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Abstract 

 

This dissertation presents new modular and integrative information methods and 

systems inspired by the way the brain performs information processing, in particular, 

pattern recognition. The proposed artificial systems use spiking neurons as basic 

elements, which are the key components of spiking neural networks. Of particular 

interest to this research are various spiking neural network architectures and learning 

procedures that permit different pattern recognition problems to be solved in an 

evolvable and adaptive way. 

 

Spiking neural networks are used to model human visual and auditory pathways 

and are trained to perform the specific task of person authentication. The systems are 

individually tuned and trained to recognize facial information and to analyze sound 

signals from spoken sentences. The modelling of the integration of different sources of 

information (multisensory integration) using spiking neural networks is also a subject of 

investigation. A network architecture is proposed and a model for audiovisual pattern 

recognition is designed as an example. 

 

The main original contributions of this thesis are:  

a) Evaluation and further extension of adaptive learning procedures to perform 

visual pattern recognition. A new learning procedure that enables the system to change 

its structure, creating/merging neuronal maps of spiking neurons is presented and 

evaluated on a face recognition problem. 

b) Design of two new spiking neural network architectures to perform person 

authentication through the processing of speech signals. 

c) Design and evaluation of a new architecture that integrates sensory modalities 

based on spiking neurons. The integrative architecture combines opinions from 

individual modalities within a supramodal layer, which contains neurons sensitive to 

multiple sensory information. An additional feature that increases biological relevance 

is the crossmodal coupling of modalities, which effectively enables a given sensory 

modality to exert direct influence upon the processing areas typically related to other 

modalities. 

 



 ix 

The contributions were published in one journal paper and in four refereed 

international conference proceedings. The proposed system designs were implemented 

and, through computer simulations, demonstrated comparable performance with 

traditional benchmarking methods. The systems have some promising features: they can 

be naturally optimized in respect to different criteria: accuracy (when very accurate 

results are expected), energy efficiency (when management of resources play an 

important role), and speed (when a decision needs to be made within a limited time). 

 

In this thesis, most of the parameters have been exhaustively optimized by hand 

or by using simple heuristics. As a direction for future work, there is an opportunity to 

include automated, specially tailored parameters optimization procedures or even 

general-purpose optimization algorithms, e.g., Genetic Algorithms and Particle Swarm 

Optimization. 

 

Overall, the results obtained in this thesis clearly indicate that it is indeed 

possible to have fast and accurate adaptive pattern recognition systems scalable for 

multiple modalities computing with simple models of spiking neurons. However, it is 

important to advance the theory of spiking neurons to take advantage of its biological 

relevance to reach similar or better performance when compared to the human brain, for 

instance, exploring new neuron models, information coding schemes and network 

connectivity. 
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Chapter 1 - Introduction 

 

1.1 Definition and motivation 

Evolving spiking neural networks belong to the class of Brain-like Evolving 

Connectionist Systems (Brain-like ECOS). To fully understand the meaning of the term 

Brain-like ECOS, it is best to define each term individually. 

 

Connectionist systems are systems composed of simple processing units 

connected to each other to form a network. Depending on how the configuration of 

these simple processing units is set up as a network, complex behaviours can be 

achieved. 

 

In this context, the term evolving stands for the continuous and automatic 

adaptation of the processing units and the way these units connect in structured 

networks, triggered by internal and/or external causes. The evolving property enables 

the structures to perform suitable information acquisition (to separate “wheat from the 

chaff”), store knowledge, execute learning (learn/forget a specific task), or even only 

organize themselves internally to reach more stable states (Kasabov, 2007). 

 

It is important to distinguish the concept of evolving systems with the definition 

of evolutionary algorithms (Back, 1996). Evolutionary algorithms basically “models the 

collective learning process within a population of individuals” using the biologically 

inspired processes of recombination, mutation and selection (Back, 1996). Evolving in 

this dissertation relates to connectionist systems that seek to model evolving processes 

that “develop, change over time in a continuous manner” (Kasabov, 2007). 

 

Brain-like ECOS can be considered a special case of ECOS which, besides the 

ECOS requirements, are also concerned in giving a biological interpretation to the 

systems. Section 2.3.3 discuss the classification of COS, ECOS and Brain-like ECOS in 

more detail. 

 

In this work, the biologically inspired processing units are implemented as 

spiking neurons, using the theory of spiking neural networks (Gerstner and Kistler, 
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2002) (Maass and Bishop, 2001). In particular, this research explores the use of 

evolving spiking neural networks, i.e., processing units grouped in ensembles that 

function, learn and evolve in a biologically inspired way, to solve audiovisual pattern 

recognition problems. 

 

Pattern recognition is a broad area of artificial intelligence concerned with 

finding the correspondence of a certain stimulus with the information previously stored 

in memory. While some pattern recognition problems are easy to process automatically 

with artificial systems, e.g., searching for a string of characters in a document, other 

groups of patterns have been exhaustively studied and can only be recognized once 

many constraints are put into place. Classical examples in this group are the recognition 

of visual objects, sounds, smells, and taste patterns. Interestingly, some types of patterns 

that are difficult to handle by artificial systems are processed very accurately by human 

brains, most likely due to thousands of years of evolution and adaptation to 

environmental conditions (Darwin, 1859). The impressive performance of the brain has 

motivated many scientific studies. However, despite the tremendous effort put into 

deciphering the mechanisms that regulate the brain’s activity, there are still many parts 

of the puzzle that remain unsolved. 

 

The motivation of this research is twofold. First, the investigation of brain-like 

connectionist systems attempts to enhance the performance of current pattern 

recognition systems and solve engineering problems. In this direction, the aim is to 

understand the principles that rule biological brains and to simulate some properties of 

biological networks that can improve the behaviour of artificial systems. Second, this 

research can contribute to the emergence of new theories and knowledge which explain 

how the brain processes information and develops cognitive activities. The development 

and consequent simulation and analysis of new network architectures can be used as a 

tool to test and verify new hypotheses and discoveries. 

 

This research intends to close the gap between artificial and biological models 

used for pattern recognition. In this attempt, this research follows the direction 

described in (Gerstner and Kistler, 2002) that states: “If you want to avoid any prior 

assumption regarding the way the brain processes information, we need to simulate it 

using field potentials”, i.e. spiking models. Thus, all the new achievements of this 

research, namely, new network architectures and learning procedures, use the theory of 
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field potential with information transmitted via pulses. As will be shown in the course 

of this dissertation, the use of processing units with field potentials for pattern 

recognition is very recent (Hopfield, 1995) and still has a fertile and open terrain to be 

explored. Currently, there are many research groups trying to elucidate whether 

computation using the field potential theory can indeed be considered the next 

generation of connectionist systems and whether they can substantially enhance 

performance on pattern recognition tasks (Maass and Bishop, 2001). While by the end 

of this research it may remain an open question, this work expects to contribute towards 

facilitating the answer. 

 

1.2 Objective of the research 

Inspired by the processing ability of the human brain, the general objective of this 

research can be defined as: 

 

“To design new artificial systems to execute complex pattern recognition 

tasks that apply brain-like principles to information processing” 

 

1.2.1 Specific objectives 

The general objective can be divided into three more concrete and specific objectives. 

They are: 

1) to propose a new way of achieving adaptive/evolving learning in a spiking 

neural network model for pattern recognition; 

2) to design new evolving spiking neural network architectures to perform audio 

and visual pattern recognition; 

3) to present a new spiking neural network model to combine different sources 

of information coherent with brain-like principles. 

 

1.2.2 Research design 

In order to achieve the objectives proposed in the previous section, the research process 

is organised using the following steps: 

a) review and evaluation of the existent methods; 

b) conceptual design and software implementation; 

c) experimentation and quantitative evaluation. 
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Literature review 

The first step is to review and evaluate the state-of-the-art systems described in the 

literature that use traditional methods of audio, visual, and audiovisual information 

processing, i.e., methods that do not have biological representation but provide state-of-

the-art performance in terms of pattern recognition. 

 

 In addition, biologically realistic ensembles of neurons and learning methods are 

evaluated, from low level processing realized in sensory systems up to the emergence of 

a higher level of cognitive activities. Emphasis is given to the computational models 

that emulate brain activity on different levels of information processing, utilizing 

adaptive connectionist ways of modelling. 

 

Finally, how the human brain processes multimodal information and combines 

different sources of information in a coherent learning process is investigated. Some of 

the key points evaluated at this stage include: early or late integration of modalities, 

correlations between modes, response when partial information is missing and 

processing speed. 

 

Conceptual design and implementation 

The design of new SNN architectures and procedures to learn audio, visual, and 

audiovisual patterns follows the literature review. In this part, this research breaks new 

ground. The new designs as well as their dynamic behaviour and the tuning of their 

parameters are described to facilitate reproducibility. The new models are implemented 

in C++ or C# language and compiled in a general-purpose computer platform. The 

implementation is also a subject of analysis. 

 

Test and validation 

The design and implementation of the new systems is followed by an evaluation of 

performance. The systems are tested to process complex images and speech streams of 

benchmarking datasets. Parameters of the new systems are tuned to optimize accuracy. 

For the audio and visual systems alone, accuracy is then compared with benchmark 

systems under the same dataset setup. The new integrated audiovisual approach, on the 
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other hand, is compared with individual modalities, also under the same dataset 

conditions. 

 

 The new methods are also analysed in respect to biological relevance and their 

usefulness to processing data to solve engineering problems. Finally, and equally 

importantly, directions for further advancement in the development of new evolving 

spiking neural networks are offered. 

 

1.3 Scientific contribution 

The primary contribution of this work is to use biologically realistic neural networks to 

solve pattern recognition problems. In this direction, a new computer model that 

performs visual pattern recognition using spiking neurons is designed and implemented 

(Wysoski et al, 2006) (Wysoski et al, 2008). The model includes a new learning 

procedure that adapts to new data through structural adaptation. An additional layer that 

accumulates opinions over several image frames proves useful in enhancing the 

decision-making process. 

 

A new network architecture that resembles the human auditory system 

specifically able to recognize speakers is also presented (Wysoski et al, 2007a). In this 

architecture, a novel learning procedure is proposed based on mathematical models that 

perform normalization in the similarity domain (normalization of similarity scores), 

together with a new adaptive model to create/merge neurons. 

 

Finally, the integration of audiovisual sensory information using the theory of 

spiking neurons is presented (Wysoski et al, 2007). A spike-based technique to perform 

a posteriori integration implements the combination of individual modalities where 

each modality can receive crossmodal influence. Thus, each modality is linked to other 

modalities before individual decisions are made. 

 

All these new methods proposed are evaluated through various perspectives: 

accuracy, biological relevance, limitations and computational cost. As an overall 

conclusion, the methods present comparable results with some traditional pattern 

recognition algorithms. 
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1.4 Organisation of the dissertation 

This dissertation is organised into six chapters. Chapter 2 presents a literature review 

covering the different ways of modelling brain activity, moving towards the modelling 

of audiovisual sensory stimuli. Chapter 3 focuses on the visual system and the 

corresponding modelling tools that perform visual information processing, in particular 

pattern recognition. Chapter 4 covers the auditory system and shows how patterns of 

auditory information can be processed using several artificial models. In Chapter 5, the 

integration of sensory modalities is presented. Chapters 3, 4 and 5 contain the core of 

this research, and it is where these new methods are described in detail. In each of these 

three chapters, a specific conclusion is given as well as further necessary evaluations 

and suggestions for future development. Chapter 6 summarises the achievements of the 

work and contains the overall conclusion. Hardware implementation and commercial 

applications are also briefly discussed, followed by future directions, which conclude 

the dissertation. 
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Chapter 2 - Modelling the biological brain and brain-like 

computation - A review 

 

This chapter reviews what is known about the way the brain processes information, 

from neurons as the basic processing unit, up to the emergence of cognitive processes 

when ensembles of neurons are interconnected in a complex way. Then, a classification 

of neural-based information processing models is proposed. The last part of the chapter 

is devoted to introducing the theory of spiking neural networks, in particular, their use 

as a tool for artificial intelligence. 

 

The review starts with the description of several artificial neuron models, 

followed by the integration of neurons into networks that resemble the brain’s way of 

functioning and the brain’s structure. As there is no single model that incorporates all 

the brain’s capabilities, the most important properties of each model is highlighted and 

the differences among them are explained. The artificial models are presented in order 

of biological relevance, from the less biologically relevant to the most accurate models 

from a biological viewpoint. 

 

From the pattern recognition perspective, this review proceeds with a brief 

explanation on the functional structure and information pathways that form two sensory 

mechanisms relevant to this research: the visual and auditory system. The integration of 

pathways and the way the information is integrated in these two systems are also 

described. 

 

A classification of artificial models that use ensembles of neurons for 

information processing is introduced: Connectionist Systems (COS), Evolving 

Connectionist Systems (ECOS) and Brain-like ECOS. This research concentrates on 

Brain-like ECOS. As a special case of ECOS, Brain-like ECOS seeks to incorporate 

discoveries from neuroscience into the design of new artificial systems. Specific aspects 

to be considered in Brain-like ECOS are presented and discussed. 

 

In the final part of the chapter, the theory of spiking neural networks (SNN) as 

having more biologically realistic neuronal processing units is discussed. An emphasis 

is placed on applying SNN to pattern recognition tasks. 
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Overall, this chapter gives the support and biological background to the main 

contributions presented in Chapter 3, Chapter 4 and Chapter 5, where existent and new 

artificial models for pattern recognition are presented. 

 

2.1 Brain-like information processing units and their 

organization 

2.1.1 Neurons 

The brain is basically composed of neurons and glial cells. The role of glial cells is to 

provide support to the neurons, helping to increase conduction speed, forming a blood-

brain barrier, holding neural structures together and defending the neurons against 

infection (Stein and Stoodley, 2006). Despite the fact that there are 10 to 50 times more 

glial cells than neurons, the role of information processing is undertaken exclusively by 

the neurons. For this reason, most artificial networks that model the processing of 

information simply do not take into account the glial cells, restricting their component 

blocks to neurons (neural networks). 

 

Neurons are composed of three main parts: dendrites, cell body (or soma) and 

axons. Dendrites receive messages from other neurons, axons transmit messages to 

other neurons and the cell body contains the nucleus of the cells and the cell’s genetic 

information. Axons from one cell and dendrites from another cell are connected through 

synapses. Neurons differ in type according to their main functionality. There are the 

sensory neurons, motor neurons, local interneurons, projection interneurons and 

neuroendocrine cells (Kandel, 2000). Yet, independent of type, a neuron is constituted 

of four functional parts: input, trigger, conduction and output. Figure 2.1 shows a 

graphical representation of a generic neuronal model. 

 

 

 

Fig. 2.1. Functional parts of biological neurons. 
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Over recent years, research about brain information processing has acquired 

enough evidence to suggest that biological neurons transmit information using short 

electrical discharges generated by electrochemical activity. The input and output signals 

in a single neuron have a short duration (generally 1ms) and a constant amplitude 

(typically 100 mV). Due to the short duration of the input/output signals they are 

commonly referred as pulses or spikes. 

 

The typical behaviour of a neuronal unit can be roughly described as follows: an 

incoming pulse (received by a dendrite) increases the inner potential of a neuron (in the 

soma), which is called postsynaptic potential (PSP). When the inner potential of a 

neuronal cell (PSP) reaches a certain threshold, the neuron outputs a spike (through the 

axon). Figure 2.2 illustrates this process. 

 

 

 

Fig. 2.2. Representation of a neuron and its basic functional behaviour. Incoming pulses increase the 

inner potential (PSP). Output pulses are released when the PSP reaches a certain threshold. 

 

A wide range of models describing the functional behaviour of a single neuron 

has been proposed, e.g., integrate-and-fire, integrate-and-fire with leakage, spike 

response model, Izhikevich model (Gerstner and Kistler, 2002) (Izhikevich, 2003). In 

the majority of models, a neuron is represented with three parts: dendrites, responsible 

for collecting signals from other neurons; soma, the processing unit, and; axon, from 

which signals are released. Most of these attempts model information processing at a 

neuronal level and consider the spiking characteristic as a means of communication 

between neurons (Gerstner and Kistler, 2002). 

 

Before describing how the neurons organize into ensembles, the main properties 

of the most popular models of neurons are succinctly presented. The models are 

presented in order of biological relevance. The connectivity of neurons in networks and, 
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in particular, information encoding is described in the Section 2.1.2 (The organization 

of neurons). 

 

1) McCulloch-Pitts neuron (1943) 

McCulloch-Pitts neuron (Figure 2.3) (McCulloch and Pitts, 1943), also called the 

threshold logic unit, basically consists of a processing unit with binary inputs/outputs {0 

or 1} and the threshold represented with real numbers. There is no notion of weights in 

its input connections. When an input receives a 1 signal, the inner state of the neuron is 

added by one unit (Threshold step function). This elementary processing unit was able 

to process AND and OR functions, but not XOR (exclusive OR) and NXOR (not 

exclusive OR). 

 

 

 

Fig. 2.3. McCulloch-Pitts neuron. 

 

2) Perceptron (1949) 

With Hebb’s discovery in relation to changes in synaptic efficiency according to 

neuronal activity, further proposing that this mechanism could be the basis of learning 

and memory (Hebb, 1949), the McCulloch-Pitts neuron needed to be upgraded. 

Rosenblatt (Rosenblatt, 1962) evaluated the Perceptron model, with inputs having 

weights (to be trained) and a binary activation function. Rosenblatt’s work also 

introduced the Delta rule for training. Differentiable activation functions (sigmoids, 

piecewise linear, Gaussian, etc) were introduced much later in 1986 by Rumelhart 

(Rumelhart, 1986), to train a multi-layer perceptron (MLP) structure through back-

propagation of errors. Figure 2.4 shows an illustration of the perceptron. 
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Fig. 2.4. Perceptron model. Note the innovations proposed over the years: changeable input weights, 

different activation functions, and inputs/outputs with real numbers. 

 

3) Integrate-and-fire 

The integrate-and-fire model was the first type of neuron that used the theory of spikes 

over time to convey information (See (Gerstner and Kistler, 2002) for an introduction). 

As the input spikes arrive in time, the inner potential of a neuron (postsynaptic potential 

- PSP) is increased/decreased with strength proportional to the connection weights. If 

the weights are positive, the connections are excitatory and an incoming stimulus acts to 

increase the PSP. Connections with negative weights are inhibitory as stimulus passing 

through them act to decrease the PSP. When the postsynaptic potential reaches a 

threshold, an output spike is released. In the event of an output spike, the PSP is reset to 

its resting potential, as can be seen in Figure 2.5. 

 

 

 

Fig. 2.5. Integrate-and-fire neuron. 

 

4) Integrate-and-fire with leakage 

Adding complexity to the integrate-and-fire neuron, the leaky integrate-and-fire neuron 

has its PSP ruled by a decay term, which decreases the magnitude of PSP over time (See 

(Gerstner and Kistler, 2002) for an introduction). Thus, when neurons cease to receive 

input excitation, the PSP gradually decreases and after some time reaches its resting 

potential. This mechanism, in its simplest form, can be associated with an RC electrical 

circuit where each neuron is composed of resistors and capacitors. Consequently, 
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neuronal activity can be analyzed using the theory of electric circuits. The dynamics of 

a leaky neuron can be expressed by the change in the PSP (excitation/inhibition) upon 

spike arrival as: 



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where Amax is the maximum activation caused by a single spike, tini is the time of the 

incoming spike, and τrise is the excitatory/inhibitory time constant of the neuron. Some 

simplified models do not consider the exponential term in Equation 2.1. As a result, 

upon the arrival of a spike, the PSP is simply added to by the constant Amax. 

 

The PSP decay term, on the other hand, is described as: 
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where Amax is the maximum activation caused by a single spike, tini is the time of the 

incoming spike, and τdecay is the time constant for PSP decay in the neuron. Figure 2.6 

shows the dynamics of a leaky integrate-and-fire neuron. Experiments have 

demonstrated that leaky integrate-and-fire neurons can very realistically reproduce the 

behaviour of biological neurons. 

 

 

Fig. 2.6. Typical behaviour of a leaky integrate-and-fire neuron (rise and decay terms). 

 

5) Spike response model 

The spike response model (SRM) reproduces the electrical activity of the neuronal unit 

using kernels. The kernel representation gives a more general mathematical description 

of the neuron, enabling easy modification of the shape of the neuron’s output curves by 

simply changing kernels. Gerstner and Kistler (Gerstner and Kistler, 2002) point out 

that leaky integrate-and-fire neurons can be considered a special case of the spike 

response model. The spike response model represents the PSP of a neuron according to 

two key events: 
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 a) when a neuron fires: there is a strong depression of the PSP represented by the 

kernel η(t - t
(fire)

), and 

 b) when a spike arrives: there is a excitation/inhibition of the PSP by an amount 

wε(t - t
(IncomingSpike)

). The variable w is the weight of the incoming connection and ε(t - 

t
(IncomingSpike)

) is the kernel that represents the variation in the PSP when a spike is 

received. 

 

The general equation that describes the PSP of a neuron i at time t is denoted by 

the integration of all events: 

∑ ∑
∈ ∈

−+−=
eOutputSpikt sInputSpikej

gSpikeminInco

jijij

fire

iii
f

i

ttwtttPSP )()()( )()( εη  
(2.3) 

 

A typical kernel equation for η(t - t
(fire)

) is 

where Cmax is the maximum amplitude of the kernel and τ  is the time constant. 

 

Kernel ε(t - t
(IncomingSpike)

) commonly has the form 

for 0)( >− gSpikeminInco

j
tt , where τm and τs are time constants. 

 

The spike response model, similar to the integrate-and-fire neurons, does not 

consider the spatial structure of the neurons nor the mechanisms that rule the neuron 

dynamics at the ionic level (Gerstner and Kistler, 2002). 

 

6) Neurogenetic model 

Genetic studies show that human electroencephalogram has a strong genetic basis 

(Beijsterveldt and van Baal, 2002) (Buzsaki and Draguhn, 2004) (Porjesz et al, 2002). 

The description of the neurogenetic model (Benuskova and Kasabov, 2007) explicitly 

considers the influence of genetic dynamics on the behaviour of a neuron. 

  

To model genetic dynamic behaviour, several genes considered directly relevant 

to neuronal activity are selected and grouped to form a gene regulatory network 

)
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(Dimitrov et al, 2004). Individual gene expression over time within the gene regulatory 

network can be extracted using linear/non-linear dynamic systems. In its simplest form, 

a gene regulatory network can be represented linearly as 

where gj(t + ∆t) gives the expression level of gene j at time t + ∆t when under the 

influence of k genes in the gene regulatory network. 

 

Several parameters that control neuronal activity receive direct influence from a 

gene or set of genes according to 

)()( tgctP
jjj

=  (2.7) 

where Pj(t) is the neuronal parameter under the influence of a gene/set of genes gj(t) at 

time t and cj is a constant of proportionality. Figure 2.7 shows an illustration of the 

neurogenetic model. 

 

Kasabov et al (Kasabov et al, 2005a) presents some of the parameters that are 

directly linked to genetic influence using the spike response model (SRM) of a neuron, 

e.g., time constants τ and maximum kernel amplitudes Cmax (see Equation 2.4). 

 

 

 

Fig. 2.7. Neurogenetic model of a neuron. Parameters that regulate neuronal activity are under constant 

influence of gene expression levels. 

 

The neurogenetic model enables the simulation of: a) genetic interactions of 

neuronal related genes (genetic level); b) genetic influence on neuronal behaviour, i.e., 

the mechanisms that link gene expression level to neuronal behaviour; and c) an 

ensemble of neurons regulated by explicit genetic regulation (Kasabov and Benuskova, 

2004) (Kasabov et al, 2005) (Kasabov et al, 2005a) (Kasabov et al, 2005b) (Wysoski et 

al, 2004). 

∑
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7) Hodgkin-Huxley model 

The Hodgkin-Huxley model (Hodgkin and Huxley, 1952) is often wrongly referred to 

as a model of a neuron. However, in reality, Hodgkin-Huxley tried to model the 

generation and propagation of action potentials in cells, primarily in the squid giant 

axon. Extended to neuronal and cardiac muscular cells, the model describes, with 

differential equations, the electrical activity of active membranes (axons and muscular 

cells) in terms of ion channels and chemical reactions. In the Hodgkin and Huxley 

model, there are three ionic channels: sodium (Na), potassium (K) and a general leakage 

channel. Voltage-dependent resistors represent the Na and K channels, whereas the 

general leakage channel is denoted by a passive resistor-capacitor parallel circuit (see 

Figure 2.8). The general equation of current that rules this circuit is 

)()()( 43

KKNaNatotal
EVnGEVhmGEVGI −+−+−=  (2.8) 

where G, GNa, and GK are the respective conductances, V is the difference of potential 

between inside and outside, E = -55.6 mV, ENa = +50 mV, EK = -77 mV. m, n and h 

variables that change with a set of differential equations. Whereas the complete 

mathematical formulation of the Hodgkin and Huxley model is out of the scope of this 

dissertation (Gerstner and Kistler, 2002) (Hille, 1992) (Koch, 1999) (Nelson and Rinzel, 

1995), intuitively the combination of these differential equations, after being properly 

tuned, results in electrical activity that accurately represents biological cells. Particularly 

interesting to this research is the incoming stimulus (input spike), which results in a 

gradual increase of the inner potential. Further, if the inner potential reaches a certain 

level, a short-time duration current, now from inside-out (output spike), is generated, 

which is followed by an abrupt decrement of the inner potential. 

 

 

 

Fig. 2.8. Hodgkin-Huxley model representation. 
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8) FitzHugh-Nagumo and Izhikevich models 

Over the years, the Hodgkin-Huxley equations demonstrated themselves to be 

computationally expensive, especially when simulating a large number of cells. For 

this reason, some models were proposed to simplify the Hodgkin-Huxley equations 

without losing precision. The FitzHugh-Nagumo model deserves special mention 

(FitzHugh, 1961) (Nagumo et al, 1962), a two-dimensional representation of the squid 

giant axons as does the Izhikevich model (Izhikevich, 2003). The latter is a simple and 

computationally inexpensive neuron model (suitable for large-scale simulation) that 

uses two coupled differential equations that prove to be able to reproduce several 

biologically realistic neuronal behaviours (brain-like activity, bursting, etc). 

 

9) Compartmental models 

Compartmental models are related to the description of a neuron into several functional 

compartments (see Figure 2.9). In particular, compartmental models attempt to 

explicitly describe the dendritic tree in its simplest form with the cable equation. The 

dendrites are considered passive compartments whose length and diameter are 

parameters. The spatial description of the dendritic tree can be very complex and can 

easily reach hundreds of compartments, e.g., the Blue Brain project (EPFL BlueBrain, 

2007) considers around 400 compartments. In the compartmental models, the soma and 

its inherent non-linear processing capabilities, is considered as one or several 

compartments. See (Bower and Beeman, 1995) and (Gerstner and Kistler, 2002) for 

further analysis and references. 

 

 

Fig. 2.9. Illustration of dendritic trees modelled into compartmental models. The soma and each dendrite 

are modelled as individual compartments. 

 

Table 2.1 shows the different neuronal unit models according to their biological 

accuracy and their corresponding use. 
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Table 2.1. Classification of artificial neural network models according to biological relevance and 

corresponding use. 

 Biologically 

motivated 

Moderate biological 

relevance 

No biological 

relevance 

Model Hodgkin-Huxley 

Compartmental models 

Neurogenetic model 

Integrate-and-fire 

Spike response model 

Izhikevich model 

FitzHugh-Nagumo model 

McCulloch-Pitts 

Perceptron 

Usage Simulate activity at the 

ionic channel level and 

dendritic trees. 

Commonly used by 

neuroscientists. 

Simulate electrical activity of the 

neurons. Used to implement large 

networks, evaluate temporal 

properties and synchronicity of 

spiking neurons, and pattern 

recognition. 

Basic processing unit for 

connectionist systems. 

Used in artificial 

intelligence to solve 

engineering problems. 

 

 

2.1.2 Organization of neurons into specialized functional ensembles 

Brain areas with different behavioural characteristics are formed according to how 

neurons are arranged and organized into ensembles. In a very simplified manner, the 

neurons connect to each other in two basic ways: through divergent and convergent 

connectivity. Divergent connectivity occurs when a given neuron has more output than 

input connections. Convergent connectivity, on the contrary, occurs when a neuron has 

more input than output connections, as illustrated in Figure 2.10. 

 

 

 

Fig. 2.10. Divergent and convergent neuronal connectivity. Modified from (Kandel, 2000). 
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The connectivity of neurons also follows a certain spatial order. Neurons are 

generally connected to neighbouring neurons and as the distance between neurons 

increases, connectivity decreases (there are few long distance connections). This 

principle is explored and modelled from the perspective of small world networks 

(Buchanan, 2003) (van den Berg and van Leeuwen, 2004) (Watts, 1999). The theory of 

small world networks enables the emulation of different network structures, from highly 

ordered networks to networks with a high level of randomness in their connections. This 

biologically inspired concept of connectivity has been also applied to other fields that 

require distributed processing (Dorogovtsev and Mendes, 2003). 

 

Neuroscientists have also extensively studied the organization of neurons at 

higher instances (macroscopic level), which has enabled the understanding of the 

organization of neural units into functional areas (functional systems) (Bear et al, 2001) 

(Kandel, 2000). A functional system is responsible for performing specific tasks and 

processing specific types of information. Further experiments enabled the discovery of 

correct links between functional systems, i.e. building charts to describe the information 

pathways when different cognitive functions are executed by the brain. 

  

To better illustrate the concept of functional areas, let’s take the example of 

sensory modalities. Cognitive functions take place mainly in the cerebral cortex. 

Anatomically, the cerebral cortex is a thin outer layer of the cerebral hemisphere with a 

thickness of around 2 to 4 mm and it is divided in four lobes: 

frontal/parietal/temporal/occipital (see Figure 2.11). Different functions are executed in 

different areas of the cerebral cortex as described in Table 2.2. 

 

 

Fig. 2.11. Cerebral cortex according to (Kandel, 2000). 
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Table 2.2. Location of cognitive functions in the brain. 

Cerebral cortex location Function 

Occipital Lobe Visual sensory 

Temporal Lobe Auditory sensory 

Occiptotemporal Visual association 

Temporal Auditory association 

Parietotemporal Multimodal association (visuospatial location, language) 

Temporal, frontal, parietal Multimodal emotions, memory 

 

Figure 2.12 shows a more detailed description of the visual information 

pathway. The retina acquires the image and performs the first processing. In the 

occipital lobe, the image is split into sub modalities that are processed in parallel 

(colour, motion, shape, and depth). The parietotemporal region is responsible for 

visuospatial location and the occiptotemporal region is where visual patterns are 

recognized. 

 

 

 

Fig. 2.12. Pathways of the visual system and organization of neurons into functional areas. Visual 

excitation propagates through the retina and follows parallel pathways in the occipital lobe, which 

process colour, motion, shape, and depth. Visuospatial location is then processed in the parietotemporal 

area whereas visual patterns are recognized in the occiptotemporal region. Modified from (Kandel, 

2000). 

 

In summary, when it comes to the organization of the neurons, the connectivity 

of single neuronal units is well understood and can be experimentally measured. At 

higher instances, there is much literature that divides the brain into functional areas and 
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describes information pathways for most cognitive tasks (See (Kandel, 2000) for a 

extensive list of references). 

 

2.2 Information processing in sensory pathways 

The human brain mainly deals with five sensory modalities: vision, hearing, touch, taste 

and smell. Each modality has different sensory organs containing specialized receptors. 

After the receptors perform stimuli transduction, the information is propagated by the 

generation of neuronal action potentials. This mechanism follows a common pattern for 

all sensory modalities (despite it still not being clear how the information encoding 

process occurs). However, at the functional level, due to specialization caused by 

evolution or environmental adaptation (Stein and Meredith, 1986), ensembles of 

neurons present very peculiar processing differences. 

 

Sensory systems are able to acquire four fundamental properties: 

a) What. Indicates what is measured. For this property, there are specific cells 

for each modality (e.g. thermoreceptors, photoreceptors, chemoreceptors); 

b) How much (intensity). The intensity of excitation, i.e., the ability to grade the 

incoming stimuli in levels; 

c) Where (location). The location of the stimuli. Sensors responsible for this task 

are commonly topographically organized to represent spatial distances; 

d) When (time). The time of an event or when stimuli occur. The temporal 

analysis in sensory systems is carried out by adaptation of receptors, which mostly 

respond at the onset/offset of stimulation. 

