
USING GENETIC ALGORITHMS TO SOLVE LAYOUT OPTIMISATION PROBLEMS IN RESIDENTIAL
BUILDING CONSTRUCTION

Dr Andy Connor

Software Engineering Research Lab, AUT
Auckland, New Zealand

andrew.connor@aut.ac.nz

Mr Wilson Siringoringo
Software Engineering Research Lab, AUT

Auckland, New Zealand
wilson.siringoringo@aut.ac.nz

Abstract

This paper outlines an approach for the automatic
design of material layouts for the residential building
construction industry. The goal is to cover a flat surface
using the minimum number of rectangular stock panels by
nesting the off cut shapes in an efficient manner. This
problem has been classified as the Minimum Cost
Polygon Overlay problem. Results are presented for a
typical problem and two algorithms are compared.

1 INTRODUCTION

This paper describes the application of Genetic
Algorithms to a class of layout optimisation problems
found in the construction industry, with particular
relevance to the construction of residential buildings. This
class of problem has been defined by previous work as the
Minimum Cost Polygon Overlay (MCPO) problem [1].

The aim of the work is automate the sheet layout

process for flat sections of a building. The goal of such an
automated process is to construct a solution that allows
the sections to be completely covered with the optimum
layout. This can be defined as the smallest possible
amount of stock material, which is cut with minimum
amount of effort. It is also important for these optimum
solutions to be found in a reasonable amount of time.

2 2D LAYOUT OPTIMISATION

Optimum two-dimensional layout is a class of
problems encountered in many industries. The problems
are characterized with the need to pack non-overlapping
shapes in an enclosed plane with the aim of minimizing
the area outside the boundaries of the shapes, therefore
maximizing the utilization of the material in the base
sheet.

The actual optimum two-dimensional layout problem

exists in several variants. Dyckhoff [2] makes an attempt
to provide a systematic classification of such optimization
problems. He uses the term cutting and packing (C&P) as
a generic name for the problem and all its variants.
Amongst these variants are the sheet layout problem, bin
packing and strip packing problems, optimum floor plan
problem, and cutting stock problem.

Strip packing (SP) and bin packing (BP) are specific

subclasses of the generic sheet layout problems, with the

objective limited to placing rectangular items within fixed
width container. Furthermore, rotation is allowed only at
90º increments whereas mirroring is irrelevant because of
the rectangle’s symmetry. The subject of SP and BP
covers problems of various dimensions. However, two-
dimensional BP (2BP) and SP (2SP) problems can be
considered a subset of sheet layout problem class [3].

A rather unique variant of the optimum two-

dimensional layout problem is found in the construction
industry, namely the MCPO problem. A polygon shaped
area such as wall or ceiling is to be tiled with covering
sheet material such as cardboard or plywood. With such
tiling, it is essential that the entire surface is covered with
no gaps or overlaps. The panels are obtained from the
supplier in fixed size rectangles. Typically the individual
panel is much smaller than the area to be covered. It is
also anticipated that the enclosing area may have an
irregular outline.

The problem is demonstrated in Figure 1. To keep the

construction expenses under control, the builder must
arrange the panels in a way that keeps the cost variables
low. Such parameters include the number of panels
allocated, the amount of discarded off cuts, and the
amount of effort required for cutting the panels.

Figure 1: Wall Overlay with Fixed Size Panels

A similar problem has been encountered in the
shipbuilding industry, particularly in cutting steel sheets
to cover various parts of the ship [4].

When the panel is homogenous, such as with sheet

metal, it is desirable to reuse the off cuts to cover irregular
regions at other places, as this has the potential to reduce
the total number of sheets required. A particular example

84

was made by Sibley-Punnett and Bossomaier [5]
regarding the reuse of off cuts from corrugated iron roofs.
The justification for such effort is provided by the high
cost of delivering the roofing material.

The diversity of materials used for constructing a

building provides no guarantee that such homogeneity
exists for materials used for a particular area. The
implication is that the constraints for a particular section
of the building cannot be predetermined. In response, a
computer program used to resolve such problem must be
capable of finding the solution under a varying set of
constraints to allow it to be used for any specific instance
of the general problem.

Closer examination reveals that the MCPO problem is

composed of two sub-problems which must be resolved
sequentially, although each sub-problem still belongs to a
class of two-dimensional layout optimization problem.
For a given enclosed area and given dimensions of
rectangular panels, the requirement is twofold:

(i) Find the optimum arrangement of whole panels in

which the covered area within the enclosure is
maximized. The by-product of this process is a set of
irregular shapes which represent the remaining
exposed areas.

