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ABSTRACT 
 

This paper describes the extraction of source code metrics from the Jazz repository and the systematic application of data 

mining techniques to identify the most useful of those metrics for predicting the success or failure of an attempt to 

construct a working instance of the software product. Results are presented from a study using the J48 classification 

method used in conjunction with a number of attribute selection strategies applied to a set of source code metrics. These 

strategies involve the investigation of differing slices of code from the version control system and the cross-dataset 

classification of the various significant metrics in an attempt to work around the multicollinearity implicit in the available 

data. The results indicate that only a relatively small number of the available software metrics that have been considered 

have any significance for predicting the outcome of a build. These significant metrics are outlined and implication of the 

results discussed, particularly the relative difficulty of being able to predict failed build attempts. 
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I. INTRODUCTION 

 
In a typical software development project there 

are a wide range of tools used during the actual production 

of the final software artefact, including integrated 

development environments, static analysis tools and 

version control systems to name but a few. Software 

repositories such as source control systems and bug 

tracking databases have become a focus for research 

because they are an additional source of information 

regarding the performance and management of software 

development projects. Mining software repositories [1] is 

emergent research field that attempts to gain a deeper 

understanding of the development process in order to build 

better prediction and recommendation systems.  

Jazz is a technology platform developed by IBM 

for the collaborative development of software products. 

Jazz as an extensible framework that dynamically 

integrates and synchronises people, processes, and assets 

associated with software development projects. Jazz has 

been recognized as offering both opportunities and 

challenges in the area of mining software repositories [2]. 

Jazz integrates the software archive and bug database by 

linking bug reports and source code changes with each 

other through the concept of work items which provides 

much potential in gaining valuable insights into the 

development process of software projects. 

This paper describes an extension of previous 

work [3] to continue to attempt the extraction of rich data 

from the Jazz dataset by utilizing source code metrics as a 

means of directly measuring the impact of code issues on 

build success. The next section provides a brief overview 

of related work. Section 3 discusses the nature of the Jazz 

data repository and metrics available for use in the data 

mining. Section 4 outlines the approach used for mining 

the software repository in Jazz, while results are presented 

in section 5. Finally, the paper concludes with a discussion 

of the limitations of the current work and a plan for 

addressing these issues in future work. 

II. BACKGROUND & RELATED WORK 
 

Jazz offers not only huge opportunities for 

software repository mining but also a number of 

challenges [2]. One of the appealing aspects of Jazz is that 

it provides a very detailed dataset in which all artefacts are 

linked to each other. Much of the work that utilizes Jazz as 

a repository has focused on the impact of team 

communication history, such as whether there is an 

association between team communication and build failure 

[4] or whether it is possible to identify relationships 

among requirements, people and software defects [5]. 

Other work [6] has focused purely on the collaborative 

nature of software development. To date, most of the work 

involving the Jazz dataset has focused on aspects other 

than analysis of the source code contained in the 

repository, with the exception of previously published 

work by the authors [3, 7]. 

Whilst not specifically related to Jazz, there has 

been a number of investigation into the prediction of 

defects from the analysis of source code metrics. Such 

research has generally shown that there is no single code 

or churn metric capable of predicting failures [8, 9, 10], 

though evidence suggests that a combination can be used 

effectively [11]. In previous work [3] source code analysis 

has been conducted on the Jazz project data to perform an 

in-depth analysis of the repository to gain insight into the 

usefulness of software product metrics in predicting 

software build failure. Whilst some successes have been 

achieved in determining the relationship between build 

outcomes and source code [3] there is still a pressing need 

to provide additional clarity to what is a complex problem 

domain. One of the challenges arises from the 

phenomenon of multicollinearity, which is apparent 

because individual metric values and the failure rates for a 

module all tend to be highly correlated with each other 

[12]. 