 

In general terms, sensors actively capture variations of the fundamental 

properties (what, how much, where and when), e.g., ∂Intensity/∂t (variation of intensity 

in time), ∂Light/∂x (variation of illumination in a certain direction), etc. Additionally, 

sensors are not simply passive transducers. As the signals arrive at the higher levels of 

the sensory system, feedback is sent to the sensors, a phenomenon called centrifugal 

control of sensory relays (Stein and Stoodley, 2006), which effectively acts to filter the 

passage of sensory signals from the periphery to the higher levels to avoid redundant 

information being sent. 

 



 21 

Another characteristic that is found in all sensory systems is that, for each 

sensory cell acquiring an input signal, another thousand neurons are behind the scenes 

analysing it. For instance, in the visual system, the signals of each ganglion cell (there 

are around one million in humans) are processed by approximately 1000 neurons in the 

primary visual cortex (Stein and Stoodley, 2006). 

 

How information is processed in the auditory and visual system is summarized 

in the following subsections. Audiovisual integration is also described. Without 

covering all that is known about each modality, the most relevant differences in terms of 

information processing are stressed and references to artificial models are provided. 

 

2.2.1 Processing visual information 

On the subject of biological approaches to processing visual information, Hubel and 

Wiesel received many awards, including the Nobel Prize, for their description of the 

human visual system (Hubel and Wiesel, 1962). Through neurophysiological 

experiments, they were able to distinguish cell types that have different neurobiological 

responses according to the pattern of light stimulus. They identified the role that the 

retina has as a contrast filter as well as the existence of directionally selective cells in 

the primary visual cortex. Their findings have been widely implemented in biologically 

realistic image acquisition approaches. The idea of contrast filters and directionally 

selective cells can be considered a feature selection method that has a close 

correspondence with traditional ways of image processing, such as wavelets and Gabor 

filters (Sonka et al, 1998). 

 

Visual Pathways 

The visual information acquired in the ganglion cells of the retina are conducted 

through the optic chiasm to the lateral geniculate nucleous (LGN) in the Thalamus. The 

LGN propagates information to the primary visual cortex (V1) via optic radiations. 

From the primary visual cortex to the LGN (centrifugal control) feedback connections 

act to filter the input of LGN and provide selective attention (See Figure 2.13). From 

V1, the signal is sent to more than 30 different higher visual areas (Bear et al, 2001). 
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Fig. 2.13. Visual information is transduced in the ganglion cells of the retina and conducted through the 

optic chiasm to the lateral geniculate nucleous (LGN). LGN propagates information to the primary 

visual cortex (V1) via optic radiations. Feedback from the primary visual cortex to the LGN acts to filter 

and provide selective attention. Modified from (Kandel, 2000) and (Bear et al, 2001). 

 

From here, and particularly interesting to this research, the information 

pathways responsible for processing shape/colour and location of a visual stimuli are 

described. 

 

“What” pathway 

The “what” pathway propagates the information from the LGN to the primary visual 

cortex V1, then to V2, V3 and V4 until it reaches the inferotemporal cortex (IFC). In 

these areas, the visual information is decomposed into different types (shape, colour, 

texture) (Figure 2.14). 

 

In the LGN are found the On/Off cells that are sensitive to high contrast visual 

stimuli. In V1 the cells start to be more sensitive to elongated edges or parts of the 

image that have the same orientation. In V2 are found the complex cells, i.e., cells that 

are sensitive to complex shapes. In this area, cells start to become more selective of 

complex forms and are invariant to shifts in location. In the IFC, topographic maps can 

no longer be noticed and the big visual receptive fields are completely location 

invariant. Note that, as the information advances along the visual pathway the more 
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specialized the neurons become. Using this theory, it is possible to imagine that at the 

end of the information pathway there is a cell to respond to a specific stimulus 

(commonly referred as a grandmother cell). However, this extreme scenario does not 

seem to happen in reality, as it could drastically limit the ability to memorize different 

patterns and could become too dependent on single processing units. Stein and Stoodley 

(Stein and Stoodley, 2006) provides some references that describe complex cells 

sensitivity to basic forms, e.g., circles, squares, parallel bars. When it comes to some 

very specific natural shapes, like hands, or faces, only specific areas are reported. It is 

further suggested that, in general, IFC neurons represent objects in terms of basic 

complex shapes, and through relatively small networks these shapes are associated to 

classify large amounts of objects. 

 

A similar pathway describes the extraction of colour information. Cells in the 

retina, similarly to the On/Off contrast cells, are sensitive to the light’s wavelength as a 

function of position (∂Wavelength/∂x). For instance, cells can be topographically 

organized with the centre sensitive to green colour and the surrounds sensitive to red. In 

the LGN there are still colour discriminative cells (green/red and red/green), but also 

yellow/blue organization appears (although not in a centre/surround discriminative 

organization). The blue/yellow mechanism does not follow spatial segregation. The 

yellow wavelength simply provides excitation to cells whereas blue colours inhibit 

them. Also in the LGN On/Off cells with higher spatial frequency are observed, which 

mainly act in detecting luminance contrast. In the primary visual cortex (V1), a slightly 

different type of cell can be observed. V1 cells still have the centre/surround spatial 

property, however, the centre cells are excited by a certain wavelength (e.g. green) 

whereas the surrounding cells are inhibited by another wavelength (e.g. red). These cells 

enable the reliable discrimination of colour (Stein and Stoodley, 2006). The areas after 

V1 have complex mechanisms that allow the perception of colour constancy, i.e., even 

with changes in the wavelength of the incoming light, the perception of colour remains 

the same. 

 

Even though the idea of hierarchical pathways described by Hubel and Wiesel is 

still valid (Hubel and Wiesel, 1962), it is now considered too simple. Several studies 

followed, demonstrating the importance of adding numerous feedback and inhibitory 

processes, especially in the primary visual cortex (e.g., (Adini et al, 1997) (Cudeiro and 

Silito, 1996)). 
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Fig. 2.14. Visual “what” pathway. Information propagates from the LGN to the visual cortex V1, V2, 

V3 and V4 until it reaches the inferotemporal cortex (IFC). Modified from (Bear et al, 2001). 

 

“Where” pathway 

The “where” visual pathway follows the LGN to V1, V2, MT (middle temporal) until it 

reaches the posterior parietal cortex (PPC) (Figure 2.15). In the primary visual cortex 

(V1) the information from both eyes comes together, and is processed by binocular 

cells, i.e., cells that are sensitive to the difference between the images generated by the 

left and right retina. These neurons are able to compute the binocular disparity 

(difference between left and right eye images). 

 

However it is important to note that binocular disparity is not the only cue used 

by the brain to have a sense of depth and, consequently, 3D position. Some monocular 

cues that are processed at higher levels can also help in the position detection task, e.g., 

perspective, motion parallax (relative motion between objects), occlusion, etc. This 

mechanism takes place in the posterior parietal cortex (PPC). 

 

 

Fig. 2.15. Visual “Where” pathway. Modified from (Bear et al, 2001). 
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The detection of movement is done firstly by the magnocellular ganglion cells in 

the LGN, which are highly sensitive to the beginning and end of a light stimulation (100 

Hz excitations can be detected). However, it is in the primary visual cortex where light 

direction and speed sensitive complex cells appear, here sensitive to slower rates (as few 

as 30 Hz). These cells are excited if certain objects move in a certain direction and 

inhibited if the object makes a contrary movement. The speed in which the object 

moves determines the level of neuronal excitation. The middle temporal (MT) area is 

where most neurons sensitive to movement are found, which include the processing of 

direction, speed, optic flow, change in size and disparity. 

 

In addition to the normal visual pathway (LGN → V1 → V2 → MT → PPC), 

the processing of movement, has connections directly from LGN to MT and PPC areas, 

often referred as the “Second visual system” (Figure 2.15). The visual pathways are 

schematically illustrated in Figure 2.16. 

 

There are several mathematical models that try to emulate the crucial features of 

the visual system (Fukushima, 1997) (Fukushima and Miyake, 1982) (Mel, 1998) 

(Thorpe, 1997). Some of these models are further explored in Chapter 3. 

 

 

 

Fig. 2.16. Diagram of the visual pathway. 
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2.2.2 Processing auditory information 

In the human ear, sounds waves are conducted to the external and middle ear, which 

effectively pre-process the sound signals before their arrival at the inner ear where 

transduction takes place in the cochlea (See Figure 2.17). 

 

Auditory information is captured by biological systems with tonotopically-

organized maps in the cochlea (cochlear hair cells transduce mechanical vibrations to 

action potentials). With the tonotopically-organised maps, frequency components of the 

sounds, tone, pitch and timbre can be extracted. Human ears are able to detect 

frequencies in the range of 20 to 20000 Hz. From spectral characteristics, it is possible 

to distinguish different sounds as well as to recognize the sound’s source. In the 

cochlea, thousands of hair cells are sensitive to different frequencies. The auditory 

system, in addition to the analysis of spectral characteristics in time, also analyses 

amplitude changes (increase and decrease of sound amplitude) in time (Bear et al, 

2001). Each human ear processes the incoming signals independently. Taking into 

consideration the signal’s timing, amplitude and frequency, the integration occurs in 

later stages. In addition, the narrow difference in time between incoming signals from 

the left and right ear results in a reliable cue to perform sound source localization (Bear 

et al, 2001). 

 

sound

External ear Middle ear Inner ear

cochlea
Tympanic 
membrane

malleus incus stapes

ossicles

 

 

Fig. 2.17. Sound pathway before arrival in the cochlea for transduction. Modified from (Bear et al, 

2001). 

 

The spiral-like cochlear duct is composed of three tubes (scala vestibule, scala 

media and scala tympani) which contain the auditory transducers. Cochlear hair cells 
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are tuned to respond at a single frequency. The output of the transduction of pressure 

changes into electrical discharges can reach 1000 pulses per second. In contrast to the 

retina cells (responsible for visual transduction), there is strong centrifugal control 

coming from higher levels of processing to the hair cells in the cochlea (adaptive 

feedback). This mechanism effectively acts to perform selective auditory attention, 

dynamically emphasizing the properties of interest in the sound signal (Bear et al, 

2001). 

 

After transduction is realized in the cochlea, where hair cells are placed 

tonotopically, the information advances to subsequent levels, the tonotopic organization 

loses selectivity and the cells become more specialized in detecting amplitude and 

frequency modulation. From the cochlea, the information flows to the cochlear nucleus, 

which is divided into ventral and dorsal, VCN and DCN, respectively. These two 

regions have different types of cells and effectively define two different pathways (See 

Figure 2.18): 

• VCN signals flow to the contralateral superior olive, to the central nucleus of 

inferior colliculus and medial geniculate nucleous in a “what” pathway, mainly 

recognizing what the object of the auditory system is, through spectral analysis 

(tonotopic organization); 

• The alternative route that starts in the DCN, passes to the nuclei of the lateral 

lemniscus, external nucleus of the inferior colliculus and the dorsomedial 

MGN, mainly responsible for detecting the dynamic variation of sound signals, 

defining the attention and movements resultant in the recognition of sound 

signals (mainly non-tonotopic organization). 

 

These are the most important paths over which auditory signals flow, however, 

there are several other pathways, mainly providing feedback connections or integrating 

other sensory modalities. One example is the aforementioned auditory cortex feedback 

to the cochlear hair cells, MGN and inferior colliculus for selective attention. In terms 

of integration of modalities, the inferior colliculus is linked to the superior colliculus, 

where audiovisual integration occurs (Bear et al, 2001). 
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Fig. 2.18. Main auditory pathways. VCN has typically tonotopic organization and DCN is mainly non 

tonotopic. 

 

In general terms, the intensity of sound stimulus is coded in firing rates (the 

higher the intensity, the higher the firing rate) and the number of active neurons (the 

higher the intensity, the more neurons are active). Frequency, on the other hand, is 

represented with tonotopic maps and phase locking, i.e., consistent firing of a cell at the 

same phase of a sound wave. 

 

There are numerous artificial models seeking to reproduce the human ear 

(Kuroyanagi and Iwata, 1994) (Loiselle et al, 2005) (Shamma et al, 1986), and in most 

cases, modelling is divided into three different tasks: sound source location, sound 

recognition or source recognition. Artificial models for analysing sound commonly 

decompose the signal into various frequency bands that are processed in parallel 

pathways (Figure 2.19). In this respect, the most popular and biologically proven way to 

model the auditory system is to decompose the input sound in the frequency domain 

according to the MEL scale (Rabiner and Juang, 1993). The MEL scale models the non-

linear way the human auditory system perceives sounds. From the MEL scale the MEL 

Filter bank can be derived, which consists of a bank of band-pass filters tuned according 

to the MEL Scale. 

  

Based on MEL scale, MEL Frequency Cepstral Coefficients (MFCC) are 

extracted, which apply the discrete cosine transform (DCT) to the energy found in the 

MEL subbands. MFCCs are popularly used as a feature extraction method in a range of 

applications that involve the processing of sound and speech signals. Another feature 

extraction method widely applied in sound signals is Linear Predictor Coefficients 
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(LPC) and its cepstral counterpart (LPC cepstral coefficients) (Rabiner and Juang, 

1993). Recently, wavelets have been successfully applied to compress and extract 

relevant sound characteristics (Ganchev, 2005). MFCC, LPC and wavelet approaches 

will be used as a baseline for the brain-like models for speaker authentication analysed 

and further developed in Chapter 4. 

 

 

 

Fig. 2.19. Diagram of the auditory system pathway. 

 

2.2.3 Integration of audiovisual information 

As could be seen in the auditory and visual sensory systems, each sensory modality has 

mostly (not fully) distinct pathways where information is processed. Information is 

further split within a sensory modality. In the visual system, for instance, the 

information is divided into sub modalities (colour, shape and movement) that are 

independently processed in different pathways. In the auditory system, the ventral 

cochlear nucleous (VCN) and dorsal cochlear nucleous (DCN) also define different 

pathways. In different modalities and sub modalities, it is reasonable to think that the 

speed of transduction and the speed of information propagation in different pathways is 

not the same. If this is true, afferent stimuli from different sensory modalities arrive at 

the cerebral cortex at different times. The separation and integration of pathways within 

a modality as well as the integration of pathways from different modalities (and all the 

synchronizations implied in it) constitute a complex network that cannot be accurately 



 30 

described and reproduced. A simple illustration of the complexity of integrating the 

auditory and the visual senses is shown in Figure 2.20. 

 

 

 

Fig. 2.20. Integration of sub modalities of the visual field (left side), the auditory pathways (right side) 

and the subsequent integration of modalities (above). 

 

In general, the integration is done in brain areas composed of neurons sensitive 

to different types of sensory stimulation. Convergent connections convey different 

types of information to these areas (in the case of different modalities they are called 

supramodal areas). The convergence of information executed in parallel for 

accomplishing a specific task is called the binding problem. It is believed that the 

integration of the information is synchronized through the oscillation of thalamocortical 

circuits (at around 40-80 Hz, i.e., γ waves). These oscillations help to put together, for 

instance, the colour and the shape of the same object that is being processed in separate 

pathways (Stein and Stoodley, 2006). 

 

However, the idea of having areas specifically responsible for integration, while 

not completely wrong, was shown to be very simplistic, mainly because the 

information pathways are not completely independent. There are numerous 

experiments which report influence from one information pathway to others, even 
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cases where the information is acquired from different sensory modalities (crossmodal 

influences) and the nature of information seems to be completely uncorrelated. 

 

Without aiming to completely explain the integration mechanism, the following 

describes three different viewpoints that can contribute to the understanding of the 

complexity and the inherent concatenation and overlapping between modalities.  

 

The integration of modalities are analysed according to (Calvert, 2001) by: 

a) the emergence of integration; 

b) the evolutionary perspective, and; 

c) the complexity of organisms. 

 

The controversy about the integration of sensory modalities starts very early, 

with the emergence of integration or, as some would suggest, the segregation of 

modes. Some researchers believe that different senses originate from a primitive unity 

at birth and a person needs to learn to differentiate among them. Other groups believe 

that the senses are separated at birth and, through experience, can be interrelated. 

 

Under the evolutionary perspective, it is believed that modalities have evolved 

from an undifferentiated (supramodal) system, not selective to specific sensory stimuli. 

The appearance of receptors sensitive to a specific sensory mode comes from the 

process of specialization and environmental adaptation. 

 

In respect to the complexity of different organisms, the idea of multi-

modes/sensory segregation appears even in the simplest multicellular invertebrates. 

Sponges, the lowest of the multicellular species, consist of a loose network of cells, 

where different sensory signals are transmitted in all directions simultaneously. 

However, it is with these species that nerve cells, synapses, and nerve nets first appear, 

with an aggregation of cells forming specialized sensory organs (detecting rotation, 

vibration, and optical stimuli). Within the platyhelminthes (flatworm), bimodal neurons 

have been identified, where neurons can be sensitive to illumination and vibration at the 

same time. In addition, in marine snails traces of crossmodal integration (association 

between modes) have been detected. Experiments in marine snails using conditioning 

paradigms successfully transferred the normal behavioural response to water turbulence 

to a light stimulus. After training, scientists were able to change the natural behaviour 
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of the snails to move towards the light sources, to the attach-to-the-surface response, 

which is done naturally in the case of turbulent water. An in-depth analysis showed that 

the conditioning altered the ionic changes induced by light and rotation in a class of 

cells sensitive to both stimuli. This experiment demonstrated that, associations between 

modalities can exist in comparatively simple organisms that do not possess high levels 

of cognition. The highest level of segregation of sensors is found in the vertebrates. 

However, there are many works describing, for instance, nonauditory influences on 

neurons in the auditory cortex and nonvisual influences on thalamic and visual cortical 

neurons (Stein and Meredith, 1993). 

 

In (Calvert, 2001) and (Stein and Meredith, 1993) an in-depth analysis is 

presented that considers the evolutionary aspects and the complexity of different 

organisms. From that discussion, the conclusion is that there is relative independence at 

the level of sensory signals in vertebrates (mainly on the primary projection pathways) 

which decreases with a high incidence of multisensory influence when higher levels of 

processing are reached. Such a statement accommodates the existence of specific 

sensory organs, supramodal areas and crossmodal interactions. 

 

With advances in the understanding of the different pathways of information 

processing in the brain, several computational models to reproduce similar behaviours 

were promptly introduced. Models describing each stage of information processing are 

aimed at assisting the performance of functional analysis and suggest new theoretical 

frameworks for studying brain activity (Bruce and Young, 1986) (Burton et al, 1990) 

(Ellis et al, 1987), whereas other models are only aimed at using biological 

characteristics to increase performance of multimodal information processing systems 

(Kasabov et al, 2000). 

 

2.3 Classification of neural-based information processing 

models 

This section introduces a classification of artificial systems that use ensembles of 

neurons for modelling information processing. Artificial systems are divided into three 

classes. The first class, connectionist systems (COS), despite being based on processing 

units many times referred to as “neurons”, do not actually have any commitment to 

reproducing the biological behaviour of a neuron or biological system. The processing 
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units in connectionist systems are simple mathematical equations and are optimized to 

perform mathematical operations. The second class encompasses the theory of evolving 

connection systems (ECOS). ECOS, when compared to COS, move towards a biological 

way of processing as they incorporate the ideas of continuous adaptation and evolution. 

In the final class, the Brain-like Evolving Connectionist Systems (Brain-like ECOS), as 

well as the ECOS properties, there is also a willingness to give a biological 

interpretation to the information processing mechanisms. In this classification, Brain-

like ECOS is a subclass of ECOS, which is a subclass of COS, i.e., COS ⊃ ECOS ⊃ 

Brain-like ECOS (Figure 2.21). 

 

The three classes of artificial systems are further described in the next sections. 

As this research concentrates on the Brain-like ECOS, the new systems to be described 

in next chapters are always evaluated considering the Brain-like ECOS aspects detailed 

in Section 2.3.3. 

 

 

 

Fig. 2.21. Brain-like ECOS as a subclass of ECOS, which is a subclass of connectionist systems (COS). 

 

2.3.1 Connectionist Systems (COS) 

Connectionist systems have a broad definition that crosses different areas of knowledge. 

In this dissertation, the definition and the use of the term “connectionist systems” is 

restricted to the artificial intelligence field, where it is used to define systems that 

process information through the use of a network of simple processing units. In artificial 

intelligence, the term connectionist systems is commonly used only to refer to a network 

of neurons. However, the definition is broader and includes networks of any type of 
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processing units, e.g., neuron models, units with step-wise, sigmoid, Gaussian-like 

functions, Fuzzy nodes, etc (Haykin, 1999) (Kasabov, 1996). 

 

Two main properties that are inspired by the way brain processes information 

and make connectionist systems particularly appealing for solving a range of problems 

are: the distribution of the processing over simple processing units and the ability of the 

systems to learn to perform a specific task through examples. 

 

As a consequence of these two properties, several characteristics can be derived 

(Kasabov, 1996): 

1. connectionist systems are able to generalize and respond to unseen inputs, i.e., 

they are not limited exclusively to respond to previously learnt stimuli; 

2. connectionist systems can be robust to local damage, i.e., when a few individual 

processing units fail to operate normally, the system can still offer satisfactory 

behaviour; 

3. connectionist systems can be robust to noise and can still process reliably with 

missing information; 

4. connectionist systems are intrinsically suitable for performing parallel 

processing. 

 

Once the potential of the connectionist system paradigm was properly 

understood, a huge movement towards the design and implementation of new 

connectionist algorithms was initiated. Several processing units have been proposed as 

well as numerous architectures and learning rules. Haykin (Haykin, 1999) presents an 

extensive list of systems, deserving special mention: 

• Multi-layer Perceptron Neural Networks; 

• Recurrent Neural Networks; 

• Radial Basis Function; 

• Linear Vector Quantization; 

• Fuzzy Neural Networks; 

• Self-Organizing Maps. 

 

In relation to learning rules, two main categories can be distinguished: supervised 

and unsupervised. The Hebbian rule (Hebb, 1949), in its unsupervised or supervised 

form, is the most used as it is more biologically plausible and because it can be 
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interpreted to accommodate different processing unit mechanisms. Unsupervised rules 

are usually concerned with finding intrinsic properties from training data, which is 

obtained by searching for stable internal states within the system (Haykin, 1999). 

Supervised learning seeks to minimize output errors through gradient descent, general-

purpose optimization algorithms, etc (Haykin, 1999). 

 

2.3.2 Evolving Connectionist Systems (ECOS) 

According to (Kasabov, 2007), “ECOS is a framework that facilitates the modelling of 

evolving processes based on multimodal connectionist architectures”. ECOS mainly 

encompass the modelling of complex systems where boundaries cannot be easily 

defined and/or changed over time. ECOS gives freedom to the modelling process to 

expand and contract its coverage range as is required at any time. The ultimately goal 

in ECOS is the design of systems able to adapt and represent an open space and its 

changes over time. 

  

ECOS use several different processing tools or units. Each tool in ECOS must 

allow functional and structural changes over a lifetime. Thus, several connectionist 

systems (COS) designed to model closed and static systems have been adapted to fulfil 

these requirements. Examples of tools adapted to ECOS requirements are the Evolving 

Self Organizing Maps (ESOM), Evolving Radial Basis Functions (ERBF), IPCA 

(Incremental Principal Component Analysis) to mention only a few (Kasabov, 2007). 

Other algorithms have been designed specifically with the ECOS paradigm in mind, 

e.g., Evolving Fuzzy Neural Networks (EFUNN) and Evolving Classifier Functions 

(ECF). The description of a wide collection of ECOS tools can be found in (Kasabov, 

2007). 

  

As described in (Kasabov, 2007), the ECOS paradigm is based on the way the 

human brain performs cognition: it is modular, it allows sequential, parallel, 

hierarchical processing and it allows lifelong adaptation. In addition, ECOS tools 

incorporate the use of brain-based learning, information acquisition, and knowledge 

storage, enabling even the forgetting of past experiences. Figure 2.22 is a simplified 

diagram that illustrates the ECOS framework. 
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Fig. 2.22. An illustration of the ECOS framework. The figure represents a model in a hypothetical space, 

at a certain moment in time. The triangular nodes represent different adaptive ways of acquiring input 

stimuli (feature extraction). The circles represent some of the information processing tools (ENN = 

Evolving Neural Networks, ESVM= Evolving Support Vector Machines, ERBF = Evolving Radial 

Basis Function, ESOM = Evolving Self-Organizing Maps) (See (Kasabov, 2007) for details). The right-

side nodes represent knowledge stored. 

 

2.3.3 Brain-like Evolving Connectionist Systems (Brain-like ECOS) 

Overall, the ECOS framework described in the previous section incorporates the 

biological experience into its components. However, the biological interpretation is not 

a sine qua non condition. A stricter version of ECOS (Brain-like ECOS) further requires 

each constituent tool to be evaluated in respect to its biological relevance. In addition to 

processing information with simple units integrated in a network trained by examples, 

which characterizes the connectionist systems (COS) (Section 2.3.1), and the extra 

requirement of adapting and evolving in an open space included in ECOS framework 

(Section 2.3.2)), Brain-like ECOS is further concerned with a consistent biological 

interpretation. 

 

The biological interpretation required in Brain-like ECOS is mainly concerned 

with: 

a) the use of biologically realistic processing units; 

b) the biological way of connecting processing units in neuronal ensembles 

and functional areas (systemic level); and  

c) the biological way of training and learning particular skills. 

Environment 
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Adaptive feature 
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Knowledge 
Repository 
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These three aspects seek to incorporate and evaluate the most recent discoveries 

from neuroscience for the design of new systems. In respect to the processing units, the 

spiking neurons theory is currently accepted as the most human-like manner of 

processing (Gerstner and Kistler, 2002). Therefore, they are the basis for all new 

designs presented in this thesis. At the systemic level, the behaviour of ensembles of 

neurons as well as the information processing pathways can be evaluated in biological 

terms. Of particular relevance to this dissertation are the auditory and visual systems 

that are discussed separately in Section 2.2. The auditory and visual pathways are 

considered in newly proposed audiovisual pattern recognition approaches. The learning 

theories and the corresponding algorithms to implement them are discussed from the 

perspective of computation with spiking neurons in Section 2.4.2. Table 2.3 shows 

some more specific aspects to be considered in Brain-like ECOS. 

 

Table 2.3. Three main aspects to be considered in Brain-like ECOS. 

Processing Units Basic units for information processing follow biological rules. 

Example: biological neurons, communication using pulses, pulse 

stimuli generates action potentials, etc. 

Structure Information flow through hierarchical (sequential/parallel) 

pathways. 

Example: visual system: retina ⇒ directionally selective cells ⇒ 

complex cells. 

Learning Self adapt and evolve, lifelong learning. 

Example: functional and structural adaptation, Hebbian learning, 

Synaptic Time Dependent Plasticity (STDP). 

 

2.4 Spiking Neural Networks (SNNs) 

This section explores in detail spiking neural networks as they are composed of more 

realistic neuronal unit models. There are two main applications for a group of spiking 

neurons connected to each other in a network (see Section 2.1.1 for a description of 

various spiking neuron models). SNNs can be used for the modelling of brain function 

and as a tool in artificial intelligence. These two main streams are described in the 

following sections. 
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2.4.1 SNNs for modelling brain function 

Traditionally SNNs have been used in computational neuroscience, usually in an 

attempt to evaluate the dynamics of neurons and how they interact in an ensemble 

(Benuskova et al, 2001). The Hodgkin-Huxley model of spiking generation (Hodgkin 

and Huxley, 1952) can be considered the pioneering work describing the action 

potentials in terms of ion channels and current flow (Nelson and Rinzel, 1995). Further 

studies expanded this work and revealed the existence of a wide number of ion 

channels and that the set of ion channels varies from one neuron to another (e.g., 

(Connor and Stevens, 1971) (Marom and Abbott, 1994)). Genesis and Neuron 

(Genesis, 2007) (Neuron, 2007) are examples of widely known simulation tools that 

use neurons described with ion channels. 

 

A detailed description of ion channels demonstrated itself to be computationally 

expensive in experiments which simulated large numbers of units. Thus, new neuron 

models have been developed to produce similar internal and external behaviour (similar 

action potentials and output signals) at a lower computational cost. As examples of 

simplified models, the integrate-and-fire neuron (Gerstner and Kistler, 2002) for all 

intents and purposes has the properties of a single resistor-capacitor (RC) circuit and the 

Izhikevich model (Izhikevich, 2003) combines the Hodgkin-Huxley model with the 

integrate-and-fire model using a two-dimensional system of ordinary differential 

equations. 

  

In addition to enabling the understanding of complex behaviours generated by 

ensembles of spiking neurons, spiking neural networks are also used as a tool to 

simulate the link at the neuronal and genetic level (Benuskova and Kasabov, 2007). In 

this arrangement, networks of genes (gene regulatory networks) have an explicit 

influence on the neuronal parameters, consequently affecting the entire dynamics of the 

spiking neural network (see Figure 2.23). Imprecise information at the genetic level and 

the difficulty of simulating large numbers of spiking neurons for long periods, as 

genetic expression levels have much slower dynamics than neurons, are currently the 

main challenges to be overcome in this approach (Kasabov and Benuskova, 2004) 

(Kasabov et al, 2005) (Kasabov et al, 2005a) (Kasabov et al, 2005b) (Wysoski et al, 

2004). 
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Fig. 2.23. A gene regulatory network (GRN) regulates the behaviour of spiking neurons and consequently 

the behaviour of the entire neural network. In the GRN illustration, the greyscale levels represent gene 

expression whereas the continuous/dashed lines represent respectively excitatory/inhibitory connections. 

 

2.4.2 SNNs in artificial intelligence 

Most neural networks which execute artificial information processing are described 

using processing units consisting of linear/non-linear processing elements (a sigmoid 

function is widely used) (Bishop, 2000) (Gallant, 1995) (Haykin, 1999) (Negnevitsky, 

2002). Over the years, SNN has been considered too complex and difficult to analyze. 

Other reasons for leaving SNN aside in artificial intelligence tasks include: 

1) biological cortical neurons have long time constants. Typically fast/slow 

inhibition can be in the order of dozens of milliseconds and fast/slow excitation 

can reach hundreds of milliseconds. This dynamic can considerably constrain 

applications that need fine temporal processing (Gewaltig, 2000). 

2) unknown information encoding in time. Although it is known that neurons 

receive and emit spikes, whether neurons encode information using spike rate 

or precise spike time is still unclear (Thorpe and Gaustrais, 1998). For those 

supporting the theory of spike rate coding, it is reasonable to approximate the 

average number of spikes in a neuron with continuous values and consequently 

process them with traditional processing units (sigmoid, for instance). 

Therefore, it is not necessary to perform simulations with spikes, as the 

computation with continuous values is simpler to implement and evaluate. 

 

However, new discoveries on the information processing capabilities of the 

brain and technical advances related to massive parallel processing, are bringing 

forward the idea of using biologically realistic networks in artificial intelligence 

systems. There are several works questioning rate coding, mainly under the assumption 
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that rate coding can be very slow to provide reliable outputs (the average number of 

spikes needs to be computed over a certain period of time), which obviously disagrees 

with many perceptual experiments. For instance, a pioneering work has shown that the 

primate (including human) visual system can classify complex natural scenes in only 

around 100-150 ms (Thorpe et al, 1996). Similar numbers were obtained by (Potter, 

1976) and (Subramaniam et al, 2000), which showed that unprimed views of common 

objects can be recognized at a rate of 10 Hz. This period of time for information 

processing is very impressive considering that billions of neurons are involved and the 

information is propagated through several areas of the brain before a decision is made. 

Such results culminated in a theory suggesting that a single neuron probably exchanges 

only one or a few spikes before the information processing task is concluded. As a 

result of Thorpe’s work, a simple multi-layer feed-forward network of integrate-and-fire 

neurons that can successfully detect and recognize faces in real time was designed 

(Delorme and Thorpe, 2001) (Delorme et al, 1999). Other works (Bothe, 2003) 

(Gueorguieva et al, 2006) (Natschlager, 1998) also present systems using precise timing 

of spikes on pattern recognition (clustering, supervised and unsupervised training). 

  

An important landmark in the use of SNNs in artificial information processing is 

the work of (Maass, 2001), which shows that, theoretically, SNN can be used as 

universal approximators of continuous functions. Lorenzo et al (Lorenzo et al, 2006) 

proposed an SNN of three-layers (input, generalization and selection layers) to perform 

unsupervised pattern analysis. Mishra (Mishra, 2006) gives examples of spiking neural 

networks applied to benchmark datasets (internet traffic data, EEG data, XOR problems, 

3-bit parity problems, iris dataset) to perform function approximation and supervised 

pattern recognition. A comparison with a traditional Multi-Layer Perceptron Network 

(MLP) highlights the differences in performance between the systems in each specific 

dataset. Time series prediction using SNNs has been evaluated in (Sohn et al, 1999). 