(ii) Resolve how such irregular shapes can be nested

within the minimum number of panels. Shapes that
are bigger than the panel itself are cut at angles
parallel with the rectangle’s axes to allow such
nesting.

This decomposition into two sub-problems can

potentially mask the complexity of the task of finding the
optimum solution. It is important to recognize that in the
construction industry, the actual size of the panels is in
itself a design parameter. In some applications, the panel
size will remain fixed for the two sub-problems whilst for
other applications the panel size could potentially be
varied. With this in mind, it becomes apparent that the
problem is complex with potentially many locally
optimum solutions.

3 GENETIC ALGORITHMS

Genetic Algorithms are one of many heuristic

approaches that have been developed for solving complex
optimisation problems and dealing with the existence of
multiple optima in a problem solution space. These
algorithms use the concept of a population of individuals
which are subject to a series of probabilistic operators
such as mutation, selection and recombination. Each
individual represents a potential solution to a given
optimization problem. During the computation process,
the population will undergo a draconian process in which
stronger individuals thrive whilst the weaker ones perish.

Goldberg [6] asserts that GAs are more robust than
many other optimization techniques, particularly when the
search space contains many local optima. He further
attributes the robustness of GAs to four special
characteristics of the algorithm:

(i) Instead of working directly with the optimization

parameters, GA works with a coded set of the
parameters.

(ii) The optimization result is obtained from a

population of points instead of a single point.

(iii) GAs directly use the objective function to calculate
the payoff information instead of derivatives or other
auxiliary information.

(iv) Probabilistic transition rules are used in GAs instead

of deterministic rules.

GAs have been applied to a wide range of problems
that have been considered intractable to other approaches
and as a result have been selected as a candidate solution
for solving layout optimisation problems in the
construction industry.

In many GA implementations in the literature the

chromosome is commonly implemented as a finite-length
binary vector. A binary vector provides the maximum
flexibility for parameter coding and interpretation in much
the same way as basic data types such as numerical or
symbolic values are internally represented in the computer
memory. Non-binary strings are also used however, in
specific cases such as when representing nodes in
Traveling Salesman Problem (TSP), where a binary
equivalent is impractical or inefficient [7].

Because of its very flexibility, coding the

optimization parameters into a gene string can be a
daunting task. For any given optimization problem, there
are typically a number of possible ways to code the
parameters into the gene string, some are better than
others. There is surprisingly little available literature
providing a general guideline for coding GA parameters.
Coding guidelines for specific domains do exist however,
such as those proposed by Nagao for optimization of
numerical parameters [8].

The three basic operators in evolutionary computing,

mutation, selection and recombination, are used in the
implementation of the genetic algorithm. Specifically in
the context of GAs, the operators are referred to
respectively as mutation, reproduction, and crossover [7].

3.1 GA Parameter Coding

Parameter coding for GAs has a major contribution

towards the effectiveness of the optimization engine. A
set of chromosomes containing wrong sets of parameters

85

or poorly mapped parameter values will ruin an otherwise
good GA implementation. Similarly a good representation
of the parameters will make it possible for the GA
implementation to realize its full potential.

Parameter coding is especially problematic in the

MCPO problem under consideration. This is especially
true for the second-stage of the optimization, because
interdependencies exist among the parameters. The
second stage optimization appears to be best modelled on
the 2BP problem. Although the use of a GA in solving
2BP can be found in a number of publications
[9][10][11][12], none provides the technical description
about the actual parameter coding. Perhaps the most
technical detail can be found in the work of Shian-Miin,
Cheng-Yan, & Jorng-Tzong [13] where complex tree
structures are used to represent the nested objects.

In the absence of an exact description regarding the

parameter coding of 2BP optimization, a novel solution
for parameter coding has been devised. Substantial effort
has been expended in designing the chromosome. Not
only because there are multiple parameters involved in
layout optimization problems, but some of the parameters
are also inter-dependent. To construct a suitable model, it
is quite worthwhile to examine the parameters that define
a second-stage solution in MCPO. Such parameters are:

(i) The total number of stock panels required

(ii) The list of pieces that are nested within each stock

panel

(iii) The placement coordinates of each piece within a

stock panel

(iv) The rotation and flipping applied to that particular

piece

Evidently the first parameter is dependent on the
second parameter. Similarly the second parameter is
largely dependent on the third and fourth parameters. In
the face of this, the only information available to
determine the value of those parameters is the list of
irregular panels represented by their vertices. This all
leads to a situation radically different from standard sheet
layout problems found in the literature.

