

A Control System for an Unmanned Micro Aerial Vehicle

L. Huang1 and C. Murton2

1School of Engineering, Auckland University of Technology, New Zealand

loulin.huang@aut.ac.nz

2 Opus International Consultants Ltd, New Zealand
Callum.Murton@opus.co.nz

 Abstract – This paper presents the development of a PC-
based control system for an unmanned micro aerial vehicle
(UAV) that has been converted from a helicopter model. The
hand-controller of the helicopter model is modified to be a
wireless link between a ground control computer (GCC) and the
UAV, which carries sensors including an inertia measurement
unit (IMU) and the actuators for the main rotor and pitch angle
controls. A programming environment, written with the C#
programming language, is set up for the implementation of
control algorithms for the UAV. Manual and automatic modes of
controlling the UAV are achieved. Implementation issues, such as
the reliability of the IMU data for closed-loop control, are also
discussed.

 Keywords – Control; Micro Aerial Vehicle.

1 INTRODUCTION

Research into unmanned aerial vehicles (UAVs) has been
active in recent decades due to its huge potential in
applications such as search and rescue, surveillance, and
precision agriculture where ground based vehicles are
unsuitable. Many research projects are aimed at producing
fully autonomous UAVs where the communication path
between the GCC and the UAV is mainly used for sending
motion commands, and the real-time signal processing and
control are executed by the flight control units within the
vehicle. This ensures that the UAV has a fast response and
is able to quickly react to disturbances [1][2]. Manual
operation with a hand-held controller is also kept in the
system in the event of an emergency. The limited
computing power of onboard devices, however, can make
it difficult to implement complex and demanding control
tasks.

In [3], a UAV is partially controlled by the GCC. The
vehicle’s state is obtained via a camera tracking system and
fed back to the computer. A position detection server is
programmed to recognise a small square marker on the
vehicle. By comparing the apparent size of the marker with
stored knowledge of its true size, the server is able to
compute the distance of the UAV from the camera, and
therefore its position. The servers are connected via a
gigabit Ethernet which significantly reduces the time taken
for data transmission.

Another type of UAV, presented in [4], is manually
operated with sensory input provided to the human
operator via a computer monitor. Cameras mounted on the
UAV provide the outlook, and onboard sensors provide the

avionics data. The human operator interacts with the GCC
in much the same way as they would with a flight
simulator. The GCC reads the manual controls from the
hand-controller, applies any control algorithms, transmits
the commands to the UAV, and receives and displays the
video and avionics data from the UAV. The onboard
electronics are mainly used for wireless communication,
brushless motor control, servo control, and sensor reading.
This system is also used as a platform to compare the
performances of manual and feedback augmented control
where the inputs from both the human operator and the
data from the onboard IMU are used to maintain the
stability of the UAV during navigation. In [5], a UAV is
converted from an ESky Big Lama helicopter model for
competition in the 2009 International Aerial Robotics
Competition. While the flight control algorithms are
executed with the onboard micro-processors, XBee
wireless modules are used to send the navigation data to
the GCC.

A common feature of the various UAVs is that both
manual and automatic modes exist within the system; each
of which has a specific role to play. In some systems the
automatic mode is dominant, whereas in others the two
modes carry the same level of importance. Though there
are a lot of publications on UAVs, it is difficult to find any
that provide detail regarding how the UAV has been
designed and constructed.

This paper presents the development of a dual-mode UAV
system for testing UAV control algorithms. The steps taken
to convert the helicopter model to a dual mode (manual and
automatic) UAV are explained in terms of hardware and
software design. The initial testing results are also
presented.

The paper is organized as follows. Section 2 describes the
system structure, Section 3 describes the computer program
development, Section 4 describes the testing results, and a
conclusion is provided in Section 5.

2 SYSTEM CONFIGURATION

Fig. 1 shows the structure of the UAV that has been
converted from an ESky Lama V4 helicopter model. The
system consists of two main parts – the ground station and
the helicopter. The helicopter has been fitted with an inertia
measurement unit (IMU), XBee Pro wireless transceiver,
and related circuitry such as power supplies. As a result,
the payload of the helicopter has increased by

15th International Conference on Mechatronics Technology

12

approximately 60 grams. The main part of the ground
control station is a ground control computer (GCC) which
processes data sent from the sensors, and generates motion
commands.