 

2.4.3 Properties of SNNs for pattern recognition 

This section describes the particular properties of the spike paradigm for both static and 

dynamic pattern recognition. 

1) Neuronal coding: How the information is encoded in spike trains is one of the 

most intriguing questions in neuroscience. Whereas information encoding based 

on spike rate (the number of spikes in a certain period of time) has been used for 
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some time, there is increasing evidence that information could be encoded in 

precise spiking time in a highly sparse network of neurons, or even through a 

combination of spike rate and spiking time. See (Abbott, 1994) (Dimitrov and 

Miller, 2001) (Reece, 1999) for further reference. 

2) Learning: Learning takes place at a synaptic (the junction between the axon and 

the dendrites) level and is represented by the strength of inter neuronal 

connections. Learning can occur during development, at the time the network is 

generated and the connections are created, or as a process of adaptation, where 

the network responds to specific stimulus and reconfigures its connection 

strengths to memorize a certain task (Gerstner and Kistler, 2002). 

3) Optimization: Computation with spikes opens up new optimization aspects that 

are not explicitly found in traditional neural networks: 

• Information encoding – Despite it still not being clear how information 

encoding effectively happens in the brain, there is strong evidence to suggest 

that spike encoding is optimal in terms of data transmission efficiency 

(maximum data transmission) (Bialek and Rieke, 1992) (Gerstner and 

Kistler, 2002) (Rieke et al, 1999); 

• Processing time – Experimental evidence shows that some types of cognitive 

processes are accomplished in the brain in a very short time (e.g. 150 ms for 

visual systems) and can be improved upon training (minimum processing 

time) (Thorpe et al, 1996); 

• Energy efficiency – Mammalian brains are known for having more than 10
10

 

neurons operating at a very low spiking rate (1-3 Hz) (Gerstner and Kistler, 

2002). These numbers suggest that the wiring and connectivity strength are set 

up in such a way that the processing is done with minimum energy 

consumption (minimum neuronal activity). 

4) Processing spatio-temporal patterns: SNNs intrinsically spread information over 

time, processing it continuously. Due to this property, SNNs are particularly 

suitable for processing temporal patterns more naturally than recurrent networks. 

Examples of research in this direction are the spatio-temporal artificial neural 

network (STANN) proposed in (Mercier and Seguier, 2002) and the work of 

Holmberg et al (Holmberg et al, 2005) in detecting spatio-temporal 

characteristics of sound signals. When the task is to process static patterns, the 

static information is spread over time. Examples of this approach can be found 

in (Bothe, 2002) (Delorme and Thorpe, 2001) (Natschlager and Ruf, 1998). 
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2.4.4 Implementation of SNN models 

SNNs have some properties that are particularly interesting in terms of implementation, 

being it in hardware or in simulations with general-purpose processing platforms. 

  

There are two main approaches to implementing SNNs in general-purpose 

processing platforms: event-driven and clock-driven computation. In the event-driven 

approach, only the neurons that receive a spike are updated, whereas in the clock-driven 

approach all neurons are updated at a given clock step. Note that this property is purely 

concerned with computational implementation and does not affect the SNN’s behaviour. 

The event-driven approach is particularly appropriate for computing very large numbers 

of neurons with low spiking rates. 

  

The basic clock-driven computation of an SNN is illustrated with the following 

pseudo-code (Brette et al, 2007): 

 

for all time steps 

{ 

for all neurons 

 { 

 PropagateIncomingSpikes 

 CalculatePostSynapticPotentialDecay 

 } 

for all neurons 

 { 

 if PostSynapticPotential > Threshold 

  { 

  SetNeuronPotentialToRest 

  for all neuron outputs 

   EmitSpike 

  } 

  } 

 } 

 

Unlike the clock-driven approach, there is no universal recipe for event-driven 

computation. The implementation of event-driven systems will be highly dependent on 

the model of neuron used. The simplest scenario is that an output spike can only occur 

at the time an incoming spike arrives. Thus, the incoming spike triggers an event to 

initiate the computation of the state of a given neuron. In the simplest event-driven 
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approach, a queue is used to store the issued spikes. A simple design to simulate an 

SNN using event-driven computation is exemplified as in (Brette et al, 2007): 

 

Structure queue (has one item for each spike) 

queue[i].SpikeTime 

queue[i].TargetNeuron 

queue[i].Weight 

 

while (queue.Size > 0 && time < SimulationPeriod) 

{ 

 GetLowestSpikeTime 

  CalculatePostSynapticPotentialTargetNeuron 

PropagateIncomingSpikeToTargetNeuron 

  if PostSynapticPotential > Threshold 

   { 

   for all neurons connected to TargetNeuron 

    InsertItemInQueue 

   SetTargetNeuronPotentialToRest 

   } 

 } 

 

In some models of spiking neurons, output spikes can be generated several time 

steps after an incoming spike is received. This is the case for neurons that have a time 

constant for rising postsynaptic potential (Gerstner and Kistler, 2002). Brette et al 

(Brette et al, 2007) describes an efficient event-driven way to compute these cases. A 

more in-depth consideration of several variations of event and clock-driven computation 

of SNN models can be found in (Marian, 2002). 

 

An important issue that needs to be carefully analysed during the 

implementation of SNNs, is the timing when each cell computes its new activation 

value and when the change of the cell’s output take place (Gallant, 1995). In this 

respect, neurons can receive/emit spikes in a synchronous or an asynchronous way. In 

the asynchronous way, neurons are updated as the spikes arrive. The output of the 

neurons is changed immediately after the event. The neurons are processed sequentially 

one at a time. In the synchronous way, on the other hand, all the neurons’ postsynaptic 

potential and output spikes are updated simultaneously at each time step. Synchronicity 

can be very important in some systems, and can have a great impact on the dynamic 

behaviour of the entire SNN. Synchronicity is especially relevant to the spiking 
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neuronal models that are sensitive to the order of incoming spikes, e.g., integrate-and-

fire neurons with a modulation factor (Delorme et al, 1999). 

 

2.4.5 Mathematical facts about SNNs 

It has been proven that spiking neural networks can, similar to traditional networks, act 

as Radial Basis Functions (RBF), performing weighted sum of temporal code, and be 

used for the universal approximation of continuous functions (Maass, 2001). In 

addition, a single neuron can act as a coincidence detector, which cannot easily be done 

with traditional neural networks. In (Gerstner and Kistler, 2002), after a detailed 

comparison, the authors concluded that traditional and biologically realistic networks 

are computationally equivalent. It is further suggested that any sigmoid neural net can 

be successfully reproduced using almost the same number of spiking neurons, whereas 

to simulate spiking neurons many more sigmoid units are necessary. 

 

The equivalences with traditional networks have been translated to comparable 

performances in a series of artificial intelligence tasks, e.g. clustering in (Lorenzo et al, 

2006), classification in (Mishra, 2006) and time-series prediction in (Sohn et al, 1999). 

At the end of this dissertation, the experimental results will also point to equivalent 

performances from SNN-based and traditional methods in the audiovisual scenario. 

 

2.4.6 Limitations of SNN models 

SNNs are networks that have a close association with what is known about the way the 

brain processes information. This statement is true if brain-like networks are compared 

to connectionist systems that use traditional processing units (e.g. McCulloch-Pitts, 

Perceptron, etc). However, in attempting to model the human brain, models of spiking 

neurons are still too simplistic. The simplification is mainly due to the lack of 

knowledge and/or lack of computational power to simulate complex models. 

Researchers are daily confronted with the trade-off between biologically accurate 

models and computational cost. In the recent Blue Brain Project (EPFL BlueBrain, 

2007), a team of researchers are joining forces in an attempt to simulate the most up-to-

date, biologically accurate, functional model of the brain in a supercomputer. It is too 

simplistic, though, to blame the lack of computational resources only. In reality, despite 

a lot being known about neurons and networks, there are still some key biological facts 
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remaining to be understood. For instance, the use of spikes for transmitting information 

depends on having suitable ways of encoding the information in spike trains. Since how 

the encoding happens in human brains is still unknown, all the encoding heuristics 

employed in SNNs are hypothetical and it is not known which one, if any, represents 

reality. 

 

2.4.7 Parameter optimization in neuronal models 

There are several methods for finding values of neural network parameters to generate a 

desired behaviour (Achard et al, in press). They include: a) hand-tuning, used for 

instance, in (Nadim et al, 1995); parameter space exploration, applied in (Prinz et al, 

2004); gradient descent, applied to a single neuron in (Bhalla and Bower, 1993) and at a 

network level in (Bothe et al, 2002) and (Tino and Mills, 2006); general-purpose 

evolutionary algorithms and particle swarm optimization (Achard and De Schutter, 

2006) (Pavlidis et al, 2005); and bifurcation analysis (Guckenheimer et al, 1993). 

 

Throughout the work presented in this dissertation, hand tuning is used to search 

for suitable parameters. In this approach, one or a number of model parameters are 

manually changed at a time, guided by trial-and-error, prior knowledge of the model, 

and experience, always keeping the parameters that provide the best behaviour in the 

explored parameter subspace. 

 

Advantages of hand tuning: The obvious advantage of this approach is that it 

does not require the design of optimization algorithms nor is it computationally 

expensive. It also incorporates prior knowledge and insight from a specialist into the 

network behaviour. 

 

Disadvantages of hand tuning: The main drawback is that there is no certainty 

that the set of parameters found is optimal at the end of the hand tuning procedure. 

However, this drawback can be also found, perhaps with less intensity, in for example, 

gradient descendent and evolutionary algorithms (Achard et al, in press). 

 

Despite this drawback and the simplicity, it will be demonstrated in the 

experiments presented later in this dissertation that systems tuned by this approach can 

obtain accuracy levels comparable to results on the same tasks reported by other works. 
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More systematic parameter optimization procedures are out of the scope of this work 

and are left as a suggestion for future work. 

 

2.5 Chapter conclusion 

The chapter presented basic concepts of biological information processing. The 

neuron as a basic processing unit is explored as well as the ensemble of neuronal units 

that generates complex and dedicated behaviours in different areas of the brain. In 

addition, the auditory and visual sensory information pathways were reviewed. 

 

A classification of artificial models into Connectionist Systems (COS), Evolving 

Connectionist Systems (ECOS) and Brain-like ECOS was proposed. As the remainder 

of this dissertation is concerned with Brain-like ECOS, three main aspects of Brain-

like ECOS to be considered were suggested in terms of basic processing units, network 

structure and learning. These aspects are used throughout this dissertation to evaluate 

the new systems. 

 

In the last part of the chapter, the spiking neuron theory was presented. Spiking 

neurons, as a more biologically plausible processing unit, are the basic components of 

the new systems presented in the following chapters. 
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Chapter 3 - Evolving SNNs for visual pattern 

recognition 

 

This chapter explores different computational approaches to performing visual pattern 

recognition and presents a new learning procedure and a neural network structure to 

achieve visual pattern recognition with spiking neural networks. 

 

First, the state-of-the-art algorithms used in visual pattern recognition are 

described, followed by a critical analysis of brain-inspired artificial systems used for 

visual information processing tasks (mainly covering the theory of spiking neurons, 

visual information pathways and lifelong learning). This work breaks new ground, 

exploring the use of a new SNN structure to deal specifically with two pattern 

recognition scenarios: 

• Multiple view training: training samples are presented online to the network, 

which learns different views of an object through synaptic plasticity and 

structural adaptation; 

• Multiple view recognition: several visual samples are presented to the network, 

which integrates opinions for the decision-making process. 

 

The main innovations proposed can be summarized as: 

a) an online training procedure for a hierarchical neural network of fast 

integrate-and-fire neurons. The training is done through synaptic plasticity and changes 

in the network structure. A mix of clock-driven and event-driven computation optimizes 

processing speed in order to simulate networks with large numbers of neurons. The 

training procedure is applied to a face recognition task. Preliminary experiments on a 

publicly available face image dataset show the same performance as the optimized 

offline method. A comparison with other classical methods of face recognition 

demonstrates the properties of the system. 

b) an SNN architecture and its corresponding learning procedure to perform fast 

and adaptive multi-view visual pattern recognition. The network is composed of a 

simplified type of integrate-and-fire neuron arranged hierarchically in four layers of 

two-dimensional neuronal maps. During learning, the network adaptively changes its 

structure in order to respond optimally to different visual patterns. The network collects 

opinions over multiple frames to reach a final decision. The new network structure is 
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tested with a benchmark dataset in order to recognize individuals using facial 

information from multiple frames. 

 

Experimental results validate the two main novelties of the network: structural 

adaptation and integration of opinions over several frames. 

 

3.1 Background and benchmarking 

An image is a two-dimensional projection of the three-dimensional, real world. The 

human brain, and artificial visual systems as well, collects visual information about the 

environment through these two-dimensional projections. In humans, the integration of 

images acquired from both eyes, enables the retrieval of the third dimension. Stereo 

vision is the field that emulates this phenomenon artificially, with the use of dual 

cameras, where the sense of depth can be mathematically calculated through disparity 

maps. See (Dhond and Aggarwal, 1989) for a review. The computation of stereo 

disparity maps has also been proposed with biologically inspired networks (SNNs) 

(Henkel, 1997) (Henkel, 1997a). 

 

Three-dimensional reconstruction methods began with the pioneering work of 

Horn (Horn, 1970), from which several directions were derived: stereo vision, shape 

from shading, shape from motion, and shape from texture (Zhang et al, 1999). The 

modelling of the third dimension of objects is still a very active field of research, mainly 

because reconstruction techniques normally add substantial noise to the representation 

while at the same requiring high computational effort. For these reasons, many artificial 

visual system applications prefer to use a single monocular two-dimensional 

representation. 

 

Particularly interesting to this research, is the process of recognizing patterns in 

visual scenes. A pattern in an image can be described as having four properties (see 

Figure 3.1): 

a) position, which can be expressed as the relative distance from a reference 

point or the distance from one pattern to another; 

b) geometry (size, area, and shape); 

c) colour and texture, and; 

d) trajectory (the way an object moves can be used in its description). 
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With one or a combination of these properties, patterns can be artificially 

recognized and/or categorized. Common techniques for visual pattern categorization 

are: 

a) filters, such as, colour filters, or filters in the frequency domain (Kakumanu et 

al, 2007) (Sigal et al, 2004); 

b) template matching or connectionist systems for object classification 

(Fukushima and Miyake, 1982) (Kasabov et al, 2000) (Matsugu et al, 2002); 

c) statistical methods (Fukunaga, 1990) for finding statistical properties of 

patterns, e.g., Principal Component Analysis (PCA), Linear Discriminant Analysis 

(LDA) (Belhumeur et al, 1997) (Martinez and Kak, 2001) (Zuo et al, 2007) and 

Independent Component Analysis (ICA) (Bartlett, 2007), etc. 

 

a 

b 

c 

d 

 

 

Fig. 3.1. Object description primitives: a) position; b) geometry (size, area, shape); c) colour and texture; 

d) trajectory (translation and rotation). 

 

A combination of the above techniques is also common practice, e.g., colour 

filter followed by frequency domain analysis and morphological matching (Kruger et al, 

2004) (Mel, 1998). This diversity of artificial methods for processing visual patterns try 

to, in one way or another, identify the most important characteristics which represent an 

object and increase the reliability of the identification of these characteristics. Thus, 
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artificial visual pattern recognition systems use different features and classification tools 

tailored specifically to the application. For instance, in environments with constant 

illumination sources, it is usually sufficient to only use colour information to segment 

objects. This approach fails in unconstrained illumination conditions where the 

segmentation of an object is against complex backgrounds. A classical example is skin 

colour detection, where colour histograms of the skin and background colours are not 

easily separable (Kakumanu et al, 2007) (Sigal et al, 2004). Figure 3.2 shows an 

example where colour filters trying to retrieve only skin colours did not work properly. 

The existing overlap between skin/not skin colours can be seen in a colour histogram in 

the r (red) and g (green) space. 

 

Colour Histogram (log)

r

g

r

g

•Skin color (green)

•Other pixels (pink)

 

Fig. 3.2. Skin detection using colour information. For classification between skin/not skin colours, simple 

threshold values are used. Notice in the colour histogram that the skin and background colours are not 

easily separable. 

 

When more complex visual shapes are to be detected/recognized, the most 

straightforward and standard way is to apply a linear transformation to the image and 

extract the object’s principal components using PCA or LDA. Further description is 

provided in (Fukunaga, 1990) (Turk and Pentland, 1991) and a comprehensive 

comparative discussion is given in (Belhumeur et al, 1997) and (Martinez and Kak, 

2001). Numerous researchers have been working on these directions (see (Chellapa et 

al, 1995) for a brief review). Zuo et al (Zuo et al, 2007) performed two LDA on 

distinctly different subspace methods with the results on FERET and ORL datasets 

superior to pFisherfaces and bi-directional PCA plus LDA in terms of recognition 

accuracy. A new method based on orthogonal discriminant locality preserving 

projections, comparable in results to Eigenface, Fisherface and Laplacianface methods, 



 51 

was suggested in (Zhu and Zhu, 2007). ICA has been shown to give better recognition 

performance than Eigenfaces at the same time maximizing information transfer for a 

more general set of input distributions (Bartlett, 2007). 

 

In the nineties, the theory of wavelets started to receive a lot of attention, mainly 

because it enables a more general analysis when compared with the spectral analysis 

based on Fourier theory. The Gabor and Haar type wavelets were widely used on image 

processing tasks. Gabor function resembles the response of orientation selective cells 

found in the visual cortex. The convolution of an image with a set of Gabor functions is 

illustrated in Figure 3.3. Gabor wavelets are applied to the face recognition problem in 

(Escobar and Ruiz-del-Solar, 2002), (Garcia et al, 2000) and (Zhang et al, 2004) for 

example. In another approach, discriminant features can be extracted using a 

combination of Gabor-based image preprocessing and PCA (Yao et al, 2007). Haar 

wavelets, on the other hand, can be considered a coarse representation of Gabor 

functions, also computing directions (horizontal, vertical, diagonal) on different scales 

and positions, but are particularly interesting because they can be computed 

impressively fast using the Integral Image technique. Implemented in the OpenCV 

image processing library (Intel OpenCV, 2007), it has been demonstrated to be very 

useful for real time applications (Viola and Jones, 2001). 

 

 

 

Fig. 3.3. Convolution of a frontal face with Gabor wavelets in different frequencies and orientations 

resembles orientation selective cells found in the visual cortex. 

 

In another approach, Elastic Bunch Graph Matching uses Gabor jets after 

detecting the fiducial points of the face (eyes, mouth, etc). At each fiducial point the 
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area is represented by a set of Gabor wavelet components (jets) (Figure 3.4) (Escobar 

and Ruiz-del-Solar, 2002) (Wiscott et al, 1999). 

 

JET

N frequencies and M scales  

Fig. 3.4. Elastic Bunch Graph Matching, according to (Wiscott et al, 1999). 

 

In respect to methods for performing visual pattern classification, Nearest 

Neighbour, k-means, Multi-layer Perceptron Neural Networks (MLP), Gaussian 

Mixture Model (GMM), Hidden Markov Model (HMM) (Haykin, 1999), Support 

Vector Machine (SVM) (Cristianini and Shawe-Taylor, 2004), and weak classifiers 

(e.g., Adaboost (Freund and Schapire, 1997)) are examples that have been successfully 

applied to the problem. Potentially, most of the evolving connectionist methods (ECOS) 

described in (Kasabov, 2007) are also suitable, as demonstrated in (Ghobakhlou et al, 

2004) (Kasabov et al, 2000) and (Wysoski et al, 2004a) on the face recognition 

problem. 

 

3.2 Brain-like networks for visual information processing 

Despite all the efforts to produce reliable visual pattern recognition systems, as 

described above, these models are far from being comparable to human vision. Each 

artificial model has its pros and cons, yet they are still not as general and accurate as the 

processing done by the brain. Thus, in another methodological approach the emulation 

of brain-like processes for the purpose of pattern recognition has emerged. In a 

pioneering attempt to create a network in which the information is processed through 

several areas resembling the visual system, Fukushima and Miyake proposed the 

Neocognitron, which processes information with rate-based neural units (Fukushima 

and Miyake, 1982). A new type of model for object recognition based on computational 

properties found in the brain cortex was described by Riesenhuber and Poggio 

(Riesenhuber and Poggio, 1999). This model uses hierarchical layers similar to the 
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Neocognitron and processing units based on MAX-like operation, to define the 

postsynaptic response, which results in relative position- and scale-invariant features. 

This biologically motivated hierarchical method is carefully analyzed by Serre et al 

(Serre et al, 2007) on several real-world datasets, extracting shape and texture 

properties. The analysis encompassed invariance on single object recognition and 

recognition of multiple objects in complex visual scenes (e.g. leaves, cars, faces, 

airplanes, motorcycles). The method presented comparable performance with 

benchmark algorithms. 

  

In the same way, Mel (Mel, 1998) applies purely feed-forward hierarchical 

pathways to perform feature extraction, now integrating colour, shape, and texture. The 

hierarchical architecture enables the extraction of 102 features that are combined in a 

nearest-neighbour classifier. For a constrained visual world, the features were 

demonstrated to be relatively insensitive to changes in the image plane and object 

orientation, fairly sensitive to changes in object scale and non rigid deformation, and 

highly sensitive to the degradation (occlusion, noise, etc) of the visual stimuli. Kruger et 

al describes a rich set of primitive features that include frequency, orientation, contrast 

transition, colour and optical flow, which are integrated following semantic attributes 

(Kruger et al, 2004). Each attribute in practice, has a confidence level, which can be 

adapted according to visual context information. 

  

Further in the attempt to explore the brain’s way of processing, experimental 

results from neurobiology have led to the investigation of a third generation of neural 

network models which employ spiking neurons as computational units. Hopfield 

(Hopfield, 1995) proposed a model and learning algorithm for spiking neurons to realize 

Radial Basis Functions (RBFs) where spatial-temporal information is presented based 

on the timing of single spikes, i.e., not in a rate-based fashion. Natschlager and Ruf 

further extended the idea, by defining the pattern not only by the sequence of input 

spikes, but also by the exact firing time (Natschlager and Ruf, 1998) (Natschlager and 

Ruf, 1999). In these works, an input pattern representing a spatial feature is encoded in 

the temporal domain by one spike per neuron. It has also been shown how simple it is to 

modify the system to recognize sequences of spatial patterns by allowing the occurrence 

of more than one spike per neuron. Other conclusions of these works include: a) even 

under the presence of noise (in terms of spatial deformation or time warping) the 

recognition can be undertaken; and b) an RBF neuron can be used to perform a kind of 
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feature extraction, i.e., a neuron can be designed to receive excitation/inhibition from a 

subset of features and be insensitive to others. 

  

For simulating biological processes like vision and sensorimotor integration, 

biologically plausible Hebbian learning rules are used by Northmore (Northmore, 

2004). In this work, a simulated vehicle with artificial whiskers and an eye was trained 

to navigate through an obstacle course. The SNN has learnt to visually guide the 

“cybermouse” based on detection of luminance and motion. The Hebbian rule used was 

spike-timing-dependent synaptic plasticity (STDP) discovered experimentally by 

Markram et al (Markram et al, 1997). Similar learning was also introduced in a two-

layer SNN which performed character recognition tasks (Gupta and Long, 2007). 

  

Maciokas (Maciokas, 2003) goes down to the level of ionic channels to describe 

a model of an audiovisual system that reproduces the responses of the GABAergic cells. 

Audio features were extracted using Short Term Fourier Transform and represented in 

tonotopic maps. The visual information of lip movement was extracted using Gabor 

filters. The two main results described in his work are: a) the accurate model of diverse 

firing behaviours of GABAergic cells; and b) proof that a large-scale network of the 

cortical processing preserves information in audiovisual modalities using an entropy 

measure. No attempts to test the classification abilities of the network have been made. 

  

Thorpe (Thorpe, 1996) suggests that in order to be coherent with the time 

measured in certain classes of behavioural experiments on perceptual activities, the 

information processing mechanisms can afford to have a single neuron exchanging only 

one or a few spikes. The time between information acquisition and the cognitive 

response is too short to have rate-based neuronal encoding, since the information needs 

to travel sequentially over several different compartments located in distinct brain areas. 

Thus, the information needs to be sparsely encoded and, highly complex cognitive 

activities are reached through a complex wiring system that connects neuronal units. As 

an output of this work, the authors proposed a multi-layer feed-forward network 

(SpikeNet) using fast integrate-and-fire neurons that can successfully track and 

recognize faces in real time (Delorme and Thorpe, 2001) (Delorme et al, 1999). Coding 

of information in this model is based on the so-called rank order coding, where the first 

spike is the most important. It has been shown that using rank order coding and tuning 

the scale sensitivity according to the statistics of the natural images can lead to a very 



 55 

efficient retina coding strategy, which compares to image processing standards like 

JPEG (Perrinet and Samuelides, 2002). 

  

Matsugu et al utilized a different coding strategy in a hybrid of a convolutional 

and SNN architecture for face detection tasks (Matsugu et al, 2002). In this hierarchical 

network, local patterns defined by a set of primitive features are represented in the 

timing structure of pulse signals. The training mentioned in the work is for the bottom 

feature-detecting layer to use the standard error back-propagation algorithm. The model 

implements hierarchical pattern matching by temporal integration of structured pulse 

packets. The packet signal represents intermediate or complex visual features (like an 

eye, nose, corners, a pair of line segments) that constitute a face model. As a result of 

the spatio-temporal dynamics the authors achieved size and rotation invariant internal 

representation of objects. Endowed with a rule-based algorithm for facial expression 

classification, this hybrid architecture achieved robust facial expression recognition 

together with robust face detection (Matsugu et al, 2003). 

  

The remaining sections of this chapter follow the conceptual approach described 

in (Delorme and Thorpe, 2001) (Delorme et al, 1999), from which the basic building 

blocks of the model are borrowed, e.g., the fast integrate-and-fire neuron model and its 

respective learning rule, and the network structure, which is formed from hierarchical 

layers composed of neurons grouped in neuronal maps. In the following sections, the 

SNN model is presented and the evolving structure originating from a new online 

learning procedure is described. A layer responsible for integrating multi-view 

information is added in the face recognition task. 

 

3.3 SNN model for face recognition 

3.3.1 Model description 

This section describes the biologically realistic model used in this work to perform 

online visual pattern recognition. The system is based on SpikeNet introduced in 

(Delorme and Thorpe, 2001) (Delorme et al, 1999) (Delorme et al, 2001) (Thorpe and 

Gaustrais, 1998). The neural network is composed of three layers of fast integrate-and-

fire neurons. 

 



 56 

Spiking neuron model 

The system uses a simplified version of integrate-and-fire neurons, the dynamics of 

which were first described and analyzed in (Delorme and Thorpe, 2001) (Delorme et al, 

2001). Compared to a standard integrate-and-fire neuron (Gerstner and Kistler, 2002), 

the main differences are the lack of postsynaptic potential (PSP) leakage, excitation 

dependent upon the order of spike arrival, and the inactivation of the neuron after the 

output spike (the PSP is permanently set to the resting potential level). Figure 3.5 

illustrates the fast integrate-and-fire neuron. The main advantages of these neurons are 

that they are computationally very inexpensive, and they boost the importance of the 

first spikes to arrive. 

 

As a brief formal description, the postsynaptic potential for neuron i at a time t is 

calculated as: 

∑=
ij

wtiPSP
jorder

,

)(mod),(  (3.1) 

where mod ∈ (0,1) is the modulation factor, j is the index for the incoming connection 

and wj,i is the corresponding synaptic weight. For instance, setting mod = 0.9 and 

considering wi,j = 1, the first spike to arrive (order (j) = 0) changes the PSP by 0.9
(0)

 = 1. 

The second spike (order (j) = 1) further influences the PSP by 0.9
(1)

 = 0.9, the third 

spike by 0.9
(2)

 = 0.81, and so on. An output spike is generated if 

)(),( iPSPtiPSP
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≥  (3.2) 

where PSPTh is the postsynaptic threshold. 

 

 

 

Fig. 3.5. Fast integrate-and-fire neuron with modulation factor. 
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Two-dimensional neuron grid (neuronal maps) and network structure 

Each layer is composed of neurons grouped in two-dimensional grids forming neuronal 

maps. Connections between layers are purely feed-forward and each neuron can spike at 

most once when the PSP threshold is reached. The first layer (L1) neurons represent the 

On and Off cells of the retina, enhancing the high contrast parts of a given image (high-

pass filter). To each pixel of an image (receptive fields), one neuron is allocated in each 

L1 neuronal map. L1 can have several pairs of neuronal maps of On and Off cells, each 

pair tuned to a different frequency scale. On and Off cells are implemented through 

weighted connections between the receptive fields and the L1 neurons. Weights are 

computed with a two-dimensional Difference of Gaussians, where different scales are 

chosen varying the standard deviation σ of the Gaussian curve (Vernon, 1991). 

Equation 3.3 describes the On/Off filters, where g normalizes the sum of weight 

elements to zero and the maximum and minimum convolution values to [+1, -1]. 
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The output values of the first layer are encoded to pulses in the time domain. 

High output values of the first layer are encoded with short time delay pulses whereas 

pulses with long delays are generated in the case of low output values, according to the 

Rank Order Coding technique (Thorpe and Gaustrais, 1998) (Figure 3.6). Thus, the 

higher the amplitude, the shorter is the delay and vice-versa. L1 basically prioritizes the 

pixels with high contrast, which are consequently processed first and have a higher 

impact on neurons’ PSP. 

 

DelayPulses

Signal
Amplitude

 

 

Fig. 3.6. Rank Order Coding. The amplitude of a signal is encoded over time. The higher the amplitude, 

the shorter the delay (and vice-versa). Modified from (Thorpe and Gaustrais, 1998). 

 

The second layer (L2) is composed of eight orientation maps for each frequency 

scale, each one being selective of different directions (0°, 45°, 90°, 135°, 180°, 225°, 

270°, and 315°). To compute the directionally selective filters the Gabor function is 

used 
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(3.4) 

where ϕ is the phase offset, θ is the orientation [0,360], λ is the wavelength, σ is the 

standard deviation of the Gaussian factor of the Gabor function and γ is the aspect ratio 

which specifies the ellipticity of the support of the Gabor function. The Gabor filters are 

normalized globally for each frequency scale, in such a way that neurons having 

directionally selective cells as inputs can have PSPs that vary within that range [0, 

PSPmax], regardless of the scale of the filters. 

 

The third layer is where the learning takes place. Maps in the third layer are 

trained to be sensitive to excitation of complex patterns (faces, as illustrated in the 

following experiments). See Figure 3.7 for the complete network architecture. 

 

In (Delorme and Thorpe, 2001) the network has a fixed structure and the 

learning is done offline using the rule: 

N
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aorder
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(3.5) 

where wj,i is the weight between neuron j of L2 and neuron i of L3, mod ∈ (0,1) is the 

modulation factor, order(aj)
 
is the order of spike arrival from neuron j to neuron i, and N 

is the number of samples used for training a given class. Within this rule, there are two 

points to be highlighted: 

a) the number of samples to be trained needs to be known a priori; and 

b) after training, a map of a class becomes selective to the average pattern. 

 

One of the properties of the system is the low activity of the neurons. It means 

that the system has a large number of neurons, but only few take active part during the 

retrieval process. Due to this property, the computational performance can be optimized 

through an event-driven approach (Delorme et al, 2001) (Mattia and del Giudice, 2000). 

Additionally, in most cases, the processing can be interrupted before the entire 

simulation is completed. Once a single neuron on the output layer reaches the PSP 

threshold and emits a spike, the simulation can be finished. The event-driven approach 

and early simulation interruption make this method suitable for real-time 

implementations. 
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Fig. 3.7. Evolving spiking neural network (eSNN) architecture for visual pattern recognition. 

 

3.4 A new online learning procedure with structural adaptation 

3.4.1 General description 

The new approach to learning with structural adaptation aims to give more flexibility to 

the system in scenarios where the number of classes and/or class instances is not known 

at the time the training starts. In addition, it intends to serve applications where new 

training samples can eventually be obtained and further or fine-tune training can be 

pursued without the need of completely retraining the system. 

