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 Abstract 

 

Image identification and grouping through pattern analysis are the core problems in image 

analysis. In this thesis, the gap between bioinformatics and image analysis is bridged by 

using biologically-encoding and sequence-alignment algorithms in bioinformatics. In this 

thesis, the novel idea is to exploit the whole image which is encoded biologically in DNA 

without extracting its features. 

    This thesis proposed novel methods for identifying and grouping images no matter 

whether having or not having watermarks. Three novel methods are proposed. The first 

is to evaluate degraded/non-degraded and watermarked/non-watermarked images by 

using image metrics. The bioinformatics-inspired image identification approach (BIIIA) 

is the second contribution, where two DNA-encoded images are aligned by using SWA 

algorithm or NWA algorithm to derive substrings, which are exploited for pattern 

matching so as to identify the images having a watermark or degradation generated from 

MPS. The outcomes of identification affirm the capability of BIIIA algorithm. 

Furthermore, it asserts that DNA-based encoding is the best way for digital images as 

well as SWA algorithm is the best one for the sequence alignment. 

    The last one is the bioinformatics-inspired image grouping approach (BIIGA), where 

the DNA-encoded images are aligned by using multiple sequence alignment (MSA), 

which is exploited by using the phylogenetic tree to group the watermarked / non-

watermarked and degraded / non-degraded images; the resultant analysis confirms the 

potential of BIIGA algorithm. All three methods are empirically verified and validated 

by using real datasets. 

 

Keywords: Multiple print and scan, multiple sequence alignment, local pairwise and 

global alignment, image quality metrics, image analysis, pattern matching, 

phylogenetic tree, bioinformatics tool. 
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Chapter 1  

 Introduction  

 

    This chapter starts with the background and 

motivation of the research, a brief introduction to 

sequence analysis with sequence alignment and 

sequence visualization in bioinformatics, image 

analysis, watermarking and multiple print-and-scan 

image degradation. The scope of this thesis includes 

bioinformatics tools and approaches to resolve the 

pattern matching in image analysis. The contribution of 

this thesis is explained in the last section. 
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 1.1 Motivation 

The nature of research methods can be understood by “Neo-Darwinism,” i.e., modern 

evolutionary analysis introduced the connection between two important discoveries: 

the unit of evolution (genes) with the mechanism of evolution (natural selection). This 

biological evolution inspired and led to the foundation for the emergence of a 

relatively late field of computing known as “evolutionary computing” for answering 

complex issues in computer science. For example, the particle swarm optimisation 

(PSO) (Nahdliyah, Fitriyani, & Biyanto, 2017; Zhang & Rahmat-Samii, 2016), ant 

colony optimisation (ACO) (Gajalakshmi & Srikanth, 2016; Dorigo, Birattari, & T. 

Stutzle, 2006) and genetic algorithm (Yousef, et al., 2016) in a variety of fields are 

now well developed and recognised. 

    Evolutionary approaches focus at the level of an individual entity or in populations 

of entities like bioinformatics evolutionary computing and the nature-inspired 

computing approach. From the last 40 years, researchers have been using pattern 

matching tools for resolving bioinformatics problems on an enormous scale, which 

has become a highly profitable industry. It seems that there is a unidirectional flow of 

interactions, i.e., from pattern matching to bioinformatics. A relatively less 

investigated and new area of research is to reverse the interaction, i.e., from 

bioinformatics to pattern matching. That is how the latest development in our 

understanding of advanced bioinformatics tools can be used for pattern-matching 

tasks; in particular, how alignment algorithms and biological image representation can 

be used to develop a novel algorithmic solution for image analysis by using pattern 

matching. To the best of our knowledge, this unconventional way of thinking is 

relatively new and very little work is reported in literature so far, e.g., for 2D shape 

classification (Bicego & Lovato, 2016; Lovato, Milanese, Centomo, Giorgetti, & 

Bicego, 2014; Lovato & Bicego, 2012), 2D shape recognition (Bicego & Lovato, 

2012) , image matching (Bicego, Danese, Melzi, & Castellani, 2015; Kim, Chang, Liu, 

Lee, & Lee, 2009; Kim, Chang, Lee, & Lee, 2010) and video genome project 

(Bronstein, Bronstein, & Kimmel, 2010).  

    The motivation behind this research project on identification and grouping images 

explained in this thesis can be abridged in two situations: one for identification and 

the other for grouping degraded (copies made by multiple scan and print) / non- 

degraded images and watermarked/non-watermarked images.  
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 A large number of digital images are a big problem in World Wide Web 

    Basically, there are two main reasons for this. The first is human beings boosted 

easily to access all forms of digital content when they need it, which leads to the 

explosion of digital images in quantity. Secondly, the Internet becomes super 

cheap that enables a person to easy access for uploading and downloading digital 

images. Consequently, piracy and ownership as well as counterfeiting have turned 

out to be more pervasive, which causes a big threat to digital images ownership. A 

typical solution to the ownership identification is watermarking. However, there 

is huge development in the area of watermarking for digital right management but 

this option becomes less favourable when a hacker removes or damages the 

watermarks by using malicious software. Additionally, increasing watermark 

types and watermarking algorithms will add more complexities during 

identification. 

    From a bioinformatics perspective, a solution of this problem is to develop a 

biologically-based pattern analysis algorithm where this pattern provides the 

DNA-like information. This pattern may be unique for a particular category of 

watermarked images. Additionally, this pattern analysis algorithm will be 

independent on the process of watermark embedding, thus allowing one universal 

approach for image identification having all types of watermarks.   

    However, even if we addressed the solution that will come out as a good idea, 

how do we guarantee that these patterns cannot be counterfeited and duplicate 

patterns be created?  

 The excessive technical advancement in making high-quality copies of images 

by using scanners and printer is a big problem for genuine use of digital 

images. Grouping the original, copied or degraded images becomes an issue. 

    Comprehensively, there is three primary reasons for this. The initial one is that the 

high-quality scanners and printers have turned out to be no more luxury. Second, all 

forms of content (image, documents, audio, and video) are transferred and shared 

digitally, and have turned out to be the more pervasive, which increased the threat of 

counterfeiting, piracy and security. The third reason is that our human eyes have 

limited range of vision because it is hard to discriminate and group the counterfeited 

and original one by using our naked eyes.   
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    If we want to filter and reorganise images according to their categories by using 

bioinformatics tools, which will emphasize on the requirement of a biologically-based 

pattern analysis algorithm. There are a number of components to the both cases, in 

spite of the differences in the applications of this approach. The first is the 

biologically-based pattern analysis. The second is for grouping images on the basis of 

patterns extracted. The extracted patterns will be used to determine the image groups 

and then placed in the expected ones. The third is that images are identified in both 

cases; the second scenario is a natural extension of image identification.  

    To implement the biologically-based pattern analysis, the images must be converted 

into biological format, i.e., four letters of DNA: “A”, “T”, “C”, and “G”. In the 

bioinformatics, the idea of patterns extraction between two DNA sequences usually is 

implemented by using pairwise sequence alignment. For more than two DNA 

sequences, multiple sequence alignment is taken into consideration. 

    The goal of this thesis is to inspect the bioinformatics tools and approaches at DNA 

level that can be employed for developing new bioinformatics-inspired models for 

pattern matching in image analysis. Our focus will be image analysis for evaluation 

and discrimination (i.e., identification and grouping) of watermarked and degraded 

images by using MPS as well as non-degraded / watermarked images by using 

bioinformatics, i.e., bioinformatics-inspired image analysis (BIIA) to identify the 

methods and strategies that achieve acceptably accurate identification and grouping. 

That leads to divide BIIA further into two parts: bioinformatics-inspired image 

identification approach (BIIIA) and bioinformatics-inspired image grouping approach 

(BIIGA).  

    An evidence for relative lack of research in “Bioinformatics Inspired Image 

Analysis of Watermarked Multiple Print and Scan Images” comes from a 

straightforward series of searches using Google Scholar.   

 There are about 3.23 million hits for “bioinformatics” and 2.15 million hits for 

“image analysis.” 

 There are more than 65 thousands hits for “bioinformatics” + “image analysis,” 

and around 21 hits for “bioinformatics inspired” + “image analysis.” 
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 There are around thirty-two thousands and eight hundred hits for 

“watermarked” and 56 for “Bioinformatics” + “image analysis” + 

“watermarked.” 

 There are two hits for “multiple print and scan” and zero hits for 

“bioinformatics” + “image analysis” + “watermarked” + “multiple print and 

scan.” 

 There are more than 6.5 millions hits for “images” and zero hits for 

"bioinformatics" + "image analysis" + "watermarked" + "multiple print and 

scan " +"images". 

    These are certainly peripheral results. Nevertheless, the principal reason behind the 

searches persists and can be expressed as follows: while bioinformatics techniques are 

well developed and adopted for distinguishing species that are under observation for 

identification and grouping (typically, for conserved-region identification). There has 

not been any endeavor to draw inspiration from bioinformatics on how to use DNA 

for discriminating non-watermarked / watermarked image degraded by using MPS. 

Notably, even though the massive number of cases for conserved regions to identify 

the biological evolutionary relationship between the DNA biological sequences of 

humans and mammals, alteration in them will cause potential anatomical and 

behavioral difference. The degradation of watermarked / non-watermarked images (by 

multiple print and scan) studies in literature has neglected them. The inspiration of 

driving this thesis is to investigate what seems to be a gap in watermarked / non-

watermarked image degradation by using multiple print and scan: modelling the 

different aspects of degraded and watermarked / non-watermarked images by using 

MPS for evaluation and discrimination (i.e., for identification and grouping) through 

motivation from bioinformatics. Further affirmation for this argument is supported by 

the literature reviews in Chapter 2. 

The idea of the introducing bioinformatics alignment algorithms and biological 

image representation for image analysis was needed to understand the unusual 

relationship between them. That leaves many open questions. How can we use the 

bioinformatics algorithms in image analysis? How can we represent images 

biologically? Is biological representation used for images, does it deserve or not?  If 

so, then how we can identify and group the images using bioinformatics tools, in 

particular, focusing on the identification and grouping of degraded and watermarked 
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(W) as well as non-watermarked images, non-degraded and watermarked / non-

watermarked images? 

    Which specific characteristics of bioinformatics have been driven the background 

of this research project, particularly discussed in later chapters? Coming back to the 

series of Google search, it is also understandable that there is much unpredictability, 

what and how bioinformatics tools for pattern matching can be used for evaluation and 

discrimination (i.e., identifying and grouping) of the watermarked / non-watermarked 

images degraded by using MPS-based image analysis. Furthermore, it is required to 

explain what is meant by using “evaluation,” “discrimination (i.e. for identification 

and grouping)” and “bioinformatics-inspired image analysis.” So, before investigated 

the proposed approach further, it is necessary to elaborate understanding the concepts 

to lay a clear-cut base for the proposed algorithms and results. 

1.2 Scope 

1.2.1 Concepts of Bioinformatics 

Bioinformatics is a combination of computer science and biology that can be explained 

as the intersection of biology and information technology (I.T.), a tool for data mining 

in biological databases or biological information management. The term 

bioinformatics was first used by Paulien Hogeweg and Ben Hesper in the beginning 

of the 1970s, who addressed the work “The study of informatics processes in biotic 

systems” as bioinformatics (Hogeweg, 2011; Hogeweg & Hesper, 1978; Hogeweg, 

1978). This description leads towards a new field that is parallel to the physical process 

(biophysics) and a chemical process (biochemistry) of biological systems (Hogeweg, 

2011). Pattern analysis was introduced in bioinformatics around the 1960s (Hagen, 

2000) and Paulien Hogeweg developed an integrated set of non-supervised and 

supervised pattern analysis BIOPAT systems for biotic systems (Hogeweg, 2011). The 

proposed research uses pattern analysis to investigate data derived from biologically-

represented images. Our questions around finding some conserved patterns that are 

remaining after degradation by using multiple rounds of print and scan in an image. 

    At the beginning of this century, computing researchers’ paradigm was shifted from 

macro to micro level for developing novel methods and algorithms (Libeskind-Hadas 

& Bush, 2013). The rise of quantum computing (Vandersypen & Leeuwenhoek, 2017; 

Khan, Saha, & Pal, 2017), DNA computing (Rondelez & Woods, 2016), and 
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bioinformatics computing (Lizhen, Zhong, Weikuan, & Meng, 2017; Alex, Oswaldo, 

Antonio, Cornejo, & Perkins, 2016) are a few instances of this paradigm shift. Most 

of the hypothesis was mining deeper into natural systems, resulting in the development 

of better algorithms. Here, the betterment represents the improved effectiveness 

regarding novelty for contributing to literature and the quality of output. In this thesis, 

we will investigate bioinformatics alignment algorithms, biological image 

representation, watermarked / non-watermarked and degraded images by using MPS 

to develop novel methods in the field of image analysis and bioinformatics. The 

mission will be to go “deeper” into the bioinformatics for image analysis than the 

achieved so far with bioinformatics alignment algorithms and biological image 

representation to see what betterments are possible if any. 

   The bioinformatics field is an interdisciplinary area that deals with the development 

of software tools and methods with the help of biological data. It is interdisciplinary 

because it includes mathematics, computer science, statistics and engineering for 

understanding and analysing biological data. Bioinformatics is mainly used to 

understand genetic diseases, adaptations, desirable effects in agriculture crops, etc. A 

deeper understanding of the biological process is the primary goal of bioinformatics 

by developing and applying computation techniques rigorously, for example, data-

mining, machine learning, pattern recognition, etc. Sequence alignment, gene 

expression and protein structure predictions, design and discovery, gene finding, 

protein-protein interactions and evolution modelling are different processes where 

extensive research work is going on. Three important subdisciplines of bioinformatics 

are: 

 Efficient development and implementation of computer program that allow us 

to manage and use multiple kinds of information. 

 Development of novel algorithms and statistical measures for computing 

relationships among participants in a large dataset.         

  Protein domain, nucleotide and amino acid sequences, protein structure 

analysis and interpretation.  

    This thesis covers first two subdisciplines of bioinformatics, developing novel 

algorithms and computer programs for image analysis using images represented as 

DNA by applying sequence alignment to find relationships among NWND, NWD, 

WND and WD images. 
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Bioinformatics span 

The crux for analyzing, organizing and understanding biological data using computers 

leads to expand biological analysis by using bioinformatics methods in two 

dimensions: breadth and depth (Luscombe N, Greenbaum, & Gerstein, 2001). The 

vertical axis (i.e. depth) represents the rational drug design process that aims towards 

analyzing a single protein to maximize understanding about the protein it encodes. The 

analysis starts with the gene sequence; from there, we calculate the protein sequence. 

The prediction algorithm (Escobar, et al., 2016) determines the structure;  geometrical 

calculations can interpret the protein surface shape. Force fields around the protein 

molecule were discovered by using simulation (Lopes, Guvench, & MacKerell, 2015; 

Freddolino, Park, Roux, & Schulten, 2009). Lastly, the docking algorithms (Sliwoski, 

Kothiwale, Meiler, & Lowe, 2014) will determine the ligands design for binding to 

the proteins that leads to the drug designing. Through this, the protein functions could 

be changed. 

    Breadth is the second dimension of bioinformatics that aims towards comparison of 

one gene with another for biological analysis. In other words, sequence analysis is 

performed. That indicates a DNA, RNA or peptide (protein) is subjected to a vast 

range of analytical processes to find out structure, features, functions or evolution. 

Search in the biological database through sequence alignment and other methods are 

included in sequence analysis (Durbin, Eddy, Krogh, & Mitchison, 1998). A pair of 

relevant proteins is compared to their sequences and structures by using simple 

algorithms (pairwise sequence alignment).  

    As the number of proteins is increased (i.e. from 3 to 100), the algorithms are further 

improved for performing multiple sequence alignments, and sequence patterns or 

structural templates are extracted that determine a group of proteins. We can use this 

data to generate phylogenetic trees that can be used to track the evolutionary journey 

of proteins. Lastly, with even more proteins or data (i.e. more than 100), large-scale 

databases are required for storage. More complexity arises for comparisons; multiple 

scoring schemes are needed by which we can perform genomic scale censuses that 

generate exhaustive statistical accounts of protein features. Like abundance of 

particular functions or structures in different genomes. A phylogenetic tree is also 

generated by this data that will track the evolutionary journey of the whole organism. 

    In this thesis, our research focus is on the second dimension of bioinformatics (i.e., 

the breadth) for developing novel methods in images analysis (i.e., watermarked and 
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non-degraded (WND), non-watermarked and non-degraded (NWND), watermarked 

and degraded (WD),  non-watermarked and degraded (NWD) by using MPS) in the 

domains of bioinformatics and image analysis by incorporating inspirations from 

sequence analysis.  

1.2.2 Sequence Analysis  

The primary rationale for utilizing sequence analysis is an inspiration for image 

analysis; the sequences have crucial information that determines the habits, 

personality and inheritance properties of species. For example, biological sequences 

are made up of C (Cytosine), A (Adenine), G (Guanine) and T (Thymine) nucleotide 

base pairs. The structure and position of these pairs define the habits, personality and 

inheritance properties of the species (Mathkour & Ahmad, 2009). The main focus of 

biologists is on distinguishing species by using functional properties to get optimal 

results. Extraction of meaningful information from massive repositories of sequence 

data gives us very compelling outputs related to functional characteristics of genes. 

This inspires this thesis to extract meaningful information from a biological sequence 

(DNA) of images (i.e. NWND, NWD, WND, and WD) with the help of sequence 

analysis. 

    Sequences may have a variety of natures and types that include multilanguage 

sequence, genetic sequence, RNA sequence, DNA sequence, protein sequence, etc. It 

is hard to study all kinds of sequences in short time; thus, the scope of this thesis deals 

with only DNA and protein sequences. 

    According to the scope, we explained the sequence hierarchy for genome sequence 

analysis. Genome sequence analysis is divided into two parts: sequence alignment and 

visualization. For understanding more diversity in the functional properties of species, 

sequence alignment can be used. In sequence alignment, DNA, RNA or protein 

sequences are arranged in a way to identify similar regions that result in structural, 

evolutionary and functional relationships between sequences. Further sequence 

alignment is divided into local alignment (Polyanovsky, Roytberg, & Tumanyan, 

2011), global alignment (Needleman & Wunsch, 1970; Smith & Waterman, 1981), 

multiple alignments (Rani & Ramyachitra, 2016) and duplication. Information 

extracted from sequence alignment is utilized to track any possible evolutionary 

relationships among species, the degree of relevancy, diversity in the species and 

genetic relationship among the species. 
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     The second part of this genome sequence analysis is sequence visualization. These 

methods are very powerful that will exploit human vision for analyzing and organizing 

the sequence data. It includes pattern recognition (Ridder, Ridder, & Reinders, 2013), 

motif concentration (Rampasek, Jimenez, Luptak, Vinar, & Brejova, 2016), structure 

prediction in two dimensions (2D) or in three dimensions (3D) (Soding, 2017), 

phylogenetic tree (Wilgenbusch, Huang, & Gallivan, 2017) and microarray 

(Kauffmann, Gentleman, & Huber, 2009).  These are very useful in recognizing and 

visualizing duplicating patterns in genomes (Tao, Liu, Friedman, & Lussier, 2004). 

Pattern recognition transforms and classifies entities from the patterns extracted from 

accumulated raw data. Raw data accumulation has obscure patterns; so, by using 

pattern recognition, we can obtain a pattern which is more meaningful. Pattern 

recognition is divided into two parts: supervised pattern recognition (unrelated data to 

the measurement methods, like labels, are accessible) and unsupervised pattern 

recognition (labels are not present). Pattern recognition can be implemented in two 

fundamental ways: statistical (i.e. having statistical decision theory as a foundation) 

and syntactic or structural (i.e. having human perception and cognition as a 

foundation). Statistical pattern recognition cannot discriminate morphological 

patterns because of its quantitative nature that motivates us to use a syntactic or 

structural pattern recognition approach in this thesis for image analysis where pattern 

matching is checking specified patterns in a given token sequence (Soroushnia, 

Daneshtalab, Plosila, Pahikkala, & Liljeberg, 2014).  In pattern recognition, matching 

sequences must be exact, but that is not compulsory in pattern matching. This 

proposed work uses both of them: pattern matching for analyzing and identifying the 

WD, WND, NWND  and NWD images; and pattern recognition for grouping of the 

WD, WND, NWND  and NWD images in their group by using a phylogenetic tree. 

This thesis examines sequence analysis to derive inspiration and also inspect sequence 

alignment (i.e. local, global & multiple alignments) and sequence visualization (i.e. 

pattern recognition and phylogenetic tree) to develop a novel bioinformatics-inspired 

image analysis for watermarked images after MPS. 

 

1.2.3 Image Analysis 

The main goal of this thesis is to apply bioinformatics concepts (sequence alignment 

and sequence visualization) in the domain of image analysis. One compelling question 

can be requested: Why should we use the bioinformatics concepts sequence alignment 
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and sequence visualization as an inspiration for image analysis, when hundreds and 

hundreds of methods and algorithms are already present in the literature to solve the 

issue?  No Free Lunch Theorem gives the answer (Wolpert & MacReady, 1996). This 

theorem explains that an algorithm cannot be found that, on average, will outperform 

compared to any other algorithm. Another instance is image segmentation algorithms 

that contemplate cell size and shape to perform segmentation on closely packed cells 

in tissues (Lin, et al., 2003; Dufour, et al., 2005). Cells are well separated, consistent 

intensity can be isolated by watershed algorithms, but this will not work for tightly 

packed cells in tissue (MacAulay & Palcic, 1988). Therefore, some algorithms work 

best for certain conditions but are not suitable for all environments with different 

conditions. It indicates that some trade-offs exist among all persisting algorithms in 

different conditions. None of the algorithms satisfies all the required conditions 

concurrently. Finally, we can argue that there is always a requirement for novel 

algorithms that can examine the data in a new style. In this thesis, we will attempt to 

generate novel image analysis methods (pattern matching and pattern recognition 

methods) using inspiration from bioinformatics sequence alignment and sequence 

visualization. The following topics cover image analysis and watermarked images as 

well as multiple print and scan. 

Image Analysis 

Digital image analysis (Michler, 2008) is a conversion process where the input image 

is altered to get an output, i.e., it gives some information presenting an explanation or 

judgement where digital image processing can be considered as revision of an image 

into another  image, i.e., the  input image is processed to get a transformed (Michler, 

2008) image or image attributes as output.    

    Image analysis deals with mining of significant data from images, predominantly 

from digital images by applying digital image processing methods. The ultimate goal 

of digital image processing that enhances the quality of the work to identify patterns 

and objects, is to extract helpful data from images, improve and reconstruct the 

images. For achieving this worthwhile aim, tools and methods have been developed 

for efficient processing of images. Algorithms are a key part of the toolset for the 

development process. In spite of that, images are very complicated with probably large 

databases, resulting in a very time-consuming job for image processing. Many other 

challenging problems also need to be explored. There are many applications of image 
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analysis in industry and all fields of science: in astronomy for determining planet size 

(Kremer, Stensbo-Smidt, Gieseke, Pedersen, & Igel, 2017) in defence, remote sensing 

(Wilschut, et al., 2013), medicine (Toennies, 2017) etc. The scope of this thesis will 

cover only three aspects of image analysis: evaluation of degraded images after MPS, 

identification of images from a group of images, grouping images having a particular 

set of properties. In other words, the proposed BIIA for image analysis divides further 

into two parts: bioinformatics-inspired image identification approach (BIIIA) and 

bioinformatics-inspired image grouping approach (BIIGA), where sequence 

alignment used for DNA represented NW and W images. 

Watermarked Images  

Digital watermarking is described as the method of modifying a digital image to 

embed secure information digitally (Cox I. , Miller, Bloom, & Honsinger, 2002). It is 

based on steganography (Marvel, Boncelet, & Retter, 1999) or data hiding, the word 

steganography deriving from the Greek word “covered writing”. A plethora of 

algorithms for the watermark (the generic term used for any image, text, audio, video 

and any other information having user secret or identification data) embedding and 

extraction have been developed and applied. Current digital watermarking schemes to 

preserve the authenticity and integrity of digital data (photos, videos, documents) have 

focused on problems of preserving watermarks in the context of degradation, 

compression and decompression techniques. In this thesis, watermarked images refer 

to the ones that have a digital watermark in the form of a shape, text or other image; 

non-watermarked images (NW) contain no watermarks. A proposed evaluation, 

identification and grouping approach was tested on both original versions of 

watermarked / non-watermarked images, and a degraded version with a multiple print- 

and-scan  processes. 

Multiple Print and Scan  

Image degradation means that visual information on the source image is diminished 

(Ye & Doermann, 2013). The research work in this thesis investigates image 

degradation from a digital viewpoint into consideration. Multiple print-scan operations 

are iteratively committed to a hardcopy or a softcopy from the same source, i.e., taking 

a hardcopy of the original document or photo, the document is scanned and converted 

to a softcopy; then, the softcopy is printed, the printout is treated as the printed 

hardcopy. The operation is iteratively in use of the same photocopy machine for many 

rounds. There are a variety of reasons for image degradation in real image print and 
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scan. As a single round of print and scan, the degradation is generated as a result of 

physical characteristics of the print and scan, such as scanner defocusing and image 

binarization (e.g. fixed and adaptive threshold), poor flaking and poor toner adhesion 

of ink to papers, low print contrast, etc. (Baird & Chaudhuri, 2007). Moreover, other 

factors like lossy image compression, not enough sampling, etc. also can contribute to 

the artifacts of image degradation. If the same print-and-scan process is repeated, then 

all degrading factors add more and more degradation to the images under test. As the 

number of print-and-scan rounds increases, the more degraded the image is. Therefore, 

it is critically significant to deeply investigate this problem for the sake of visual 

alleviation and understanding. To the best of our knowledge, this is the first time such 

an evaluation, identification and grouping algorithm for degradations of non-

watermarked / watermarked image from MPS has been taken into account. 

    Elementary research work on multiple print-and-scan (MPS) and degraded images 

focused on developing a robust watermarking approach against degradation. The less 

addressed effort is a bioinformatics-inspired approach to identify watermarked / nn-

watermarked images or degraded copies by using MPS. The aim of the thesis is to 

investigate DNA biosequences for biological image representation and Smith-

Waterman algorithm (SWA) (Smith & Waterman, 1981) and Needleman-Wunsch  

algorithm (NWA) (Needleman & Wunsch, 1970). These algorithms were used for 

sequence alignment to extract common substrings for detecting patterns or conserved 

regions, and develop an automatic signature extraction method for identifying 

degraded and watermarked / non-watermarked images by using MPS or original 

variants of watermarked / non-watermarked images. Experimental results reveal the 

feasibility of a proposed method of identification of original or degraded variants of 

watermarked / non-watermarked images by using common substrings acquired from 

DNA image representation, alignment by using SWA and NWA. In this thesis, the 

contribution is in the domain of bioinformatics and image analysis, i.e., a novel 

evaluation, identification (BIIIA) and grouping method (BIIGA) developed based on 

bioinformatics sequence alignment, biological image representation and pattern 

matching that examines and identifies degraded after MPS and original copies of 

watermarked / non-watermarked images. This approach may overturn our 

understanding of identification of degraded / non-degraded and watermarked / non-

watermarked images and may lead to a new era of syntactic-based watermarked / non-
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watermarked and degraded / original images for developing the next generation of 

identification of those degraded and watermarked / non-watermarked images.  

1.3 Thesis Structure 

Acknowledging the fundamental inspiration and motivation behind this research work, 

the primary aim of this thesis is to go no less than one level further past BIIA methods 

(i.e., BIIIA & BIIGA) into biologically-represented images that support sequence 

alignment and visualisation to inform the proposed BIIA methods (i.e., BIIIA & 

BIIGA) with data and approaches found at this deeper level. In the last section of this 

thesis, we will assess whether going further has given any advantage. The subsequent 

subsections will explain the contribution and outline of this thesis. 

1.3.1 Contribution of Thesis 

The contribution of this thesis is to apply the existing knowledge in bioinformatics; 

the image analysis is explained as follows: 

 Comprehensive literature review of the existing BIIIA and many gaps in 

current image analysis methods are outlined in Chapter 2. 

 A detailed analysis of BIIIA method is explained in Chapter 3 based on the 

latest bioinformatics knowledge. 

 Evaluation of image degradation by using MPS along with eight metrics, i.e., 

CC, Bias, ERGAS, RMSE, RASE, Q, SSIM, and DSSIM is presented in 

Chapter 4.  

 Successfully detection of watermarked / non-watermarked images (original or 

degraded variants from MPS) by using biologically-based representations of 

the image, sequence alignment algorithm and pattern matching in biometrics 

is proposed in Chapter 5. 

 For image identification, SWA is better than NWA for biologically-

represented images, and suitability to DNA representation is presented in 

Chapter 5. 

 Successful use of the phylogenetic tree for grouping original / degraded copies 

of the watermarked / non-watermarked images is proposed in Chapter 6. 

1.3.2 Organisation of Thesis 

The structure of the thesis is as follows: 
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Chapter 2 includes an introduction to bioinformatics and image analysis. As we know, 

bioinformatics and image analysis are very broad areas; so, we only focus on 

bioinformatics concepts related to the scope of this thesis. A comprehensive literature 

review in image analysis is also presented with special attention on BIIA using image 

evaluation metrics, biological image representation with bioinformatics sequence 

alignment and visualization. This chapter concludes with outlining gaps in the 

literature, providing a base for proposed novel BIIA methods.  

Chapter 3, on the basis of the previous chapters, outlines the literature gaps. This 

chapter presents the research methodology used with open questions that are addressed 

in this thesis and the proposed three methods. First for evaluation of image degradation 

by using MPS for watermarked / non-watermarked images. Second, two novel BIIA 

methods, which we call as bioinformatics-inspired image identification approach 

(BIIIA) and bioinformatics-inspired image grouping approach (BIIGA). 

    Chapter 4 proposes a novel model for evaluating degraded and non-watermarked / 

watermarked images after MPS by using different metrics. This chapter uses various 

metrics with several degraded images by using MPS. It attempts to develop a model 

for analyzing watermarked / non-watermarked and degraded images after MPS. The 

rest of this thesis will deal with discriminating (i.e., for identification and grouping) 

non-watermarked and degraded / non-degraded images, watermarked and degraded / 

non-degraded images, watermarked / non-watermarked images based on conserved 

region identification by using DNA biosequences.  

    Chapter 5 proposes a bioinformatics-inspired image identification system (BIIIA) 

algorithm to identify non-watermarked / watermarked and degraded images by using 

MPS, which were evaluated for MPS degradations in the previous chapter. This 

chapter explains the idea of conserved region application in the discrimination of 

images. The experiments are conducted and analyzed on standard images in digital 

image processing. 

    Chapter 6 attempts to develop a bioinformatics-inspired image grouping approach  

(BIIGA) algorithm for grouping non-watermarked / watermarked and degraded 

images after MPS, which are identified after MPS degradations in the previous 

chapter. 

    Chapter 7 concludes that this thesis with a summary of future work. 
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1.4 Summary 

This chapter introduced the motivation and scope of bioinformatics in image analysis. 

Bioinformatics in depth and breadth was discussed for knowledge discovery and 

sequence alignment. Sequence analysis regarding sequence alignment and sequence 

visualization was discussed in detail. The contribution of this thesis is in the 

bioinformatics and image analysis by using sequence alignment of biologically-

represented images in DNA to group and identify watermarked / non-watermarked 

and non-degraded / degraded images from MPS. 
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Chapter 2  

 Literature Survey 

 

     This chapter inspects bioinformatics tools for image 

analysis. Section 2.1 includes - the image analysis and 

its major methodologies. In Section 2.2, bioinformatics-

based image analysis is reviewed, including biological 

image encoding, sequence alignment, phylogenetic 

trees. The chapter continues with a background of the 

image watermarking system and MPS degradation 

evaluations on details in Section 2.3 and Section 2.4, 

respectively. In Section 2.5, emergent research 

problems for bioinformatics image analysis are 

addressed. Finally, we summarise the literature survey 

chapter. 
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Bioinformatics-inspired image analysis (BIIA) has grown relatively recently in 

contrast to other nature-motivated computing methods, for example, particle swarm 

optimization, genetic algorithms, etc. The main focus of this chapter is on BIIA and 

the motivations it supplies for generating BIIIA and BIIGA methods in the domain of 

image analysis. Keeping in mind the end goal of framing the reason for building up a 

novel BIIIA and BIIGA calculation, it is important to give a foundation of BIIA. 

Therefore, this chapter explains standards, functionalities and main theories related to 

the development of BIIA in recent years. 

2.1 Image Analysis 

Digital images are used extensively in every field of science (like mining, cells, genes 

mapping, etc.) and social media (like Facebook, LinkedIn, Instagram, etc.). This 

motivates us to develop new methods in image analysis to meet the current demand 

for better analysis. Image analysis can be used from sewer pipe deformation evaluation 

(Kun, Luxmoore, & Davies, 1998) to astronomical and archaeological image 

multispectral image analysis (Roberto & Hofer, 2009). It is a field of science that 

studies image details. 

