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 Abstract – This paper presents the development of a PC-
based control system for an unmanned micro aerial vehicle 
(UAV) that has been converted from a helicopter model. The 
hand-controller of the helicopter model is modified to be a 
wireless link between a ground control computer (GCC) and the 
UAV, which carries sensors including an inertia measurement 
unit (IMU) and the actuators for the main rotor and pitch angle 
controls. A programming environment, written with the C# 
programming language, is set up for the implementation of 
control algorithms for the UAV. Manual and automatic modes of 
controlling the UAV are achieved. Implementation issues, such as 
the reliability of the IMU data for closed-loop control, are also 
discussed. 
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1 INTRODUCTION 

Research into unmanned aerial vehicles (UAVs) has been 
active in recent decades due to its huge potential in 
applications such as search and rescue, surveillance, and 
precision agriculture where ground based vehicles are 
unsuitable. Many research projects are aimed at producing 
fully autonomous UAVs where the communication path 
between the GCC and the UAV is mainly used for sending 
motion commands, and the real-time signal processing and 
control are executed by the flight control units within the 
vehicle. This ensures that the UAV has a fast response and 
is able to quickly react to disturbances [1][2]. Manual 
operation with a hand-held controller is also kept in the 
system in the event of an emergency. The limited 
computing power of onboard devices, however, can make 
it difficult to implement complex and demanding control 
tasks. 

In [3], a UAV is partially controlled by the GCC. The 
vehicle’s state is obtained via a camera tracking system and 
fed back to the computer. A position detection server is 
programmed to recognise a small square marker on the 
vehicle. By comparing the apparent size of the marker with 
stored knowledge of its true size, the server is able to 
compute the distance of the UAV from the camera, and 
therefore its position. The servers are connected via a 
gigabit Ethernet which significantly reduces the time taken 
for data transmission. 
 
Another type of UAV, presented in [4], is manually 
operated with sensory input provided to the human 
operator via a computer monitor. Cameras mounted on the 
UAV provide the outlook, and onboard sensors provide the 

avionics data. The human operator interacts with the GCC 
in much the same way as they would with a flight 
simulator. The GCC reads the manual controls from the 
hand-controller, applies any control algorithms, transmits 
the commands to the UAV, and receives and displays the 
video and avionics data from the UAV. The onboard 
electronics are mainly used for wireless communication, 
brushless motor control, servo control, and sensor reading. 
This system is also used as a platform to compare the 
performances of manual and feedback augmented control 
where the inputs from both the human operator and the 
data from the onboard IMU are used to maintain the 
stability of the UAV during navigation. In [5], a UAV is 
converted from an ESky Big Lama helicopter model for 
competition in the 2009 International Aerial Robotics 
Competition. While the flight control algorithms are 
executed with the onboard micro-processors, XBee 
wireless modules are used to send the navigation data to 
the GCC. 

A common feature of the various UAVs is that both 
manual and automatic modes exist within the system; each 
of which has a specific role to play. In some systems the 
automatic mode is dominant, whereas in others the two 
modes carry the same level of importance. Though there 
are a lot of publications on UAVs, it is difficult to find any 
that provide detail regarding how the UAV has been 
designed and constructed.  

This paper presents the development of a dual-mode UAV 
system for testing UAV control algorithms. The steps taken 
to convert the helicopter model to a dual mode (manual and 
automatic) UAV are explained in terms of hardware and 
software design. The initial testing results are also 
presented. 

The paper is organized as follows. Section 2 describes the 
system structure, Section 3 describes the computer program 
development, Section 4 describes the testing results, and a 
conclusion is provided in Section 5.  

2 SYSTEM CONFIGURATION 

Fig. 1 shows the structure of the UAV that has been 
converted from an ESky Lama V4 helicopter model. The 
system consists of two main parts – the ground station and 
the helicopter. The helicopter has been fitted with an inertia 
measurement unit (IMU), XBee Pro wireless transceiver, 
and related circuitry such as power supplies. As a result, 
the payload of the helicopter has increased by 
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approximately 60 grams. The main part of the ground 
control station is a ground control computer (GCC) which 
processes data sent from the sensors, and generates motion 
commands.  
 
 
 

 

Fig. 1  Structure of the UAV  system 

 
The GCC communicates with the helicopter through a 
communication channel consisting of an XBee Pro wireless 
module, a C8051 micro-controller, the helicopter's hand-
controller, and interfacing circuitry. Data from the inertia 
measurement unit (IMU), via the XBee Pro modules, can 
be sent to the universal asynchronous receiver transmitter 
(UART) port of the micro-controller, or to the PC via an 
asynchronous serial port, allowing control algorithms to be 
run on the PC, the micro-controller, or both. A four-
channel, 10-bit DAC chip is used to convert digital outputs 
from the micro-controller into analogue signals compatible 
with those produced by the operation of the control sticks 
of the hand-controller. This utilises the existing receiver on 
the helicopter and allows it to be switched to manual 
control in the event of an emergency. It also allows for the 
helicopter to be easily replaced with a similar four-channel 
model by exchanging the transmitter crystals.  
  