 

For this purpose, in the case of the spiking neural network described in Section 

3.3, the output neuronal maps need to be created, updated or even deleted as the 

learning occurs. In (Kasabov, 2007) the ECOS framework dealing with adaptive and 

evolving problems is proposed and several methods and procedures describing adaptive 

systems are presented (see Section 2.3.2). To implement such a system, the learning rule 

needs to be independent of the total number of samples where the number of samples is 

unknown when the learning starts. Thus, the next section proposes the use of a modified 

equation to update the weights based on the dynamic average of the incoming patterns. 
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It is important to notice that, similar to the batch learning implementation of Equation 

3.5, the outcome is the average pattern. However, the new equation calculates the 

average dynamically as the input patterns arrive. 

 

There is a drawback to learning methods when, after training, the system 

responds optimally to the average pattern of the training samples. The average does not 

provide a good representation of a class in cases where patterns have high variance 

(Figure 3.8). A traditional way to attenuate the problem is the divide-and-conquer 

procedure. This procedure is implemented through structural modification of the 

network during the training stage. Specifically, a simple clustering procedure is 

integrated into the training algorithm, i.e., patterns within a class that comply with a 

similarity criterion are merged into the same neuronal map. If the similarity criterion is 

not fulfilled, a new map is created. The entire training procedure follows four steps 

described in the next section and summarized in the flowchart of Figure 3.9. 

 

 

 

Fig. 3.8. Divide-and-conquer procedure to deal with high intra class variability of patterns in the 

hypothetical space of class K. The use of multiple maps that respond optimally to the average of a subset 

of patterns provides a better representation of the classes. 

 

3.4.2 Learning procedure 

The new learning procedure can be described in four sequential steps: 

 

1. Propagate a sample k of class K for training within L1 (retina) and L2 (directionally 

selective cells); 

Global class average 
Local averages 
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2. Create a new map MapC(k) in L3 for sample k and train the weights using the 

equation:  

)(

, mod j
aorder

ij
w =∆  (3.6) 

where wj,i is the weight between neuron j of L2 and neuron i of L3, mod ∈ (0,1) is the 

modulation factor, order(aj) is the order of spike arrival from neuron j to neuron i. 

The postsynaptic threshold (PSPTh) of the neurons in the map is calculated as a 

proportion c ∈ [0,1] of the maximum postsynaptic potential (PSP) created in a neuron 

in MapC(k) with the propagation of the training sample into the updated weights, such 

that: 

)max(PSPcPSP
threshold

=  (3.7) 

The constant of proportionality c is a measure of similarity between a trained pattern 

and a sample to be recognized. If c = 1, for instance, only an identical sample of the 

training pattern evokes the output spike. Thus, c is a parameter to be optimized in 

order to satisfy the requirements in terms of false acceptance rate (FAR) and false 

rejection rate (FRR). As a general rule, when the threshold increases so does the FRR 

while the FAR decreases.  

3. Calculate the similarity between the newly created map MapC(k) and other maps 

belonging to the same class MapC(K). The similarity is computed as the inverse of the 

Euclidean distance between weight matrices. 

4. If one of the existing maps for class K has similarity greater than a chosen threshold 

ThsimC(K) > 0 , merge the maps MapC(k) and MapC(Ksimilar) using arithmetic average as 

expressed in equation: 
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where matrix W represents the weights of the merged map and Nsamples denotes the 

number of samples that have already being used to train the respective map. The 

PSPTh is updated in a similar fashion as: 
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Fig. 3.9. Online learning procedure flowchart. 

 

Notice that the learning procedure updates W and PSPTh as well as enabling map 

merging for each incoming sample during training. For this reason, presenting the 

samples to the network in a different order can potentially lead to different network 

structures as well as different resultant W and PSPTh. In other words, samples presented 

in a different order could potentially form slightly different clusters (different numbers 

of output maps for a given class), which can in turn affect the performance of the 

network. In this work, this property has not been explicitly explored as it was 

demonstrated as being negligible in experimental results. 

 

3.4.3 Experimental setup 

The performance of the adaptive learning procedure proposed in the previous section is 

evaluated and compared with benchmark work using the AT&T dataset available from 

(AT&T Face Dataset, 2007). The dataset is composed of 400 face views from 40 

different individuals (10 views/individual). The frontal views of faces are taken with 

rotation angles varying in the range of [-30°, 30°] (rotation angles were not strictly 

controlled). The images were taken at different sessions for some individuals, without 

systematic control of light conditions and facial expression. Facial views in the dataset 

are in greyscale with 92 x 112 pixels. 

 

Propagation to retina and DSC 

New training sample 

Create a new map MapC(k) 

For MapC(k), train  the weights WC(k) 
and calculate PSPTh C(k)  

Calculate similarity S between WC(k) and  
WC(K) (other maps i of the same class) 

If S(i) >Thsim 

Merge map MapC(k) and MapC(i) 

yes 

no 
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Image Preparation 

The position of eyes and mouth were manually annotated and the faces rotated to align 

the right and left eyes horizontally. The boundaries of the region of interest (ROI) were 

then defined as a function of the inter-ocular distance and the distance between the eyes 

and mouth. The ROI was then normalized to a size of 20 x 30 pixels in order to reduce 

the insertion of redundant information into the system, which is an inherent property of 

the representation of visual information using pixels. From the pattern recognition view 

point, the reduction of pixels speeds up the computation by avoiding the processing of 

similar information that can not further contribute to the recognition task and diminishes 

the effects of the well-known “curse of dimensionality” (Bishop, 2000). 

The two-dimensional array (20 x 30) obtained from the size normalization was 

used as input to the SNN. No contrast or illumination manipulation was performed as 

previous work demonstrated the network’s good response in the presence of noise and 

illumination changes (Delorme and Thorpe, 2001). 

 

SNN Parameters for face recognition 

The neuronal maps of retina (L1), directionally selective cells (L2) and output maps 

(L3) have a size of 20 x 30 pixels. The number of time steps used to encode the output 

of retina cells to the time domain is set to 100. The threshold for the directionally 

selective cells is set to 600, chosen in such a way that on average only 20% of neurons 

emit output spikes. The modulation factor, mod ∈ (0, 1) is set to 0.98. In this way the 

efficiency of the input of a given neuron is reduced to 50% when 50% of the inputs 

receive a spike. The retina filters are implemented using a 5x5 Gaussian grid (calculated 

with Equation 3.3) and directionally selective filters are implemented using Gabor 

functions in a 7x7 grid according to Equation 3.4. The output of retina and directionally 

selective filters are shown in Figure 3.10. 

 

 Contrast Cells 

On       Off 

 

Directionally Selective Cells 

           0°      45°     90°    135°   180°   225°    270°  315° 

�  

 

Fig. 3.10.  Retina and directionally selective filters. 

 



 64 

3.4.4 Comparative results 

Comparison with previous work 

Previous work demonstrated the high accuracy of the network and offline learning in 

coping with noise, contrast and luminance changes, reaching 100% in a training set 

composed of 10 samples (views) for each class (individuals) and 97.5% when testing 

generalization properties (Delorme and Thorpe, 2001). For the generalization 

experiment, the dataset was divided into 8 samples for training with the remaining two 

samples for testing. In this setup, the new adaptive learning procedure reached similar 

levels of accuracy as reported in (Delorme and Thorpe, 2001) with the training and test 

sets approaching 100%. 

 

Testing the adaptive properties on unseen data 

In another experimental setup, the ability of the new proposed system to add online 

output maps to achieve better generalization is demonstrated. Only three samples from 

each individual were used for training. The remaining seven samples of each person 

were used for testing. Three samples that appeared to be the most dissimilar were 

selected manually for training. The dissimilarity was mostly related to the facial views 

acquired from different angles. Thus, the training set was composed mostly of one view 

taken from the left side (30°), one frontal view and one view taken from the right side  

(-30°), as depicted in Figure 3.11. 

 

       

 

Fig. 3.11. Example of image samples used for training (30°, frontal and -30°) (AT&T Face Dataset, 

2007). 

 

Results are presented in terms of FAR (false acceptance rate) and FRR (false 

rejection rate) which are respectively calculated as: 
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mptspostorAtteTotalNumIm

ceptancesNumFalseAc
FAR =  (3.10) 

and 

mptsaimantAtteTotalNumCl

jectedNumFalseRe
FRR =  

(3.11) 

On test data, we have used for each true claimant, the remaining 39 individuals 

to simulate impostor attempts. Thus, the total number of impostor attempts in the 

dataset is 40 claimants x 7 samples x 39 individuals = 10920 impostor attempts. The 

total number of true claimants is 40 x 7 samples = 280. The results are shown in Table 

3.1. In column 2 of Table 3.1, Thsim = 0.5 is set in such a way that only one output map 

for each class is created. With such a condition, the online learning procedure becomes 

equivalent to the original offline learning procedure described in Equation 3.5 (the same 

number of output maps are generated with the same weights). Tuning of Thsim for 

performance in a scenario where the FAR is more important than the FRR (where FAR 

is around 10 times lower than FRR), the advantage of using more maps to represent 

classes that contain highly variant samples can be clearly seen, as the FRR decreases by 

6% with a reduction of the FAR (last column of Table 3.1). In Table 3.1 only the best 

results achieved for different values of Thsim are shown after scanning for different 

values of PSP threshold in L3 (according to Equation 3.7). 

 

Table 3.2 and Table 3.3 present the network performance on the test set for 

different values of PSP threshold that are calculated as a function of the proportionality 

constant c. In all experiments, the constant c is the same for all maps. In a batch-mode 

operation the value of c can be optimized independently for each map after the training 

is completed, using Genetic Algorithms (GA) for example. 

 

Table 3.1. Best result achieved on the test set (unseen samples) according to different similarity 

thresholds (Thsim). Three samples of each claimant are used for training and the remaining seven for test. 

The systems are compared in conditions where FAR are around 10 times lower than FRR. 

Similarity threshold Thsim (x10
-3

) 0.5 0.833 1.0 1.25 2 

Number of output maps 40 47 80 109 120 

FRR (%) 25.7 22.5 21.4 20.0 20.0 

FAR (%) 2.3 2.2 2.18 2.26 1.77 
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Table 3.2. Accuracy for different values of c keeping Thsim = 0.5 x 10-3. Number of output maps = 40. 

The systems are compared in conditions where FAR are around 10 times lower than FRR. 

PSP threshold (PSPTh) c = 0.30 c = 0.35 c = 0.40 c = 0.45 

FRR (%) 27.9 25.7 26.8 28.6 

FAR (%) 3.1 2.3 1.6 1.2 

 

Table 3.3. Accuracy for different values of c keeping Thsim = 2.0 x 10-3. Number of output maps = 120. 

The systems are compared in conditions where FAR are around 10 times lower than FRR. 

PSP threshold (PSPTh) c = 0.30 c = 0.35 c = 0.40 c = 0.45 

FRR (%) 25.00 21.4 20.0 20.0 

FAR (%) 2.95 2.49 1.8 1.0 

 

In a further comparison, to assess how difficult the dataset is and to have a better 

idea of the performance of the new learning algorithm, the face recognition system 

using adaptive SNN is compared with three other traditional methods of face 

recognition (Table 3.4). 

 

Table 3.4. Comparison of different face recognition methods (experiments using NeuCom (Kedri 

NeuCom, 2007)). 

Method Accuracy (%) Properties 

PCA + SVM 90.7 Batch-mode 

PCA + MLP 89.6 Batch-mode 

PCA + ECF 74.0 (120 nodes) One-epoch 

Adaptive SNN 80.0 (109 maps) One-pass online method 

 

PCA (principal component analysis) is used to extract facial features. 

Classification is done using SVM (support vector machine) (Cristianini and Shawe-

Taylor, 2004), MLP (multi-layer perceptron) neural network (Haykin, 1999) and ECF 

(evolving classifier function) (Kasabov, 2007). MLP and SVM are batch-mode methods 

while ECF presents adaptive learning characteristics similar to those proposed in this 

work. ECF can be trained in both one-pass and multi-pass mode (several epochs) 

(Kasabov, 2007). As expected, the batch-mode algorithms out performed the one-pass 

online methods. The reason for this is that for the batch-mode, the training samples are 

repeatedly presented to the classification method to minimize output errors. In one-pass 

online learning the adjustment of weights occurs only once, at the time the training 

samples are presented to the network. Therefore, the performance of the batch-mode 

methods can be considered roughly the target or the maximum accuracy that can be 
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attained. When comparing the one-pass methods, the adaptive SNN presented better 

performance than ECF. Please note, this comparison cannot detect if the better 

performance is due to the learning method or to different representation of the features. 

 

3.5 A new multi-view face recognition system using evolving 

SNNs 

The previous section presented an SNN model that learns from multiple examples. 

Several training samples were presented to the network online, which learns different 

views of a class through synaptic plasticity and structural adaptation. Here, the SNN 

model for face recognition is further analysed, with the decision-making process now 

based on multiple views. A quantitative analysis on the use of different number of 

training samples is also presented. 

 

In this scenario, the network architecture is extended, with the implementation 

of an additional layer. The main amendment to the architecture is the inclusion of a 

layer that collects opinions over several frames to recognize patterns in streams of video 

data. 

 

3.5.1 Model description 

The system uses the same neuronal model described in Section 3.3. The network 

structure, where neurons are placed in two-dimensional grids forming neuronal maps 

and consequent layers of maps, also follows the same pattern. The neural network is 

composed of four layers of integrate-and-fire neurons (See Figure 3.12). Layer 1 and 

Layer 2 are similar to those described in Section 3.3. In the first two layers (L1 and L2) 

there is no learning, they simply act as passive filters and time domain encoders. In the 

third layer (L3), where the learning takes place, maps are trained to be sensitive to 

incoming excitation of more complex patterns. Neuronal maps are created or merged 

during learning, according to the online learning procedure described in Section 3.4.2. 

There are lateral inhibitory connections between neuronal maps in the third layer, so 

that when a neuron fires in a certain map, other maps receive inhibitory pulses in an 

area centred in the same spatial position. An input pattern belongs to a certain class if a 

neuron in the corresponding neuronal map spikes first. 
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Layer 4 (L4), as the main addition to this structure, has one neuronal map 

containing a single neuron for each pattern class. The L4 neuron of a given class is 

connected to the corresponding L3 neuronal maps. There are excitatory connections 

(typically w = +1) between the L4 neuron and the neurons located close to the centre of 

L3 maps. Thus, L4 combines the results of a sequence of visual patterns, i.e. 

accumulates opinions from several frames. 

 

 

Fig. 3.12. SNN architecture composed of four layers. Neurons in L1 and L2 are sensitive to image 

contrast and orientation, respectively. L3 has the complex cells, trained to respond to specific patterns. L4 

accumulates opinions over different input excitations in time. 

 

In respect of the connection weights between L3 and L4, in the simplest case, 

they are not subject to learning. Excitatory connections with fixed amplitude can be 

used instead. In a more elaborate setup, connection weights with amplitude varying 

according to a Gaussian curve centred in the middle of each L3 map gives a sense of 

confidence regarding the L3 output spikes. This is because only the middle neuron in 

each L3 neuronal map is trained to respond optimally to a certain excitation pattern, 

decreasing in reliability as the neuron’s location approach the map’s extremities. 
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However, independent of the choice of weights, the PSP thresholds for L4 neurons need 

to be assigned. L4 PSP thresholds can be trained using a global optimization algorithm, 

or alternatively, as was done in the following experiments, a simple heuristic that 

defines L4 PSP thresholds as a proportion p of the number of frames used for testing 

can be used. With the inclusion of this simple procedure, it is possible to assess how 

many positive opinions from different frames are required to recognize a pattern 

successfully. 

 

3.5.2 Network dynamics during test 

Figure 3.13 illustrates the behaviour of the network in time, which can be described as 

follows: each frame of visual excitation is propagated to L1, which enhances the areas 

with high contrast and encodes it into spikes with Rank Order Coding (Delorme et al, 

2001). Spikes of a given frame are propagated to L2 and L3 until a neuron belonging to 

a L3 map emits the first output spike, which is consequently propagated to L4. If a 

neuron in L4 generates an output spike, the simulation is truncated and the frames are 

labelled to the corresponding class. Otherwise, if there is no output spike in any L4 

neuron and an L3 neuron has emitted a spike or there are no more spikes, the next frame 

is propagated. The following frame starts to be propagated after resetting the PSP in L2 

and L3 neurons. L4 neurons retain their PSP levels which accumulate over consecutive 

frames, until a class is recognized with an L4 neuron output spike or until there are no 

more frames to be processed. 

 

It is important to note that when resetting the PSP in L2 and L3 neurons, 

information about dynamic changes in the patterns is lost. Thus, this model does not 

keep track of the variations of a visual pattern nor the pattern’s changes over time. Each 

visual pattern is considered independently, and L4 neurons effectively accumulate 

opinions of each frame being/not being similar to a trained pattern. 

 

Computation with spikes, where neurons require a certain stimuli level to release 

output spikes, provides a distinctive difference when compared to traditional methods. 

Traditional networks usually return numeric values in each of the output nodes. The 

propagation of an excitatory input to the SNN described, on the other hand, can result in 

three different output conditions: 
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a) one or more output spikes occur in the same neuronal map: it occurs when the 

output neurons have enough excitation to issue output spikes. It suggests confidence of 

it being a single class is high; 

b) silent output neurons: at the end of the simulation, none of the output neurons 

in any class were excited enough to produce output spikes. In this case, no class is 

assigned to the incoming patterns; 

c) simultaneous spikes: when output spikes occur at the same time in neuronal 

maps with different class labels. The network outputs that the incoming pattern belongs 

to more than one class. 

 

 

 

Fig. 3.13. Behaviour of the four layers of the SNN architecture over time. The visual excitation (frames 

f1, f2,…, fN) is propagated through L1, L2 to L3 until an L3 neuron generates an output spike (∆tfN). L3 

spikes are propagated to L4 and, if there is no output spike in any L4 neuron, L1, L2 and L3 neurons are 

reset to the rest potential. A new frame is then processed. The simulation is terminated when an L4 

neuron spikes or there are no more frames to be processed. 

 

These conditions represent the normal operation of the system and are used in all 

the experiments unless clearly stated otherwise. 

 

One of the properties of this system is the sparse activity of the neurons, as 

described in Section 3.3.1, which enables the optimization of the computational 

performance. In general, the processing is interrupted before the entire simulation is 

completed. The simulation is terminated once a single neuron of the output layer (L4) 

reaches the threshold and emits an output spike. Thus, frequently, even though there are 
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more frames that can provide further information, the process is interrupted because a 

certain level of confidence has been reached. 

 

3.5.3 Experiments and results 

Previous work demonstrated the high performance of the SNN when dealing with noise, 

contrast and illumination changes (Delorme and Thorpe, 2001) with a single frame. 

With the same publicly available dataset, the new online learning procedure was tested 

with similar results, reaching an accuracy of nearly 100% in both training and test sets 

(Wysoski et al, 2006) (Section 3.4.4). In a more challenging setup (only three samples 

for training in each class), the online addition of neuronal maps proved to be beneficial 

(Section 3.4.4). 

 

Here, the extended spiking network model proposed is evaluated on a face 

recognition task. This time, the recognition with multiple views is tested on video 

streams of the VidTimit dataset created by Sanderson and Paliwal (Sanderson and 

Paliwal, 2004) (see Figure 3.14). The choice of this dataset was motivated by the aim to 

design and implement an integrated system to perform biologically-motivated 

audiovisual integration. 

 

In the VidTimit dataset, video streams capture frontal views of individuals’ 

faces while uttering predefined sentences. The dataset is composed of 10 streams of 

video (106 frames on average) from 43 different speakers, captured at 25 frames per 

second, recorded in 3 sessions. Individuals utter six sentences in the first session and 

two sentences each in the second and third sessions. 

 

The algorithm developed by Viola and Jones (Viola and Jones, 2001 

implemented in the OpenCV (Intel OpenCV, 2007) image processing library was used 

to perform automatic face detection. Detected faces were converted to greyscale, 

normalized in size (60 x 40 pixels) and convolved with an elliptical mask to decrease 

the amplitude of pixels at the image borders. Figure 3.15 shows examples of detected 

faces normalized in size. The dataset did not require face rotation and it was not 

necessary to normalize the faces in respect to illumination as this type of SNN has 

shown its robustness to illumination changes (Delorme and Thorpe, 2001). 
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Fig. 3.14. VidTimit dataset composed of 43 individuals. 

 

 

 

 

Fig. 3.15. Examples of VidTimit dataset after faces are detected, converted to greyscale and normalized 

in size. 

 

On/Off cells with two frequency scales are used, so that the number of neuronal 

maps in L1 is set to 4 (2 pairs). In scale 1 the retina filters are implemented using a 3 x 3 

Gaussian grid with σ = 0.9 and scale 2 uses a 5 x 5 grid with σ  = 1.5. In L2, there are 8 

different directions in each frequency scale with a total of 16 L2 neuronal maps. The 

directionally selective filters are implemented using Gabor functions with aspect ratio   

γ = 0.5 and phase offset ϕ  = π/2. In scale 1 there is a 5 x 5 grid and wavelength λ = 5 
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and σ = 2.5 and in scale 2 a 7 x 7 grid with λ  and σ set to 7 and 3.5, respectively. The 

Gabor functions and Gaussian filters were chosen based on experimentation with 

different combinations of values. The On/Off and directionally selective filters are 

shown in Figure 3.16. Figure 3.17 shows an example of PSP generated in the network 

maps by the propagation of an input face. 

 

 

 
 
 
 

Scale 1 
 
 

Scale 2 

Contrast Cells 

 

On       Off 

 

Directionally Selective Cells 
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Fig. 3.16. Weights of On/Off and directionally selective neurons applied in L1 and L2 neuronal maps in 

two different frequency scales. 

 

 

 

 

Fig. 3.17. Example of neuronal activity when the network is submitted to an external excitation (face 

extracted from VidTimit dataset created by (Sanderson and Paliwal, 2004)). 

 

Experiment 1 - Evolvability 

In the first experiment, in order to reproduce the same experimental setup described in 

(Sanderson and Paliwal, 2004), the system is trained to recognize 35 individuals. For 

testing, all 43 individuals are used. Thus, the testing set is composed of different frames 
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of 35 individuals that have already participated in the training process and 8 completely 

unknown individuals. The modulation factor mod ∈ (0, 1) was set to 0.995. The 

thresholds of the L2 cells were set to 0.3. 

  

In the first experiment, the online learning procedure is evaluated on the 

VidTimit dataset, with particular focus on the adaptive addition of neuronal maps within 

a class to accommodate several training samples (views). For this, different numbers of 

samples (1, 3 and 5) were used to train on the 35 users. The training samples were 

chosen from different video streams (using the first frame from each video stream). The 

similarity threshold for merging neuronal maps was kept at a high level in order to 

inhibit map merging. Thus, each frame effectively originated a new neuronal map. For 

testing, one frame of the 43 individuals in the dataset was used, acquired in two 

different sessions (86 frames). The network was setup to give a decision for each test 

frame. 

 

Figure 3.18 shows a comparison of the results on test frames for different 

numbers of training samples, varying the proportionally constant c in Equation 3.7, 

which effectively increases the firing threshold PSPTh in L3 neurons.  

 

Note that, varying the PSPTh in L3 neurons, the system can have different 

operating points. As a general rule, when PSPTh increases so does the FRR while the 

FAR decreases. Total error (TE) = FAR + FRR. In Figure 3.19 the performance of the 

network is plotted using different numbers of training samples (1, 3 and 5) for FRR with 

respect to FAR. It can be clearly seen that in the EER (equal error rate) region where 

FAR is equal to FRR the use of additional training samples enhances the performance. 

However, no further improvement was obtained with the inclusion of more than five 

training frames. 
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a 

 

 

b 

 

 

c 

 

 

 

Fig. 3.18. Performance of the SNN network for various L3 firing thresholds PSPTh using: a) 1; b) 3; c) 5 

training samples per individual. As a general rule, when the threshold increases so does the FRR while the 

FAR decreases. 
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Fig. 3.19. Performance of the network using different numbers of training frames (1, 3 and 5) re-plotted 

with respect to FRR and FAR. Trend lines corresponding to the original points in Figure 3.18 are plotted. 

 

Experiment 2 - Multi-view recognition 

The following experiment evaluated a combination of multiple frames for decision-

making. Here the number of training frames was kept constant to two in each class, only 

varying the number of frames used for recognition. Similar to the previous experiment, 

43 individuals’ frames acquired in two different sessions (86 frames) were used during 

the test. 1, 3 and 5 frames were evaluated here, with PSPTh of L4 neurons set to 1, 2, and 

3 respectively, which means that for recognition based on 3 frames, 2 frames need to be 

positively recognized and for recognition based on 5 frames, at least 3 positive opinions 

are required. In the experiments, these scenarios demonstrated themselves to be a good 

trade-off between accuracy and resources required (processing speed and memory). 

Frames were spaced 400 ms from each other to allow substantial changes in the 

acquired face. Figure 3.20 shows a comparison of the results for the different number of 

test frames, varying the proportionality constant c in Equation 3.7, which increases the 

firing threshold PSPTh of L3 neurons. Plotting the results on a FAR x FRR plane shows 

that the results are very favourable for multi-view recognition use (Figure 3.21), which 

demonstrates the ability of the network to accumulate opinions over several frames. 

 

These results are coherent with the results presented by Kittler et al (Kittler et al, 

1997), where the fusion of multiple measurements of a single biometric modality in the 

framework of Bayesian estimation theory is formulated. In this framework, different 
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fusion strategies were evaluated (average, maximum, minimum, median rules) with 

error rates decreasing by up to 40%. It has been reported that, in a dataset of 37 persons, 

the EER was reduced from 6.9% on considering only one frame, to 4.0% when 

considering the opinions of six frames. Similar to (Kittler et al, 1997), the experiments 

presented here also show that the gain in performance tended to saturate after the 

integration of a few opinions. More precisely, after five frames, no further enhancement 

could be noticed. 

 

a 

 

b 

 

c 

 

Fig. 3.20. Performance of the SNN network for different L3 PSPTh. a) Test samples are composed of 1 

frame and L4 PSPTh = 1; b) Test samples are composed of 3 frames and L4 PSPTh = 2; c) Test samples are 

composed of 5 frame and L4 PSPTh = 3. 
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In the audiovisual recognition system described by Sanderson and Paliwal 

(Sanderson and Paliwal, 2004) is reported that the face recognition system alone 

reached a total error TE ≈ 8% based on PCA features and support vector machine 

(SVM) with the same VidTimit dataset. Figure 3.20.c shows an example of the same 

levels of performance being reached. For c of L3 PSPTh = 0.28 and L4 PSPTh = 3, a TE = 

5.0 (FAR) + 2.9 (FRR) = 7.9 % was obtained. 

 

 

 

Fig. 3.21. Performance of the network using different number of testing frames (1, 3 and 5 frames) setting 

the L4 decision threshold to 1, 2, and 3, respectively. The number of training frames was kept constant at 

3. Trend lines corresponding to the original points in Figure 3.20 are plotted. 

 

Table 3.5 presents the results of multiple view recognition with different sizes of 

training and testing sets. All the results were obtained keeping the number of training 

samples for each user constant, i.e., two samples, and using 3 frames for recognition 

(with L4 PSPTh set to 2). In the first scenario, the system is trained to authenticate 35 

users and 8 users are used as impostors. In the second scenario, 22 users are trained and 

21 impostors are used. Finally, the system is trained to authenticate 8 users and 

submitted to the test of 35 impostors. 
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Table 3.5. Performance of multi-view recognition under different training and testing conditions (lowest 

TE for each scenario is in bold). 

  Proportionally constant c (PSPTh of L3 neurons) (See Equation 3.7)  

Scenario  0.1 0.2 0.31 0.33 0.36 0.39 0.4 

FAR 19.6 18.0 3.5 2.8 1.9 0.9 0.7 

FRR 17.1 10.0 8.6 14.3 10 18.6 22.8 
35 users 

8 impostors 
TE 36.7 28.0 12.1 17.1 11.9 19.5 23.5 

FAR 24.7 23.3 5.9 5.2 3.1 1.8 1.3 

FRR 9.1 9.1 11.4 11.4 11.4 22.7 27.2 
22 users 

21 impostors 
TE 33.8 32.4 17.3 16.6 14.5 24.5 28.5 

FAR 44.8 40.0 19.3 14.9 7.6 4.2 3.5 

FRR 0 6.2 12.5 12.5 12.5 12.5 18.7 
8 users 

35 impostors 
TE 44.8 46.2 31.8 27.4 20.1 16.7 22.2 

 

The results in Table 3.5 and their corresponding trend lines depicted in Figure 

3.22 suggest that the ratio of number of users/number of impostors does not influence 

performance. 

 

 

 

Fig. 3.22. Comparative performance for different training and testing conditions (varying number of 

users/number of impostors ratio). Trend lines corresponding to original points in Table 3.5 are plotted. 

 

In another comparison, the network is trained with different numbers of users 

(10, 20 and 35) keeping the number of impostors in the test set to a constant 8, in order 

to investigate the effect of dataset size on performance of the network. For these 

experiments, 2 samples were used for training and 5 frames were used for recognition 

(with L4 PSPTh set to 3). The results are presented in Table 3.6 and the trend lines in 
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Figure 3.23. It can be seen that changing the size of low/medium scale datasets does not 

have any significant effect on performance. 

 

Table 3.6. Performance of multi-view recognition with different number of users (number of impostors 

are kept constant) (lowest TE for each scenario is in bold). 

  Proportionally constant c (PSPTh of L3 neurons) 

(See Equation 3.7) 

Scenario  0.1 0.2 0.3 0.33 0.36 0.4 

FAR 36.3 29.2 14.3 7.4 4.6 0.9 

FRR 15 10.0 10 10 10 10 10 users 

TE 51.3 39.2 24.3 17.4 14.6 10.9 

FAR 20.9 20.3 3.8 3.5 2.8 0.8 

FRR 17.5 5 10 12.5 17.5 25 20 users 

TE 38.4 25.3 13.8 16.0 20.3 25.8 

FAR 16.5 13.6 2.72 2.2 1.3 0.4 

FRR 24.3 7.1 8.6 11.4 15.7 24.3 35 users 

TE 40.8 20.7 31.8 13.6 17 24.7 

 

 

 
 

Fig. 3.23. Comparative performance for different dataset sizes. Trend lines corresponding to original 

points in Table 3.6 are plotted. 

 

Experiment 3 - Comparison with baseline methods 

Finally, the publicly available data analysis environment NeuCom (Kedri NeuCom, 

2007) was used to compare the new SNN method with well-established basic feature 

extraction and pattern recognition techniques. On the VidTimit dataset, facial features 

were extracted using PCA (principal component analysis) and tested using three 

classification methods: Support Vector Machine (SVM), Multi-layer Perceptron Neural 
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Network (MLP), and standard Nearest Neighbour (Euclidean distance on the 

normalized feature space). For this comparison, three frames from 35 users (105 

samples) were used for training, selected from different sentences in session 1. The 

same 35 users were used for testing, but with samples acquired from different sessions 

(session 2 and session 3 were used). One frame from each session, 70 samples in total. 

Differing from the previous two experiments, a closed setup was used, i.e., in testing, 

the classifiers had to always label an output class from the trained labels, i.e., there is no 

‘no class’ nor ‘more-than-one class’ option. The best results obtained after hand-tuning 

parameters in NeuCom are shown in Table 3.7 for different numbers of principal 

components, where MLP and SVM were able to correctly label 95.7% of the samples. 

In the experiments with MLP, the best results were obtained with 50 hidden neurons. In 

SVM, best results used linear kernel. 

 
Table 3.7. Accuracy of VidTimit dataset using traditional classifiers and PCA for feature extraction. 

Number of Principal Components 30 50 100 

SVM (%) (batch-mode) 94.3% (66/70) 94.3% (66/70) 95.7% (67/70) 

Nearest Neighbour (%) 90.0% (63/70) 90.0% (63/70) 81.4% (57/70) 

MLP (%) (batch-mode) 92.9% (65/70) 94.3% (66/70) 95.7% (67/70) 

Accuracy % (correctly labelled/number of samples) 

 

To implement a closed setup in the SNN model, the simulation was truncated at 

a certain time step (half of the total simulation period was used, i.e., 50 steps) and 

assigned the testing sample to the label of the L3 map that contained the highest 

activated neuron (neuron with highest PSP). Note that this is an artificial setup for 

comparison purposes and does not represent the normal way the network operates. 

Modulation factor = 0.997 was used for the experiments with a closed setup. The best 

results are shown in Table 3.8. 