Buse and Zimmerman [13] suggest that whilst 

software projects can be rated by a range of metrics that 
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describe the complexity, maintainability, readability, 

failure propensity and many other important aspects of 

software development process health, it still continues to 

be risky and unpredictable. In their paradigm of software 

analytics, Buse and Zimmerman suggest that metrics 

themselves need to be utilised to gain insights and as such 

it is necessary to distinguish questions of information 

which some tools already provide (e.g., how many bugs 

are in the bug database?) from questions of insight which 

provide managers with an understanding of a project's 

dynamics (e.g., will the project be delayed?). They 

continue by suggesting that the primary goal of software 

analytics is to help managers move beyond information 

and toward insight, though this requires knowledge of the 

domain coupled with the ability to identify patterns 

involving multiple indicators. This is confirmed by Hassan 

[14] who argues that data from software repositories 

cannot be used to conclude causation instead it can only 

show correlation. There is a need to provide tools and 

approaches that extract meaning from data in software 

repositories to better inform the software development 

process.  

The Jazz data has the potential to provide 

sufficiently rich information to support these goals. 

Previous work has involved the analysis of the software 

product metrics available through Jazz and shown not only 

that there is scope to classify a set of software changes by 

the source code metrics and predict the likely outcomes of 

the build immediately prior to compilation and testing [3]. 

It has also been shown that there is potential to transform 

the timing of a prediction event from the time the code is 

committed to the repository immediately prior to the build 

to an earlier and more useful time [7]. An early prediction 

event provides greater insight into the likely outcomes of a 

build and hence can be used in managing the risk inherent 

in project’s dynamics and hence this research supports the 

goals of the software analytics paradigm. 

 

III. THE JAZZ DATASET 

 

A. Overview of Jazz 

 
The nature of the Jazz framework has been 

detailed in the research literature a number of times [2, 3, 

4, 7] however it is important to restate the concepts 

embedded in the underlying data model to explain the 

approach adopted in this paper.  IBM Jazz is a fully 

integrated software development framework that 

automatically captures software development processes 

and artefacts. The Jazz repository contains real-time 

evidence that allows researchers to gain insights into team 

collaboration and development activities within software 

engineering projects [15]. Figure 1 illustrates that through 

the use of Jazz it is possible to visualize members, work 

items and project team areas.   

 
 

Figure 1: Jazz Repository Structure 

 

Whilst Jazz provides the capability to extract 

social network data and relate such data to the software 

project outcomes, it is the ability to extract different 

baselines of the source code that is utilised in this current 

work. The source code available through the Jazz 

repository is related to work items, with work items being 

included in a given build of the software product. 

The Jazz repository artefacts include work items, 

build items, change sets, source code files, authors and 

comments. A work item is a description of a unit of work, 

which is categorized as a task, enhancement or defect. A 

build item is compiled software to form a working unit. A 

change set is a collection of code changes in a number of 

files. In Jazz a change set is created by one author only 

and relates to one work item. A single work item may 

contain many change sets. Source code files are included 

in change sets and over time can be related to multiple 

change sets.  

Whilst the Jazz repository has been opened up to 

facilitate investigative research [18] there are limitations 

for utilising it to its full capability. Firstly, the repository is 

highly complex and has huge storage requirements for 

tracking software artefacts. Another issue is that the 

repository is often missing data and often misleading 

elements which cannot be removed or identified easily. 

One of the primary causes of this is that the Jazz 

environment has been used within the development of 

itself; therefore many features provided by Jazz were not 

implemented at early stages of the project. As features of 

the framework have been introduced they have added new 

data at that point in time forward only. 

There is a challenge in dealing with such 

inconsistency which may be circumnavigated by utilising 

an approach that delves further down the artifact chain 

than most previous work using Jazz. This work is based on 

the premise that the early software releases were 

functional, so whilst the project “meta-data” may be 

missing details (such as developer comments) the source 

code should represent a stable system that can be analyzed 

to gain insight regarding the project.  
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B. Software Metrics 
 

One of the major advantages of Jazz is that the 

source code, version control, bug tracking and planning 

features are all integrated in a single repository. It has 

been suggested [2] that heuristics that rebuild artefact 

dependencies between disparate version control and bug 

tracking systems (as used by Zimmermann et al. [16]) 

should not be required when using Jazz. The ability to 

directly extract dependencies should raise the accuracy 

and detail level of extracted data sets [2]. With this in 

mind, software metrics have been calculated for source 

code extracted from the Jazz repository in an attempt to 

deal with the sparseness of the data without losing the 

level of detail in the data that should be available. 

Software metrics are used to measure the complexity, 

quality and effort of a software project [17].  