To reiterate, in standard sheet layout problems

commonly found in the literature, only a single container
is provided. The solution designer is therefore allowed to
use the chromosome to directly represent the container
and map the genes within the chromosome to the nested
pieces. Static blocks of bits can be used to represent the
placement coordinates of each piece, its rotation, and so
on.

This static mapping cannot be easily applied to

MCPO, since the number of containers itself is a variable

to begin with. The only possible way to accommodate all
the parameters within a single chromosome using a static
mapping is by allocating a large block of bits for each
stock panel to make it able to contain all the pieces, and
ensure that enough stock panel blocks are provided within
that single chromosome to anticipate the possibility of
having only one piece per panel. Unsurprisingly, the
resulting bit string is very large and prohibitively
inefficient to be implemented.

A much more feasible solution is to deliberately use

only a few parameters in the main model, and to relegate
the task of populating the rest of the parameters
somewhere else. Since the first two parameters identified
above are the most crucial, they are selected to be
represented in the chromosome.

Resolving the third and fourth parameters is

important to determine whether the solution for first and
second parameters is legal. It is most appropriate to make
finding their correct values an integral part of the fitness
evaluation function for the original chromosome.

This is done by utilizing the same sequential

placement routines as used in the greedy algorithm which
has been which has been adopted as it is fast and
deterministic in nature. It is important to not that GAs are
typically used to implement a simultaneous placement
nesting strategy. The fact that all nesting optimization
algorithms implemented in this project eventually use a
sequential placement strategy rules out the possibility of
comparing the performances of the two.

After all the relevant decisions been made as

discussed above, the problem is now sufficiently reduced
to enable the actual modeling of the chromosome. There
are only two parameters remaining to be coded in the
chromosome:

(i) The total number of stock panels required

(ii) The list of pieces that are nested within each stock

panel

Direct coding to the genes in the chromosome is still
not possible because the second parameter is of a variable
length. To solve this problem, indirect coding employing
the concept of clusters is used.

In this technique, static blocks in the chromosome are

mapped to the pieces to be nested. This represents the
worst case solution, where each piece requires an
individual stock panel to be used. From the first step of
the solution, it is known that all pieces to be nested are
smaller than the stock panels therefore this provides an
upper threshold for the maximum number of panels
required. Each panel is associated with a fixed-width
block of bits in the chromosome. This block contains only
a single variable of integer type, namely the cluster ID.

86

Figure 2 shows the association between the panels and the
blocks in the chromosome.

0

1

2

3

4

5

16

V0 V1 V2 V3 V4 V5 V16...

Figure 2: Gene to Panel Mapping

The value of each variable points to an imaginary

cluster to which the panel belongs. Figure 3 shows an
example of a populated chromosome with the imaginary
clusters that result. Because only 17 panels exist, the
binary string can use five bits to hold the cluster ID.

2 8 6 10 0 2 5 3 5 10 1 11 7 4 11 8 9

4

0

5

7 14 6 8

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Chromosome

10

0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 10 1 0 0 0... Binary
Representation

Decimal
Interpretation

Figure 3: Interpreting a Candidate Chromosome

Using Figure 2 as reference, it is easy to decode the

chromosome to find that the Panel 0 is a member of
Cluster 2, whereas Panel 1 is a member of Cluster 8, and
so on. Similarly, Cluster 0 appears to have only a single
member, i.e. Panel 4, whereas Cluster 2 has two members:
Panel 0 and Panel 5.

A cluster is regarded as legal if all its members can be

nested in a single stock panel. As previously discussed,
part of the fitness function’s task is to discover whether
such nesting is possible. In the case of an invalid cluster
being encountered, there are a number of possible ways to
respond.

The use of clusters effectively addresses the variable

length problem of the nesting list. Because the list only
exists implicitly in the chromosome, no assumption about
the number of clusters needs to be made beforehand.
Furthermore by allowing the pieces to map themselves to
the clusters, it is guaranteed that the number of clusters
will always be less than or equal to the number of pieces.

Typically, the number of bits allocated for each panel
is a good deal more than required to express all the
possible Cluster IDs for a given optimization problem.
Consequently, assigning the pieces with a random Cluster
ID number will often result in single-member clusters
with widely scattered IDs. While this phenomenon does
not affect the validity of the result, it does potentially bias
the optimization engine into giving an inefficient result.
This problem is easy to solve however, by using a modulo
operator to convert all IDs to the acceptable range.

3.2 Valid/Invalid Chromosomes

A chromosome in the context of layout optimization

is accepted as valid only when all pieces can be
successfully nested in their associated stock panel. Its
opposite is the invalid chromosome, which contains one
or more clusters whose members cannot be nested in a
stock panel. Because the search is set-oriented, there is no
guarantee that all the clusters extracted from a
chromosome are valid. Invalid clusters are found very
frequently in the actual tests because many of the
individual pieces are quite large compared to the size of
stock panels, invariably claiming most of the available
area after only one or two nested pieces.