 
Table 3.8. SNN accuracy on a closed setup (35 users for training and testing) for different PSPTh of L2 

and L4 neurons. The simulation was truncated after 50 time steps and the class label was assigned to the 

L3 map that contained the highest activated neuron. 

PSPTh  of L2 neurons (directionally selective cells) PSPTh of L4 neurons 

(number of positive opinions) 0.4 0.5 0.6 0.7 

1 88.5% (62/70) 87.1% (61/70) 91.4% (64/70) 87.1% (61/70) 

2 95.7% (67/70) 95.7% (67/70) 94.3% (66/70) 92.8% (65/70) 

3 94.3% (66/70) 97.1% (68/70) 97.1% (68/70) 90.0% (63/70) 

Accuracy % (correctly labelled/number of samples) 
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The network accurately labelled 91.4% of the samples using only one 

frame/opinion for recognition. However, it can be seen in Table 3.8 that performance 

increased to 97.1% when PSPTh of L4 neurons were set to 3, i.e., when applying the 

integration of opinions from several frames. Thus, it can be concluded that SNN reaches 

similar levels of accuracy as traditional methods, despite several differences between 

the methods. In respect to the classifiers, SVM and MLP are batch-mode algorithms, 

where the training samples are repeatedly presented to the classification method to 

minimize output errors. In the SNN learning procedure, the adjustment of weights 

occurs only once at the time the training samples are presented to the network. 

 

3.6 Implementation considerations 

The SNN models described, and the corresponding learning procedure, have been 

implemented using C++ language in a mix of event-driven and clock-driven techniques. 

The mix of event-driven and clock-driven approaches was aimed at meeting the 

requirements of the current stage of the development process. As the main goal was 

conceptual modelling and the corresponding implementation of the model as a proof-of-

concept, the focus was to have fast and intuitive implementation with reasonable 

computational performance. The clock-driven approach is very straightforward to 

implement, yet computationally expensive for networks with large numbers of neurons 

spiking sparsely, as each neuron needs to be visited each time step by the algorithm 

even if the neuron is not the subject of any activity. The event-driven approach, on the 

other hand, uses queues of spikes (received/emitted) to describe and organize the 

dynamics of the network. This is very efficient for networks with low activity neurons. 

However, how the queues are implemented is highly dependent on the dynamics of the 

neurons (Brette et al, 2007). Thus, a general design of the queue structure is practically 

impossible. In practice, in an event-driven approach, changing the neuronal dynamic, 

requires the structure of the network to be re-designed (Brette et al, 2007) (Marian, 

2002). 

 

In this particular implementation, a good compromise was to implement the time 

steps in a clock-driven approach and the neuronal activity within a time step with the 

event-driven approach. Since the time steps in these simulations are in the order of 

hundreds only, there is no substantial waste of processing power visiting each time step, 

regardless of whether there is or is not neural activity. Within each time step, instead of 
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visiting each neuron to check neuronal activity as suggested in the purely clock-driven 

approach (an order of millions), there is a queue that controls the occurrence of spikes in 

an event-based manner. The implementation can be summarized with the following 

pseudo-code: 

 

 

Structure queue (has one item for each spike) 

queue[i].TargetNeuron 

queue[i].Weight 

 

 

 

for all time steps   (CLOCK-DRIVEN) 

 {      

 while (queue.Size > 0)   (EVENT-DRIVEN) 

  { 

  PropagateIncomingSpikeToTargetNeuron 

  if PostSynapticPotential > Threshold 

   { 

   for all neurons connected to TargetNeuron 

    InsertItemInQueue 

   SetTargetNeuronPotentialToRest 

   } 

  } 

 } 

 

 

As a result of the mix of event-driven and clock-driven techniques, 

computational performance able to take on the experiments described in this chapter has 

been possible on a single personal computer. However, it is important to note that for 

real time applications processing 30 frames per second with high resolution, a careful 

optimization of code is required, particularly when the number of trained neuronal maps 

starts to increase. Figure 3.24 illustrates the simulation of the evolving SNN for visual 

pattern recognition. 
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Fig. 3.24. Simulation of the evolving spiking neural network for visual pattern recognition. 

 

3.7 Chapter conclusion 

The chapter started with an overview of visual pattern recognition methods, with a 

particular emphasis given to brain-inspired algorithms. It was followed by a description 

and evaluation of a new procedure that performs online learning in a network of spiking 

neurons and a new extended SNN architecture that classifies visual patterns using 

multiple views from streams of video data. 

 

In respect to the new learning procedure, new output maps are created and 

merged based on the clustering of intra-class samples during the learning stage. 

Experiments have shown that the learning procedure reaches similar levels of 

performance to the previously presented work (Delorme and Thorpe, 2001), and better 

performance can be attained in classes where samples have high variability with the 

divide-and-conquer approach. For this to occur, one more parameter needs to be tuned, 

i.e. Thsim (similarity threshold for merging maps). In addition, more output neuronal 

maps require more memory to store trained weights. 

 

With a benchmark dataset, VidTimit (Sanderson and Paliwal, 2004), further 

experiments indicate that the integration of several opinions (multi-view recognition) 

increases accuracy. With the VidTimit dataset, a comparison with traditional techniques 

shows that the method can be used for real visual pattern recognition problems. 
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In terms of normalization, the rank order codes are intrinsically invariant to 

changes in contrast and input intensities, basically because the neuronal units compute 

the order of the incoming spikes and not the latencies themselves (Delorme and Thorpe, 

2001). It is suggested that, for this reason, adaptive SNN presents better result than PCA 

+ ECF as feature extraction using PCA can degrade performance where there are 

illumination changes. 

 

The adaptive SNN does not cope well with rotation of the patterns, requiring an 

additional step of performing rotation alignment prior to the propagation of visual 

excitation to the network. Alternatively, a certain degree of rotation invariance can be 

attained with the use of additional neuronal maps, in which each map needs to be 

trained to cover different angles. In this case, the adaptive learning procedure described, 

can automatically generate the new maps when it is required. 

 

Table 3.9 contextualizes the results of the evolving SNNs in the three specific 

Brain-like ECOS aspects presented in Section 2.3.3, i.e., in terms of information 

processing units, information processing pathways and learning. 

 

Table 3.9. Summary of results according to three specific aspects of Brain-like ECOS proposed in 

Section 2.3.3. 

Processing Units A fast and computationally inexpensive version of spiking 

neuron is used as processing unit in all stages of visual 

information processing. 

Structure Visual information propagates with feed-forward connections to 

four layers of two-dimensional grid of spiking neurons that 

represent the behaviour of various brain areas (retina cells, 

direction selective cells, complex cells). 

Learning The online evolving procedure enables the learning of external 

stimuli through synaptic plasticity and structural adaptation. The 

addition of new classes is done in a supervised way whereas the 

system adapts in an unsupervised fashion when new samples of a 

class are presented. 

 

Overall, computation with pulses, contrast filters and orientationally selective 

cells has a close correspondence with traditional methods of image processing, such as 
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wavelets, that have already proven to be very robust for feature extraction in visual 

pattern recognition problems. From the biological perspective, despite being a very 

simplified representation of what effectively happens in the brain, the use of pulses 

represents a reasonable starting point as it is stated in (Gerstner and Kistler, 2002). 

 

As a future direction, aiming to improve the efficiency of biologically realistic 

neural networks for pattern recognition, it would be important to add adaptations to L1 

and L2. It has been experimentally shown (Sharpee et al, 2006) (Tsukada and Pan, 

2005) that neural filters change adaptively to increase the information carried out by the 

neural response. As a result, the contrast and directionally selective cells constitute 

optimized filters to describe natural scenes. A good exercise would be to explore how to 

find adaptively optimal filters in different types of data in a fashion similar to the human 

brain. 

 

In addition, while the dynamics of the network have been demonstrated to be 

able to process streams of visual patterns, the system still needs to be evaluated further, 

particularly with respect to parameter optimization in consideration of three different 

criteria: data transmission performance (best encoding) (Bothe et al, 2002), speed 

(minimum processing time) and energy efficiency (lowest number of spikes and number 

of frames). 

 

A large-scale problem also needs to be analysed in order to have a more in-depth 

idea of the behaviour of the system, not only in terms of accuracy, but also as concerns 

several engineering requirements, e.g., implementation speed, resources, scalability, etc. 

Despite some results showing the performance of the system with varying dataset sizes, 

this dissertation mainly concentrates on providing detailed behavioural analysis with a 

moderately low to medium numbers of samples. 

 

Another direction worth exploring is the extension of the network to capture the 

dynamic changes in face expression and to evaluate whether the dynamic properties can 

contribute to the recognition task. Finally, other coding schemes could be explored and 

compared on the same visual pattern recognition task. 
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Chapter 4 - Evolving SNNs for auditory pattern 

recognition 

 

This chapter begins with a review of several models of auditory information processing, 

in particular models that are inspired by the brain. The review is followed by a 

description of new systems that perform speaker authentication using spiking neural 

network architectures. The new systems are brain-inspired in terms of the information 

pathways, the information processing units (neuronal level), and the learning 

procedures. 

 

The review focuses on auditory system models capable of achieving accurate 

pattern recognition when processing speech signals in both speech and speaker 

recognition problems. It can be seen from the review that among the most accurate 

models, only a few currently accomplish auditory information processing using 

techniques that resemble the brain (models that use brain-inspired processing units are 

particularly rare). Thus, the remainder of the chapter addresses the modelling of the 

auditory system on the speaker authentication problem. Here, the motivation is the same 

as for the research on visual pattern recognition described in Chapter 3, which is “to 

closely replicate a sensory modality to the brain’s way of processing to ultimately 

achieve a gain in performance”. As properly described in (Ghitza, 1994), models of the 

auditory system can assist in building computer models with similar performance to the 

human brain. Ghitza further suggests that the advantages these models can bring are 

only limited by how reliably the auditory system can be simulated. 

 

The information processing of auditory signals is modelled using a new multi-

layered spiking neural network architecture. Each speaker is represented by a set of 

prototypes that are trained with standard Hebbian rule and winner-takes-all approach. 

Incoming speech signals arrive at the network in the form of Mel Frequency Cepstrum 

Coefficients (MFCC) (Rabiner and Juang, 1993) in a frame-based representation where 

each frame contains a short time period of the speech signal. For every speaker a 

separate spiking network computes normalized similarity scores based on MFCC 

considering speaker and background models. 
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Experiments carried out with the VidTimit dataset (Sanderson and Paliwal, 

2004) show similar performance of the system when compared with a benchmark 

method based on vector quantization. A procedure to create/merge neurons similar to 

the training procedure proposed for the visual model is also presented, which enables 

adaptive and online training in an evolving way. 

 

A new speech signal feature extraction design is proposed using a multi-layer 

feed-forward network of spiking neurons, which uses wavelet-based filter banks. With 

this design, all the information processing stages, from pre-processing of the speech 

signal to higher levels of cognition (where the recognition is done), are accomplished 

with spiking neurons. 

 

Finally, the way to represent low-dimensional data is also discussed in respect to 

the sparseness needed when processing information with biologically inspired system 

(Baddeley, 1996) (Baum et al, 1988) (Foldiak, 1995) (Olshausen and Field, 1997) 

(Perrinet and Samuelides, 2002). Population encoding of features is tested as an 

alternative on a two-dimensional dataset. 

 

4.1 Background and benchmarking 

Modelling of the auditory system can be developed for several stages of processing, 

from ear to the cortex. For instance, models can help decipher how signals are processed 

in the cochlea (in terms of encoding and information flow), can be applied to speech 

analysis, or even attempt to simulate higher levels of cognition (Holmes and Holmes, 

2001). 

  

Sound signals are pre-processed in the external and middle ear before reaching 

the inner ear where transduction takes place. More precisely, the transduction occurs in 

the cochlea. Several models describe this mechanism. In the work of Robert and 

Eriksson (Robert and Eriksson, 1999) a phenomenological model of the cochlea is 

presented, which is composed of a bank of filters (non-linear, time-varying and with 

active feedback). The main goal was to have a model with responsiveness to sound 

stimuli as similar as possible to that which has been measured in the cochlea. The model 

does not particularly attempt to provide an anatomical or physiological explanation. The 

output of the model represents the activity (in terms of spikes) of the inner hair cells. 
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Previous work in the same area include: a) a linear method (Jenison, 1991); and b) a 

nonlinear method (Patterson et al, 1995). 

 

deCharms et al (deCharms et al, 1998), through an analogy to the primary visual 

system that decomposes visual excitation into basic features (edges, orientation, colour, 

movement), suggests that the primary auditory system can be modelled with the 

decomposition of auditory scenes into basic components. The list of these basic auditory 

components include stimulus edges, stimulus transition (both in frequency and time), 

and conjunction of features. 

 

Lewicki (Lewicki, 2002) uses information theory to maximize the information 

given by auditory stimuli, i.e., to search for the most efficient coding strategy. This uses 

independent component analysis to extract efficient coding for three classes of sound: 

natural and environmental sounds and speech. To model the auditory system, 128 filters 

are used, where the parameters of the filters need to be set in order to maximize the 

information transmission. From this analysis, the form of coding depends on the sound 

class. When optimized for natural sounds, a Fourier-type of transformation is achieved. 

Environmental sounds resulted in wavelet-like filters whereas with a combined set, 

where speech has been included, the optimal coding resembles the characteristics 

extracted in biological measurements. 

 

As summarized in (Holmes and Holmes, 2001), the modelling of the outer and 

middle ear is easy to simulate with electrical filters. The response of the cochlea (basilar 

membrane), despite being more complicated, is also well understood and models can 

reproduce measurements with high reliability. However, it is in neural transduction, i.e., 

in the transcription of the movements of the basilar membrane and the firing patterns, 

where the process remains largely unknown. Overall, the transduction process 

undergoes three steps (see (Holmes and Holmes, 2001) for more detail): 

 a) Rectification of the signal. The signal that arrives in the cochlea is filtered by 

the outer and middle ear. The inner hair cells in the basilar membrane are only 

stimulated by a filtered signal in one direction. This mechanism is modelled through 

half-wave rectification of the signal. 

 b) Compression. After half-wave rectification, the signal is compressed to 

reduce the dynamic range of the input signal. 
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 c) Firing of the cells. The compressed signal is then directly related to the 

probability of the cells firing. Firing probability is also shown to be correlated to the 

timing of the previous spike (i.e., the closer the previous spike the lower the probability 

of a new spike occurring). 

 

Tuning several variables presented in these three steps, reproducing firing 

properties after the transduction process under different types of auditory excitation was 

found to be possible. However, the main coding schemes that encode sound signal 

information into spikes are still unknown. 

 

Further, at higher levels of the auditory information pathway, there are three 

traditional ways of assessing the spike trains generated by auditory stimuli: 

a) place/rate: the information is retrieved using firing rates. In this case, the 

spectral characteristics of the signals are detected through the spiking rates of the cells 

sensitive to different frequencies, which are placed in different locations in tonotopic 

organization (e.g. (Holmberg et al, 2005)). 

 b) place/temporal: The tonotopic organization of the neurons defines different 

frequencies, which have their amplitudes measured by temporal representation of 

spiking signals (spiking time). Seneff (Seneff, 1988) describes a generalized synchrony 

detector, which compares the timing between spikes of a neuron under excitation with 

its corresponding preferred firing time. 

 c) non-place/temporal: The tonotopic organization of the cells is not considered 

and the information is retrieved based on the overall spiking responses. An example of 

the non-place/temporal model is the ensemble interval histogram (EIH) proposed in 

(Ghitza, 1988) (Ghitza, 1992). 

 

When specifically considering speech signals, the auditory system and the 

intrinsic characteristic of the inner hair cells are traditionally modelled with filter banks 

(channels) in the frequency domain. To extract spectral characteristics in time, Short 

Term Fourier Transform is commonly applied to a short segment of the signal. The 

filter banks are set to represent the response to the spectrum range of the human ear. 

Experiments have detected that the human ear can perceive differences more accurately 

at low than at higher frequencies. This property was the origin of the MEL scale (Gold 

and Morgan, 2000), which is now commonly used in the form described in (Davis and 

Mermelstein, 1980) (See Figure 4.5). Equally common is to perform a further process 
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called “cepstrum”, which mainly aims to separate the vocal-tract filtering from 

excitation (Holmes and Holmes, 2001). Effectively this process is done using Discrete 

Cosine Transform (DCT). 

 

Another method used on short segments of speech signals after extracting 

spectral characteristics, is Linear Prediction Coding (LPC) (Atal and Hanauer, 1971), 

which comes together with its “cepstrum” counterpart (LPCC) (Atal, 1974). The 

rationale behind LPC is first, to perform a linear prediction of future samples based on 

previous data and then to compare the actual and predicted curves. The coefficients of 

the linear prediction model can be obtained by minimizing the difference between 

predicted and real samples. 

 

More recent works use wavelet analysis for speech feature extraction in several 

different ways. (Tufekci and Gowdy, 2000) use wavelets instead of DCT to calculate 

the “cepstrum”, (Long and Datta, 1996) use high energy wavelet outputs as features, 

and (Sarikaya and Hansen, 2000) (Tufekci et al, 2006) calculate the energy over a 

spectrum resembling the Mel filter bank. Wavelets are discussed further in Section 4.5. 

 

In respect of models which simulate higher levels of auditory signal cognition, 

Allen (Allen, 1994) recognizes the lack of a conclusive answer to the question “how do 

humans process and recognize speech”. However, according to Allen, the primary 

conceptual idea proposed by Fletcher (Fletcher, 1922), which describes the auditory 

system through a sequence of layers that recognizes in order: features, phones and 

phonemes, syllables, words, sentences, and meaning, still holds. 

 

4.2 SNNs for speech processing 

Robert and Eriksson (Robert and Eriksson, 1999) proposed a model of the auditory 

periphery to simulate the response to complex sounds. The model basically reproduces 

the filtering executed by the outer/middle ear, basilar membrane, inner hair cells, and 

auditory nerve fibers. The purpose of the model is to facilitate the understanding of 

signal coding within the cochlea and in the auditory nerve as well as analyse sound 

signals. The output of the inner hair cells and auditory nerve fibers are properly 

represented with trains of spikes. This model has been used in (Eriksson and Villa, 

2006) to simulate the learning of synthetic vowels by rats reported in (Eriksson and 
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Villa, 2006a). In this latter work, based on experimental measurements, besides proving 

that rats are able to discriminate and generalize instances of the same vowel, it is further 

suggested that, similar to humans, rats use spectral and temporal cues for sound 

recognition. 

  

An SNN model has been applied in sound localization (Kuroyanagi and Iwata, 

1994) and in sound source separation and source recognition in (Iwasa et al, 2007). In 

(McLennan and Hockema, 2001) a simple SNN structure is proposed to extract the 

fundamental frequency of a speech signal online. The highlight of the latter system is 

that a Hebbian learning rule dynamically adjusts the behaviour of the network based on 

the input signal. 

 

In (Holmberg et al, 2005) the importance of temporal and spectral characteristics 

of sound signals is described. The spectral properties are inherently represented with 

“rate-place code” during the transduction of the inner hair cells. Temporal information, 

on the other hand, provides additional cues, such as amplitude modulation and onset 

time. In the same work a multi-layer auditory model is presented, which emulates inner 

ear filtering, compression and transduction. The work mainly concentrates on using 

spiking neurons to model octopus neurons, which are neurons located at the cochlear 

nucleus. Octopus neurons enhance the amplitude modulations of speech signals and are 

sensitive to signal onsets. Preliminary experiments showed that the system performs in 

much the same way as Mel Frequency Cepstral Coefficients (MFCC) (Rabiner and 

Juang, 1993). 

 

Rouat et al (Rouat et al, 2005) envisage the advantages of merging perceptual 

speech characteristics and biologically realistic neural networks. After a description of 

the perceptual properties of the auditory system and non-linear processing realized by 

spiking neural networks, a biologically inspired system to perform source separation on 

auditory signals is proposed. In the same work and in (Loiselle et al, 2005), a 

preliminary evaluation used SNN for recognition of spoken numbers. 

 

Mercier and Seguier (Mercier and Seguier, 2002) proposed the use of the Spatio-

Temporal Artificial Neural Network model (STANN) based on spiking neurons on the 

speech recognition problem (recognition of digits on the Tulips1 dataset (Movellan, 
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1995). STANNs were initially proposed to process visual information (Seguier and 

Mercier, 2001). 

 

In summary, there are several models which describe the auditory information 

pathway, from the external, through to the inner ear. In addition, many methods 

describe signal transduction from waves to spikes. For transduction, most methods opt 

to encode the signal using “rate-place” representation and to process it with well 

established traditional models thereafter. There are fewer methods that further process 

the signal at the action potential level for speech recognition (e.g., (Mercier and Seguier, 

2002) (Rouat et al, 2005)). In particular, this researcher is not aware of systems that use 

SNN to deal specifically with the speaker authentication problem. The next section 

explores in detail the use of SNNs to perform cognition at a phonetic level to extract 

properties that enable speaker authentication. 

 

4.3 A new SNN-based method for text-independent speaker 

authentication 

Computer-based speaker authentication presents a number of possible scenarios. Text-

dependent, text-independent, long sentences, single words, speaker willing to be 

recognized, speaker trying to hide their identity are some examples. For each of these 

scenarios, different and specifically tuned processing techniques seem to be the most 

effective. Here, the focus is on the short-sentence text-independent problem, which is 

typically comprised of input utterances ranging from 3 seconds to 1 minute. In this 

scenario, a speaker being authenticated does not necessarily need to present the same 

word or sentence used during training. Moreover, due to the short length of the signal, it 

is not possible to acquire long-term dependencies of features that could eventually 

supply additional information that would enhance performance. Thus, state machines to 

detect phonemes, words, and bigrams cannot be setup at full strength. 

 

Based on these properties, in recent years a convergence in the use of, first, 

Vector Quantization (VQ) (Burileanu et al, 2002) (Gray, 1984) and, later Gaussian 

Mixture Models (GMM) (Bimbot et al, 2004) (Reynolds et al, 2000) to tackle the text-

independent speaker authentication problem can be seen. These methods are used as 

inspiration in the design of a new spike-based system. VQ is used as a benchmark for 

comparison purposes as well. 
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Two distinct network architectures that perform classification tasks using 

spiking neurons are presented. The highlight of the new architectures is the inclusion of 

two techniques that have already demonstrated themselves to be efficient in traditional 

methods (Gray, 1984) (Reynolds et al, 2000). They are: 

• creation of prototype vectors through unsupervised clustering, and 

• adaptive similarity score (similarity normalization). 

 

The next section gives a general overview of the new speaker authentication 

system and the speech signal pre-processing stages. Section 4.3.2 presents the SNN 

models and Section 4.3.3 is devoted to experimental results. 

 

4.3.1 Speech pre-processing 

Voice activity detection 

A simple algorithm based on the energy of a signal after being submitted to a low-pass 

Butterworth Filter as described in (Coleman, 2005) is used for voice activity detection 

(VAD). The filter has a cut-off frequency of 400 Hz, below which the RMS (root mean 

square) energy is calculated. A sample of the input signal is considered voice if the 

RMS energy of the signal at frequencies below 400 Hz is higher than a certain 

threshold. Otherwise, the sample is considered noise. 

 

Obviously, this simple approach does not work in the presence of low-frequency 

environmental noise. In such conditions, low-frequency environmental noises are also 

classified as voice. However, for the dataset used in the following experiments, this 

approach gave a reliable performance. Figure 4.1 shows an example of the output of the 

VAD filter applied to a speech signal from the VidTimit dataset (Sanderson and 

Paliwal, 2004). 
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a 

b 

 
Fig. 4.1. Voice activity detection. a) Raw speech signal; b) Speech signal after VAD. 

 

Feature extraction 

Some of the most popular and efficient feature extraction methods for speaker 

authentication include Mel Scale Coefficients (MSC), Linear Predictive Coding, and 

Mel Frequency Cepstral Coefficients (MFCC) (Rabiner and Juang, 1993). MFCC is 

used in these experiments, mainly because it has a biological interpretation, detecting 

spectral characteristics in a manner similar to the human ear, and at the same time 

proving to be very efficient in speech recognition tasks. The computation of the Mel 

Frequency Cepstral Coefficients is described in detail below. 

 

The entire feature extraction process is composed of five steps (see Figure 4.2). 

 

 
 

Fig. 4.2. Feature extraction process. Pre-emphasis filter is applied to the speech signal. The signal is 

sliced into frames and convolved with a hamming window (windowing). Spectral characteristics are 

calculated in a frame-based manner using Fast Fourier Transform (FFT) and filtered with Mel Scale filter 

banks. Cepstral coefficients are then calculated using Discrete Cosine Transform (DCT). 
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First, a pre-emphasis filter is applied to the speech signal 

)1()()( −−= txtxty α  (4.1) 

where α is a number between zero and one, typically 0.97 to emphasize the high 

frequency components of the signal spectrum, t is time, x(t) is the input signal and y(t) is 

the filtered output signal. 

 

In the next step, windowing, the signal is divided into small segments, called 

frames with 50% overlap (See Figure 4.3). In each window, the signal is assumed 

stationary for the purpose of spectral analysis. The frame signal is then multiplied by a 

hamming window function (Figure 4.4), which has the purpose of increasing the 

accuracy of the computation of spectral characteristics. The equation for the hamming 

window function is given as 
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where N is the length of a frame and n is an index varying from 0 to N. 

 

 
 

Fig. 4.3. Windowing. Frames with 50% overlap. 

 

 
 

Fig. 4.4. Hamming window (according to Equation 4.2). 

 

Fast Fourier Transform (FFT) converts the signals of each frame from the time 

to the frequency domain (X). The power spectrum is then computed from the complex 

result of the FFT as 
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where Re(X) and Im(X) are respectively the real and imaginary parts of the signal X in 

the frequency domain and k is the index of the signal (harmonic). 

 

The frequency fk, corresponding to each harmonic in the frequency domain can 

be calculated as 
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where k is the harmonic, fs is the sampling frequency and N is the total number of point 

signals used on the FFT conversion (length of a frame). 

 

The next step consists of filtering the spectrum with Mel Filter Banks, which 

consists of applying different band-pass filters to the signal to isolate different sub-

bands. Table 4.1 presents each sub-band with its respective centre and cut-off 

frequencies. For simplicity, a filter is used, which follows a triangular waveform (See 

Figure 4.5). The Mel filter bank presented in Table 4.1 has frequency components up to 

6800 Hz. This is due to the intrinsic characteristics of a speech signal, where the 

dominant frequencies are confined to this upper frequency limit. 

 
Table 4.1. MEL Filters with overlapping bands. Frequency up to 6800 Hz. 

Band  Lower Edge Centre Upper Edge 

1 0 50 100 

2 50 150 200 

3 150 250 350 

4 250 350 450 

5 350 450 550 

6 450 570 690 

7 570 700 830 

8 700 840 980 

9 840 1000 1160 

10 1000 1170 1340 

11 1170 1370 1570 

12 1370 1600 1830 

13 1600 1850 2100 

14 1850 2150 2450 

15 2150 2500 2850 

16 2500 2900 3300 

17 2900 3400 3900 

18 3400 4000 4600 

19 4000 4800 5600 

20 4800 5800 6800 
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Fig. 4.5. MEL Filter Bank. The abscissa represents frequency and the ordinate filters’ amplitude. 

 

After applying Mel filter banks, Mel Scale Coefficients (MSC) are calculated. 

MSC corresponds to the energy of the signal in each of the Mel frequency bands as 
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where m is the index of the filter bank, taking values between 0 and (number of filter 

banks – 1), P(k) is the power spectrum at the harmonic k, and Mel(k) is the amplitude of 

the corresponding filter m at the harmonic k. 

 

At this point, there is one value for each MEL filter in each frame of the speech 

signal. Discrete Cosine Transform (DCT) is then applied to the natural logarithm of the 

Mel Scale Coefficients, producing the Mel Frequency Cepstrum Coefficients. This 

process is calculated with 
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where n represents the DCT coefficient, C(m) is the Mel Scale Coefficients and m is the 

index of the filter bank. The first coefficient is excluded because it denotes the energy of 

the signal. Thus, there are 19 coefficients in each frame. Published experimental results 

show that the relevant discriminatory information of the speech signal is preserved with 

MFCC (Ghobakhlou et al, 2003). 

 

The first and second derivatives (∇ and ∇2
) of MFCC are also features 

commonly used on speaker identification, aiming mainly to provide information about 

Frequency 

Filter 

Amplitude 
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the variation of the signal in time (Becchetti and Ricotti, 1999) (Coleman, 2005). They 

are calculated as: 
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(4.7) 

where i is the order of the derivative and t is the time index of an MFCC vector (frame). 

 

Table 4.2 shows the list of parameters used on speech signals at the pre-

processing stage and Figure 4.6 illustrates the frame-by-frame extraction of MFCC on a 

speech signal. 

 
Table 4.2. Overall properties of the speech signal at the pre-processing stage 

Property Value 

Speech sampling 16000 Hz 

Pre-emphasis constant α 0.97 

Hamming window size 512 

Speech window 32 msec 

Number of MEL filters 20 

DCT coefficients 19 (except fundamental) 

Frequency range up to 6800 Hz 

Window shift 16 msec (1/2 window overlap) 

Total Number of Features 19 DCT coefficients + 19 ∇DCT = 38 

 

 

 
 

Fig. 4.6. Frame-by-frame MFCC of a given speech signal. The grey levels denote MFCC levels (S(n) 

according to Equation 4.6). 
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Spike encoding 

Each frame of the signal containing speech fragments generates an MFCC vector (see 

Figure 4.6) that is translated into spikes using Rank Order Coding (Delorme et al, 1999) 

(Figure 4.7). In the experiments presented in this chapter, one input neuron represents 

one MFCC vector. The encoding of the features onto a population of neurons is further 

discussed in a later section, which seems to provide a more biologically plausible, 

sparse representation (see Section 4.4). 

 

 
 
 

Fig. 4.7. MFCC encoded as spiking time with Rank Order Coding (Delorme et al, 1999). The higher the 

amplitude the shorter is the spike delay. 

 

Normalizations 

Speaker authentication is well-known as having a high variation between training and 

test conditions. In order to attenuate this problem, several techniques have been used. 

The majority of recent attempts usually normalize the features and/or the method of 

computing similarity (Burileanu et al, 2002) (Reynolds et al, 2000). For the 

normalization of features (parameter domain), cepstral mean subtraction of the MFCC 

levels is used in this implementation (Burileanu et al, 2002). 

 

In the similarity domain, the spiking neural network model has a similarity 

normalization technique embedded, in which the authentication score is calculated not 

only based on the similarity between a test sample and the speaker model, but on the 

relative similarity between the test sample and the speaker model and between the test 

sample and a background model. Figure 4.8 illustrates the normalization in similarity 

domain. With this procedure, the variations between train and test conditions are taken 

into account when computing similarity. Normalization in the similarity domain has 

already being extensively implemented in traditional methods of speaker verification 
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and is currently found in most of state-of-the-art speaker authentication methods 

(Bimbot et al, 2004). In the new SNN-based implementation described in this 

dissertation, normalized similarity is computed allocating excitatory connections to 

neurons representing the claimant model and inhibitory connections to neurons 

representing the background model. 

 

 
 

Fig. 4.8. Normalization in the similarity domain in a hypothetical two-dimensional space. 

 

4.3.2 Evolving spiking neural network models 

The design of the speaker authentication uses two/three layers feed-forward networks of 

integrate-and-fire neurons where each speaker has their own network. Each layer is 

composed of integrate-and-fire neurons with a modulation factor, as described in 

Section 3.3.1, that lends greater importance to the earliest spikes. 

 

4.3.3 Architecture 1 - Integration of binary opinions 

Figure 4.9 illustrates Architecture 1. Receptive field neurons encode each feature of a 

frame, typically MFCC, to the time domain using Rank Order Coding (Delorme et al, 

1999) (See Figure 4.7). One neuron encodes each coefficient. The output of the 

receptive field neurons is a spike time pattern for every frame. Layer 1 (L1) is 

composed of two neuronal maps. One neuronal map has an ensemble of neurons 

representing a speaker model (speaker prototypes). Each neuron in the neuronal map is 

to be trained to respond optimally to different segments of the training utterances, i.e., 

different speech phones (minimal unit of speech segmentation). The second neuronal 

map in L1 is trained to represent the background model. Several ways to represent 
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background models, that can be universal or unique for each speaker, are described and 

analysed in (Bimbot et al, 2004). 