2.1.1 Image Analysis 

Three different categories are assigned to different types of image analysis tasks:  low 

level, medium level and high level (Pour, 2015). For low-level image analysis 

methods, input and output are both digital images, for instance, processes like noise 

reduction and contrast enhancement, whereas an image acting as input and output is 

some kind of information extracted from the image, i.e., the output is not an image for 

the medium-level image analysis. That includes object detection like face detection 

and image segmentation. High-level image analysis is most difficult where the input 

is an image, but the output is “knowledge.” For example, a person’s image may act as 

an input and the output will determine whether the person is sad or happy. The focus 

of our thesis is to develop a novel high-level image analysis by using bioinformatics 

tools and techniques that applied to the input images so as to get the knowledge about 

the identification and grouping of W/NW and WD / NWD images. 

2.1.2 Major Methodologies in Image Analysis  

It’s hard to explain large number of methods used in the image analysis. However, an 

attempt is performed to discuss the major areas of image analysis that include shape 
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analysis, matching, segmentation and description (Mantas, 1987).  More details about 

these methods are described below. 

 Shape analysis. It is comprises of a group of methods like spatial techniques, 

transform techniques and global shape analysis, etc.  

 Matching:  It denotes the class of operations that include comparing of pixels 

with each other. A subclass of matching is to detect the alterations or motion 

(i.e. motion detection) in a scene by supplying images at different times. This 

method is known as time-varying imagery (Nagel, 1978; Nagel, 1983). Other 

category methods are applied to remote image sensing systems.  

 Segmentation: Pixel clustering and classification processes for different 

regions of an image is referred as segmentation (Peng, Zhang, & Zhang, 2013). 

It is an intermediate process in image analysis where from background, the 

object of interest is extracted to identify which part of the data array makes up 

an object in the real world. Depending on the specific needs, different tasks are 

supported by using segmentation like measurement, visualisation, registration, 

reconstruction and content-based search. For instance, higher accuracy is 

required in measurement than in visualisation, while for large datasets, 

efficiency is more important for searching than for surgery simulation and 

planning (Olabarriaga & Smeulders, 2001). Different approaches are used for 

segmentation, the most common being edge detection, thresholding, and 

advanced segmentation techniques (Gayathri & Raajan, 2016). 

 Description: Image analysis algorithms are used to represent or describe the 

test image into its main features. These features are represented by a parsable 

string of numbers or characters. This parsable string acts as input for suitable 

recognisers which can be either structural (syntactic) or statistical.  

    In this thesis, image analysis processes like matching, segmentation and shape 

analysis are not discussed further. This thesis aims to explore the last method (i.e. 

description) where the image is represented as a parsable string of numbers or 

characters without extracting the features from the test image. This indicates that the 

whole test image is encoded in a DNA string of characters inspired from 

bioinformatics, then sequence alignment is used to extract the common substring; in 

the end, this common substring is put in a syntactic recogniser. How bioinformatics 
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has been using image analysis tools and techniques are discussed in the next section 

so as to build a theoretical foundation for BIIA. 

2.2 Bioinformatics Image Analysis 

In bioengineering, the fastest and furiously developing field is bioinformatics image 

processing (Zhou Z. , 2016). It is a branch of the bioengineering field that mainly 

focuses on biological image processing and analysis as well as biological information 

analysis. The main focus of bioinformatics image analysis is to excavate digital 

information from biological image sequences or biological images. In literature, how 

the bioinformatics image analyst addresses bioinformatics concepts like sequence 

alignment and phylogenetic trees for images other than bio images, is explained in the 

next subsections. 

2.2.1 Existing Techniques of Bioinformatics Image Analysis  

In bioinformatics, there are different technologies and tools available for biological 

image and other image analysis. Descriptions of all the tools are beyond the scope of 

this thesis, only the categories of these tools covering research work on bioinformatics 

image analysis are introduced in this thesis. Eliceri et al. divided image analysis tools 

into two categories, i.e., generalist image analysis tools and niche image analysis tools 

on the basis of the problems addressed by the tools under development (Eliceiri, et al., 

2012). A detailed explanation about these methods is given below. 

 Generalist image analysis tools: These tools for image analysis focus on more 

general issues, for instance, contrast enhancement, cropping, image 

segmentation, etc. Normally, these tools are modular, leading to more 

flexibility for many applications, for example, Image Pro Plus from Media 

Cybernetics, Imaris by Bitplane Scientific Software, etc. Some open source 

tools are developed for specific problems, but after some time, they are 

extended with other functionalities for other purposes. These tools include Cell 

Profiler (Carpenter, et al., 2006), BioImageXD (Kankaanpaa, et al., 2012), Icy 

(Chaumont, et al., 2012), Fiji (Schindelin, et al., 2012), IMOD (Kremer, 

Mastronarde, & McIntosh, 1996) , etc. 

 Niche image-analysis tool: In academia, most tools for image analysis are 

developed for resolving very specific tasks. These tools are designed for 

particular types of cells (particularly neurons), imaging modalities, organisms, 
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etc. Among the many tools, some are still in use, and some are outdated 

(Eliceiri, et al., 2012), for instance, an image analysis tool for neurosciences.  

   These tools, designed to perform image analysis, are most relevant to requirements 

and needs. For instance, Icy is an excellent choice for cell segmentation, behavioural 

analysis, and cell tracking; Fiji provides a unique process in the analysis of electron 

microscopy data; meanwhile, BioimageXD is the tool of choice for 3D visualisation. 

    In the perspective of open source platforms, for image analysis tools, ImageJ 

(initially called as NIH) has a remarkable position. The notable place is due to its free 

availability, having extensive multipurpose image analysis capability and having been 

used for a long time (Abramoff, Magalhaes, & Ram, 2004; Collins, 2007; Schneider, 

Rasband, & Eliceiri, 2012). Another reason for its success is that researchers can 

extend ImageJ foundations while developing the algorithm specific to the research. 

This resilience helps to make ImageJ a pioneer in image analysis and popular among 

both users and developers. It is a Java-based tool for general purposes. For the next 

generation of multidimensional image data analysis, ImageJ2 is under development 

(Schindelin, Rueden, Hiner, & Eliceiri, 2015) (Rueden, et al., 2017).   

    All these tools in one way or other way use segmentation, shape analysis, matching 

or description methodology in their process of image analysis. In this thesis, niche 

tools for image analysis will be proposed that focus on the description methodology 

of image analysis. In other words, specific functionalities like classification and 

identification are developed using bioinformatics tools and encoding images into 

biological DNA. That raises many questions. Is DNA as a substrate used for image 

analysis or other purposes? If yes, then how it is used?  These questions motivate us 

to study further about DNA for representing different media, including biological 

image representation using DNA, which is discussed in the next subsection. 

2.2.2 Biologically-Based Image Representation  

Images could be represented cognitively, as “pixel-region-object-scene” hierarchies 

and having relationships among them (Xie, Gao, Wu, & Zhang, 2011). Semantically, 

images could be represented by using and-or graphs in four levels, known as “scene-

object-parts-primitives” (Xie, Gao, Wu, & Zhang, 2011).  The above two ways of 

image representation are used to analyse images for a particular set of applications. 

Another interesting way to represent an image is to encode it in biological DNA. DNA 
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has a long history of being used it as a substrate, in different areas like Hamiltonian 

paths (Adleman, 1994), Boolean circuits (Takahashi, Yaegashi, Kameda, & Hagiya, 

2005), neural networks (Qian, Winfree, & Bruck, 2011), chemical reaction networks 

(Chen, et al., 2013), steganography (Clelland, Risca, & Bancroft, 1999), cryptography 

(Leier, Richter, Banzhaf, & Rauhe, 2000) and watermarking (Gibson, et al., 2010). In 

the literature, the biological image representation is used for storage and retrieving 

images from the dataset. This is performed by using the four basic blocks of DNA 

(Deoxyribonucleic acid) sequences – adenine (A), thymine (T), guanine (G), and 

cytosine (C) (Bornholt, et al., 2016). The main motivation behind images represented 

in DNA is to revolutionise computer storage. The basic idea of storage and retrieval 

of digital data (image or text) as DNA, is firstly to store images or data (i.e. 0 and1 

bits) as DNA, then encode the DNA sequences like street addresses and zip codes for 

easy retrieval and then use sequencing techniques to read and transform it to the 

original arrangements utilizing street addresses to arrange the data in original 

sequences (Bornholt, et al., 2016). 

    How to convert ones and zeros to four basic blocks of DNA i.e. A, C, T and G, is 

crucial. If the approach focuses on making it very dense, then the retrieval error rate 

is very much less (Bornholt, et al., 2016). A decent arrangement of work has been 

done to store the digital data (i.e. from images, text etc.) on the DNA, i.e. converting 

digital information to DNA (Davis, 1996; Cox J. P., 2001; Wong, Wong, & Foote, 

2003; Church, Gao, & Kosuri, 2012). An error correction code was used by Goldman 

et al. for developing a new approach (by four-fold redundancy) using DNA data 

storage, but redundancy raised the length of DNA and made the techniques expensive 

(Goldman, et al., 2013). Low-density Parity-Check codes (LDPC) were introduced in 

2014, by Aldrin Kay-Yuen Yim et al. to encode data in big blocks of DNA (Yim, et 

al., 2014). Other works, DNA synthesis (write) and sequencing (read and access) are 

focused on improvement in the cost of DNA synthesis and error of free storage as well 

as retrieval of digital data. These improvements include Reed-Solomon codes-based 

DNA storage (Grass, Heckel, Puddu, Paunescu, & Stark, 2015), DNA channels for 

data storage (Kiah, Puleo, & Milenkovic, 2015), rewritable random access DNA-based 

storage  (Yazdi, Yuan, Ma, Zhao, & Milenkovic, 2015), error correction scheme 

(Limbachiya, Dhameliya, Khakhar, & Gupta, 2015) and altering the Goldman process 

(Goldman, et al., 2013). All the above approaches focus on successful error-free 
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encoding and decoding of digital images, text, video, etc. for storage and retrieval of 

digital data.  

    The encoding scheme used in this research work for converting images to DNA, is 

inspired by Naidu and Narayanan’s approach (used for biological representation of 

computer viruses) (Naidu & Narayanan, 2016) by adding the required steps because, 

for pattern matching a hexadecimal code is a must in our case (i.e. Naidu and 

Narayanan’s approach is followed) that is achievable by adding a few steps. Secondly, 

our focus is on grouping and identification of degraded / non-degraded images, i.e., if 

some data is lost during the process of conversion of an image to DNA and DNA to 

hex, the proposed approach is still able to identify and group the degraded images. 

That automatically improves the robustness of the method for identification and 

grouping of degraded images. To be on the safe side, we checked first by converting 

the image into DNA by the proposed approach and retrieved successfully with a little 

bit of degradation. None of the above techniques addressed the issue of how the DNA 

representing digital images can be used for identification and grouping of images. 

This thesis addresses this issue by including required steps for biology-based encoding 

of the image by using sequence alignment between the two DNAs of biologically-

encoded images, which is explained in detail in the next subsection. 

2.2.3 Biological Sequence Alignment  

Sequences used in this thesis are defined as a string of residues of Deoxyribonucleic 

acid (DNA). It is explained below (Kaur & Chand, 2016): 

Deoxyribonucleic acid (DNA): DNA sequences are made up of nucleotides 

having genetic information. Residues: Adenine (A), Cytosine (C), Guanine (G) 

and Thymine (T) 

    Biological sequence alignment is the cornerstone of bioinformatics for establishing 

functional, evolutionary or structural relationships between DNA sequences. 

Sequence alignment will achieve this by identifying similar regions between two 

sequences of DNA by using different algorithms (Kaur & Chand, 2016). The 

motivation behind using sequence alignment is described below: 

a. Evolution determination. To discover, the part susceptible to mutation or the 

part that preserves structures of the given two sequences. This allows us to 
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define the evolution process by predicting future gene mutations and the 

probable origin of diseases.  

b. Structural similarity recovering. In proteins, sometimes some sequence parts 

are missing that lead to a particular disease. If we find that and develop a 

similar sequence, then diseases related to the missing part will be cured. 

Generally, this technique is used in medicine design. 

c. Pattern detection. For grouping and identification of sequences into classes 

and families, biologists use pattern detection. That is, they extract patterns in 

the form of subsequences, which can be one or more for a particular class. 

Then, they compare subsequences (patterns) to other sequences to find the 

same subsequence. If a similar one is found, then that entity belongs to that 

class.      

d. Comparing a new sequence versus a dataset. If the biologists discover a new 

sequence for finding out that sequence function and other properties, it is 

compared with the existing datasets of sequences. If a match is found, then it 

expresses that they have the same structure, and the new sequence has the same 

function and properties, i.e., similar to the sequence features existing in the 

dataset. 

    The pattern detection inspires the proposed thesis by comparing a new sequence 

versus a database from above motivation of sequence alignment. From now onwards, 

in this thesis, we will discuss only (c) and (d) points. Pattern detection is performed in 

two ways: pattern matching (for image identification i.e. BIIIA) and pattern 

recognition (for grouping of images i.e. BIIGA), where patterns are extracted by using 

sequence alignment of two DNA or protein sequences of images called as signatures 

(common subsequences) these signatures are tested by using (d), i.e., comparing a new 

sequence versus a database. Here, new sequences are denoted as signatures and 

databases are different image datasets that are created for this research work. By using 

the pattern matching technique, these signatures are matched with different image 

datasets to identify whether the images belonging to this signature exist or not, i.e., 

BIIIA. For pattern recognition, a new sequence represents multiple aligned sequences. 

These multiple aligned sequences are used to group all images to the respective 

category, i.e., by using BIIGA. 
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    Sequence alignment algorithms in biology are divided into two parts by using the 

number of sequences in the alignment; pairwise sequence alignment (PSA) will use 

two sequences, multiple sequence alignments (MSA) will utilise three or more 

sequences (Chen & Wang, 2016). During sequence alignment, if both sequences 

positions have the same letter, then this position has been conserved during evolution. 

If they have a different letter, then the sequence position is not conserved, the gaps 

(represented as ‘–‘) are inserted wisely in the sequences to maximise the match. 

Initially, a gap penalty score is given, which equals to the regular gaps entered, but 

keeps the sequence together, an affine gap penalty is used as an alternative for inserting 

a large number of gaps. For continuous gaps, Gap Open (headmost gap) is allocated 

with a regular gap penalty score, and Gap Extended (posterior gaps) is allotted with a 

lower penalty score (Kaur & Chand, 2016). More details about PSA and MSA are 

given below. 

 

 Pairwise sequence alignment (PSA): Pairwise sequence alignment can be 

implemented in two ways: global (i.e., from starting to the end of sequence 

alignment) and local (i.e., detecting local regions of high similarity) alignment 

(Chowdhury & Garai, 2014). Historically, the most prominent global algorithm for 

sequence alignment is the Needleman-Wunch algorithm (NWA) (Needleman & 

Wunsch, 1970); a typical pairwise local alignment is shown using Smith-Waterman 

algorithm (SWA) (Smith & Waterman, 1981) which has been enormously used 

since the introduction in the 1970s/1980s. SWA, originally developed for finding 

common molecular subsequences, has been applied for object classification (Roth 

& Ommer, 2006), spatial activity recognition (Riedel, Venkatesh, & Liu, 2006), 

partial shape matching (Chen, Feris, & Turk, 2008), malware identification (Naidu 

& Narayanan, 2016) and more. Similarly, NWA has been used for malware 

sequence alignment (Dinh, Brill, Li, & He, 2016) and other processes. Processing 

speed issues of these algorithms was solved by Gotoh, who proposed (Gotoh, 1982) 

an enhanced version of SWA and NWA, Dynamic Programming (DP) in SWA and 

NWA which is exhaustive in nature (Chowdhury & Garai, 2014). Mathematically, 

it was proven that DP gives optimal alignment for pairwise sequence alignment 

(Shyu, Sheneman, & Foster, 2004). A substitution matrix is used to represent the 

match / mismatch score value to determine the extent to which two sequences are 

aligned. The most parsimonious method is the identity (ID) scoring matrix because 
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no assumptions is made for finding a connection between one character and another 

in the string. Because of that benefit, the ID matrix will be used for our experiments 

rather than popular biological scoring matrices, such as BLOSUM (Block 

Substitution Matrix) and PAM (Point Accepted Mutation) (Cohen, 2004).  

        Homola et al. had used sequence alignment for retrieving images from datasets 

that hold a query image (Homola, Dohnal, & Zezula, 2011). Hung-Sik et al. (Kim, 

Chang, Lee, & Lee, 2010; Kim, Chang, Liu, Lee, & Lee, 2009) had proposed an 

initial work that utilises sequence alignment for image matching in 2009 and 2010, 

respectively. They extracted, image spatial relations, colour and textural features; 

then, these features are converted to DNA or protein sequences. Image matching 

was done by performing sequence alignment between two image sequences by 

using Basic Local Alignment Search Tool (BLAST) (Lobo, 2008; Altschul, 

Warren, Miller, Myers, & Lipman, 1990) based on SWA.  

         The approach for finding similarity in images has two limitations. The first one 

is that we had to map image features to the 4 DNA or 23 protein alphabets. They 

developed a “Composite Conversion Table,” which is not easy to generate a 

“universal mapping for various features.” The second limitation is with their 

substitution matrix, which decides the similarity (when two alphabets are similar) 

and penalty (when one is replaced by the other). A simple uniform matrix was used, 

where 1 is in the diagonal and -1 is for all other elements. That indicates the letters 

are only similar to themselves. Gaussian distributed matrix attempts to convey 

similarities between mapped features, for instance, yellow is more similar to gold 

rather than blue. These two limitations were improved by Pawel et al. (Drozda, 

Gorecki, Sopyla, & Artiemjew, 2013) by using Bag of Visual Words (BoVW) in 

2013. They proposed that BoVW was more appropriate to the sequence alignment 

framework and NWA for sequence alignment. Firstly, their approach is not limited 

to particular alphabet lengths. Secondly, it is easier to develop a substitution matrix 

by calculating the distance between each pair of vocabulary centroids (Drozda, 

Gorecki, Sopyla, & Artiemjew, 2013; Drozda, Sopyla, & Gorecki, 2014). 

        NWA and SWA, with a reduced gap penalty, were used for 2D shape recognition 

by Bicego and Lovato (Bicego & Lovato, 2012) in 2012. They represented a shape 

with eight directional chain codes and then mapped each chain code into eight 

amino acids in a one-to-one manner: D, C, Q, E, G, A, R and N using Matlab to 

ensure no information loss. Then, NWA was used for alignment to get the 



27 

 

alignment score and the nearest neighbour classifier for classification. They could 

enhance the results in many ways, i.e., by increasing the number of aminos used 

for mapping, by specifying shape-scored matrices and so on. Further, improvement 

in this work was made by Lovato and Bicego using BLAST for sequence alignment 

in 2012, with three different sets of experiments (Lovato & Bicego, 2012). The first 

experiment was with the BLAST-default setting, for sequence alignment by 

removing filters, which is used for eliminating areas of low complexity (like same 

symbol repetitions). Of course, they are informative in biology as well as in shapes 

which should not be eliminated. The second experiment was with a BLAST-

reduced gap penalty, i.e., they changed the default gap opening penalty from 11 to 

6 and the gap extending penalty from 1 to 2. They changed this parameter because 

biological assumptions that do not hold for 2D shape classifications must be 

relaxed. In biology, a big gap penalty is usually used but that does not hold for 2D 

shapes. These changes are supported by the improved results for classifications of 

chicken and vehicle datasets, i.e., from 78.92% to 82.06% and 82.02% to 84.37%, 

respectively. Finally, the last experiment was done on a substitution matrix. They 

chose a substitution matrix that penalises highly if there is a change in the sequence. 

BLOSUM90 matrix was used, instead of default BLOSUM62 (block substitution 

matrix 62) (Henikoff & Henikoff, 1992) (the greater the number at the end of word 

BLOSUM, the more conservative the substitution matrix is) specifically by 

compelling algorithms for best alignment. In the case of 2D shapes, an exact 

matching can be favoured, whereas, in biology, somehow equivalent amino acids 

are likely to be exchanged. Results for classification of chicken and vehicle datasets 

improved from 78.92% to 83.41% and 82.02% to 85.42% respectively. In 2014, a 

novel substitution matrix, Shape-BLOSUM (S-BLOSUM), was introduced for 2D 

shapes classification (Lovato, Milanese, Centomo, Giorgetti, & Bicego, 2014) 

where S-BLOSUM was designed to have prior knowledge about conserved regions 

of 2D shapes by learning the match / mismatch rate of conserved regions of shapes 

affiliated to the same class. This matrix has been incorporated into the selected 

representation of the 2D shape. Further experiments were done in 2016. For deeper 

analysis of their approach, previous BLAST and BLOSUM configurations used by 

Lovato and Bicego in 2012 were combined with three different types of coding (i.e. 

‘single’ using amino acid, ‘triplet frequency’ using DNA and ‘triplet distance’ 

using DNA) (Bicego & Lovato, 2016). The results were promising and better than 
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previously. Further analysis was fullfilled by using MSA, but unsatisfactory results 

were obtained in the retrieval case. 

        Another promising and exciting work for reversing the interaction between 

bioinformatics tools and pattern recognition is 3D shape matching by using 

bioinformatics (Bicego, Danese, Melzi, & Castellani, 2015). SWA and NWA with 

two encoding schemes, i.e., using DNA and amino acids, was used for 3D shape 

matching (Bicego, Danese, Melzi, & Castellani, 2015). In the approach, the Fiedler 

vector was used for extracting authentic mesh vertices, local geometric features 

were collected by using a shape index at each vertex. Then, these local geometric 

features were mapped in DNA or amino acid sequences. After that, NWA and SWA 

were applied to get the alignment and similarity measures which were used in the 

nearest neighbour classification scenario. The overall results were very promising.   

        Naidu and Narayanan developed an approach for identification of polymorphic 

malware variants (Naidu & Narayanan, 2016; Naidu & Narayanan, 2014; Naidu & 

Narayanan, 2016) by using biological representation and bioinformatics sequence 

alignment for malware. Their approach did not address the issue “how can we 

convert an image to biological representation, i.e., DNA”, without that, subsequent 

analysis cannot be done. We added steps required for W / NW image identification, 

after that, we followed the same approach as Naidu and Narayanan.  

 Multiple sequence alignment has the same purpose as PSA; the only difference is 

that it is performed for three or more than three sequences with different algorithms 

(Bacon & Anderson, 1986). Different heuristic approaches have been developed 

for solving NP-complete optimisation problems of MSA. In the literature, three 

main categories for MSA are found: consistency-based methods, progressive 

methods, and iterative refinement methods (Rubio-Largo, Vega-Rodríguez, & 

Gonzalez-Alvarez, 2015). Details about these categories explained below. 

a. Consistency-based. Consistency-based group will develop local and global 

alignment datasets between every set of sequences that are used for precise 

MSA among all provided sequences. Some consistency-based tools are: 

PROBabilistic CONSistency-based multiple sequence alignment (ProbCons) 

(Do, Mahabhashyam, Brudno, & Batzoglou, 2005), Tree-based and Consistency 
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Objective Function For alignment Evaluation (T-Coffee) (Notredame, Higgins, 

& Heringa, 2000). 

b. Progressive methods. These methods will calculate distance matrices from each 

set of provided sequences; then, any hierarchical clustering algorithm (like 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA)) is used to 

build a guide tree which will provide us the alignment. A major drawback of 

this method is the incorrect gap in the starting that will pass on to final 

alignment. The most important progressive methods are Clustal omega (Sievers, 

et al., 2011), Kalign (Lassmann, Frings, & Sonnhammer, 2009), ClustalW 

(Thompson, Higgins, & Gibson, 1994) and WebPRANK (Loytynoja & 

Goldman, 2010). 

c. Iterative refinement method. The most representative and iterative refinement 

methods are: Multiple Alignment using Fast Fourier Transform (MAFT) (Katoh 

& Standley, 2013) and MUltiple Sequence Comparison by Log-

Expectation (MUSCLE) (Edgar, 2004). Iterative refinement tools start with a 

progressive alignment; then, they iterate to correct inaccurate gaps, possibly 

inserted during the progressive development phases. 

    In this thesis, we are exploring less and investigated ways of image analysis, which 

consist of applying sequence alignment, i.e., PSA (global and local) and MSA for 

pattern detection (i.e. pattern recognition and pattern matching).  

    For deeper analysis and further understanding of image analysis, establishing 

evolutionary relationships among images, we created phylogenetic trees for W / NW 

degraded / non-degraded images. This is described in the next section.  

2.2.4 Phylogenetic Tree for Sequence Visualisation 

Evolution happens with alteration in organism genes from one generation to another 

that creates the relationships between organisms by unbroken genetic lines. 

Phylogenetics seek to determine these genetic relationships. Darwin created the first 

tree of life (i.e. phylogenetic tree) found in his notebook (Darwin, 1859). That 

indicates the importance of establishing relationships among organisms in the past, 

present, and future existed from long ago.  
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    Phylogeny answers the question: “how did genetically connected sets of organisms 

evolved with time? In another word, it tells us relationships between collections of 

things (genes, organs, proteins, etc.) that advanced from common forefathers. 

Phylogenetic trees are used to represent the evolutionary connection among biological 

species and other entities. Before the origin of sequencing technologies for DNA, they 

were used for describing connections among species in taxonomy (used for 

description, classification, and naming of species) and systematics (used to classify 

species) (Yang & Rannala, 2012). Nowadays, phylogenies are used extensively in 

nearly every section of biology. Furthermore, phylogeny is used not only for 

explaining the relationships among species, but also for gene family inconsistency 

(Maser, et al., 2001), population histories (Edwards, 2009), language evolution (Gray, 

Drummond, & Greenhill, 2009), etc. As of the latter, molecular phylogenetics has 

turned into a key instrument for genome differentiations, for example, to decode 

ancient and modern genomes (Heng & Durbin, 2011), to restore ancestral genomes 

(Jian, 2011) and gene frequency data in 1967 (Cavalli-Sforza & Edwards, 1967), etc. 

This “tree thinking” is used for various phylogenetic structures and media types (text, 

audio, videos, language, etc.).  

    Multimedia phylogeny will develop evolutionary structures to find the history of 

alterations for a group of digital entities. In this motive, grouping is useful to cluster 

entities originated from a similar source while placing irrelevant entities in different 

groups. Multimedia phylogeny is used to develop phylogenetic trees of images, videos 

and audios. For instance, Image Phylogeny Trees (IPTs) (Dias, Rocha, & Goldenstein, 

2012; Dias, Rocha, & Goldenstein, 2010; Dias, Goldenstein, & Rocha, 2013), audio 

phylogeny (Nucci, Tagliasacchi, & Tubaro, 2013), video phylogeny (Dias, Rocha, & 

Goldenstein, 2011), image phylogeny forests (Dias, Goldenstein, & Rocha, 2013; 

Costa, Oikawa, Dias, Goldenstein, & Rocha, 2014), large scale scenarios (Dias, 

Goldenstein, & Rocha, 2013) and multiple parenting relationships (Oliveira, et al., 

2014). Image phylogeny explains how we can trace parent-child relationships among 

near duplicate images. Duplicated images are transformed versions of an image that 

conserve its semantics. According to Alexis Joly, a document G1 is a near duplicate of 

a document G (i.e. original document), if G1= ȶ(G), ȶ∈Ⱦ, where Ⱦ is a group of 

tolerated transformations (Joly, Buisson, & Frelicot, 2007). A group of different 

transformations can be applied to a document as well. In that case, Ⱦ is a combination 
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of ȶ1∈Ⱦ, ȶ2∈ Ⱦ, ȶ3∈ Ⱦ. The resulting document G3= ȶ3∘ ȶ2∘ ȶ1(G), ȶ1∈Ⱦ, ȶ2∈ Ⱦ, ȶ3∈ Ⱦ 

will be a near duplicate (Joly, Buisson, & Frelicot, 2007). For example, when 

uploading, an image passes through transformations (e.g., by applying resize, colour 

correction, etc.). These images are called as near duplicates. The formal definition 

given by Alexis Joly is not accompanied in video and image near duplicate literature 

(Dias, Goldenstein, & Rocha, 2013). In our case, we use the term “near duplicate 

images” for images obtained by MPS transformation. MPS is applied to 

watermarked(W) / non-watermarked (NW) images,  watermarked and non-degraded 

(WND) images, non-watermarked and non-degraded (NWND) images to get near 

duplicate images, called non-watermarked and degraded (NWD),  watermarked and 

degraded (WD) images. 

    In this thesis, the main goal is to remodel the image phylogeny tree, considering the 

images degraded from MPS in different scanning modes (i.e. grayscale, color, black 

and white) by using bioinformatics concepts, i.e., MSA and tools. The core idea behind 

this approach is that images can mutate as living beings (animals, plants, etc.) evolving 

in biology. All the image phylogeny approaches are either based on the idea of 

dimensionality reduction, manifold and spectral clustering, viewpoint localisation, 

heuristic-based solution-oriented Kruskal algorithms, optimum branching or 

automatic optimum branching, etc. None of the above approaches deals with 

bioinformatics like MSA to develop an image phylogenetic tree. That inspires us to 

extend the work of the image phylogenetic tree by using bioinformatics. 

Understanding of these tools and techniques of bioinformatics employed in this thesis 

is explained in the next section.  

There are three different thoughts to develop the phylogenetic tree. The first is the 

evolutionary approach for traditional phylogenetic tree development. After the advent 

of molecular data, the other two are evolved, i.e., phenetic and cladistic approaches. 

These thoughts are explained below: 

• Evolutionary systematics. This is a goal to find relationships among organisms 

according to how natural selection made them most of the time, only 

classifications with little attempt show relationships as trees (phylogenies), 

they depend on the experts. 
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• Phenetics. Introduced in 1957 (Michener & Sokal, 1957) by Michener and 

Sokal. It defines relationships among a group of organisms by the grouping 

and classifying organism. The similarity may be phenotypic, anatomical, or 

molecular. Phenogram expresses the phenetic relationships in the form of a 

tree-like network. In other words, if a phylogenetic tree is drawn by grouping 

and classifying species, this is referred to a phenetic approach. For example, a 

maximum likelihood approach, etc. 

• Cladistics. This is the study of the pathways of evolution (Hennig, 1966). In 

other words, cladists are interested in answering questions like: “how many 

branches there are among a group of organisms?”; “which branch connects to 

which another branch?”; and “what is the branching sequence?” An ancestor-

descendant relationships tree-like network is called a cladogram. Thus, 

a cladogram refers to the topology of a rooted phylogenetic tree, for example, 

UPMGA, etc. 

     The BIIGA was developed for near duplicate images of WND and NWND images 

from MPS till five rounds. We generate a phylogenetic tree by selecting a phenetics 

approach because this method focuses on the altogether resemblance of phenotypes in 

grouping and classifying taxa (tips of a phylogenetic tree representing individual 

organisms) with no philosophical bias. This meets our objective of grouping near 

duplicate images. 

    Molecular phylogenetic trees are mathematical statistical ways for understanding 

grouping and classifying images during the evolution process. Different ways to 

generate a phylogenetic tree, each has its strengths and weaknesses. Before proceeding 

further, we need to know the steps involved in the tree reconstruction method. Four 

steps are used to reconstruct a phylogenetic tree using DNA sequences as explained 

below: 

a. DNA-based multiple sequence alignment of images under test. It helps to get the 

input data to the bioinformatics tool for tree reconstruction. 

b. Transform the aligned data into the reconstructed tree using suitable approach. 

c. Accuracy of tree is accessed 

d. The molecular clock is used to allot dates and branch points within the tree. 
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Step (a) is explained in the previous Section 2.2.3 in detail; we are not discussing it 

again.  

Step (b) is needed to explain in detail that is explained in the following text. 

Transform the aligned data into the reconstructed tree using a suitable approach. 

Once we get the MSA of DNA data, an effort can be made to reconstruct the 

phylogenetic tree. The way, in which MSA is transformed to numerical data, will 

develop the differentiation among tree building approaches because this numerical 

data is explored mathematically for tree reconstruction. These approaches are further 

classified into two parts: The first part is directly based on character, sequence 

phylogenetic tree methods; the second one is indirectly based on character, sequence 

phylogenetic tree methods are explained below: 

a. Indirectly based on character or sequence phylogenetic tree methods are  explained 

below: 

 Distance-based methods : Between a pair of sequences, evolutionary distance 

is computed by using the difference in the number of nucleotides. That value 

is utilised to determine the lengths of the branches joining these sequences 

during tree reconstruction. A collection of all evolutionary distances is put in 

a matrix called a distance matrix (Brown T. , 2002).  

Table 2.1 Advantage and limitation of distance based methods 

Advantages Limitatons 

 Simple and flexible (many 

algorithms are available). 

 Computationaly fast and 

efficient. 

 

 Sensitive to gaps in sequence 

alignment. 

 Parameter estimation not done. 

 Only one tree produced. 

 Simplistic (multiple 

substitutions are not accounted 

for). 

 

    Examples using this approach are Neighbour Joining (NJ), Unweighted pair 

group method with arithmetic means (UPMGA) and Minimum Evolution 
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approach. Advantages and limitations of this approach are explained in Table 

2.1. 

b. Directly based on character, sequence phylogenetic tree methods are described by 

Table 2.1: 

(a) Maximum Parsimony. Discover a phylogenetic tree that clarifies the 

information, with a couple of transformative or evolutionary changes as 

could reasonably be expected or with the most modest number of 

substitutions. Advantages and limitations of this approach are explained in 

Table 2.2. 

