potential of the base unit is outside of the LIF rules which 

the model need to be changed for software development. Therefore, to adapt CSN 

to software implementation, a new neural model for the base unit must be 

constructed. 

 

 

Figure 8.1: The Chaotic Spiking Neuron: CSN (Torikai & Nishigami, 2009) 

 

8.2 Finite Impulse Response filter (FIR) 

A causal filter with a finite impulse response calculates the output signal      as a 

weighted addition of the real and   earlier input samples     , where   is the 
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order of the filter. Consequently, the link between input and output can be 

modelled by the following variance equation 8.1: 

     ∑          
                                                                                       (8.1) 

 

The result      is the discrete convolution of     with a (finite) impulse response. 

 

     {
             .   

              
                                                                            (8.2) 

 

If the filter order is M, then the impulse response has     coefficients. 

The  -transform      of the impulse response      of a fundamental FIR filter 

has   zeros, whose positions are found by the coefficients bk and an  -fold pole 

at the origin (i.e., z = 0). Thus, an FIR filter is inherently stable. Nevertheless, the 

constancy condition, related to the location of the poles, must also be satisfied i.e. 

∑        
    . This condition is automatically fulfilled for FIR. Because the 

transfer operation of the filter is entirely calculated by the location of the zeros, 

FIR filters are known as ‘all-zero filters’.  

 

Linear-Phase Filter property is another property unique to FIR filters. It can be 

demonstrated that if the impulse response h[n] of the filter is symmetric, i.e. 

                       . .    (even symmetry, cosine terms only) or  

                        . .    (odd symmetry, sine terms only),  the 

phase function  ( ) of the system’s frequency response 
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 (  
 
)  | (  

 
)|     ( 

  )
 is linear. If the symmetry condition is fulfilled, the 

following holds: 

 ( )    (  
 
)   

  

 
 

 

 
                                                             (8.3) 

In this instance, the filter has a continuous group delay of 

 

    ( )   
  ( )

  
      Samples  

or 

    ( )   
  ( )

  
   (   )  Seconds 

 

8.3 Ben Spike Encoder Algorithm (BSA) 

Almost all real-world data signals, and especially EEG signals, are analogue. To 

use spiking neural networks to process analogue values, we need to transform the 

signals to spike-trains, in such a way that errors and information loss induced by 

the transformation process are minimised. In this study, we incorporate the BSA 

spike encoding scheme to transform EEG data into trains of spikes. BSA is a very 

fast and stable encoder. Moreover, because it is based on FIR, the encoded spike 

trains can be back-transformed into their original waveforms. In this way, one can 

check the extent to which the encoded spike trains mimic the original wave. A 

hardware implementation of BSA has been shown to produce superior results to 

other encoding methods (such as population encoding) in speech recognition 

(Benjamin Schrauwen, D'Haene, Verstraeten, & Campenhout, 2008) . 
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To date, this encoding scheme has been applied to complete data only. Because 

EEG signals exist in the frequency as well as the time domain, it has been 

conjectured that BSA encoding can convert EEG signals into spikes. The main 

advantage of BSA is that the frequency and amplitude characteristics are more 

tractable than those of the HSA (Hough Spiker Algorithm) spike encoding 

scheme, which has been employed in a Robot (Garis, Korkin, & Fehr, 2001). Due 

to the smoother threshold optimization curve, BSA is also less susceptible to 

changes in the filter and the threshold. Studies have shown that BSA offers an 

improvement of 10dB-15dB over the HSA spike encoding scheme (B. Schrauwen 

& Van Campenhout, 2003). 

 

Indicated below are samples that show how FIR filters transform a waveform into 

spikes. The original waveform is subtracted iteratively by FIR filters with a 1 bit 

shift per iteration, until all results are zeros. When the first FIR bit exceeds the 

first bit of the original wave, a spike is emitted (1). In contrast, if the first FIR bit 

is equal to or less then the first bit of the original wave, no spike is emitted (0). 

-Assume analogue waveform values of {1  5  13  15  7  7  6  2  9  5  -2}, and 

FIR filter values of {1  4  9  5  -2}. 

 

Iteration 1:   Spikes is {1}. 

1 5 13 15 7 7 6 2 9 5 -2 

1 4 9 5 -2       



 

 
 

126 

Iteration 2:   Spikes is {1  1}. 

0 1 4 10 9 7 6 2 9 5 -2 

 1 4 9 5 -2      

 

Iteration 3:   Spikes is {1  1  0}. 

0 0 0 1 4 9 6 2 9 5 -2 

   1 4 9 5 -2    

 

Iteration 4:   Spikes is {1  1  0  1}. 

0 0 0 0 0 0 1 4 9 5 -2 

    1 4 9 5 -2   

 

Iteration 5:   Spikes is {1  1  0  1  0}. 

0 0 0 0 0 0 1 4 9 5 -2 

     1 4 9 5 -2  

 

Iteration 6:   Spikes is {1  1  0  1  0  0}. 

0 0 0 0 0 0 1 4 9 5 -2 

      1 4 9 5 -2 
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Iteration 7:   Spikes is {1  1  0  1  0  0  1}  (the original spiking pattern). 

0 0 0 0 0 0 1 4 9 5 -2 

      1 4 9 5 -2 

0 0 0 0 0 0 0 0 0 0 0 

 

Therefore, the result {1  1  0  1  0  0  1} is obtained from original waveform.  

 

Table 8.1: Convolution function for transforming train of spikes into original waveform 

 

Spikes 

Iterations 

0 1 2 3 4 5 6 7 8 9 10 

1 1 4 9 5 -2       

1  1 4 9 5 -2      

0   0 0 0 0 0     

1    1 4 9 5 -2    

0     0 0 0 0 0   

0      0 0 0 0 0  

1       1 4 9 5 -2 

Result 1 5 13 15 7 7 6 2 9 5 -2 
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The original waveform can be recovered from the spikes using the same FIR filter 

and employing the convolution function, as shown in Table 8.1. Given that the 

spike train is {1 0 0 1 0 1 1} and the FIR filter is {1 4 9 5 -2}, the mask filter, 

which must be the same length as the FIR filter, is {0 0 0 0 0}.  

The spike train is first bit-reversed aligned into the first column. The FIR filter is 

inserted into the first row and shunted down the rows, shifting by 1 bit from left to 

right each time, until the end of the spike train is reached. If the value of Spikes 

for a given row is 1, apply the FIR filter; otherwise, apply the mask filter.  Finally, 

sum the values in each column to retrieve the original wave {1  5  13  15  7  7  6  2  

9  5  -2}, as shown in the last row of Table 8.1. 

 

The above analysis highlights the importance of a stable filter. In BSA the 

incitement is calculated from the spike train by equation 8.4, similarly to HSA.   

 

 







N

k

kest tthdhtxtxhs
1

)()())(( 
                                          (8.4) 

 

In table 8.1, the spike train is {1 0 0 1 0 1 1} and the FIR filter is {1 4 9 5 -2}. If tk 

represents the neuron firing time, h(t) denotes the linear filter impulse response, tk  

is the set of firing times of the neuron, then the neuron spike  x(t) is determined as 
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(8.5) 

BSA additionally calculates two error metrics for each time  , as revealed in 

Table 8.2. The first error metric is 

 

∑    ( (   )   ( )) 
                                                                                 (8.6) 

 

while the second is 

 

∑    ( (   )) 
                                                                                              (8.7) 

 

If the first error metric is smaller than the second minus threshold, then eject a 

spike and subtract the FIR filter from the input wave (if not, do nothing). The 

above error metrics calculation smoothes the frequency and amplitude in BSA, 

rendering those features less vulnerable to changes in the filter and threshold, in 

contrast to the HSA algorithm (Benjamin Schrauwen, Verstraeten, & 

Campenhout, 2007).  

 

The pseudo-code of BSA is displayed in Table 8.2. The binary spikes output is 

readily transformed to spike time of EEG data by dividing output(i)=1 by (sample 

rate of EEG/real time of recoding) , ignoring output(i)=0 because, in general, only 

the times of spikes are required in forming the spike trains. 
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Table 8.2: A pseudo-code of BSA algorithm on EEG data 

BSA Algorithm 

for (i=1 to size (input_signal)) 

     error_matrix_1=0 

     error_matrix_2=0 

for (j=1 to size(FIR_filter)) 

if ((i+j-1) <= size(input_signal)) 

               error_matrix_1+= abs(input_signal(i+j-1) – FIR_filter(j)) 

               error_matrix_2+= abs(input_signal(i+j-1) 

end if 

 end for 

if (error_matrix_1 <= (error_matrix_2-BSA threshold)) 

          output(i)=1; 

for (j=1 to size(FIR_filter)) 

if ((i+j-1) <= size (input_signal)) 

input_signal(i+j-1) - = FIR_filter 

end if 

end for 

else 

          output(i)=0 

end if 

end for 

 

 

In this specific synthetic dataset, the Finite Impulse Response (FIR) filter size is 

set to 20 and the BSA threshold to 0.86. These values generate the lowest 
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Euclidian distance (14.3) between the original EEG signal and the re-transformed 

spikes recovered from the convolution function using the same FIR filter. The 

dependence of Euclidean distance on threshold is shown in Figure 8.2. In the 

original BSA, the optimal threshold was found by minimising the SNR (signal 

noise ratio), to enable direct comparison with the HSA algorithm.  

 

Convolving the spike train x(t) with a discrete FIR filter, Eq.8.5 becomes  

 

 

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(8.8) 

 

where M represents the number of filter taps. (Benjamin Schrauwen et al., 2007). 

 

Figure 8.2: Ben Spike Encoder Algorithm (BSA) 
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Figure 8.3: EEG signal, spike representation and actual one channel EEG signal 

 

The y axis of Figure 8.2 is the Euclidian distance between the original EEG signal 

and the signal recovered from the spikes. The x axis is threshold value of BSA 

algorithm, which ranges from 0.0 to 1.0. 

In Figure 8.3 a synthetic EEG signal, created by adding noise to a sine wave 

(duration 1600 ms), is compared with a true single-channel EEG signal (duration 

1.6 s). Synthetic and true signals are displayed in the top and bottom panels of 8.3, 

respectively. The centre panel is the spike representation of the top figure attained 

from BSA. In the bottom panel, the true single-channel EEG signal has been 

overlaid with another signal (dashed lines) showing the EEG signal rebuilt from 
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the BSA-encrypted spikes. The clear resemblance between the two signals 

indicates that the modified BSA is suitable for EEG spike encryption.   

 

8.4 Conclusion 

BSA may be suitable for transforming EEG into spike trains due to the following 

advantages of this method over other existing methods: 

(1) It presents as a fast, stable and practical encoder because it has hardware 

support yet is readily implemented in software. 

(2) Because BSA is based on FIR, the encoded spike trains can be back-

transformed to their original form to determine how closely the encoded 

spike trains match the original wave. 

(3) It requires fewer data vector inputs than other approaches (c.f. population 

encoding, detailed in Chapter 2), enabling much faster and more efficient 

processing; this is a primary advantage of SNNs in general. 

(4) The only parameters that require optimizing are FIR filter size and BSA 

threshold. In addition, these parameters are relatively robust, ensuring a 

stable system. 

 

 

 

 



 
 

Chapter 9 

Proposed Architectures for EEG Spatio-

temporal Pattern Recognition 

 

Section 9.1 of this chapter describes a proposed architecture for EEG Spatio-

temporal Pattern Recognition on Stochastic Precise-time Spike Pattern 

Association Neuron (SSPAN). Section 9.2 explains the architecture for online 

EEG Spatio-temporal Pattern Recognition Utilizing the DepSNN and Section 9.3 

describes the architecture for online EEG Spatio-temporal Pattern Recognition 

Utilizing epSNNr. In each of these architectures, the encoder is BSA (described in 

Chapter 8) and the neural models are LIF and stochastic (described in Chapter 3). 

The chapter concludes with Section 9.4. 

This chapter consist of the above mention three main contributions specifically 

designed spatiotemporal EEG processing. These contributions are in line with the 

fourth and last research question. 

The architectures proposed in this chapter will be investigated on two real world 

EEG datasets; the Audio–Visual Stimuli Perception EEG dataset, whose details 

are presented in Chapter 10, and the P300 EEG dataset, which is discussed in 

Chapter 11.  
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In some states, a portion of each dataset may be required for parameter adjustment 

before the feasibility of each method can be assessed on the full datasets.  

