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Abstract—Winegrowers for generations know it all too well that 

grapes harvested from different areas within a vineyard will produce 

wines of different flavours, mainly due to within-field variance in vine 

vigour caused by environmental variability from various factors, such 

as soil properties, microclimate conditions, and rootstock. Recent 

research attempts on the use of state-of-the-art technologies to 

model/ simulate within-field variance at a vineyard scale are 

outlined. Consequently, the paper illustrates a cellular automaton 

(CA) framework being developed for simulating the within-field 

variance in grapevine plant vigour, phenological events and vineyard 

production using random or real thematic mappings of likely key 

factors that contribute to the observed variance. The CA approach 

provides an alternative software tool to conventional crop estimation 

methods that are dependent upon expensive yield sampling methods.   
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I.  INTRODUCTION 

Viticulture and enology are among the many application 
areas in which modern technologies, software tools and 
visualisation methodologies are making a difference in 
achieving improvements in grape crop, both in quantity and 
quality, and thus in producing premium wine. The progress 
achieved in the last decade in producing highly refined wine 
labels from the world’s major wine regions has been described 
as unprecedented (1) (2) (3) (4). It as well has led viticulturists 
and winemakers to further explore for more novel precision 
viticulture tools and methodologies to identify the high and low 
yield areas within-field/vineyard, the major approach of recent 
times has been the use of satellite imagery, aerial photo image 
processing and integrated analysis of geocoded data using a 
GIS. A brief introduction to such recent developments in the 
use of new technologies to better understand and manage 
vineyards and thereby to improve wine production is presented. 
Section III describes the CA approach being designed and 
implemented to simulate individual vine growth cycle and 
within-field/vineyard variability to establish the deterministic 
factors and their influences on crop. In section IV, results 
achieved thus far in implementing the approach are presented 
and the final section looks at future directions of this research. 

II. THE INFLUENCE OF TECHNOLOGICAL ADVANCES IN 

VITICULTURE 

Recent advances in georeferenced data processing and their 

use in vineyards have made significant changes to the ways in 

which vineyard operations are handled and are outlined here.    

A. GIS in vineyard management 

The use of geographical information systems (GIS) in 
viticulture research to collectively analyse geocorded data is 
relatively recent however, the purposes for which GIS have 
been investigated are quite diverse and are summarised here.  

In (5) published in 1997, an observation of a paucity in the 
application of GIS in this area of study has been reported citing 
Baxevanis (1992), de Blij (1991), Dickenson (1991), Elliot-
Fiske (1991), Rodolfi (1991), Scienza (1991), Unwin (1991) 
and personal communications with individuals considered to be 
experts in the field. The publication explored of research on the 
suitability of the regional aspects of wine grape production 
using physical characteristics of an established region in 
eastern California. The late 1990s research attempted to discern 
any unique combination of environmental parameters in 
vineyards that could be identified quantitatively. It was focused 
on developing a GIS method to describe the spatial pattern/s of 
vineyards using soil and physiographic parameters. The 
researchers were able to identify differences in 6 variables 
namely, slope angle, storie index

1
slope, aspect, soil depth, 

water-holding and cation exchange capacities at the 95% 
confidence interval and rooting, runoff and clay content at the 
85% confidence interval. Hence, the findings of the study 
concluded to be supportive and contributing to the literature on 
the significance of soil and topographic features using the then 
referred to as GIS methodology.  

The use of GIS techniques for determining land suitability 
when selecting “optimal sites” for vineyards is reported in (6).  
The northern Italian study illustrates some early 1990s efforts 
made by the Italian government and prominent academic 
institutions of the country to integrate geospatial data with a 
prototype of wine viticulture cadastre for managing agricultural 
development planning. The publication, titled as “GIS on 
network” gives details on the development of a national 
database integrated with GIS for taxation and planning.   

In recent decades, there has been intense research to unravel 
the Mediterranean, sometimes described as spiritual or the 
traditional way of grape growing and winemaking practised in 

                                                           
1 Storie Index is a numerical expression/ value that refers to the suitability of soil for 

general intensive farming and it is based upon (Soil conservation Service 1974 p 43).  