Mindlessly discarding invalid chromosome is not a

desirable option using a GA. Because the direction of the
search is dictated by the collective patterns in its
population of chromosomes, great care must be taken to
ensure that the population can survive and retain good
quality patterns at each turn of generation. A dilemma
inevitably arises: should an invalid chromosome be
retained in spite of its lack of value as a solution; or
should it be discarded and risk the population dwindling
and becoming stagnant after just a few generations? The
sensible answer must lie somewhere between those two
extremes.

Whilst a number of strategies have been considered

[1], at this stage an approach labelled Redistribute from
Beginning (RFB) has been adopted. An attempt is made at
nesting the rejected piece in an already created panel
before creating a new cluster at the end of the list if
required. Theoretically this approach will result in a more
even distribution of the pieces, and ultimately a better
overall fitness value.

3.3 Cluster Placement Strategy

An important aspect of generating clusters that are

both valid and good is the positioning of the pieces in an
available container. The second problem to be solved
about a particular piece is about where it should be placed
within the container. It is evident that when the container
is considered continuous, the candidate panel may be
placed inside in an infinite number of ways.

87

Reducing the container to a discrete set of possible
placement choices is vital to make search possible. Given
the exponential nature of the size of the overall
optimization problem as a whole, limiting the number of
possible ways of placing candidate panels in the container
from that discrete set is also necessary. This particular
implementation uses incident vertex placement, which is
an approach similar to linear programming. If the area of
the container is considered as the feasible area, then the
potential optimum solutions are associated to its vertices.
Only those vertices will be evaluated as incident vertex
candidates for the panel at hand. The panel is then shifted
to various places to make its vertices overlap with those
of the container.

Figure 4 shows the evaluation of how a small

triangular piece can be placed inside a rectangular
container using such a method. It appears that twelve
possible solutions exist, of which three are valid as a
nesting solution.

Figure 4: Layout Solution by Vertex Incidence

Because the solution is not singular, a further decision

must be made to select the “best” from these equally valid
options. There are two options available in response:
those based on the first fit and the best fit strategies. The
results presented in this paper are based on the use of the
best fit strategy. Figure 5 shows three legal ways a
triangle abc can be placed inside a rectangular container.
These three candidates will be evaluated to determine
which one is the “best”. The notion of best solution is
elusive and problem-specific however, requiring analysis
about what goal the algorithm is set to achieve and what
means are available to achieve it.

Figure 5: Candidate Solutions for Best Fit Placement

Because the objective of layout optimization is to put
the pieces so as to occupy as much container space as
possible without overlapping, the logical posture of the
best fit strategy is to maintain a continuous and convex
free space after each piece is placed. Hence, the best
solution for a given iteration is the one that provides the

least possible obstructions in the remaining unoccupied
space.

With the criterion of the best solution established, the
next task is to develop an effective and inexpensive way
to make the necessary evaluation. Unfortunately there is
no straightforward way the amount of obstruction within
the vacant space can be measured. A less direct
calculation based on overlapping edges is used instead.
For a given candidate solution, the length of the edges of
the piece that overlap with the outline of the container is
calculated. If previously placed pieces exist, the length of
overlapping edges with those pieces is also added. The
best solution is defined as the one with highest total
length of the overlapping edges.

4 RESULTS

A number of experiments have been conducted that

compare the performance of the GA against a simple
implementation of Greedy algorithm that utilises the same
best fit strategy. The Greedy approach cycles through the
available pieces and attempts to fit the largest piece in the
available space of an existing panel. If the piece does not
fit in any of the existing panels, a new panel is used to fit
the piece. One such experiment was conducted on the
complex roof problem. The roof is shown in Figure 6.

7 8

1

2

6

3

4

5

Figure 6: Complex Roof Layout

Table 1 compares the performance of the GA against

the Greedy search method. In this experiment, the same
best fit strategy was used and the material was allowed to
rotate 180° only.

Criteria Greedy GA
Full Panels Used 25 25
No. Offcuts to Nest 129 129
Total No. Pieces 154 154
Stock Panels Used 64 85
Shared Edge Length 9930 9814
Area to be Covered 124153 124153
Area of Stock Panels 128000 170000
Wasted Material 3847 45847
Solution Efficiency 97% 73%
Search Duration 0:00:03 0:45:35

Table 1: Solution Quality Criteria

88

Whilst a number of different experiments have been
undertaken, these results provide some interesting insight
into the approach taken. Despite the Genetic Algorithm
being a more robust algorithm, it has consistently found
less attractive solutions than the simple Greedy algorithm.