 

9.1 Proposed Architecture for EEG Spatio-temporal Pattern Recognition on 

Stochastic Precise-time Spike Pattern Association Neuron (SSPAN) 

 

 

Figure 9.1: SSPAN: Stochastic Precise-time Spike Pattern Association Neuron for EEG 

 

A recent study mentioned that neurons respond at precise times to fluctuating 

current injections, leading to peaks in ensemble firing rate. The structure of spike 

events provides a compact description of the neural response (Toups, Fellous, 

Thomas, & Sejnowski, 2012).     
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Hence, in this architecture, SSPAN is employed to investigate EEG datasets, as 

explained in Chapter 4. This simple architecture is mainly focussed on the 

spatiotemporal learning process and spike timing. 

In the first step, each EEG data channel is transformed into trains of spikes by the 

spike encoding methods (BSA) described in Chapter 8.  

The spike input signals are then injected to output neurons. The number of output 

neurons is based on the number of available classes in the dataset. An output 

neuron is connected to every incoming input signal from a particular class. 

Because EEG data are both noisy and stochastic, the stochastic SNN models are 

beneficial to in the investigation and might produce some interesting results and 

knowledge discovery. 

Four SNN models are utilized for output neurons; the deterministic LIF model, 

Stochastic Noisy Reset model (NR), Stochastic Step-wise Noisy Threshold model 

(ST) and Continuous Stochastic Threshold Model (CT). 

 

9.2 A Novel Architecture for Online EEG Spatio-temporal Pattern 

Recognition Utilizing the Dynamic Evolving Spiking Neural Network 

(DepSNN) 

The major advantage of Evolving Spiking Neural Networks (eSNN) is that the 

trained network responds to newly introduced samples without the need for 

retraining (Hamed, Kasabov, & Shamsuddin, 2012).   

Currently, however, ESNN cannot handle multiple spikes reaching the same 

synapse at different times.  The need to process such data has inspired the 
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development of DepSNN, an extension of eSNN that can handle spatiotemporal 

input.  

The architecture presented in this section enables DepSNN to be investigated on a 

real world EEG dataset. The results provide new insights into spatiotemporal 

learning. This method has been recently published in the journal Neural Networks 

(Kasabov, Dhoble, Nuntalid, & Indiveri, 2012). 

 

 

Figure 9.2:  DepSNN: Dynamic Evolving Probabilistic Spiking Neural Network for EEG 

 

Figure 9.2 illustrates the architecture of DepSNN for EEG data processing. EEG 

data is first encoded into spike trains by the BSA spike encoding algorithms. To 

define the initial synaptic weights, the spike input signals are ranked from the time 

of first spike of each EEG channel Details of the calculation are presented in 

Chapter 5.   
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The SDSP rule then adjusts the synaptic weights based on incoming spikes. The 

mapping of the output spikes onto the desired class label is learned using a one-

pass learning mechanism. A repository of trained output neurons is also created in 

the learning process. A new neuron is trained and compared to one stored in the 

neuron repository. If the new neuron displays similar synaptic weights patterns 

over time to an existing neuron (within an adjustable similarity threshold), the two 

neurons will be merged. Otherwise, the new neuron is added to the neural 

repository.  

The feasibility and performance of DepSNN on EEG data is assessed for the five 

DepSNN models described in Chapter 5; namely, DepSNNm, DepSNNs, NR-

DepSNNs, ST-DepSNNs, and CT-DepSNNs. 

 

9.3 A Novel Architecture for Online EEG Spatio-temporal Pattern 

Recognition Utilizing the Evolving Probabilistic Spiking Neural Network 

Reservoir (epSNNr) 

The structure of the Evolving Probabilistic Spiking Neural Network Reservoir 

(epSNNr) for categorization of spatiotemporal data founded on probabilistic 

reservoir computing pattern is explained in Chapter 6. In this chapter, epSNNr is 

investigated for its efficacy on real world EEG data. The architecture of the 

system is shown in Figure 9.3. 
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The state vector in Figure 9.3 is specified only for non-SNN classifiers (readout 

functions), because the SNN classifier of DepSNN can receive time-dependent 

spike information directly from the spatiotemporal filter. 

 

 

Figure 9.3: epSNNr: Evolving Probabilistic Spiking Neural Network Reservoir for EEG 

 

In the first processing step, each EEG data channel is transformed into trains of 

spikes by the BSA spike encoding methods. The spike trains are then dispersed 

into the spatiotemporal filter, which employs the Liquid State Machine (LSM). 

In this architecture, the deterministic SNN model (LIF) and stochastic models 

(Noisy Reset model, Step-wise Noisy Threshold model and Continuous Stochastic 

Threshold) generate the liquid for the spatiotemporal filter.  

The data in the state vectors are fed into a readout unit (the processing of state 

vectors is detailed in Chapter 6).  In this study, Naïve Bay and Multi-Layer 

Perception (MLP) are employed for non-SNN classifier exploration. DepSNN or 

SSPAN might improve the performance of this architecture, because the 

spatiotemporal filter can inject its output directly into DepSNN or SSPAN, unlike 
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the situation for non-SNN classifiers (Nuntalid et al., 2011) or eSNN (Schliebs, 

Nuzly Abdull Hamed, & Kasabov, 2011). 

 

        

(a)                                                                     (b) 

       

(c)                                                                                     (d) 

 

Figure 9.4: Demonstration of 3D EEG head map localization and 3D LSM visualization. 

 

During processing of real EEG data, the way of in which input spikes into are fed 

into spatiotemporal filter may vary. This study uses two approaches of input 
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signal projection; standard LSM in which data are normally randomly distributed 

with a certain probability of connection, and EEG localization mapping to LSM 

(as shown in figure 9.4). Before the SNN is trained on data, the spatiality 

distributed EEG channels are mapped onto allocated spatially distributed neurons 

in a 3D SNN reservoir, in which the idea is first published in (Kasabov, 2012b). 

 

Figure 9.4 (a) and (b) show standard EEG channel names on a human head and 

the location of each EEG channel in 3D space, respectively. Figure 9.4 (c) is a 3D 

view of LSM comprising 125 neurons (5×5×5), the likely size of an EEG system 

containing 64 channels or less. The green and yellow lines show connections to 

inhibitory and excitatory synapses, respectively. Figure 9.4 (d) illustrates the 

alignment of neuron numbers on the LSM. 

Figure 9.4 (a) and (b) were created using the EEGLAB library (A Delorme & S 

Makeig, 2004), while Figure 9.4 (c) and (d) were generated from pure Python 

programming code using synaptic connection information obtained from the Brian 

library for SNN simulation (Goodman & Brette, 2008). 

Table 9.1 shows the LSM mapping of 64 standard EEG channels arranged in real-

time according to Fig. 9.4 (a). The centres of EEG and LSM channels Cz and 

neuron 65 (the central neuron of the top layer of LSM) respectively, are the 

reference points for mapping. The centre channels (FPz, AFz, Fz, FCz, Cz, CPz, 

Pz, POz, Oz and Iz) are firstly mapped to LSM neurons (3, 4, 5, 35, 65, 95, 125, 
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124, 123 and 122), whose numbers denote the electrodes placed along the midline 

of the skull. 

 

Table 9.1:  Mapping table of standard 64 EEG channels matched to neuron number in 

epSNNr (size 5×5×5 neurons) 

EEG 

channel 

Neuron 

number in 

LSM 

EEG 

channel 

Neuron 

number in 

LSM 

EEG 

channel 

Neuron 

number in 

LSM 

EEG 

channel 

Neuron 

number in 

LSM 

FPz 3 C4 25 CP2 70 P2 75 

AFz 4 C6 24 CP4 50 P4 74 

Fz 5 T8 23 CP6 49 P6 73 

FCz 35 T10 22 TP8 48 P8 72 

Cz 65 FTz 78 F7 52 AF7 29 

CPz 95 FC5 79 F5 53 AF3 30 

Pz 125 FC3 80 F3 54 AF4 10 

POz 124 FC1 60 F1 55 AF8 9 

Oz 123 FC2 40 F2 15 PO7 119 

Iz 122 FC4 20 F4 14 PO3 120 

T9 102 FC6 19 F6 13 PO4 100 

T7 103 FT8 18 F8 12 PO8 99 

C5 104 TP7 108 P7 112 FP1 28 

C3 105 CP5 109 P5 113 FP2 8 

C1 85 CP3 110 P3 114 O1 118 

C2 45 CP1 90 P1 115 O2 98 

 

From table 9.1 and Figure 9.4 (a), we observe that the letter identifies the brain 

functional area of each EEG channel while the number identifies the brain 

hemisphere (left or right). Letters F, T, C, P and O represent frontal, temporal, 

central, parietal, and occipital lobes, respectively. The C region is introduced for 

identification purposes only; no central lobe exists in the human brain. Lower-

case z refers to an electrode placed on the midline. Even numbers (2, 4, 6, 8) refer 
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to the right hemisphere of the brain, while odd numbers (1, 3, 5, 7, 9) refer to the 

left hemisphere (Niedermeyer & Da Silva, 2005). 

 

The EEG electrodes are positioned relative to two anatomical landmarks; the 

point between the forehead and the nose (nasion) and the lowest point of the skull 

at the back of the head (inion). A prominent bump is commonly utilized as a 

reference point (Niedermeyer & Da Silva, 2005). 

This architecture of input projection also imitates the human brain, in that some 

neurons receive information directly from a stimulus and neighbouring neurons 

may respond to the transmitted information (Arbib, 2002).  

 

9.4 Conclusion 

In this chapter, three novel network architectures were proposed for EEG 

spatiotemporal pattern recognition, ranging in design from simple to more 

complex. BSA is utilized for transformation of EEG data into spikes. The 

architectures are implemented and assessed on two real-world EEG datasets, as 

discussed in the following chapters. 

 

 

                                                      



 
 

Chapter 10 

Spatio-temporal Pattern Recognition of 

Audio–Visual Stimuli Perception EEG 

 

To investigate and evaluate the performance of a spike encoding method for EEG 

and SNN for spatiotemporal pattern recognition (whose mechanisms are described 

in Chapters 3-8), applications to real-world EEG datasets are required. The EEG 

dataset and the method by which it is converted to spikes are described in Section 

10.1. Sections 10.2, 10.3, 10.4 and 10.5 evaluate the response of SSPAN, 

DepSNN, epSNNr (using DepSNN as readout unit) and mixed models 

respectively, to EEG inputs. The chapter concludes with Section 10.6. 

 

This chapter’s contribution consists of performance evaluation of the proposed 

methods and architectures on real-world EEG data and corresponds to the fourth 

research question.   

 

10.1 Audio-Visual Stimuli Perception EEG Dataset 

The dataset employed in this series of experiments is the audio-visual stimuli 

perception EEG Dataset, archived in the RIKEN Brain Science Institute in Japan. 

It comprises four stimulus states (in classification terminology, it has 4 classes). 

Class 1 is Auditory stimulus, Class 2 is Visual stimulus, Class 3 is Mixed auditory 
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and visual stimuli and Class 4 lacks any stimulus. The EEG data were obtained 

from a 64 electrode EEG system and were filtered by a 0.05Hz to 500 Hz band 

pass filter and tested at 2 KHz. In this initial verification of the hypothesis, a small 

subset of the data points was used. More precisely, for each class, 11 epochs with 

similar sampling rate were selected from 50 epochs (1988 to 2153 

samples/epoch/50ms, 4 classes making 44 epochs in total). It should also be noted 

that the sample rate of diverse auditory and visual stimuli is not steady within a 

class. 80% and 20% of data were used for training and testing, respectively. 

 

 

Figure 10.1: Single Channel EEG Signal (top panel), Spike Representation (central panel) 

and Actual EEG Signal superimposed on a Back-Transformed Signal (bottom panel) 

 

The top panel of Figure 10.1 displays a single-channel EEG signal recorded over 

500ms imitation time (50ms in real time). The central panel is the spike train of 
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the EEG signal acquired by BSA encoding. The bottom panel illustrates the true 

EEG signal overlaid with the remodelled EEG signal, back-transformed from the 

BSA encrypted spikes. The resemblance between the two signals demonstrates 

that BSA conversion can accurately reconstruct EEG data.  

To obtain a benchmark comparison, the above EEG dataset was applied to two 

traditional methods, non-adaptive Naïve Bayes and Multi-Layered Perceptron 

(MLP), with the following parameters: 139 sigmoid nodes in the hidden layer; 

learning rate 0.3; momentum 0.2; 500 training repetitions and authenticate 

threshold 20. The traditional methods performed poorly on this EEG dataset; 

66.9% and 64.87% reconstruction accuracy was obtained for Naïve Bays and 

MLP respectively. 