The index consists of 4 factors: soil profile, surface index, slop and specific soil 

limitations. It is a multiplicative index with a hierarchical suitability system ranging from 

1 to 6 (i.e., most to least suitable). 



the “old world” wine countries over centuries. Meanwhile, the 
phenomenal growth observed over the last few decades in 
viticulture, in the “new world” wine countries Australia, New 
Zealand, the United States, Chile and South Africa, has 
introduced a new breed of competitors to the once European 
dominated global wine market. Hence, since the early 1990s, 
the old and new world wine countries have witnessed an 
intense demand for scientific analysis of the grapevine growing 
and wine industry to produce consistently good/ finer wines (7) 
(8) (9) and developments seen are described as unprecedented. 

In an attempt to understand the traditional views, research 
elaborated in (10) (11) investigated the application of GIS to 
grapevine growth and vineyard management. The papers 
demonstrated the spatial and temporal variables associated with 
these two classes as ideally suited for GIS applications. The 
issues specifically looked at in the study were: scale variation, 
significance of location, factors that affect the production and 
quality of the vintage, the annual cycle of the grapevine and 
berry ripening and harvest, extreme events and risks (i.e., frost, 
pests, disease), trans-seasonal and intra-seasonal cycles, 
sustainability, quality and integrity of the final product, 
traceability and the reputation and value of the final product.  

Wine grape expansion witnessed in the Cape Floristic 
Region of South Africa over the last decade soon after the 
lifting of trade sanctions in 1992 combined with the naturally 
fertile soil of this region led to research into modelling the land 
use change and its impact on the conservation planning and 
management of this region using spatial data (12). In that study, 
researchers analysed wine farmer, cellar and cooperative 
information gathered through a survey integrated with 
environmental information, such as climatic, topographic and 
hydro-geology and soil, using a 1km x 1km lattice structure to 
identify patterns in a heterogeneous regional and local agro-
ecosystem based on a systems approach The cellar and wine 
farmer location details were mapped to the lattice with 
presence/ absence points demonstrating the analysis of geo-
coded data derived from raster-polygon based GIS sources. 

B. Developments in Precision Viticulture 

Lately, understanding the impact of plant-soil-water 
dynamics at different phenological growth stages on plant 
physiology has been the key to achieving improved yield in 
within-vineyard management (13). In view of this fact an 
Australian report reviewed the county’s technological 
contributions to precision management of irrigated viticulture 
over the past two decades.  An integrated approach of mapping 
soil spatial properties discussed in the paper was focused on 
serving many purposes, such as generate irrigation 
management zones, evaluation of their performance and the use 
of near continuous soil-water profile dynamics in making 
irrigation scheduling, implementation and management 
strategies, such as regulated deficit irrigation (RDI) and partial 
root zone drying (PRD). Many more studies have reported on 
the complex and challenging issues relating to managing the 
dynamic relationship between site, soil, water phenological 
stage, vine and wine quality within and among vineyards (14). 
There is also research reported outside of Australia into these 
factors integrated with the irrigation management in grapevines 
which are a traditionally non-irrigated crop (15) (16) (17) (18). 

C. Satellite imagery aerial image processing in PV 

The availability of recent advances in remote sensing has 

led to a growing interest in the use of airborne multispectral 

and hyperspectral imagery in precision viticulture with greater 

flexibility especially in yield mapping integrated with soil or 

disease properties within a vineyard (19). The paper based on 

a French research reported on the most recent developments in 

this area of spectral characterisation of vine canopy, varietal 

mapping with the capability to discriminate plant species that 

could be used as a tool in the certification of wine productions 

at regional and at vineyard scales in detecting mis-planting 

and managing inner species variability. Subsequently, the 

paper investigated the use of three main approaches namely, 

multiple-layer perceptrons, radial basis function neural nets 

and support vector machines for varietal mapping. Most recent 

developments in this field include the use of fuzzy logic (in 

satellite imagery pixel analysis) and delineation of vine parcels 

by segmentation of high resolution (in aerial images). 