The IMU provides up to nine measurements consisting of 
three linear accelerations, three magnetic directions, and 
three gyroscopic angular velocities, that reflect the states of 
the helicopter in motion. The format of the data frame can 
be either purely ASCII format, or mixed ASCII and binary 
formats. The length of the data frame has been reduced by 
excluding the magnetic directions, which have been found 
to be affected by the electromagnetic fields of the motors. 
The data frame consists of data for the six measurements, a 
count number, and characters signifying its beginning and 
end. The baud rate of the IMU is 115200 bps, resulting in a 
transmission time for one data frame of approximately 3.4 
ms. The communication path consists of two asynchronous 
serial connections between the IMU and the PC. It also 
includes the wireless connection between the XBee Pro 
modules which have a data rate of 250 kbps, corresponding 
to a transmission time of approximately 1.6 ms. Therefore 
the communication delay from the IMU to the PC is 
approximately 8.4 ms. 

The complete communication path begins at the IMU, 
which digitises the acceleration and velocity 
measurements. The IMU transmits the measurements in an 
ASCII data frame to the XBee Pro on the avionics circuit 
board, which then transmits the data frame to the XBee Pro 
at the ground control station (base XBee Pro). The base 
XBee Pro can then either send the data to the micro-
controller or to the GCC via an RS232 serial port. The 
GCC program uses the received data to display the UAV’s 
states in the graphic user interface, and produces control 
commands which are sent to the micro-controller via the 
RS232 serial port. The micro-controller converts the 
received commands to analogue signals via DACs which 
are then in-putted to the helicopter’s hand-controller. The 
hand-controller’s onboard micro-controller then digitises 
the analogue voltages and transmits the corresponding 
commands to the helicopter through the existing transmitter 
and receiver.  
 
A manual switch is installed to allow the user to select 
either the hand-controller’s control sticks or the DACs as 
the source of the analogue signals to the hand-controller. A 
JTAG port has been provided in the system to allow for 
reprogramming the micro-controller. While two 12-bit 
DAC modules are available in the micro-controller, they 
have not been used as there is not a sufficient number to 
handle all of the control channels, and their maximum 
output voltage is 3.3V rather than the required 5V. 
 

3 SOFTWARE DEVELOPMENT 

The software development includes the programming of 
the micro-controller and the GCC. 
 
The micro-controller is the core of the communication path 
for the UAV system. It is capable of receiving data from 
the IMU and the GCC, and sending commands to the hand-
controller. In the final communication path, the IMU data 
is sent directly from the base XBee Pro to the GCC, and 
the micro-controller provides the interface between the 
GCC and the hand-controller. Fig. 2 shows the modules of 
the micro-controller program designed to complete this 
task. The data frames from the GCC consist of a “T”, “P”, 
“R”, or “Y”, representing the control channels for throttle, 
pitch, roll and yaw motions respectively, followed by the 
data for the control commands, and finally a “Z” character, 
signifying the end of the data frame. The entire data frame 
is encoded using ASCII characters. 
 

 

Fig. 2 Modules of the microcontroller program 
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The control commands are string-based numbers between 0 
and 1023. The numbers are converted into integers, which 
are then processed by the DAC routine. As the DAC chip 
provides only eight data inputs, the DAC routine separates 
each integer into high and low bytes that are sent to the 
DAC chip individually. This process is executed in 
sequence for each of the four channels. 
 
The core of the software system for the UAV is the GCC 
program, which oversees all operations of the UAV. The 
GCC program is created within the Microsoft Visual C# 
environment which provides a quick and powerful means 
of designing and implementing graphic user interface 
based programs for the Microsoft Windows operating 
system. Though the lack of determinism and schedulability 
is an obvious shortcoming of C# in the design and 
implementation of so called “hard” real-time control 
systems, it should be suitable for “firm” and “soft” real-
time applications [6]. Since the sampling frequency of the 
IMU is controlled by hardware, and due to the fact that 
each data frame contains a count number, the correct 
current time can be estimated. This takes care of the 
schedulability issue provided that the GCC program is 
capable of processing the control routine within the IMU 
sampling period.  
 
To perform the tasks required by the UAV system, the 
structure of the GCC program is designed as shown in Fig 
3.  
 

 
 
Fig. 3   GCC program structure 

 
 
The program consists of four classes named Form1, 
FilterModule, StateIntegratorModule and 
ControllerModule. The Form1 class is the main class of the 
program including all of the communication, command 
execution, sequencing and timing routines, as well as the 
graphic user interface (GUI) and its associated routines. 
The other classes are external classes, and as the names 
suggest, are designed as modules to perform the tasks of 
signal filtering, state estimation and the generation of 
control commands. Each of them provides a specified 
means of data input and output in the form of arrays, and 
allow for the modification or replacement of the routines. 
 
The FilterModule class implements the digital filtering of 
the raw data from the IMU. The filter routine runs a 5-pole 

Butterworth filter with the cut-off frequency set to 20% of 
the sampling frequency. A Butterworth filter is chosen due 
to the fact that it is an infinite impulse response (IIR) filter 
which uses both previous input and output values to 
compute the impulse response. Furthermore, a Butterworth 
filter has a maximally flat pass band which reduces the 
inaccuracy of the positions obtained by integrating the 
filtered data in the StateIntegratorModule class. 
 