 

 

Figure 10.2: Optimal BSA Threshold on EEG 
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Figure 10.2 shows how distance varies with threshold when spikes are back-

transformed into EEG data using the BSA algorithms. The y axis is the Euclidian 

distance between the original and back-transformed EEG signals. Spikes are back-

transformed into signal via a convolution function with the same FIR filter as used 

for the original transformation. The x axis gives the threshold values of BSA 

algorithm (ranging from zero to one). The optimum threshold is that yielding the 

lowest Euclidian distance between the original and re-transformed signal. From 

the graph, this threshold appears around 0.85; a more precise estimate is 0.862 

(for which the Euclidean distance is 14.288). 

 

 

 

Figure 10.3: Samples of Input Stimuli Transformed to Spike Using BSA Algorithm. Graphs 

show how number of active neurons varies with time. 
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For the EEG dataset used in this study, the finite impulse response (FIR) filter size 

is set to 20, the wavelength to 0.05, and the BSA threshold to 0.862.  

 

Several samples of input stimuli transformed to spikes using the BSA algorithm 

with the above parameter setup are shown in Figure 10.3. The left and the right of 

the first row display audio and visual stimuli respectively. On the bottom row, the 

left plot illustrates a mixed stimulus while the right represents no stimulus. 

 

10.2 SSPAN on Audio-Visual Stimuli Perception EEG Dataset 

This section explores the use of SSPAN (see Chapter 4 for details) on the audio-

visual stimuli perception EEG dataset. Parameter setup is listed in table 10.1. The 

error in Figure 10.4 (1263.23) is the error at the first training iteration. The error at 

the third training iteration (27.16), during which no spikes were emitted from any 

SSPAN neuron, is depicted in Figure 10.5.  

The above results show that when SSPAN neurons receive many spikes in a short 

time (high density of spikes), a high error results. To reduce the error rate, SSPAN 

updates most of the synaptic weights into inhibitory (negative weight values), 

which prohibits neurons from emitting spikes in subsequent training iterations 

(figure 10.5). At least 10-20 iterations of training are required for the neurons to 

become excitatory. Because the error rate in the absence of spiking is exceedingly 

low, SSPAN increases the synaptic weights rather slowly.  
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This phenomenon was observed recursively in this experiment. The performances 

are shown in table 10.2. 

 

Table 10.1: SSPAN Parameter Setup 

Methods/Parameters SSPAN 

Neural model LIF,NR, ST, CT 

Output neuron 4 neurons (of each model experiment) 

Input spike train 64 spike trains 

Membrane time constant 10 ms 

Reset potential 0 mV 

Firing threshold 10 mV 

Input weight to SSPAN 0.01 mV 

Reset μ 0 mV 

Reset σ 3.0 mV 

Threshold σ 2.0 mV 

Noisy time constant 10 ms 

Synaptic time constant  10 ms 

Simulation time  600 ms 

Simulation time step 0.1 ms 

Training iteration  50 

SSPAN learning rate 0.1 
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Figure 10.4: (top) Kernel Graphs of Actual (blue curve) and Desired (green curve) Spike of a 

SSPAN neuron after the first training iteration; (bottom) Plot showing the error between the 

desired and the obtained signal. 

 

The upper plot of Figure 10.4 shows the desired spike (green curve) and the 

output spikes of a SSPAN neuron (blue curve). The lower plot displays the error 

graph which is used for updating the weight (computing Δw) in SSPAN. 
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Figure 10.5: (top) Desired (green curve) spike of a SSPAN neuron with no firing activity; 

(bottom). The desired signal determines the magnitude of the error. 

 

In Figure 10.5, the upper plot shows the kernel graph of the desired spike (green 

curve). Note that, because the SSPAN neuron emits no spikes, the blue curve is 

absent. The lower plot is the error graph which is used for updating the weight 

(computing Δw) in SSPAN. 
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Table 10.2: SSPAN performance, Percentage of classification accuracies are between actual 

and desired EEG spike after 50 iterations of training. 

SSPAN(LIF) SSPAN(NR) SSPAN(ST) SSPAN(CT) 

12.5% 12.5% 25.0% 37.5% 

 

 

From table 10.2, it is seen that SSPAN performs no better than traditional 

methods (Naïve Bay and MLP) on this EEG dataset, because SSPAN may not be 

suitable for high-density spike inputs arriving in a short time frame, such activity 

is characteristic of EEG data. When SSPAN neurons receive many spikes in a 

short period, a high error is incurred which most of its synaptic weights (Δw) into 

the inhibitory state to lower the error rate, corresponding the equation 4.13 

(Chapter 4). This results in non-spikes propagation from output neurons. The 

issue may take at least 10-20 iterations of training are required before the neurons 

are again excited. 

Increasing the number of training iterations (e.g. 500 iterations) may improve the 

performance, but is vary time consuming and is not suitable especially for real-

time BCI application. 

On a more positive note, Stochastic Neural models, especially Step-Wise Noisy 

Threshold (ST) and Continuous Noisy Threshold (CT) models, yield better results 

than the deterministic model. This trend mirrors the results of Chapter 6, when 

SSPAN was investigated on a synthetic dataset. 
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10.3 DepSNN for Audio-visual Stimuli Perception EEG Dataset 

In this section, the performance of five types of DepSNN, namely DepSNNm, 

DepSNNs, NR-DepSNNs, ST-DepSNNs and NT DepSNN (see Chapter 5 for 

details), is assessed on the audio-visual stimuli perception EEG dataset. 

 

Figure 10.6: Input EEG (top) Spike Form Raster Plot and (bottom) evolution of synaptic 

weights  

 

The upper panel of Figure 10.6 shows the input EEG as a spike form raster plot, 

while the lower panel plots the weight changes of the DepSNNs. Recall that 

DepSNNs ranks weights by order, and defines initial weights based on the SDSP 

dynamic synapse. EEG data are transformed into spikes using the BSA spike 

encoding method, with the parameter setup described in Sections 10.1 and 10.2. 

The parameters of the DepSNN trained on the EEG data are shown in Table 10.3. 
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In DepSNNm the spike threshold (Vthr) is adaptable to allow acquisition of 

PSPmax, which is important for calculating the optimal threshold of DepSNNm.  

 

Table 10.3: Parameters for Neurons, Synapses and Learning Related Parameters 

Parameters for neurons and synapses 

Excitatory synapse time constant 2 ms 

Inhibitory synapse time constant 5 ms 

Neural time constant (tau mem) 20 ms 

Ejecting threshed (Vthr) 800 mV 

Rearranged potential 0 mV 

Inhibitory weight 0.20 V 

Excitatory weight 0.40 V 

Thermal voltage 25 mV 

Refractory period 4 ms 

Learning Related Parameters (Fusi’s Synapse, Section 7.2) 

Up/Down weight jumps(Vthm) 5× (Vthr/8) 

Calcium variable time constant (tau ca) 5× tau mem 

Steady-state asymptote for calcium variable (wca) 50 mV 

Stop-learning threshold 1(stop if Vca < threshold 1) 1.7 × wca 

Stop-learning threshold 2 (stop LTD if Vca > threshold 2) 2.2 × wca 

Stop-learning threshold 2 (stop LTP if Vca >threshold 3) (8 × wca) –wca 

Plastic synapse (NMDA) time constant 9 ms 

Plastic synapse highest value (wp hi) 6 mV 

Plastic synapse lowest value (wp lo) 0 mV 

Bistability drift 0.25 

Delta weight 0.12 × wp hi 

Other parameters 

Input size (64 electrode EEG) 64 spiketrains 

Simulation time  500 ms 

Mod (for rank order) 0.8 

Sim (DepSNN) 1 
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Figure 10.7:  (top) Spike raster plot, (centre) synaptic weights and (bottom) post synaptic 

potential evolutions 

 

Figures 10.6 and 10.7 illustrate the one-pass learning method on EEG data using 

DepSNNs and DepSNNm respectively. Figure 10.6 shows the synaptic weights of 

DepSNNs with the spike threshold set at 800 mV. In Figure 10.7, the highest 

membrane potential is seen to occur at around 200ms; this time point is taken as 

PSPmax. The top panels in both figures display the spike raster plot from which the 

weights changes are derived. 
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Figure 10.8: Classification Accuracy of Different DepSNN Models 

 

From Figure10.8, it can be concluded that Rank Order Code (RO) is critical for 

DepSNN. With RO not implemented in DepSNNm and DepSNNs, poor 

classification accuracy (37.5%) is obtained for both methods. DepSNNs and NR-

DepSNNs yield the highest classification accuracy (75%), but DepSNNs 

misclassified all no-stimulus samples. NR-DepSNNs recognised one no-stimulus 

sample but misclassified an auditory-stimulus sample. In addition, DepSNN 

exhibited superior performance in both computational efficiency and classification 

accuracy than the SSPAN analysed in Section 10.2. DepSNNs and NR-DepSNNs 

also displayed higher classification accuracy than the traditional methods (Naïve 

Bay and MLP) presented in Section 10.1. 
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10.4 epSNNr for Audio-Visual Stimuli Perception EEG Dataset 

The experimental setup of this investigation is presented in Table 10.4. A 

reservoir possessing a small world interconnectivity pattern was constructed as 

described previously (Maass et al., 2002). To ensure a valid comparison, the 

recurring SNN is produced using Brian (Goodman & Brette, 2008) library with 

Python programming language whose grid alignment resembles that of CSIM 

(Pecevski et al., 2009) (A neural Circuit Simulation). LSM comprises 135 neurons 

in a three-dimensional grid of size 9 × 5 × 3, with default positioning.  In this grid, 

two neurons A and B are linked with a probability given by 

 

2

),(

),( 

BAd

eCBAP



                                                                                          (10.1) 

 

where ),( BAd is the Euclidean distance between the neurons and  represents the 

density of connections (set to the default value for LSM i.e.  =2 ). We expect 

that the closer the two neurons, the higher the probability of connection. C  is a 

constant whose value depends on neural type (whether excitatory (ex) or 

inhibitory (inh). We assign the following values toC : exexC  = 0.3, inhexC  = 0.2, 

exinhC  = 0.5, and inhinhC  = 0.1. 

 

The following table shows the parameter setting that has been utilized in the 

experimental setup for the epSNNr. 
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Table 10.4: lists the parameter settings used in the epSNNr experiments

 
Parameters Value 

For Neuron 

Time Constance 10 ms 

Reset Potential   0 mV 

Firing Threshold 10 mV 

Standard Deviation of NR model   3 mV 

Standard Deviation of ST Model   2 mV 

Standard Deviation of NT Model   1 mV 

For LSM 

Simulation Time 500 ms 

Number of Neuron 135 

Excitatory and Inhibitory Ratio 4:1 

Input Neurons Connection Probability 0.02 

Input Neurons Connection Weight 1.62 mV 

Time-bin for Liquid Responses 25 ms 

 

 

Figure 10.9 illustrates the reservoir reaction of one epoch (50 ms) of auditory 

stimulus. The reservoir constitutes 135 LIF neurons, the x axis is the simulation 

time (maximum 500 ms) and the y axis shows the activation of the neurons 

(spikes are represented by dots). The liquid response of the network was mapped 

into 25 ms time bins (25 time bins/ epoch). The details of the mapping procedure 

are explained in Chapter 6 (Section 6.1.3). Figure 10.9 shows the most precise 

response obtained under this experimental framework.  
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Figure 10.9: Liquid Response of the Network 

 

 

 

Figure 10.10: Root Mean Squared Error (RMSE) in epSNNr Models with non-adaptive 

Naïve Bayes and Multi-layered Perceptron Readout Functions 

 

Two readout functions were analysed and tested in this experimentation; non-

adaptive Naïve Bayes and Multi-Layered Perceptron (MLP). The MLP parameters 
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were set to the following values: 139 sigmoid nodes in the hidden layer; learning 

rate = 0.3, momentum = 0.2, number of training repetitions = 500, authentic 

threshold = 20.  

 

The performance of the epSNNr models using two types of classifier were 

compared with those of the two classifiers in the absence of both reservoir and 

spike representation (raw data). 

The percentage classification accuracy (%) of the different methods is listed in 

Table 10.5. The classifiers alone do not accurately process raw EEG data. 

However, when the raw EEG is converted using BSA spike encryption and is 

passed into the classifier via epSNNr with different stochastic models, the 

performance of both classifiers improves markedly. Other classifiers were tested 

in the research but were deemed unsuitable for processing complicated 

spatiotemporal EEG data; hence they are not discussed here.  