Since the late 1990s, there has been significant progress in 

the use of precision viticulture for monitoring yield with 

commercially available devices and technologies (20).  Yield 

mapping over three vintages prior to this publication in 2001, 

showed a number of Australian wine grape growing areas with 

highly varying vineyards, the variability in grape yields in 

single management unites being described to be as much as 8 

or 10 fold. The Australian survey emphasised the need for 

more data within individual blocks on yield, fruit and vine 

indices, soil properties to optimise yield and for more refine 

data to find the blocks that produce high yield. 

III. CELLULAR AUTOMATION FRAMEWORK DESIGN 

The multi agent CA framework designed and being 

implemented in Java environment, consists of two different 

sets of lattices and rules for simulating grapevine growth (for 

Chardonnay) and yield at vine and vineyard scales. The agents 

are included in the framework to perform vineyard operations.  
Cellular automata can be broadly described as discrete 

dynamical systems in which the individual cells are 
homogeneous (all of the same type). Through local interaction 
(as specified by common rules that all cells share) and a 
specified neighbourhood (one cell can only communicate with 
other cells in that neighbourhood), complex behaviour can arise 
over a number of generations or time-steps.  

A CA is deterministic when its next state (on or off for a 
simply binary CA) is fully determined by its own current state 
and the states of neighbouring cells, and probabilistic otherwise 
(the next state is probabilistic). In a synchronous CA all the 
cells update in parallel, whereas in an asynchronic CA a cell 
immediately updates to the next state depending on the states of 
its neighbouring cells. Agents, on the other hand, are 
characterised by their relative autonomy (they can perform 
actions independently of other agents) and partial views of the 
global system depending on their function and decentralisation 
(there is no designated agent that controls all other agents). 
Also, and perhaps most importantly for this work, an agent can 
be complex (i.e. an agent can itself consist of parts specialised 
to perform different sub-functions). 



Merging CA with agents results in an interesting hybrid 
architecture where: (a) cells, in addition to communicating with 
other cells in their neighbourhood, also perform calculations 
and can receive input and send output independently of other 
cells; (b) cells can be grouped to perform functions specific to 
them (agent architectures independent of the cellular automaton 
architecture); and (c) cells or groups of cells can share 
information with each other to ensure that what is happening in 
one part of the system is communicated to other parts of the 
system. In other words, implementing CA cells as agents adds 
a degree of modelling power to the CA, and implementing 
agents as CA cells allows agents to be located in the CA 
architecture in such a way that basic communication and state 
updating processes are provided. For modelling plant growth, a 
multi-agent CA framework has many advantages, including 
allowing a cell to represent an individual plant which in turn is 
complex (the plant consists of leaves, trunk, roots, etc), each of 
which can update its state depending on the sub-parts of 
neighbouring cells/plants. That is, a multi-agent CA can 
support many levels of interactions in a way that a simple CA 
cannot. Also, agents can themselves be grouped so that a 
population of cells can be identified to be of a specific type 
(e.g. chardonnay, cabernet) that have their own specific rules 
for interaction. Also, since cells are now relatively 
autonomous, they can get information and resources (such as 
nutrients and energy) from sources independently of any other 
cell or agent. Some element of competition can be introduced 
through agents possibly learning from their environment how 
to modify their interactions with other cells and how to survive 
on a potentially hostile environment.  

There are currently no standard definitions for how to 
combine CA with multi-agent systems. The research design 
and experiments described below represent one possible hybrid 
approach to modelling grapevine growth and crop. Any model 
will ultimately be subject to the same checks as any other 
modelling technique: the model’s ability to fit the data and/or 
to make predictions (using cross-validation or other train-test 
methods). The hybrid method adopted here is to use the CA for 
modelling grapevine growth both at the micro (individual 
plant) and macro (field of plants) levels, where agents represent 
the grapevine and global vineyard operations that can be 
broken down into components that map onto the various CA 
functions for updating states through local interaction. One of 
the purposes of agents in this hybrid architecture is to allow 
some degree of “non-intervention”. In other words, once the 
hybrid architecture is set up and started for a specific number 
of time steps to simulate hours, days, weeks or months, the user 
should not have to interact with the system. Instead, the agents 
are responsible for collecting information from other agents 
and information sources, which will include actual temperature 
and other environmental data that the model is attempting to fit.  