 

(b) Maximum likelihood. The Maximum likelihood is a statistical 

methodology generated by R.A. Fisher in 1920 to determine unknown 

parameters in a model (Yang & Rannala, 2012). Parameter values are 

maximised by the maximum likelihood estimates (MLEs) and frequently 

calculated by using iterative optimisation algorithms. Desirable asymptotic 

(large sample) properties that MLE have, are that they are consistent 

(approximate the correct values), efficient (least variance among unbiased 

approximates) and unbiased. 

    Felsentein developed a maximum likelihood analysis algorithm the first 

time for DNA sequence data (Felsenstein, 1981). A maximum likelihood 

approach is a phenetic approach that is statistically well established. It tries 

to find a tree that magnifies the probability of the genetic data during tree 

reconstruction. It often has less variance than other approaches (i.e., the 

approximation method is affected minimally by sampling error). 

Furthermore, for very short sequences of tree reconstruction, the maximum 

likelihood is inclined to perform better than other methods such as distance 
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or parsimony methods. It averages all possible ancestral states, but 

parsimony uses only optimal states. A significant limitation of using this 

topology is that it is very CPU intensive leading to a very time-consuming 

process not suitable for bigger datasets. Advantages and limitations of this 

approach are explained in Table 2.3. 

    To date, none of the tree-building methods makes sure to reflect 

correctly the evolutionary relationship of a sequence set (Felsenstein, 

1988). Advantages and disadvantages of the different approaches from 

Table 2.1 to 2.3 and the text, indicate and inspire us to select, the phenetic 

based maximum likelihood approach for developing BIIGA in this thesis. 

Table 2.3 Advantages and limitations of maximum likelihood method 

Advantage  Limitations 

 Theoriticaly justified very well. 

 Assumptions are explicit resulting 

in that they can be improved and 

evaluated.  

 ML approaches are generally 

consistent. 

 In most cases, by applying 

sequence simulation experiments, 

it had shown that this approach 

outperforms than all others. 

 CPU intensive and need long 

calculation time to reconstruct 

a tree. 

 If the model is not specified 

properly or miss-specified 

then it has potentially poor 

statistical properties. 

 

 

This is because of its flexibility, consistency with a model of evolution and its 

statistical consistency for model comparison and parameter estimation. Now, after tree 

construction, we need to check tree accuracy; we perform in two ways as discussed 

below in the third step of the tree reconstruction. 

Step (C) Accuracy of tree is accessed 

Due to some limitations in the development of a phylogenetic tree automatically 

question arises about the correctness of the tree. The accuracy of the tree is tested by 

using statistical tests developed by (Hillis, 1997; Whelan, Lio, & Goldman, 2001). 

These tests are complex because the tree is geometric rather than numeric, the 
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correctness of one part may be lesser or greater than the correctness of another part of 

the tree.  

    The standard method used for testing the tree is bootstrap analysis, this method 

applies confidence limits (degree of confidence) at different branch points. This test is 

based on random sampling with replacement. In the case of phylogenetic tree, it will 

develop a random alignment for new phylogenetic tree creation. Usually, 1000 new 

alignments are created resulting in 1000 phylogenetic trees. If its value is greater than 

700/1000, then we can allocate a degree of confidence to that particular node. One 

problem is the precisions are represented. For example, if two groups give a bootstrap 

value of 90% and they are independent (assumed), the probability of both groups being 

accurate is (90/100)2= 81%. As the number of groups increases, the overall confidence 

values become meaningless very rapidly, this test is not suitable for testing large 

numbers of branches, but it is appropriate for one or two main branches or a small part 

of a phylogenetic tree (Whelan, Lio, & Goldman, 2001). We performed bootstrap 

analysis by using a MEGA7 tool for phylogenetic tree creation. Additionally, some 

statistical tests were also carried out for further verification of correct grouping of the 

images in their respective categories. These statistical measures are sensitivity (true 

positive rate), specificity (true negative rate), precision, and negative predictive value 

(Parikh, Mathai, Parikh, Sekhar, & Thomas, 2008). These are explained below in 

detail. 

 Sensitivity (True Positive Rate). This estimates the performance of a binary 

classification. Other names for this test are recall or probability of detection. 

It is stated as the ratio of the positives that are accurately discovered. For 

example, in the thesis after phylogenetic tree creation, the sensitivity will tell 

us the percentage of test images that are accurately grouped in their respective 

categories.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

(2.4.1) 

 Specificity (True Negative Rate): This is also used for measuring the 

performance of binary classifications. It estimates the ratio of negatives that 

are identified. In this thesis, specificity will tell us the percentages of images 

correctly rejected for grouping and classifying. 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

(2.4.2a) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 − 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 

(2.4.2b) 

 Precision (Positive Predictive Value). This calculates the proportions of the 

positive results in other words describes the performance of a test or measure. 

This thesis uses positive predictive value (precision) to determine the 

probability of the correct grouping when it is done correctly. If the precision is 

higher, i.e., as close to 100 as much possible, then this indicates that 

phylogenetic tree grouping is correct and good. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(2.4.3) 

 Negative Predictive Value (NPV). This calculates the proportion of negatives 

that are not grouped incorrectly. NPV is employed in this thesis to determine 

the proportion of images belonging to one group and are not grouped in the 

wrong clade. 

𝑁𝑃𝑉 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(2.4.4) 

Step (D) Molecular clock used to allot dates to branch points within the tree. 

This is the last step in the phylogenetic tree creation where dates are assigned to the 

branch points in a phylogenetic tree, a molecular clock must be used for this process. 

This step is out of the scope of this thesis, so it is not discussed further. 

    Another fascinating work of such unconventionality is the Video Genome Project, 

in which a video is mapped or encoded in DNA sequences and examined with 

phylogenetically related tools (Bronstein, Bronstein, & Kimmel, 2010) for searching, 

matching and comparing two videos in large datasets. In this thesis, we will continue 

and extend this unusual way of logic by generating a phylogenetic tree for 

watermarked / non-watermarked images with their near duplicate images generated 

due to MPS. Watermarking concepts are explained in the next section for 

understanding better about images under the analysis process in this research project 

to develop BIIIA and BIIGA. 
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2.3 Image Watermarking Systems 

Digital image watermarking comes under the high level of image processing (Pour, 

2015). A digital watermark is secure data (e.g. a pattern of bits, a sequence of 

characters) embedded to digital data (e.g. photos, videos, scanned documents) that can 

be later extracted to make an assertion regarding copyright of the data. Secure digital 

watermarks (typically invisible identification codes embedded in the image data) 

should be robust in three ways at least: they should be difficult to erase or forge; they 

should not affect the quality or accuracy of the image; they should not be affected by 

any compression techniques prior to transmission. Identification of watermarked 

images from the rest of the images is normally done by applying a watermark 

extraction algorithm. Watermarking approaches (Panah, Schyndel, Sellis, & Bertino, 

2016) will use a unique and different ways to embed and extract watermarks inside an 

image. Full knowledge of the watermarking system is a must to extract the 

watermarks; if the watermarked image is degraded, then it is very hard to identify the 

original watermark. This motivates us to study the identification of degraded and 

watermarked images and leads to a question: “Is there any universal approach that will 

discriminate the watermarked images from the non-watermarked images or 

irrespective methods for embedding and extracting the watermarks from the degraded 

images?” Finding suitable approaches in image analysis that can fulfill this purposes 

is currently a major research challenge that inspired us to develop BIIIA for 

watermarked / non-watermarked images. Further understanding needs exploration 

about the components and properties of the watermarking system. 

2.3.1 Background and Components of Digital watermarking 

Without referencing the system and security requirements, there are three main 

components of a watermarking approach: a watermark generator which generates the 

desired watermark, desired watermark selection, an embedder which embeds the 

watermark, detector, and extractor as shown in Figure 2.1. The design of all these 

components will be potentially influenced by the inputs and outputs, use of keys and 

relevant constraints derived from the application specific requirements. These 

components are explained in detail for better understanding. 

Media to be watermarked 
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Different media are watermarked for copyright protection or other security purposes. 

The media used for watermarking can be a document, a clip of audio, a video or an 

image. In this thesis, the core focus is on image analysis that leads to use images for 

watermarking and image analysis.  

Watermark Generator or Selection of Data used for Watermarking 

Watermark selection is a very critical task for watermarking. Figure 2.2 will show the 

taxonomy of data that can be used as a watermark. Media like text, audio, video, and 

images, etc. is used as a watermark from the beginning of the era of watermarking. 

The aim of media watermarking is to sustain the standard media operations as shown 

in Figure 2.4, like geometric transformation, compression, rotation, etc. 

 

Figure 2.1 Fundamental components of digital image watermarking (a) watermark 

generation (b) watermark embedding (c) watermark extraction 

On the other hand, watermark, such as biological sequence DNA, etc., have different 

common operations like clustering, sampling, summarisation and alternative data or 

dimensional reduction techniques (Panah, Schyndel, Sellis, & Bertino, 2016). Further 

details about media / non-media watermarks are presented below: 

 Media data as a watermark: There are four types of media data considered for 

watermarking as explained below: 

a. Text: alphabets and numbers in any combination  

b. Audio: small pieces of audio songs or sound 

c. Video: small pieces of video  

d. Image: any digital image  
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 Non-media data as a watermark: these non-media data typically come under a 

complex data type  (Jiawei Han, Kamber, & Pei, 2011) that can be categorised 

as follows: 

a. Sequence data. This includes an ordered list of items, further classified by 

the characteristics of the events in three groups as follows: 

Time series.  Numeric data long sequences documented per minute, per 

hour, or per day (at equal time intervals). For example, stock markets, 

medical, scientific or natural investigations. 

Symbolic sequences. Events or nominal data long sequences, not recorded 

at equal time intervals. Gaps (time intervals between observed events) for 

several sequences do not matter. Event sequences are for natural / social 

developments and science / engineering as well as web click streams / 

customer shopping sequences. 

Biological sequences. Very long and complicated, carrying necessary 

information DNA, protein sequences having hidden semantic meaning. 

Gaps between the sequences are crucial. 

 

Figure 2.2 Taxonomy of data used for watermark 

b. Graph structured data. Data values are presented by using vertices and 

relationships between them and dispense with edges in the graph, e.g., social 

networks, biological networks, bioinformatics and chemical informatics, etc. 

c. Spatial data. This kind of data recognises spatial information about objects for 

example maps.  
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d. Spatiotemporal data. A particular form of spatial data that can be used to 

denote space and time of moving object trajectories. 

e. Data Stream. This relates to the immense volume of data that flows into the 

system that can change dynamically, having multidimensional features. Stream 

data are present in power-grid flows, computer network traffic, etc. Applying 

stream data mining applications, we can detect abnormalities in the above data 

streams 

    In this thesis, we will explore basic potentialities of the idea to use bioinformatics 

tools for pattern matching in image analysis, i.e., grouping and identifying. It’s beyond 

the scope of this thesis to test all watermark data types; some of the media data, i.e., 

text, image, and shape are used for watermarking.  

Embedder 

For embedding the watermark, the first task is to choose the domain for watermarking 

and then the algorithm specific for that domain. Based on the domain for embedding 

the information, current watermarking schemes can be classified into spatial domains 

and transform domains (Cox, Miller, & Bloom, 2002). This categorisation originated 

from media representation that can be expressed in a transform domain by using its 

spectral frequency coefficients and in a spatial domain by using its pixel values.  In 

the same manner, watermarks are embedded by changing the transform domain 

coefficients like discrete wavelet transform (DWT) or discrete cosine transform (DCT) 

or in a spatial domain by altering the pixel values, for instance, Least Significant Bits 

(LSBs) of the pixel. Another way to embed the watermark is by using a combination 

of both spatial and transform domains to enhance the security of the media. 

    Problems addressing domain selection for identification of the watermark are very 

complex and challenging for embedding the watermark. Every domain has its 

advantages and disadvantages. 

    The spatial domain has the benefit of maintaining location information. Efficient 

translation variant of Fourier domain magnitudes and DWT have gained much interest 

as a multi-resolution representation to conquer the format conversion, mainly JPEG. 

Anu et al. proposed a watermarking approach by mixing multiple domains and by 

exploiting individual domain strength.  A circular template watermark is embedded in 

the magnitude of the Fourier transform to invert rotation and scale after the print-and 
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-scan process; another template watermark is embedded in the spatial domain to invert 

translations. The message watermark is inserted in the DWT domain (Pramila, 

Keskinarkaus, & Sepp, 2008).  But comprehensive analysis about this approach is 

missing and they did not compare their approach with any other methods which can 

robustly identify the degraded watermarked image from MPS. This research work will 

enhance the work by comprehensive analysis of degraded watermarked image 

identification by using bioinformatics tools and approaches in pattern matching. 

Initially, DWT in the frequency domain was used for testing the capability of ideas. 

Further analysis and checking of the proposed approach were done by using 

professional watermarking software uMark without having the domain knowledge 

used for watermarking.  

Detector 

This is the last component for watermarking that is used for extracting the embedded 

watermark. Any watermarking algorithm is not considered complete until they 

develop an extracting algorithm. Detector or watermark extracting algorithm 

development depends on the algorithm used for the watermarking.  

 

Figure 2.3 Generic digital watermark approach (a) embedding approach (b) recovery 

approach 

    The goal of this thesis is to identify the watermarked image, independent on the 

embedding approach without extracting it, with no idea about the extractor algorithm 

using bioinformatics tools and approaches. 

    The generic model for embedding and extraction of watermarks is shown in Figure 

2.3 for a better understanding of watermarking approaches. Where, Figure 2.3 (a) 

explains the watermark embedding into the stego image with a secret/public key using 
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any of the digital watermarking approaches to get the watermarked image. In the same 

way, Figure 2.3 (b) explains the watermark detection using a watermark and/or 

original image with a test image and the secret/public key to check whether the 

watermark exists or not in the test image.  

    For better and further understanding of watermarking, some fundamental properties 

related to this research are explained in the next subsection. 

2.3.2 Fundamental Properties of Watermarking 

All fundamental properties defined by Nyeem et al. (Nyeem, Boles, & Boyd, 2014) 

were used because these are the most recent and suitable definitions for our research 

work. Notation and symbols used during the literature survey are assembled in Table 

2.4. These properties are discussed because they play a major role in the selection of 

metrics used for evaluations of degraded images. 

Table 2.4. Notation and symbols used in watermarking 

 

Perceptual similarity (imperceptibility):  This suggests the perceptual content of the 

two images should be sufficiently similar to each other. It is mainly studied for 

invisible watermarking approaches. Quantitative definitions of perceptual similarity 

are given below. 

 

Definition 1. (Perceptual Similarity). Any two images 
1i and 

2i are said to be ),( ts  

perceptually similar jtiis ),( 211 for all similarity measures },....,,{ 21 nj ssss  and 

threshold },......,{ 21 nj tttt  . For example, PSNRs 1
 MSSIMs 2 that 
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represents; there are two similarity measure, given thresholds for these measures,  

)(601 dBt  and 995.2 t . Two images are said to be perceptually similar if 

both  60),( 211 iis  and 995.),( 211 iis  are satisfied.  

    For evaluation or quantification of perceptual similarity, there are various metrics 

like Correlation Coefficient (CC), Signal to Noise Ratio (SNR), Mean Square Error 

(MSE), Peak Signal to Noise Ratio (PSNR), etc. Currently, the lack of globally agreed 

and efficient measures for visual quality exists (Bovik, 2009; Tefas, Nikolaidis, & 

Pitas, 2009). Also, not all metrics gives similar estimations; we have to choose n-

suitable metrics for defining the similarity measure (d) which depends on the 

application specific requirements. 

Visibility. A visible watermarking approach is used to show some necessary 

information such as company logo, icon, or courtesy by deliberately inserting a 

watermark such that it appears noticeably on the watermarked image. However, a 

parameter   is used to control the level of visibility so that the watermark does not 

become so prominent that it starts blurring the main image. Visible watermarks are 

necessary for recognition and support of possessing a digital image.  

Definition 2 (Visibility). A watermarking approach is called visible or perceptible, if 

)(E  embeds a given watermark w  into an image i  such that the w  appears at least 

noticeably in i . That is, wiwiEe ),(  for all wi, . Here   is the weight factor that 

controls the degree of visibility. 

A watermarking approach is called invisible or imperceptible, if )(E  embeds w  into 

i  such that the i is perceptually similar to the original image i . That is iwiEe ),( for 

all wi,  ; 

Blindness. Cox et al.  informally differentiated blind (oblivious) / non-blind 

(informed) watermark detector on the basis of access to the original image or some 

information derived from the original image. Blind one does not need any access to 

the original image, but other one does (Cox I. , Miller, Bloom, Fridrich, & Kalker, 

2008). However, these definitions are not sufficient to realize the three different cases 

associated with the blindness property. So, Nyeem et al. redefined it again as shown 

below. 
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Definition 3 (Blindness). A watermarking approach is called blind (or oblivious) if 

both )(D  and )(X  are independent on the original image i  and watermark w . 

Formally, for all images 21 , ii   and watermarks 21 , ww , hold both 

),,(),,( 2211 wiiDwiiD dd                                                     (2.3.1) 

)~,,()~,,( 2\1 wiiXwiiX xx                                                      (2.3.2) 

A watermarking approach is called semi-blind if either one of )(D  or )(X  is 

dependent on the original image, i  and /or watermark, w . Thus, for semi-blind 

watermarking for all images 21 , ii   and watermarks 21 , ww , either 

),,(),,( 2211 wiiDwiiD d  and  )~,,()~,,( 2\1 wiiXwiiX xx                                   (2.3.3) 

or 

              ),,(),,( 2211 wiiDwiiD dd   and )~,,()~,,( 2\1 wiiXwiiX xx                                  (2.3.4)           

Otherwise, a watermarking approach is called non-blind (or non-oblivious or 

informed) if both )(D  and )(X  are dependent on the original image, i  and/or 

watermark, w . Formally, for all images 21 , ii   and watermarks 21 , ww , hold both 

),,(),,( 2211 wiiDwiiD dd                                                          (2.3.5) 

)~,,()~,,( 2\1 wiiXwiiX xx                                                          (2.3.6) 

Invertibility (or reversibility or losslessness). This is a computational property of 

watermarking where any watermarked images expected to restore its original version 

when no distortion permitted during embedding of a watermark in an original image. 

 Definition 4 (Invertibility). A watermarking approach is invertible (or reversible or 

lossless) if the inverse of E(·) is computationally feasible to compute and used in D(·) 

to estimate an exact original image, i  from the watermarked image i . Otherwise, the 

approach is a non-invertible watermarking approach. 

 If iwiEe ),(  , then for an invertible watermarking approach 1

eE  , the detection must 

exist and satisfy ).,()(
1

wiiEe 


Therefore, such a watermarking procedure can be either 

blind or semi-blind (according to definition 3). In image applications, an invertible 
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watermarking approach is mainly designed to reverse the effect of embedding on the 

original image; the embedding function is only used to define the invertibility of 

approach. 

Robustness. Several attempts have been made to define the robustness property of 

watermarking informally. For example, Piper and Safavi-Naini (Piper & Safavi-Naini, 

2009) considered a watermarking approach robust, if it could successfully detect the 

watermark in the processed images. The strength of this definition depends on how 

the processed image is defined. On the contrary, Cox et al. defined robustness as the 

ability to detect the watermark after signal processing techniques (Cox I. , Miller, 

Bloom, Fridrich, & Kalker, 2008).   More specifically, robustness can be defined as 

the degree of a watermarking approach to modify the host image either by common 

signal processing techniques or operations devised specifically to render the 

watermark undetectable (Bovik, 2009). In short, robustness for watermarking has to 

deal with: (i) the detection ability of the processed image (ii) defining a set of 

processing techniques. From a signal processing perspective, the two basic 

requirements for an effective watermarking approach, robustness, and transparency, 

conflict with each other (Podilchuk & Zeng, 1998). 

Definition 5 (Processed Image). A processed image is one that is not essentially 

perceptually similar to its original, but has a certain amount of distortion,   is 

incurred by a processing technique, Pp . That is, if any image Ij  is processed by 

p , then, for the processed image )( jp  , the following is true  jjp )( . Here, P is 

the set of applicable processing techniques for an application such that Pp , where 

P is the space for processing operations.  

    Robustness is defined by the detection condition. Suppose a processing technique, 

Pp  causes distortion of a watermarked image i . If the watermark is detected from 

the watermarked image, then it will return )~,( wi , or else it will return . 

Definition 6 (Robustness). A watermarking approach is defined for the following 

levels of robustness:  

Robust.  A watermarking approach is called robust if )~,(),),(( wiwiipDd  for all Pp

. 
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Fragile. A watermarking approach is called fragile if ),),(( wiipDd   for all Pp . 

Semi fragile. A watermarking approach is called semi-fragile if )~,(),),(( wiwiipDd  for 

all 
1Pp  and ),),(( wiipDd , for all )\( 1PPp , where PP 1 . 

Embedding Capacity: Embedding capacity for watermarking depends on few other 

properties like robustness, perceptual similarity, etc. rather than steganography 

detection problem. Therefore, the embedding capacity is defined on the basis of 

perceptual similarity of ),( ii , for which the approach works without failure.                                                                                                                                             

Definition 7 (Embedding Capacity). Watermarking embedding capacity for an image 

i  is the maximum size of any watermark ),,( jmiGw g  for all m  and j  to be embedded 

in i  such that iwiEe ),( , )~,(),),,(( wiwiwiED ed  and there exists jjjm 
~

|
~

,~  such that

)
~

,~()~,),,(( jmwiwiEX ex  . 

In image applications, embedding capacity is usually expressed as the ratio or bit-per-

pixel (bpp). According to Definition 7, if watermark embedding capacity is n bits, the 

size of the watermark is m  bits (i.e.  𝑤 = {1,0}m), then the necessary condition for an 

invisible watermarking approach is   𝑚 < 𝑛. This situation suggests that there should 

be a hidden assumption of recursive embedding by using an invisible approach. If the 

required capacity is not achievable in the first run of )(E , the remaining bits can be re-

embedded recursively. That assumption severely affects the performance of the 

watermarking approach in practice, and thus needs to be explicitly stated, if applicable. 

Security. Security and robustness are two overlapping concepts in watermarking 

terminology. Several attempts have been made to define the security and robustness 

of the watermarking approaches (Kalker, 2001; Pramila, Keskinarkaus, & Sepp, 2008; 

Voloshynovskiy, Pereira, Iquise, & Pun, 2001). In particular, it becomes a common 

practice to address security in terms of robustness. The irrespective applications can 

be said that the security of watermarking reflects different types of attacks (ability to 

resist any hostile attack) and the robustness is concerned with distortions (ability to 

withstand distortion) (Villn, Voloshynovskiy, Koval, & Pun, 2006). 

Definition 8 (Security). A watermarking approach is called attack secure if the 

approach retains security against the attack.  
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    Attacks on digital image watermarking security are shown in Figure 2.4, where 

active attacks are responsible for unauthorised removal and embedding.  

 

Figure 2.4 The attacks on digital image watermarking 

    Passive attacks are responsible for unauthorised detection. The proposed research 

work will focus on the distortions due to MPS on the watermarked image to produce 

near duplicate images datasets for experiments, highlighted in Figure 2.4.  

Definition 9 (Distortion Attack).  

Input. A watermarked image ),( 0wiEi e  and a processing technique, Qq (.)

. where Q is the set of applicable processing techniques such that PQ  . 

Output. A processed image, )(iq  

Attack successful condition: ),),(( 0wiiqDd  but there exists 0ww  such that 

),),(( wiiqDd  

 

 



49 

 

Motivation of BIIIA for identification of the degraded watermark  

Digital watermarking approaches have received much attention in various digital 

image applications like medical image watermarking. For the last 30 years general 

concepts, models, and definitions of digital watermarking have been present but 

lacking a more comprehensive model that can be used as a basis for discriminating 

watermarked / non-watermarked images. Extending the problem further, none of the 

performance analysis tools is available for discriminating degraded images due after 

MPS, in particular benchmarking tools for instance certimark, optimark (Solachidis, 

et al., 2001), checkmark (Pereira, Voloshynovskiy, Madueno, Marchand-Maillet, & 

Pun, 2001), and openwatermark (Michiels & Macq, 2006).     

    Voloshynovskiy et al. proposed a second generation benchmark (Voloshynovskiy, 

Pereira, Iquise, & Pun, 2001) which attacks watermarking in a more effective manner 

than the Fabien-Peticolas-Stirmark tool and concluded that algorithms are robust 

under Peticolas’ attack, performed poorly to the Voloshynovskiy’s second generation 

benchmark tool. This suggests that the claim about degraded watermarked image 

analysis should persist in the literature and need to be revised by using a standard and 

comprehensive model; it will provide in-depth analysis about the identification and 

grouping of  WD, NWD, NWND and WD images, which are accurate and universally 

acceptable.  

2.4 Multiple Print and Scan (MPS) 

Distortions in the images due to printing are discussed in (Bulan, Mao, & Sharma, 

2009; Wu, Kong, You, & Guo, 2009; Ryu, Lee, Im, Choi, & Lee, 2010), and 

distortions due to scanning are described in (Khanna & Delp, 2010) and for both 

scanning and printing in (Gaubatz & Simske, 2009; Chiang P. -J., et al., 2010; Chiang 

P.-J. , et al., 2009). However, all these research works are limited to a single round of 

printing and scanning distortions. To the best of our knowledge, none of the studies 

includes discussion of identification and grouping of images after MPS distortion and 

about the metrics for evaluation of degradation by MPS. To fill this literature gap and 

to better understand the mechanism of multiple print and scan and its effects, we 

attempt to identify and group the watermarked / non-watermarked and degraded 

images after MPS and evaluate image distortion from MPS with the suitable metric 
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selection. That motivates and provides a strong reason for BIIIA and BIIGA 

development for degraded images after MPS. 

    During image capture by using a scanner or printer, processes like transmission, 

filtering, noise addition, halftoning, etc. result in image distortion. For modelling 

image distortion, various models are proposed. The first systematic study of print and 

scan distortion was reported by (Lin & Chang, 1999) where a hypothetical model was 

proposed for the pixel value distortion after print and scan based on their experiments. 

Although more experiments are needed to verify its validity, they found that this model 

is appropriate in their experiments using different printers and scanners, as it shows 

several characteristics of rescanned images.  

    A document distortion model which simulates four types of noise has been used for 

validation of distortion models (Kanungo, Haralick, Baird, Stuezle, & Madigan, 

2000). Detailed perturbation models of print reflectance modulation resulting from 

scanner mechanical disturbances have been explained by Loce (Loce & Lama, 1990). 

In (Moghaddam, 2009) and (Vincent, Nicholas, & Philippe, 2011), a model based on 

an adaptation of the bleed through restoration method was presented.  

    Printer and scanner models and methods are introduced (Chiang P. -J., et al., 2010) 

for an explanation of the scanner architecture as well as embedding an intrinsic 

signature for the scanner. The same will be explained for laser and inkjet printers 

where intrinsic (banding and texture based), extrinsic signature and document level 

signature are embedded for identification of the particular printer or scanner. This 

thesis also addresses the dearth of research dealing with a lack of end-to-end systems 

that analyze and ensure the identification and grouping of WD/NWD images from 

MPS and WND/NWND images. 

2.4.1 Image Degradation Due to MPS 

The common process, responding for image distortion in print and scan, is the 

dithering or halftone approach to produce the output. The model for halftone printing 

by an inkjet printer is introduced (Lee & Allebach, 2005) and the mathematical 

background related to halftone is discussed (Adler, Kitchens, Martens, Tresser, & Wu, 

2003). The reasons for image distortion during the single round of print and scan are 

the following (Baird & Chaudhuri, 2007): 

 Physics of scanner and printer including defocusing, binarization, etc. 
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 Human error is encapsulating paper position on the scanner, etc. 

 Machine error refers to less toner ink and fluctuation in voltage which results 

in non-uniform illumination, etc. 

 Camera positioning, etc. 

The reasons for image distortion in multiple rounds of print and scan include the above 

in each round, plus progressive and incremental compression, decompression, resizing 

of images due to experimenting needs and transmission (Email, Fax).  Volshnovsky, 

et al. modelled image distortion due to the print and scan operation as a communication 

channel problem in which distortions are considered as noise; other problems happen 

during transmission of the message from one place to another location 

(Voloshynovskiy, Pereira, Iquise, & Pun, 2001). 

Degradation of watermarked Images from MPS 

A watermarked image will have extra information about the ownership and other data 

depending on the requirements of these applications. If an image without watermarks 

is degraded, then only image related data is lost; but if it is watermarked, then the 

watermarked data may be lost entirely or partially depending on how robust the 

watermarking approach will be against degradations generated from MPS. 

      A mathematical characterization of the print-and-scan process divides it into three 

subprocesses so as to create a straightforward and practical model that can be used to 

guide the design of data-hiding approaches that survives the single round of print and 

scan (Solanki, Madhow, Manjunath, & Chandrasekaran, 2005). Lee et al. proposed a 

robust watermarking method against the print-and-scan process for dithering halftone 

images (Lee & Chen, 2016). Still, the aspect for MPS is not acknowledged. 

  Digital watermarking approaches have been shown to be particularly sensitive to 

image compression techniques commonly used for transmitting images over the 

Internet with permanent distortion to the watermark (Zheng, Zhao, Tam, & Speranza, 

2003). There have been numerous attempts to provide solutions over the past 25 years 

(Yaghmaee & Jamzad, 2008; Wu & Liu, 1998).  Previous work in this area employed 

watermarks using different approaches like uniform log-polar mapping-based 

watermarking (Kang, Huang, & Zeng, 2010), a data-hiding approach for printed 

binary document with tiny and visible dots to recover synchronism and carry the 

information for semi-fragile authentication of printed documents. Both are robust to 
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general print and scan, but lacking degradations generated from MPS (Kim & Mayer, 

2007) w.r.t. the analysis of WD and NWD/NWND images is missing. 

     The main problem with these techniques is that an image containing a digital 

watermark needs to be robust against compressions during transmissions and 

decompressions. A common way to bypass weak watermarking approaches, however, 

is to print an image (the data file containing the image and watermark) and re-scan it 

so that a new degraded image is constructed that corrupts and degrades the watermark. 

This process can be repeated multiple times if necessary to ensure that no trace of the 

original watermark remains.  

    In vast literature associated with digital watermarking, different approaches address 

watermarking differently. For instance, a new theoretical framework for the problem 

of data hiding in text documents is proposed by R. Villan et al. which explains how 

this issue can be seen as an instance of the well-known Gel’fand-Pinsker problem. 

Costa’s setup and the family of quantization-based methods were used to show how 

they can be applied to text data-hiding applications. They considered a text character 

as a data structure consisting of multiple quantifiable features such as shape, position, 

orientation, size, colour, etc. They showed that the previous text data-hiding 

techniques, namely, character feature methods and open space approaches the specific 

instances of text data-hiding method based on general quantization. Additionally, they 

proposed a new method of colour quantization for semi-fragile data hiding in printed 

text documents. The experimental work confirmed that this method has highly 

perceptual invisibility and a high-information embedding rate, is fully automatable. 

They also emphasized that this approach is suitable for document identification, 

authentication, and tamper proofing applications (Villn, Voloshynovskiy, Koval, & 

Pun, 2006).  However, the literature did not address the issue to discriminate the 

WD/NWD and WND/NWND images by using bioinformatics tools. Before moving 

further, the evaluation of watermarked / non-watermarked and degraded images is 

performed for quantification of degradation. This quantification makes a strong 

theoretical background for converting visible degradation into digital. That gives us a 

theoretical and numerical proof that images are degraded. Image quality metrics are 

required for performing degradation evaluation. The next section explores image 

quality metrics (IQM) used in the thesis for quantifying image degradation from MPS.  
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2.4.2 Metrics for Measuring Image Degradation 

Image quality metrics can be classified on the basis of different criteria. We summarise 

the methods used in literature for classifying the metrics. 

Image Quality Metric Classification Employed  

Considerable amounts of the literature have been published on image quality (IQ) 

assessment. A lot of evaluation metrics are available in past and current publications, 

The IQ metrics selected here can be used to evaluate perceptual and pixel data. Two 

basic approaches currently being adopted in the image quality assessment are:  

objective and subjective metrics. 

    Objective metrics (Falk, Guo, & Chan, 2007; Gao, Lu, Tao, & Li, 2009; Wang Z. , 

2011) and subjective metrics (Chambah, Ouni, Herbin, & Zagrouba, 2009; Falk, Guo, 

& Chan, 2007; Wang Z. , 2011) are generally used as notions in image quality 

assessments, yet both concepts are difficult to define precisely. In the literature, 

objective metrics refer to calculate the image quality using quantified parameters; 

subjective metrics means how the opinion of a viewer perceives the image.  

    Objective metrics are further divided into two parts: statistics-based and Human 

Visual System (HVS)-based. Subjective metrics are divided into two parts: Mean 

Opinion Score (MOS) (Chetouani, Beghdadi, & Deriche, 2010) and visually best in 

the group. But both the subjective metrics are very time consuming due to the 

dependence on human involvement and the process that they are following. Because 

of that objective image quality metrics are chosen for proposed evaluation. There is a 

long list of objective IQ metrics for image degradation assessment, for instance, 

Entropy (Gallager, 2001; Schneider & Fernandes, 2003; Schwartzkopf, Evans, & 

Bovik, 2002), Variation Entropy for a Unit Boundary length (VEUB), Variation 

Entropy for a Unit Area (VEUA) (Hase, 2011), etc.  