 

Table 10.5: Classification Accuracy  

 

Readout Methods 

Without epSNNr epSNNr Models 

Accuracy LIF  NR  ST  CT  

Naïve Bays 66.9% 75% 75% 75% 75% 

MLP 64.87% 50% 50% 75% 50% 

 

 

The precision achieved from epSNNr with Naïve Bayes as readout function is 

similar for all of the neural models (75%, misclassified no-stimulus class), but the 
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root mean squared error (RMSE) values (as shown in Figure 10.10) vary 

significantly. In particular, the ST model with Naïve Bayes yields the lowest 

RMSE, demonstrating the maximum operation and steadiness of this model 

compared with the deterministic and other probabilistic models for this 

experiment. 

The key results confirm that converting EEG signals into spike trains via the BSA 

spike encoding scheme considerably enhances the classification precision. Using a 

stochastic neural model in the epSNNr (for example, the ST model) may further 

enhance the precision, as seen in Table 10.5, epSNNr plus ST attained 75% 

classification accuracy and misclassified one sample in the no-stimulus class. By 

contrast, other models misclassified all samples in the no-stimulus class and some 

in the visual stimulus class (see also the root mean square errors in Figure 10.10). 

 

10.5 epSNNr utilizing DepSNN as a Readout Unit on Audio-Visual Stimuli 

Perception EEG Dataset 

In this section, mixed models, i.e. different epSNNr models utilizing DepSNN as 

a readout unit, are investigated. The experimental design comprised two main 

setups.  

In the first setup, the parameters of DepSNN and epSNNr were set as listed in 

Tables 10.3 and 10.4 respectively, but the number of input neurons in DepSNN 

was made equal to that of epSNNr (i.e. 135 neurons).  

The Time-bin for Liquid Responses parameter is not required for DepSNN 

because the spikes output of epSNNr is the input of DepSNN. This may increase 
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the processing time because spike trains are input to DepSNN directly, by passing 

the binary transformation linear mapping requirements of conventional methods 

(Naive Bay and MLP) used as epSNNr readout functions. In addition, DepSNN 

has a rapid one pass learning mechanism which precludes the need for multiple 

iterations in the readout training process.   

The second experimental setup investigates different ways of injecting input into 

the epSNNr spatiotemporal filter. The input injection mapping of 64 EEG 

channels (see Table 9.1) implies that the number of neurons in epSNNr is slightly 

smaller than in the first setup (125 neurons, 5×5× 5).   

However, in the second setup, the input connection weights must be increased to 

8.1 mV so that information can transmit to other neurons which are not directly 

connected to the input signal.  

The classification accuracy for this dataset depends critically on the connection 

weights of the input neurons. An optimum input weight exists for which the 

classification accuracy is highest. 

 

Table 10.6: EEG Classification Accuracy (%), for Two types of DepSNN with Various 

epSNNr Neural Models. 

Readout Methods Without epSNNr epSNNr Neural Models 

Accuracy LIF NR ST CT 

DepSNNm 62.5% 37.5% 37.5% 37.5% 50% 

DepSNNs 75% 62.5% 62.5% 62.5% 62.5% 
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From section 10.4, it is seen that epSNNr together with traditional methods (Naive 

Bays, MLP) as a readout function yields better classification accuracy than 

traditional methods alone. Remarkably, although the processing time of mixed 

models (epSNNr with DepSNN as readouts) is reduced, the classification 

accuracy is worse than when DepSNN alone is used (see Table 10.6).  This 

behaviour results because DepSNN requires the complete spike patterns, which 

are transformations of the original signals, throughout the sampling period. Thus, 

temporal information is crucial for DepSNN. The mechanism of epSNNr not only 

transforms input information to higher dimension but combines spatial and 

temporal dimensions, changing the original patterns to several shorter temporal 

patterns of closely matched signals. 

 

Table 10.7: Classification accuracy (%) of epSNNr with DepSNN as a readout and EEG 

localization input mapping. 

SNN model 

in epSNNr 

Classifier 

DepSNNs DepSNNm 

LIF 25% 75% (c=1) 

NR 37.50% 62.5%(c=1) 

ST 25% 50% (c=9) 

CT 37.50% 50% (c=3) 

 

 

In contrast, when input is projected into the spatiotemporal filter unit as a 

localization  mapping method in epSNNr, a similar accuracy to that obtained in 

Table 10.5 is obtained (75%; see Table 10.7). Recall that in Section 10.3, 
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DepSNNs alone and epSNNr with traditional methods (Section 10.4) were applied 

to the same dataset. However, the method presented here tended to misclassify the 

mixed-stimulus instead of the no-stimulus class.  

This emphasises that DepSNN on EEG requires the whole spike patterns across 

the entirety of the sampling period. The suggested EEG input projection approach 

must be performed on other EEG datasets before it can be declared valid.  

 

SSPAN was not adopted as the readout function in this section because when 

SSPAN neurons receive many spikes in a short period, a high error is incurred (as 

explained in Section 10.2). SSPAN updates most of its synaptic weights into the 

inhibitory state (negative synaptic weights) to lower the error rate, resulting in 

many idle neurons during subsequent training iterations (see Figure 10.5). At least 

10-20 iterations of training are required before the neurons are again excited. Due 

to the low error rate incurred by no spiking activity, SSPAN increases its synaptic 

weights slowly. In this experiment the same phenomenon occurred, resulting in 

the performances shown in Table 10.2.  

 

The above-mentioned problem will be exacerbated when the input signals inject 

to epSNNr, since the output of epSNNr is now the input of SSPAN, which is 

larger than the original dataset but has similar spike density.  

 

10.6 Conclusion 
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The BSA spike encrypting scheme was found to be appropriate for encrypting 

EEG data stream into spike trains. In this chapter, we also addressed the question 

of whether probabilistic neural models are suited to LSM reservoir computing. 

From the results of the experiments, the following conclusions are drawn: 

(1) The classification accuracy of epSNNr is enhanced when the deterministic 

LIF model is replaced with a probabilistic neural model.  

(2) The classification operation of the epSNNr depends on the type of 

underlying probabilistic neural model. This suggests that an epSNNr can 

be optimized by considering the neural models used and by choosing 

parameters that better suit the noise and the dynamics of particular EEG 

data in a changing environment. 

(3) Given the same EEG data, the results of DepSNNs are similar to those of 

epSNNr. However, DepSNN has a simpler structure and faster 

performance. It requires no more than single-pass learning and relatively 

few neurons (in this experiment a mere 33 output neurons were assigned; 

32 neurons in the training process and one in the recall process). 

(4) The DepSNN model is easier to realize as a specialised SNN hardware 

than the epSNNr. 

(5) The performance of DepSNNs differs from that of DepSNNm. The critical 

parameters for for DepSNNs and DepSNNm are the threshold and the 

parameter C, respectively. 

(6) The processing time of mixed models (epSNNr with DepSNN as readouts) 

is faster than epSNNr with traditional method as readout, but the 



 

 
 

166 

performance declines relative to DepSNN alone. However, epSNNr may 

shorten the extended temporal dimension of spatiotemporal EEG samples 

(which may exceed 1 minute). Combining epSNNr with DepSNN may 

also prove useful in other applications involving pattern recognition and 

prediction, such as video or the evolution of biological cells. 

(7) The injection of input into the spatiotemporal filter in epSNNr utilizing 

EEG localization mapping (DepSNN as readouts) enables higher 

classification accuracy than the traditional means of projection input into 

epSNNr, but depends critically on the input connection weights. 

 

While DepSNN performed more accurately than epSNNr and the mixed models 

(adopting epSNNr with DepSNN as readout functions), the latter may prove 

superior when dealing with extended STP (1 second or longer). Although the 

DepSNN models employ more sophisticated learning algorithms, their simple 

scalar synaptic weights are limited in their ability to capture long and complex 

temporal patterns. 

 

The new models, especially DepSNN, are superior to conventional methods in 

terms of learning time and accuracy, because they utilize information that is 

ordered relative to the first input spike, as well as information related to the time 

of arrival of consecutive spikes. These two information formats constitute a 

spatiotemporal input pattern.  
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Injection into the spatiotemporal filter of epSNNr utilizing EEG localization 

mapping (DepSNN as readouts) improves the classification accuracy relative to 

the conventional approach. Further investigation on additional EEG datasets may 

produce different and interesting results, and forms the basis of the next chapter. 

Since EEG signals can vary when repeating a given task, depending on the overall 

state of the brain and its local environment, the proposed methods could be used 

to construct adaptive and robust Brain-Computer Interfaces (BCI). They might 

also find use in other applications requiring fast encoding methods and one-pass 

learning. Also in the next chapter, these approaches are investigated in DepSNN 

and EEG localization mapping to epSNNr. 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 11 

Spatio-temporal Pattern Recognition on P300 

EEG application 

 

In Chapter 10, it was shown that using DepSNNs and NR-DeSNNs on the same 

EEG data produces results similar to those of epSNNr. However, DepSNN has a 

simple structure and rapid processing capacity. It requires fewer neurons (33 

output neurons) and learning is achieved in a single iteration. Moreover, the 

DepSNN model is easier to realize as a specialized SNN hardware than the 

epSNNr. We determined that the threshold is the critical parameter for DepSNNs, 

whereas the parameter C is important for DepSNNm  

When epSNNr utilizing DepSNN was used as a readout unit and the EEG 

localization data were mapped to the spatiotemporal filter in epSNNr, interesting 

results were obtained which are worthy of further investigation.  

 

In this chapter, the above-mentioned configuration is applied to BCI; specifically, 

to the P300. The P300 is a real time EEG-based verbal communication BCI which 

assists people with speaking disabilities.  

The proposed methods and architecture presented in this case study reasserts the 

algorithms capability and applicability in BCI domain by providing better 

performance and analysis of the EEG derived brain activities. This is carried out 
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by integrating various SNN approaches such as 3D Mapping, spike encoding 

schemes and stochastic reservoirs. This SNN based systems provided a unique 

design and novel direction in BCI domain. This contribution is one of the 

potentially BCI design approaches and answers to the fifth and last research 

question.   

 

An overview of BCI and the P300 is provided in Section 11.1, and the dataset is 

described. Section 11.2 discusses the application of DepSNN to P300 EEG data, 

using BSA as a spike encoding scheme. In Section 11.3, epSNNr utilizing 

DepSNN as a readout unit is presented, and the mapping of EEG localization data 

to the spatiotemporal filter in epSNNr is proposed.  The last section (11.4) 

discusses and closes the chapter. 

 

11.1 What is a Brain Computer Interface (BCI)? 

BCI provides a direct link between the computer and the human brain. It is 

essential to the development of Human Computer Interfaces (HCI). Current BCI 

advances include Brain Machine Interfaces (BMI), in which scientists detect 

ejecting neurons with the aid of hundreds of pins inserted into the cerebral cortex. 

The computer translator executes algorithms that decrypt the neural language into 

computer language. The many applications of BCI include unmanned vehicles, 

robotics and non-verbal communication. In EEG, the electrodes are positioned 

around the scalp and signals are intercepted from the brain. In 

Magnetoencephalography (MEG), the room is adorned with helium tanks and 
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super conducting magnets. MEG is very precise but requires formidable 

technological advances. 

 

11.1.1 P300 EEG application 

P300 (also known as P3) is a neural-evoked potential component of EEG.  It 

presents as a positive voltage deflection (2-5µV) 300-600 ms following the start 

of a stimulus (Ekanayake, 2010).  

Major applications of P300 include the P300 BCI Spelling tool. Mak et al. (2012) 

identified EEG characteristics associated with P300 reliant Brain Computer 

Interface (P300 BCI) performances in people suffering from Amyotrophic Lateral 

Sclerosis (ALS) (Mak et al., 2012).  

 

11.1.2 The P300 Dataset Description and Former Investigations 

A six-choice P300 paradigm was tested using six different images flashed in 

random order, as shown in Figure 11.1. Electrode configurations comprised 32 

electrodes (datasets and algorithms are available from the website of the Ecole 

Polytechnique F´ed´erale de Lausanne, Signal Processing Institute, EPFL BCI 

group http://bci.epfl.ch/p300).  

Dataset acquisition involves the extraction of single trials (duration 1000 ms) 

from the data. Single trials began at stimulus onset, i.e. at the initiation of the 

strengthening of an image, and were completed 1000 ms later. To account for the 



 

 
 

171 

ISI of 400 ms, the final 600 ms of each trial were coincided with the first 600 ms 

of the succeeding trial. 

Data were strained through a sixth-order forward-backward Butterworth band 

pass filter. Frequencies between1.0 Hz and 12.0 Hz were selected.  

Subjects were requested to soundlessly count the instances of a presented image. 