Fig. 1 Structure of the UAV system

The GCC communicates with the helicopter through a
communication channel consisting of an XBee Pro wireless
module, a C8051 micro-controller, the helicopter's hand-
controller, and interfacing circuitry. Data from the inertia
measurement unit (IMU), via the XBee Pro modules, can
be sent to the universal asynchronous receiver transmitter
(UART) port of the micro-controller, or to the PC via an
asynchronous serial port, allowing control algorithms to be
run on the PC, the micro-controller, or both. A four-
channel, 10-bit DAC chip is used to convert digital outputs
from the micro-controller into analogue signals compatible
with those produced by the operation of the control sticks
of the hand-controller. This utilises the existing receiver on
the helicopter and allows it to be switched to manual
control in the event of an emergency. It also allows for the
helicopter to be easily replaced with a similar four-channel
model by exchanging the transmitter crystals.

The IMU provides up to nine measurements consisting of
three linear accelerations, three magnetic directions, and
three gyroscopic angular velocities, that reflect the states of
the helicopter in motion. The format of the data frame can
be either purely ASCII format, or mixed ASCII and binary
formats. The length of the data frame has been reduced by
excluding the magnetic directions, which have been found
to be affected by the electromagnetic fields of the motors.
The data frame consists of data for the six measurements, a
count number, and characters signifying its beginning and
end. The baud rate of the IMU is 115200 bps, resulting in a
transmission time for one data frame of approximately 3.4
ms. The communication path consists of two asynchronous
serial connections between the IMU and the PC. It also
includes the wireless connection between the XBee Pro
modules which have a data rate of 250 kbps, corresponding
to a transmission time of approximately 1.6 ms. Therefore
the communication delay from the IMU to the PC is
approximately 8.4 ms.

The complete communication path begins at the IMU,
which digitises the acceleration and velocity
measurements. The IMU transmits the measurements in an
ASCII data frame to the XBee Pro on the avionics circuit
board, which then transmits the data frame to the XBee Pro
at the ground control station (base XBee Pro). The base
XBee Pro can then either send the data to the micro-
controller or to the GCC via an RS232 serial port. The
GCC program uses the received data to display the UAV’s
states in the graphic user interface, and produces control
commands which are sent to the micro-controller via the
RS232 serial port. The micro-controller converts the
received commands to analogue signals via DACs which
are then in-putted to the helicopter’s hand-controller. The
hand-controller’s onboard micro-controller then digitises
the analogue voltages and transmits the corresponding
commands to the helicopter through the existing transmitter
and receiver.

A manual switch is installed to allow the user to select
either the hand-controller’s control sticks or the DACs as
the source of the analogue signals to the hand-controller. A
JTAG port has been provided in the system to allow for
reprogramming the micro-controller. While two 12-bit
DAC modules are available in the micro-controller, they
have not been used as there is not a sufficient number to
handle all of the control channels, and their maximum
output voltage is 3.3V rather than the required 5V.

3 SOFTWARE DEVELOPMENT

The software development includes the programming of
the micro-controller and the GCC.

The micro-controller is the core of the communication path
for the UAV system. It is capable of receiving data from
the IMU and the GCC, and sending commands to the hand-
controller. In the final communication path, the IMU data
is sent directly from the base XBee Pro to the GCC, and
the micro-controller provides the interface between the
GCC and the hand-controller. Fig. 2 shows the modules of
the micro-controller program designed to complete this
task. The data frames from the GCC consist of a “T”, “P”,
“R”, or “Y”, representing the control channels for throttle,
pitch, roll and yaw motions respectively, followed by the
data for the control commands, and finally a “Z” character,
signifying the end of the data frame. The entire data frame
is encoded using ASCII characters.

Fig. 2 Modules of the microcontroller program

13

The control commands are string-based numbers between 0
and 1023. The numbers are converted into integers, which
are then processed by the DAC routine. As the DAC chip
provides only eight data inputs, the DAC routine separates
each integer into high and low bytes that are sent to the
DAC chip individually. This process is executed in
sequence for each of the four channels.