    Different conditions and various viewpoints lead to advantages and disadvantages 

of each metric. Peak Signal to Noise Ratio (PSNR), like well-established metrics, is 

replaced by others like Structural Similarity (SSIM) Index metric which complements 

human subjectivity superiorly. Another encouraging occurrence of SSIM is Universal 

Image Quality Index (UIQI) that is also considered for evaluation. Image distortion 

evaluation after MPS is a challenging task as it involves finding suitable metrics for a 

particular type of image distortion under varying conditions of distortion.  
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    In this thesis, the reason why the selection of metrics is primarily rooted in the 

characteristics of mathematical statistics and human visual systems in image 

evaluation. Eight metrics are chosen to calculate the degradation: Bias (Ranchin & 

Wald, 2000), Correlation Coefficient (CC) (Ye & Doermann, 2013) , Erreur Relative 

Globale Adimensionnelle de Synthèse (ERGAS) (Wald, 2000), Root Mean Square 

Error (RMSE) (Wald, 2000), Root Average Spectral Error (RASE) (Wald, 2000), 

Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM) (Nyeem, 

Boles, & Boyd, 2015), and Distance Structural Similarity Index (DSSIM). More 

details about them are explained below. 

   The metrics Bias reveals the differences between the radiance of a degraded image 

and the original one. The ideal value of Bias is zero. The Bias is defined as below:  
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where x  is the mean of the original image while y  is that of a degraded image from 

print and scan.    

    CC discovers the similarity between the original and a degraded image from print 

and scan in which the values range from -1 to 1. CC is shown as equation (2.4.2).  
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where jix , the intensity value of the original is image and jiy ,  is the intensity of the 

degraded image, x  is the mean intensity of the original image while y is that of the 

degraded image and M×N represents the size of the original and degraded images 

respectively. 

   Root mean square error (RMSE) and peak signal-to-noise-ratio (PSNR) are the most 

prominent examples of mathematically-based metrics (i.e. they directly measure the 

difference of pixel intensity) (Cadik, Herzog, Mantiuk, Myszkowski, & Seidel, 2012). 

PSNR is unsuccessful to quantify structured and localized errors, and not able to 

discriminate between various kinds of errors; for example, the same PSNR errors have 

different impacts on human spectators. That motivates the use of other metrics like 

RMSE. One of the most used methods to quantify the quality of an image is the Mean 

Square Error (MSE) (Eskicioglu & Fisher, 1995). It calculates pixelwise similarity of 

two images though the structural information is not considered. MSE values are very 
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large, that is decreased by the square root of the MSE, called root mean square error 

(RMSE). RMSE is used in this thesis because it is very simple to implement and can 

be utilized to measure the change in pixel intensity with every round of print and scan. 

The metrics RMSE represents the average deviation from the original of a degraded 

image.  
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where jix , is the intensity value of the original image and jiy ,  is intensity value of the 

degraded image; M×N represents the size of the original and the degraded image 

respectively.  

    RMSE is further used to calculate the spectral quality of the degraded images in 

Root Average Spectral Error (RASE) as shown in equation (2.4.4). RASE explains the 

percentage of relative spectral error that specifies the average performance of the 

image distortion in the particular spectral bands. As RASE values are calculated in 

percentage that indicates we have to multiply results with 100 as shown in equation ( 

2.4.4). 
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where M is the mean radiance of the N spectral bands of the original image. RMSE2(Bk) 

represents square of the root mean square error for k-th band (Bk) between the degraded 

and original image. 

    Additionally, the RMSE value is used for calculating spectral quality during the 

image reconstruction process by using the metric Erreur Relative Globale 

Adimensionnelle de Synthese (ERGAS). The metric ERGAS is used for quantifying 

the synthesis error of the degraded image from print and scan. Spatial quality is 

calculated by estimating the sharpness of edge but spectral quality estimation 

performed by using ERGAS. These values are in percentage that implies results are 

multiplied with 100 as represented in equation (2.4.5). 

 




N

i i

i

M

BRMSE

Nl

h
ERGAS

1
2

2 )(1
100

                                          (2.4.5) 

where h is spatial resolution (pixel size) of the original image while l is the spatial 

resolution (pixel size) of the degraded image. Here h=l is considered because both 

images spatial resolution are same that results in
ℎ

𝑙
= 1. RMSE2(Bi) represents square 
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of the root mean square error for the i-th band (Bi) between the degraded and original 

image. iM is the mean of the i-th band of the original image, N is the number of spectral 

bands, and i means the index of each band.  

    This metric measures global radiometric distortion between the original and 

degraded images. The ERGAS value decreases as quality increases, i.e., if it is closer 

to zero, spectral quality of the degraded images is good. It gives an accurate prediction 

of overall spectral closeness between the degraded and original images.  

    Both RASE and ERGAS calculate the global spectral quality. Only one metric is 

sufficient to estimate this but for cross verification purpose, we therefore employed 

these two metrics.  

     Due to the serious weakness of not representing the distortions perceived by HVS, 

the standard quality metrics like Peak Signal to Noise Ratio (PSNR) and Mean 

Squared Error (MSE) are being replaced by new metrics (Wang & Bovik, 2009) like 

Structural Similarity (SSIM) Index (Wang, Simoncelli, & Bovik, 2004), that matches 

better with human subjectivity. SSIM similarity measure has proved to be versatile 

and robust in multiple environments to date. It considers image degradation as a 

change in structural information.  
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where x and y are (respectively) local sample means of x  and y , 
x  and y are 

the local sample standard deviations of x  and y , 
xy  is the sample correlation of  x  

and y  after removing their means. The items 
1C  and 

2C  are small positive constants 

that stabilize each term; that means, variances or correlations of near zero sample do 

not lead to numerical instability. 

   Another metric used for image degradation evaluation is derived from SSIM called 

structural dissimilarity (DSSIM). This metric is a distance metric extended from 

SSIM, the formula for DSSIM being shown in equation (2.4.7). 
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    Further evaluation of image degradation with a more promising case of SSIM is 

universal image quality index (Wang & Bovik, 2002) which is made up of three 
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parameters structural comparison luminance comparison and contrast comparison. 

Where 021 CC  and it is explained below in detail.  

(a) Structural comparison (Correlation Coefficient (CC)). By considering the loss of 

correlation between the original and degraded images using equation (2.4.8): 
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where  and  are intensity values of the original and degraded image,  and  are 

means of the intensity values of the original and degraded image.  and are 

(respectively) local sample means of  and ,  and are the local sample standard 

deviations of  and , and  is the sample correlation of   and  after removing 

their means. N represents the size of the original and degraded image. 

  ,                                   (2.4.9a)                          

and                                                         (2.4.9b) 

for all i=1,2,…,N 

(b) Luminance comparison (Mean Luminance (L)). By considering luminance 

distortion between the original and degraded image using equation (2.4.10): 
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where, 

,    and     ,  for all i=1, 2,… N     (2.4.11) 

(c)  Contrast comparison (D).  By considering contrast distortion between the original 

and degraded image using equation (2.4.12): 
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    Combining equations (2.4.8), (2.4.10), and (2.4.12) results in the formation of an 

universal image quality index (Q) for image comparison between two images as shown 

in equation (2.4.14): 
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     Literature surveys of image analysis, images analysis in bioinformatics, 

watermarking approaches and evaluation of MPS problems with their objectives, 

underlying theory and limitation are studied. Gaps in them motivates us to evaluate 

MPS degradation and add two new comprehensive approaches BIIIA and BIIGA, in 

image analysis and bioinformatics literature that will provide us a method of pattern 

matching using bioinformatics tools. That can be used for identification and grouping 

of WD / WND, NWND / NWD, and W / NW images. The tools and materials, required 

to develop BIIIA and BIIGA, are explained in the next section 

    The research issues related to the evaluation of MPS degradation and development 

of BIIIA and BIIGA are addressed in the next section. 

2.5 Research Problems 

Multiple open issues in bioinformatics-inspired image analysis remain. Discussion 

about these open issues is explained below (Bicego & Lovato, 2016). 

 Evaluation of MPS degradation is not addressed in the literature. For providing 

a base of degradations in terms of values and numbers, MPS degradation is 

evaluated by using image quality metrics. That provides a base for the research 

and development of BIIIA and BIIGA.  (Chapter 4) 

 Universal mapping of images to DNA is lacking: existing techniques of 

bioinformatics-based image encoding to DNA are varied from the approach to 

approach motivation. Therefore, it is vital to explore biological image 

encoding in bioinformatics inspired image analysis. That will help to develop 

a suitable scheme of image to DNA encoding for BIIIA (Chapter 5). 

 Image identification is a popular issue in the image analysis area, but most of 

the image analysis approaches are based on the feature extraction and then use 

some classifiers or neural networks or data mining approaches to identify and 

group the images. A less unexplored area is the unconventional way of 
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thinking that is: “Is it possible to use bioinformatics tools for image analysis?” 

(see Chapter 5) 

 Watermarked images are analysed either for the development of the robust 

approach against different attacks or for the extraction of watermark 

successfully for various verifying purposes like authentication, ownership 

identification, etc. A key question in the watermarking area is: “Is it possible 

to identify a watermarked image without developing a watermark 

identification or extraction algorithm using an approach based on 

bioinformatics?” Also, the open issue of whether discrimination of 

watermarked / non-watermarked images is possible by using bioinformatics 

tools needs to be explored. (see Chapter 5) 

 Analysis issues of degraded W / NW images from MPS degradation is another 

open problem. Less investigated is the identification of W / NW images 

degraded after MPS as W / NW images as per their originality by using 

bioinformatics tools. (Chapter 5) 

 Image grouping is a crucial task for the image analysis researcher. In the 

literature, main focus is on 2D and 3D shape recognition and classification by 

using bioinformatics tools (Bicego & Lovato, 2016; Bicego, Danese, Melzi, & 

Castellani, 2015; Bicego & Lovato, 2012). How bioinformatics tools can be 

used for grouping of degraded images from MPS degradation is still an open 

issue to work out (see Chapter 6). 

    The above problems show a significant number of complications to bioinformatics 

-inspired image analysis. There is a real requirement of inspecting the above research 

issues. However, from the surveyed literature above, there has been no attempt so far 

towards universally and biologically encoding of images, or identifying and grouping 

the degraded and watermarked / Non-watermarked images using bioinformatics tools. 

This ‘dearth’ revealed in Chapter 1 has been expressed through systematic reviews of 

bioinformatics tools for image analysis; in the next chapter, how the research 

methodology will be used to fulfill these literature gaps is addressed.   

2.6 Summary 

This chapter has reviewed bioinformatics tools and approaches in image analysis for 

identifying and grouping images including pattern matching as well as bioinformatics 
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tools used in this thesis. Image watermarking components and their fundamental 

properties were discussed with the degradation from MPS. This chapter also explored 

and outlined the eight well established metrics (i.e., bias, CC, ERGAS, RASE, RMSE, 

UIQI, SSIM and DSSIM) for evaluating degradation of non-watermarked / 

watermarked images after MPS. 

    Current techniques typically do not identify and group watermarked/non-

watermarked and degraded images from MPS and still have limitations of universally 

accepted biologically encoding of images. Developing BIIIA and BIIGA methods that 

incorporate practical bioinformatics tools like sequence alignment and phylogenetic 

tree tools is still an open issue. Integrating bioinformatics tools for image analysis 

remains untraditional, due to the practical difficulty of integrating these bioinformatics 

tools to develop BIIIA and BIIGA using pattern matching with accurate identification, 

grouping watermarked/non-watermarked and degraded images from MPS as well as 

the real difficulty of developing universally and biologically encoding for a variety of 

images.   
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Chapter 3   

 Research Methodology 

  

    The issue of previous work in image analysis and 

bioinformatucs is to be resolved through the proposed 

research questions. In Section 3.1, we introduce the 

general overview of BIIIA. The empirical research 

methodology used in this thesis is explored and the 

research problems and questions will be addressed in 

Section 3.2 and Section 3.3, respectively. In the next 

section, we describe the proposed methods for 

evaluation, identification, and grouping images. In 

Section 3.5, we explain the design of experimental 

methods; In Section 3.6, we deal with the analysis and 

result validation. Evaluations of the output and its 

review are described in section 3.7. In Section 3.8, we 

explain about the tools and materials for our research 

work. Lastly, we summarise this chapter. 
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3.1 Introduction 

Chapter 1 introduced the motivation for this research project in this thesis, which 

addressed the gap existing in bioinformatics for pattern matching and image analysis: 

the use of bioinformatics tools for identification and grouping watermarked/ non-

watermarked images and their degraded copies generated from MPS. Chapter 2 

focuses on literature review and details this gap with much work concentrating on 

image degradation generated from a single round of print and scan and algorithm 

development for robust watermarking. Bioinformatics techniques for pattern 

matching, like sequence alignment, biology-based encoding, etc., were used for 

malware and virus identification (Naidu & Narayanan, 2016), 2D shape identification 

(Bicego & Lovato, 2016), 3D shape matching (Bicego, Danese, Melzi, & Castellani, 

2015). Therefore, the following question is proposed: “Is it possible to use 

bioinformatics tools and techniques in the image analysis of watermarked/non-

watermarked images and their degraded copies from MPS?” and if yes, “How?” For 

answering this question methodically within the extent of this thesis, a research 

methodology is required to guarantee that the problem can be broken into reasonable 

subparts. Additionally, the development of sub-question to the fundamental research 

question is taken into account. Ultimately, such a breakdown will help in the trip of 

discovery; to the best of our knowledge, this is the first time that bioinformatics tools 

and techniques were used for pattern matching in identification and grouping 

watermarked/ non-watermarked images and the  relevant degraded copies generated 

from MPS.  In other words, this thesis does not state the full answer to the research 

questions but provides some fundamental directions for our readers. On the trip of 

discovery, there will be different ways to test the improvement of hypotheses or 

advanced hypotheses. This chapter address the research methodology selected to 

direct this research project. The chapter will come back to the research methodology 

and will interrogate whether it is feasible or possible. 

    Critically, any acceptable research methodology, given our research questions, 

should be covered by the research questions; we therefore need to figure out a 

hypothesis, extract test conditions, execute programming to test these conditions, run 

the programme, gather the outcomes, report the results, and after that either 

reformulate the hypothesis or extract new test conditions, and so on. Iteration of the 

methodology is done till, in a perfect world, the best programming arrangement is 
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found for the best test condition. At the point when time runs out, the value of what 

has been accomplished should be assessed both in its particular terms against the 

probability of continuation. At the end of this thesis, we will return to the merits of 

this research work.  

3.2 Empirical Research Methodology  

The empirical method is a collection of techniques for interrogating facts, achieving 

new understanding or rectifying past understanding. This method is a process to 

respond scientific questions by examining and performing experiments. The basic 

steps are as follows: 

 Ask questions 

 Background research 

 Hypothesis construction 

 Testing of hypothesis by experiments 

 Data analysis and conclusion 

 Result communication 

    A challenging part of this research is the absence of past work on the evaluation of 

image degradation from MPS, and identifying and grouping the watermarked / non-

watermarked and degraded images  as well as their original copies (i.e., WND and 

NWND images) using bioinformatics tools and techniques. Broadly speaking, two 

steps are followed to fulfill the gap of fully autonomous bioinformatics-inspired 

identifying and grouping watermarked/non-watermarked images and their degraded 

copies from MPS. The first step is to encode the research problem biologically which 

involves the biological image encoding and decoding processes. The second step is to 

apply bioinformatics tools to sequence alignment and get the common substring or 

signature to put them in a syntactic recogniser for pattern matching. The planning 

process comprises a group of steps that initiates with the identification of an issue or 

a requirement that guides to producing and developing a result that answers the issue 

or satisfies the requirement. Methodology steps used in this thesis are: 

 Define the problem 

 Do background research 

 Design methods  
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 Perform experiments 

 Analyse and Validate 

 Report outputs 

 Review and Evaluate 

 Re-define the questions 

    Figure 3.1 shows the methodology adopted in this thesis. The next section deals 

with the explanation of research problems and the questions.  

 

 

Figure 3.1 Empirical research methodology 

3.3 Research Problems and Open Questions 

This section explains the problems of using bioinformatics tools and techniques for 

image analysis using pattern matching, valuations of image degradation from MPS 

and open questions. 

3.3.1 Research Problems 

The problem of selecting suitable metrics of image quality for evaluating degradation 

from MPS on watermarked/non-watermarked images is very difficult because there 

are no universally agreed metrics of image quality that can perform evaluations of 

degraded images perfectly. For resolving this problem, the metrics selected for 

evaluation were based on human visual system and mathematical statistics. 
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    The core problem for this thesis is how to use the bioinformatics tools and 

techniques in pattern matching for image analysis, especially for watermarked /non-

watermarked and degraded images from MPS. This problem is further extended into 

two parts: the first was how to encode the problem of identifying and grouping 

watermarked /non-watermarked images biologically. In other words, how to encode 

an image in the biological DNA. The second problem was how to use the 

bioinformatics tools and techniques for further processing biologically-transformed 

images. Alternatively, how bioinformatics tools like JAligner, MAFT, MEGA, etc. 

(discussed in section 3.8) were applied to the DNA of images for resolving the problem 

for identifying and grouping watermarked / non-watermarked and degraded images  

from MPS.  

3.3.2 Research Questions 

Chapters 1 and Chapter 2 analysed and re-examined the techniques and approaches 

that were utilised or immensely relevant to the research work conducted in this study. 

Any effort performed in this thesis is either an advanced achievement of the work 

investigated in this chapter or an existing approach incorporated in a novel way to 

accomplish better outcomes. 

   The literature review in Chapter 2 demonstrated many research questions related to 

identify and group watermarked/non-watermarked images and their degraded copies 

from MPS (i.e., WD and NWD images) by using bioinformatics tools and techniques 

for pattern matching in image analysis. The contribution of this thesis is conveyed by 

proposing the three research questions as stated below: 

Question 1. Is it possible to investigate and measure degradation of non-watermarked 

/ watermarked images from MPS, if so, what are the suitable metrics? (Chapter 4) 

Question 2.  Is it possible to extract syntactic patterns to identify watermarked (W) / 

non-watermarked (NW) and the degraded images generated from MPS by using 

biological representation and bioinformatics alignment algorithms? (Chapter 5) 

Sub question 1: Is DNA biological image representation suitable for identifying 

watermarked /  non-watermarked images?  

Sub Question 2: Which algorithm for bioinformatics sequence alignment is the 

best for identifying watermarked / non-watermarked images? 
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Sub question 3: Is it possible to identify watermarked / non-watermarked and 

degraded images from the best biology-based encoding and the best algorithm for 

sequence alignment from sub-questions 2 (a) and 2(b) ? 

Question 3. Is it possible to extract syntactic patterns or signatures for grouping the 

watermarked (W) / non-watermarked (NW) and degraded images after or before MPS 

by using biological representation, bioinformatics alignment algorithms and 

phylogenetic tree? (Chapter 6) 

Sub question 1: Is it possible to group non-watermarked and degraded (NWD) 

images, non-watermarked and non-degraded (NWND) images by using 

phylogenetic tree analysis?  

Sub question 2: Is it possible to group watermarked and degraded (WD) images, 

watermarked and non-degraded (WND) images by using phylogenetic tree 

analysis? 

Sub question 3: Is it possible to group watermarked / non-watermarked images 

from a mix of NWD, NWND, WD, and WND images by using phylogenetic tree? 

    In this study, the first question specifically is a basic one, because a clear 

interpretation is essential to what it is exactly motivated by studying 

watermarked/non-watermarked and degraded images from MPS. The second question 

and its sub-questionss are the foundation questions, for identifying the bioinformatics 

tools and techniques that are best suitable for image analysis in the proposed research 

project. As observed from the literature reviews, there is notably insufficient research 

work on this foundation. Only after answered the second question and the sub-

questionss, the third question and its sub-questions could be well addressed.  All 

proposed questions will be answered in the remaining thesis.  

3.4 Proposed Method 

3.4.1 Limitations of Previous Methods 

The drawback of the previous approaches related to image degradation from print and 

scan was that each method is limited to study a single round of print-and-scan 

degradation. In addition, insufficient studies have been done for the evaluation of 

image degradation, identification and grouping methods for watermarked / non-

watermarked and degraded from MPS. Furthermore, none of them exploited the 
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bioinformatics tools and techniques, DNA biosequences, PSA (NWA and SWA 

algorithms), MSA, and phylogenetic trees for identifying conserved regions for 

discriminating (i.e. identification and grouping) watermarked / non-watermarked and 

non-degraded images and degraded copies generated from MPS. The findings of this 

thesis are to employ the bioinformatics-inspired approach that will serve as a base to 

overcome these drawbacks.    

 3.4.2 Hypothesis 

Hypothesis for evaluating the degradations from MPS 

Null hypothesis. The selected eight metrics of image quality were suitable for 

measuring the watermarked/ non-watermarked and degraded images from MPS.  

Alternative hypothesis. None of other measures was appropriate for measuring the 

watermarked/ non-watermarked and degraded images from MPS. 

Hypothesis for BIIIA 

The research hypothesis is that, for watermarked / non-watermarked and degraded 

images, it is possible to identify syntactic structures (patterns) using bioinformatics 

tools and techniques that help to determine whether a degraded / non-degraded image 

from MPS contains a type of watermarks or has not a watermark that helps to identify 

the images of their expected category. If this research hypothesis does not apply to 

image identification, it is highly unlikely that syntactic structures extracted by using 

bioinformatics tools will be used for image identification. 

Hypothesis for BIIGA 

The research hypothesis is that, for watermarked / non-watermarked and degraded 

images from MPS, it is possible to identify syntactic structures (patterns) using 

bioinformatics tools and techniques that help to determine whether a degraded / non-

degraded image from MPS contains a type of watermark, or has not a watermark or 

specific degradation properties that help to group images in the expected category. If 

this research hypothesis does not apply to image grouping, it is highly unlikely that 

syntactic structures extracted by using bioinformatics tools will be used for grouping 

images.                       
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3.4.3 Evaluating Image Degradation from MPS 

In this research project, the motivation for identifying and grouping watermarked/non-

watermarked and degraded images due to MPS comes from the evaluation of image 

qualities. The idea employed in this thesis is to exploit well-established eight metrics 

for image quality that are used statistically and mathematically for calculating the 

image degradation by different means. These eight image quality metrics are used for 

evaluating image degradation from MPS, for watermarked/non-watermarked images. 

3.4.4 The Idea for Developing BIIIA and BIIGA Algorithm 

In this thesis, the unconventional idea, using the bioinformatics tools and techniques 

for pattern matching in image analysis, comes from the Naidu and Narayanan 

approach of using bioinformatics tools in malware identification (Naidu & Narayanan, 

2016). Generally, pattern matching had been used for developing bioinformatics tools 

and techniques for bio-image analysis. Very few studies was reported in the literature, 

i.e., bioinformatics tools for pattern matching as the tools for malware identification 

(Naidu & Narayanan, 2016), 2D shape identification (Bicego & Lovato, 2012), 3D 

shape matching (Bicego, Danese, Melzi, & Castellani, 2015) and 2D shape 

classification (Bicego & Lovato, 2016).  Two methods are proposed in this thesis: one 

for image identification, i.e., BIIIA; the second for image grouping, i.e., BIIGA for 

watermarked/non-watermarked and degraded / non-degraded images after MPS. More 

details about these methods are given below:  

 BIIIA: For the purpose of image identification (i.e., BIIIA) of this thesis, the 

encoding of images is performed in DNA; then, PSA is employed by using 

NWA and SWA algorithms; after that, pattern matching is performed by using 

Clamscan algorithem in Section 3.8.8 for identifying NWND, WND, NWD or 

WD images.  

 BIIGA: To develop BIIGA algorithm, DNA-encoded images were aligned by 

using MSA algorithms and phylogenetic trees for grouping the NWND, WND, 

WD and NWD images into their expected categories. 

3.5 Design of Experimental Methods 

In this research work, the three methods are applied to watermarked/non-watermarked 

images, and their degraded copies for the purpose of evaluation, identification and 

grouping. These methods are explained later in this thesis. Each of the methods is the 
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solution to the research issues discussed in Section 2.5. Bioinformatics tools and 

techniques, like PSA and MSA, etc., were adopted in the methods BIIIA and BIIGA 

respectively to cope with the problem of identification and grouping of 

watermarked/non-watermarked and degraded images from MPS and their original 

copies.  

    For bioinformatics-inspired image analysis of watermarked/non-watermarked 

images from MPS and their original copies, a four-step experiment on NWND, NWD, 

WD and WND images was designed for this research work as shown in Figure 3.2. 

 

Figure 3.2 The research roadmap 

Stage 1: Evaluation. The watermarked/non-watermarked images and their degraded 

copies are evaluated for degradation due to the MPS process. Eight metrics were used 

for evaluation: bias, correlation coefficient, RMSE, RASE, ERGAS, UIQI, SSIM, and 

DSSIM, which were detailed in Chapter 4. 

Stage 2: BIIIA development. The test images are encoded in DNA. PSA, i.e. both 

NWA and SWA algorithms, employed on the DNA encoded images to identify the 

suitability for developing the BIIIA algorithm, which will be addressed in Chapter 5. 

Stage 3: Test of the BIIIA. After finalisation of the image encoding in biology and the 

most suitable PSA algorithm for developing BIIIA algorithm is performed based on 

different datasets to check the robustness of this approach, shown in Chapter 5. 
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Stage 4: BIIGA. The most suitable biology-based encoding from Stage 2 was used; 

the MSA was applied to get the aligned sequences. These aligned sequences are used 

as the input of the tool of phylogenetic tree for grouping the NWND, NWD, WD and 

WND images, see Chapter 6. 

3.6 Analysis of BIIIA and BIIGA  

The analysis and evaluation are carried out differently for evaluating BIIIA and BIIGA 

algorithms based on watermarked /non-watermarked and degraded images after MPS 

and their non-degraded copies. For image analysis, graphs were drawn to validate the 

metrics of image quality for our research work. The BIIIA was analysed by using 

image identification for a particular category of the images (for example correct 

identification percentage of watermarked images from a group of images). The BIIGA 

was analysed by using four statistical metrics: sensitivity (true positive rate), 

specificity (true negative rate), precision (positive predictive value) and negative 

predictive value for correctly grouping watermarked/non-watermarked and degraded 

/ non-degraded images, for more details, please see Section 2.2.4. 

3.7 Evaluation and Review of Output Reports 

The proposed methods of evaluation, identification (i.e. BIIIA) and grouping (i.e. 

BIIGA) will be tested on multiple image sets in Section 3.8.3 so as to answer the 

following questions: (a) Solvability. Does the proposed evaluation method evaluate 

degradation successfully? Does the proposed BIIIA succeed in the identification of  

the watermarked/non-watermarked images and their degraded copies from MPS? 

Does the proposed BIIGA succeed in the grouping of the watermarked/non-

watermarked images and their degraded copies from MPS? (b) Practicability. Is the 

proposed evaluation method relevant for evaluation of image degradation? Is the 

proposed BIIIA method relevant to image identification for watermarked/non-

watermarked and degraded / non-degraded images after MPS? Is the proposed BIIGA 

method relevant to a group of images obtained from watermarked/non-watermarked 

and degraded images and their original copies?  

3.8 Tools 

Tools and software selection determine the success or failure of the research outcomes. 

Two steps are performed for providing a strong background for BIIA development. 
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The first is to evaluate the degradation from MPS with MATLAB R2016a, i.e., 

numeric values of degradation from MPS provide a theoretical background; the second 

is the data mining and neural network approaches for identifyhing and grouping 

degraded images from MPS by using WEKA 3.6 (i.e., very less percentage  of 

identification and grouping by using neural networks and data mining approaches) for 

dispensing powerful reason to continue with the focus of this thesis.  

    This thesis focuses on image analysis, inspired by bioinformatics, where the first 

step is to encode the image biologically (i.e., biological representation of images) and 

the second is how to use bioinformatics tools for image analysis. For the 

accomplishment of the first step (to encode the image pattern matching problem 

biologically), Sections 3.8.1 and 3.8.2 introduced uMark for watermarking and 

degradation from print and scan that was extended in Section 3.8.3 to explain the 

process of creation of different images datasets by using the tools described in Section 

3.8.1 and Section 3.8.2. These datasets are used for evaluation, identification (i.e., 

BIIIA) and grouping (i.e., BIIGA). After that, the tools for encoding images 

biologically are explained in Section 3.8.4, i.e., WUtils and tomeko.net web tools. 

Then, Section 3.8.5, Section 3.8.6 and Section 3.8.7 describe the second step; i.e., how 

to use bioinformatics tools in image analysis, i.e., JAligner (local and global sequence 

alignment tool), MAFT (multiple sequence alignment web tool), MEGA7 

(phylogenetic tree creation tool). At last, Section 3.8.8 explains the pattern matching 

tool Clamscan for image identification.  

3.8.1 uMark  

Images used for experiments in this thesis are watermarked / non-watermarked. uMark 

(https://www.uconomix.com/Products/uMark/) is a watermarking software of which 

free and professional versions are available. For our research, we used the free version. 

Initially, for testing proposed approach, we used in-house built discreet wavelet 

transform based watermarking approach; for watermarking bigger datasets, we used 

the free version of uMark. 

3.8.2 Printer and Scanner 

Test images were scanned and printed using a Fuji Xerox DocuCentre-V C7775 PCL 

6. This machine has the both functionality of scan and print. Different scanning modes 

are available: scan as a black and white image, a colour image, or a greyscale image. 
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All images were printed at 300 dots per inch (dpi), scanned at 300 dpi, and saved 

with .tiff format, as it retains the maximum information of these images. Depending 

on the type of dataset creation, we chose the scanning mode. 

3.8.3 Image Datasets 

Image datasets used for experiments were created by using the standard test images. 

For degradation evaluation, one dataset was created by degrading watermarked/non-

watermarked images with MPS. For BIIIA, two different datasets were created. The 

first dataset was made up of watermarked/non-watermarked images, where 444 non-

watermarked images were watermarked with watermarks like text, image and shape 

using the professional watermarking software: uMark. That resulted in 444 text- 

watermarked images, 444 shape-watermarked images, and 444 image-watermarked 

images. For further verifying the BIIIA approach and testing the BIIGA method, a 

second dataset was created by using the watermarking/non-watermarking images with 

degradation from MPS. Six standard test images were watermarked using the DWT-

based approach; then, these images were degraded by using MPS. More details about 

the dataset are given below. 

    A MPS degradation process was used for degrading watermarked/non-watermarked 

images for creating different datasets. In terms of degrading test images, the same 

degradation process from MPS was used by replacing the test images with 

watermarked/non-watermarked images. 

    Let O be the original test image (non-degraded), P the printed test image, S the 

scanned test image, and R the round number of print and scan. This notation scheme 

is used for the round of MPS. Test images were degraded at the first time, by printing 

and scanning, we call it as one round of multiple print and scan (MPS). This is the first 

cycle; so it is Round 1 (R1). In R1, the original image under test O is printed by using 

a printer and scanned by using a scanner, denoted by using P1 and S1. 

R1 (Round 1) = P1→Printed original watermarked image; S1→Scan of P1 image 

In short,  

O <Print> P1<Scan> S1 
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    The same process will be repeated in Round 2, i.e., S1 will be printed to get P2; P2 

will be scanned to get S2. 

R2: P2→Printed S1 image; S2→Scan of P2 image 

In short,  

S1 <Print> P2<Scan> S2 

    For Round 3, S2 will be printed to get P3; then, P3 will be scanned to obtain S3. 

R3= P3→Printed S2 image; S3→Scan of P3 image 

In short, 

S3 <Print> P3<Scan> S3 

    Similarly, S3 was printed to get P4, P4 was scanned to get S4; lastly, S4 will be 

printed to get P5, P5 will be scanned to get S5, so on so forth.  

   A prominent degradation of images, after five rounds of print and scan, can be seen 

by using our human naked eye. That forced us to stop further operations of print and 

scan. In this thesis, because of this reason, all watermarked and non-watermarked 

images were degraded by MPS till the fifth round of print and scan. Further details 

about datasets are narrated in the next paragraphs. 

a. Dataset for image degradation evaluation 

To the best of our knowledge, there is no publicly available watermarked / non-

watermarked and degraded image dataset for evaluating the degradation from MPS. 

That inspired us to create a new dataset for evaluation. Printer and scanner settings 

used for printing was at 300 dpi and for scanning at 300 dpi, black and white scheme 

with .tiff extension (as it retains maximum information of image). Dataset details are 

explained below.  

(a) NWD image dataset. Six standard NW images, namely, Baboon, Girl with Blonde 

hair, Girl with dark hair, Cameraman, Meeting, and Lena were degraded by using 

scan and print in Section 3.8.2, till five rounds of print and scan. In total, NWD 

dataset for evaluation had thirty-six images, namely, six original and thirty 

degraded images by using five rounds of print and scan. 
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WD image dataset. Above six standard test images were watermarked, namely, 

Baboon, Girl with Blonde hair, Girl with dark hair, Cameraman, Meeting, and 

Lena.  