A. Individual grapevine growth cycle and simulation 

In Viticulture, there are seven major Grapevine phenology 
stages/events and there are: 1) budburst, 2) leaf growth, 3) 
clusters of inflorescence initiation, 4) flowering, 5) berry 
formation, 6) development and 7) ripening.  A more detailed 
one with 47 stages is shown in fig. 1. The chronology and 
triggers (changes in seasonal weather conditions) of these 
events are presented in fig. 2. Among the many ways, the use 

of growing degree days (GDD) for determining the grapevine 
phenology event is a more familiar one.  In general GDD is 
calculated by adding the excess of a base temperature i.e., 10 
o
C. Knowledge of phenological system characteristics 

developed over decades (in some wine regions even centuries) 
is considered as important in horticulture, especially with Vitis 
vinifera grapevines, the reason for this being the optimum 
development of quality fruit for wine production is tied to 
phenological occurrence and timing (21) hence used as the 
trigger in the initial CA simulations. 

In the CA grapevine simulation discussed here, in addition 
to GDD, other major growth factors (soil quality, water stress 
and exposure to solar radiation) as well are used to calculate a 
variable called “available energy” (AE), the ultimate factor that 
determines the vine growth.  The AE calculated using formula 
(1) and (2) is utilised for growth in five vine organs, namely 
trunk, bud, shoot, leaf and cluster, depending on the “stage” of 
the vine growth (major phenology stages 1-7). A term 
“priority” is used in this study to define the growth stage and 
this is calculated based on temperature/day length/ growing 
degree days (GDD/ heat units). Energy not used in the current 
cycle will be stored in trunk as Stored Energy (SE). 

 

Figure 1.  Phenological stages (47) of grapevine based on Coombe 1995 (22)   

 

Figure 2.  Chronology of grapevine phenology source: 

www.grapes.okstate.edu/PDFs/2009/GrapevinePhenologyandDataCollection2

009.pdf   



AE = ((GDD/DS)  x  AW  x  (TPV) )  + SE (1) 
Where, 

AE =Available energy  

GDD  = Growing Degree Days 

AW  =Available water (1.0-0.0) 

DS =Day segments (morning, noon,  

   twilight and night) 

TPV =Total photo synthesis value 

SE =Stored energy 

     

TPV  =(ALC x (A
2 
x L)) / LA

2
            (2) 

Where, 
 ALC =Active leaf cover in cell 
 CA

2 
=Cell area 

2 
(in centimetre

2
) 

L =Light (1.0-0.0) 
Cells =Cells in grid 

 

Vine organ initiation, growth, maturity and death vary 

based on the type of organ and are simulated using rules in the 

vine CA cycle. For example, organ “leaf” grows into become a 

full leaf since unfolding from a “shoot”. The leaf growth 

continues until it reaches maximum leaf blade length, stays 

alive for several weeks producing energy via photosynthesis 

and then dies off; similarly, each organ has its own growth 

phases and rules in the vine CA cycle (see Table 1 for bud 

growth rules). 

B. Field (vineyard) operations and simulation  

The vineyard CA is designed to allow for user input 

through a graphical user interface (GUI) and users can change 

the following parameters considered as vital in the Field 

simulation (fig. 4a): 

Field CA lattice: 

• Field width 

• Field height 

• Area of each cell (in cm) 

Environment: 

• Water quality 

• Soil quality 

• Light quality 

Meanwhile, the following are the parameters that are designed 

to allow for input by users in relation to grapevine phenology: 

Organs: 

• Default death temperature 

• Bud (B) burst threshold (in energy units 

calculated from (1)), B max. energy intake, B 

energy upkeep cost, B death temp 

• Cluster (C) berry development threshold (in 

energy units), C. max energy intake, C. energy 

upkeep cost, C. Max. growth (in energy units), C. 

max size (in cm cubed) 

• Shoot(S) spawn organ threshold (in energy units), 

S. max energy intake, S. energy upkeep cost, S. 

movement threshold (in energy units), S.spawn 

order Leaf (L) maximum growth (in energy 

units), L. Max. energy intake, L. energy upkeep 

cost, L. maximum area (in cm squared),  

 
Table 1: CA rules used to simulate vine/vineyard responses 

All Organs 

Variables: 

 Death Threshold = 0 degrees centigrade. 