The StateIntegratorModule class processes the filtered data 
by numerically integrating it over the sampling period, 
thereby producing the state vector of the UAV. This 
consists of the linear and angular velocities, and linear and 
angular positions. The sampling period for the integration 
is defined within the GCC program and must match the 
actual sampling period set within the IMU. Failure to do so 
would result in a scaling error with respect to the integrated 
velocities and positions. 
 
The ControllerModule class takes the state array as the 
input, process it, and provides the control commands. This 
is the main space for control algorithm development. For 
testing purposes, an open-loop control routine is 
programmed that consists of a sequence of time-based 
control commands. The pitch, roll, and yaw are set for 
vertical flight and the throttle is set to climb for a certain 
period of time, hover momentarily, and then descend. 
Closed-loop control algorithms can also be programmed 
within the class, though the success of these algorithms 
will be dependent on the successful estimation of the states 
within the StateIntegratorModule class. When the GCC 
program is in the manual command mode, the control 
command values are taken directly from the manual user 
controls provided within the graphic user interface (GUI). 
 
In the RampCommands routine, the command ramp timer 
is introduced to smoothly increase or decrease the 
magnitude of the control signals. This protects the UAV 
from a severe increase in motor speed, which demands too 
much torque from the motors and may cause damage to the 
UAV. Following the RampCommands routine is the 
TransmitCommands routine where the four control channel 
commands are transmitted to the micro-controller via the 
RS232 serial port. The frequency of command 
transmissions is controlled by the main routine timer. 
 
The various routines within the program are triggered by 
the data received event, and the ticks of the main routine 
timer and the command ramp timer. The data received 
event is activated by the serial data entering the  
asynchronous serial port buffer; which consists of the data 
frames sent by the IMU. Once the data is considered valid, 
the main routines including filtering, state estimation and 
data logging are executed in sequence. The main routine 
timer is used to execute the ControllerModule and the 
TransmitCommands routines. 
 
Fig. 4 shows a screenshot of the graphic user interface 
(GUI) of the GCC program. The top right panel of the GUI 
contains the indicators for the raw IMU data. Each of the 
gauge indicators represents a sliding scale of 0 at the 
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bottom and 1023 at the top. The heights of the red bars are 
directly proportional to the values of the IMU data 
channels for which they represent.  
 
The bottom right panel contains the indicators for the 
integrated velocities and positions of the UAV. The 
velocities and positions for all six degrees of freedom are 
represented. The bottom left panel includes the manual 
controls for the UAV, which correspond to the control 
levers of the hand-controller, and work in exactly the same 
way. The top left panel contains the “Program Status” 
indicator, mode selection controls, data logging controls, 
and execution timer indicator.  

 
 

Fig. 4  Graphic user interface of the GCC program 
 

4 RESULTS AND DISCUSSIONS 

The complete UAV system is shown in Fig. 5. Test flights 
of the UAV are conducted to check if all the modules of 
the system work well. One scene of the test flights is 
shown in Fig. 6.  
 
 

 
 

Fig. 5 The UAV system 
 
In one flight test, the UAV is controlled to perform a 
vertical takeoff and landing. The trajectories of the 
acceleration, velocity and position of the UAV in the Z 
(altitude) direction are recorded and shown from Fig. 7 to 
Fig 9. The system as a whole has proven successful. 

 

 
 

Fig. 6 The UAV under control 
 

Z Acceleration (unfiltered data vs filtered data)
Sampling frequency = 25 Hz; Filter = 5 pole Butterworth; Cutoff frequency = 5 Hz
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Fig. 7 Acceleration   in Z direction 

 
  

Z Velocity (unfiltered data vs filtered data)
Sampling frequency = 25 Hz; Filter = 5 pole Butterworth; Cutoff frequency = 5 Hz
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Fig. 8 : Velocity in Z  direction  

 
Z Position (unfiltered data vs filtered data)

Sampling frequency = 25 Hz; Filter = 5 pole Butterworth; Cutoff frequency = 5  Hz
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Figure 9: Position  in  Z direction 
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In the test flights, it is noted that the zero point of the IMU 
drifts irregularly, which compromises the reliability of the 
data received. Possible causes of this irregularity include 
the input voltage fluctuating during different stages of 
operation, and signal aliases occurring as a result of the 
sampling frequency of the IMU. Future work is needed to 
accurately identify and eliminate the cause of the drift. 
Closed-loop control can then be implemented with the 
support of the hardware and software environments of the 
UAV system. 

 

5 CONCLUSION 

This paper presents the hardware and software 
development for a PC-based control system for an 
unmanned micro air vehicle converted from a helicopter 
model. Manual and automatic modes of operation of the 
system have been tested and proved to be a success. A 
comprehensive open platform has been provided for future 
work on issues such as sensing and real time control, to 
ultimately achieve autonomous closed-loop control of the 
UAV.  
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