The six images were exhibited on the screen and a warning tone was released. 

Four seconds following the warning tone, a random sequence of flashes was 

initiated and the EEG was recorded. The order of flickers was block randomized.  

 

Figure 11.1: Images Used for Evoking the P300 (Ulrich Hoffmann, Vesin, Ebrahimi, & 

Diserens, 2008) 
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Hence, after every six flashes each image was flashed once and after twelve 

flashes each image was flashed twice. This sequence cycled continuously. 

Images were flashed consecutively by altering the overall brightness of the 

images.  This study employed the dataset of Hoffmann et al. (2005), which differs 

from that of their 2008 study (Ulrich Hoffmann et al., 2008). This detail is 

inconsequential because the method of data acquisition was identical in the 2005 

and 2008 studies. 

 

 

Fig. 11.2: Percentage of Correctly (×100) Categorized Tests for Varying Number of Boosting 

iterations (U. Hoffmann, Garcia, Vesin, Diserens, & Ebrahimi, 2005) 

 



 

 
 

173 

Hoffmann and colleagues (2005) analysed the dataset used in this chapter by 

gradient boosting, a machine learning method that creates one strong classifier 

from many weak classifiers. Hoffman et al. (2005) proposed a gradient-boosting 

inspired algorithm that finds event-associated potentials in single EEG samples. 

The algorithm identifies the P300 in the human EEG, from which a Brain 

Computer Interface (BCI), namely a spelling device, is constructed. Significant 

advantages of this method are its high classification precision and easy 

presentation of concept.  

The application of gradient boosting to this dataset is illustrated in Figure 11.2. 

Here, the maximum number of repetitions of the boosting algorithm (Mmax) was 

set to 200 and the optimum numbers were computed in a 10 fold cross-validation. 

 

11.2 DepSNN on P300 EEG Application 

This section assesses the feasibility of DepSNN as a P300 BCI application. The 

dataset for this experiment is similar to that mentioned in Section 11.1.  Data was 

recorded from 32 channels; Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC1, FC5, 

FC6, FC2, T7, C3, Cz, C4, T8, CP1, CP5, CP6, CP2, P7, P3, Pz, P4, P8, PO3, 

PO4, O1, Oz, O2 at 2048Hz (U. Hoffmann et al., 2005).  

Epochs initiating from the commencement of a flash and remaining for 1s were 

filtered from the data. Time consuming flows in the data were eradicated by least 

squares fitting of a linear function applied to each channel and deduction from the 

data. The data were then re-referenced to the average of channels O1, Oz and O2, 
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low- pass filtered between 0 and 9 Hz with a 7th order Butterworth filter and 

down- sampled to 128Hz. The dataset is downloadable from the EPFL BCI group 

website (http://bci.epfl.ch/p300).  

The methodology is tested on a reduced dataset of 942 spatiotemporal samples 

from a single subject, comprising 476 target samples and 466 non-target samples. 

The dataset was divided into a training set (60%) and a testing set (40%).  

 

Figure 11.3: Percentage of Accurately Categorized Tests for Varying Values of Number of 

Boosting Iterations 

 

Figure 11.3 graphs the percentage of accurately categorized tests for different 

numbers of boosting iterations (M), where M was set to 500 in this experiment. 

The highest accuracy (86%) was attained at around 140-150 iterations.  

 

http://bci.epfl.ch/p300
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In this experiment, data were converted to spikes via BSA with parameters set as 

follows: 

1. Finite Impulse Response filter size: 20 

2. Finite Impulse Response filter wave length: 0.05 

3. Optimal Threshold: 0.88 (at Euclidean distance 16.1061).  

 

Figure 11.4: (top) EEG Signal for a Duration of 1000 ms (Simulation Time and Real Time) 

Solid and dashed curves represent the true and reconstructed signal, respectively. (Bottom) 

BSA-transformed signal 

 

The top panel of Figure 11.4 represents a single-channel EEG signal sampled over 

1000 ms (in both simulation time and real-time). The true EEG signal is overlaid 

with the EEG signal back-transformed from the BSA encoded spikes (dashed 

lines). The bottom panel is the spike transform of the true signal acquired from 

BSA.  
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Table 11.1: Setup of DepSNN Parameters 

For Neurons and Synapses 

Excitatory synapse time constant 2 ms 

Inhibitory synapse time constant 5 ms 

Neural time constant (tau mem) 20 ms 

Firing threshed (Vthr) 800 mV 

Reset potential 0 mV 

Inhibitory weight 0.20 V 

Excitatory weight 0.40 V 

Thermal voltage 25 mV 

Refractory period 4 ms 

For learning related parameters 

Up/Down weight jumps(Vthm) 5× (Vthr/8) 

Calcium variable time constant (tau ca) 5× tau mem 

Steady-state asymptote for calcium variable (wca) 50 mV 

Stop-learning threshold 1(stop if Vca< threshold 1) 1.7 × wca 

Stop-learning threshold 2 (stop LTD if Vca> threshold 2) 2.2 × wca 

Stop-learning threshold 2 (stop LTP if Vca> threshold 3) (8 × wca) –wca 

Plastic synapse (NMDA) time constant 9 ms 

Plastic synapse highest value (wp hi) 6 mV 

Plastic synapse lowest value (wp lo) 0 m 

Bistability drift 0.25 

Delta weight 0.12 × wp hi 

Other parameters 

Input size (32 electrode EEG) 32 spiketrains 

Simulation time 1000 ms 

Mod (for rank order) 0.8 

Sim (DepSNN) 1 
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The clear resemblance between the original and back-transformed signals 

highlights the applicability of the BSA conversion to the P300 EEG data. As also 

evident from Figure 11.4, just 58 spikes are encrypted from 128 vectors 

describing the original wave, implying that BSA-encoding reduces the number of 

data vectors to be processed, while retaining sufficient information to reproduce 

raw EEG signals. 

 

The parameter settings of the DepSNN trained on the EEG data are listed in Table 

11.1. However, as mentioned in Chapter 10 (Section 10.3), the spike threshold 

(Vthr) is flexible so that DepSNNm can acquire the PSPmax which optimises the 

threshold. The parameter settings of the Stochastic Spiking Neural models used in 

conjunction with DepSNN are listed in Table 11.2. 

 

Table 11.2: Parameter settings for the Stochastic Spiking Neural Models 

Parameters Value 

Time Constant 10 ms 

Reset Potential   0 mV 

Firing Threshold 10 mV 

Standard Deviation of NR model   3 mV 

Standard Deviation of ST Model   2 mV 

Standard Deviation of CT Model   1 mV 
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Figure 11.5: Encoded Spike Trains of the BSA-encoded P300 Dataset for One Sample of the 

Non-Target Class 

 

 

Figure 11.6: Illustration of the Encoded Spike Trains of the BSA-encoded P300 Dataset for 

One Sample of the Target Class 
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Figures 11.5 and 11.6 display the BSA-encoded spike trains of the P300 dataset 

for a single sample of non-target and target data class, respectively. The top panel 

of Figure 11.7 shows the weight changes in the DepSNNm (where initial weights 

are ranked by order), together with the SDSP dynamic synapse. The bottom panel 

plots the evolution of the post synaptic potential of DepSNNm responding to a 

target class sample. 

 

 

Figure 11.7: (Top panel) Weights Changes for a single neuron of the DepSNNm and (bottom 

panel) Evolution of Post Synaptic Potential of DepSNNm 

 

The top figure shows the weights change for the DepSNNm that utilizes rank 

order defining initial weights along with the SDSP dynamic synapse. The bottom 

figure illustrated the evolution of post synaptic potential of DepSNNm responded 

to a sample of Target class. 
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Figure 11.8 plots of weights change for the various models of DepSNNs 

responding to a sample of the target class, where the left of the first row is 

represented the response of standard DepSNNs, the right of the first row is NR-

DepSNNs, the left of the button row is ST-DepSNNs, and the right column of the 

bottom row is CT-DepSNNs. 

 

Figure 11.8: Weights Change for the DepSNNs that Utilizes Rank Order 

 

In this section, two main experiments were conducted. The first was undertaken 

on a small dataset (32 samples) of which 60% were reserved for training and 40% 

for testing. The aim was to assess DepSNN feasibility, and the results are 

summarised in Table 11.3. The second experiment used the full dataset (942 

samples from one subject, comprising 476 target class and 466 non-target class). 

60 and 40% of the data were assigned to training and testing respectively, as 

shown in Table 11.4. 
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As evidenced from Tables 11.3 and 11.4, the different DepSNN models exhibit 

interesting behaviours.  DepSNNm performed superbly in the small dataset (with 

100% classification accuracy). In the full dataset investigation, DepSNNs 

performed better than other DepSNN models (accuracy 84.41%). Similar to the 

EEG data from audio-visual stimuli (Chapter 10), replacing the deterministic LIF 

model with stochastic models in DepSNNs made no improvement to the 

performance of the system.  

We noted in Chapter 10 that Rank Order Code (RO) is critical for DepSNN. In the 

absence of RO, DepSNNm and DepSNNs demonstrated poor classification 

accuracy, whereas the DepSNNs and NR-DepSNNs exhibit highest classification 

accuracy.  

In this chapter, when DepSNN is tested on a portion of the P300 based BCI 

dataset (see Table 11.3), DepSNNm exhibits higher classification accuracy than 

DepSNNs.  

On the full P300 based BCI dataset, however, DepSNNs out-performed 

DepSNNm, in contrast to the results of the audio-visual stimuli perception EEG 

dataset.  This demonstrates that rank or code can perform properly with DepSNNs 

when the dataset can itself perform the ranking. We note that the timing of the 

first spike of each spike train differs between the two datasets. The dynamic 

timing of spikes generated from the audio-visual data enables DepSNNm to 

perform better on this dataset. On the full BCI dataset, DepSNNs performs better, 

probably because information is acquired from more samples in the training 

phase. 
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Therefore, it appears that the classification accuracy of a given DepSNN model 

depends on the nature and size of the EEG dataset.  However, it remains unclear 

whether stochastic spiking neural models in DepSNNs offer any sizeable 

advantages over traditional models. 

 

Table 11.3: Classification Accuracy of Different Models applied to a subset of the P300 based 

BCI Data 

Methods Accuracy 

DepSNNs 58.33%  

NR-DepSNNs 50%  

ST-DepSNNs 50%  

CT-DepSNNs 50%  

DepSNNm 100% (C=0.5) 

 

 

Table 11.4: Classification Accuracy of Different Models applied to the full P300 Based BCI 

Dataset 

Methods Accuracy 

Gradient Boosting  86% 

DepSNNs 84.41%  

NR-DepSNNs 48.39%  

ST-DepSNNs 50%  

CT-DepSNNs 50%  

DepSNNm 74.19% (C=0.4) 

 

 



 

 
 

183 

Table 11.4 compares the classification accuracy between Gradient Boosting and 

DepSNN applied to the P300 based BCI dataset. DepSNNs and Gradient Boosting 

exhibit similar performance (84.41% and 86% respectively). However DepSNNs 

requires single-pass learning where Gradient Boosting needs 150 boosting 

iterations to achieve maximum accuracy. Moreover, according to Hoffmann et al. 

(2005), the minimum acceptable classification accuracy of P300 based BCI data is 

80%. At 84.14% accuracy, DepSNNs is a promising candidate for further BCI 

application and research. The rapid processing time of DepSNNs is an additional 

advantage. 

 

11.3 epSNNr with EEG localization mapping on P300 EEG Application 

In Chapter 10, we established that EEG localization mapping injected into the 

spatiotemporal filter of epSNNr with DepSNN as readout provides similar 

classification accuracy to DepSNN. In this section, in order to confirm the benefit 

of the injection into epSNNr approach, EEG localization mapping into epSNNr 

with DepSNN is applied to the P300 dataset. 

The parameter setup of DepSNN remains unchanged from Table 11.1. The 

epSNNr parameters are set up as shown in Table 11.5. 

The epSNNr comprises 125 spiking neurons (5×5×5). 1000 ms simulation time is 

assigned to each spatiotemporal sample. 32 EEG channels (input signals) were 

projected into the epSNNr (see Table11.6 for details). 
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In this experiment, the input neurons connection weight parameter (Table 11.5) 

must be increased to 22.68 mV to enable transmission of information to neurons 

not directly connected to the input signal. The value of this parameter was 

selected to yield optimal accuracy for this dataset. Higher or lower input weights 

would not improve the classification accuracy of the system. 