    A DWT watermarking algorithm was used to embed a watermark inside by 

using an image having ‘copyright’ as shown in Figure 3.3. All these watermarked 

images were degraded by using scan and print described in Section 3.8.2, total 

five rounds. In total, WD dataset for evaluation has thirty-six images; six original 

and thirty degraded images by using five rounds of print and scan. The WD dataset 

is shown in Figure 3.4. 

 

Figure 3.3 The image for digital watermarking 

b. Image Dataset for BIIIA  

The BIIIA approach was tested on two different types of datasets: one was made up 

of  non-watermarked/watermarked and non-degraded images, the second dataset was 

created, by applying degradation to watermarked/non-watermarked images. The non-

degraded image dataset was further divided into four datasets I1, I2, I3, I4. More 

details about these dataset and its creation are narrated below. 

 

(a) NWND image dataset (I1): This dataset consists of 444 TIFF images having 

multiple resolutions, sizes and other image properties from the famous book in 

image processing, entitled “Digital Image Processing (3rd edition) ”  as original 

and non-watermarked images. 

(b) WND image datasets (I2, I3, and I4): The discussed 444 images were 

watermarked by using three different types of watermarks: text-based watermark 

(TW) (I2), image-based watermark (IW) (I3), and shape-based watermark (SW) 

(I4).  
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Figure 3.4 Image dataset for MPS 

    That results in the 1776 image dataset, consisting of 444 original, IW, SW and TW 

images. Table 3.1 represents the settings, i.e., content, size, position of the watermark 

used for embedded the text, image and shape as a watermark. All watermarks are 

embedded on the top-left corner of this image having 10% size of original image. The 

text watermark consists of text “WISVAASY”, image watermark is a logo of the same 

text “WISVAASY”, and the shape-based watermark is a polygon with size 200×200 

pixels having three sides. 

 

Table 3.1 Settings for embedding a text, image or shape-based watermark 

 

c. Near duplicate image dataset  for BIIIA 

This dataset was used as a second one for testing the BIIIA approach. This dataset was 

named as a near duplicate image dataset because near duplicate images are 

transformed versions of an image by using different operations like contrast 

enhancement, resizing, etc. The degradation from MPS was used to develop near 
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duplicate images, i.e., the watermarked/non-watermarked images were degraded after 

MPS. Six standard images were used, namely, Baboon, Cameraman, Meeting, Girl 

with black hair, Lena and Girl with Blonde hair having 300300 resolutions, and 32-

bit depth as the original or non-watermarked images. A total of 12 datasets were 

prepared which further divided into two parts; the first part consisted of NWD images 

as well as NWND images (i.e., D1 to D6); the second part was WD images and WND 

images (i.e., D7 to D12). 

 

(a) NWND and NW degraded (NWD) image dataset (D1 to D6) 

Dataset D1 contained six NWND images as described, they were degraded after MPS 

degradation to five times with three different scan modes: black & white, color, 

grayscale. All scanning and printing operations were carried out by using the printer 

described in Section 3.8.2. Dataset D2 was created by using dataset D1 images and 

printing them first and then scanning with three different scanning modes, i.e., black 

& white (BW), colour (C) and greyscale (G). We call it as one round of MPS that 

resulted in 18 degraded images (i.e., six degraded images for each scanning mode). 

For creating dataset D3 and dataset D2, images were printed and then scanned with 

following settings: (a) D2, BW images were again scanned in BW mode, (b) colour 

scanned images from D2 were scanned again with colour mode, (c) greyscale scanned 

D2 images were scanned again with greyscale scanning mode; for Round 2 of MPS 

that resulted in 18 degraded images to generate dataset D3; and so on so forth for the 

third, fourth and fifth rounds of MPS, each round results in 18 degraded images to 

create datasets D4, D5 and D6 for Round 3, Round 4 and Round 5. In total, 96 images 

were present in the first part of this dataset (i.e., non-watermarked image dataset) as 

shown in Table 3.2 (i.e., six non-watermarked or original images, 90 degraded images 

from Round 1 to Round 5 with different scanning modes, 8 for each round). 

Table 3.2 Settings for degrading the non-watermarked images after MPS 
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(b) WND dataset and WD dataset (D7 to D12) 

The second part of these datasets is comprised of watermarked and degraded images. 

Dataset D7 was created by using image-based watermark for six non-watermarked 

images as shown in Figure 3.4, namely, Lena, Baboon, Cameraman, Meeting, Girl 

with black hair and Girl with Blonde hair using the DWT watermarking algorithm. 

MPS degradation on watermarked images was applied by using the three different 

scanning mode for each round of print and scan, up to five rounds. All scan-and-print 

operations were conducted by using the printer described in Section 3.8.2.   

    Dataset D8, created by degrading dataset D7, six watermarked images are obtained 

by printing first and then scanning in the three different scanning modes; this 

represents one round of degradation from MPS. In Round 1, it results in 18 

watermarked and degraded images. For creating dataset D9, the images of dataset D8 

were printed and then scanned with following settings: (a) Images of D8 scanned in 

BW mode were again scanned with BW mode; (b) Images from D8 were also scanned 

again with colour mode; (c) D8 images were scanned again with the greyscale mode. 

For Round 2, that results in 18 degraded images to construct dataset D9; Similar 

procedures were followed for the third, fourth and fifth round of MPS, each round 

results in 18 degraded images to create datasets D10, D11 and D12 for Round 3, Round 

4 and Round 5 of degradation. In total, 96 images were present in the second part of 

the dataset (i.e., watermarked degraded datasets) as shown in Table 3.3 (i.e., six non-

watermarked or original images, 90 degraded and watermarked images by using 

multiple scanning modes, i.e., BW, colour and greyscale, totally 30 for each). 

Table 3.3 Settings for degrading the watermarked images after MPS 

 

d. Near duplicate image datasets for BIIGA 

This dataset was used for testing the BIIGA approach. Six standard images were used, 

namely, Baboon, Cameraman, Meeting, Girl with black hair, Lena and Girl with 
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Blonde hair having 300300 resolutions, 32-bit depth as original or non-watermarked 

images. A total of 8 datasets were prepared which were further divided into the two 

parts: the first part consists of NWD images and NWND images (i.e., G1 to G4); the 

second part was WD images and WND images (i.e., G5 to G8). 

(a) NWD image dataset (G1 to G4) 

These datasets were created by using Section 3.8.4 (C) image set at part (a). Datasets 

D1 to D6 images were arranged in four categories:  original images, black and white 

NWD images, colour NWD images and greyscale NWD images. NWND category 

images were grouped under dataset G1 having six images.  Black and white NWD 

images were assembled as dataset G2, having 30 degraded images (i.e., six from each 

round, five rounds in total). Color NWD images were collected as dataset G3, having 

30 degraded images. Greyscale NWD images were gathered as dataset G4, having 30 

degraded images. In total, 96 images, 90 were NWD images and six were non- NWND 

images. 

(b) WND and WD image datasets (G5 to G8) 

These datasets were created by using Section 3.8.4 (C) part (a) images. Datasets D7 to 

D8 were arranged in four categories: WND images, black and white WD images, 

colour WD images and greyscale WD images. WND category images were grouped 

under Dataset G5 having six images: black and white WD images as Dataset G6, 

having 30 degraded images (i.e., six from each round, totally five rounds). Color WD 

images were collected as Dataset G7, having 30 degraded images. Greyscale WD 

images were gathered as Dataset G8, having 30 degraded images. In total, 96 images, 

out of which 90 were degraded (WD) images, six were WND images. 

3.8.4 WUtils.com & Tomeko.net Web Tools 

The next generation starts using DNA for storing digital data because it is considered 

as the most dense and stable media (George, Church, & Kosuri, 2012). In this thesis, 

image analysis was performed by using biological sequences (i.e., DNA). The main 

problem was how an image could be encoded in DNA. Naidu and Narayanan 

developed an approach for identifying polymorphic malware variants (Naidu & 

Narayanan, 2014; Naidu & Narayanan, 2016) by using biological representation and 

bioinformatics sequence for alignment. The Naidu and Narayanan approach did not 

address the issue: “how can we convert an image to biological DNA?”, without 
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encoding the image biologically, the subsequent analysis could not be performed. That 

is, encoding the image biologically is beyond the scope of their work. 

The proposed biological representation of images was inspired from Naidu and 

Narayanan’s biological representation for viruses (Naidu & Narayanan, 2016). Steps 

required for encoding images in DNA were added, Naidu and Narayanan approach 

(Naidu & Narayanan, 2016) was followed. In their first step of converting the virus to 

biological sequences (i.e., DNA), they need to transform the virus into a hexadecimal. 

That indicates a hex dump of the images is a must to follow their approach. To the 

best of our knowledge, there is no direct method reported in the literature to extract a 

hex dump from an image.  

For converting an image to its hex dump, multiple ways were investigated. It was 

found that if an image was converted to a base64 byte array, then it was easy to convert 

the base64 byte array to a hexadecimal. For converting an image to the base64 array, 

we used a free online web utility WUtils.com that converted the image to the base64 

byte array. Then, the base64 byte array was converted to the hexadecimal by using 

another online tool developed by Tomasz Ostrowski. Now, the extracted hexadecimal 

dump of an image could be employed for converting it to DNA by using Naidu and 

Narayanan’s approach. In the literature, there is a lack of evidence showing the use of 

bioinformatics sequence alignment in the analysis of images. After getting the images 

DNA sequences, sequence alignment tools were required which are explained in the 

next subsection. 

3.8.5 JAligner 

After representing images as DNA, the role of bioinformatics sequence alignment 

becomes very crucial for automatic signature extraction. Sequence alignment acts as 

the heart of bioinformatics for identifying the similarities between two biologically- 

represented image sequences or any other biological sequence. Two main methods are 

used for sequence alignment global (i.e. alignment from start to end of the sequence) 

and local (i.e. find local regions having high similarity) alignment. The Needleman-

Wunch algorithm (NWA) was used for global sequence alignment (Needleman & 

Wunsch, 1970) and the Smith-waterman algorithm (SWA) for pairwise local 

alignment (Smith & Waterman, 1981). For overcoming the processing speed problem, 

Gotoh proposed (Gotoh, 1982) an improved version of SW and NW algorithms that 

we used in our approach.  
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    Moustafa developed an open source tool for sequence alignment known as JAligner. 

This tool was written in Java and used the affine gap penalty model, having Gotoh’s 

upgradation for local pairwise sequence alignment. In this thesis, JAligner was used 

for local pairwise alignment, an in-house modified code of JAligner for global 

alignment used the Needleman-Wunch (NW) algorithm with Gotoh’s improvement.  

Areas of similarity between two biological sequences are recognised by applying 

sequence alignment algorithms. That will help to identify functional, structural and 

evolutionary relationships. If the number of biological sequences is three or more 

having the same length for understanding homology and the evolutionary relationship, 

multiple tools of sequence alignment are needed that are explained in the next 

subsection. 

3.8.6 MAFT 

Multiple sequence alignment (MSA) is a process of aligning three or more biological 

sequences of identical length to hypothesize homology and an evolutionary 

relationship (Weizhong, et al., 2015). There are different tools for MSA like Clustal 

omega (Sievers, et al., 2011), Kalign (Lassmann, Frings, & Sonnhammer, 2009), 

MAFT (Katoh & Standley, 2013), T-Coffee (Notredame, Higgins, & Heringa, 2000), 

MUSCLE (Edgar, 2004), MView (Brown, Leroy, & Sander, 1998) and WebPRANK 

(Loytynoja & Goldman, 2010), etc. Each tool is good for certain sets of conditions: 

Clustal omega and MAFT are suitable for medium to large alignments, Kalign for 

large, MUSCLE for medium and T-Coffee is suitable for small alignments. MView is 

used to transform the results of sequence similarity search into a MSA. WebPRANK 

has a phylogeny-aware MSA program. The lengths of biologically-encoded DNA 

sequences of images fall into medium or large sequences that motivated us to use 

MAFT for MSA in this thesis. A literature survey about MAFT automatically gives 

other reasons for choosing it, those are explained in the next paragraph. 

    MAFT has a long history of development and evolution. In 2002, this tool was 

launched for rapid MSA based on Fourier transform (Katoh, Misawa, Kuma, & 

Miyata, 2002). For improving the accuracy of MSA in 2005, they released MAFT 

version 5.3 (Katoh, Kuma, Toh, & Miyata, 2005). To overcome the time-consuming 

process for phylogenetic tree development, they developed a PartTree algorithm for 

MAFT in 2006 (Katoh & Toh, 2007). In 2008, they upgraded MAFT to version 6, 

where they added the PartTree algorithm to improve scalability and a four-way 
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consistency objective function to improve the accuracy of ncRNA alignment (Katoh 

& Toh, 2008; Katoh & Toh, 2008). Multiple alignments of DNA sequences were 

introduced into MAFT in 2009 (Katoh, Asimenos, & Toh, 2009). For further 

improvement in MSA, in 2010, parallelization techniques were integrated into MAFT 

(Katoh & Toh, 2010). A sequence adding method was implemented into MAFT in 

2012 (Katoh & Frith, 2012), a new web server, aLeaves, that provides an on-demand 

exploration of metazoan gene family trees with enhanced interactivity on MAFT 

(Kuraku, Zmasek, Nishimura, & Katoh, 2013). In 2013, MAFT version 7 was released 

for improving performance and usability by adding features like adjustment of the 

direction of nucleotides, constrained alignment, adding unaligned sequence into an 

existing alignment, and parallel processing (Katoh & Standley, 2013). Sometimes 

MAFT aligned unrelated segments (i.e., over alignment); in 2016, they added a feature 

to put down over alignment (Katoh & Standley, 2016) and chained the guide trees for 

enhancing the MSA’s accuracy within the structurally-conserved regions (Yamada, 

Tomii, & Katoh, 2016). In this thesis, the biological sequences are large, and all the 

literature about MAFT motivated us to use it in our research project. That is why 

MAFT version 7 was used throughout our research work for MSA. After getting local, 

global and multiple aligned sequences, we needed tools to perform pattern matching 

and pattern recognition that are explained for BIIIA and BIIGA. 

  

3.8.7 MEGA7 

For grouping species and establishing evolutionary relationships or phylogeny  

between species, we need a particular tool. There are many tools available nowadays 

for phylogenetic tree reconstructions like T-Rex (Boc, Diallo, & Makarenkov, 2012), 

phyloT, MEGA (Kumar, Stecher, & Tamura, 2016), etc.  MEGA is one of the oldest 

and most robust tools with progressive development. The full form of MEGA is 

Molecular Evolutionary Genetics Analysis software that was introduced in 1994 for 

approximating evolutionary distances, calculating basic statistical values and 

reconstructing phylogenetic trees from molecular data (Kumar, Tamura, & Nei, 1994). 

MEGA 2 was released in 2001 with added features like large dataset analysis, creating 

groups of sequence, specifying domains and genes, expanding the collection of 

statistical methods and visual representation of input data and output results on the 

Microsoft Windows platform (Kumar, Tamura, Jakobsen, & Nei, 2001).  
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    In 2004, automatic and manual sequence alignment, evolutionary distance 

estimation, phylogenetic tree inference, mining of web-based dataset and evolutionary 

hypothesis test were added to MEGA3 (Kumar, Tamura, & Nei, 2004). MEGA4 

released with Maximum Composite Likelihood for calculating evolutionary distance 

between all sequences pairs concurrently and creating captions in 2007 (Tamura, 

Dudley, Nei, & Kumar, 2007). In 2011, Maximum Likelihood analysis for 

evolutionary trees, hypothesizing sequences and ancestral states with probability, best-

fit substitution model selection (DNA), and evolutionary rate calculation were added 

in MEGA5 (Tamura, et al., 2011). A stand-alone executable of MEGA software was 

released with the name MEGA-CC (i.e., MEGA-Computational Core) that had all the 

functionalities of MEGA in 2012 (Kumar S. , Stecher, Peterson, & Tamura, 2012). 

Timetree Wizard was included in MEGA6 for timetree inference to describe 

phylogeny and calibration constraints, with more advanced memory management and 

enhanced algorithms in 2013 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). 

The 64 bit MEGA7 was made available in two interfaces: command line and GUI 

(Kumar, Stecher, & Tamura, 2016) for processing larger datasets in 2016. The 

developmental history of MEGA inspired us to use this as a tool for BIIGA and 

phylogenetic tree. In this thesis, we employed MEGA7 for our research work. 

 

3.8.8 Clamscan 

From aligned sequences, common substrings were extracted as a pattern or meta- 

signature for a specific category of images.  Categories of images mean that images 

have a particular type of watermarks or are degraded by print and scan or any other 

category that is under the scope of this thesis in Section 3.8.3. Clamscan is an open 

source software that is used for pattern matching in viruses. Common substring 

patterns or signatures were matched by using Clamscan for images identification and 

BIIIA development. 

 

3.9 Summary  

This chapter introduces a scientific research methodology. It is an ideal approach to 

emphasise on the research procedure and compose the research by planning and 

characterizing a research issue, making inferences that reflect the present reality. The 

research methodology recognised in this chapter makes a vital supposition: our 
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contribution of motivation from bioinformatics tools and techniques for image 

analysis by using pattern matching.  

    In Chapter 2, little information and knowledge regarding bioinformatics-inspired 

image analysis is available in the literature. The task of this thesis is to consider the 

aspects of evaluation of watermarked and non-watermarked images, their degraded 

copies, their identification that are well interpreted and related to our area of research. 

After that, we can connect them to bioinformatics tools and techniques during the 

research process when it is most suitable. 

    In addition, we see how far we can get with research questions and current systems, 

make them more suitable for identifying and grouping the watermarked / non-

watermarked and degraded images. We trust that we have gone as far as we can, with 

these traditional techniques in image analysis, following pattern matching for 

biologiacl images, perceiving how motivation from bioinformatics can lead to new 

bits of knowledge and methods for pattern matching in image analysis. 

    We, in this way, need to begin with what is at present, known about bioinformatics-

inspired image analysis which leads to the experience of our first issue. As appeared 

in the literature review, in spite of all the work so far in bioinformatics-inspired image 

analysis, there is very little work addressing what bioinformatics-inspired image 

analysis is and how we can use it for degraded image analysis. In addition, none of the 

work addressed the issue of evaluation of image degradation for watermarked/non-

watermarked images. 

    The next chapter explores image degradation for watermarked/non-watermarked 

images; the experimental results will answer the Research Question 1.  
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Chapter 4  

Evaluations of Image Degradation from MPS  

    The aim of this chapter is to explore the first research 

question established in Chapter 3: “Is it possible to 

investigate and measure degradation of non-

watermarked / watermarked images from MPS; if so, 

what are the suitable metrics?”In Section 4.1, we 

explain the issues in the existing evaluation approaches. 

Section 4.2 includes the metrics for measuring the 

degradation of watermarked/non-watermarked images 

with the hypothesis. In Section 4.3, a novel model is 

presented for resolving the problem of degradation 

evaluation. The calculated values of different metrics 

are plotted graphically and analysed in Section 4.4. The 

performance of the metrics for the evaluation is 

discussed in Section 4.5. Lastly, Section 4.6 contains a 

summary of this chapter. 
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4.1 Introduction 

The area with regard to degradation of non-watermarked images from MPS has a deal 

of unanswered problems. This chapter will explain an approach to evaluate the 

degradation in non-watermarked / watermarked images by using MPS that can be used 

as a real-time application. For performing this, it is important to know about image 

quality metrics for image degradation evaluation. If a standard and well-established 

image quality metrics can be demonstrated to work with the evaluation of non-

watermarked / watermarked and degraded images through MPS that will be 

considered as the proofs that our evaluation approach may be correct. In this chapter, 

our previous eight metrics of image quality evaluation for MPS degradation were used 

i.e., bias, correlation coefficient (cc), root mean square error (rmse), root average 

spectral error (rase), ergas, universal image quality index (uiqi), structural similarity 

metrics (ssim), and structural dissimilarity metric (dssim) (Garhwal & Yan, 2015). 

    Those existing evaluation approaches for watermarked images ignore the 

degradations due to MPS. The research discussed in this thesis investigates image 

degradation from a digitization viewpoint into consideration. MPS operations are 

iteratively committed to a hardcopy or a softcopy from the same source, i.e., taking a 

hardcopy of the original document or photo, the document is scanned and converted 

to a softcopy, then the softcopy is printed; the printout is treated as the printed 

hardcopy. The operation is iteratively in use of the same photocopy machine for many 

rounds. However, to the best of our knowledge to the date, (Garhwal & Yan, 2015) 

there is no other work reported to conduct such a comprehensive evaluation of image 

degradation from MPS. 

4.2 Image Quality Metrics 

The perceptual similarity between watermarked/non-watermark and original / 

degraded images after print and scan is calculated by quantifying using image quality 

metrics which were tested and verified for evaluating degradation of non-watermarked 

images in our previous work (Garhwal & Yan, 2015). These eight metrics are shown 

in a set of v in equation (4.2.1). 

),,,,,,,( DSSIMSSIMUIQIERGASRASERMSECCBiasv        (4.2.1) 



86 

 

    These eight were the objective metrics explained in detail in Section 2.4.2 with the 

relevant literature and formulae of the metrics,  they will not be repeated here. 

    Our motive here is to investigate and analyze again these eight objective metrics for 

non-watermarked images that are different from our previous publication (Garhwal & 

Yan, 2015) except one image, Lena, for checking and verifying that the metrics values 

with different groups of images work well and their watermarked versions (i.e., 

watermarked images). The suitability of metrics is tested by considering three aspects: 

objective reference method, robustness, consistency for further evaluation of image 

distortion caused by MPS.  There are two more criteria for further verification of the 

metrics: practicability and solvability. This is explained below:   

 

a. Practicability: Is our evaluation relevant and applicable to MPS scenarios? 

b. Solvability: Does the proposed approach succeed in finding a valid metrics for 

evaluating degradation of non-watermarked images from MPS? 

Further, the hypothesis test for evaluating images degradation is stated below:  

Hypothesis: 

Null hypothesis. The selected eight image metrics are suitable for measuring the image 

degradation from MPS. 

Alternative hypothesis. None of the image quality metrics is appropriate for measuring 

the image degradation from MPS. 

    For executing the experiments, a novel method is proposed that will be described 

in the next section. 

4.3 A Novel Method for Evaluating Images from MPS 

For performing experiments, each research method needs datasets, test conditions and 

a proper method. More details about these three items are provided in the next 

paragraphs. 

 

A. Dataset 

To the best of our knowledge, there are no publicly available image datasets for 

evaluating image degradation from, so we have to create our own dataset. The 
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preparation of a dataset used for evaluation of image degradation was explained in 

Section 3.8.3. 

  

B. Test Conditions 

The test conditions for the criteria of image selection are based on the print and scan, 

which depends on the selected image resolution in pixels per inch, namely,  dpi; the 

parameters also are used for scanning and bit-depth (R. Villán, 2006). Some additional 

criteria are also employed as the requirements of this research project. More details 

about test conditions are given below in terms of variables for the evalaution. 

Variable Definitions 

a. Dependent variable. In the proposed research the image quality metrics used 

for quantification of image degradation like Universal Image Quality Index 

(Q) etc. are the dependent variables. In this thesis, the dependent variable was 

fixed to eight metrics on the basis of our previous publication (Garhwal & Yan, 

2015). Image degradation also acts as the dependent variable. 

b. Independent variable. This variable defines the yardstick on which dependent 

variable depends, i.e., the number of rounds of print and scan. This independent 

variable value is fixed to five rounds after MPS, the degradation is very 

prominent and no use for analysing further rounds of MPS. 

c. Control variable: The number of print-and-scan rounds will work as the 

control variable because it is the process that will control the quantity and 

quality of image degradation. Other variables are the resolutions of watermark 

and image that are used for watermark embedding. Bit depth, image type and 

compression of the image are also used as control variables. All these control 

variables are explained below after the normalisation of all images of the 

dataset to 512 × 512 pixels. 

 Resolution. How many pixels, an image has, is represented by the concept 

resolution. A higher resolution for an image shows more information 

content. For the purse of experimentation, the resolution is measured in 

dots per inch (dpi). The resolution that we were using for images were 

horizontal 300 dpi and vertical 300 dpi. 

 Compression of Image. Provided by the standard images for testing, ITU-

T provides a dataset of mages for testing with compression. In this thesis, 
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we have used the image format of .tiff extension, which retains the 

maximum information of an image after LZW compression. 

 Image Type: Greyscale image. 

 Bit Depth: 32 

 Numbers of print and Scan: The round number of MPS was fixed to five 

for the independent variables. 

Other criteria, like content, file format and metadata in word documents, etc., are 

considered for future work in this thesis. 

d. Confounding Variable. External influences like fluctuation of voltage in the 

scanners or printers, any types of mechanical problems, material quality, etc. 

are considered as the potential confounding variables. 

    Calculations. The eight image metrics are adapted to the evaluations of 

watermarked / non-watermarked and degraded images by using the image processing 

toolbox of the famous platform MATLAB. 

 

C. Method 

    For accomplishing this thesis evaluation, a novel method is proposed as shown in 

Figure 4.1 where a watermarked/non-watermarked image is an input image that acts 

as an original image on which the print-and-scan operations are applied to obtain a 

degraded image. For that degraded image, all eight-image quality metrics were 

calculated using Matlab. After the first round of print-and-scan operations, the output 

degraded image will be acted as an input of test image, namely R1, the degraded image 

for the second round of print-and-scan image degradation, and again all of the eight-

metrics are calculated for the degraded image after the second round of print and scan.   

    This process is repeated in a similar manner till five round of print-and-scan process 

and then stopped because the degradationis so prominent that it can be seen clearly by 

using our naked eyes.  At the end, we will get five different values of each metric for 

a test image. Now, these values can be checked and analyzed by plotting the graphs. 

Whether these values show the degradation or not will be investigated in the next 

section. 
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Figure 4.1 A method for evaluating degradation from MPS 

4.4 Results 

In the literature, no other work has been reported to evaluate image degradation 

(Garhwal & Yan, 2015) using fully-referenced methods of image quality assessment 

on all the available datasets. The dataset, we created in Section 3.8.3, was used to 

conduct experiments and the study of evaluating degraded/non–degraded images after 

MPS. Then, the verified eight metrics from our previous publication (Garhwal & Yan, 

2015) were employed to this dataset so as to calculate metrics for degraded image 

from MPS. After that, the results were analysed to ascertain their validity. We analysed 

the image degradation from MPA by using the differences between the original and 

the degraded images. These are explained in more detail for each of the eight metrics 

with graphical representation and comparison.       

Bias 

    In our publication, bias was successfully verified to be used as one of the metrics 

for evaluating the MPS degraded NWD image (Garhwal & Yan, 2015). Bias values 

for the WD images by MPS were calculated by using the formula that was discussed 

in Section 2.4.2. Unnecessary information is added and necessary information is 

removed from an image during MPS process; this leads to the degraded images having 

mean greater than the original. This indicates that the bias for all the cases is negative.  

    The results are depicted graphically in Figure 4.2 (a) bias of NWD, (b) bias WD, 

and (c) average bias of NWD / WD. Bias shows its consistency in its value, which 

proves its suitability for measuring the degradation in the watermarked image by using 

MPS. Another validation was done by comparing the average bias of non-
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watermarked / watermarked and degraded images by using MPS. The trends delineate 

that the bias-based quality assessment is apt for measuring the WD images since the 

image differences are all convergent to the same mean with minor variations as shown 

in Figure 4.2 (c). 

 

Figure 4.2 Image metrics Bias: (a) non-watermarked image (b) watermarked image 

(c) average for watermarked / non-watermarked image 

Correlation Coefficient (CC) 

After the confirmation of correlation coefficient (CC) as one of the metrics for 

evaluating the degraded and non-watermarked image after MPS (Garhwal & Yan, 

2015); CC for the WD images was calculated; CC average values for WD and NWD 

were compared for validity. The calculation was done by using Matlab and the results 

were plotted in Figure 4.3 (a) CC of NWD, (b) CC of WD, and (c) average CC of 

NWD /WD images. Figures 4.3 (a) and (b) illustrates that there is continuous 

dwindling in the use of the metrics CC. The results is supported by taking advantage 

of the metrics CC; all the patterns of image differences between the original and its 

degraded images from MPS are approaching to the same mean as shown in Figure 4.3 
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(c). This shows that  CC metrics are constantly convergent for all the five groups of 

degraded images with the merits of robustness and consistency. 

 

Figure 4.3 Image quality metrics CC: (a) non-watermarked image (b) watermarked 

image (c) average for watermarked or non-watermarked image 

RMSE 

From Figures 4.4 (a) and (b), we see that the metrics RMSE were also able to judge 

the differences between a test image and its degraded ones for all groups of non-

watermarked / watermarked images. The patterns were convergent to the same mean 

except the image Cameramen was a bit of a diversion from the expectation as shown 

in Figures 4.4 (a) and (b). A comparison of the RMSE average value of the WD and 

NWD images is shown in Figure 4.4 (c) which shows a consistent increase and a minor 

difference between them. This analysis further confirms our previous work (Garhwal 

& Yan, 2015) that we can use it as a metric to evaluate degraded images generated 

from MPS. 
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Figure 4.4 Image quality metrics RMSE: (a) non-watermarked image (b) 

watermarked image (c) average for watermarked / non-watermarked image 

RASE 

Figures 4.5 (a) and (b) were used to show that the metric RASE also could evaluate the 

image degradation by using NWD/WD images. All the data led to the point that the 

image metric RASE correctly reflects the differences between an original and its 

degraded images from five rounds of print and scan. Analysis of the RASE average 

values of WD and NWD images in Figure 4.5 (c) shows a consistent increase with 

almost no difference which supports that RASE is a suitable metric for evaluating WD 

images which is in coherence with our previous work (Garhwal & Yan, 2015). 
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Figure 4.5 Image quality metrics RASE: (a) non-watermarked image (b) 

watermarked image (c) average for watermarked / non-watermarked image 

 

ERGAS 

Figures 4.6 (a) and (b) reveal the differences between a reference image and its five 

degraded images by using the metric ERGAS. The figure discovers that ERGAS 

satisfies the criteria as a good metric: consistency and robustness. The polylines in the 

figure converge to the same mean from the very beginning to the end. Figure 4.6 (c) 

compares the ERGAS average values for WD/NWD images which were consistently 

increasing and there is an ignorable difference between them that proves the suitability 

of ERGAS as a degradation evaluation metric for the WD / NWD images from MPS. 
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Figure 4.6 Image quality metrics ERGAS: (a) non-watermarked image (b) 

watermarked image (c) average for watermarked / non-watermarked image 

 

UIQI 

  In Figures 4.7 (a) and (b), the metrics UIQI are employed to quantify the degradation 

from MPS for non-watermarked / watermarked images. The data points on the figure 

stand for a uniform pattern in decline. It is very interesting to see that the comparisons 

of average values of the UIQI in Figure 4.7 (c) are excellent to reflect the essence of 

the degradation from MPS for watermarked images. 
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Figure 4.7 Image quality metrics UIQI: (a) non-watermarked image (b) watermarked 

image (c) average for watermarked / non-watermarked image 

 

SSIM 

Figures 4.8 (a) and (b) reveal that the metric SSIM was consistently decreasing for all 

test WD / NWD images. SSIM values are between 1 and -1; from Figures, 4.8 (a), (b) 

and (c), we see that all values lie in between 1 and -1. Additionally, we validate SSIM 

by comparing the consistent decrease in the average value of NWD/WD images as 

shown in Figure 4.8 (c). We would like to say that SSIM is a suitable metric for MPS 

image degradation evaluation for WD images. 
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Figure 4.8 Image quality metrics SSIM: (a) non-watermarked image (b) 

watermarked image (c) average for watermarked / non-watermarked image 

 

DSSIM 

    Figures 4.9 (a) and (b) show that the metric DSSIM is used to find degradation from 

MPS for NWD/WD images. The values of DSSIM show consistency in increasing for 

all test NWD/WD images which indicate that it also satisfies the criteria of a superior 

metric for measuring degradation. Comparison of DSSIM average values for WD/ 

NWD images is shown in Figure 4.9 (c) which consistently decrease with little 

difference. It verifies that DSSIM can be used as one of the metrics for evaluating WD 

images degradation by MPS. 



97 

 

  

 

Figure 4.9 Image quality metrics DSSIM: (a) non-watermarked image (b) 

watermarked image (c) average for watermarked / non-watermarked image 

    Summing up, the experiment results unveiled that all eight metrics have very good 

outcomes and completely qualify for being applied to evaluate degraded images after 

MPS.  

4.5 Discussion 

In this chapter, image degradation was taken for inspection. Evaluation of MPS 

degraded images have been done by using the eight objective metrics as our previous 

work (Garhwal & Yan, 2015). The results disclose that all eight metrics are suitable 

for calculating the differences between an input image and its degraded copies from 

MPS. That answers Research Question 1 with yes, it is possible to investigate and 

measure image degradation using the eight image quality metrics: bias, CC, RMSE, 

RASE, ERGAS, UIQI, SSIM, and DSSIM.  Additionally, the hypothesis proposed 

was proven correct after results analysis. i.e., the selected eight metricsi of mage 

quality were found suitable for measuring the image degradation from MPS. 