Standard Organ death rule: 

 IF Local Temperature < Death Threshold THEN Organ is dead. 

Bud rules 

Variables: 

Frost Threshold = 2 degrees centigrade. 

 Flower Daylength Threshold = 12 hours 

 Flower Temp Threshold = 10 degrees centigrade 

Death: 

 IF Local Temperature < Frost Threshold THEN Decrement Remaining Buds 

 IF Remaining Buds == 0 THEN Bud is dead 

 ELSE IF Local Temperature < Death Threshold THEN Bud is dead. 

Growth: 

 Add Growth to Total Growth 

 IF Total Growth >= Burst Threshold THEN 

 IF Day Length > Flower Daylength Threshold AND Local Temperature > 

Flower Temp Threshold THEN Bud is dead 

Cause Vine to spawn new Shoot at Bud's location. 

Remove any excess  

Total Growth beyond Burst Threshold, return to Growth 

 Return any remaining Growth 

Cluster rules 

Variables: 

 Berry Development Threshold = 500 units of energy. 

 Berry Min Temp Threshold = 14 degrees centigrade. 

 Berry Max Temp Threshold = 29 degrees centigrade. 

Growth: 

 Add Growth to Total Growth 

 IF Is Flowering == true AND Total Growth >= Berry Development Threshold 

   IF Local Temperature >= Berry Min Temp Threshold AND Local 

Temperature <= Berry Max Temp Threshold 

 Is Flowering = false 

 ELSE 

Decrement any excess Total Growth beyond Burst Threshold,  

return to Growth 

 ELSE  

IF Is Flowering == false 

Add Growth to Berry Growth, Return any remaining Growth 

Leaf Rules 

Variables: 

Maximum Leaf Growth = 100 units of energy. 

Growth: 

 IF Total Growth <Maximum Leaf Growth THEN Add Growth to Total Growth 

 IF Total Growth > Maximum Leaf Growth 

 Remove any excess Total Growth beyond Maximum Leaf Threshold,  

  return to Growth 

 Return any remaining Growth 

Shoot Rules 

Variables: 

 Spawn Threshold = 200 units of energy.  

 Move Threshold = 2000 divided by Cell Area. 

Growth: 

IF Has Tip 

 Add Growth to Total Growth, Spawn Growth, Move Growth 

 WHILE Spawn Growth > Spawn Threshold  

OR Move Growth > Move Threshold 

 IF Spawn Growth > Spawn Threshold 

 Cause Vine to spawn next Organ at Shoot's current location 

 Remove Spawn Threshold from Spawn Growth 

 IF Move Growth > Move Threshold 

Move Shoot 

 Remove Move Threshold from Spawn Growth 

 Return any remaining Growth 

Movement: 

 Set Current Min Cover to 1000000 

 Generate Choices List, containing immediate surrounding and current cell 

 Remove locations beyond limits of grid from Choices List 

 FOR EVERY Location IN Choices List 

 Get Total Cover Value for Cell matching Location 

 IF Total Cover Value < Current Min Cover THEN Target = Location 

 Current Min Cover = Total Cover Value  Set Shoot Position to Target 

Trunk Rules 

Growth: Add Growth to Stored Energy 



• Trunk (T) max. energy intake, T. energy upkeep 

cost 

• Vine starting buds 

IV. RESULTS 

This ongoing research is aimed at implementing a CA 

framework discussed in section II in Java environment for 

simulating perennial crop using grapevine growth and grapes 

harvested for individual crop and field (vineyard) scales 

respectively (fig. 3). The results achieved thus far demonstrate 

the potential of the approach for crop estimation purposes. 