 

Similar to L1, L2 has two neuronal maps representing the speaker and the 

background model. Each L2 neuronal map is composed of a single neuron. L1 and L2 

are connected to each other as follows: 

a) excitatory connections between neurons corresponding to neuronal maps with 

the same label, i.e., L1 speaker to L2 speaker and L1 background to L2 background, 

and; 

b) inhibitory connections between neurons with differing neuronal map labels, 

i.e., L1 speaker to L2 background and L1 background to L2 speaker. Effectively, L2 

neurons accumulate opinions of each frame of being/not being a speaker and being/not 

being the background. 

 

The dynamic behaviour of the network is described as: 

a) For each frame of a speech signal, features are generated (MFCC) and 

encoded into spiking times using receptive field neurons. 

b) The spikes are then propagated to L1 until an L1 neuron emits the first output 

spike, which is propagated to L2. If a neuron in L2 generates an output spike, the 

simulation is terminated. If not, the next frame is propagated. 

c) Before processing the next frame, L1 PSPs are reset to the rest potential 

whereas L2 neurons retain their PSPs, which are accumulated over consecutive frames, 

until an L2 output spike is generated. 

 

The classification is completed when a neuron in L2 generates an output spike or 

all frames and all spikes in the network have been propagated. If the L2 neuron 

representing the speaker releases an output spike, the speaker is authenticated. The 

authentication fails in a case where no spikes occur in L2 after all frames have been 

processed or an L2 neuron representing background releases an output spike. 
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Fig. 4.9. Evolving SNN Architecture 1. Frame-by-frame integration/accumulation of binary opinions 

(Wysoski et al, 2007a). 

 

Note that, in the architecture described, L2 neurons accumulate opinions of 

being/not being a given speaker over several frames. The propagation of each frame into 

the network leads to a binary opinion (yes/no), based on two criteria: 

a) high similarity of the input frame to a certain prototype represented by an L1 

neuron, in such a way that the similarity causes an L1 neuron to fire; 

b) competition between a speaker and a background model, i.e., the frame needs 

to be more similar to a speaker prototype than to a prototype representing the 

background in order to fire earlier. 

 

The latter effectively implements similarity domain normalization and enables 

the network to adapt to variations inherently present in the speaker authentication 

problem (Bimbot et al, 2004). 

 

However, the output after each frame is propagated does not give a notion of 

how similar the input frame is to a previously trained prototype. In general, traditional 

methods that apply similarity domain normalization, compute the relative distance 

between the closest prototype of a speaker model and the closest prototype of the 

background model. To overcome this constraint, i.e., to extract the normalized 

similarity scores of each frame, a second network architecture is proposed in next 

section (Architecture 2). 
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4.3.4 Architecture 2 - Integration of similarity scores 

In this more complex configuration, the network is composed of three layers as 

illustrated in Figure 4.10. Similar to the previous architecture, the encoding of features 

from each frame into precise spike times is carried out by receptive field neurons. Layer 

1 (L1) has two neuronal maps (speaker and background model) where each neuron is 

trained to respond optimally to a certain input excitation. The neurons in L1 are set to 

detect the closest prototype in both speaker and background model (the learning 

procedure to adjust L1 weights is described in the following section). Only one neuron 

in each L1 map is allowed to spike. 

 

 

 

Fig. 4.10. Evolving SNN Architecture 2. Frame-by-frame integration/accumulation of similarity scores 

(Wysoski et al, 2007a). 

Each L1 neuron is connected to a set of layer 2 (L2) neurons. The set of L2 

neurons are connected to the receptive field neurons with the same connection weights 

as the corresponding L1 neuron, however, they receive the spike train after a certain 

delay. The delay is set in such a way that L1 output spikes arrive at L2 before the arrival 

of incoming spikes from the receptive field neurons. L1 output spikes are effectively 

used to raise the PSP of all neurons in the set to a level where spikes can occur. Thus, in 

L2, only the neurons belonging to the winner set (closest prototype) become active and 

can generate output spikes with the arrival of spikes from the receptive fields. The main 
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characteristic of each set of L2 neurons related to an L1 neuron is that each neuron has 

the same incoming weight connection from the receptive field neurons, but different 

PSP thresholds. Therefore, the neurons in a L2 set generate output spikes at different 

levels of PSP. Upon the arrival of input trains of spikes on L2 neurons, several neurons 

from the winner set are expected to fire. The neurons with the lowest PSPTh fire first, 

followed by neurons with higher PSPTh levels, and so on. 

 

Layer 3 (L3) integrates L2 spikes with excitatory connections between neuronal 

maps with the same labels and inhibitory connections between neuronal maps with 

differing labels. With this mechanism, PSP levels in L3 denote normalized similarity 

between the most similar speaker prototype and the most similar background prototype. 

 

Similar to the behaviour of the previous network, PSPs on L1 and L2 are reset 

after every frame whereas on L3 the PSPs are accumulated over several frames. The 

simulation is terminated when L3 emits an output spike or there are no more frames to 

be processed. Each frame is processed until all the spikes are propagated or until all L2 

neurons representing the speaker or background emit output spikes. 

 

4.3.5 Learning procedure 

Training is done in the synapses connecting the receptive field and L1 neurons in a 

similar fashion for both network architectures. To update weights during training, the 

simple rule used in the visual system model (See section 3.4.2) is applied: 

)(

, mod jorder

ij
w =∆  (4.8) 

where wj,i is the weight between the receptive field neuron j and neuron i of the L1, mod 

∈ (0,1) is the modulation factor, order(j) is the order of arrival to neuron i of a spike 

produced by neuron j. For each training sample, the winner-takes-all approach is used, 

in such a way that only the neuron with the highest PSP value in L1 has its weights 

updated. 

 

The postsynaptic threshold (PSPTh) of a neuron is calculated as a proportion c ∈ 

[0, 1] of the maximum postsynaptic potential (PSP) generated with the propagation of 

the training sample into the updated weights, such that: 
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)max(PSPcPSP
Th

=  (4.9) 

The adaptive online procedure for training the network and creating new 

neurons is adapted from the visual pattern recognition model presented in Chapter 3 and 

is summarised with the following pseudo-code: 

 

 

For all phrase samples in the training set 

For each frame 

Create a new neuron 

Propagate the frame into the network 

Train the newly created neuron using Equation 4.8 and 4.9 

Calculate the similarity between weight vectors of newly 

created neuron and existent neurons within the neuronal map 

If similarity > Threshold 

Merge newly created neuron with the most similar neuron 

using Equation 4.10 and 4.11 

 

 

To merge a newly created neuron with an existing neuron, the weights W of the 

existing neuron n are updated calculating the average as 

Frames
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(4.10) 

where NFrames is the number of frames previously used to update the neuron in question. 

Similarly, the average is also computed to update the corresponding PSPTh: 

Frames
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(4.11) 

 

Alternatively, the network structure and the number of desired prototypes 

(neurons) can be defined a priori, using a k-means-like clustering algorithm to update 

the weights of the winner neuron (for more information about a basic version of k-

means algorithm see, for instance, (Deller Jr. et al, 2000)). In this case, a simple 

iterative heuristic can be described in two steps: 
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1. Initialization of the neurons’ weights 

For each neuron 

Propagate a random frame of the training set into the network 

Update the neuron’s weights using Equation 4.8 and 4.9 

 

2. Recursive training 

Until weights converge 

For all phrase samples in the training set 

For each frame 

Propagate each frame into the network 

Find the maximally activated neuron (the neuron with maximum 

PSP) 

Create a new neuron and train it using Equation 4.8 and 4.9 

Update weights of the maximally activated neuron merging it to 

the new neuron (using Equation 4.10 and 4.11) 

 

 

The latter method is used in the experiments to be described in the following 

sections, attempting to reproduce as closely as possible the scenario of the 

benchmarking algorithm (VQ with k-means clustering). 

 

In SNN Architecture 1 (See Figure 4.9), L1 neurons are fully connected to 

neurons in L2. The weights are set in order to accumulate positive or negative opinions 

of each input frame for each speaker (W = 1 for the links between each L1 neuronal 

map and its corresponding L2 neuron. W = -1 when the label of the L1 neuronal map 

differs from the label of the L2 neuron. 

 

In SNN Architecture 2 (See Figure 4.10), the connections between an L1 neuron 

and the corresponding set of neurons in L2 are excitatory (W = 1). Neurons in L2 are 

fully connected to L3 neurons. There are excitatory connections (W = 1) between 

neurons belonging to the neuronal maps with the same label, otherwise the connections 

are inhibitory (W = -1). 

 

4.3.6 Experiments and results 

The spiking network models proposed in the previous sections were implemented and 

the speech part of the VidTimit dataset (Sanderson and Paliwal, 2004) was used for 
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performance evaluation. VidTimit contains 10 utterances from 43 different speakers. In 

order to make a comparison with the experiments described in (Sanderson and Paliwal, 

2004), the system was set to authenticate 35 individuals, each individual trained with 6 

utterances. The remaining 4 utterances of each individual was used as a test. In addition, 

4 utterances of the 8 remaining individuals were used to simulate impostor access. Thus, 

the number of true claims for each individual model is 4 (each utterance is taken 

individually), and the number of impostors that try to break into each model is (35 - 1 

remaining user x 4 utterances) + (8 impostors x 4 utterances), which gives a total of 168 

impostors. For all individual models of the entire dataset, there are (35 users x 4 

utterances), totalling 140 true claimants and (35 users x 168 utterances) = 5880 

impostors. 

 

The speech signals are sampled at 16 kHz, and features are extracted using 

standard MFCC with 19 MEL filter sub-bands ranging from 200 Hz to 7 kHz. MFCC is 

then encoded into spikes spread across 19 receptive field neurons. See Section 4.3.1 for 

details of the speech signal pre-processing steps. 

A specific background model for each speaker is trained. For the sake of 

simplicity, the background model of a speaker i is trained using the same number of 

utterances used to train its corresponding speaker model (6 utterances), with the 

utterances randomly chosen from the remaining individuals in the dataset. 

 

For comparison purposes, a standard vector quantization (VQ) algorithm 

(Burileanu et al, 2002) with k-means clustering was used. Training was done with the 

same features (19 MFCCs) and the same strategy for selecting background models was 

applied. The performance for different numbers of prototypes was tested. Figure 4.11 

reports the best performance of the VQ algorithm obtained with 32 prototypes for 

speakers and 32 prototypes for the background model. These results are comparable 

with the work presented by (Sanderson and Paliwal, 2004), where, with the same 

dataset, the authors reported total error TE = false acceptance rate (FAR) + false 

rejection rate (FRR) = 22 % in slightly different setup conditions using Gaussian 

Mixture Model. The VQ implementation presented here obtained TE = 25 %. 

 

In respect to the SNN implementation, the number of neurons in the L1 neuronal 

maps for the speaker and background models (80 neurons each) was defined a priori. 
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The modulation factor (mod) was set to 0.9 for L1 neurons in Architecture 1 and L1 and 

L2 neurons in Architecture 2. The other layers are composed of neurons with mod = 1. 

 

In the experiments with SNN Architecture 1 (Figure 4.9), PSPTh of L2 neurons 

were defined as a proportion p of the number of frames used for identification. For 

instance, if an utterance used for authentication is composed of 40 frames and p is 0.2, 

the PSPTh used for authentication is 40 x 0.2 = 8. The PSPTh of L1 neurons were 

calculated as a proportion c of the maximum PSP obtained during training according to 

Equation 4.9. The performance for p = 0.2 and the different values of c are shown in 

Figure 4.12 (top). The minimum TE reached was 31.1%. 

 

In SNN Architecture 2 (Figure 4.10), the PSPTh of L3 neurons were defined as a 

proportion p (0.2 was used) of the number of frames used for identification. PSPTh of L1 

neurons were calculated as a proportion c of the maximum PSP obtained during training 

according to Equation 4.9. A set of L2 neurons had PSPTh levels ranging from 0 to the 

maximum PSPTh of their corresponding L1 neuron (equally spaced). Figure 4.12 

(bottom) shows a typical performance using 20 PSPTh levels for different c. The 

minimum TE reached was 36.0 %. Note that, in this scenario, for values of c below 0.4, 

the FRR starts to rise again. This trend occurs when the system reaches an operating 

point where the set of PSPTh levels in L2 are not acting properly to compute normalized 

similarities. 

 

Figure 4.11 and Figure 4.12 clearly show that VQ and SNN manifest a similar 

error trend, with a slightly better performance from VQ when the FAR and FRR curves 

intersect each other (equal error rate point). From the experiments, as a proof-of-

concept, it can be concluded that both network architectures proposed are able to 

process frames of speech data using spiking times, they can accumulate opinions over 

many frames and can discern whether they are similar to previously trained patterns. 

Despite comparable results, it is important to clarify that more extensive experiments 

are required to assert which system presents the best performance. 
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Fig. 4.11. Vector Quantization (VQ) performance on VidTimit dataset. FAR is the false acceptance rate, 

FRR is the false rejection rate, and TE is total error (FAR+FRR). 

 

 

 

 

Fig. 4.12. Typical SNN performance for different values of c (proportion of the maximum PSP generated 

by a training sample). Top: SNN Architecture 1. Bottom: SNN Architecture 2. The same trained weights 

are used in both architectures. 

 



 111 

4.3.7 Implementation considerations 

The SNN architectures and the learning procedure were implemented in C# language 

with a mix of event-driven and clock-driven techniques (see Section 3.6). The number 

of neurons needed to process auditory information is relatively low when compared 

with the visual system. To process the information from one individual, the number of 

neurons is in the order of hundreds in Architecture 1 (Figure 4.9) and increases 

substantially in Architecture 2 (Figure 4.10) depending on the number of neurons used 

in each L2 set. The number of spikes to be propagated to the network can also vary 

significantly, for instance, for the implementation that compresses the auditory 

information with Mel Frequency Cepstral Coefficients (MFCC), the number of spikes is 

relatively low, whereas, if the population encoding technique is applied the number of 

spikes increases according to the number of receptive fields. The population encoding 

technique is discussed in the next section. 

  

With a mix of event-driven and clock-driven techniques and the fast integrate-

and-fire neuron model, a single personal computer has been shown to be sufficient to 

undertake all the experiments presented in this chapter. 

 

4.4 A new wavelet-based speech feature extraction design with 

evolving SNNs 

This section presents the design of a new network architecture based on fast spiking 

neurons performing feature extraction on speech signals. The network simulates the task 

of the inner hair cells of the cochlea, which perform the transduction of waves into 

spikes with tonotopically-organized ensembles. The systemic behaviour of the ensemble 

of inner hair cells is simulated with biologically inspired basic processing units (spiking 

neurons) to be used in artificial speech processing systems. Note that, this design does 

not aim to accurately reproduce the activity of the inner hair cells, despite the dynamics 

of spiking neurons being more biologically reasonable than other computing methods. 

 

Sound signals are described with spectral characteristics. Cochlear fibers are 

sharply tuned to specific frequencies (Kiang et al, 1965), which are commonly 

modelled with the Short Term Fourier Transform (STFT) or wavelets. STFT as a 

discrete mathematical method has the intrinsic characteristic of being able to provide 

high spectral resolution of low frequency signals and low spectral resolution at high 
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frequencies. This property does not affect the extraction of speech features for speech 

recognition. The Mel scale that forms the Mel filter banks also has sharply tuned filters 

at low frequencies and broadly tuned filters at higher frequencies. 

 

Nonetheless, as properly described in (Rabiner and Juang, 1993) and the main 

object of research for (Ganchev, 2005), Mel filter banks and consequently MFCC, 

extract features particularly suitable for speech recognition. MFCC is also used 

successfully for speaker authentication, but it may occlude other features that can 

facilitate a unique description of a speaker. Ganchev (Ganchev, 2005) further argues 

that capturing the uniqueness of the speaker may need higher spectral resolution at high 

frequency bands, at the same time requiring flexibility to precisely capture sharp 

variations in time. The same work explores in detail more general properties of wavelets 

when compared with STFT on the speaker recognition problem, and gives a 

comprehensive evaluation of wavelet-based approaches through a comparison with 

several variations of MFCC based systems and probabilistic neural networks. 

  

In this new design, for being more general than STFT, wavelets are used in a 

conceptual description of a speech signal pre-processing method using SNNs. This pre-

processing of speech signals with spiking units uses the integrate-and-fire neurons with 

the modulation factor described in Section 3.3.1 and is composed of the following steps: 

1) A pre-emphasis filter according to Equation 4.1 is applied to the speech 

signal; 

2) The filtered signal is divided into small segments (frames); 

3) Receptive fields convert each frame to the time domain using Rank Order 

Coding (Delorme et al, 1999). One neuron represents each frame position. From 

hereafter the processing is done through spikes; 

4) Layer 1 (L1) neurons of the pre-processing network have weights calculated 

according to the wavelet mother function ψ(t), for different scales s (expansion 

and compression of the wavelets) and different spatial shifts τ. The mother 

wavelet function is described as: 
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=  (4.12) 

On L1, the shape of the mother function, the number of scales, and the number 

of shifts are parameters to be chosen or optimized. 
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5) Layer 2 (L2) neurons integrate the energy of different L1 filters representing 

spectral and spatial properties. This step resembles filter banks, where the 

number of banks and filter shapes are also subject to optimization. Figure 4.13 

shows the general pre-processing network architecture. The output of L2 is a 

train of spikes that extracts spectral and spatial characteristics of an input frame 

that mimics wavelet computation. 

 

 

 

Fig. 4.13. Integrated design of a two-layer SNN that performs speech signal pre-processing. 

 

The pre-processing can be integrated effortlessly into the classification 

procedures described in Section 4.3.3 and Section 4.3.4. Thus, the entire process, from 

the extraction of characteristics to the cognitive decision to identify a speaker, is done 

using processing units that communicate with spikes. Figure 4.14 shows a diagram of 

the integrated system. 

 

Note that, despite of the filters in L1 being built using wavelet functions, due to 

the dynamics of the spiking neurons, more precisely, due to the non-linearity inserted 

during the computation of the post synaptic potentials, the resultant features provide 

only a coarse representation of wavelet output. The advantage of this design is that the 

entire process (pre-processing stage and recognition) is done with the same basic 

processing unit (spiking neurons). 
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Fig. 4.14. Integrated design of an evolving SNN that performs speech signal pre-processing and speaker 

authentication. 

 

4.5 Sparse representation of low-dimensional data 

This section discusses the use of biologically inspired systems on processing low-

dimensional artificial data. Rank Order Coding, using the relative time of spikes across 

a set of N neurons, has a nominal capacity for encoding patterns of N! (possible spiking 

orders) (Thorpe and Gaustrais, 1998) if one neuron can spike only once. Fast integrate-

and-fire neurons with a modulation factor described in Section 3.3.1 are used as 

decoders and the weights are set to make the neurons selective to a specific train of 

spikes. Adjusting the threshold level (PSPTh), the selectivity of a neuron to a specific 

pattern can be changed. At one extreme, the PSPTh can be set in such a way that only an 

incoming spike order identical to the level of weights can make a neuron fire. In this 

unique setup, Rank Order Coding has the capacity to decode N! different patterns. 

However, in reality, for pattern recognition, PSPTh operates at lower levels to take into 

account noisy patterns, deformed patterns, generalization ability, etc. This reduces 

greatly the capacity for information encoding using rank order. 

 

Bothe (Bothe, 2003), following Natschlager and Ruf (Natschlager and Ruf, 

1998) and Zhang and Sejnowski (Zhang and Sejnowski, 1999), proposed the encoding 
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of input variables in spike times with a population of neurons, with the main aims of 

increasing the temporal distance between patterns, increasing information transmission 

capacity, enhancing the separability of clusters, and enabling scale sensitivity. Other 

reasons for sparse representation of data in biological systems are described in the work 

of Baum et al (Baum et al, 1988), which suggests that it increases the ability of 

performing associative memory, and Baddeley (Baddeley, 1996), which recommends 

sparse representation to achieve a gain in efficiency. In Foldiak (Foldiak, 1995), the 

main purpose of sparse representation is to facilitate associations and decrease the 

length of connections. Also in favour of sparse representation are (Perrinet and 

Samuelides, 2002) and (Olshausen and Field, 1997). 

 

With rank order coding, population encoding can have the same effect as 

increasing information transmission capacity as presented in Bothe (Bothe, 2003), since 

the nominal capacity of information is directly proportional to the number of neurons 

(nominal information capacity is N!). In addition, with more neurons, separability of 

temporal patterns increases and the PSPTh can operate at lower levels to account for 

noisy information and generalization ability. 

 

The need for population encoding is particularly strong in low-dimensional data, 

which is exemplified by the two-spiral dataset (Lang and Witbrock, 1988). The two-

spiral dataset is composed of two sets of two-dimensional data forming interlaced 

spirals (see Figure 4.15). First, lets consider a scenario where each dimension is 

represented by one receptive field neuron that encodes the information to the time 

domain using Rank Order Coding. Layer 1 (L1) is composed of fast integrate-and-fire 

neurons (described in Section 3.3.1) that are sensitive to the order of incoming spikes 

(Figure 4.16). Having two input neurons, the capacity of information transmission is 2!, 

i.e., there are only two possibilities: 

a) Neuron 1 spikes earlier than neuron 2. This always happens when the 

amplitude of dimension 1 is higher than dimension 2; 

b) Neuron 2 spikes earlier than neuron 1 because the amplitude of dimension 2 

is higher than dimension 1. 

 

Consequently, the SNN network described in Figure 4.16 is able to distinguish 

only two states: dimension 1 > dimension 2 and dimension 1 < dimension 2. Such a 

system cannot separate the interlaced spirals accurately. To overcome this constraint, 
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the following section presents a modified version of population encoding proposed in 

(Bothe, 2003) to better suit the dynamics of fast integrate-and-fire neurons with 

modulation factor, called Rank Order Population Encoding. Soltic et al (Soltic et al, 

2008) further analyzes Rank Order Population Encoding and applies this technique to 

the recognition of gustatory patterns. 

 

 
 

Fig. 4.15. Two-spiral dataset. 

 

 
 

 

Fig. 4.16. Two-layer SNN classification of two-dimensional data using fast integrate-and-fire neurons 

with modulation factor and Rank Order Coding. The network is only able to separate two states: 

dimension 1 > dimension 2 and dimension 1 < dimension 2. 

 

4.5.1 Population encoding of features 

Population encoding splits the information of a single variable in a population of 

neurons to obtain sparse representation. For this purpose, overlapping Gaussian-like 

receptive fields placed in different locations in the range of a variable are commonly 

used (Baldi and Heiligenberg, 1988) (Pouget et al, 1999). Figure 4.17 shows the 

Class 1 

Class 2 

D2 

D1 
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encoding process of the value 0.08 of a given variable defined in the range [-1, 1]. The 

variable range is covered by 14 Gaussian receptive fields equally spaced. For the value 

0.08 (red vertical line) the highest excitation occurs in the receptive field neuron N7 

with the value 0.9, which is followed by N8 = 0.85, N6 = 0.35, N9 = 0.3, N5 = 0.05 and 

N10 = 0.04. As opposed to other techniques previously described, which calculate spike 

times proportional to the levels of receptive field excitation, the coding is done 

according to rank order. Thus, in the example of Figure 4.17, N7 > N8 > N6 > N9 > N5 

> N10 (the other receptive fields have very low excitation and can be disregarded) 

becomes the corresponding order of spikes for the value 0.08. 

 

 

 

Fig. 4.17. Gaussian receptive fields and their corresponding encoding in spiking time (Rank Order 

Population Encoding). 

 

Population encoding has been applied to a two-spiral dataset, where each 

dimension has been independently encoded with 15 sharply tuned receptive fields and 4 

broadly tuned receptive fields (Bothe, 2003). Figure 4.18 shows the resultant encoding 

of 97 samples that form one spiral. A two-layer neural network (the architecture shown 

in Figure 4.19) having been trained with the adaptive online learning procedure 
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described in Section 4.3.5, has a threshold setting for merging neurons set in such a way 

merging never occurs. Therefore, for each training sample a neuron in L1 is generated. 

The weights of L1 neurons after training are depicted in Figure 4.20. 

 

 
 

Fig. 4.18. 97 samples of one spiral data encoded with 15 sharply tuned (ST) and 4 broadly tuned (BT) 

receptive fields. Each row represents the encoding of one sample with rank order population encoding. 

The greyscale level represents the spiking time (The darker, the earlier a spike occurs). 

 

 

  

 

Fig. 4.19. Two-layer SNN for classification of a two-spiral dataset with population encoding. 

Samples 

Dimension 1 Dimension 2 

Receptive fields 

ST ST BT BT 
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Fig. 4.20. Trained SNN network weights to classify the two-spiral dataset. The greyscale level represents 

the weights’ strength (The darker, the stronger the weight connection). ST and BT are sharply and 

broadly tuned receptive fields respectively. 

 

After training, the network was able to correctly classify all the training samples. 

To visualize the spatial division attained by the network, a two-dimensional space has 

been covered with a grid of equally spaced points (used 21 x 21). The points were 

population encoded and tested on the trained network. The resultant classification 

generated by the network is shown in Figure 4.21. In Figure 4.21 there are areas where 

dots are not plotted. In these areas, the network does not provide any output despite 

input excitation, i.e., the input excitation is too dissimilar from any pattern previously 

trained. There are also a few occasions where output spikes are generated in both 

classes of neurons (depicted with triangular shapes). Overall, the surrounding areas that 

were described by the trained samples are correctly classified with the help of 

population encoding. 

Layer 1 

neuron j 

Connection weights between receptive fields i and L1 neurons j 

Spiral 2 

neurons 

Spiral 1 

neurons 

ST 

Receptive field i 

BT ST BT 
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Fig. 4.21. Space division of two classes using 97 samples where each dimension is encoded with a 

population of neurons (15 sharply and 4 broadly tuned). Yellow triangles illustrate areas where both 

classes release an output spike whereas empty spaces are where none of the output neurons released 

spikes. 

 

In another experimental setup, MFCC encoding was used with a population of 

neurons to work on the speaker authentication problem. However, no further 

enhancement in performance was noticed when compared with the results described in 

Figure 4.12. 

 

4.6 Chapter conclusion 

In this chapter, the models of the auditory system are reviewed, with a special focus on 

models that emulate information processing in recognizing auditory patterns. To the 

speaker authentication problem, a new method that enables a high level of cognition of 

auditory information using spiking neural networks is presented. Two spiking neuron 

architectures for speaker authentication are described for the first time (see also 

(Wysoski et al, 2007a)). These networks process streams of speech signals in a frame-

based manner. The output layers accumulate positive and negative opinions on whether 

it is a certain speaker or a background. The main difference between the architectures is 

that, for each frame, Architecture 1 outputs a binary opinion while Architecture 2 gives 

a notion of similarity between the incoming frame and the closest prototypes. 

 



 121 

Connection weights between receptive fields and L1 can be trained to respond to 

different parts of an utterance, closely corresponding to the use of k-means algorithm to 

create codebooks (Burileanu et al, 2002), or a set of Gaussians in GMM (Reynolds et 

al, 2000). The new models also incorporate the idea of normalized similarity, which 

demonstrated itself to be effective in several classical models (Burileanu et al, 2002) 

(Reynolds et al, 2000). 

 

The procedures suggested in Section 4.3.5 based on k-means and network 

structural adaptation enable continuous and adaptive training. The main properties of 

these procedures are: 

a) k-means: needs to define the number of neurons in advance, can present 

initialization and local minima problem; 

b) network structural adaptation: an additional parameter for merging neurons 

needs to be tuned (merging threshold), and a different division of the feature space can 

be obtained according to the order of the training samples (Gallant, 1995) (Wysoski et 

al, 2006). 

 

Experiments carried out with the VidTimit dataset indicate that both network 

architectures proposed are able to process frames of speech data using spiking times. 

Further, SNNs manifest a similar error trend when compared with Vector Quantization 

(VQ). 

 

The final part of the chapter describes a novel multi-layer network design based 

on wavelets to perform pre-processing and extraction of features using spiking neurons. 

With this model, a complete system can be integrated and processed using spiking units, 

from the processing of raw signals to the mechanism that achieves higher levels of 

cognition. 

 

The architectures proposed have their capacity for information processing 

substantially reduced in low-dimensional data. The encoding of variables in population 

of neurons is presented as an alternative and exemplified in a two-dimensional dataset. 

 

Table 4.3 describes the results in respect to the three specific aspects of Brain-

like ECOS proposed in Section 2.3.3 (information processing units, information 

processing pathways and learning ability). 
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Table 4.3. Summary of results according to three specific aspects of Brain-like ECOS proposed in 

Section 2.3.3. 

Processing Units Spiking neurons are used as information processing unit in the 

decision-making stage. A new design of feature extraction using 

spiking neurons is also described. 

Structure Auditory information propagates with feed-forward connections 

into four-layers neuronal maps of spiking neurons that represent 

the behaviour of various auditory areas (see Figure 4.14) 

(tonotopically organized cells, spectral filter banks, phonetic 

association). 

Learning The online evolving procedure enables the learning of external 

stimuli through synaptic plasticity and structural adaptation. The 

addition of new classes is done in a supervised way. The adaptive 

learning creates/merges neurons that respond optimally to 

different speech phones in a supervised or unsupervised fashion 

when new utterances of a class are presented.  

 

While the dynamics of the network architectures implemented with spiking 

neurons have proven suitable for performing speaker authentication, further 

development is needed in the direction of representing the auditory pathways in a 

manner closer to biology. In this direction, further effort is needed to integrate features 

processed with spiking units (Section 4.5) into the decision-making levels (Section 4.3). 

The implementation of an integrated system is the first step towards the simulation of 

the complete auditory information pathway. Simulation of a complete system can 

provide the means of optimizing both features and recognition parameters. Further, it 

may be possible to use multi-criteria parameter optimization procedures to reach better 

data encoding (Bothe et al, 2002) (Smit and Barnard, 2004), minimize processing time 

and reduce the overall number of spikes. 

  

The experiments conducted in this dissertation used a dataset with a few short 

sentences. Under the assumption that learning of the temporal dynamics can not be 

reliably done with small training sets of data, the dynamic properties of speech signals 

were not considered. However, speech signals are well known for carrying a great deal 

of information in their temporal dynamics, being it at a phonetic or at a semantic level 
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(Rabiner and Juang, 1993). Networks of spiking neurons have already proven 

themselves to be very suitable for the computation of temporal dynamics (Lysetskiy et 

al, 2002) (Natschlager and Ruf, 1998). Therefore, extending and testing the 

architectures proposed to learn temporal variations with longer speech utterances is a 

promising task. 
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Chapter 5 - Evolving SNNs for audiovisual pattern 

recognition 

 

This chapter covers the most relevant models for performing integration of sensory 

information and describes a new brain-inspired system that integrates audiovisual 

information on a person authentication task. 

 

First, a concise review presents the models that emulate the human-way of 

information processing with respect to the combination of specialized sensory pathways 

to attain a particular ability. In the second part of the chapter, a new brain-inspired 

system integrates the individual auditory and visual information processing modules 

described in Chapter 3 and Chapter 4. The integrated system is built so that it can 

accommodate the individual characteristics of each modality, i.e., specific processing 

areas are allocated for each modality at lower processing levels. However, 

communication pathways further enable the exchange of signals between sensory 

modalities at higher levels of information processing. Such a characteristic is not 

considered in already proposed artificial models, e.g., (Kasabov et al, 2000) (Ross and 

Jain, 2003) (Sanderson and Paliwal, 2004). 

 

Individual sensory pathways as well as the integrative modules are implemented 

using a fast version of spiking neurons grouped in spiking neural network architectures 

capable of lifelong adaptation. A new crossmodal integration mechanism enables 

individual modalities to influence others before individual decisions are made, a 

function that resembles some characteristics of biological brains. 

 

The system is applied to the person authentication problem. Preliminary results, 

with the VidTimit dataset (Sanderson and Paliwal, 2002), show that the integrated 

system can improve the accuracy in many operating points as well as enable a range of 

multi-criteria optimization of parameters. A discussion on the main properties of the 

integrated system and future directions conclude the chapter. 

 



 125 

5.1 Background and benchmarking 

There is strong experimental evidence showing that integration of sensory information 

occurs in the brain (Calvert, 2001) (Kriegstein and Giraud, 2006) (Kriegstein et al, 

2005) (Stein and Meredith, 1993) (Ghazanfar et al, 2005) and a lot is known about the 

location in the brain where different modalities converge. A more conservative theory 

asserts that the integration occurs in supramodal areas that contain neurons sensitive to 

more than one modality, i.e., neurons that process different types of information (Ellis et 

al, 1997). Nonetheless, behavioural observations and electrophysiological experiments 

have demonstrated the occurrence of another integrative phenomenon: crossmodal 

coupling, which is related to the direct influence of one modality to areas that 

intrinsically belong to other modalities (Calvert, 2001) (Ghazanfar et al, 2005). 