Furthermore, this evaluation approach is practical and solvable indicating that this 

evaluation approach is relevant to MPS degradation as well as successful in finding 

the solution to the issue of evaluation of the degraded images after MPS. 
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    This evaluation also provides a numerical reason for the identification and grouping 

of the degraded images. That will motivate us for further analysing the degraded 

images that are performed in the next chapter by developing the BIIIA and BIIGA 

algorithm for the degraded images after MPS. 

4.6 Summary 

Image degradation is a fundamental problem in digital image processing since it has 

occurred in print and scan very often. The multiple rounds of print and scan cause 

image degradation that leads to problems in image identification. For inspecting the 

image degradation, eight fully-referenced objective metrics were employed on 

degraded images generated from MPS. The results verified that all eight metrics 

outperformed and were found suitable for measuring image degradation. These 

numerical values of image degradation provide a strong theoretical background for 

further research in the area of identification and grouping of the images by using 

suitable approaches. 

    In the next chapter a bioinformatics-inspired approach will be proposed for the 

degraded images, we call it as BIIIA algorithm. 
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Chapter 5  

BIIIA: Bioinformatics Inspired Image Identification 

Approach 

     This chapter explores a new approach, i.e., BIIIA, to 

identify watermarked images from non-watermarked 

images, by utilizing a sequence alignment technique in 

bioinformatics to align variable lengths of two extracted 

DNA from watermarked / non-watermarked and 

degraded / non-degraded images after MPS. Section 5.1, 

briefs the introduction and background of the image 

identification. A hypothesis and BIIIA method overview 

are provided in Section 5.2 and Section 5.3, respectively. 

In Section 5.4, we explain the steps employed in the 

BIIIA method. Experiments and results of the BIIIA 

method are explained in Section 5.5. A discussion about 

the result is presented in Section 5.6. Finally, in Section 

5.7, a summary of the chapter is given. 
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5.1 Introduction and Background  

Previous work, proposed by Naidu and Narayanan in syntactic signature extraction, 

inspired us using bioinformatics techniques, like sequence alignment techniques, to 

extract signatures (common sub-string) for identifying polymorphic malware variants. 

Furthermore, they extended their work by using different substitution matrices (Naidu 

& Narayanan, 2016); after that, Needleman-Wunch (NW) and Smith-Waterman (SW) 

algorithms (Naidu & Narayanan, 2016) for identifying polymorphic malware variants. 

That motivated us to test whether bioinformatics tools can be used for image analysis. 

For using bioinformatics tools to image analysis, the images must be encoded 

biologically (i.e., in DNA). In this thesis, the used images refer to the watermarked / 

non-watermarked images. 

    Watermarking can be tracked from 1954 (Cox & Miller., 2002) for securing the 

ownership of data. In the last few years, there has been a big revolution of using media 

/ non-media watermarks for securing the digital contents like documents, images, etc. 

Watermarking will secure the digital contents by putting some owner-related 

information in the form of text, audio, video or image. Different watermarking 

algorithms based on frequency transformation, e.g., Discrete Cosine Transformation 

(DCT), Discrete Wavelet Transformation (DWT), Discrete Fourier Transformation 

(DFT), DCT & DWT combined, etc. were used to watermarking. For watermarking 

algorithms, the main issue is to extract the embedded watermark with the highest 

similarity; the process is very specific to other traditional embedding algorithms. 

Modern watermarking algorithms are evolving because of non-media (i.e. software, 

relational data, natural language text, sensor streams, streaming data, etc.) 

watermarking. This indicates the challenges to detect watermarks in big data; for 

different variants of watermarks (i.e., media / non-media watermarks) (Panah, 

Schyndel, Sellis, & Bertino, 2016), until they are noticeable in the cloud. The 

automatic identification of watermarked images using watermark embedding 

algorithms and other watermark signatures in watermark identification remains a 

relatively unexplored area of counterfeiting information.  

    A watermark may be media (i.e. image, audio, video, etc.) / non-media data (i.e. 

spatial data, sequence data, spatiotemporal data) (Panah, Schyndel, Sellis, & Bertino, 

2016). Watermark embedding algorithms for audio (Patent No. IPN WO 89/08915, 

1989), images (Schyndel, Tirkel, & Osborne, 1994; Caronni, 1995; Brassil, Low, 
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Maxemchuk, & O’Gorman, 1994), video (Matsui & Tanaka, 1994) and watermarking 

schemes based on SVD and DNA (Wu & Kan, 2015) are reported in literature, having 

a distinct watermarking (i.e. audio, image or video watermark etc.) and extracting 

algorithm framework as shown in Figure 5.1. This indicates that watermarked images 

were used as the input and particular watermark extraction algorithms for extracting 

the watermark. The traditional method of watermark extraction has the watermark as 

output, but lacks of automatic signature extraction based on a syntactic approach for 

watermark identification by using biological image representation and sequence 

alignment. 

 

Figure 5.1 Watermark extraction framework  

    Signature extraction based on syntactic techniques for watermarks is not 

investigated in comparison to traditional watermark extraction techniques. The 

relevant literature is almost absent or limited. The historical reason behind that is a 

variety of watermarks that can be embedded in different multimedia. Logically, 

specific watermark extraction algorithms will work for a specific case. For extracting 

commonalities, semantic analysis is the only way for efficient watermark signature 

generating. 

   In the last decade, big data watermarking increased rapidly (Panah, Schyndel, Sellis, 

& Bertino, 2016) and emphasised on the need for watermark identification techniques 

with the Boolean answer: yes or no, which reflects the presence or absence of 

watermarks in media / non-media data. We are trying to solve that problem by using 

a biological representation of the image and bioinformatics alignment techniques as 

shown in Figure 5.2. 

    The work reported in Chapter 2 about the use of DNA for image representation will 

focus on how we can store and retrieve the error-free data by using DNA for the 

biological image encoding and decoding; but, lacking the use of image to DNA 

encoding for identifying the watermarked / non-watermarked images. This literature 

gap of previous research motivated us to check whether DNA image encoding would 

work for watermarked/non-watermarked images. 
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Figure 5.2 Watermark identification framework 

After, representing the W or NW image as DNA, bioinformatics tools and 

techniques can be employed. The technique we were using for this research work is 

sequence alignment; the role of bioinformatics sequence alignment is crucial for 

automatic signature extraction. Sequence alignment acts as the heart of bioinformatics 

for identifying the similarity between two biologically-represented image sequences 

or any other biological sequence. Two main methods were explained in Chapter 2, i.e., 

the Needleman-Wunch (NW) algorithm for global sequence alignment (Needleman & 

Wunsch, 1970) and Smith-waterman (SW) for pairwise local alignment (Smith & 

Waterman, 1981).  

As discussed in Chapter 2 for applying sequence alignment to the images, the first 

features of the images were extracted and then these features were encoded 

biologically. After that, the sequence alignment was applied to further experimental 

work; for instance, 2D shape matching (Kim, Chang, Lee, & Lee, 2010; Kim, Chang, 

Liu, Lee, & Lee, 2009), etc. To the best of our knowledge, none of the approaches 

directly encoded the whole image into DNA sequence without extracting any features 

of the image; then, bioinformatics sequence alignment algorithm was applied to image 

identification. This resulted in our interest continuing to grow for a method to develop 

an automatic signature extraction for watermarked/non-watermarked images by using 

bioinformatics tools and techniques.  

5.2 Hypothesis Test 

The research hypothesis for identifying watermarked/non-watermarked and degraded 

images is that it is possible to identify syntactic patterns using bioinformatics tools and 

techniques that help to determine whether a degraded / non-degraded image contains 

a type of watermark or not; that helps us to identify the images of their expected 

category. If this research hypothesis does not apply to image identification, it is highly 
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unlikely that syntactic structures extracted by using bioinformatics tools will be used 

for image identification. 

5.3 BIIIA Method: An Overview 

In any dataset, test conditions and a method are required for successful execution of 

the experiments. 

Dataset 

In this study, we focus on identifying images by using string-based automatic 

signature extraction techniques. However, at this stage, we were not clear what the 

implications would be used for automatic signature extraction from watermarked / 

non-watermarked images. This rationale limited us to three different watermarks (i.e., 

image, text and shape-based watermarks) for watermarking from a potentially large 

number of watermarked images. 

    Four image datasets were used, i.e., I1, I2, I3, and I4, where I1 is comprised of non-

watermarked 444 images, I2, I3, and I4 are watermarked datasets, each has 444 

images, i.e., I2 is a text watermark (TW), I3 is an image watermark (IW) and I4 is a 

shape-based watermark (SW). More details about the dataset preparation are given in 

Section 3.8.3. 

 

Novel Method BIIIA and Test environment conditions 

The BIIIA method consists of three main steps: biologically-based encoding of images 

and local & global alignment as well as pattern matching as shown in Figure 5.3. The 

test environment conditions along with the steps of BIIIA method are explained in the 

next few paragraphs. 

 

Biology-Based Encoding of the Image 

    Four letters of DNA A, T, C and G were used for encodings the image in biology 

to find out its suitability for watermarked/non-watermarked image identification.  

Local and Global Sequence Alignment 

    The sequence alignment algorithms SWA and NWA were employed on biologically 

-encoded images in the DNA sequence. Consequently, the biologically-encoded  

images for sequence alignment needed a scoring matrix.  To find the optimal alignment 

of the SWA and NWA algorithms was used (i.e., substitution strategy and gap 
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scoring). Different scoring matrices are available like point accepted mutation (PAM), 

blocks substitution matrix (BLOSUM), and IDENTITY (ID) that are used by SWA 

and NWA. For our experiments, we used ID to achieve exact matching. The identity 

(ID) scoring matrix dispenses the most parsimonious method for finding a relation 

between one symbol and another symbol in the string, no assumptions are made.  That 

motivated us to employ the ID matrix for the experiments rather than well-known 

biological scoring matrices such as PAM (Point Accepted Mutation and BLOSUM 

(Block Substitution Matrix) (United states Patent No. 20070244652, 2007). 

Additionally, we used a simple match-mismatch scoring matrix for more analysis. 

 

Figure 5.3 BIIIA method: an overview 

    For generating scoring matrices, we had to assign gap penalties for every insertion 

or deletion of any characters during the alignment process. Initially, NWA had no 

control over the penalty assigned to definite gap length. For increasing the 

computational speed, subsequently a linear cost function is assigned for some insertion 

(deletion) remainder (Sankoff, 1972; Sellers, 1974). So, for every indel (insertion or 

deletion), a penalty is assigned. However, in the meantime, if an indel is penalised in 

such a way that it becomes substantially less than the mismatch, this results in quite 

expensive longer gaps. For solving this problem, the gap penalty function has a gap 

open penalty that charges for every gap initiated and a gap extension penalty for 

penalising the length for every indel. The resulting affine linear function for gap length 

is   idcif  ,  where the gap penalty function is  if  having gap length i , a penalty

c for gap initiation, and d is the smaller penalty for gap extension. A further 
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breakthrough was made by Gotoh (Gotoh, 1982), where optimal alignment has affine 

linear gap penalties, the computation time is proportional to the multiplication of the 

length of the two sequences to be aligned. For our research work, we used NWA with 

Gotoh and SWA with Gotoh to speed up the computations. 

    The next was the gap open and gap extended penalties: fixed gap open and gap 

extended penalties were used for all combinations to determine whether we could 

identify watermarked/non-watermarked images correctly and efficiently. 

 

Pattern Matching 

In this thesis, pattern matching was performed by using Clamscan between common 

sub strings (signatures), extracted after sequence alignment of two biologically-

encoded images, tested against the watermarked/non-watermarked image datasets to 

check whether it identifies the expected category. That indicates, if the common 

substring belongs to the IW images, then it will only identify the IW images and not 

any other group of images. 

The aim of this thesis is to examine whether Naidu and Narayanan’s syntactic 

approach (Naidu & Narayanan, 2016) can be used for identifying watermarked / non-

watermarked images. The next section will describe in detail how biologically 

encoded images into a DNA sequence was performed, how sequence-aligned 

algorithms with Identity (ID) and match-mismatch (MM) scoring matrices were 

employed. 

  

5.4 BIIIA Method: Steps 

For finalising the proposed methodology prototype, different combinations of 

biologically-encoded images and sequence alignment algorithms with scoring 

matrices were tested as shown in Figure 5.4 and summarised in the six steps as follows:  

Step 1. Watermarking original images (I1) with text (I2), image (I3) and shape –based 

watermark (I4), resizing and selecting two test images at random from each dataset.  

Step 2. Explain how we convert images into an acceptable form of sequence 

alignment.  

Step 3. Explain the DNA-representation method.  

Step 4. Explain pairwise local & global alignment of DNA.  

Step 5. Explain the procedure of common substring (signature) extraction from 
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aligned DNA.  

Step 6. Deal with the procedure of testing the signatures by converting back to 

hexadecimal (hex) code. Each of the six steps is explained in the following text. 

 

Figure 5.4 Initial BIIIA method 

A. Biology-based encoding of image into DNA: 

Step 1.  Digital image. The preparation methods for Datasets I1, I2, I3 and I4 were 

explained in Section 3.8.3, this is not repeated here. Randomly, any of the two smallest 

size watermarked/non-watermarked images were selected from any of the datasets I1, 

I2, I3 or I4 because the available conversion tools could not handle bigger size images  

for converting an image to the required format (i.e., base64 byte array, hexadecimal 

etc.). That acts as input for the BIIIA system. 



107 

 

Step 2. Hexadecimal conversion. In this step, the selected watermarked/non-

wateramrked images from Step 1 were converted into base64 byte array and then to 

hexadecimal. This step is an additional step to the Naidu and Narayanan approach 

(Naidu & Narayanan, 2016), to the best of our knowledge, there is no method reported 

in the literature to extract the hex dump directly from an image.  

 Conversion of selected test images to the byte array (i.e., base64).  Selected test 

images are converted into a byte array by using the website WUtils.com which 

provides facility to convert an image to base64. 

 Conversion of the byte array to hexadecimal.  Base64 values of the image were 

converted to the hexadecimal by using tomeko.net website. A small example is 

presented in Table 5.1 for representing an image to a byte array to the hexadecimal. 

 

Table 5.1 Example of converting an image to a Hex code 

 

Step 3. Hexadecimal to DNA. In this step, the extracted hexadecimal from the images 

in Step 2, converted to the binary code and then into the DNA sequences. The sub-

steps for this conversion are explained below: 

 Conversion of the hexadecimal to binary codes. The hexadecimals are 

converted into the binary codes by using in-house developed macros in 

EmEditor. The rules for transforming the hexadecimal into the binary code 

are followed from the Naidu and Narayanan approach (Naidu & Narayanan, 

2016) that are: ‘0’ → ‘0000’; ‘1’ → ‘0001’; ‘2’ → ‘0010’; ‘3’ → ‘0011’; 

‘4’ → ‘0100’; ‘5’ → ‘0101’; ‘6’ → ‘0110’; ‘7’ → ‘0111’; ‘8’ → ‘1000’; 

‘9’ → ‘1001’; ‘a’ → ‘1010’; ‘b’ → ‘1011’; ‘c’ → ‘1100’; ‘d’ → ‘1101’; ‘e’ 

→ ‘1110’; and ‘f” → ‘1111’ . 

 Conversion of binary codes to DNA. Binary codes are converted into DNA 

by using in-house developed macros. Rules for conversion are followed 
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from Naidu and Narayanan approach (Naidu & Narayanan, 2016), that are: 

‘00’ → ‘A’; ‘11’ → ‘T’; ‘10’ → ‘G’; and ‘01’ → ‘C’. A small example how 

to convert a hexadecimal to 64-bit binary code to DNA 

01252012 (8 hexadecimal characters) 

00000001001001010010000000010010 (32- bit binary code) 

AAACAGCCAGAAACAG (16 DNA character) 

B. Sequence Alignment  

 

SWA and NWA algorithms were used for string matching regular alphabet between 

two DNA sequences of biologically encoded image from Step 3. The two DNA 

sequences extracted from the two test images (watermarked / non-watermarked) were 

used as an input to JAligner for sequence alignment. These string-matching algorithms 

recognise one or more positions in one string, where left strings known as patterns, are 

found. Suppose ‘∑’ be an alphabet (a character), i.e., a finite set. Traditionally, patterns 

and searched strings are vectors of part of ‘∑’. The ‘∑’ could possibly be a regular 

character or alphabet, i.e., for example, the Latin format A to Z letters. Some 

algorithms perhaps use binary codes (∑ = {0, 1}) in bioinformatics (∑ = {A, T, C, 

G}).  SWA and NWA use dynamic programming alignment. Dynamic programming 

alignment is a more quantitative approach where scores are assigned for matches and 

mismatches (scoring matrices), instead of applying dots (Needleman & Wunsch, 1970; 

Waterman, Smith, & Beyer, 1976; Smith & Waterman, 1981). The results are called 

as ‘alignments’ as any one of them, or both. It may be changed by inserting gaps to 

get optimal patterns. For comparing with another scoring approach, we use a simple 

match-mismatch (MM) scoring matrix where we assign a score 2 if there is a match 

and for mismatch we assign -1, with a fixed gap open equal to 10 and the gap extend 

value is 1. The highest scores in scoring matrices indicate accurate alignment. 

Step 4. In this step, global and local alignment were performed using the following 

combination: 

a.  Pairwise local alignment (SWA). SWA tries to find the most matched substrings 

between the pattern and search string, i.e., instead of looking in the completed 

sequence, the SWA selects the parts of all realisable length, then matches and 

improves the resemblance rate.  

In total, eight pairwise local alignments were performed by using the eight 
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different combinations, made up from four datasets, SWA with an ID and match-

mismatch (scores for match=2, mismatch=-1, and gap open=10 and gap 

extension=1) as shown in Table 5.2 where NW represents non-watermarked 

images, TW for text-based watermark, IW with regard to image-based watermark 

and SW stands for shape-based watermark. 

  

Table 5.2 Combinations of pairwise sequence alignment 

 

The four datasets are I1, I2, I3, and I4, where I1 is the original image (non-

watermarked) dataset, I2 to I4 are its watermarked variants. For these combinations, 

sixteen test images were encoded biologically as DNA sequences, two from each 

dataset I1, I2, I3 and I4. This indicates that in total, we had 16 DNA encoded images 

for pairwise local alignment. For executing the experiments with the above settings, 

the JAligner programs were customized for two combinations: SWA with an ID 

matrix and SWA with an MM matrix.  

b. Global alignment. NWA tries to get the best possible alignment by looking out the 

sequences from the beginning to the end of the sequence. 

 

Table 5.3 Combinations for global sequence alignment 
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In total, eight global alignments were performed by using the eight different 

combinations made up from four datasets: NWA with an ID and match-

mismatch (scores for match=2, mismatch=-1, and gap open=10 and gap 

extension=1) as shown in Table 5.3, where NW represents non-watermarked 

images, TW refers to text-based watermark, IW stands for image-based 

watermark and SW means shape-based watermark. The four datasets were I1, 

I2, I3, and I4, where I1 is the original image (non-watermarked) dataset, I2 to 

I4 are its watermarked variants. For these combinations, sixteen test images 

were encoded biologically as DNA sequences, two from each dataset I1, I2, I3 

and I4. It indicates that we had 16 biologically-encoded images in total for 

eight global alignment. For the purpose of execution, the JAligner programs 

were customized for two combinations: NWA with an ID matrix and NWA 

with an MM matrix. 

  

C. Pattern Matching by using Signature 

Step 5. After the local and global alignment process, common substrings were 

extracted from aligned sequences, we call it as signatures that were used for detecting 

a family of watermarked / non-watermarked variants of images. The method for the 

pattern matching was from the previously reported approach (Naidu & Narayanan, 

2014; Naidu & Narayanan, 2016; Naidu & Narayanan, 2016). 

 

Table 5.4 The number of signatures using pairwise local sequence alignments with 

SWA 

 

      

In Step 4, eight pairwise local alignments were employed to the eight combinations of 

Table 5.2, to extract signatures that were summarized in Table 5.4. 
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Table 5.5 The number of signatures by using global sequence alignments with NWA 

 

    The maximum number of signatures for shape-watermarked images is 40 with the 

match-mismatch scoring matrix. A minimum number of signatures is 1 for shape-

watermarked images with identity scoring matrix.       

    The signatures, extracted after employing the eight global alignments to eight 

combinations of Table 5.3, were represented in Table 5.5. The maximum number of 

signatures for shape-watermarked images is 37 with the match-mismatch scoring 

matrix. The minimum number of signatures is 1 for the non-watermarked images with 

identity scoring matrix. 

Step 6. In this final step, all signatures, obtained in Step 5 in their DNA sequence 

representation, were converted back to hexadecimal format. These signatures were 

tested against the watermarked / non-watermarked variants using ClamAV (Clamscan 

antivirus scanner) software. For example, if the signature was obtained from the text- 

watermarked images, the text- watermarked image dataset will be considered. 

5.5 Experimental Results 

Two experiments were performed. The first experiment determined DNA encoding 

and sequence alignment algorithm (i.e. SWA and NWA) for BIIIA by using four (I1, 

I2, I3 and I4) image datasets. The second experiment is further used to verify the 

validity of the encoding and sequence alignment algorithm for BIIIA by testing it on 

the MPS degraded image datasets that have the different images and different 

watermarking schemes with different types of watermark. 

 

Experiment 1. Selected test images from  I1, I2, I3 and I4 datasets were encoded 

biologically into DNA sequence as the BIIIA method Step 1 to Step 3. After that, 

sequence alignment algorithms, the SWA and the NWA are applied to the DNA -

encoded images to extract the common substring (signature) by employing BIIIA Step 
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4 and Step 5. Lastly, Step 6 was implemented to test whether the signature would 

identify the image datasets with their expected signatures. The results of Experiment 

1 are discussed below. 

 

Results of  Experiment 1 will be discussed in two parts: the first part (Result 1) explains 

the sixteen combinations (i.e., eight for NWA alignment and eight for SWA 

alignment) with identity percentage, similarity percentage, gap percentage, alignment 

length and alignment score that will partially answer sub-question 3(b) by using 

conserved region analysis;  the second part (result 2) will answer the sub-question 3(a), 

and will fully answer the sub-question 3 (b). 

Result 1. Conserved regions analysis and most suitable sequence alignment algorithm 

Table 5.6 shows that the percentages of identities and similarities range from 5.79% 

(lowest) to 100% (highest).  Lower values of identities and similarities reflect that 

lower percentages of DNA residues were conserved in the biologically-represented 

images and vice versa. In the case of the watermarked images aligned with SWA and 

ID matrix, the percentage of identities and similarities was 100%. These results reflect 

that by converting or representing images into biological representation, we can 

extract common substrings or subsequences. Moreover, from Table 5.6, the percentage 

of gaps ranges from 0% to 37.64%, which represents that the quantity of insertion and 

deletion varies from 0% to 37.64%. 0% gap percentage shows 100% match, and the 

matching percent decreased by an amount greater than the 0% gap percentage.   

    The work reported here followed the method adopted by Naidu and Narayanan 

(Naidu & Narayanan, 2016), i.e., a fixed combination of gap open (i.e. 10) and gap 

extended, i.e., 1 (we changed the gap extend from 0.5 to 1 penalty). We explored 

various combinations of SWA and NWA with ID and MM scoring matrices on 

watermarked image detection. From Table 5.6 and Table 5.7, an 85% and over 

similarity and identity percentage will reflect that higher amounts of conserved 

regions, which are conserved during the DNA representations of images. The 85% 

overall similarity and identity is found for the following combination of sequence 

alignment: 

a. SWA with ID matrix (SWA_ID) and SWA with MM matrix (SWA_MM) for text- 

watermarked image representation in DNA representation. 

b. SWA_ID for shape-watermarked DNA representation.  
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c. SWA_ID for image-watermarked DNA representation.  

d. SWA_ID for non-watermarked DNA representation.  

Table 5.6 The results of sequence alignments 

 

    As stated earlier, identity and similarity percentages are more than 85%, which 

shows that conserved regions are more preserved. SWA_ID had always an 85% or 

over percetahe of similarity and identity for the DNA representations of watermarked 

/ non-watermarked images. Because of that, from the above results, we conclude that 

SWA_ID is the best combination of sequence alignment for the two images 

represented, biologically. 

  

Result 2. For checking the suitability of DNA-based encoding in biology  

Table 5.7 provides the rates for detection of the three watermarked datasets (i.e., I2, 

I3, I4) and non-watermarked dataset (I1), employed in these experiments. Signatures 

from the text-watermarked images were tested against the text-watermarked images 

using Clamscan.  

    Table 5.7 shows a 100% detection rate for the individual signatures, except the 

SWA_ID of the image is 74.54%. This is less than the 100% detection rate but was 

resolved by employing multiple signatures together; we will obtain 100% detection 

rate.  

Shape-watermarked image signatures were tested against the shape-watermarked 

image using Clamscan. From Table 5.7, except for the SWA_ID DNA representation 

(i.e., 0%), all combinations have a 100% detection rate. This 0% detection rate was 

not resolved because we got only one signature. 

Image-watermarked images were tested by using Clamscan without any exception. 
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From Table 5.7, it is clear that the individual signatures had a 100% detection rate. 

 

Table 5.7 The detection rates of watermarked/non-watermarked images 

identification by using Clamscan  

 

Signatures of non-watermarked images were tested using Clamscan against non-

watermarked images. From Table 5.7, the lowest detection rate is 96.62% for 

NWA_ID. In this case, because one signature was obtained from pairwise alignment 

and it was not already tested, less than 100% detection rate could not be overcome. 

Rest of the cases have 100% detection rate. 

    With signatures extracted from eight local and eight global alignments, two local 

and one global alignments in total three alignment signatures had less than 100% 

detection rate. That indicates excellent detection performance for identifying 

watermarked / non-watermarked images. In total, 363 signatures were tested, 72 (i.e. 

19.83%) signatures had a 100% detection rate, the rest had less than 100% detection 

rate. 

    The performance of this proposed watermark identification was not compared with 

any other approach, because of its novelty. Traditional watermark extraction and 

identification are very specialised for only one watermarking scheme, so there is 

always a 100% detection rate for untampered watermarked images. Our approach is 

more robust, as it can be used for different kinds of untampered or non-degraded and 

watermarked images. 
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Discussion on Experiment 1 results 

    The proposed syntactic approach under the aid of string matching NWA and SWA 

with different combinations of identity and match-mismatch scoring matrix 

experimented on four datasets, three watermarked (i.e., text (I2), shape (I3) and image 

(I4)) and one non-watermarked (I1) datasets for automatically generating specific 

image signatures. These signatures were detected from all images of the same dataset. 

Our analysis shows in Tables 5.6 and Table 5.7 that the current BIIIA approach 

successfully and consistently identifies all watermarked / non-watermarked datasets. 

The ultimate purpose of any syntactic technique is to find the potential ‘grammar’ of 

an image from a relatively small number of test sets for robust automatic signature 

extraction. 
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Figure 5.5 Final BIIIA method 

The BIIIA has the notable concerns that it will identify unknown watermarked 

variants. The proposed work reveals the novelty that can identify different watermarks 

with one approach efficiently; the requirement for developing the watermark-specific 

approaches and identifying watermark becomes obsolete. Our findings for Result 1 

answers sub-question 3 (a), i.e., DNA representation of the image is suitable for BIIIA 

in Table 5.6. Sub-question 3 (b) was answered by Result 1 and Result 2, i.e., the SWA 

algorithm with ID matrix is the best combination of sequence alignment for 

biologically-encoded images by using BIIIA.  

Moreover, from the signatures tested by using the software Clamscan and the 
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experimental results provided in Table 5.7, it can be concluded that there is a 100% 

detection rate except for a very few cases. Additionally, the hypothesis of BIIIA 

algorithm proved partially correctness as we successfully identified watermarked/non-

watermarked images; testing of the final BIIIA method on image identification will be 

performed in Experiment 2. These findings led to finalize the proposed prototype of 

BIIIA in Figure 5.4; Experiment 1 for the BIIIA method finalized DNA and SWA with 

ID matrix. The proposed BIIIA method is shown in Figure 5.5 where all the findings 

of experiment 1 are considered. 

 

Experiment 2. Experiment 1 proved the best encoding scheme in biology, i.e., the 

DNA; the best sequence alignment algorithm, i.e., the SWA with ID matrix, is 

employed for further validation of the final BIIIA method shown in Figure 5.5 by using 

the image datasets prepared in Section 3.8.3, i.e., datasets D1 to D12. In other words, 

Step 1 degraded NWD (D2 to D6) dataset created by using D1 (NWND image dataset) 

and WD (D8 to D12) image datasets, utilizing D7 (WND image dataset) in Section 

3.8.3. Step 2 explains how we converted images into an acceptable form of sequence 

alignment. Step 3 explains the DNA representation method of images. Step 4 explains 

the pairwise local alignment of DNA using SWA. Step 5 explains the procedure of 

common substring (signature) extraction from aligned DNA. Finally, Step 6 deals with 

the procedure of testing the signatures by converting back to hexadecimal (hex) code. 

 

A. Biology-based encoding of the degraded images from MPS: 

Step 1. The dataset creation process was explained in Section 3.8.3, so we are not 

repeating it here.  

Step 2. Selection and conversion. In this step, the test set was prepared; we selected 

two random images. Thirty-two test images were used as the test set for image 

datasets: two from D1 and six from each dataset D2, D3, D4, D5 and D6 (i.e., two 

images for black and white scanning mode (BW), two images for color scanning mode 

(C) and two images for greyscale scanning mode (G). In total, six images are for each 

dataset from D2 to D6). Similarly, thirty-two test images were selected from the 

degraded and watermarked images: six images from each dataset from D8 to D12 (two 

images for black and white scanning mode (BW), two images for color scanning mode 

(C) and two images for greyscale scanning mode (G)). Also, two from each NWND 
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dataset D1 and D7 dataset. So, 64 images were selected. For resolving the issue of 

unavailability of conversion tools with regard to bigger images to a byte array for 

getting the required format, all dataset images were resized. The same conversion to 

hexadecimal of the BIIIA method was followed, i.e., an image to base64byte array, 

base64byte array to hexadecimal. 

Step 3. In this step, the extracted hexadecimal from Step 2 was converted into binary 

code and then into DNA, as the BIIIA method was explained in Section 5.4. 

B. Sequence Alignment  

The DNA sequence extracted from the test images in Step 3 (watermarked / non-

watermarked and degraded) were used as the input to JAligner for sequence alignment.  

Step 4. In this step, pairwise local alignment was accomplished as explained below: 

(a) Pairwise local alignment. SWA with an ID scoring matrix was used for pairwise 

local alignment.  

    Two extracted DNA sequences from the two images (i.e., from D1 to D12) in Step 

3 was utilized as an input for the JAligner. In the proposed work, test experiments on 

combinations of each dataset are shown in Table 5.8, where R1, R2, R3, R4, and R5 

are the round numbers 1, 2, 3, 4, and 5 of MPS. BW represents black and white, C 

stands for colour, and G refers to greyscale scanning mode. We have six datasets, say, 

D1, D2, D3, D4, D5, and D6 (where D1 is the original image dataset, D2 to D6 are its 

degraded variants of non-watermarked images) as shown in Table 5.8.    

    From these datasets based on the selected test images, pairwise local alignments 

(using SWA and ID matrix) will be performed on the extracted DNA of two images 

from Step 3, one alignment for D1 images. We applied a similar procedure to three 

alignments (i.e., one for each BW scanned, color and greyscale scanned images) for 

dataset D2; between the two test images, the DNA from Round 1 (R1) was degraded 

in black and white (BW) scanning mode; then, between the two images, R1 was 

degraded in color (C) scanning mode; lastly, between the two R1 degraded images in 

greyscale (G) scanning mode; so on for D3, D4, D5 and D6 having three alignments. 

In total, 16 pairwise local alignments were performed for non-watermarked and 

degraded datasets. 
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     Thirty-two images were used as test sets represented biologically as DNA, two 

from D1 and six from each dataset D2, D3, D4, D5 and D6. This indicates that, in 

total, we had 32 biological representations of images (i.e., DNA) available for pairwise 

local alignment. Biological representation (i.e., DNA) was obtained from images to 

get the most common substring pattern or to find conserved regions. In our case, 32 

DNA representations were available which result in 16 sequence alignments by using 

SWA algorithm with the ID matrix.      

Table 5.8 Combination used for pairwise local alignment of non-watermarked 

images 

 

    A similar combination and procedure was followed for the watermarked and 

degraded image datasets from D7 to D12 for pairwise local alignment (where D7 is 

the original watermarked images and D8 to D12 are its degraded variants) as shown 

in Table 5.9.  

Table 5.9 Combination used for pairwise local alignment of watermarked images 
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    Thirty-two images were used as test sets that were represented biologically as DNA, 

two from D7, and six from each dataset D8, D9, D10, D11 and D12. This indicates 

that in total we had 32 biological representations of the images (i.e., DNA) which are 

available for the pairwise local alignment. In our case, 32 biological representations 

were available, which resulted in 16 sequence alignments by using SWA with the ID 

matrix. 

    In total, 32 local alignments were performed, 16 local pairwise alignments for non-

watermarked and degraded images, 16 for watermarked degraded images. 

C. Pattern Matching using Signatures 

Step 5. The signature extraction process was followed from the previously reported 

Naidu and Narayanan approach (Naidu & Narayanan, 2016). Aligned sequences were 

obtained from Step 4; those common substrings were extracted, which we call it as 

signatures that were used for detecting a family of degraded watermarked / non-

watermarked variants of the images. 