The Jazz repository consists of various types of 

software builds. Included in this study were continuous 

builds (regular user builds), nightly builds (incorporating 

changes from the local site) and integration builds 

(integrating components from remote sites). Source code 

files were extracted for each available build within the 

repository. This was achieved by extracting all of the work 

items included in a given build and subsequently 

extracting all of the changesets associated with the work 

items. These changesets were filtered to remove non-

source code files (e.g. XML files) that were part of the 

changeset. 

Finally, software metrics were calculated by 

utilising the IBM Rational Software Analyzer tool. As a 

result the following basic, object orientated and Halstead 

software metrics were derived from the source code files 

for each build. These are shown in Table 1 along with the 

classification of the metric, either Basic (B), Object 

Oriented (OO) or Halstead (H). The metrics include the 

outcome of the build against which classification will be 

made. The build result is a nominal metric and a build is 

either failed or successful. 

 

Table 1: Available Metrics 
 

ID Metric  Type 
1 Build result Classification 

2 Abstractness OO 

3 Afferent coupling OO 

4 Average block depth OO 

5 Average lines of code per method B 

6 Average number of attributes per class B 

7 Average number of comments B 

8 Average number of constructors per class B 

9 Average number of methods B 

10 Average number of parameters B 

11 Comment/code ratio B 

12 Cyclomatic complexity OO 

13 Depth of inheritance H 

14 Difficulty level H 

15 Efferent coupling OO 

16 Effort to implement H 

17 Instability OO 

18 Lack of cohesion 1 OO 

19 Lack of cohesion 2 OO 

ID Metric  Type 
20 Lack of cohesion 3 OO 

21 Lines of code B 

22 Maintainability index OO 

23 Normalized distance OO 

24 Number of attributes  B 

25 Number of comments  B 

26 Number of constructors B 

27 Number of delivered bugs H 

28 Number of import statements B 

29 Number of interfaces B 

30 Number of lines B 

31 Number of methods B 

32 Number of operands  H 

33 Number of operators H 

34 Number of parameters B 

35 Number of types per package B 

36 Number of unique operands H 

37 Number of unique operators H 

38 Program length H 

39 Program level H 

40 Program vocabulary size H 

41 Program volume H 

42 Time to implement H 

43 Weighted methods per class OO 

 

In addition to software (source code) metrics a 

range of metrics that are unique to the Jazz environment 

are available, however at present this research only 

includes whether the build attempt is successful or 

whether it fails. A failed build is in essence one where the 

end product does not pass all of the test cases or does not 

behave as expected. 
 

IV. EXPERIMENTAL METHOD 
 

This work revolves around the use of 

classification methods for the analysis of software metrics, 

which differs from much of the work in this area that has 

focussed on clustering rather than classification [12]. For 

this purpose, the Weka [19] machine learning workbench 

was used. There are various challenges that arise when 

adopting data mining as a classification approach as 

available data is not always suitable for the mining 

process. Data gained from software development projects 

is often noisy, incomplete or even misleading data. This 

can give rise to negative impacts on the mining and 

learning process [20].  

As has already been discussed, the project data 

that is extracted from Jazz was gathered during the 

development of Jazz. As a consequence features that 

automatically capture project processes did not exist until 

later development stages had been completed. The 

implication of this is that gaps often appear at early stages 

of the project data set. Excluded from the data set were 

build instances that had no work items associated with a 

build, build warning results and builds that had missing 

values within the derived software metrics. 

Software metrics from continuous builds were 

used to construct the data set, however in doing so there 

were more instances of successful builds than failed 

builds. In order to balance the data set failed builds were 

injected from nightly and integration builds. This option 
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was preferred over removing successful builds from the 

data set, thus decreasing the possibility of model over-

fitting. In total, 129 builds were included, out of which 

there were 51 successful builds and 78 failed builds. This 

presents a situation where the number of features is fairly 

close to the number of instances available for analysis, 

which is not an ideal scenario, particularly given the 

multicollinearity that is apparent in the metric values.  

It is therefore important to investigate various 

strategies for reducing the number of metrics used to 

classify the relatively small number of builds in the 

dataset. Previous work [3, 7] has shown that there is a lack 

of consistency in terms of identifying significant metrics. 

