
 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 194

Mining Software Metrics from the Jazz Repository

Andy M. Connor
Software Engineering Research Lab, Auckland University of Technology, Auckland, New Zealand

andrew.connor@aut.ac.nz

ABSTRACT

This paper describes the extraction of source code metrics from the Jazz repository and the systematic application of data

mining techniques to identify the most useful of those metrics for predicting the success or failure of an attempt to

construct a working instance of the software product. Results are presented from a study using the J48 classification

method used in conjunction with a number of attribute selection strategies applied to a set of source code metrics. These

strategies involve the investigation of differing slices of code from the version control system and the cross-dataset

classification of the various significant metrics in an attempt to work around the multicollinearity implicit in the available

data. The results indicate that only a relatively small number of the available software metrics that have been considered

have any significance for predicting the outcome of a build. These significant metrics are outlined and implication of the

results discussed, particularly the relative difficulty of being able to predict failed build attempts.

Keywords: Data Mining, Jazz, Software Metrics, Software Repositories

I. INTRODUCTION

In a typical software development project there

are a wide range of tools used during the actual production

of the final software artefact, including integrated

development environments, static analysis tools and

version control systems to name but a few. Software

repositories such as source control systems and bug

tracking databases have become a focus for research

because they are an additional source of information

regarding the performance and management of software

development projects. Mining software repositories [1] is

emergent research field that attempts to gain a deeper

understanding of the development process in order to build

better prediction and recommendation systems.

Jazz is a technology platform developed by IBM

for the collaborative development of software products.

Jazz as an extensible framework that dynamically

integrates and synchronises people, processes, and assets

associated with software development projects. Jazz has

been recognized as offering both opportunities and

challenges in the area of mining software repositories [2].

Jazz integrates the software archive and bug database by

linking bug reports and source code changes with each

other through the concept of work items which provides

much potential in gaining valuable insights into the

development process of software projects.

This paper describes an extension of previous

work [3] to continue to attempt the extraction of rich data

from the Jazz dataset by utilizing source code metrics as a

means of directly measuring the impact of code issues on

build success. The next section provides a brief overview

of related work. Section 3 discusses the nature of the Jazz

data repository and metrics available for use in the data

mining. Section 4 outlines the approach used for mining

the software repository in Jazz, while results are presented

in section 5. Finally, the paper concludes with a discussion

of the limitations of the current work and a plan for

addressing these issues in future work.

II. BACKGROUND & RELATED WORK

Jazz offers not only huge opportunities for

software repository mining but also a number of

challenges [2]. One of the appealing aspects of Jazz is that

it provides a very detailed dataset in which all artefacts are

linked to each other. Much of the work that utilizes Jazz as

a repository has focused on the impact of team

communication history, such as whether there is an

association between team communication and build failure

[4] or whether it is possible to identify relationships

among requirements, people and software defects [5].

Other work [6] has focused purely on the collaborative

nature of software development. To date, most of the work

involving the Jazz dataset has focused on aspects other

than analysis of the source code contained in the

repository, with the exception of previously published

work by the authors [3, 7].

Whilst not specifically related to Jazz, there has

been a number of investigation into the prediction of

defects from the analysis of source code metrics. Such

research has generally shown that there is no single code

or churn metric capable of predicting failures [8, 9, 10],

though evidence suggests that a combination can be used

effectively [11]. In previous work [3] source code analysis

has been conducted on the Jazz project data to perform an

in-depth analysis of the repository to gain insight into the

usefulness of software product metrics in predicting

software build failure. Whilst some successes have been

achieved in determining the relationship between build

outcomes and source code [3] there is still a pressing need

to provide additional clarity to what is a complex problem

domain. One of the challenges arises from the

phenomenon of multicollinearity, which is apparent

because individual metric values and the failure rates for a

module all tend to be highly correlated with each other

[12].

Buse and Zimmerman [13] suggest that whilst

software projects can be rated by a range of metrics that

mailto:andrew.connor@aut.ac.nz

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 195

describe the complexity, maintainability, readability,

failure propensity and many other important aspects of

software development process health, it still continues to

be risky and unpredictable. In their paradigm of software

analytics, Buse and Zimmerman suggest that metrics

themselves need to be utilised to gain insights and as such

it is necessary to distinguish questions of information

which some tools already provide (e.g., how many bugs

are in the bug database?) from questions of insight which

provide managers with an understanding of a project's

dynamics (e.g., will the project be delayed?). They

continue by suggesting that the primary goal of software

analytics is to help managers move beyond information

and toward insight, though this requires knowledge of the

domain coupled with the ability to identify patterns

involving multiple indicators. This is confirmed by Hassan

[14] who argues that data from software repositories

cannot be used to conclude causation instead it can only

show correlation. There is a need to provide tools and

approaches that extract meaning from data in software

repositories to better inform the software development

process.

The Jazz data has the potential to provide

sufficiently rich information to support these goals.

Previous work has involved the analysis of the software

product metrics available through Jazz and shown not only

that there is scope to classify a set of software changes by

the source code metrics and predict the likely outcomes of

the build immediately prior to compilation and testing [3].

It has also been shown that there is potential to transform

the timing of a prediction event from the time the code is

committed to the repository immediately prior to the build

to an earlier and more useful time [7]. An early prediction

event provides greater insight into the likely outcomes of a

build and hence can be used in managing the risk inherent

in project’s dynamics and hence this research supports the

goals of the software analytics paradigm.