 

Table 11.5: Parameter settings in the experimental setup for the epSNNr 

Parameters Value 

For Neuron 

Time Constance 10 ms 

Reset Potential   0 mV 

Firing Threshold 10 mV 

Standard Deviation of NR model   3 mV 

Standard Deviation of ST Model   2 mV 

Standard Deviation of NT Model   1 mV 

For LSM 

Simulation Time 1000 ms 

Number of Neurons 125 (5×5×5) 

Excitatory and Inhibitory Ratio 4:1 

Input Neurons Connection EEG Localisation mapping to LSM 

Input Neurons Connection Weight 22.68 mV 
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Table 11.6:  Mapping table of 32 EEG channels (from the BCI based P300 dataset); name is 

mapped to neuron number in epSNNr (5×5×5) 

EEG channel Neuron number in LSM EEG channel Neuron number in LSM 

Fz 5 F7 52 

Cz 65 F3 54 

Pz 125 F4 14 

Oz 123 F8 12 

T7 103 P7 112 

C3 105 P3 114 

C4 25 P4 74 

T8 23 P8 72 

FC5 79 AF3 30 

FC1 60 AF4 10 

FC2 40 PO3 120 

FC6 19 PO4 100 

CP5 109 FP1 28 

CP1 90 FP2 8 

CP2 70 O1 118 

CP6 49 O2 98 

 

  

Figure 11.9: Raster plot of EEG input signel before (left) and after (right) injection into 

epSNNr 

 

The raster plot of the EEG input before and after feeding into LSM is displayed in 

Figure 11.9. To the left is the raster plot of EEG signal spikes (32channels); on the 

right is the response of epSNNr to the spike information under the EEG 
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localisation mapping of Chapter 9 (Figure 9.4).  The spiking trends are quite 

similar in specific neuron groups; for example, neurons 1 to 5 in the left plot and 

neurons 0 to 20 in the right plot. However, the right plot contains extra 

information referenced indirectly from the input spikes (tranmitted from other 

neurons as a small-world connection in epSNNr). 

 

Table 11.7 summarises the results of this experiment on EEG-based P300. The 

classification efficiency is compared between various models utilized in epSNNr. 

The input signals were projected into epSNNr by EEG localisation mapping 

utilizing DepSNN as a readout function.  

 

Table 11.7: Experimental results 

epSNNr neural model Classifier 

DepSNNs DepSNNm 

LIF 72.58% 98.92% (C=0.3) 

NR 22.04% 53.22%(C=0.6) 

ST 73.66% 61.83% (C=0.5) 

CT 33.87% 98.92% (C=0.3) 

 

 

In Section 11.2, the classification accuracy of DepSNN was established as 

84.41%, similar to that of Gradient Boosting (86%).   

Interestingly, EEG localisation mapping into the spatiotemporal filter in epSNNr 

with DepSNN as a readout unit yields a vastly superior result (98.92%) when LIF 
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and CT models are used in DepSNNr. The highest accuracy is achieved using 

DepSNNm as readout with the C (fraction) set to 0.3.   

DepSNNm as a classifier obtains better results than DepSNNs, because the 

repressed spiking activity of neurons in the spatiotemporal filter leads to 

ambiguity in synaptic weight patterns between two classes. 

From the results of this section, we conclude that the mode of input injection into 

epSNNr is crucial in deciding the efficacy of the spatiotemporal filter unit. This 

projection method also imitates human brain activity, in that some neurons receive 

stimulus information directly while their neighbours receive it by transmission.  

Hence, DepSNN as a readout acquires more information from epSNNr than is 

available from direct input. Biological brains also  attempt to fill in, match and 

complete partial information from stimuli (Arbib, 2002). As a practical example, 

glasses designed for 3D movies trick the watchers into believing they are 

enveloped by a scene which actually appears on a flat screen.   

 

11.4 Conclusion 

DepSNN is superior to conventional methods in terms of learning time and 

accuracy. DepSNN also out- performed the epSNNr models, though the latter may 

be better equipped to handle longer STP signals, of duration 1 second or more. 

This is attributable to the simple scalar synaptic weights in DepSNN models, 

which limit the extent to which DepSNN can capture long and complex temporal 

patterns, despite the sophisticated learning algorithms.  
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Equally important is the method of input injection into epSNNr, as revealed in 

Section 11.3. 

DepSNN and epSNNr with EEG localization mapping are strong candidates for 

building adaptive and robust BCIs and other systems requiring fast encoding 

methods and single-pass learning processes. 

 

To summarise, a feasibility study was conducted on DepSNN and epSNNr with 

EEG localization mapping using P300 based Brain Computer Interface data. From 

the results presented in this chapter, the following conclusions can be drawn: 

(1) The DepSNN is superior to conventional methods (including Gradient 

Boosting) in terms of learning speed and accuracy. 

(2) The classification performance of each DepSNN model depends on the 

nature of the dataset. Especially, if the first spike of each input spike train 

arrives at a different time, the rank ordering mechanism of DepSNNs is 

compromised because DepSNNs needs the correct order of initial synaptic 

weight information. (This fact was confirmed by studies on the audio-

visual stimuli perception EEG dataset discussed in Chapter 10).  

(3) In BCI application, subjects are always trained prior to using a system. 

This causes most of the brain response to a given EEG electrode to arrive 

simultaneously. Ranking is now dictated by EEG channel rather than by 

time of first spike. This phenomenon is responsible for the poor 

performance of DepSNNs on the P300 dataset relative to DepSNNm. The 
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same trend results when DepSNN is applied to object-movement 

spatiotemporal pattern recognition (Dhoble et al., 2012).  

(4) The performance of Stochastic Spiking Neural Models in DepSNNs is 

worse than that of standard DepSNNs on the BCI dataset. The BCI data 

require lucid information of each subject. The noise introduced by 

stochastic models may lead to confusion in the classifiers. However, when 

applied to audio-visual stimuli perception EEG data (see Chapter 9), 

DepSNNs and NR-DepSNNs rated first equal among the tested models. 

Hence, we conclude that highly complex EEG pattern recognition tasks 

will likely benefit from stochastic models, but further exploration is 

required to confirm this hypothesis. 

(5) The injection of  EEG localization mapping as input to the spatiotemporal 

filter using epSNNr with DepSNN as a classifier enhances the 

classification accuracy relative to DepSNN alone. This is due to the extra 

information provided by the spatiotemporal filter in epSNNr, which causes 

the system to mimic biological brain activity. The system’s performance 

depends crucially on the input connection weights to epSNNr. 

 

 

 

 

 



 
 

Chapter 12 

Conclusion and Future Work 

 

This chapter summarizes the work undertaken to achieve the research objectives 

as specified in Chapter 1 and to answer the research questions mentioned there in. 

Suggestions for future are also presented in this chapter. 

 

This thesis describes novel algorithms for spatiotemporal data modelling and 

classification using spiking neural networks (SNN). More specifically, SSN was 

used to analyse and classify EEG data. The algorithms belong to the class of 

evolving SNN (eSNN), the main principles of which were introduced by Kasabov 

in 2007. The following points outline the highlights of the research and 

contributions of the thesis:  

(1) Different models of spiking neurons, learning algorithms and encoding 

schemes are reviewed in Chapter 2. The thesis then offers a critical 

analysis of Electroencephalography (EEG) data analysis and classification 

methods used to date.  

(2) Next, methods of encoding EEG data into spikes are investigated. In this 

thesis, the Ben Spike Encoder Algorithm (BSA) is applied for the first 

time to EEG data. This is also a part of research question 4 mentioned in 

Chapter 1. 
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(3) Three new stochastic models are proposed as an extension of PSNM; 

namely, Stochastic Noisy Reset (NR), Stochastic step-wise noisy threshold 

model (ST) and Continuous stochastic threshold (CT). These models 

extend the LIF model by introducing noise parameters into the threshold 

and reset potentials, thereby mimicking activity of biological neurons 

while retaining low implementation cost. This contribution corresponds to 

the first research question. 

(4) A stochastic precise-time spike pattern association neuron (SSPAN) is 

introduced. This is a modification of SPAN, a neuron for precise-time 

spike pattern association, partially answers the second research question. 

(5)    A new SNN model, termed Dynamic Evolving Probabilistic Spiking 

Neural Network (DepSNN), is introduced as an extension of the eSNN 

model. This contribution answers to the other half of the second research 

question. 

(6) A novel SNN architecture is proposed for processing spatiotemporal data, 

termed evolving probabilistic SNN reservoir (epSNNr). The performance 

of epSNNr is enhanced when a probabilistic neural model is used, as 

demonstrated on EEG data in a changing environment. The developed 

epSNNr answers the third research question. 

(7) New SNN systems for spatiotemporal pattern recognition including 

SSPAN, DepSNN and epSNNr have been developed investigated on the 

real world EEG datasets including BCI.  The presented solutions answer to 

research questions 4, 5 and 6. 
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(8) As a future development, an epSNNr for EEG data is preliminarily 

explored. The reservoir structure is an approximate 3D map of the human 

brain and the data from the EEG channels are entered into corresponding 

neurons from the reservoir. The reservoir connections and parameter 

tuning are also crucial for exploration. These are promising approaches 

that are worthy of further investigation.  

 

12.1 Conclusions 

This thesis introduces two novel SSN models; Stochastic Precise-time Spike 

Pattern Association Neuron (SSPAN) and Dynamic Evolving Probabilistic 

Spiking Neural Network (DepSNN). SPAN convolves the spike train output with 

a kernel function to yield a continuously valued signal on which subtraction and 

multiplication operations can be carried out. SSPAN can readily accommodate 

existing methods for developing supervised-learning rules in spiking neurons. 

Method performances were evaluated and compared on a synthetic dataset created 

for that purpose. SSPAN was found to out-perform conventional SPAN, 

especially when incorporating the CT model. Moreover, classification accuracy 

was enhanced when the deterministic LIF model was replaced by stochastic 

models in SSPAN. More synapses can memorize more patterns leading to 

increased performance; SSPAN has 420 synapses while SPAN possesses a mere 

140 synapses. Stochastic neural models are expected to process noisy stochastic 

data such as EEG more effectively than deterministic models.   
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Five types of Dynamic evolving probabilistic spiking neural network (DepSNN) 

were proposed; namely DepSNNm, DepSNNs, NR-DepSNNs, ST-DepSNNs, and 

NT-DepSNNs. DepSNN requires a high density of active spikes in the spike train 

before a SDSP synapse is sufficiently active to modify its synaptic weights. 

Hence, DepSNN may be suitable for BSA- encoded EEG data, which are 

automatically imbued with high spiking activity. epSNNr projects a 

spatiotemporal signal into a linearized high-dimensional network state that can be 

learned by a linear readout function or another SNN network. The epSNNr 

improves when the deterministic LIF model is replaced by a probabilistic model. 

The classification performance of the epSNNr depends on the type of probabilistic 

neural model adopted. This suggests that an epSNNr can be optimised in terms of 

neural models used and parameters that would better suit the noise and the 

dynamics of particular EEG data in a changing environment. 

 

DepSNNs and epSNNr applied to the same EEG data yield similar accuracies. 

However, DepSNN has a simpler structure and performs faster. It requires fewer 

neurons (33 output neurons were assigned in the experiments of this thesis) and 

single-pass learning only is required. The DepSNN model is easier to realise as a 

specialised SNN hardware than the epSNNr. The performance of DepSNNs and 

DepSNNm differs in that the threshold is critical for DepSNNs, whereas for 

DepSNNm, the parameter C is more important.  

 



 

 
 

194 

The processing time of mixed models (epSNNr with DepSNN as readouts) is 

reduced but the classification accuracy is worse than that yielded by DepSNN 

alone. However, epSNNr may reduce long-duration spatiotemporal EEG samples 

(extending to1 minute or longer) to a more manageable time scale. Combined 

epSNNr and DepSNN may also find a use other pattern-decoding tasks such as 

video or the evolution of biological cells. 

 

The projection of input signals to epSNNr as EEG localization mapping with 

DepSNN as readout results in superior classification accuracy and performance 

time. Here, the one-pass learning mechanism of DepSNN complements the 

spatiotemporal epSNNr filter, which linearly transforms the input signal without 

altering the trend of input signals over time. Similarly, the biological brain 

attempts to fill in, match and complete information that is missing from stimuli, 

but which is still decipherable. Choice of connection weights input to epSNNr is 

crucial to the success of this method.  

 

Stochastic Spiking Neural Models in DepSNNs perform poorly on BCI data 

relative to standard DepSNNs because BCI data must accurately depict each 

subject. The noise introduced by stochastic models may tend to confuse the 

classifiers. Conversely, DepSNNs and NR-DepSNNs are equally competent at 

processing audio-visual stimuli perception EEG data. Hence, in highly complex 

EEG pattern recognition tasks, it is tentatively concluded that stochastic models 
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will out-perform deterministic ones. Proof of this hypothesis would come with 

further testing. 