In this paper, hybrid strategies for identifying the most 

significant metrics that are based on attempting to classify 

and cross-classify across datasets derived from different 

snapshots (or “slices”) of the available source code are 

investigated. This approach is adopted because previous 

work [7] has shown that using metrics calculated from the 

final commit of the source code prior to the build taking 

place can be used to predict the outcomes of the build 

when applied to the classification of source code prior to 

the development iteration commencing. The work 

presented in this paper is the first attempt to explore why 

such an approach leads to good results and attempt to 

further reduce the number of significant metrics down to 

the smallest possible number.   
 

A. Dataset Representations 
 

In the Jazz dataset a given build consists of a 

number of different work items. Each work item contains 

a changeset that indicates the actual source code files that 

are modified during the implementation of the work item. 

Each build has a corresponding before and after state. 

Initial work involving the extraction and mining of Jazz 

software metrics [3] used the after state to extract source 

code that included all changes in the build. The after state 

was utilised in order to ensure that the source code 

snapshot represented the actual software artefact that 

either failed or succeeded. Subsequent work has shown 

that it is possible to predict the outcome of a build on the 

basis of the before state source code [7]. The best 

classification arose by applying significant metrics 

identified using the metrics derived from the after state 

applied to the before state classification. The reason for 

this remains to be determined and in this work attempt to 

systematically explore the use of the metrics derived from 

after and before states as well as the difference between 

them and determine whether cross-dataset classification 

can lead to further insight. Cross-dataset classification is 

defined as the use of significant metrics determined from 

one dataset being used to classify the contents of a 

different dataset.  

Source code metrics are calculated for each 

source code file in the changeset using the IBM Software 

Analyser tool. Previous work [3] has investigated different 

ways of characterising the changeset using a single metric 

value to represent all source code files in the changeset. 

This showed that the most reliable approach was to 

calculate the value for each metric for each source code 

file and then propagate the maximum determined value up 

to the build level. This approach is adopted in the current 

work. 

 

B. Experiment Descriptions 
 

The goal of the experimentation is to determine 

which software metrics give the best indicators of whether 

the build will be successful or will fail. The experiments 

systematically filter the available metrics using a variety 

of methods to simplify the problem space and determine 

the best classification outcomes. This is necessary as 

previous work [3] has determined that the ratio of metrics 

(42) to build instances (129) creates a complex 

classification scenario due to the multicollinearity of the 

metric values. 

The methods used to filter the metrics used are 

shown in Table 2 and are limited to feature selection 

approaches available in Weka. Each involves selecting a 

relatively small number of the available software metrics 

and comparing them to the baseline classification where 

no filtering of the metrics is done. 

 

Table 2: Metric Filtering Strategies 
 

ID Strategy 
1 No filtering 

2 Weka Feature Selection (CfsSubset) 

3 Weka Feature Selection (Infogain) 

 

In the first instance, each strategy is applied to 

the four distinct datasets that have been derived from the 

source code. The first two datasets correspond to metrics 

calculated from the before state and the after state of the 

builds. The third dataset is calculated by subtracting the 

values of the before state metrics from the value of the 

after state metrics. This dataset represents the degree of 

change to the source code that occurs during a 

development iteration leading to a build. The final dataset 

results from combining the before and after datasets into a 

larger dataset. 

It has been noted in previous work [7] that 

applying the significant metrics determined from 

analysing one state to the classification of build outcome 

of another state can lead to improved classification. In 

particular, using significant metrics from the after state 

improves the ability to predict build outcomes on the 

before state source code. As a result, this work extends 

this Cross-dataset classification and applies significant 

metrics identified from each state to all other states.  

 

V. RESULTS 
 

For each of the experiments a metric filtering 

strategy is applied and then the J48 classification 

algorithm is used to attempt to discover common patterns 

amongst the selected metrics. Given the relatively small 
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size of the data, 10-fold cross validation is used in order to 

make the best use of the training data. Cross validation 

does result in a relatively optimistic outcome which is a 

limitation that will be addressed in future work when more 

data becomes available from the Jazz project. 

 

A. Classification Results: Before State  
 

The results of applying the filtering strategies 

from Table 2 to the metrics calculated from the before 

state source code are shown in Table 3. It can be seen that 

the Infogain method has identified a great number of 

significant metrics, which is to be expected as the 

CfsSubset method looks for inter-relationships between 

metrics to identify significant associations. 