Table 5.10 Signatures from non-watermarked and degraded images after MPS by 

using pairwise local alignment with SWA algorithm 

 

Signatures were extracted from 16 aligned sequences of NWD and NWND images. 

Pairwise alignments, resulting for signature extraction, were summarized in Table 

5.10, where the number of signatures were extracted for individual cases (i.e., 

alignments) with the maximum and minimum length of signatures. The maximum 

number of nine signatures were obtained for D2, the minimum number was 7 for 

Dataset D1. The minimum length of a signature was 6 and the maximum was 492 for 

D2 and D1. For WD and WND images, signatures were extracted from 16 aligned 

sequences of WD and WND images.  Results, after pairwise alignment and signature 
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extraction, are summarized in Table 5.11, where a number of signatures was extracted 

for individual cases (i.e. alignments), with the maximum and minimum lengths of 

signatures were assembled. 

    The maximum number of signatures was nine for the D7 dataset and the minimum 

was eight for many datasets like D8, BW scanned datasets. The minimum length of a 

signature was 6 for many datasets; the maximum was 182 for D10 color images.  

Table 5.11 Signatures from watermarked and degraded images after MPS by using 

pairwise local alignment with SWA algorithm 

 

Step 6. In this final step, the DNA sequence representation of all signatures obtained 

in Step 5 were converted back to hexadecimal format. These signatures were tested 

against degraded variants of watermarked / non-watermarked images using ClamAV 

(Clamscan antivirus scanner); for example, the signatures, obtained from the 

watermarked images, are tested on original watermarked image datasets; the 

signatures, obtained from watermarked and degraded images from black and white 

(B&W) scanning modes (i.e. D8) of degradation, were tested against the dataset D8 

of BW scanned images. In short, signatures, obtained from dataset D7 particular 

scanned mode images, are tested on the same dataset D7 with the same scanning mode 

images. 

Results. The results of Experiment 2 will be presented in two parts: the first part (result 

1) will explain each of the 32 combinations (i.e., 32 SWA alignments) related to 

identity percentage, similarity percentage, gap percentage, alignment length and 

alignment score that will analyses the conserved regions in the watermark/non-

watermarked/degraded images and their non-degraded variants. The second part 

(result 2) will answer sub-question 3(c). 
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Result 1. Conserved regions analysis 

    Table 5.12 shows that the percentages of identities and similarities range from 

90.28% (lowest) to 97.08% (highest). 

  

Table 5.12 The results of sequence alignment of watermarked/non-watermarked 

DNA-based encoding 

 

    Higher values of identities and similarities indicate that higher percentages of the 

DNA residues were conserved in the biologically-represented images (i.e., DNA) and 

vice-versa. In the case of DNA-represented images after MPS, variants are aligned 

with the SWA and ID matrix, the percentage of identities and similarities was between 

90.28% and 97.08%.  

    These results indicate that we could successfully extract common substrings or 

subsequences (i.e. signatures) by converting or representing images into biological 

representations (i.e. DNA). The maximum number of signatures extracted was 9 and 

the minimum was 7. Moreover, from Table 5.12, the percentage of gaps, ranged from 

2.72% to 9.92%, represents that the quantity of insertion and deletions, ranged from 

2.72% to 9.92%. During the alignment between the two strings, a 0% gap indicates a 
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100% match as the matching percent is decreased; the amount of the gap will also 

increase.  

    The BIIIA method followed the Naidu and Narayanan approach (Naidu & 

Narayanan, 2016) or gap open and gap penalties, i.e., fixed combination of gap open 

(i.e. 10) and gap extend (i.e., 1), we changed the gap penalty from 0.5 to 1). We 

explored SWA algorithm with the ID scoring matrices on watermarked / non-

watermarked and degraded variants by using MPS for image detection. From Table 

5.12, every dataset has the percentage of similarity and identity, which is more than 

85%, that will reflect a higher number of conserved regions, are conserved during the 

DNA representation of the images.  

    From these results, we can conclude that the chances for identifying images for their 

particular categories will increase. In the next few paragraphs, we will show the 

identification rates for different cases of our research. 

Result 2. Detection rates for watermarked/non-watermarked and degraded images 

and their original variants. 

    Tables 5.13, 5.14, 5.15 and 5.16 provide the detection rates for the detection of the 

NWND dataset (i.e., D1), NWD datasets (i.e., D2, D3, D4, D5, and D6), WND dataset 

(i.e., D7), and WD (i.e., D8, D9, D10, D11, and D12) images. In total, 32 pairwise 

alignments were performed by employing SWA algorithms, 250 signatures were 

extracted in Step 5 for test. 

Table 5.13 The detection results of non-watermarked and non-degraded image by 

using signatures 

  
    Extracted signatures, after pairwise alignment from dataset D1, were tested against 

the images of dataset D1 using Clamscan as Step 6 of the BIIIA method. Results for 

their detection rate are presented in Table 5.13 where MS1 symbolizes signature one 

and MS2 denotes signature two, so on. Pairwise alignments performed by employing 

SWA and seven signatures were extracted in Step 5 for test.  
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    From Table 5.13, it is clear that, out of seven signatures, three have a 100% 

detection rate, two have 83.33%, one has a 66.66% detection rate, and one has a 0% 

detection rate. From these results, we conclude that we successfully identified all 

images belonging to dataset D1 (i.e. NWND images) by using extracted signatures 

with the help of our novel syntactic approach for image identification, i.e., BIIIA. 

    Results for the non-watermarked and degraded (NWD) images are presented in 

Table 5.14. For dataset D2, R1BW is a combination of two words: the first one R1 

stands for Round 1 of MPS; and the second one BW refers the images are scanned in 

black and white mode. Similarly R1C denotes Round 1 of MPS where images are 

scanned in color mode; R1G represents Round 1of MPS and images are scanned in 

greyscale mode and so on; for datasets D3, R2BW, R2C, R2G, etc. Clamscan was 

used for testing datasets D2, D3, D4, D5 and D6 images. Fifteen of pairwise 

alignments were performed by employing SWA algorithm; in total, 125 signatures 

were extracted in Step 5 for test. 

    Table 5.14, the first column has dataset number, the second column contains the 

images for which detection was performed. The third column keeps the number of 

signatures having 100% detection rate. The fourth column determines the signatures 

having less than 100% detection rate; the fifth column shows the total number of 

signature extracted. Lastly, the sixth column will have the maximum rate of detection. 

Table 5.14 The detection results of non-watermarked and degraded image by 

signatures testing 

 

    Dataset D2 contains three kinds of images: R1BW, R1C and R1G. Signatures of 

R1BW images were tested against R1BW images using Clamscan. Table 5.14 shows 

that 100% detection rate was achieved with eight out of nine signatures individually 
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on R1BW images of dataset D2. 

    Similarly, with R1C images, eight signatures were tested against R1C images and 

results indicate a 100 % detection rate for six signatures out of eight. The same 

followed for R1G images: they were tested against R1G images and a 100% detection 

rate was achieved for seven signatures out of eight. 

    The same procedure was followed for testing dataset D3 images: R2BW, R2C, and 

R2G non-watermarked and degraded (NWD) images. The results show a 100% 

detection rate for each group of images. Table 5.14 shows that signature test results 

have a 100% detection rate for the datasets D4 (R3BW, R3C, and R3G), D5 (R4BW, 

R4C, and R4G) and D6 (R5BW, R5C, and R5G) images without any exception. Out 

of 125 signatures tested, 85 signatures had a 100% detection rate, and 40 signatures 

have less than 100% detection rate. In short, the proposed approach had an average 

detection rate of 100% for identifying non-watermarked images due to degradation 

from MPS in different scanning modes. We conclude from the above discussion and 

results that our novel syntactic approach successfully identified the non-watermarked 

and degraded images in various scanning modes with a 100% detection rate. The 

above analysis for NWND and NWD images partially answers our research sub-

question 2 (c). We identify the non-watermarked and degraded images by using MPS, 

non-degraded and non-watermarked images by using the proposed syntactic approach. 

    Datasets D7 to D12 contain watermarked and degraded images after MPS. 

Extracted signatures from dataset D7 were tested against the images of dataset D7 

using Clamscan. Results are shown in Table 5.15 where MS1 symbolizes signature 

one; MS2 stands for signature two, so on for MS3, MS4, etc. 

Table 5.15 The detection results of watermarked and non-degraded images by testing 

signatures 

 

    Table 5.15 shows that, out of nine signatures, five had a 100% detection rate, three 

had 66.66%, and the last one had a 0% detection rate. Results show that we 
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successfully identified all images belonging to dataset D7 (i.e., WND images) by using 

the proposed syntactic approach with the extracted signatures. 

    Results of the extracted signature testing for watermarked and degraded images are 

presented in Table 5.16. For dataset D8, R1BW is a combination of two words: the 

first R1 represents Round 1 of MPS; the second BW designates that the images are 

scanned in black and white mode. Similarly, R1C corresponds to Round 1 of MPS 

where the images are scanned in color mode; the R1G refers to Round 1 of MPS and 

images are scanned in greyscale mode, so on for dataset D9 (R2BW, R2C, R2G), D10 

(R3BW, R3C, R3G), D11 (R4BW, R4C, R4G) and D11 (R5BW, R5C, R5G) images.  

    For test datasets D8, D9, D10, D11 and D12 images, Clamscan was used. Fifteen 

pairwise alignments were performed by employing SWA; 125 signatures were 

extracted in Step 5 for test. 

    Dataset D8 contains three types of the watermarked and degraded (WD) images: 

R1BW, R1C and R1G images. Signatures of R1BW images were tested against R1BW 

images using Clamscan. From Table 5.16, it is clear that the maxima of 50% detection 

rate was achieved after testing eight signatures individually on R1BW images. 

Similarly, on R1C images, eight signatures were tested against R1C images and results 

indicate a 100 % detection rate. In the same way, R1G images were tested against R1G 

images and a 100% detection rate was achieved. The same procedure was followed 

for testing dataset D9 images (R2BW, R2C, and R2G images); the results show a 

100% detection rate for each group of images. 

Table 5.16 The results of watermarked and degraded images by testing signatures 

 



127 

 

    For D10 dataset (R3BW, R3C, and R3G) testing results shows a 100% detection 

rate. For D11 (R4BW, R4C, and R4G) and D12 (R5BW, R5C, and R5G) images 

signatures were tested without exception from Table 5.16. It is clear that the signatures 

have a 100% detection rate except for R5BW where the maximum detection rate was 

around 83.33%. Out of 125 signatures tested, 57 signatures had a 100% detection rate 

and 68 signatures had less than 100% detection rate. 

    In short, the proposed approach has an average detection rate of 95.55% for 

identifying watermarked images after degraded by MPS in multiple scanning modes. 

We conclude from the above discussion and results that our novel syntactic BIIIA 

approach successfully identified the watermarked and degraded images in various 

scanning modes with 100% detection rate except for two cases, R1BW and R5BW, 

where 50% and 83.3% detection rates, respectively, were achieved.  

    The above analysis for WND and WD images partially answers our research sub-

question 2 (c). We can identify the watermarked and degraded images after MPS as 

well as non-degraded and watermarked images by using the proposed syntactic 

approach. 

    The performance of our identification of degraded images for either watermarked 

or non-watermarked was not compared with any of other methods, because of its 

novelty. In traditional, the image identification is lack of the syntactic string-based 

approach. Our approach is more robust as it can be utilized for different kinds of 

images, i.e., either for watermarked / non-watermarked images, tampered or degraded 

by MPS.  

5.6 Discussions 

The ultimate purpose of the syntactic method for robust and automatic extraction of 

signatures is to discover the possible ‘grammar’ of an image from a relatively small 

number of test sets. The proposed syntactic BIIIA approach for the automatic 

generation of specific dataset image signatures was tested by using two experiments: 

Experiment 1 based on I1, I2, I3 and I4 datasets using the initial BIIIA method, shown 

as Tables 5.6 to Table 5.7; Experiment 2 based on D1 to D12 datasets using the final 

BIIIA method, shown on the Tables 5.13 to Table 5.16. The experiments answer 

Question 2 as a whole; it is possible to extract syntactic patterns to identify 

watermarked (W) / non-watermarked (NW) and their degraded variants images by 
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using biological representation and bioinformatics alignment algorithms. 

Additionally, with sub-question 2(a), the answer was supported by Experiment 1, i.e., 

DNA is suitable for encoding in biology based on the BIIIA, shown as in Tables 5.6 

and Table 5.7; for sub-question 2 (b), the answer was also justified by using 

Experiment 1, i.e., SWA with ID matrix is the most suitable bioinformatics sequence 

alignment algorithm for the BIIIA (see Tables 5.6 to 5.7). Experiment 2 answered sub-

question 2 (c); it is possible to identify a watermarked/non-watermarked and degraded 

images from the best biology-based encoding (i.e., DNA) and the best sequence 

alignment algorithm (i.e., SWA with ID matrix) from sub-questions 2 (a) and (b), 

shown in Table 5.13 to Table 5.16. 

   The proposed BIIIA method detected all images of the same dataset for all degraded 

and original variants of the watermarked / non-watermarked images datasets, i.e., from 

I1 to I4 datasets and from D1 to D12 datasets images. Our analysis shows in Table 5.6 

to Table 5.7 for I1 to I4 datasets, Table 5.13 to Table 5.16 for D1 to D12 datasets, the 

current image identification BIIIA successfully and consistently identified all 

watermarked / non-watermarked and degraded datasets after MPS.  

    These results led to final verification of the hypothesis proposed in Section 5.2, i.e., 

the research hypothesis for watermarked/non-watermarked and degraded images is 

tested correct; it is possible to identify syntactic structures or patterns using 

bioinformatics tools and techniques that help to determine whether a degraded / non-

degraded image contains a type of watermark or without a watermark that helps to 

identify the images of their expected categories.  

    The BIIIA method has some significant concerns about whether it will identify 

watermarked and degraded variants; secondly, whether degradation of images will be 

identified. The proposed work unveils the requirement for novel software technology 

that identifies the degraded images by using different kinds of degradation with 

various watermarks using one approach effectively. It indicates the need for 

developing specific approaches identifying watermarks and degradation. The future 

possibilities of this research are to implement a software system that will successfully 

identify NWD, NWND, WD and WND images and extend it for identification of 

different kinds of watermarked images (i.e., media / non-media watermarked), after 

degradation.  



129 

 

    Our interest is focusing on identification of watermarked / non-watermarked and 

degraded / non-degraded images by using a biological representation of the image, 

bioinformatics alignment algorithm and pattern matching; it does not consider rapid 

evolution of other forms of watermarks, such as media / non-media watermarks and 

divergent varieties of watermarking algorithms. Furthermore, we did not examine the 

other types of degradation of watermarked / non-watermarked images for the purpose 

of identification.  

    Formation of such big dataset by using divergent degradation methods to create a 

different kind of watermarked with distinct watermarking approaches, will allow us to 

verify the robustness of the proposed approach. The proposed approach is to extract 

vital details of an image (i.e., watermarked / non-watermarked and degraded images). 

The approach summarised in this thesis may be appropriate to different watermarking 

algorithms. 

5.7 Summary  

A novel BIIIA method based on biologically-based encoding of images, sequence 

alignment, and pattern matching was proposed in this chapter. The image analysis 

based on pattern matching using the biology-based encoding of images and sequence 

alignment (i.e., bioinformatics-inspired) was employed for the first time to deal with 

the identification of watermarked / non-watermarked and degraded images and their 

original variants. To find the most suitable encoding and sequence alignment 

algorithms for the BIIIA method, we repeated biology-based encoding with DNA and 

the same for sequence alignment with the NWA and the SWA. DNA encoding of 

images in biology and the SWA with the ID matrix is the most suitable one for the 

BIIIA method. 

    This research work claims a notable advancement in the area of bioinformatics- 

inspired image analysis, one crucial area for future work is to see the effect of different 

gap open and gap extended penalties for the BIIIA method. The second is to check 

whether BIIIA works with different watermarking algorithms and different types of 

media / non-media watermarks. 

   To conclude this chapter, we have shown how biology-based encoding and sequence 

alignment algorithms help to resolve the research question of the watermarked/non-

watermarked and degraded image identification problem. We have proven that our 
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BIIIA method works well for the identification of watermarked/non-watermarked and 

degraded images. In order to explore a research method for a bioinformatics-inspired 

grouping, the next chapter will expand this idea. 
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Chapter 6  

BIIGA: Bioinformatics Inspired Image Grouping Approach 

    The aim of this chapter is to answer the third question. 

In Section 6.1, we introduce the background of different 

approaches for image phylogeny (i.e. grouping) of 

degraded / non-degraded images after MPS by using 

data mining and machine learning. In Section 6.2, we 

describe the hypothesis and research questions 

addressed in this chapter. The overview and steps of 

BIIGA are explained in Section 6.3 and Section 6.4, 

respectively. In Section 6.5, phylogenetic tree and 

statistical analysis are explained. A discussion of the 

results of the phylogenetic tree and BIIGA analysis are 

presented in Section 6.6. In Section 6.7, the chapter is 

summarised. 
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6.1 Background 

Phylogeny explains how a genetically-connected set of organisms evolve with time. 

In other words, it tells us relationships between a collections of biological things 

(genes, organs, proteins, etc.) that have advanced from a common forefather. A 

phylogenetic tree is a tree-like diagram for representing the evolutionary relationship 

between the different biological species. These trees demonstrate the evolutionary 

connections among different species or elements—their phylogeny—in light of the 

resemblance and dissimilarity in the physical or hereditary attributes. 

    Multimedia phylogeny is used to develop phylogenetic trees of images, videos and 

audios to find the history of evolution in these digital entities, while grouping relevant 

and irrelevent entities. For example, audio phylogeny (Nucci, Tagliasacchi, & Tubaro, 

2013), Image Phylogeny Trees (IPTs) (Dias, Rocha, & Goldenstein, 2012; Dias, 

Rocha, & Goldenstein, 2010; Dias, Goldenstein, & Rocha, 2013), video phylogeny 

(Dias, Rocha, & Goldenstein, 2011), image phylogeny forests (Dias, Goldenstein, & 

Rocha, 2013; Costa, Oikawa, Dias, Goldenstein, & Rocha, 2014), large scale scenarios 

(Dias, Goldenstein, & Rocha, 2013) and multiple parenting relationships (Oliveira, et 

al., 2014). This research focuses on the image phylogenies. Image phylogeny explains 

how we can find parent-child relationships among near duplicate images. Near 

duplicate images are transformed copies of an image that conserve its semantics. In 

our case, we use the term “near duplicate images” for watermarked/non-watermarked 

images generated from MPS.  

    In this thesis, the main aim is to redesign the image phylogeny tree, considering the 

MPS degraded images in different scanning modes (i.e., grayscale, colour, black and 

white) by using bioinformatics concepts, i.e., MSA and tools. Image phylogeny 

approaches disussed in the literature were based on the idea of manifold and spectral 

clustering, dimensionality reduction, viewpoint localisation, heuristics-based solution-

oriented Kruskal algorithms, optimum branching or automatic optimum branching, 

etc. None of the above approaches uses bioinformatics concepts like MSA to develop 

an image phylogenetic tree. This inspired us to extend the work of the image 

phylogenetic tree by using bioinformatics concepts.     
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    Data mining, machine learning and phylogenetic approaches were tested for 

analysing image phylogeny to generate results that group images in two categories as 

shown below: 

a. MPS degraded / non-degraded images grouping 

 Between NWD images by using NWND after MPS 

 Between WD images by using MPS and WND images   

b. Watermarked and non-watermarked images grouping.  

    In the next paragraphs, we will check whether the data mining and machine learning 

approaches classify the images as the above categories. 

A. Data mining and machine learning for degraded / non-degraded images grouping 

Initial experiments for image phylogeny development related to degraded images 

grouping were performed by employing Weka3.6 and the neural network to classify 

the degraded / non-degraded images from aligned biologically-encoded images in 

DNA sequences. Data mining rules were ID3, J48, JRip, OneR and PART and a simple 

neural network was used, i.e., a multi-layer perceptron with zero nodes and a training 

time of 10.  

a. Between NWD images after MPS and NWND images 

Table 6.1 shows that during training, the data mining rule ID3 had the maximum 

correct classification rate of 98.9583%, after tenfold validation, it decreased to 

15.625% which indicates ID3 is not suitable for the classification purpose of WD and 

WND images. Similarly, for all the other data mining rules, the classification rate 

decreased after tenfold validation, i.e., for J48 from 97.9167% to 28.125%, JRip from 

65.625% to 13.5417%, OneR from 30.2083% to 26.0417%, PART from 97.9167% to 

40.625%. These tell us that none of the tested data-mining rules is suitable for 

classification of the WND and WD images. For the multi-layer perceptron (MLP), the 

accurate classification rate during training was 6.25%; after the tenfold validation, it 

increased to 7.2917%, these results also indicate that MLP is also not a good choice 

for classification purposes. That motivated us to use an alternative choice for the 

classification of WND and WD images.  
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Table 6.1 The classification results of watermarked and degraded/non-degraded 

images by using data mining and MLP 

 

b. Between WD images from MPS and WND images  

From Table 6.2, it is clear that, during training, the data mining rule ID3 had the 

maximum correct classification rate which is 100%; after tenfold validation, it 

decreased to 21.875% which indicates ID3 is not suitable for the classification of WD 

and WND images.  

Table 6.2 The classification results of non-watermarked and degraded/non-degraded 

images by using data mining and MLP 

 

    Similarly, for all the other data mining rules, the classification rate decreases after 

tenfold validation, i.e. for J48 from 94.7917% to 25%, for JRip from 72.9167%% to 

15.625%, for OneR from 29.1667% to 12.5%, for PART from 96.875% to 34.375%. 

These results tell us that none of the tested data-mining rules is suitable for 

classification of the NWND and NWD images. For the MLP, the accurate 

classification rate during training was 8.3333%; after the tenfold validation, it 

decreased to 4.1667%, these results also indicate that MLP is not a good choice for 
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classification purposes. That again motivated us to use an alternative choice for the 

classification of NWND and NWD images.  

B. Data mining and Machine Learning for grouping Watermarked and non-

watermarked images  

    Finally, all DNA sequences of watermarked / non-watermarked and degraded / non-

degraded images were aligned to check whether machine learning and data mining 

approaches would group watermarked / non-watermarked images correctly.  

Table 6.3 The classification results of watermarked/non-watermarked and 

degraded/non-degraded images by using data mining and MLP 

 

    Table 6.3 shows that, during training, the data mining rule ID3 had the maximum 

correct classification rate 99.4792%; after tenfold validation, it decreased to 16.1458% 

which indicates ID3 is not suitable for the classification of watermarked / non-

watermarked images. Similarly, for all the other data mining rules, the classification 

rate decreased after tenfold validation, i.e., for J48 from 97.9167% to 28.6458%, for 

JRip from 72.9167% to 11.4583%, for OneR from 14.5833% to 5.2083%, for PART 

from 96.3542% to 30.2083%. These results tell us that none of the tested data mining 

rules is suitable for classification of the degraded and variants of watermarked / non-

watermarked mages. For the multi-layer perceptron (MLP), the accurate classification 

rate during training was 3.6458%; after the tenfold validation, it decreased to 2.083%, 

these results indicate that MLP is also not an ideal choice for classification purposes. 

This indicated that the tested approaches of data mining and machine learning are not 

good for classification of watermarked / non-watermarked images. In the literature, 
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phylogenetic trees have been a proven technique for grouping of the species, which 

motivated us to check the concept phylogenetic tree in bioinformatics as an alternative 

for WD, WND, NWND or NWD images in all the three cases.  

    The core idea behind this approach is that the images can mutate as living beings 

(animals, plants, etc.) evolved in biology. The evolution process of images is 

performed by MPS degradation, which is considered relevant to the mutation of living 

beings in this thesis. To test, whether a phylogenetic tree can group the watermarked 

/ non-watermarked and non-degraded images and their degraded variants after MPS, 

by using our authentically novel approach for the automatic grouping to their relevant 

group of the images, three phylogenetic trees were generated: 

 Phylogenetic Tree 1 for grouping degraded and non-degraded images between 

NWD images and NWND images.   

 Phylogenetic Tree 2 for grouping the degraded / non-degraded images between 

WD images and WND images for grouping degraded / non-degraded images. 

 Phylogenetic Tree 3 for grouping watermarked / non-watermarked images 

between non-watermarked / watermarked images.  

    Phylogenetic and molecular evolutionary analysis was conducted by using MEGA 

version 7 (MEGA7) (Kumar, Stecher, & Tamura 2015) for watermarked/non-

watermarked images. MEGA7 is an open source tool, by which three different 

phylogenetic trees were generated by using different datasets with a maximum 

likelihood approach.  

6.2 Hypothesis Test and Research Questions 

The research hypothesis is that for watermarked / non-watermarked and degraded 

images; it is possible to identify syntactic structures or patterns using bioinformatics-

based tools and techniques that determine whether a degraded / non-degraded image 

contains a type of watermark without a watermark or has specific degradation that 

helps to group images in the expected categories. If this research hypothesis does not 

apply to image grouping, it is highly unlike that syntactic structures, extracted by using 

bioinformatics tools, will be used for grouping images. The third research question is 

to be answered in this chapter as stated below: 

Q.3. Is it possible to extract syntactic patterns or signatures for grouping the 

watermarked / non-watermarked images before and after MPS degradations by using 
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biology-based representation, bioinformatics alignment algorithms and phylogenetic 

trees? 

Sub-question 1. Is it possible to group NWD images and NWND images by using 

phylogenetic tree analysis?  

Sub-question 2. Is it possible to group WD images and WND images by using 

phylogenetic tree analysis? 

Sub-question 3. Is it possible to group watermarked / non- watermarked images from 

a mix of NWD, NWND, WD, and WND images by using the phylogenetic tree? 

6.3 BIIGA : Overview 

For successful implementation of the research experiments, the dataset, test 

environment conditions and a method are required.  

Dataset 

In this chapter, we focus on grouping the NWND / NWD,  WND / WD, WD/ WND, 

NWND/NWD images. However, at this stage, we are not clear what the implication 

is for using biologically-based image encoding, multiple sequence alignment and 

phylogenetic tree for grouping the images. This rationale limits us to one 

watermarking algorithm and one watermark from a potentially large number of 

watermarking algorithms and the watermarks. 

 

Figure 6.1 BIIGA method: overview 
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   Eight image datasets were used, i.e., G1 to G8, where G1 to G4 comprise non-

watermarked images (G1) and their MPS degraded copies in three scanning modes: 

black and white (BW), colour (C) and greyscale ((G). G5 to G8 are made up of the 

watermarked images (G5) and the degraded copies in three scanning modes: black and 

white (G6), colour (G7) and greyscale (G8). More details about the dataset preparation 

were explained in Section 3.8.3 for  BIIGA. 

Novel Method BIIGA and Test environment conditions 

The BIIGA method consists of three main steps. biology-based encoding of images, 

multiple sequence alignment and phylogenetic tree creation as shown in Figure 6.1. 

The test environment conditions along with the steps of BIIGA method are explained 

in the next few paragraphs. 

Biology-based encoding of images 

Images of the all datasets, i.e., from G1 to G8, were encoded biologically using the 

same biologically-based image to DNA encoding utilised in Chapter 5 for the BIIIA 

system. Figure 6.2 shows that  these DNA sequences of the biologically-encoded 

images were used as the input to MAFT for multiple sequence alignment.  

 

Figure 6.2 Screeenshot of the biologically-encoded images 

Multiple Sequence Alignment 

Bioinformatics-based multiple sequence alignment is used for aligning all the 

extracted DNA in the three cases: (a) 96 extracted DNA from NWND and NWD 

images (b) 96 extracted DNA from WND and WD images (c) 192 extracted DNA 

from NWND, NWD, WND and WD images. 
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Phylogenetic Tree Creation and Statistical Analysis 

Phylogenetic trees were generated by using MEGA7 with a maximum likelihood 

approach. The statistical analysis was performed on all groups of phylogenetic trees 

by calculating true positive, true negative, false positive, false negative, sensitivity, 

negative predictive value, precision and specificity as described in Section 2.2.4. The 

next section deals with a detailed explanation of the steps of BIIGA.  

6.4 Steps of BIIGA  

In Step 1, the datasets G1 to G8 including the watermarked / non-watermarked and 

degraded images were created. Step 2 explains how we converted the images into an 

acceptable form of sequence alignment. Step 3 explains the image representation 

method in DNA sequence. Step 4 explains multiple sequence alignment of DNA 

sequences. Step 5 explains the procedure of generating a phylogenetic tree. Finally, 

Step 6 deals with statistical analysis of the generated phylogenetic tree. The steps used 

in the BIIGA method are shown in Figure 6.3. 

 

Figure 6.3 BIIGA method 
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A. Biology-based encoding of images into DNA 

Step 1. Dataset Creation. Datasets created in Section 3.8.4 and near duplicate image 

datasets for BIIGA were used in this chapter to create phylogenetic trees. The three 

different combinations of datasets were used to create three phylogenetic trees as 

described below:  

 Datasets G1 to G4: NWND and NWD image datasets.  By using these  datasets, 

the first phylogenetic tree was created,  tested and examined, it would 

successfully group NWND and NWD images. 

 Datasets G5 to G8: WND and WD image datasets. By utilising this dataset, the 

second phylogenetic tree was generated to test and analyse that it would 

conveniently group WND and WD images. 

 Datasets G1 to G8: NWND, NWD, WND and WD image datasets. By 

exploiting these datasets, the third phylogenetic tree was developed to test and 

investigate that it would successfully group watermarked / non-watermarked 

images. 

Step 2. Hexadecimal conversion. In this step, datasets G1 to G8 were converted into 

base64 byte array and then to hexadecimal. 

Step 3. Hexadecimal to DNA. In this step, the extracted hexadecimal data from the 

dataset  G1 to G8 in Step 2 were converted to the binary code and then into the DNA. 

The DNA-based encoding scheme was as same as in Chapter 5. The rules for the 

transformation of the hexadecimal into the binary code were followed from the Naidu 

and Narayanan approach (Naidu & Narayanan, 2016) :‘0’ → ‘0000’; ‘1’ → ‘0001’; ‘2’ 

→ ‘0010’; ‘3’ → ‘0011’; ‘4’ → ‘0100’; ‘5’ → ‘0101’; ‘6’ → ‘0110’; ‘7’ → ‘0111’; ‘8’ 

→ ‘1000’; ‘9’ → ‘1001’; ‘a’ → ‘1010’; ‘b’ → ‘1011’; ‘c’ → ‘1100’; ‘d’ → ‘1101’; ‘e’ 

→ ‘1110’; and ‘f” → ‘1111’ . 

Rules for the conversion of a binary code to DNA were followed from the Naidu and 

Narayanan approach (Naidu & Narayanan, 2016): ‘00’ → ‘A’; ‘11’ → ‘T’; ‘10’ → ‘G’; 

and ‘01’ → ‘C’. 

B. Sequence Alignment  

Step 4. Multiple sequence alignment. The multiple sequence alignment program 

MAFT (Katoh & Standley, 2016) will align sequences of the biologically-encoded 

image datasets in the following three situations.   
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 96 extracted DNA sequences of NWND and NWD images from G1 to G4 

datasets. 

 From G5 to G8 datasets, 96 extracted DNA sequences of WND and WD 

images. 

 192 extracted DNA sequences of NWND, NWD, WND and WD images from 

G1 to G8 datasets.  

C. Phylogenetic Tree Creation and Statistical Analysis 

Step 5. Phylogenetic tree creation. a phylogenetic tree is estimated from the multiple 

aligned sequences obtained in Step 4. Molecular phylogenetic trees are in statistical 

ways of understanding the grouping and classifying images during the evolution 

process. There are different ways nowadays to generate a phylogenetic tree, each has 

its strengths and weaknesses in Tables 2.1, 2.2, 2.3 and 2.4. In Chapter 2, the 

approaches for phylogenetic tree construction were compared in Table 2.4;  it was 

found that the phenetic approach with the maximum likelihood was most suitable for 

our research work on grouping the watermarked/non-watermarked and degraded 

images. The settings for phylogenetic tree creation are as follows: 

Approach: Phenetic approach 

Tool: MEGA 7 (see Section 3.8.7) 

Biological character for image encoding: DNA 

Data as input for phylogenetic tree:  Character-based method, DNA of the MSA 

aligned sequence, obtained from Step 4. 

Clustering algorithm: a maximum likelihood approach based on the Tamura-Nei 

model (Tamura & Nei, 1993) 

Computational method for finding optimal trees:  Heuristic algorithms 

Output: Phylogenetic tree 

Step 6. Statistical analysis. Tree evaluation must be performed in such a way that it 

clearly conveys the relevant information to others. The first evaluation in phylogenetic 

tree creation is bootstrap analysis as the number of groups increases; the bootstrap 

value starts decreasing and becomes meaningless as discussed in Section 2.2.4; we 

have four different groups to analyse. Due to this limitation, we are not evaluating 
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phylogenetic trees with phylogenetic analysis, though in the MEGA7 setting, we chose 

700 value for bootstrap analysis to get a more accurate tree.  