 

Hence,  projecting input signals to epSNNr as EEG localization mapping with 

DepSNN as readout presents as a promising means of building adaptive and 

robust Brain-Computer Interfaces (BCI), as well as other systems requiring fast 

BSA-encoding and one-pass learning in DepSNN. 

 

12.2 Contributions 

The major contributions of this study are as follows: 

(1) The Ben Spiker Algorithm (BSA) for transforming EEG data into spike 

trains has been developed and modified (as explained in Chapter 8). This 

is the first application of BSA beyond that of speech recognition. 

(2) Three novel Stochastic SNN models based on the proposed pSNM - Noisy 

Reset, Stepwise Noisy Threshold and Continuous Noisy Threshold - are 

introduced and described in Chapter 3. 

(3) An extension of the SPAN architecture and neural model, namely 

Stochastic-SPAN (SSPAN: Chapter 4) has been proposed, which enables 

more efficient processing of spatiotemporal data. The deterministic neural 

model (LIF) in SPAN is replaced by the three stochastic SNM. One output 

neuron is assigned per class rather than one neuron for all classes. 

Consequently, more synapses are available in SSPAN, enabling more 

patterns to be recognized and reducing the time required for learning.   
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(4)   DepSNN (see Chapter 5), an improvement of eSNN that can process 

spatiotemporal data, was proposed. DepSNN retains rapid single-pass 

learning ability but the population encoding method has been replaced by 

BSA. This modification not only reduces the number of spikes but 

improves the quality of original signal imitation. The Thorpe SNM has 

also been replaced by LIF model and Stochastic Models. The most 

important feature of DepSNN is the inclusion of SDSP, which allows the 

model to capture the temporal dimension and thereby to process 

spatiotemporal data. 

(5) More complex SNN structures are proposed for spatiotemporal data 

processing, namely epSNNr (Chapter 6). epSNNr adopts LSM architecture 

for accumulating spatial and temporal data and transforming this non-

linear information to a linear higher-dimension form. epSNNr also 

employs stochastic models whose performances are superior to that of 

deterministic SNM (traditional LSM ).    

(6) A method is introduced for injection of EEG to a spatiotemporal filter in 

epSNNr by mapping EEG localization on the human head to epSNNr. The 

transformed EEG data are then processed as described in Contribution (5). 

epSNNr imitates biological brain functions, and demonstrates superior 

performance to DepSNN or standard input injection of epSNNr. 

(7) Two new SNN-based solutions to real world problems are developed; 

DepSNN and epSNNr. The latter has been combined with EEG 

localization mapping as described in Contribution (6). Applicability to 
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audio visual stimuli perception EEG data has been assessed in Chapter 10, 

and applicability to EEG-P300 based BCI has been explored in Chapter 

11.  

(8) In accordance with the study objectives, all experiments in this study have 

been shared with the scientific community in six blind peer-review 

international academic papers and one poster. 

 

12.3 Recommendations and Future Prospects 

epSNNr with EEG localization mapping plus DepSNN as readout is particularly 

effective on the EEG P300 dataset. The performance of this architecture may be 

further improved by optimizing parameters. However, both methods require many 

parameters to define the neural models, connections, and network topology. 

Optimization algorithms such as quantum-inspired genetic algorithm (Schliebs et 

al., 2009) or particle swarming (Hamed et al., 2012) may not therefore be suitable 

for the proposed architecture, due to the prohibitive time requirements incurred.   

  

Given the large number of parameters involved, epSNNr and DepSNN might be 

optimized using Genetic Regulatory Networks,which was successfully used for 

recurrent Neural network (Cheng et al., 2011), or computational neuro-genetic 

models (CNGM) (Kasabov, 2012a) which designed especially for SNN. CNGM 

combines  two dynamic models; (1) a low-level gene regulatory network (GRN) 

model and  (2) a high-level SNN that models the dynamic interaction between 

genes and spiking patterns of activity under certain conditions (Kasabov, 2012a).  
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Prior to constructing the GRN, all important parameters of DepSNN and epSNNr 

must be defined.  

The significant parameters which may require optimisation are: 

(1) DepSNN parameters: Plastic synapse (NMDA) time constant, Plastic synapse 

highest value (wp_hi), Plastic synapse lowest value (wp_lo), Bistability drift, 

Delta weight, Mod, Sim and C.  

(2) epSNNr parameters: Number of neurons and topology, Input Neurons 

Connection Weight.  

(3) Parameters for both stochastic models: Standard Deviation of NR Model, 

Standard Deviation of ST Model, Standard Deviation of NT Model (SD-NT), 

Neural time constant, Firing threshed, Reset potential and Refractory Period. 

 

Two types of GRN could be incorporated into GRN-DepSNN and GRN-epSNNr :  

(1) Static-GRN, in which the GRN connection is fixed but the connection 

weights can be varied.  

(2) Dynamic-GRN, in which the GRN connection weights are fixed but the 

connection is adaptive.  

 

By optimising the connection weights in the spatiotemporal filter of epSNNr 

utilizing Spike-Time Dependent Plasticity (STDP) (Song et al., 2000),  the 

classification accuracy of the system might be enhanced and increased 

understanding of human brain knowledge discovery may result.  
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Since the spatiotemporal filter in epSNNr employs the most recent reservoir 

approach (LSM) it shares some similarity with a study on a Poisson process 

conducted by Norton and Ventura (Norton & Ventura, 2009). According to this 

study, incorporating STDP into LSM resolves the two main LSM problems: 

(1) The Pathological Synchrony problem, in which most of the neurons 

become caught in infinite excitatory firing, resulting in pattern loss.  

(2) The Over-Stratification problem, in which neurons fail to propagate a 

series of spikes, resulting in temporal de-coherence. 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix A 

 

The core programming source code of the three Stochastic Spiking Neural 

Models. 

__________________________________________________________________ 

 
 
from brian import * 
 
 
 
###################################################################### 
# Base class for the spiking models 
###################################################################### 
 
class SNNModel: 
    ''' 
    Base class for all spiking neural models. 
    ''' 
 
    # slot for the equation string of the model 
    eqs = '' 
 
    # slot for a dictionary containing model parameters 
    modelParams = None 
 
    # slot for the name of the model 
    modeName = 'Basic SNN model' 
 
    def __init__(self): 
        pass 
     
    def getNeuronGroup(self, nbNeurons): 
        ''' 
        Generates a group of "nbNeurons" neurons of the model represented by this class. 
        ''' 
        print self.eqs, self.modelParams 
        return NeuronGroup(nbNeurons, model=self.eqs, **self.modelParams) 
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    def has_adaptive_threshold(self): 
        return False 
 
 
###################################################################### 
# Deterministic LIF neuron 
###################################################################### 
 
class LIFModel(SNNModel): 
    ''' 
    Implements the traditional deterministic Leaky Integrate-and-Fire model. 
    ''' 
     
    def __init__(self, tau, **kwargs): 
        self.eqs = '''dV/dt = -V/(%s) : volt''' % tau 
        self.modelParams = kwargs 
        self.modelName = 'LIF' 
 
    def getNeuronGroup(self, nbNeurons): 
        group = SNNModel.getNeuronGroup(self, nbNeurons) 
        return group 
 
 
###################################################################### 
#  Step-wise noisy threshold Model (ST) 
###################################################################### 
 
class AdaptiveThresholdStepnoise(object): 
    ''' 
    Resets the firing threshold to a random reset value 
    ''' 
 
    mu = None 
    sigma = None 
    reset_potential = None 
     
    def __init__(self, reset_potential, mu, sigma): 
        self.reset_potential = reset_potential 
        self.mu = mu 
        self.sigma = sigma 
         
    def __call__(self,P): 
        ''' 
        Sets the firing threshold to a random reset value. 
        ''' 
        spikes=P.LS.lastspikes() 
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        P.V[spikes] = self.reset_potential 
        for s in spikes: 
            P.Vt[s] = self.mu + (self.sigma * randn(1)[0])*mV 
 
 
 
class StepNoisyThresholdModel(SNNModel): 
    ''' 
    Implements a Leaky Integrate-and-Fire model with a (slow) noisy step-wise threshold. 
    ''' 
 
    reset_threshold = None 
    sigma = None 
    reset_potential = None 
     
    def __init__(self, tau, reset_potential, reset_threshold, sigma=1., **kwargs): 
        self.sigma = sigma 
        self.reset_threshold = reset_threshold 
        self.reset_potential = reset_potential 
        self.eqs = ''' 
        dV/dt = -V/(%s) : volt 
        dVt/dt = 0.0*mV/ms : volt ''' % tau 
        self.modelParams = kwargs 
        self.modelParams['threshold'] = lambda V,Vt:V>=Vt 
        self.modelParams['reset'] = AdaptiveThresholdStepnoise(self.reset_potential, 
self.reset_threshold, self.sigma) 
        self.modelName = 'ST' 
 
    def getNeuronGroup(self, nbNeurons): 
        group = SNNModel.getNeuronGroup(self, nbNeurons) 
        for n in xrange(nbNeurons): 
            group.Vt[n] = self.reset_threshold + (self.sigma * randn(1)[0])*mV 
        return group 
 
    def has_adaptive_threshold(self): 
        return True 
 
 
###################################################################### 
# Noisy Reset model (NR) 
###################################################################### 
 
class AdaptiveThresholdNoisyReset(object): 
    ''' 
    Resets the potential to a random reset potential 
    ''' 
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    mu = None 
    sigma = None 
     
    def __init__(self, mu, sigma): 
        self.mu = mu 
        self.sigma = sigma 
         
    def __call__(self,P): 
        ''' 
        Sets the membrane potential to a random reset value. 
        ''' 
        spikes=P.LS.lastspikes() 
        for s in spikes: 
            P.V[s] = self.mu + (self.sigma * randn(1)[0])*mV 
 
 
class NoisyResetModel(SNNModel): 
    ''' 
    Implements a Leaky Integrate-and-Fire model with a noisy reset after spike emittance 
    ''' 
 
    sigma = None 
    mu = None 
     
    def __init__(self, tau, mu=0*mV, sigma=1., **kwargs): 
        self.mu = mu 
        self.sigma = sigma 
         
        self.eqs = '''dV/dt = -V/(%s) : volt''' % tau 
        self.modelParams = kwargs 
        self.modelParams['reset'] = AdaptiveThresholdNoisyReset(mu, sigma) 
        self.modelName = 'NR' 
 
    def getNeuronGroup(self, nbNeurons): 
        group = SNNModel.getNeuronGroup(self, nbNeurons) 
        for n in xrange(nbNeurons): 
            group.V[n] = self.mu + (self.sigma * randn(1)[0])*mV 
        return group 
 
 
 
###################################################################### 
# Continuous Stochastic Treshold Model (CT) 
###################################################################### 
 
class AdaptiveThresholdNoisy(object): 
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    ''' 
    Resets the potential to resting potential 
    ''' 
 
    reset_threshold = None 
    reset_potential = None 
     
    def __init__(self,reset_threshold, reset_potential): 
        self.reset_threshold = reset_threshold 
        self.reset_potential = reset_potential 
         
    def __call__(self,P): 
        ''' 
        Sets the membrane potential and the firing threshold to their reset values. 
        ''' 
        spikes=P.LS.lastspikes() 
        P.V[spikes] = self.reset_potential 
        P.Vt[spikes] = self.reset_threshold 
         
class NoisyThresholdModel(SNNModel): 
    ''' 
    Implements a Leaky Integrate-and-Fire model with a (fast) noisy threshold 
    ''' 
 
    reset_threshold = 10*mV 
    reset_potential = 0*mV 
     
    def __init__(self, tau, noisy_tau, reset_threshold, reset_potential=0*mV,  **kwargs): 
        self.eqs = ''' 
        dV/dt = -V/(%s) : volt 
        dVt/dt = (xi*mV)/(%s)**.5 : volt ''' % (tau, noisy_tau) 
        self.reset_threshold = reset_threshold 
        self.reset_potential = reset_potential 
 
        self.modelParams = kwargs 
        self.modelParams['threshold'] = lambda V,Vt:V>=Vt 
        self.modelParams['reset'] = AdaptiveThresholdNoisy(self.reset_threshold, 
self.reset_potential) 
        self.modelName = 'CT' 
 
    def getNeuronGroup(self, nbNeurons): 
        group = SNNModel.getNeuronGroup(self, nbNeurons) 
        group.Vt = self.reset_threshold 
        return group 
 
    def has_adaptive_threshold(self): 
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        return True 
 

_______________________________________ 

 

 

 

 

 

 

 

 

 



 
 

Appendix B 

 

The core programming source code of kernel transformation, kernel 

operation and learning rule in SSPAN. 