The core of the software system for the UAV is the GCC
program, which oversees all operations of the UAV. The
GCC program is created within the Microsoft Visual C#
environment which provides a quick and powerful means
of designing and implementing graphic user interface
based programs for the Microsoft Windows operating
system. Though the lack of determinism and schedulability
is an obvious shortcoming of C# in the design and
implementation of so called “hard” real-time control
systems, it should be suitable for “firm” and “soft” real-
time applications [6]. Since the sampling frequency of the
IMU is controlled by hardware, and due to the fact that
each data frame contains a count number, the correct
current time can be estimated. This takes care of the
schedulability issue provided that the GCC program is
capable of processing the control routine within the IMU
sampling period.

To perform the tasks required by the UAV system, the
structure of the GCC program is designed as shown in Fig
3.

Fig. 3 GCC program structure

The program consists of four classes named Form1,
FilterModule, StateIntegratorModule and
ControllerModule. The Form1 class is the main class of the
program including all of the communication, command
execution, sequencing and timing routines, as well as the
graphic user interface (GUI) and its associated routines.
The other classes are external classes, and as the names
suggest, are designed as modules to perform the tasks of
signal filtering, state estimation and the generation of
control commands. Each of them provides a specified
means of data input and output in the form of arrays, and
allow for the modification or replacement of the routines.

The FilterModule class implements the digital filtering of
the raw data from the IMU. The filter routine runs a 5-pole

Butterworth filter with the cut-off frequency set to 20% of
the sampling frequency. A Butterworth filter is chosen due
to the fact that it is an infinite impulse response (IIR) filter
which uses both previous input and output values to
compute the impulse response. Furthermore, a Butterworth
filter has a maximally flat pass band which reduces the
inaccuracy of the positions obtained by integrating the
filtered data in the StateIntegratorModule class.

The StateIntegratorModule class processes the filtered data
by numerically integrating it over the sampling period,
thereby producing the state vector of the UAV. This
consists of the linear and angular velocities, and linear and
angular positions. The sampling period for the integration
is defined within the GCC program and must match the
actual sampling period set within the IMU. Failure to do so
would result in a scaling error with respect to the integrated
velocities and positions.

The ControllerModule class takes the state array as the
input, process it, and provides the control commands. This
is the main space for control algorithm development. For
testing purposes, an open-loop control routine is
programmed that consists of a sequence of time-based
control commands. The pitch, roll, and yaw are set for
vertical flight and the throttle is set to climb for a certain
period of time, hover momentarily, and then descend.
Closed-loop control algorithms can also be programmed
within the class, though the success of these algorithms
will be dependent on the successful estimation of the states
within the StateIntegratorModule class. When the GCC
program is in the manual command mode, the control
command values are taken directly from the manual user
controls provided within the graphic user interface (GUI).

In the RampCommands routine, the command ramp timer
is introduced to smoothly increase or decrease the
magnitude of the control signals. This protects the UAV
from a severe increase in motor speed, which demands too
much torque from the motors and may cause damage to the
UAV. Following the RampCommands routine is the
TransmitCommands routine where the four control channel
commands are transmitted to the micro-controller via the
RS232 serial port. The frequency of command
transmissions is controlled by the main routine timer.

The various routines within the program are triggered by
the data received event, and the ticks of the main routine
timer and the command ramp timer. The data received
event is activated by the serial data entering the
asynchronous serial port buffer; which consists of the data
frames sent by the IMU. Once the data is considered valid,
the main routines including filtering, state estimation and
data logging are executed in sequence. The main routine
timer is used to execute the ControllerModule and the
TransmitCommands routines.

Fig. 4 shows a screenshot of the graphic user interface
(GUI) of the GCC program. The top right panel of the GUI
contains the indicators for the raw IMU data. Each of the
gauge indicators represents a sliding scale of 0 at the

14

bottom and 1023 at the top. The heights of the red bars are
directly proportional to the values of the IMU data
channels for which they represent.

The bottom right panel contains the indicators for the
integrated velocities and positions of the UAV. The
velocities and positions for all six degrees of freedom are
represented. The bottom left panel includes the manual
controls for the UAV, which correspond to the control
levers of the hand-controller, and work in exactly the same
way. The top left panel contains the “Program Status”
indicator, mode selection controls, data logging controls,
and execution timer indicator.