    Statistical analysis was performed for actual validation of the correct grouping by 

using the process of phylogenetic tree reconstruction. Four groups were created for 

the first two phylogenetic trees: Group 1 to Group 4, i.e., Group 1 for  black and white 

(BW) scanned  images, Group 2 for NWND / WND images, Group 3 for colour (C) 

scanned images and Group 4 for greyscale (G) scanned images. As the third 

phylogenetic tree was to group watermarked / non-watermarked images separately, 

only two groups were tested: Group 5 for non-watermarked images, Group 6 for 

watermarked images. Statistical analysis was employed on all groups by calculating 

true positive, true negative, false positive, false negative, sensitivity, negative 

predictive value, precision and specificity. These groups for the different phylogenetic 

trees are summarised below: 

a. Phylogenetic Tree 1 (90 NWND and 6 NWD images from G1 to G4): 

Group 1: 30 NWD images scanned in black and white (BW) mode (dataset 

G2). 

Group 2: 6 NWND images (Dataset G1).  

Group 3: 30 NWD images scanned in colour (C) mode (Dataset G3). 

Group 4: 30 NWD images scanned in greyscale (G) mode (Dataset G4). 

b. Phylogenetic Tree 2 (90 WD and 6 WND images from G5 to G8): 

Group 1: 30 WD images scanned in black and white (BW) mode (Dataset G6). 

Group 2:  6 WND images (Dataset G5).  

Group 3: 30 WD images scanned in colour (C) mode (Dataset G7). 

Group 4: 30 WD images scanned in greyscale (G) mode (Dataset G8). 

c. Phylogenetic Tree 3 (6 NWND, 90 NWD, 90 WD and 6 WND images in total 

192 images from G1 to G8): 

Group 5:  90 NWD and 6 NWND images (Dataset G1 to G4). 

Group 6: 90 WD and 6 WND images (Dataset G5 to G8). 

    In the next section, there is a detailed explanation of the results along with the 

analysis of the three phylogenetic trees. 
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6.5 Results 

The results were divided into three parts: the first part (i.e., Result 1) of the results will 

represent the NWND/NWD images using phylogenetic Tree 1 that groups the images 

into four groups, i.e., one for non-degraded and three for MPS degraded images, Group 

1 for NWD images scanned in BW mode, Group 2 for original NWND images, Group 

3 for NWD images scanned in colour mode and Group 4 for NWD images scanned in 

greyscale mode.  

Table 6.4 Notations used in phylogenetic tree 

 

    The second part of the results (result 2) shows the WND/WD images using 

phylogenetic Tree 2 that groups the images into four groups, i.e., one for non-degraded 

and three for MPS degraded images, Group 1 for WD images scanned in BW mode, 

Group 2 for WND images, Group 3 for WD images scanned in colour scanned mode, 
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and Group 4 for WD images scanned in greyscale mode for investigation. Lastly, the 

results of the third phylogenetic tree were represented as Result 3 for grouping 

watermarked / non-watermarked images with group 5 and group 6 for examination. 

    All three phylogenetic trees were represented in two shapes (i.e., circular and 

rectangular) for better understanding and visualisation. The notations used in the 

phylogenetic tree creation are shown in Table 6.4.  

    The term clade is repeatedly used in the next few paragraphs that express a grouping 

of items (i.e., in phylogeny “items” represents the species and in this thesis, it refers 

to the images) that have a common forefather from whom these items are descended. A 

clade may have a few items or thousands of items. In this thesis, a clade will represent 

a group of particular categories of images in a phylogenetic tree that was generated 

and analysed for grouping degraded images after MPS. The BW clade of the 

phylogenetic tree implies it is a group of images containing the MPS degraded W/NW 

images scanned in the BW mode.  

    Similarly, for the phylogenetic tree, a colour and greyscale image clade contains the 

degraded images scanned in the colour and greyscale mode. The clade of the original 

images will have the original W or NW images. 

Phylogenetic Tree 1. It is generated by using four datasets G1 to G4 that comprise of 

non-degraded and degraded images as shown in Figure 6.4 and Figure 6.5. 

 

Figure 6.4 Circular shape of phylogenetic tree for non-watermarked and 

degraded/non-degraded images 
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Figure 6.5 Phylogenetic tree in rectangular shape for watermarked and 

degraded/non-degraded images 

For Groups 1 to 4, true positive, true negative, false negative, false positive, sensitivity, 

specificity, negative predictive value and precision were calculated using Figures 6.4 

or Figure 6.5. 
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Group 1. Analysis was conducted for verifying the accurate grouping of Dataset G2 

in Group 1. G2 dataset consists of 30 NWD images scanned in BW mode. That is out 

of 96 images (i.e., from datasets G1 to G4), 30 belong to Group 1 and 66 are owned 

by other groups. 

    True positive means the number of correct groupings of dataset G2 images in Group 

1. True negative value suggests the correct rejection of images from Datasets G1 to 

G4 during phylogenetic tree creation. From Table 6.5, it is clear that true positive value 

is 27 and true negative is 63. This indicates that 27 images belong to Group 1 clade 

and are mapped correctly in the right clade as shown in Figure 6.5. Furthermore, true 

negative value suggests that 63 images do not belong to Group 1 and are not mapped 

in that clade. 

Table 6.5 Measuring the results of grouping non-watermarked & degraded images 

scanned in binary mode 

 

    From Table 6.5, the false positive and negative value is 3. False positive indicates 

the number of images incorrectly grouped in Group 1. It implies that 3 images scanned 

in colour mode are wrongly mapped in Group 1 clade as represented in Figure 6.5. 

False negative denotes the number of G2 dataset images incorrectly rejected for 

grouping in Group 1. It conveys that 3 images belong to Group 1 and are not mapped 

in the correct clade. 

    Table 6.5 shows few false negatives and few false positives which indicates the 

generated phylogenetic Tree 1 is very good at grouping the dataset G2 images in 

Group 1, i.e., the precision is equal to 90%. It correctly grouped 90% of the images 

(sensitivity). However, as a grouping test, a higher negative predictive value will 

reassure that an image is not grouped in the wrong clade (NPV = 95%);  it correctly 
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grouped 95% of the non-watermarked & BW scanned images (specificity). This 

investigation established the great potential of the phylogenetic Tree 1 in grouping 

dataset G2 images.   

Group 2. The investigation was performed for checking the correct grouping of 

dataset G1 images in Group 2. Dataset G1 has 6 non-watermarked images. That is 

out of 96 images (i.e., from Datasets G1 to G4), 6 are owned by Group 2 and 90 are 

associated with other groups. 

    True positive refers to the count of correct grouping and true negative for right 

declining of non-watermarked images in Group 2. The true positive and true negative 

are 6 and 90 can be seen from Table 6.6. It represents that 6 images, belonging to the 

Group 2 clade, are mapped correctly in the original image as displayed in Figure 6.5. 

In addition, a true negative value indicates that 90 images are correctly rejected. 

Table 6.6 Measuring grouping results of non-watermarked images 

 

   From Table 6.6, it is clear that both the false positive and negative values are zero. 

False positive indicates incorrect image grouping in Group 2. It implies that none of 

the images is wrongly mapped in the Group 2 clade as shown in Figure 6.5. Similarly, 

a zero false negative value denotes no incorrect rejection for grouping in the correct 

clade. 

    Table 6.6 has zero false negatives and false positives which indicates 100% correct 

grouping (the sensitivity) with 100% precision in Group 2. Despite this, for a grouping 

test, 100% negative predictive value (NPV) confirms that none of the images is 

grouped in the wrong clade and 100% of the images are correctly grouped in group-2 

(the specificity). That indicates that the phylogenetic tree performed excellently in 

grouping images from G1 dataset in Group 2. 
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Group-3. The evaluation is performed for examining the correct image grouping in 

G3 dataset. 

   Dataset G3 consists of 30 NWD images scanned in colour mode. Out of 96 images 

(i.e., from datasets G1 to G4), 30 are associated with Group 3 and 66 belong to the 

rest of the groups. 

    True positive and true negative represent the number of images grouped in correct 

groups and right rejection during the grouping of dataset G3 images in Group 3. 

Moreover, from Table 6.7, the true positive and true negative observed values are 26 

and 65 respectively. This indicates that 26 images are mapped correctly in Group 3 

and 65 images are rejected correctly during the phylogenetic Tree 1 creation as 

displayed in Figure 6.5. 

    Table 6.7 shows that false positive and negative values are 1 and 4, respectively. 

This indicates that 1 image scanned in BW mode is grouped incorrectly in Group 3 

and 4 images are incorrectly rejected for grouping in Group 3 as appear in Figure 6.5. 

Additionally, one image scanned in colour mode acts as an outlier and it does not 

belong to any group as shown in Figure 6.5 

Table 6.7 Grouping results of non-watermarked and degraded images scanned in 

colour mode 

 

    The generated phylogenetic tree is grouped correctly 86.7% (sensitivity) in Group 

3 with 96.3% precision. 94.2% NPV affirms that very few images are grouped in the 

wrong clade and 98.5% of the images are correctly grouped in Group 3 (the 

specificity). This shows that the phylogenetic tree performed very well in grouping 

images of G3 dataset. 
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Group 4. The investigation was conducted for investigating correct image grouping 

from dataset G4. 

    G4 dataset has 30 images scanned in greyscale mode. From 96 images (i.e., from 

datasets G1 to G4) 30 are owned by Group 4 and 66 are associated with other groups.  

    Grouping NW images scanned in greyscale mode in Group 4 were measured by true 

positive and true negative for correctly grouping and correct rejection. From Table 

6.7, it is clear that the true positive and the true negative values are 30 and 66 

respectively. This shows that 30 images (i.e., all the images of dataset G4) are grouped 

correctly in Group 4 and 66 images are rejected correctly during phylogenetic tree 

creation as exhibited in Figure 6.5. 

   Moreover, from Table 6.7, the false positive and negative values are zero. This 

represents that no images is grouped incorrectly and wrongly rejected for grouping 

NW images scanned in greyscale mode in Group-4 as shown in Figure 6.5.   

    Phylogenetic Tree 1 correctly grouped 100% images (sensitivity) in Group 4 with 

100% precision. None of the images is grouped in the wrong clade supported by 100% 

NPV; 100% non-watermarked images, scanned in greyscale mode, are correctly 

grouped in Group 4 (specificity). This indicates the excellent achievement of the 

phylogenetic Tree 1 in grouping images from G4 dataset. 

Table 6.8 Measuring the grouping results of non-watermarked images scanned in 

greyscale mode 

 

Result 2. The generated six WND images and ninety WD images from Datasets G5 to 

G8 shown as a circular representation in Figure 6.6 and as a rectangular 

representation in Figure 6.7. 
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    For Groups 1 to 4, true positive, true negative, false negative, false positive, 

sensitivity, specificity, negative predictive value and precision were calculated using 

Figure 6.6 or Figure 6.7. 

 

Figure 6.6 Circular shape of phylogenetic tree for degraded/non-degraded 

watermarked images 

Group 1.  The analysis was performed for examining the correct grouping of Dataset 

G6 images in Group 1. G6 Dataset was made up of 30 images scanned in greyscale 

mode. 30 images belong to group-1 and 66 images are owned by other groups (i.e., 

from Datasets G5 to G8). 

    From Table 6.9, it is clear that the value of true positive is 27 and true negative is 

65. True negative value suggests that 27 images are grouped correctly in Group 1 as 

shown in Figure 6.6. Furthermore, true negative value indicates that 65 images were 

correctly rejected during the second phylogenetic tree. 

    It is clear from the results in Table 6.5 that the false positive is 1 and the false 

negative value is 3. This implies that one image scanned in greyscale mode does not 

belong to this clade, which is wrongly mapped in Group 1 clade as demonstrated in 

Figure 6.6. False negative denotes that 3 images are not mapped in the correct clade 

(incorrect rejection). 



151 

 

 

Figure 6.7 Phylogenetic tree in rectangular shape for watermarked/non-watermarked 

and degraded/non-degraded images 

    Table 6.9 provides the grouping percentages by using phylogenetic Tree 2. Correct 

image grouping in Group 1 is 90% (sensitivity) with 96.4% precision. Additionally, 

95.6% of images are not grouped in the wrong clade (NPV) and 98.5% watermarked 

images, scanned in BW mode, are correctly grouped in group-1 (specificity). These 

results affirm the excellent performance of phylogenetic Tree 2 in grouping G6 dataset 

images. 
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    Table 6.9 Measuring the grouping results of watermarked and degraded images 

scanned in binary mode 

 

Group-2. The correct image grouping from dataset G6 is examined in Group 1. G6 

dataset is made up of 6 images. That implies 6 images are associated with Group 2 

and 90 images belong to other groups out of 96 images (i.e., from datasets G5 to G8).  

    The true positive and the true negative are 6 and 90 from Table 6.10. True positive 

indicates that 6 images belong to the Group 2 clade and are mapped correctly in the 

original image clade as shown in Figure 6.7. In addition, the true negative value 

represents that 90 images are rejected correctly. 

Table 6.10 Measuring the grouping results of watermarked images 

 

   Table 6.10 has zero value for both false positive and negative. False positive 

indicates images are incorrectly grouped in Group 2. It shows that none of the images 

is incorrectly mapped in the group-2 clade as presented in Figure 6.7. Similarly, zero 

false negative value denotes no wrong rejection for grouping in correct clades. 
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    Additionally, in Table 6.10, other values indicate 100% correct grouping of images 

(the sensitivity) with 100% precision in Group 2. Furthermore, a 100% negative 

predictive value (NPV) justifies that none of the images is grouped in the wrong clade 

and 100% of the images are correctly grouped in Group 2 (the specificity). These 

results verify the magnificent performance of phylogenetic Tree 2 in Grouping G1 

dataset images in Group 2. 

 Group 3. The analysis is performed for verifying the correct image grouping from 

dataset G7 in Group 3. 

    Dataset G7 has 30 WD images scanned in colour mode. That is out of 96 images 

(i.e., from datasets G5 to G8), 30 belong to Group 3 and 66 are owned by other groups.  

    Table 6.11 provides true positive and true negative values of 29 and 66, 

respectively. True positive value denotes that 29 images are grouped correctly in 

Group 3 as shown in Figure 6.7. True negative value signifies that 66 images are 

rejected correctly to group G7 images in Group 3. 

Table 6.11 Measuring the results of grouping watermarked images scanned in colour 

mode 

  

    From Table 6.11, the false positive and negative values are 0 and 1, respectively. 

This represents that none of the images is grouped incorrectly and 1 image is 

incorrectly rejected for grouping in Group 3 as displayed in Figure 6.5.   

Phylogenetic tree 2, grouped 96.7% images correctly (sensitivity) in Group 3 having 

a 100% precision. High NPV value, i.e., 98.5% confirms that less images are grouped 

in the incorrect clade and 100% of the images are correctly mapped in Group 3 (the 
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specificity). This resultant analysis asserts the outstanding performance of the 

phylogenetic Tree 2 in grouping of images from G7 dataset in group-3. 

Group 4. The investigation was performed for checking the correct image grouping 

for dataset G8 in group-4. 

    G8 dataset has 30 WD images scanned in greyscale mode. That suggests that 30 

images are associated with Group 4 and the remaining 66 images are owned by other 

groups, out of 96 images (i.e., from datasets G5 to G8). 

    Table 6.12 supplies the true positive and true negative values of 29 and 64 

respectively. True positive value explains that 29 images are grouped correctly in 

Group 4 as displayed in Figure 6.7. True negative suggests that 64 images should be 

rejected correctly during the grouping process of the phylogenetic Tree 2 for Group 4. 

   Furthermore, from Table 6.12, the false positive is 2. This shows that two images 

are grouped incorrectly in Group 4, i.e., one image is scanned in colour mode and the 

other one is scanned in BW mode as reported in Figure 6.7. False negative is 1, which 

indicates that only one image was wrongly rejected for grouping in Group 4     

Table 6.12 Evaluating results of the watermarked images scanned in greyscale mode  

 

    In addition, from Table 6.12, it is clear that phylogenetic Tree 2 grouped correctly 

96.7% images (sensitivity) in Group 4 with 93.6% precision.  A very few images are 

grouped in the incorrect clade that is supported by 98.5% NPV; 96.7% watermarked 

images scanned in greyscale mode are correctly grouped in Group 4 (specificity). This 

analysis confirms the magnificent performance of the phylogenetic Tree 2, for 

grouping images from G8 dataset in Group 4. 
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Result 3. The third phylogenetic tree (i.e. phylogenetic tree 3) for six NWND images, 

ninety NWD images from Datasets G1 to G4, six WND and ninety WD images from 

Datasets G1 to G8 shown in Figure 6.8 for circular representation, Figure 6.9 for 

rectangular representation. 

    For Groups 5 and 6, true positive, true negative, false negative, false positive, 

sensitivity, specificity, negative predictive value and precision are calculated using 

Figure 6.8 or Figure 6.9. 

 

Figure 6.8. Circular shape of phylogenetic tree for watermarked/non-watermarked 

and degraded/non-degraded images  

Group 5. The examination was conducted for checking the correct image grouping  

from Datasets G1 to G4  in Group 5. 

Datasets G1 to G4 contain 96 non-watermarked and degraded images. This indicates 

that out of 192 images from Datasets G1 to G8, 96 images belong to Group 5 and the 

rest of the 96 images are associated with the watermarked images. 



156 

 

Figure 6.9 Phylogenetic tree in rectangular shape for watermarked/non-watermarked  

and degraded/non-degraded images 

Group 5: Non-

Watermarked images  

Total 96 images  

6 NWND and 90 NWD 

images 

Group 6: Watermarked 

images  

Total 96 images  

6 WND and 90 WD 

images 
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The true positive and the true negative value is 96 from Table 6.13. True positive value 

specifies that all 96 non-watermarked and degraded/non-degraded images are grouped 

correctly in Group-5, as displayed in Figure 6.8. True negative expresses that 96 

images are rejected correctly during the grouping proccess of the phylogenetic Tree 3 

for Group 5. 

    Moreover, from Table 6.13, it is clear that the false positive and negative is zero. 

This shows that none of the images is grouped incorrectly in Group 5 and wrongly 

rejected by phylogenetic Tree 3, as shown in Figure 6.8.     

    Additionally, Table 6.13 provides that phylogenetic Tree 3, grouped 100% correctly 

non-watermarked and degraded/non-degraded images (sensitivity) in Group 5 with 

100% precision. 100% NPV asserts that none of the images is grouped in the incorrect 

clade and 100% non-watermarked images are correctly grouped in Group 5 

(specificity). This evaluation assures the marvellous achievement of phylogenetic tree 

3 for grouping images from G1 to G4 dataset in Group 5. 

Table 6.13 The evaluations of grouping results of the non-watermarked images  

 

Group 6. The examination was accomplished for verifying the correct image grouping  

from Datasets G5 to G8 in Group 6. 

    Datasets G5 to G8 incorporate 96 watermarked and degraded/non-degraded 

images. It represents that 96 images will be associated with Group 6 and the 

remaining 96 images are owned by the non-watermarked image group out of 192 

images from Datasets G1 to G8. 

    From the Table 6.14, the true positive and true negative value is 96. This indicates 

that all watermarked and degraded/non-degraded images are mapped correctly in 

Group 6, all other images are rejected correctly as displayed in Figure 6.9.  
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   The zero value for the false positive and negative is shown in Table 6.14. This 

implies that none of the images is wrongly mapped and rejected incorrectly in Group 

6 by using phylogenetic Tree 3, as shown in Figure 6.9.     

Table 6.14 Evaluation of grouping results of watermarked images  

 

    Phylogenetic Tree 3, grouped 100% of watermarked and degraded/non-degraded 

images (sensitivity) correctly in Group 6 having 100% precision. NPV value is 100% 

that reasserts that none of the images is mapped in the wrong clade and 100% 

watermarked images are correctly grouped in Group 6 (specificity). This investigation 

established the exceptional capability of the phylogenetic Tree 3, for grouping images 

from G5 to G8 dataset in Group 6. 

6.6 Discussions 

The proposed syntactic BIIGA method for grouping images and specific dataset was 

tested by generating three phylogenetic trees: phylogenetic Tree 1 on Datasets G1, G2, 

G3 and G4 (see Tables 6.5 to 6.8), phylogenetic Tree 2 on Datasets G5 to G8 (see 

Tables 6.9 to 6.12) and phylogenetic Tree 3 on Datasets G1 to G8 (see Tables 6.13 

and 6.14) using the BIIGA method. The experiments verify Question 3 as a whole; it 

is possible to extract syntactic patterns or signatures for grouping the watermarked 

(W) / non-watermarked (NW) images due to MPS by using biological representation, 

bioinformatics alignment algorithms and phylogenetic trees. 

    Additionally, with sub-question 3(a), the answer was supported by the first 

phylogenetic tree, it is possible to group NWD images and NWND images by using 

phylogenetic tree analysis (see Tables 6.5 to 6.8 and Figures 6.4 or 6.5) for sub-

question 3 (b). The second phylogenetic tree justified that it is possible to group WD 

images and WND images by using phylogenetic tree (see Tables 6.9 to 6.12 and 
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Figures 6.6 or 6.7). Finally, sub-question 3(c) was answered by the third phylogenetic 

tree, it is possible to group watermarked /non-watermarked images from a mix of 

NWD, NWND, WD, and WND images by using phylogenetic tree analysis (see Tables 

6.13 to 6.14 and Figures 6.8 or 6.9). 

   The proposed BIIGA approach grouped images in the expected categories: Datasets 

G1 to G4 and G5 to G8 in non-degraded / degraded Group 1, colour scanned mode in 

Group 3 and greyscale scanned images in Group 4. Furthermore, images from Datasets 

G1 to G8 were grouped in non-watermarked / watermarked images. Our analysis 

shows in Tables 6.5 to 6.8 for G1 to G4 datasets, Tables 6.9 to 6.12 for G5 to G8 

datasets, Tables 6.13 to 6.14 for G1 to G8. The current image grouping, i.e. BIIGA 

successfully and consistently grouped images in required categories: (a) non-degraded 

and degraded images (b) watermarked / non-watermarked images. These results led to 

final verification of the hypothesis proposed in Section 6.2. i.e., the research 

hypothesis for watermarked/non-watermarked and degraded images, it is possible to 

identify syntactic structures, namely, patterns by using bioinformatics-based tools and 

techniques that help to determine whether a degraded / non-degraded image contains 

a type of watermark or specific degradation that group images in the expected 

categories.  

    The BIIGA method has significant concerns about whether it will group 

watermarked and degraded variants, whether it will group degraded images generated 

other than MPS. The proposed work unveils the requirement for novel software that 

can group degraded images after MPS with watermarks effectively. It indicates the 

need for developing specific approaches and grouping watermarked and degraded 

images. The future possibilities of this research are to implement a software system 

that will successfully group NWD, NWND, WD and WND images and then extend it 

for grouping different kinds of watermarked images (i.e., media / non-media 

watermarked), after degradation due to other than MPS. 

6.7 Summary 

Image grouping has a long history in data mining and machine learning, many methods 

exist, only a few of them have been introduced in this thesis. Nearly do all previous 

approaches extract features from the images, convert them into proper form, then use 

either data mining or neural networks to group or classify in the expected categories. 
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In this chapter, we have proposed a novel approach, i.e., BIIGA for automatically 

grouping degraded / non-degraded images and watermarked / non-watermarked 

images using bioinformatics-inspired techniques. We take into account the multiple 

sequence alignment role in grouping the images by using biologically-encoded images 

in DNA. For the first time, these bioinformatics-based tools and techniques were 

applied to the watermarked / non-watermarked and degraded images after MPS for the 

grouping. This indicates that bioinformatics-based tools and techniques were 

overlooked for the purposes of pattern matching in image grouping.  

    To conclude this part of the tools in bioinformatics, we raised the question of how 

bioinformatics tools could be used for pattern matching in image analysis at the start 

of this thesis; then, we implemented BIIIA, after that, BIIGA through bioinformatics- 

inspired image analysis by using pattern matching for the first time. The previous 

chapter and this chapter focused on inspiration from tools and techniques in 

bioinformatics for pattern matching that leads to a novel solution of image 

identification and grouping. Thus, the gap of bioinformatics-inspired image analysis 

has been filled. Also, we claim that bioinformatics-inspired BIIIA and BIIGA work 

reliably for watermarked/non-watermarked and degraded images. In the next chapter, 

the conclusion and future work will be stated. 
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Chapter 7 

  Conclusion and Future Work 

 

 

    This is the final chapter of this thesis. In Section 7.1, 

we will deal with the evaluation of the research 

methodology employed in this thesis. In Section 7.2, we 

will explain the main contribution of this research work. 

Finally, in Section 7.3, this thesis will be closed with our 

visions of future research.  
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7.1 Research Methodology Evaluation 

In this thesis, we investigated bioinformatics-inspired image analysis as a way to 

resolve the issue of identifying and grouping the degraded and watermarked images 

as well as evaluation of image degradation. While most of the existing methods of 

image identification and grouping are not based on the biology-based encoding 

without extracting the features of the image; we have shown how our evaluation of 

watermarked and degraded is fulfilled. Encoding whole images biologically and 

applying alignment algorithms are effective in pattern matching for identifying and 

grouping the images degraded by MPS. 

    In our BIIIA and BIIGA algorithms, DNA was considered for biology-based 

encoding of images, sequence alignment was performed on these biologically-encoded 

images (i.e., local, global, and multiple sequence alignment) for pattern matching that 

helps in identifying and grouping the degraded images from MPS. Moreover, the 

BIIIA method was inspired from the idea of image analysis; the BIIGA method from 

the idea of image phylogeny and multiple sequence alignment is used to determine the 

evolutionary history of the species. To the best of our knowledge, the extracted 

syntactic patterns using bioinformatics tools and techniques was applied to deal with 

the image identification and grouping. 

    BIIIA and BIIGA algorithms both are served to resolve the issue of the image 

identification and grouping. In particular, BIIIA algorithm solved the image 

identification problem through not extracting image features, biology-based encoding 

of the DNA and SWA algorithm in pattern matching. For the BIIGA method, the 

image grouping problem was resolved through not extracting image features, biology-

based encoding of images into the DNA, multiple sequence alignment, and 

phylogenetic trees. Therefore, the research question: “is it possible to use 

bioinformatics-based tools and techniques for pattern matching in image analysis?” 

has been answered. 

7.2 Summary of Contributions 

This PhD thesis has shown how evaluation of the watermarked and degraded images 

as well as bioinformatics-inspired image analysis can be adopted in identifying and 

grouping the images. Pattern matching is the critical aspect for image identification 

and grouping but there was a gap: how bioinformatics tools and techniques could be 



163 

 

employed to pattern matching. We have filled this gap by introducing bioinformatics-

inspired image analysis for degraded images from MPS and exploring a method 

between pattern matching and bioinformatics tools. The idea using bioinformatics 

tools for pattern matching with the issue “watermarked/non-watermarked and 

degraded/non-degraded image identification and grouping” helped in the image 

analysis of the degraded images from MPS. BIIIA permits identification of the image, 

i.e., how we can identify the watermarked / non-watermarked and degraded images; 

how we can allow ourselves further to study on image analysis that led to BIIGA 

algorithm for grouping images, allow us to separate the degraded from non-degraded 

images as well as the watermarked from non-watermarked images.   

The purpose of this thesis has been to develop a novel image identification 

algorithm: BIIIA as well as a novel image grouping algorithm: BIIGA for image 

identification and grouping. The contributions are summarized below: 

(i) Evaluation of image degradation by using the eight image metrics, i.e., CC, 

Bias, ERGAS, RMSE, RASE, Q, SSIM, and DSSIM.  

(ii) BIIIA algorithm 

 Successfully detected watermarked / non-watermarked images by 

using a biological representation of the image, sequence alignment 

algorithms, and pattern matching. 

 SWA is better than NWA for biologically-represented images. 

 DNA-based representation of images is found suitable for BIIIA. 

(iii) BIIGA contributions 

 Successfully use phylogenetic trees for grouping original / degraded 

images as well as watermarked / non-watermarked images. 

 Successfully group watermarked / non-watermarked images by using a 

phylogenetic tree. 

7.3 Our Vision 

In this section, we will explain the future directions in identifying and grouping the 

degraded images generated from MPS with their original variants. However, the issue 

of evaluation, grouping and identification of watermarked / non-watermarked images 

is very challenging due to lack of data of the degraded images because of MPS. 

Although this thesis has proposed novel methods for MPS degradation, evaluation, 

identification and grouping for degraded and watermarked / non-watermarked images, 
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there are some open research problems and limitations that require to be further 

examined and solved in future. 

7.3.1 Limitations 

Our interest, including BIIIA and BIIGA algorithms, was in the identification of 

watermarked images by using a biological representation of the image, bioinformatics 

alignment algorithms and pattern matching; but we did not take into account the rapid 

evolution of other forms of watermarks, such as non-multimedia watermarks and those 

in the cloud. Furthermore, we did not consider the identification problem of degraded 

and watermarked images. Establishing such a big dataset with watermarked and 

degraded / non-degraded images will allow us to check the robustness of the proposed 

approach. We assume that our approach is to extract the essential aspects of an image, 

the approach narrated in this thesis may apply to other types of watermarked images. 

 

7.3.2 Future researh 

The overview of developing BIIIA and BIIGA algorithms was to show that 

bioinformatics-based tools and techniques can be used for pattern matching in image 

analysis. A big part of the inspiration for this research project was to integrate the tools 

and techniques in bioinformatics for image analysis. Correspondingly, our research 

direction is to implement a software that will automatically identify watermarked 

images and then extend it for identifying the watermarks after MPS. The possible 

techniques of this thesis will be applied to: 

(1) Digital Forensics 

 Source camera identification.  In digital forensics, one of the most interesting 

problem for a given digital image is to identify the camera model that was used 

to click the image. The state-of-the-art technologies for source camera 

identification will depend on the sensor-based noise residues, image features  

on spatial / frequency domain, etc. The literature used different methods for 

source camera identification that includes enhancing sensor pattern noise (Li, 

2010),  deep learning (Freire-Obregon, Narducci, Barra, & Castrillon-Santana, 

2017), support vector machine (Wang, Kong, & You, 2009),  intrinsic lens 

radial distortion (Choi, Lam, & Wong, 2006), a set of image features with 

classifier (Kharrazi, Sencar, & Memon, 2004). 
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 Identification of pirated videos. Forensic police want to know that how many 

and which videos from Netflix or Amazon prime videos are pirated. This 

piracy identification can be completed by employing the BIIIA. It will extract 

the syntactic patterns from combination of Netflix and Amazon videos. These 

patterns will help to filter out the videos that belongs to Netflix and Amazon 

video out of billions of videos. Further, individual pattern from Netflix or 

Amazon video helps to identify the videos from a mix of Netflix and Amazon 

video.  

(2) Digital Rights Management 

 Different watermarking algorithms. The proposed BIIIA approach can be 

employed to different types of watermarking algorithms for further research.   

 Variety of watermark. A huge amount of media/non-media watermarks are 

available that can be embedded in the images, BIIIA and BIIGA algorithms 

will be employed for further research.  

 Filtering of images ownership. Suppose a company is looking for images 

watermarked using its logo and classified it as highly confidential. By 

employing BIIIA approach, we can extract a pattern from these images. From 

a mix of billions of images, it can give us a number that how much or which 

one is embedded with the logo with highly confidentiality. Secondly, by 

applying BIIGA algorithm, we may generate a phylogenetic tree that will 

group the images in their respective category. 

 Videos ownership identification. BIIIA algorithm can be extended for 

identifying the video ownership by proposing another novel approach, named 

as “bioinformatics inspired video identification approach (BIVIA)”. This 

approach can be realised by converting a watermarked video frame into DNA 

and extracting the pattern for video that will be used for identification of the 

ownership of video. 

(3) Future research in BIIIA and BIIGA  

 Colour images as the test dataset. Our approach tested only on the greyscale 

image – based standard test datasets; the colour images can be considered as 

new dataset for further experimentation on BIIIA and BIIGA. 
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 Protein modelling of images. DNA-encoded images can be mapped into 

proteins for further research in image analysis. That will open a new research 

chapter that will fill up another gap between the bioinformatics and image 

analysis. 

    The proposed research in image analysis will be of extremely exciting and novel to 

the image analyst and forensic experts because of its high traffic volume of digital 

images; the Internet availability increases the vulnerability of digital piracy and 

counterfeiting of images. To the best of my knowledge, the proposed BIIIA and BIIGA 

in this thesis are unique so far; the only research reported in the world recently analyse 

images using the state-of-the-art of bioinformatics-based sequence alignment for 

pattern matching. 

    Future research includes developing an image analysis software that can 

automatically identify the ownerships of images and generate a phylogenetic tree that 

will group the images in the expected category. There may be chances for attracting 

collaboration with multinational companies like Netflix, Microsoft, etc.  

7.3.3 Reflection 

The core idea for BIIGA and BIIIA approaches is that the images are able to be 

mutated as living beings (e.g., animals, plants, etc.) in biology. The evolution of an 

image is thought of as degradation from MPS. The print-and-scan degradation of 

images is considered as a mutating agent in image grouping. In living organisms, a 

mutating agent changes the genes of animals or plants. In the same way, the MPS 

operations modify the pixels of these images. This thesis successfully identified and 

grouped the images on the basis of these mutations. MPS operations mutate these 

images by using three scanning modes: black and white (BW), colour and greyscale. 

Successfully grouping these mutated images into the expected categories is performed 

by using phylogenetic trees. Successful identification was achieved for these mutated 

images.  
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