 

Table 3: Selected Metrics 
 

ID Selected Metrics 
1 N/A 

2 4,5,6,11,18,22,36,39 

3 30,11,18,4,22,6,40,36,23,39,37,20,34,25,5,12,35,24 

  

Table 4 shows the results of the classification for 

applying the selected metrics to the classification of the 

before state source code. The overall accuracy is given in 

each case along with the number of correctly (and 

incorrectly) classified builds. The bracketed values refer to 

the number falsely predicted to be either failures (in the 

case of the “Failed Builds” column) or successes (in the 

case of the “Successful Builds”) column.  

 

Table 4: Classification Results 
 

ID Accuracy # Failed Builds 

Correct (Incorrect) 

# Successful Builds 

Correct (Incorrect) 
1 67.4419% 22 (29) 65 (13) 

2 72.8682% 25 (26) 69 (9) 

3 68.9922% 22 (29) 67 (11) 

 

These results are a subset of those presented in 

previous work [7] and indicate that the prediction of failed 

builds is generally more challenging than the classification 

of successful builds. As with previous work the overall 

accuracy of the prediction is hovering around the 70% 

value, however using the significant metrics determined 

from the before state on the before state data tends to 

produce poorer classification of failures. Figure 2 

illustrates the best classification tree achieved as a result 

of these experiments (ID: 2). 

 

 

 

 
 

Figure 2: Classification Tree: Before State 
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B. Classification Results: After State  
 

The results of applying the filtering strategies 

from Table 2 to the metrics calculated from the after state 

source code are shown in Table 5. As with the before 

state, it can be seen that the Infogain method has identified 

a great number of significant metrics. 

 

Table 5: Selected Metrics 
 

ID Selected Metrics 
1 N/A 

2 4,6,11,18,19,25,28,35,37 

3 11,6,4,28,37,36,40,25,19,18,24,34,35,20,13 

  

Table 6 shows the accuracy of the classification 

for each dataset with the features selected using the each 

metric selection strategy. The overall accuracy is given in 

each case along with the number of correctly (and 

incorrectly) classified builds. The bracketed values refer to 

the number falsely predicted to be either failures (in the 

case of the “Failed Builds” column) or successes (in the 

case of the “Successful Builds”) column.  

 

Table 6: Classification Results 
 

ID Accuracy # Failed Builds 

Correct (Incorrect) 

# Successful Builds 

Correct (Incorrect) 
1 75.1938% 36 (15) 61 (17) 

2 75.9690% 27 (24) 71 (7) 

3 77.5194% 33 (18) 67 (11) 

 

These results are a subset of those presented in 

previous work [3], however differ from those previously 

published. This is due to a change in data extraction from 

the Jazz repository. The data extraction approach As with 

the results shown in Table 4 there is clearly more 

difficulty in identifying failed builds, though the outcome 

of applying the after state significant metrics to the after 

state data results in slightly higher overall accuracy and an 

improvement in identifying failed builds over the use of 

before state metrics to the before state data. 

Figure 3 illustrates the best classification tree 

achieved as a result of these experiments (ID: 3) based on 

the overall accuracy. 

 

 

 
 

Figure 3: Classification Tree: After State 
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C. Classification Results: Difference  
 

The results of applying the filtering strategies 

from Table 2 to the calculated difference in metric values 

between the after and before states are shown in Table 7. 

As with the before state, it can be seen that the Infogain 

method has identified a great number of significant 

metrics. 

 

Table 7: Selected Metrics 
 

ID Selected Metrics 

1 N/A 

2 4,6,7,18,21,22,23,39 

3 4,22,23,42,21,32,38,39,7,33,18,6,10 

  

Table 8 shows the accuracy of the classification 

for each dataset with the features selected using the each 

metric selection strategy. The overall accuracy is given in 

each case along with the number of correctly (and 

incorrectly) classified builds. The bracketed values refer to 

the number falsely predicted to be either failures (in the 

case of the “Failed Builds” column) or successes (in the 

case of the “Successful Builds”) column.  