Even with limited functions for user input through the GUI 

(fig. 4a), the software (sw) shows how the simulations at 

individual plant (vine) /meso scales, could be achieved using 

viticulturist expertise on the influences chosen as vital factors 

and their interactions at these plant/ field scales, represented as 

CA rules. AE is calculated using GDD, water, day segment 

and total photosynthesis.  This is an advantage as the methods 

in use at this temporal scale (inter annual) use GDD alone of 

the local climate especially, when describing grapevine 

phenology (23) (24).  Hence, by changing Threshold values 

(in this case GDD and other factors, vine phenology, vine 

growth and yield could be predicted under different climate 

and environmental change scenarios. The outcomes under an 

example set of these different scenarios could be viewed on 

the display (fig. 4b).   

Currently, the database for the sw has Chardonnay wine 

style related information and by adding details of other styles 

yield predictions for them could be made under different 

environmental conditions as well.    

V. CONCLUSION 

The paper described an ongoing investigation so far 

conducted on simulating individual plant growth and field 

scale interactions among vital factors using grapevine and 

vineyard as examples. The results of CA simulations (fig. 3)  

on vine and field are promising. The aerial view of leaf growth 

and fluorescence is shown at every 100 cm2 and berry growth 

accordingly. Such simulations will allow researchers to model 

effects on growth using different environmental parameter 

values.  Future work will focus on a full implementation of the 

CA framework with agents to implement farming i.e., 

vineyard operations and an interface to change parameter 

values.  It is anticipated that the CA simulation would enhance 

viticulturists ability to better predict their outcomes under 

different scenarios, such as pruning decisions; number of 

buds/ shoot to allow for full growth for that season, future 

climate change and at different scales, providing an alternative 

approach to estimating yield. The major benefit with the 

approach is that it provides a methodology for estimating yield 

without incurring any additional cost as this approach can be 

simulated with historic and other model prediction data. As far 

as the authors are aware, this is the first attempt to contribute 

to ‘ precision viticulture ’ through the use of a multi-agent 

cellular automaton that take into account detailed information 

concerning both resources (energy, water) as well as important 

botanical features (leaves, buds, etc). In the longer term, fitting 

the data and making predictions about growth will need to be 

related to quality of wine (15). With the inclusion of a wine 

quality module vintage ratings as well could be predicted 

under different possible weather and other atmospheric 

conditions.    

      
TLC=300   TBG=0           TLC=400  TBG=0         TLC=500   TBG=0          TLC=700   TBG=140      TLC=1200   TBG=485   TLC=1400   TBG=1000 

       
TLC=1600   TBG=1000  TLC=1800   TBG=1000 TLC=2000   TBG=1000 

   
TLC=2200   TBG=1000  TLC=2400   TBG=1000 TLC=2600  TBG=1000 
 

Figure 3: CA displays showing the different phenological stages/events 

of grapevine growth cycle from bud break through to berry ripening.  

The GUI is set to run from bud break to harvest with 20 grapevines.  The 

threshold values set for different phenological events are shown in (Fig. 

4 a) for grapevine and vineyard growth stages as shown in figs 1 and 2.     

Inflorescence/ infructescence           foliage 

 

TBG (berry): Total berry growth TLC (cm2): Total leaf cover   (see Fig 3) 



        
Figure 4: Screen displays for a) user input for different parameters (left) and 

b) Plant (CA cell)/ vineyard growth (left) calculated and displayed based on 

CA rules in Table 1. 

Furthermore, with the use of real data on soil quality 

Chemical test data) and vegetative growth vigour (calculated 

using satellite imagery) in the simulation, yield prediction 

accuracy could be further enhanced.  In summary, this paper 

presents a first demonstration of interim results gained through 

a novel modelling approach using cellular automata for 

understanding grape vine phenology, growth at micro/meso 

scales and environmental effects. The application of artificial 

life techniques, such as cellular automata, provide a nature-

inspired approach for precision viticulture.   
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