__________________________________________________________________ 

from brian import * 
import numpy 
import pylab 
from scipy.integrate import simps 
 
class Updater: 
     
    def __init__(self,sim_time,dt,tau_s): 
         
        self.dt = dt 
        self.t = numpy.arange(0,sim_time, self.dt) 
        self.tau_s=tau_s 
       
         
    def alpha(self, tf):   # tf is firing time 
 
        tau_s = self.tau_s 
         
        So = numpy.e * 1. / tau_s  
         
        v = numpy.zeros(len(self.t)) 
                  
        for f in tf: 
             
            s = (self.t-f) 
            v +=  So * s * numpy.exp(-s / tau_s) * numpy.array(s>=0, dtype=float) 
        return v 
     
 
    def compute_deltas(self, stimulus, output, target): 
 
         
        # transform the input spikes spike trains 
        self.x = numpy.zeros((len(stimulus), len(self.t))) 
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        for i,s in enumerate(stimulus): 
            self.x[i] = self.alpha(s) 
         
         
        # transform the output spike train 
        self.y_out = self.alpha(output) 
         
        # transform the target spike train 
        self.y_d = self.alpha(target) 
         
        # compute the error 
        self.diff = self.y_d - self.y_out 
        self.error = simps(numpy.abs(self.diff), dx=self.dt) 
         
        # compute delta w 
        self.delta_w = simps(self.x * self.diff, dx=self.dt, axis = 1) 

_______________________________________ 

 

 

 

 

 

 

 

 



 
 

Appendix C 

 

The core programming source code of SDSP and RO in DepSNN. 

 

 
from pylab import * 
from brian import * 
from brian.utils.progressreporting import ProgressReporter 
from time import time 
from core.learner import * 
from core.utils import * 
import os 
import operator 
 
########################################### 
# Parameters and constants for the training set 
########################################### 
defaultclock.dt= 0.2 * ms 
 
### Basic neuron and synapse parameters ### 
tau_exc = 2*ms # excitatory synapse time constant 
tau_exc_inh = 0.2*ms # feedforward connection time constant 
tau_inh = 5*ms # inhibitory synapse time constant 
tau_mem = 20*ms # neuron time constant 
El = 20*mV # membrane leak 
Vthr = 800*mV # spike threshold 
Vrst = 0*mV # reset value 
winh = 0.20*volt # fixed inhibitory weight 
wexc = 0.40*volt # fixed excitatory weight 
#wexc_inh = 1 * volt # fixed feedforward excitatory weight 
UT = 25*mV # thermal voltage 
refr = 4*ms # refractory period 
### Learning related parameters ### 
Vthm = 0.75*Vthr #5*Vthr/8. # Up/Down weight jumps 
tau_ca = 5*tau_mem # Calcium variable time constant 
wca = 50 * mV # Steady-state asymptote for Calcium variable 
th_low = 1.7*wca # Stop-learning threshold 1 (stop if Vca<thk1) 
th_down = 2.2*wca # Stop-learning threshold 2 (stop LTD if Vca>thk2) 
th_up = 8*wca–wca # Stop-learning threshold 2 (stop LTP if Vca>thk3) 
tau_p = 9* ms # Plastic synapse (NMDA) time constant 
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wp_hi = 0.6* volt # Plastic synapse high value 
wp_lo = 0 * mvolt # Plastic synapse low value 
wp_drift = .25 # Bi-stability drift 
wp_thr= (wp_hi - wp_lo)/2.+wp_lo # Drift direction threshold 
wp_delta = 0.12*wp_hi # Delta Weight 
 
###########Equations######### 
eqs_neurons = Equations(’’’ 
dv/dt=(El-v+ge+ge_p+ge_inh-gi_out)*(1./tau_mem): volt 
dge_p/dt=-ge_p*(1./tau_p): volt 
dge/dt=-ge*(1./tau_exc): volt 
dgi/dt=-gi*(1./tau_inh): volt 
dge_inh/dt=-ge_inh*(1./tau_exc_inh): volt 
gi_out = gi*(1-exp(-v/UT)): volt # shunting inhibition 
’’’) 
eqs_reset = ’’’v=Vrst’’’ 
 
#############Parameters of the deSNN ############## 
input_size = 19 
neurons_class = 1 #Number of neurons in each class 
number_class = 1 #Number of class in the output layer 
output_size = number_class*neurons_class 
out = [] 
#Connection weights between the input layer and the output layer 
SIM_TIME = 1000 *ms 
seed(1) 
mod=0.8 
 
######## Read all files from defined directory path ####### 
 
path = ‘Test/’  ## directory path of the input patterns (stimuli) 
listing = os.listdir(path) 
# Get data Files 
for infile in listing: 
print ‘‘Reading from file: ‘‘ + infile,"\n###################’’ 
 
##———Spiketrain stimulus from file——-## 
spiketimes=inputfile_to_spikes(path+infile) 
 
 
## ———Rank Order Code (RO) ——-## 
s=sorted(spiketimes, key=operator.itemgetter(1)) 
rankW=zeros((input_size,1)) 
for i in xrange(len(s)): 
rankW[s[i][0]][0]=float(mod**i) 
wp0=rankW 
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print ‘‘Rank Order Weights:\n’’,wp0 
 
##—Convert imported/selected spike trains to Brian (spike train) format–## 
inputSpikeTrain = SpikeGeneratorGroup(input_size, spiketimes) 
net = Network(inputSpikeTrain) 
net.reinit() 
 
#———— Neurons —————# 
# Create Output layer Neurons# 
neurons = NeuronGroup(N=output_size, model= eqs_neurons, threshold= 
Vthr, reset= Vrst)#, refractory=refr) # Output layer 
 
# Create Inhibitory neuron group 
inh_neurons = NeuronGroup(N=output_size, model = eqs_neurons, threshold 
= Vthr, reset = Vrst) 
 
#———— Connections ———–# 
wexc_inh = (0.8+(rand(len(inputSpikeTrain), len(inh_neurons))*0.5)) *volt 
c_inter = Connection(inputSpikeTrain, inh_neurons, ‘ge_inh’, structure =‘dense’) 
c_inter.connect(inputSpikeTrain, inh_neurons, wexc_inh) 
c_inh = Connection(inh_neurons, neurons, ‘gi’) 
c_inh.connect_full(inh_neurons, neurons, weight = winh) 
# Connection between the input layer and the output layer 
synapses = Connection(inputSpikeTrain, neurons, ‘ge_p’, structure =’dynamic’) 
synapses.connect(inputSpikeTrain, neurons, wp0) 
# STDP equation 
eqs_stdp=’’’ 
x: 1 # fictional presynaptic variable 
dC/dt = -C/tau_ca: volt # your postsynaptic calcium variable 
V: volt # a copy of the postsynaptic v 
’’’ 
stdp=STDP(synapses, eqs=eqs_stdp, pre=’w += (V>Vthm)* 
(C<th_up)*(th_low<C)*wp_delta - (V<=Vthm)*(C<th_down)* 
(th_low<C)*wp_delta; x’, post=’C += wca; V’, wmax=wp_hi) 
stdp.post_group.V = linked_var(neurons,’v’) 
 
#————–record spike activities——————# 
spikes = SpikeMonitor(inputSpikeTrain, record=True) 
outspikes = SpikeMonitor(neurons, record=True) 
M = StateMonitor(neurons,’v’,record=0) 
 
########################################### 
 
#————–Bi-stable drift——————# 
@network_operation 
def drift_equation(): 
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synapses.W = DenseConnectionMatrix(bistable_drift 
(synapses.W.todense(), len(inputSpikeTrain), len(neurons))) 
def bistable_drift(w, a, b): 
w = w.flatten() 
up_idx = w>wp_thr 
down_idx = w<=wp_thr 
w[up_idx] += wp_drift*defaultclock.dt 
w[w>wp_hi] = wp_hi 
w[down_idx] -= wp_drift*defaultclock.dt 
w[w<wp_lo] = wp_lo 
return w.reshape(a,b) 
print ‘‘SDSP Weights: \n’’,synapses.W 
run(SIM_TIME) 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix D 

 

The core programming source code of epSNNr connection (spatiotemporal  

filter). 

 

import brian 
import pylab 
import numpy 
 
###################################################################### 
 
         
class SmallWorldConnection(Connection): 
 
 
    def connect(self, neuron_group1, neuron_group2, \ 
                    nb_neurons, \ 
                    grid_structure, \ 
                    lamda=2, \ 
                    Cex_ex=0.3, Cinh_inh=0.1, Cex_inh=0.2, Cinh_ex=0.4, \ 
                    ratio_ex=0.8): 
 
        W = zeros((nb_neurons, nb_neurons))  # weight matrix 
        D = zeros((nb_neurons, nb_neurons))   # distance matrix 
        P = zeros((nb_neurons, nb_neurons))   # connection probabilistic matrix 
 
        #### determine all excitatory neurons #### 
        is_excitatory = rand(nb_neurons) <= ratio_ex 
 
        # unpack the grid structure 
        x,y,z = grid_structure 
 
        #### assign coordinates for each neuron in a 3D grid #### 
        coordinates = [] 
        for i in xrange(x): 
            for j in xrange(y): 
                for k in xrange(z): 
                    coordinates += [[i,j,k]] 
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        #### compute the distance between all neurons in the grid #### 
        for i in xrange(nb_neurons): 
             for j in xrange(nb_neurons): 
                 # calculate distance  
                 dx = coordinates[i][0]-coordinates[j][0]#Ax-Bx 
                 dy = coordinates[i][1]-coordinates[j][1]#Ay-By 
                 dz = coordinates[i][2]-coordinates[j][2]#Az-Bz 
                 distance = (dx**2 + dy**2 + dz**2)**0.5 
                  
                 # store the distance in the matrix 
                 D[i][j] = distance 
         
                  
                 #### compute the weight matrix  #### 
 
                 C = 0 
                 #### assign C for each neuron type connection (inhibit and exhibit) #### 
                 if is_excitatory[i] and is_excitatory[j]:   
                     C = Cex_ex 
                 elif is_excitatory[i] and not is_excitatory[j]: 
                     C = Cex_inh 
                 elif not is_excitatory[i] and is_excitatory[j]: 
                     C = Cinh_ex 
                 elif not is_excitatory[i] and not is_excitatory[j]: 
                     C = Cinh_inh 
        
                 ##### compute probabilistic connection #### 
                 p_conn = C * (exp(-(D[i][j]**2)/(lamda**2))) 
                 P[i][j]=p_conn 
 
                 if rand() < p_conn: 
                             
                     if is_excitatory[i]: 
                         W[i][j]= 1.62 *mV 
                     else: 
                         W[i][j]= -9 *mV 
                      
        #### connect the specified two neuron groups using the generated weight matrix  
 
        Connection.connect(self, neuron_group1, neuron_group2, W) 
         
 #####  Return Neural distance, coordinate and synaptic weight  matrix   #### 
        return D, coordinates, W        

 



 
 

Appendix E 

 

The core programming source code of BSA for EEG. 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% BSA - BSA based spike encoder  for EEG %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function spikeTime = BSA(Twave, threshold)    
 
%%%Twave is one EEG channel input  nomalized  to range[0,1]%%% 
 
wave = Twave - min(Twave(:)); 
wave = (wave/range(wave(:)))*(1-0); 
wave = wave + 0; 
 
filter = fir1(10,0.05)    
%%% for EGG need to be adjusted due to the sample rate %% % 
 
N = length(wave); 
P = length(filter); 
 
spike = zeros(1, N);  
spikeTime=[]; 
 
%%% add zeros at end so we don't have to check boundaries%%% 
wave = horzcat(wave, zeros(1, P));         
for i = 1:N 
    segment = wave(i:i+P-1);               %% pre-cutout segment for speed %% 
     
    if sum(abs(segment - filter)) <= sum(abs(segment)) - threshold    %% % BSA heuristic 
        spike(i) = 1;   % get spike here                    %%% emmit spike     
        wave(i:i+P-1) = segment - filter;  %%% substract filter from wave 
    end 
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    if spike(i)==1 
         

spikeTime=[spikeTime i*0.261];    
 
%%% 0.261 is calculated by%%%  
%%% ---simulation time (in msec)/ number of vectors in one EEG sample --%%% 

  
End 
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