 

Table 8: Classification Results 
 

ID Accuracy # Failed Builds 

Correct (Incorrect) 

# Successful Builds 

Correct (Incorrect) 

1 73.6434% 34 (17) 61 (17) 

2 66.6667% 21 (30) 65 (13) 

3 71.3178% 30 (21) 62 (16) 

 

The best accuracy is obtained with no feature 

selection. This differs from the previous results in Tables 4 

and 6. This is perhaps an indication that inspecting the 

change in metric values is reducing the extent to which 

significance can be identified. This is borne out to some 

extent by the classification tree show in Figure 4 which 

illustrates the best classification tree achieved as a result 

of these experiments (ID: 3). The classification tree is 

somewhat more complex than those shown in Figure 2 and 

3 which implies that a clear classification is not possible 

for this data. 

 

 
 

 

Figure 4: Classification Tree: Difference 
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D. Classification Results: Combined 

Dataset  
 

The results of applying the filtering strategies 

from Table 2 to the dataset that combines the before and 

after state data. It can be seen that the Infogain method has 

identified a great number of significant metrics, which is 

to be expected as the CfsSubset method looks for inter-

relationships between metrics to identify significant 

associations. 

 

Table 4: Selected Metrics 
 

ID Selected Metrics 

1 N/A 

2 4,5,6,9,10,11,13,18,21,22,25,34,35,36,37 

3 6,18,9,8,10,34,11,36,40,37,25,3,28,13,4,24,35,5,22,

23,20,21,7,19 

  

Table 4 shows the results of the classification for 

applying the selected metrics to the classification of the 

before state source code. The overall accuracy is given in 

each case along with the number of correctly (and 

incorrectly) classified builds. The bracketed values refer to 

the number falsely predicted to be either failures (in the 

case of the “Failed Builds” column) or successes (in the 

case of the “Successful Builds”) column.  

 

Table 4: Classification Results 
 

ID Accuracy # Failed Builds 

Correct 

(Incorrect) 

# Successful 

Builds 

Correct 

(Incorrect) 

1 79.0698% 71 (31) 133 (23) 

2 82.1705% 74 (28) 138 (18) 

3 79.0698% 69 (33) 135 (21) 

 

Increasing the size of the dataset has slightly 

improved the overall accuracy and has improved the 

ability to identify failed builds.   

Figure 5 illustrates the best classification tree 

achieved as a result of these experiments (ID: 2) based on 

the overall accuracy. It is interesting to note that a total of 

53 failed builds are correctly classified on the basis of just 

three metrics, namely: Comment-Code Ratio, Average 

Number of Attributes per Class and Number of 

Comments. This differs from the previous classification 

outcomes where the upper nodes in the classification tree 

tend to classify successful rather than failed builds. 

 

 
 

Figure 5: Classification Tree: Combined Data 

 

 



                         Volume 1 No. 5, AUGUST 2011                                                                                                                                   ISSN 2222-9833 

ARPN Journal of Systems and Software 

                                                                                           ©2010-11 AJSS Journal. All rights reserved                                     

 
http://www.scientific-journals.org 

 

 202 

E. Cross-Dataset Classification Results  
 

It has been noted in previous work [7] that 

applying significant metrics from the after state to the 

before state data resulted in an improved classification of 

failure. Whilst it is possible that there is some data-

interaction that predisposes this approach to over-fitting of 

the data, it is an interesting concept that needs further 

study. 

In this paper the goal is conduct an initial 

investigation into the impact of cross-dataset 

classification. Hence the final results presented investigate 

the outcome of classifying the different datasets using 

metrics that are deemed significant for other datasets. The 

exception is that the difference between before and after 

states did not result in any significant metrics being 

identified. 

 

Table 9: Experiment 
 

ID Cross-Dataset Classification 
1 Applying best after state metrics to before state data 

2 Applying best after state metrics to difference data 

3 Applying best after state metrics to combined data 

4 Applying best before state metrics to after state data 

5 Applying best before state metrics to difference data 

6 Applying best before state metrics to combined data 

7 Applying best combined metrics to after state data 

8 Applying best combined metrics to before data 

9 Applying best combined metrics to difference data 

  

Table 10 shows the results of the cross-dataset 

classification for each dataset with the features selected 

from other datasets. The overall accuracy is given in each 

case along with the number of correctly (and incorrectly) 

classified builds. The bracketed values refer to the number 

falsely predicted to be either failures (in the case of the 

“Failed Builds” column) or successes (in the case of the 

“Successful Builds”) column.  