Fig. 4 Graphic user interface of the GCC program

4 RESULTS AND DISCUSSIONS

The complete UAV system is shown in Fig. 5. Test flights
of the UAV are conducted to check if all the modules of
the system work well. One scene of the test flights is
shown in Fig. 6.

Fig. 5 The UAV system

In one flight test, the UAV is controlled to perform a
vertical takeoff and landing. The trajectories of the
acceleration, velocity and position of the UAV in the Z
(altitude) direction are recorded and shown from Fig. 7 to
Fig 9. The system as a whole has proven successful.

Fig. 6 The UAV under control

Z Acceleration (unfiltered data vs filtered data)
Sampling frequency = 25 Hz; Filter = 5 pole Butterworth; Cutoff frequency = 5 Hz

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

Unfiltered data

Filtered data

Fig. 7 Acceleration in Z direction

Z Velocity (unfiltered data vs filtered data)
Sampling frequency = 25 Hz; Filter = 5 pole Butterworth; Cutoff frequency = 5 Hz

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Time (s)

V
el

o
ci

ty
 (

m
/s

)

Unfiltered data

Filtered data

Fig. 8 : Velocity in Z direction

Z Position (unfiltered data vs filtered data)

Sampling frequency = 25 Hz; Filter = 5 pole Butterworth; Cutoff frequency = 5 Hz

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12

Time (s)

H
ei

g
h

t
(m

)

Unfiltered data

Filtered Data

Figure 9: Position in Z direction

15

In the test flights, it is noted that the zero point of the IMU
drifts irregularly, which compromises the reliability of the
data received. Possible causes of this irregularity include
the input voltage fluctuating during different stages of
operation, and signal aliases occurring as a result of the
sampling frequency of the IMU. Future work is needed to
accurately identify and eliminate the cause of the drift.
Closed-loop control can then be implemented with the
support of the hardware and software environments of the
UAV system.

5 CONCLUSION

This paper presents the hardware and software
development for a PC-based control system for an
unmanned micro air vehicle converted from a helicopter
model. Manual and automatic modes of operation of the
system have been tested and proved to be a success. A
comprehensive open platform has been provided for future
work on issues such as sensing and real time control, to
ultimately achieve autonomous closed-loop control of the
UAV.

ACKNOWLEDGEMENT

Most of the work reported in this paper was completed
when the authors were at the School of Engineering and
Advanced Technology, Massey University. We would like
to thank Mr Malcolm Watts, Mr Mike Turner, Mr Poh Ng
and Mr Neiko Altenburg for their help.

REFERENCES

[1] R. Jinjun, Jun, L., X. Shaorong, and G. Zhenbang,
“Subminiature unmanned surveillance aircraft and its ground
control station for security”, Proceedings of the 2005 IEEE
International Workshop on Safety, Security and Rescue
Robotics, pp. 116-119, Kobe, Japan, 2005.

[2] Y. Ge, and M. Zhu, “A control system of the miniature
helicopter with stereo-vision and time delay predictor”,
Proceedings of the 2007 International Conference on
Information Acquisition, pp. 608-613, Jeju City, Korea,
2007.

[3] M. Hirata, O. Miyazawa, K. Nonami, G. Song and W.

Wang, “ Autonomous control for micro-flying robot and
small wireless helicopter X.R.B”, Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2906–2911, Beijing, China, 2006.

[4] J. Andersh, B. Mettler, and N.Papanikolopoulos,

“Experimental investigation of teleoperation performance for
miniature rotorcraft”, Proceedings of the 48th IEEE
Conference on Decision and Control, pp. 6005-6010,
Shanghai, China, 2009.

[5] G. Chowdhary, H. C. Christmann, E. N., Johnson, M. S.

Kimbrell, E. Salaün, and D. M. Sobers, Georgia Tech
Aerial Robotics Team, 2009 International Aerial Robotics
Competition Entry. Georgia Institute of Technology.

[6] P. A. Laplante, and M. H. Lutz, “C# and the .NET
framework: ready for real time?”, Software, IEEE, 20(1),70-
80.

16

17

	All In One
	P
	Paper06