 

As studies of the neuronal mechanisms that underlie interaction among 

modalities at the level of single or an ensemble of neuronal cells are still inconclusive 

(Kriegstein et al, 2005), computational models of neuronal interactions inspired by 

perceptual and neurophysiologic studies are used to test theories of modular 

interdependencies. These computational models can also be applied to multimodal 

pattern recognition in an attempt to enhance the performance of traditional pattern 

recognition algorithms. The latter is the immediate objective in this part of the research. 

 

First, this review describes some models that emulate the biological integration. 

It is followed by some insights into traditional ways of integrating multimodal 

information. 

 

5.1.1 Insights from psychology 

The work of Bruce and Young (Bruce and Young, 1986), which is further analysed in 

(Burton et al, 1990), describes a functional model based on the compilation of a series 

of psychological observations of the process involved in identifying an individual. The 

model is composed of face recognition units (FRU) that store visual structural 

descriptions. Each individual has a separate FRU. The output of an FRU activates the 

appropriate person identity node (PIN). The link to semantic and associative 

information about the identity of each known individual occurs in the person identity 

node occurs, i.e., the facial information is associated with other types of information, 

e.g., gender (male, female), profession (engineer, soccer player), etc. Different from the 
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FRU, which is completely dedicated to facial processing, PIN can be accessed by other 

routes, e.g., voice, written or heard name, etc. The model further incorporates the 

“identity priming” concept. With identity priming, the recognition of a familiar face is 

faster if it is preceded by the ‘prime’ face of a closely associated person, e.g., Prince 

Charles followed by Princess Diana. Another interesting point related to the processing 

speed covered by the model is that familiar faces are recognized more rapidly if the 

faces have been rated as “distinctive” in appearance compared with those rated as more 

“typical” in appearance (Valentine and Bruce, 1986). This effect seems to be a genuine 

consequence of the relationship between a face and the majority of known faces. Thus, 

in summary, the model based on perceptual evidences covers: a) familiarity decisions; 

b) identity priming; c) cross and within domain semantic priming; and d) speed of 

processing. 

 

After acknowledging that it is still unclear how cortical modules interact, in 

(Kriegstein et al, 2003) (Giraud and Truy, 2002) (Giraud et al, 2001) some results of 

neuroimaging experiments are presented, replicating earlier findings that human voices 

are specifically processed along the Superior Temporal Sulcus (STS) and Fusiform Face 

Area (FFA) is inherently the area for processing faces. These areas are anatomically 

segregated. However, it is further identified that voices of familiar individuals generate 

responses in the FFA, which suggests that, besides the existence of a supra-modal layer 

responsible for the integration of modes, there might be additional and earlier 

mechanisms of coupling between modalities. Other previously proposed models 

(Burton et al, 1990) (Ellis et al, 1997) (Schweinberger and Burto, 2003) describe the 

reciprocal influence among modalities with a top-down approach, where the individual 

modes are linked in the supramodal layer which is responsible for integrating 

information for each modality and redistributing the information back to individual 

modes through feedback connections (see Figure 5.1). 

 

Kriegstein et al (Kriegstein et al, 2005) specifically report the voice-to-face 

crossmodal effects on the task of speaker recognition. The top-down approach described 

in Figure 5.1 could not be observed on a task that emphasizes speaker over speech 

recognition. The top-down approach would imply a higher correlation of activity 

between supramodal areas and the STS (voice area) than between STS areas and FFA 

(face area). However, these experimental results effectively demonstrated a higher 

correlation between STS and FFA, which indicates a direct link between individual 
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modalities where the signals from one modality do not pass through the supramodal 

areas to reach the other. A diagram of supramodal area and crossmodal coupling of 

information is presented in Figure 5.2. 

 

 

 

Fig. 5.1. Sensory integration routes according to (Burton et al, 1990) (Ellis et al, 1997) models. The 

integration of modalities follows a top-down approach where the individual modes are linked by the 

supramodal layer with feedback connections. (Diagram modified from (Kriegstein et al, 2005)). 

 

 

 
 
Fig. 5.2. Audiovisual sensory integration according to (Kriegstein et al, 2005) on the speaker recognition 

task. The supramodal region and a direct link between individual modalities (crossmodal coupling). 

 

Further research with neuroimaging techniques by the same research group 

(Kriegstein and Giraud, 2006) suggest that even unimodal retrieval is facilitated if a 

pattern has been trained with more than one modality. In the process of recognizing a 

person using speech information that has been trained with image and speech 

information, the FFA (face area) is also activated. These multisensory associations are 

effective in increasing the recognition abilities. 
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5.1.2 Insights from physiology 

Physiological studies are mostly in line with the psychological models, agreeing that the 

crossmodal coupling occurs before the information processing reaches higher levels. 

Ghazanfar et al (Ghazanfar et al, 2005) reports the crossmodal effects through 

audiovisual experiments in monkeys. In (Calvert and Campbell, 2003) (Calvert et al, 

1997) the observations in human brains are described. 

 

At the neuronal level, several experiments in different animals (cat, rat, monkey) 

demonstrated areas (in the superior colliculus and in the cerebral cortex) where the cells 

can respond to more than one type of excitation (Benevento et al, 1977) (Bruce et al, 

1981) (see (Calvert, 2001) for more references). Investigating the underlying 

mechanisms of neurons sensitive to different sensorial stimuli, it has been found that 

some neurons are able to combine sensory inputs as integrated product, i.e., when two 

sensory stimuli from different sources are presented in temporal proximity, the activity 

of the neuron increases by more than a simple summation (almost in a multiplicative 

fashion). Another property detected is the so-called inverse effectiveness, a mechanism 

which substantially increases the crossmodal influence when a stimulus of a single 

modality is not as effective (Stein and Meredith, 1993). Lastly, multisensory neurons 

can present response depression activity, a phenomenon described in (Kadunce et al, 

1997) that decreases incoming stimuli for different modalities if they are not spatially 

correlated (see (Stein and Meredith, 1993) for a detailed explanation). 

 

5.1.3 Insights from pattern analysis 

The integration of modalities for the purpose of pattern recognition often targets tasks 

that cannot be solved by a single system or can be facilitated by using more than one 

source (generally where there is unimodal ambiguity, unimodal lack of data and/or 

correlation among modes). Many studies report considerable performance improvement 

(Kasabov et al, 2000) (Ross and Jain, 2003) (Sanderson and Paliwal, 2004) (Sharkey, 

1999) as well as state that the use of modularity results in systems that are easy to 

understand and modify. In addition, modular approaches are well known for preventing 

modular damage, facilitating training and the inclusion of prior knowledge (Ross and 

Jain, 2003). 
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There are two classic issues when dealing with multimodal systems: how to 

perform the decomposition and recombination of modes: 

• Decomposition: Decomposition can occur with modules and sub-modules, e.g. 

a visual can be decomposed into colour and shapes, which can be further 

decomposed into edges and borders, and so on. For the decomposition, the 

problems are not always well known and explicit as is the case with the visual 

and auditory modalities. In some cases, the decomposition can be done by 

automatically breaking down the problem based on intrinsic properties of the 

information provided (Sharkey, 1999). 

• Recombination: The recombination of the modules can be cooperative (all 

modules contribute to the result), competitive (only the most reliable module is 

responsible for the decision), sequential (the computation of one module 

depends on the output of the other), and supervised (one module is used to 

supervise the performance of others) (Ross and Jain, 2003) (Sanderson and 

Paliwal, 2004). 

 

Sometimes in order to avoid the recombination process, systems perform the 

combination of information from different modalities before the recognition process is 

undertaken. One unique module is then used for recognition. While this approach is 

easier to design, often the unique module encounters difficulties during the learning 

process. Also in this configuration, the designer cannot include or extract explicitly any 

knowledge related to individual modalities during the recognition process. 

 

As an example of multimodal models that use traditional methods of 

computation, Haller et al (Haller et al, 2006) present an audiovisual system to detect a 

TV anchor-person. The system processes modalities separately. The speech part uses 

MFCC (Mel Frequency Cepstral Coefficients) as features and Gaussian Mixture Model 

for classification. The face detection presented better accuracy with principal 

component analysis (PCA) and Gaussian Mixture Model. The decision fusion is made 

with AND and OR gates. Park et al (Park et al, 2006) perform audiovisual human 

authentication using PCA on visual information and cepstral LPC (linear prediction 

coefficients) to describe auditory features. Hidden Markov Model (HMM) is used for 

classification. The integration of modalities is done through a non-linear approach using 

Fuzzy logic. In another system for audiovisual person authentication, Ben-Yacoub et al 

(Ben-Yacoub et al, 1999) presents a multimodal fusion of experts to add robustness and 
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to increase the performance of the authentication process. The individual modalities are 

processed separately. The face is represented with Elastic Graph Matching (EGM) and 

features extracted using Gabor functions. Features between two face models are 

matched with a given distance equation. The speech information is represented with 

cepstral LPC and a statistical method to calculate the similarity between speakers called 

Arithmetic-Harmonic Sphericity (Bimbot et al, 1995) is used in the text-independent 

setup. In the same work, a text-dependent system based on HMM is also presented. 

Nonetheless, Ben-Yacoub et al concentrate on the fusion component, with five different 

post integration methods being proposed and compared. They are: SVM-based (support 

vector machine) fusion, minimum cost Bayesian classifier, Fisher linear discriminant, 

C4.5 classifier, and neural network-based (multi-layer perceptron) classifier. 

Experiments were carried out with the XM2VTSDB database (Messer et al, 1999), 

which contains synchronized recordings of facial properties as the individual utter digit 

from 0 to 9. 

 

Brunelli and Falavigna (Brunelli and Falavigna, 1995) present a system where 

two classifiers are used to process speech signals and three others to recognize visual 

inputs. The results of these individual classifiers are connected to the input of a new 

integrative module based on HyperBF networks (Poggio and Girosi, 1990). MFCC and 

the corresponding derivatives are used as features, and each speaker is represented by a 

set of vectors based on Vector Quantization (VQ) (Rosenberg et al, 1987). A local 

template matching approach at the pixel level, where particular areas of the face (eyes, 

nose, mouth) are compared with a previously stored data, is used for face authentication. 

 

Attempting to further improve the performance of the multimodal systems, 

several methods propose adaptation of the fusion mechanisms (Chibelushi et al, 1999) 

(Sanderson and Paliwal, 2002) (see (Chibelushi et al, 2002) for an extensive and 

comprehensive list). 

 

Maciokas and Goodman (Maciokas and Goodman, 2002), based on brain-like 

approaches, tackle the problem of integrating the visual information of lip movements 

with the corresponding speech generated by it. It uses a biologically realistic spiking 

neural network with 25,000 neurons placed in 10 columns and several layers. Tonotopic 

maps fed from Short Term Fourier Transform (STFT) with a neural architecture that 

resembles MEL scale filters are used for converting audio signals to spikes. Gabor 
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Filters extract the lip movements. The encoding of three distinct sentences in three 

distinct spiking patterns was demonstrated. In addition, after using the Hebbian rule for 

training the output spiking patterns were also distinguishable from each other. 

 

Seguier and Mercier (Seguier and Mercier, 2002) also describe a system for 

integrating lip movements and speech signals to present a one-pass learning with 

spiking neurons. The performance achieved is favourable to the integrated system, 

mainly when audio signals are deteriorated with noise. The system was intended to 

produce real-time results, therefore simple visual features are used and auditory signals 

are represented by 12 cepstral coefficients. Vector quantization is applied individually 

to extract vector codes, which are then encoded into pulses to be processed by the 

Spatio-Temporal Artificial Neural Network (STANN) (Mozayani et al, 1988) (Vaucher, 

G., 1998). 

 

Chevallier et al (Chevallier et al, 2005) present a system based on SNN to be 

use in a robot capable of processing audiovisual sensory information in a prey-predator 

environment. In reality, the system is composed of several neural networks (prototype-

based incremental classifier), one for each sensorial modality. A centralized 

compartment for data integration is implemented as a bidirectional associative memory. 

A network (also incremental) is used to perform the final classification (this architecture 

is described in detail in (Crepet et al, 2000)). Particularly interesting in the prey-

predator implementation is the spike-based bidirectional associative memory used. As 

properly suggested by the authors, the implementation using spikes enables the flow of 

information over time. The integration of these streams of incoming data is also 

processed on the fly as soon as the data from different modalities are made available. 

Furthermore, the bidirectional associative memory implemented with the spiking 

mechanism enables the simulation of crossmodal interaction. 

 

Kittler et al (Kittler et al, 1998), after providing a review, tries to find a common 

basis for the problem of combining classifiers through a theoretical framework. It is 

argued that most of the methods proposed so far can be roughly classified in one of the 

following types: product rule, sum rule, min rule, max rule, median rule and majority 

voting. After performing error sensitivity analysis on several combined systems, it is 

further suggested that the sum rule outperforms the other combination procedures. 
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A more specific review of the speech-based audiovisual integration problem 

(speech and speaker recognition) is provided in (Chibelushi and Deravi, 2002). 

 

Among all the systems mentioned before, whether using traditional techniques 

or brain-like networks, none of them demonstrated a degradation of performance of 

multimodal systems. The integration, in a synergistic way, achieves higher accuracy 

levels when compared with single modalities alone. 

 

The next section presents a simple attempt to process multimodal sensory 

information with a new architecture of fast spiking neurons. Besides the inherent ability 

of the neurons to process information in a simple and fast way (Delorme et al, 1999), 

the main property of the system is the ability to receive and integrate information from 

several different modules on the fly, as the information becomes available. Because the 

entire system is based on the same principle of computation (spiking units) and the 

processing time of the information is also meaningful, back and forth connections as 

well as connections that emulate crossmodal influences are able to be simulated in a 

more biologically realistic manner. The crossmodal connections enrich the architecture 

of the current multimodal systems (depicted in Figure 5.3) that are based traditionally 

on the decomposition and consequent recombination of modalities. The illustration of 

multimodal systems with crossmodal connections is shown in Figure 5.4. In particular, 

the system tackles the person authentication problem with the integration of audiovisual 

cues. 

 

 

Fig. 5.3. Traditional architecture for a posteriori integration of multimodal systems. 
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Fig. 5.4. Multimodal integration with crossmodal influences, which is employed in the new model 

described in this dissertation. 

 

5.2 A new evolving SNN model for audiovisual integration 

The biologically inspired integration of modalities for pattern recognition uses the 

theory of spiking neural networks, where the individual modes and the integration 

procedure are implemented with spiking neurons. The same fast integrate-and-fire 

neuron described in Chapter 3 and Chapter 4 is used (see Section 3.3 for a complete 

description). 

 

Each individual modality has its own network of spiking neurons. In general, the 

output layer of each modality is composed of neurons that authenticate/not authenticate 

a class they represent when output spikes are released. 

 

The approach for integrating modalities consists of attaching a new layer onto 

the output of the individual modes. This layer (supramodal layer) represents the 

supramodal region and contains neurons that are sensitive to more than one modality 

(Stein and Meredith, 1993). In the implementation proposed here, the supramodal layer 

contains two spiking neurons for each class label. Each neuron representing a given 

class C in the supramodal layer has incoming excitatory connections from the output of 

class C neurons of each individual modality. The two neurons have the same dynamics, 

yet different thresholds for spike generation (PSPTh). For one neuron, the PSPTh is set in 

such a way that an output spike is generated after receiving incoming spikes from any 

single modality (effectively it is a spike-based implementation of an OR gate). The 
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other neuron has PSPTh set so that incoming spikes from all individual modalities are 

necessary to trigger an output spike (AND gate). AND neuron maximizes the accuracy 

and OR neuron maximizes the recall (See Figure 5.5). 

 

In addition to the supramodal layer, a simple way to perform crossmodal 

coupling of modalities is designed. The crossmodal coupling is set as follows: when 

output neurons of an individual modality emit spikes, the spikes not only excite the 

neurons in the supramodal layer, but also excite/inhibit other modalities that still have 

ongoing processes. Effectively the excitation/inhibition influences the decision on other 

modalities, biasing (making it easier/more difficult) the other modality to 

authenticate/not authenticate a pattern. 

 

crossmodal

connections

AND

OR

individual modes 

layers

supramodal

layer  

 

Fig. 5.5. Integration of individual layers with a supramodal layer and crossmodal connections. The 

individual and supramodal layers are implemented using spiking neurons. 

 

For the crossmodal coupling, different from the supramodal layer connections 

that are only excitatory, both excitatory and inhibitory connections are implemented. 

With this configuration, the output of a given class C in one modality excites the class C 

neuronal maps in other modalities. In contrast, the output class  Ĉ (not class C) in one 

modality has an inhibitory effect on class C neuronal maps in other modalities. 

 

In the following section, the supra/cross modal concepts are applied to the case 

of audiovisual integration in a person authentication problem based on face and speech 

information. The implementation of the visual model follows the description given in 
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Section 3.5 and the auditory model uses the architecture described in Section 4.3.3. A 

more detailed explanation of the implementation is also given. 

 

5.2.1 Visual system model 

The visual system is modelled with a four-layer feed-forward network of spiking 

neurons, with the same configuration as described in Section 3.5 and in (Wysoski et al, 

2008). Figure 5.6 shows the network architecture, which combines opinions of 

being/not being a desired face over several frames (multi-view face recognition). 

Basically, the network receives in its input several frames that are processed in a frame-

by-frame manner. Neurons in the first layer (L1) represent the On and Off cells of the 

retina, enhancing the high contrast parts of a given image (high-pass filter). The second 

layer (L2) is composed of orientation maps for each frequency scale, each one being 

selective to different directions. They are implemented using Gabor filters in eight 

directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) and two frequency scales. 

Maps in the third layer are trained to be sensitive to complex visual patterns (faces in 

the case study evaluated here). In L3, neuronal maps are created or merged during 

learning in an adaptive online way. See Section 3.4.2 for a description of the learning 

procedure. 

  

Different from the architecture described in Chapter 3, besides having incoming 

connection from the L2 neurons, L3 neurons receive crossmodal influences from other 

modalities. In other words, instead of L3 being composed of exclusively unimodal 

neurons sensitive to visual excitation, L3 has multisensory capabilities. L3 neurons are 

still mainly visual, but are also sensitive to stimuli from other modalities. 

  

Neurons in layer 4 (L4) accumulate opinions about being a certain class over 

several frames. If the opinions are able to trigger an L4 neuron to spike, the 

authentication is completed. 
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Fig. 5.6. Evolving spiking neural network (eSNN) architecture for visual pattern recognition. Neurons in 

L1 and L2 are sensitive to image contrast and orientations, respectively. L3 has the complex cells, trained 

to respond to specific patterns. It is in L3 that crossmodal coupling occurs. L4 accumulate opinions from 

different input excitations over time. 

 

5.2.2 Auditory system model 

The auditory system is modelled with a two-layer feed-forward network of spiking 

neurons with the same architecture and behaviour as described in Section 4.3.3 

(integration of binary opinions) (Wysoski et al, 2007a). Each speaker is represented by 

a set of prototype vectors that compute normalized similarity scores of MFCC (Mel 

Frequency Cepstrum Coefficients) considering speaker and background models. 

Prototypes of a given class are memorized in the connection weights of L1 neurons. For 

the integrative approach described here, L1 neurons are also the recipients of 

crossmodal influences, in the form of excitation or inhibition. Thus, L1 neurons, besides 

being primarily responsible for processing auditory information, can be affected by 

other modalities (therefore multisensory units) to a lower degree. The network 

architecture is illustrated in Figure 5.7. 

 

Multisensory 

neurons 

(crossmodal 

influences) 
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Fig. 5.7. Speaker authentication with spiking neural networks. L1 neurons, with their respective 

connection weights, implement the prototypes of a given class. L1 neurons also are receivers of 

crossmodal excitation/inhibition. L2 neurons accumulate binary opinions about being a claimant over 

several frames of speech signals. 

 

There are two neurons in L2 for each speaker accumulating opinions over 

several frames of speech signals. One neuron is triggered if the speaker is authenticated 

and the other if the input excitation is more likely to be the background model. 

 

5.2.3 Audiovisual integration 

The detailed audiovisual crossmodal integration architecture is shown in Figure 5.8. The 

bottom part of Figure 5.8 shows two neurons (OR and AND) representing the 

supramodal layer. Each spiking neuron in the supramodal layer operates in the same 

way as the neurons that compose the SNNs of individual modalities (fast integrate-and-

fire neurons with modulation factor described in Section 3.3). 

 

Even this simple configuration of the supramodal layer can have quite a 

complex behaviour that cannot be easily described in an analytical way. However, to 

facilitate the illustration of the integrative system, a particular case is described. The 

supramodal neurons are set with a modulation factor of mod = 1, and all the incoming 

excitatory connection weights (W) are set to 1. Thus, the PSPTh that implements the OR 

integration for two modalities is equal to 1. The neuron implementing the AND 

integration receives PSPTh = 2. Notice that it is only possible to set these parameters 

deterministically because the neurons can spike only once during the entire simulation 

period. 

 

Multisensory 

neurons 
(crossmodal 

influences) 
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Fig. 5.8. Integration of modalities using evolving SNNs. The supramodal layer integrates incoming sensory information from individual modalities and crossmodal connections 

enable the influence of one modality upon the other. 
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Once again, to facilitate the analysis, crossmodal influences between modalities 

are effectively modelled through the modification in the PSPTh of the crossmodal 

neurons, namely L3 neurons in the visual system and L1 neurons in the auditory system. 

Thus, instead of simulating crossmodal influences with spikes that will consequently 

excite/inhibit a neuron (increase/decrease neuron’s PSP), which corresponds to the 

biological method, the crossmodal influence is implemented by increasing/decreasing 

the PSP threshold of the neurons. The effect in terms of network behaviour is the same, 

however it is found to be easier to parameterize the amount of crossmodal influence 

through the variation on the PSP thresholds. Thus, the strength of the crossmodal 

influences can be denoted with the following crossmodal parameters: CMAVexc (audio to 

video excitation), CMAVinh (audio to video inhibition), CMVAexc (video to audio 

excitation), CMVAinh (video to audio inhibition), which are implemented as a 

proportional change in the usual PSPTh values as: 

 (5.1) 

where CMexc/inh is negative for crossmodal excitatory influence and positive for 

inhibitory influence. 

 

In the simplest case, setting crossmodal coupling parameters to zero effectively 

means that each modality is processed separately, with a simple OR/AND fusion of 

opinions. Increasing the absolute value of crossmodal coupling parameters effectively 

increases the crossmodal influences. 

 

Note that the definition of supramodal layer here is related only to the layer that 

effectively combines sensory information to make the final decision. It does not include 

all the areas where multisensory neurons are located. L3 neurons of the visual system 

and L1 neurons of the auditory system, despite being multisensory neurons, are 

considered a part of the individual pathways outside the supramodal layer. Thus, 

individual pathways could be more appropriately named as “mainly” visual and 

“mainly” auditory pathways. 

 

5.2.4 Network dynamics during test 

Figure 5.9 illustrates the behaviour of the network over time. The dynamic behaviour of 

the integrated network is described as follows: each frame of the visual and auditory 

excitation (frames f1, f2,…, fN) are propagated through their corresponding individual 

)1( / inhexcThOldThNew
CMPSPPSP +=
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architectures until the supramodal layer. Spikes of a given visual frame are propagated 

to L2 and L3 until a neuron belonging to a L3 map emits the first output spike, which is 

propagated to L4. L4 neurons accumulate opinions over several frames, whereas L1, L2 

and L3 neurons are reset to their resting potential on a frame basis. The same occurs 

with auditory frames. Spikes are propagated to L1 neurons until a L1 neuron emits the 

first output spike, which is propagated to L2. L2 neurons accumulate opinions over 

several frames whereas auditory L1 neurons are reset to their resting potential before 

each frame is processed. 

  

When auditory L2 neurons and/or visual L4 neurons release an output spike, the 

spikes are propagated to the supramodal layer. If there is no output spike in any visual 

L4 neuron and a visual L3 neuron has emitted a spike or there are no more spikes to be 

processed, the next visual frame can be propagated. In a similar fashion, if there is no 

output spike in any auditory L2 neuron and an auditory L1 neuron has emitted a spike 

or there are no more spikes to be processed, the next auditory frame can be propagated. 

 

 Visual L4 neurons and auditory L2 neurons retain their PSP levels that are 

accumulated over consecutive frames, until a class is recognized with an L4 neuron 

output spike or until there are no more frames to be processed. Crossmodal influences, 

if existent, are propagated synchronously before a new frame is processed. The 

crossmodal influence starts when one individual modality produces a result (output 

spike in a auditory L2 neuron or in a visual L4 neuron) and lasts until the processing is 

completed in all modalities. 

  

In this model, the processing time for auditory and visual frames are considered 

the same, i.e., the supramodal layer receives synchronous information in a frame basis, 

although it is well known that auditory stimuli are processed faster than visual (Stein 

and Meredith, 1993). 

 

Note that when resetting the PSP in the visual L2 and L3 neurons and auditory 

L1 neurons in each frame, information about dynamic changes of the patterns are lost, 

i.e., the model does not keep track of the variations of a visual pattern nor how the 

pattern changes over time. Each visual frame is considered independently and the last 

layer of each individual modality effectively accumulates opinions about whether it is a 

trained pattern. 
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Fig. 5.9. Typical behaviour of the integrated SNN architecture over time. The visual and auditory 

excitation (frames f1, f2,…, fN) are propagated through their corresponding individual architectures until 

the supramodal layer. Neurons of individual modalities are reset to their resting potential, namely L1, L2 

and L3 neurons of the visual and L1 neurons of the auditory architecture. Crossmodal influences are 

propagated and a new frame is processed. The simulation is terminated when the supramodal layer spikes, 

both individual modes have released their opinions or there are no more frames to be processed. 

 

With respect to the processing speed, in principle, the crossmodal connections 

decrease the time required to authenticate true claimants and increase the time needed to 

reject false claims when compared with a purely AND integration. In other words, it 

speeds up the processing of correlated information from different modes because once 

an individual modality finishes its analysis and labels a pattern, it exerts excitatory 

influence on the neurons of other modalities with the same label. The bias effect 

towards the second modality facilitates its decision in case true information about the 

claimant is also provided, which causes a resultant decision to be achieved quickly. On 

the other hand, the time needed to reject false claimants increases. Should the first 

modality results in a negative opinion about the claimant, the crossmodal connections 

send inhibitory signals to the claimant’s neurons on other modalities, making its 

authentication harder. If the claimant provides true information on the second modality, 

due to the negative opinion given by the first modality, the second modality will be 

more rigorous on the authentication process, which consequently affects the time 

required to release the overall result. 
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5.2.5 Experiments and results 

The integration of audiovisual modalities with a network of spiking neurons is 

evaluated with the VidTimit dataset (Sanderson and Paliwal, 2002), which contains 

video and audio recordings of 43 individuals. The same dataset is used in the 

experiments described in Chapter 3 and Chapter 4. The test setup deals specifically with 

the audiovisual person authentication problem. A person is authenticated based on 

spoken phrases and the corresponding facial information as the utterances are recorded 

(faces are captured in frontal view). 

 

The following items present the configuration details of each individual system 

as well as the parameters used on the integration mechanism: 

 

• Visual: Face detection is accomplished with the Viola and Jones 

algorithm (Viola and Jones, 2001) implemented in the OpenCV library 

(Intel OpenCV, 2007). Faces are converted into greyscale, normalized in 

size (height = 60 x width = 40), convolved with an elliptical mask, and 

encoded into spikes using rank order coding (Delorme et al, 2001). SNN 

does not require illumination normalization (Delorme and Thorpe, 2001). 

There are two scales of On/Off cells (4 L1 neuronal maps). In scale 1, the 

retina filters are implemented using a 3 x 3 Gaussian grid with σ = 0.9 

and scale 2 uses a 5 x 5 grid with σ  = 1.5. In L2, there are eight different 

directions in each frequency scale with a total of 16 neuronal maps. The 

directionally selective filters are implemented using Gabor functions 

with aspect ratio γ  = 0.5 and phase offset ϕ  = π/2. In scale 1 a 5 x 5 grid 

with a wavelength of λ  = 5 and σ = 2.5 is used and in scale 2 a 7 x 7 grid 

with λ  and σ set to 7 and 3.5, respectively. The modulation factor for the 

visual neurons was set to 0.995. 

• Auditory: Speech signals are sampled at 16 kHz, and features extracted 

using standard MFCC with 19 MEL filter sub-bands ranging from 200 

Hz to 7 kHz. Each MFCC is then encoded into spikes using rank order 

coding (Delorme et al, 2001). One receptive field neuron is used to 

represent each MFCC (19 input receptive fields). A specific background 

model is trained for each speaker model. For the sake of simplicity, the 

following procedure is applied: the background model of a speaker i is 
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trained using the same amount of utterances used to train the speaker 

model. The utterances are randomly chosen from the remaining training 

speakers. For the experiments, the number of neurons in the auditory L1 

neuronal maps for the speaker and background model are defined a 

priori (50 neurons each). The modulation factor for auditory neurons is 

set to 0.9. 

• Integration: The crossmodal parameters according to Equation 5.1 are 

set as: CMAVexc = CMVAexc = 0.1 and CMAVinh =  CMVAinh = 0. Results that 

do not take into account the crossmodal coupling are also presented, i.e., 

CMAVexc = CMVAexc = CMAVinh = CMVAinh = 0, which effectively 

correspond to AND or OR integration. 

 

The system is trained to authenticate 35 persons using six utterances from each 

individual. To train the visual part, only two frames from each individual are used, 

collected when uttering two distinct phrases from the same recording session were 

uttered. 

 

The test uses two phrases (each phrase corresponding to one sample) recorded in 

two different sessions, therefore 35 users x 2 samples = 70 positive claims. Acting as 

impostors, the eight remaining users attempt to deceive each of the 35 users’ models 

with two utterances, which give a total of 560 false claims. 

 

The test is carried out frame-by-frame keeping the time correspondence between 

speech and visual frames. However, to speed up the computational simulations, the 

visual frames are downsampled. Five visual frames per second are used whereas the 

speech samples have a rate of 50 frames per second (Figure 5.10). The downsampling of 

the visual frames does not affect the performance, as for a period lower than 200 ms no 

substantial differences between one facial posture and another can be noticed in the 

VidTimit dataset. 

 

Figure 5.11 shows typical input streams to the SNN-based audiovisual person 

authentication system, where frames of detected faces are sampled at 200 ms (5 

frames/second) and 19 MFCC extracted from the detected speech parts are processed 

every 20 ms (50 frames/second). 
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Fig. 5.10. Frame-based integration of modalities. 

 

 

 
 

Fig. 5.11. Input data streams used on audiovisual person authentication. On the left, frames of faces 

sampled at 200 ms. On the right, 19 coefficients of MFCC features are extracted every 20 ms of speech. 

 

The supramodal layer and the crossmodal coupling are updated when an 

individual modality outputs a spike, which may occur once in every frame (see Section 

5.2.4 which describes the dynamic behaviour of the network). Here, it is assumed that 

the processing time for one frame is the same, regardless of the modality, although it is 

well known that auditory stimuli are processed faster than visual (difference of 

approximately 40 to 60 ms (Stein and Meredith, 1993)). 

 

For the speech mode, the number of opinions to validate a person is set 

proportionally to the size of a given utterance (20% of the total number of frames in an 

utterance is used). For the visual mode, the number of opinions to authenticate a person 

is set to two (two frames). Figure 5.12 shows the best performance obtained on each 
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individual modality. While the best total error (TE) for the face authentication is 21%, 

the auditory authentication is TE ≈ 38% (varying values of L1 PSPTh in the auditory 

system and L3 PSPTh in the visual system). 

 

 
 

 
 

Fig. 5.12. Performance of individual modalities for different values of auditory (L1 PSPTh) and visual 

parameters (L3 PSPTh). Top: auditory system. Bottom: visual system. FAR is the false acceptance rate, 

FRR is the false rejection rate and TE is the total error (FAR + FRR). 