 

Table 10: Cross-Dataset Classification Results 
 

ID Accuracy # Failed Builds 

Correct (Incorrect) 

# Successful Builds 

Correct (Incorrect) 
1 79.8450% 38 (13) 65 (13) 

2 77.5194% 34 (17) 66 (12) 

3 79.8450% 72 (30) 134 (22) 

4 79.8450% 27 (24) 76 (2) 

5 76.7442% 31 (20) 68 (10) 

6 75.1938% 50 (52) 144 (12) 

7 71.3178% 29 (22) 63 (15) 

8 80.6202% 34 (17) 70 (8) 

9 75.9690% 34 (17) 64 (14) 

 

The highest overall accuracy is just over 80%, 

however the greatest successful classification of failed 

builds is associated with experiment 1. This has a very 

small reduction in overall accuracy and as such would be 

considered the best results achieved. 

It is interesting to note that again applying 

significant metrics from the after state data to the before 

state data has produced the best classification. Not only is 

experiment 1 the best classification in these cross-dataset 

classification but it also improves on the classification 

results presented in the previous sections. 

Figure 6 illustrates the best classification tree 

achieved as a result of these experiments (ID: 1) based on 

the ability to correctly classify the highest number of 

failed builds. As with Figure 5, the classification tree has a 

high number of correctly classified failed builds in the 

upper nodes of the tree. Given the acknowledged difficulty 

in identifying failed builds this characteristic may be most 

desirable for the classification tree. 

The overall classification has not yet met the 

accuracy and ability to classify failures determined in 

previous work [7]. However the results presented here 

have provided some insight into the potential value offered 

by cross-dataset classification. 

 
 

Figure 6: Classification Tree: Cross-Dataset Classification (After/Before) 
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VI. LIMITATIONS & FURTHER WORK 
 

Most of the limitations in the current study are 

products of the relatively small sample size of build data 

from the Jazz project combined with the sparseness of 

the data itself. For example, the ratio of metrics (42) to 

builds (129) is such that it is difficult to truly identify 

significant metrics. Whilst various strategies for 

reducing the number of metrics used in the classification 

have been investigated, this does not address the 

fundamental problem that the dataset is very small. Even 

combining datasets from the before and after states to 

double the size of the data has not significantly impact 

the quality of the classification. 

Whilst a new release of the Jazz repository is 

pending, in the meantime the main thrust of future work 

is to further expand the build data to improve the degree 

of granularity and potentially improve the quality of the 

classification.  

Therefore another key aspect for further study is 

to investigate why using significant metrics calculated 

from source code at the end of a development cycle are 

better at predicting failure when applied to the code at 

the beginning of the build cycle. Some evidence exists in 

the literature that may explain this phenomenon. 

Kitcheham [21] has observed that “Code metrics 

extracted at a specific point in time are unlikely to 

predict fault rates well in evolving system” and also that 

“Code change metrics are likely to predict fault rates in 

an evolving system better than simple snap-shot based 

metrics”. Examining the degree of change in metric 

values hasn’t resulted in a significant improvement in 

classification accuracy in this paper, though this may be 

due to the relatively small size of the dataset. 

It is possible that the use of after state metrics 

to predict the outcome of a build based on the before 

state source is a process of examining source code for 

the potential of failure. Therefore future work will be 

based around the idea of simulating the emergence of the 

existing data and whether the analysis of completed 

builds can be used to predict the outcome of the next 

build. By simulating the development process as a time 

series it may be possible to investigate whether there is 

the potential to learn from past erroneous builds to 

further improve early prediction of failure in future 

builds. 

 

VII. CONCLUSIONS 
 

This paper presents the outcomes of a study 

exploring the value of cross-dataset classification to 

predict build success and/or failure for a software 

product by utilizing source code metrics. Prediction 

accuracies of up to 82% have been achieved through the 

use of the J48 classification algorithm combined with 

10-fold cross validation. The results presented confirm 

that there is value in using the metrics derived from 

different slices of source code in the early prediction of 

build outcome. The strategy of using metrics associated 

with the after state of the build to classify the before 

state source code may in some way be overfitting the 

data to the classification strategy and further work is 

needed to fully validate this approach. 
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