Retrospective analysis of the GA implementation has

identified the potential cause of this unexpected poor
performance. Whilst the mapping of pieces to clusters is a
powerful approach for dealing with the fact that the
number of pieces is in fact an optimisation parameter, the
method of dealing with invalid clusters has a certain
weakness.

The redistribution of pieces in an invalid cluster is

also powerful, however the weakness is the new cluster
data is not reintroduced into the GA population. The GA
is therefore operating on a large population of invalid
clusters, which could be limiting the performance of the
method.

5 CONCLUSIONS

This paper has described an approach for automating

a class of 2D material layout optimisation defined as the
Minimum Cost Polygon Overlay problem. This class of
problem is common in the construction industry where
large areas are required to be fully covered using the
minimum number of rectangular stock panels.

The key element of this problem is the allocation of

irregular shapes to multiple stock panels and the reuse of
off cut sections to minimise wastage. Two algorithms
have been applied to the solution of this stage, namely a
deterministic algorithm based on the allocation of the next
available piece, and a heuristic algorithm for a pseudo-
simultaneous approach.

The deterministic, or Greedy, algorithm clearly

outperforms the heuristic approach which utilises a
Genetic Algorithm. Analysis of the implementation has
show that the approach for dealing with invalid clusters in
the Genetic Algorithm is the most likely cause for such
poor performance.

Whilst the results of the Greed algorithm are suitable

for use by architects and builders working in this area,
future work will investigate improved approaches for
dealing with invalid clusters and also investigate the
suitability of alternative heuristic algorithms.

6 ACKNOWLEDGEMENTS

This research has been supported by Technology New
Zealand through the Technology for Industry Fellowships
scheme (grant number BISC0502) and this assistance is
gratefully acknowledged.

7 REFERENCES

[1] Author 2. (2007). Minimum Cost Polygon Overlay with

Rectangular Shape Stock Panels. Masters Thesis,
Awarding University.

[2] Dyckhoff, H. (1990). Typology of cutting and packing
problems. European Journal of Operational Research,
44(2), 145-159.

[3] Lodi, A., Martello, S., & Monaci, M. (2002). Two-
dimensional packing problems: A survey. European
Journal of Operational Research, 141(2), 241-252.

[4] Adamowicz, M., & Albano, A. (1976). Nesting Two-
Dimensional Shapes In Rectangular Modules. IEEE
Transactions on Systems, Man and Cybernetics, 8(1), 27-
33

[5] Sibley-Punnett, L., & Bossomaier, T. (2001). Optimisation
techniques for roof layout. Proceedings of IEEE Region 10
International Conference on Electrical and Electronic
Technology (‘TENCOM’)

[6] Goldberg, D. E. (1989). Genetic Algorithm in Search,
Optimization, and Machine Learning. Reading,
Massachusetts: Addison-Wesley Publishing

[7] Ansari, N., & Hou, E. (1997). Computational Intelligence
for Optimization. Newark, New Jersey: Kluwer Academic
Publishers.

[8] Nagao, T. (1996, 20-22 May 1996). Homogeneous Coding
for Genetic Algorithm Based Parameter Optimization.
Paper presented at the Proceedings of the IEEE
Conference on Evolutionary Computation, Nagoya, Japan

[9] Chan, F. T. S., Au, K. C., & Chan, P. L. Y. (2005). A
genetic algorithm approach to bin packing in an ion
plating cell. Proceedings of the Institution of Mechanical
Engineers, Part B (Journal of Engineering Manufacture),
219(B1), 1-13

[10] Falkenauer, E., & Delchambre, A. (1992). A genetic
algorithm for bin packing and line balancing, Paper
presented at the 1992 International Conference on
Robotics and Automation, Nice, France

[11] Lewis, J. E., Ragade, R. K., Kumar, A., & Biles, W. E.
(2005). A distributed chromosome genetic algorithm for
bin-packing. Robotics and Computer-Integrated
Manufacturing, 21(4-5), 486-495

[12] Liu, D., & Teng, H. (1999). Improved BL-algorithm for
genetic algorithm of the orthogonal packing of rectangles.
European Journal of Operational Research, 112(2), 413-
420

[13] Shian-Miin, H., Cheng-Yan, K., & Jorng-Tzong, H.
(1994). On solving rectangle bin packing problems using
genetic algorithms, Paper presented at the 1994 IEEE
International Conference on Systems, Man, and
Cybernetics, San Antonio, TX, USA

89