 

Figure 5.13 shows the best performance of the system considering the type of 

integration held in the supramodal layer. First, the crossmodal coupling parameters are 

set to zero, simulating only the OR and AND integration of individual modalities done 

by the supramodal layer. Then, the crossmodal coupling is made active (“Crossmodal 

AND”), setting CMAVexc = CMVAexc = 0.1 and CMAVinh = CMVAinh = 0. The same 

parameters are used for individual modalities in this experiment, i.e., auditory 

parameters (L1 PSPTh) and visual parameters (L3 PSPTh) ranging from [0.5, 0.9] and 
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[0.1, 0.5], respectively. The x-axis represents different combinations of L1 and L3 

PSPTh ordered according to the performance. 

 

 
 

 
 

 
 

 

Fig. 5.13. Performance of the OR and AND integration of modalities with a supramodal layer of spiking 

neurons (upper and middle graphs, respectively). The bottom graph, when excitatory crossmodal 

influences are activated “Crossmodal AND” (for auditory L1 PSPTh and L3 PSPTh ranging from [0.5, 0.9] 

and [0.1, 0.5], respectively). 
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Figure 5.14 shows the potential advantages of the integration module. When the 

system needs to operate with low FAR levels (below 10%), AND and “Crossmodal 

AND” provide lower FRR than any singular modality. When the system is required to 

operate with low FRR (below 10%), OR integration can be used instead, providing 

lower FAR for the same FRR levels. 

 

 
 

Fig. 5.14. Comparison between individual modes (auditory and visual) and the corresponding integration. 

Overall, the integration presents better performance than individual modes. OR, AND, “Crossmodal 

AND” alternate in the best position for different operating points. EER is the equal error rate (where FAR 

= FRR). 

 

In another scenario, the influence of crossmodal connections on the integrated 

system is evaluated. A subset of the VidTimit dataset is used for this purpose. The setup 

for training is composed of six utterances from 10 individuals, whereas 12 individuals 

(10 that participated in the training stage and two completely unknown individuals) are 

used for testing. Each of the 10 individuals has 4 attempts at the test in a total of 40 

positive claims. Acting as impostors, two individuals attempt to authenticate each of the 

10 trained models four times, with a total of 2 x 4 x 10 = 80 impostor attempts (false 

claims). Similar to the previous experiments, the authentication threshold is set 

proportionally to the size of an utterance (20% of the total number of frames needs to 

provide positive opinions) and only two visual frames are necesary to authenticate a 

person based on the face. Figure 5.15, shows the performance of the integrated network 

for different values of crossmodal excitation. From the graph it is not possible to detect 

the best crossmodal parameter values, which means that a range of parameter values can 
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be used with the same result. However, once again is clear that OR integration works 

better for high FAR than any single modality, and AND integration works better for low 

FRR than any single modality. 

 

 
 

Fig. 5.15. Performance of the network for different values of crossmodal excitation. There is a range of 

values of crossmodal influence for which the model gives similar performance, however, for all values, 

the integration presents better performance than individual modes and ANDs and OR configuration 

alternate as the best choices for different operating points. 

 

5.2.6 Implementation considerations 

The integrative system, i.e., the supramodal layer and crossmodal connections, is 

implemented in C# language with a mix of event and clock-driven technique (see 

Section 3.6). The SNNs architecture for visual modality is implemented in C++ as 

explained in Section 3.6 and the auditory system in C# (Section 4.3.7). 

 

Figure 5.16 illustrates a common usage of the audiovisual system for pattern 

recognition. A claimant presents its identification details (e.g., name). On the top left 

side of the user interface the claimed identification details as well as the data recorded 

during the training phase related to the claimed identity is shown. Multiple frames of the 

claimant’s face are then recorded when the claimant utters a certain sentence (top right 

side of the user interface). After running the authentication procedure, the result is 

displayed according to different criteria (single or multimodalities). In Figure 5.16 the 

claimant is correctly authenticated whereas in Figure 5.17 one example where an 
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individual tries to authenticate with a false identity (false claimant) can be seen. This is 

promptly detected by the system. 

 

 
 

Fig. 5.16. Example of correctly authenticated individual. 

 

 
 

Fig. 5.17. Example of successful detection of an impostor. 

 

5.3 Chapter conclusion 

This chapter covered the integration of modalities for the purpose of audiovisual pattern 

recognition. Of particular interest was the compilation of biological findings that inspire 

the proposal of models to explain the way brains effectively process and integrate 

different sensory information. Through an evaluation of several models and theories 
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describing brain activity, the focus is given to the understanding of two properties that 

can be useful in enhancing artificial pattern recognition tasks, in particular: 

• the supramodal area, and; 

• crossmodal connections between modalities. 

  

The second part of the chapter describes a new simple way to integrate 

modalities using fast spiking neurons (See also (Wysoski et al, 2007)). In the new 

system, each individual modality utilizes specialized adaptive SNNs, the same as 

presented in detail in Section 3.5 (visual) and Section 4.3.3 (auditory). The integration is 

done in a supramodal layer composed of multisensory neurons. In addition, one 

modality can influence another using a crossmodal mechanism. 

  

The model also enables the strength of crossmodal connections to be set 

individually for each pair of single modes. In biology, audiovisual crossmodal learning 

has been experimentally observed in (McIntosh et al, 1998). In their experiments, after a 

training session with visual and auditory stimuli, when auditory stimuli alone were 

presented, areas of the visual cortex were also activated. In (Gonzalo et al, 2000) the 

areas of neuronal changes (time-dependent plasticity) that may be related to the 

crossmodal operations are further investigated. However, there was no attempt to 

quantify or to define the rules for neuronal changes. In this respect, new neuronal 

models for exploring the mechanisms that govern such activities can underpin new 

discoveries. In the model proposed in this chapter, a proper training procedure for 

crossmodal connections can be explored and evaluated. 

 

The new model has several aspects that require further development, namely: 

a) the model cannot take into account some biological behaviours detected by 

psychological experiments, e.g., cannot cover familiarity decisions, semantic 

information, identity priming, and within and across domain semantic priming (Burton 

et al, 1990) (Ellis et al, 1987) (Ellis et al, 1997). 

b) with respect to the implementation, the use of frames and the respective 

frame-by-frame synchronization seems to be very artificial, truncating the natural flow 

of information. In addition, at this stage, the difference in processing time in each 

modality (Stein and Meredith, 1993) is ignored. 
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c) the model can not emulate the mechanism that facilitates unimodal 

recognition when the training is done with more than one modality, behaviour which 

has been described in (Kriegstein and Giraud, 2006). 

 

Under the pattern recognition perspective, the network was tested on the person 

authentication problem. Experiments clearly showed that the integration of modes 

enhances the performance in several operating points of the system when the learning is 

done with the same training examples. For a comparative analysis, in (Sanderson and 

Paliwal, 2002), the integration of modalities is explored with the VidTimit dataset using 

a combination of mathematical and statistical methods. The auditory system alone, 

using MFCC features and GMM in a noise-free setup, reached TE (total error) = FAR 

(false acceptance rate) + FRR (false rejection rate) ≈ 22%. The visual system is reported 

to have TE ≈ 8% with features extracted using PCA (principal component analysis) and 

SVM (support vector machine) for classification. After testing several adaptive and non 

adaptive systems to perform integration, the best performance is obtained with a new 

approach that builds the decision boundaries for integration with consideration of how 

the distribution of opinions are likely to change under noisy conditions. The accuracy 

with the integration reached TE ≈ 6% involving 35 users for training and 8 users acting 

as impostors. Despite some differences between the experimental setup when compared 

to (Sanderson and Paliwal, 2002), the results shown in Figure 5.14 are clearly not as 

good. Nonetheless, to extract the best performance from the system and evaluate the 

crossmodal influence specifically on the pattern discrimination ability, an optimization 

mechanism needs to be incorporated. Similarly important is to explore different 

information coding schemes. 

 

As pointed out in (Wysoski et al, 2008) and in Chapter 3 and Chapter 4, one of 

the promising properties of the computation with spiking neurons is that it enables the 

multi-criteria optimization of parameters according to accuracy, speed and energy 

efficiency. Since the integration is also based on spiking neurons, the optimization can 

be extended to cover the parameters used on integration as well (supramodal layer and 

crossmodal connection parameters). 

 

Table 5.1 describes the integrative system in respect to the three specific aspects 

of Brain-like ECOS proposed in Section 2.3.3, namely information processing units, 

information processing pathways and learning ability. 
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Table 5.1. Analysis of integrative system according to three specific aspects of Brain-like ECOS. 

Processing Units Spiking neurons are used as processing units in the individual and 

integrative information processing areas. 

Structure The information of individual sensory modalities propagates with 

feed-forward connections into multiple layers composed of spiking 

neurons, representing the behaviour of various auditory and visual 

areas. Crossmodal connections and a supramodal layer integrate the 

systems (See Figure 5.8). 

Learning Online evolving procedures enable the learning of external stimuli 

through synaptic plasticity and structural adaptation separately for 

each modality. Algorithms to train the strength of crossmodal 

connections and weights of the supramodal layer still need to be 

designed. 

 

Since the integrated system is composed of the unimodal systems described in 

Section 3.5 and Section 4.3.3, the improvements suggested in the end of the respective 

chapters are also valid here and will not be mentioned again. The following paragraphs 

mainly focus on the integrative properties that can be further evaluated. 

 

The supramodal layer, as a first step, is implemented in this work with only two 

neurons. Two neurons were demonstrated to be sufficient to integrate incoming 

information from different modalities and to provide the system with complex dynamics 

that are difficult to evaluate analytically. In the simplest scenario, OR and AND 

integration has been simulated. Although a single neuronal unit can be interpreted as 

representing an entire ensemble of neurons, a more realistic implementation could be 

considered. 

 

The underlying mechanisms that rule crossmodal activities remain the subject of 

further inquiry. The optimization of such connections and/or how to perform 

crossmodal learning is still an open field (a good introduction can be found in (Gonzalo 

et al, 2000) (McIntosh et al, 1998)). The experiments presented earlier in this chapter 

only illustrate as a proof-of-concept how the crossmodal connections can be set up in a 

network of spiking neurons. Further evaluation, such as sensitivity analysis with respect 

to different performance criteria, and exploration of the best values of crossmodal 

influence (excitatory and inhibitory) still deserve special attention. 
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Chapter 6 - Conclusion and future directions 

 

In this final chapter, the main achievements of the research are summarised and the 

individual topics covered throughout the dissertation are related to the main objectives 

of the research. Several directions for future work are also discussed that would improve 

the performance and biological relevance of the research. Scalability and expansion to 

other sensory modalities as well as prospects for the design and its portability to lower 

level hardware platforms are also briefly covered. 

 

The chapter is organized as follows: first, the main achievements of this 

dissertation are summarized from three perspectives: in terms of basic information 

processing units, information processing areas (inter and intra modality pathways), and 

system adaptability (learning rules). The section closes stressing the original 

contributions of this work and giving a summary of the experimental results. In a 

separate section other coding schemes that can be analysed in future extensions of this 

model are discussed. Several scalability aspects of the system are followed by a brief 

description of the olfactory and gustatory modalities, which are two natural choices for 

further testing the unimodal and integrative biological methods of processing. The 

dissertation closes with hardware implementation considerations and possible 

commercial applications of computational systems based on spiking neurons. 

 

6.1 Introduction 

A good number of systems have used the terms biologically realistic or brain-like to 

define a new generation of neural networks that try to process information in a way 

similar to the human brain. The main motivation for using brain-like systems is that 

artificial information processing systems, despite enormous effort, are still struggling to 

deliver general and reliable systems. Each application requires a uniquely tailored 

artificial system whereas the human brain effortlessly processes information, integrates 

sensory modalities, controls motor activities while taking care of vital involuntary 

functions using only a few kJoules of energy per hour. 

 

Brain-like artificial information processing systems started to appear in attempts 

to reproduce the information pathways executed by the brain. The first attempts were 
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mainly for the visual and auditory systems, perhaps because of the strong appeal for 

neuroscience and industrial applications. Historically, the visual and auditory systems 

have been the most studied of the sensory systems. This has resulted in a huge 

repository of information about visual and auditory sensory receptors and the pathways 

undertaken by the corresponding information. On the other hand, there is a strong 

industrial interest in more intelligent visual and acoustic computer systems in a wide 

variety of sectors dominated by giant conglomerates with huge budgets, e.g., car 

manufacturing, aerospace, medicine. 

 

In (Fukushima and Miyake, 1982) (Mel, 1998) (Riesenhuber and Poggio, 1999) 

is described some models of visual system for the purpose of pattern recognition, which 

reused the Hubel and Wiesel model (Hubel and Wiesel, 1952) of the primary visual 

cortex with contrast, directionally selective and complex cells placed in an hierarchical 

pathway. Examples of auditory models can be found in (Ghitza, 1988) (Shamma et al, 

1986). 

 

Also under the biologically realistic label, many approaches showed how 

artificial systems could adapt and evolve in a intelligent and autonomous way. In this 

direction, networks of processing units learn what is the best structural configuration 

based on a few soft constraints and self-growing/shrinking procedures (see (Gallant, 

1995) and (Kasabov, 2007) for extensive reviews on adaptive methods and procedures). 

 

Thus, up to this point, there are brain-like models of network structures and 

brain-like ways to perform network connectivity and reconfiguration. Recently another 

factor has added to the momentum. The fact that neurons exchange information using 

spikes and processing mechanisms use action potentials is another addition to the 

biologically realistic realm (Hopfield, 1995). In (Gerstner and Kistler, 2002) this 

concept is properly clarified, stating that, in order to avoid any prior assumptions on 

neural computation, neurons need to process at the level of action potentials. Thus, 

spiking neurons and spiking neural networks (SNNs), historically used as a tool for 

neuroscientists to study the dynamics of single or ensembles of neuronal units, emerged 

as a new generation of neural network models for pattern recognition. 

 

This dissertation unifies in a single pattern recognition system these three brain-

like aspects. As a result, it presents an integrated system with biologically inspired 
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processing units arranged in biologically inspired pathways under biologically 

inspired adaptive rules. From these viewpoints, the main achievements of this 

dissertation are highlighted. 

 

6.2 Summary of achievements 

In a nutshell, in this work an integrated biologically inspired audiovisual pattern 

recognition system was designed and implemented. The system was applied to the 

person authentication problem. The main achievements of this work, classified 

according to information processing units, pathways and adaptive rules, are described in 

the next sections and summarized in Table 6.1. 

 

Table 6.1 Summary of achievements. 

Biologically inspired 

processing units 

• Spiking neurons have been used throughout the system. SNN 

enables a more natural integration of feature extraction, 

decision-making and multiple modalities, where the processing 

time has meaning. 

Biologically inspired 

pathways 

• Major processing areas of the visual and auditory system 

have been implemented in a simplified manner with feed-

forward connections. 

• New spike-based integration of modalities. Supramodal layer 

and crossmodal connections. 

Biologically inspired 

adaptive rules 

• Online learning through structural adaptation and synaptic 

plasticity. 

Performance 

• On the person authentication problem, individual systems 

(audio and visual) as well as the integrated approach 

(audiovisual) achieved similar results when compared to 

traditional methods. 

 

6.2.1 Biologically inspired processing units 

Striving to be closer to the biological way of processing, this work integrated several 

stages of information processing with a single type of processing unit. From the lower 
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levels of sensory processing to the higher levels of cognition, a simple model of spiking 

neurons was used. 

 

Additional to the biological appeal, SNNs enable a close integration of feature 

extraction and decision-making modules as well as the integration of multiple 

modalities. This close integration is mainly possible because the processing time has a 

meaning in spiking neuron systems. In other words, with spiking neurons, the time a 

spike takes to travel from one neuron to another can be explicitly set up. The generation 

of postsynaptic potential also occurs in time, set up through the excitatory/inhibitory 

time constants of a neuron (τ). These values can be set in accordance with biological 

measurements. Having the processing time of single units and the time spent in 

communication between units, the time taken by an area for processing can also be 

defined. This process can ultimately lead towards the simulation of an entire pathway 

where the information flows in a relevant time scale. 

 

The implication of achieving information processing where the time matters for 

pattern recognition is that it breaks the existing hard separation between feature 

extraction and classification. Features are propagated as soon as they are processed and 

they can arrive at different times in areas where classification is undertaken. Similarly, 

processing time in different modalities vary. Thus, the individual modalities 

asynchronously feed a global decision-making process. Computation with real 

processing time also enables the implementation of crossmodal connections between 

modalities, where one modality can influence others according to its partial opinions in 

time. This phenomena can effectively increase overall accuracy (as proved to be the 

case in the human brain) or make the decision-making process faster (Stein and 

Meredith, 1993). 

 

Note that, this work only attempts to point towards computing with meaningful 

processing time. However, in order to perform a realistic simulation of information 

processing where the processing time of different areas and pathways are biologically 

coherent, there are still some hurdles to overcome. There is a clear opportunity to use 

more elaborate spiking neuronal models, perhaps even to simulate neurons at the level 

of ionic channels. Further, in this dissertation only one information coding mechanism 

is evaluated (one spike per neuron where the highest importance is given to the first 
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spike to arrive). An extension to this work is the reproduction of more natural patterns 

of spiking activity and other coding schemes. 

 

6.2.2 Biologically inspired pathways 

Neuroscientists have been drawing very accurate and detailed maps of the pathways 

taken by sensory information. In this research, a very simplified version of the major 

levels of processing is implemented. 

 

For the visual system, the functional behaviour of retina cells, directionally 

selective cells and complex cells are implemented with a two-dimensional grid of 

spiking neurons. Only feed-forward connections are used and no adaptation at lower 

levels is applied. 

 

In respect to the auditory speaker recognition process, features extracted from a 

functional model that resembles the characteristics of the human ear (MFCC) are used 

during the design and evaluation of the decision-making process for speech signals. A 

subsequent design using tonotopic organization of the spiking neurons (wavelet-based) 

is proposed that amounts to the entire processing of sound signals being undertaken 

with spiking neurons. 

 

The integration of modalities is also accomplished with spiking neurons. 

Supramodal layers of spiking neurons as well as crossmodal connections were 

implemented. 

 

As the biological pathways are more and more clearly understood, a more 

detailed description of the biological pathways can be incorporated into the model, e.g., 

the addition of redundant pathways, new layers, feedback connections, etc. 

 

6.2.3 Biologically inspired adaptive rules 

Biological systems are capable of life long functional and structural modifications, 

which enable learning of new tasks as well as memorization in an online fashion. 

Learning can occur in a supervised or an unsupervised fashion, such that changes can 

occur during sleep as well as with new external stimuli. 
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This work considers learning through structural adaptation and synaptic 

plasticity upon the event of external stimuli. The system automatically adds new 

classes, when in training mode, or further fine-tunes the training when new samples of a 

class are presented. The procedure is applied to two networks of spiking neurons that 

process visual and auditory information over multiple frames. In both cases, the 

learning procedure demonstrated its suitability, achieving results comparable with 

traditional methods (See Section 6.2.4). 

  

In the future, the learning procedure can be further elaborated to reproduce 

memory consolidation and forgetting. On another front, it is necessary to define 

learning rules for integrative modules as well as a systematic procedures to train 

crossmodal connections. 

 

6.2.4 Experimental results 

In that which is concerned with quantitative analysis, the main highlights of this 

dissertation are: 

1. Visual system. A SNN-based multi-view face authentication system 

demonstrated: 

a) the ability to adaptively learn from multiple frames. More frames for 

training of a class increased the accuracy. A peak in performance is 

reached after five frames. 

b) the ability of the system to accumulate opinions from several frames for 

decision-making. More test frames increased accuracy. The accuracy level 

flattens after five frames. 

2. Auditory system. In the text-independent speaker authentication scenario using 

SNNs, the adaptive learning procedure was used to create speaker codebooks. 

Neuronal maps representing background models were also introduced to achieve 

similarity normalization. Two SNN architectures were proposed, which 

achieved similar levels of performance when compared with a traditional Linear 

Vector Quantization (LVQ) model to authenticate 43 users uttering short-

sentences. 

3. Audiovisual system. A supramodal area as well as crossmodal connections 

were used to process audiovisual features for person authentication. Different 
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configurations of the integrated system clearly outperformed individual 

modalities. 

 

6.2.5 Original contributions 

In this section, the original contributions of this work are highlighted and summarized. 

They are: 

a) Online adaptive learning procedure for SNNs of integrate-and-fire neurons. 

The simple online learning procedure changes network structure and connection 

weights online, as new samples and/or classes are presented. The learning 

procedure is described in detail in Chapter 3 for visual pattern recognition (see 

also (Wysoski et al, 2006) (Wysoski et al, 2006a) (Wysoski et al, 2008), in 

Chapter 4 for auditory data analysis (see also Wysoski et al, 2007a), and in 

Chapter 5 for the integrated audiovisual system. Experiments demonstrated that 

the online procedure achieves comparable results with traditional methods. 

b) Extension of a visual system to perform multi-view pattern recognition. An 

extended version of a visual system model described in (Delorme and Thorpe, 

2001) has been designed and implemented. The main innovations are the 

incorporation of adaptive learning and integration of multiple views for pattern 

recognition (Chapter 3 and Wysoski et al, 2008). Experimental results 

demonstrate that decision-making based on multiple views increases 

performance when compared to single view. 

c) SNNs for processing auditory information. A new network architecture to 

process auditory information using spiking neurons has been designed to 

recognize speakers. In addition to the adaptive learning procedure, the system 

has neuronal maps (representing background models) to normalize similarities. 

A detailed description is found in Chapter 4 and in (Wysoski et al, 2007a). 

Experimental results show that the new system is comparable to traditional 

methods. 

d) Integration of audiovisual information for pattern recognition using SNNs. 

An integrative system combining the auditory and visual systems has been 

designed and implemented. The main novelties are the addition of a supramodal 

layer composed of spiking neurons as well as crossmodal connections linking 

modalities. A complete discussion of the integration can be found in Chapter 5 
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and in (Wysoski et al, 2007). Overall, the integrative system increases 

performance when compared to the single modalities. 

 

6.3 Future directions 

6.3.1 Scalability 

There are several aspects that need to be considered in order to define the scalability of 

a multi-modal pattern recognition system. Particularly important is to evaluate how 

scalable the system is terms of number of training samples, number of classes to be 

authenticated, number of sensory modalities that can be integrated, or even in respect to 

the size or resolution of input patterns. This work concentrates on a detailed behavioural 

analysis of the newly proposed networks with a moderately low number of samples and 

classes. Despite some results clearly indicating that varying low-scale dataset sizes and 

class numbers does not have any significant effect on performance (see Figure 3.22 and 

Figure 3.23) and no theoretical limitation can be found in the learning procedures to 

adjust to new samples and new classes, the behaviour of the system must be analysed in 

large-scale problems, e.g., to authenticate thousands of individuals. 

 

Two sensory modalities (auditory and visual) have been integrated in this work 

with the addition of supramodal layer and crossmodal connections. This approach can 

be extended to accommodate other modalities. The main challenge here is to develop 

procedures to find the optimal influence among modalities. 

 

 In order to reduce the insertion of redundant visual information, the visual 

region of interest was reduced in size. With the same purpose, auditory patterns are 

sampled at 16 kHz and 20 MEL filter banks are spread over the spectral range. These 

parameters were chosen to reach good accuracy and satisfy computational constraints. 

Being it required, the network can be further extended to accommodate larger visual 

region of interest and larger frequency range of auditory signals. Once again, there is no 

theoretical limitation for the network size, however processing speed and resources 

required in conjunction with the effects of the “curse of dimensionality” (Bishop, 2000) 

need to be considered. 
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6.3.2 Information coding methods 

Spiking time theory (in opposition to the spiking rate theory) was used in this work for 

the conceptual design and implementation of algorithms. In particular, a spiking neuron 

model was used that privileges early spikes and a constraint that enabled the occurrence 

of only one spike per neuron (Thorpe, 1990). Based on these assumptions, concrete 

models were implemented and validated. However, as coding schemes utilized by the 

brain are still not clearly understood other spike-based coding mechanisms can be 

evaluated. 

 

A good introduction to the issues related to the encoding of information in 

neuronal activity can be found in (Reece, 2001). A traditional theory, suggests that 

information is transmitted by firing rates (see (Gerstner and Kistler, 2002) (Mazurek 

and Shadlen, 2002)). This theory is gradually proving not to be sufficient, as several 

independent neurophysiological experiments demonstrate the existence of spike-timing 

patterns in both single and in ensembles of neurons. For instance, in (Villa et al, 1999), 

in vivo measurements enabled to the prediction of rat’s behaviour responses through the 

analysis of spatio-temporal patterns of neuronal activity. Izhikevich (Izhikevich, 2006) 

created the term “polychronization” to define the spatio-temporal behaviour of a group 

of neurons that are “time-locked” to each other, a term to distinguish it from 

synchronous, asynchronous or polysynchronous spiking activity behaviour. Abeles, in 

1982 (Abeles, 1982), first launched the term “synfire chains” to describe neuronal maps 

organized in a feed-forward manner with random connections between maps showing 

synchronous activity. This phenomenon has been experimentally verified in a series of 

independent works (See (Abeles and Gat, 2001)) and computational models explored 

the storage and learning capabilities of this theory (e.g., Bienenstock (1995) and (Gutig 

and Sompolinsky, 2006)). From all these theories, it is also reasonable to believe that 

different areas in the brain can utilize different coding schemes. If this is the case, 

combined approaches would be needed to better represent a given information pathway. 

 

6.3.3 Olfactory and gustatory sensory modalities 

Two natural choices for further extending the unimodal and integrative biological 

processing methods are the olfactory and gustatory sensory modalities. 
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Smell, similar to taste, is a chemical sense and does not maintain spatial 

relations with the input receptors. Olfactory discrimination capacity in humans varies 

greatly and can reach 5000 different odorants in trained people. The number of odorant 

receptors can reach 1000. Different to other neurons, olfactory sensory neurons have a 

relatively short life, between 30 to 60 days, then being replaced by newborn cells 

(Kandel, 2000). 

 

In terms of information pathway, chemical stimuli are acquired by millions of 

olfactory sensory neurons. In the olfactory bulb, there is a convergence of sensory 

neurons to units called glomeruli (approximately 25000 to 1), organized in such a way 

that one glomerulus can receive only one type of receptor. Each odorant (smell) is 

recognized using several glomeruli. Glomeruli are not odour specific and a specific 

odour is described by a unique set of glomeruli. Glomeruli can be roughly considered to 

represent the neural image of the odour stimuli (Zigmond, 1999). The information is 

then sent to different parts of the olfactory cortex for odour recognition (Figure 6.1). 

 

 

 

Fig. 6.1. Olfactory System Pathway. Olfactory chemical sensors collect information that is sent to the 

olfactory bulb and consequently to the olfactory cortex for recognition. 

  

Taste, on the other hand, is much less sensitive than smell and humans can 

discriminate only five classes: sweet, sour, salt, bitter, and umami (taste receptor for 

glutamate). Gustatory cells are located in the taste buds (20 cells in each bud) with a 

lifespan of less than 7 days. Usually all buds present some response to all five tastes, to 

different degrees however. Sensitivity changes according to the position of the buds in 

the tongue (Figure 6.2). Thus, recognition of a taste pattern is based on a combination of 

the responses of receptors tuned to the five basic tastes. Despite the mechanism for 

information processing still not being completely known, it is believed that lateral 

inhibition occurs at the receptor level and the map, with a range of tastes, is transferred 

Olfactory sensors 

 
 

 
 Olfactory Cortex 
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to another level of processing. As the information advances along the pathway, the 

neurons become more and more selective to particular tastes. 

 

 

 

Fig. 6.2. Map of tastes on the tongue. 

 

In terms of artificial implementation, artificial olfactory sensors (artificial noses) 

are widely available and include metal oxide sensors, polymer resonating sensors and 

optical bead sensors. There are many models aiming to describe the olfactory 

information pathways, from the oversimplified, in terms of biological plausibility, (e.g., 

White and Kauer, 1999) to the more complex and detailed (e.g. (Mombaerts et al, 

1996)). Valova et al (Valova et al, 2004) provides an example of the use of spiking 

neural networks for the task. 

 

Electronic tongues have been used for several practical applications, e.g., wine 

selection (Legin et al, 2003), water quality measurement (Lindquist and Wide, 2001), 

tea tasting (Iwarsson et al, 2001). An investigation of the use of spiking neural networks 

for taste recognition on two real-world datasets is provided in (Soltic et al, 2008). 

 

As described in (Allen et al, 2002), an artificial system that processes olfactory 

and gustative information needs to have three main properties: the ability to process 

many sensor inputs, the ability to discern a large number of different odours, and handle 

noisy data. These are interesting properties to be tackled on a unimodal evolving 

spiking neural network system as well as with a combination of modalities where 

crossmodal interactions can be further explored. 

 

sweet 

 

salt 

 
salt 

 

sour sour 
bitter 
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6.3.4 Hardware implementation of evolving SNNs 

The spiking model and network used in this dissertation  has been carefully designed to 

consider computational constraints (Delorme and Thorpe, 2001). With a very simple 

processing unit (a simplified version of integrate-and-fire neurons) with a low level of 

activity (one spike per neuron) implemented with an event-based approach, networks of 

millions of neurons can be simulated in standard general purpose processing platforms 

(networks with up to 16 millions neurons in this work). However, as complexity is 

added to neural models, computational resources become bottlenecked, especially with 

the simulation of networks with large numbers of neurons. In this respect spiking 

neurons, in their various forms, are particularly attractive for hardware implementation 

mainly because communication using pulses can be associated with the binary 

properties of digital systems. With the maturation of FPGA (Field Programmable Gate 

Arrays) technology (Altera, 2007) (Xilinx, 2007), which at present can have several 

thousands of hardware logic units easily reconfigurable by software embedded, the 

prospect of implementing SNNs in a much faster way has emerged. 

 

Since the SNN structures are composed mostly of processing units (neurons) 

placed in parallel, to each neuron a specific hardware area can be allocated, which 

results in parallelization at the hardware level. Obviously, hardware resources on FPGA 

are limited and the implementation of large SNNs purely in parallel is generally not 

possible, so finding a balance between speed and resources is required (Maguire et al, 

2007). In (Glackin et al, 2005) an approach to implement large-scale SNNs in a limited 

hardware area is described. The trade-off between speed and resources required was 

reached by multiplexing the hardware model of a neuron in time. Other examples of 

successful implementation of SNN on FPGA include (Glackin et al, 2004) (Maya et al, 

2000) (Ros et al, 2006). 

 

6.3.5 Evolving SNNs for commercial applications 

The new pattern recognition systems and algorithms based on spiking neurons evaluated 

in this dissertation require one additional iteration in the product development cycle. In 

order to reach a commercial scale, three important points need to be tackled. In order of 

design, implementation, and test stages, they are: 
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1) Development of efficient methods for automatic optimization of parameters. 

This will enable parameters to be easily adjusted for different applications and 

environmental conditions. 

2) Optimization of code. After design, the experiments were implemented 

primarily considering code readability and reusability. Even though the 

implementation reached speed levels that enabled the experiments presented in 

this work to run on ordinary platforms, more efficient implementation is required. 

In addition, the algorithms could be wrapped into a comprehensive library with a 

Software Development Kit (SDK) to facilitate developer and end-user access. 

3) Comparison of optimized SNN-based methods with traditional techniques on 

benchmarking datasets. For speaker authentication, for instance, NIST annually 

runs the NIST Speaker Recognition Evaluation (NIST-SRE, 2007) context. In 

these contexts, commercial application providers can test and compare their 

methods. Standard benchmark datasets for face recognition are FERET (Phillips et 

al, 2000) and XM2VTS (XM2VTS, 2007). 

 

SpikeNet (SpikeNet, 2007) is a pioneering commercial product based on spiking 

neural networks for dealing with the visual pattern recognition problems on a range of 

applications. Using the fast type of integrate-and-fire neurons described in Section 

3.3.1, it joins the biological concepts of computation with spikes developed from over 

15 years of research with an efficient software implementation to reach real-time 

commercial requirements. SpikeNet is a good example of the maturation of the spiking 

neurons theory for solving engineering problems, proving that, indeed, spiking networks 

are already useful for real pattern recognition applications. 

 

6.4 Overall conclusion 

This dissertation presented new artificial systems to execute audiovisual pattern 

recognition that applies brain-like principles to the way information is processed. 

Following the research design, conceptual modelling and implementation was carried 

out after an evaluation of the state-of-the-art systems. The new models, as belonging to 

the class of Brain-like ECOS, are analyzed under three proposed perspectives: 

information processing units, information processing pathways, and adaptive learning. 

Experiments validated the applicability of the new models on a person authentication 

task. 
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