III. THE JAZZ DATASET

A. Overview of Jazz

The nature of the Jazz framework has been

detailed in the research literature a number of times [2, 3,

4, 7] however it is important to restate the concepts

embedded in the underlying data model to explain the

approach adopted in this paper. IBM Jazz is a fully

integrated software development framework that

automatically captures software development processes

and artefacts. The Jazz repository contains real-time

evidence that allows researchers to gain insights into team

collaboration and development activities within software

engineering projects [15]. Figure 1 illustrates that through

the use of Jazz it is possible to visualize members, work

items and project team areas.

Figure 1: Jazz Repository Structure

Whilst Jazz provides the capability to extract

social network data and relate such data to the software

project outcomes, it is the ability to extract different

baselines of the source code that is utilised in this current

work. The source code available through the Jazz

repository is related to work items, with work items being

included in a given build of the software product.

The Jazz repository artefacts include work items,

build items, change sets, source code files, authors and

comments. A work item is a description of a unit of work,

which is categorized as a task, enhancement or defect. A

build item is compiled software to form a working unit. A

change set is a collection of code changes in a number of

files. In Jazz a change set is created by one author only

and relates to one work item. A single work item may

contain many change sets. Source code files are included

in change sets and over time can be related to multiple

change sets.

Whilst the Jazz repository has been opened up to

facilitate investigative research [18] there are limitations

for utilising it to its full capability. Firstly, the repository is

highly complex and has huge storage requirements for

tracking software artefacts. Another issue is that the

repository is often missing data and often misleading

elements which cannot be removed or identified easily.

One of the primary causes of this is that the Jazz

environment has been used within the development of

itself; therefore many features provided by Jazz were not

implemented at early stages of the project. As features of

the framework have been introduced they have added new

data at that point in time forward only.

There is a challenge in dealing with such

inconsistency which may be circumnavigated by utilising

an approach that delves further down the artifact chain

than most previous work using Jazz. This work is based on

the premise that the early software releases were

functional, so whilst the project “meta-data” may be

missing details (such as developer comments) the source

code should represent a stable system that can be analyzed

to gain insight regarding the project.

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 196

B. Software Metrics

One of the major advantages of Jazz is that the

source code, version control, bug tracking and planning

features are all integrated in a single repository. It has

been suggested [2] that heuristics that rebuild artefact

dependencies between disparate version control and bug

tracking systems (as used by Zimmermann et al. [16])

should not be required when using Jazz. The ability to

directly extract dependencies should raise the accuracy

and detail level of extracted data sets [2]. With this in

mind, software metrics have been calculated for source

code extracted from the Jazz repository in an attempt to

deal with the sparseness of the data without losing the

level of detail in the data that should be available.

Software metrics are used to measure the complexity,

quality and effort of a software project [17].

The Jazz repository consists of various types of

software builds. Included in this study were continuous

builds (regular user builds), nightly builds (incorporating

changes from the local site) and integration builds

(integrating components from remote sites). Source code

files were extracted for each available build within the

repository. This was achieved by extracting all of the work

items included in a given build and subsequently

extracting all of the changesets associated with the work

items. These changesets were filtered to remove non-

source code files (e.g. XML files) that were part of the

changeset.

Finally, software metrics were calculated by

utilising the IBM Rational Software Analyzer tool. As a

result the following basic, object orientated and Halstead

software metrics were derived from the source code files

for each build. These are shown in Table 1 along with the

classification of the metric, either Basic (B), Object

Oriented (OO) or Halstead (H). The metrics include the

outcome of the build against which classification will be

made. The build result is a nominal metric and a build is

either failed or successful.

Table 1: Available Metrics

ID Metric Type
1 Build result Classification

2 Abstractness OO

3 Afferent coupling OO

4 Average block depth OO

5 Average lines of code per method B

6 Average number of attributes per class B

7 Average number of comments B

8 Average number of constructors per class B

9 Average number of methods B

10 Average number of parameters B

11 Comment/code ratio B

12 Cyclomatic complexity OO

13 Depth of inheritance H

14 Difficulty level H

15 Efferent coupling OO

16 Effort to implement H

17 Instability OO

18 Lack of cohesion 1 OO

19 Lack of cohesion 2 OO

ID Metric Type
20 Lack of cohesion 3 OO

21 Lines of code B

22 Maintainability index OO

23 Normalized distance OO

24 Number of attributes B

25 Number of comments B

26 Number of constructors B

27 Number of delivered bugs H

28 Number of import statements B

29 Number of interfaces B

30 Number of lines B

31 Number of methods B

32 Number of operands H

33 Number of operators H

34 Number of parameters B

35 Number of types per package B

36 Number of unique operands H

37 Number of unique operators H

38 Program length H

39 Program level H

40 Program vocabulary size H

41 Program volume H

42 Time to implement H

43 Weighted methods per class OO

In addition to software (source code) metrics a

range of metrics that are unique to the Jazz environment

are available, however at present this research only

includes whether the build attempt is successful or

whether it fails. A failed build is in essence one where the

end product does not pass all of the test cases or does not

behave as expected.

IV. EXPERIMENTAL METHOD

This work revolves around the use of

classification methods for the analysis of software metrics,

which differs from much of the work in this area that has

focussed on clustering rather than classification [12]. For

this purpose, the Weka [19] machine learning workbench

was used. There are various challenges that arise when

adopting data mining as a classification approach as

available data is not always suitable for the mining

process. Data gained from software development projects

is often noisy, incomplete or even misleading data. This

can give rise to negative impacts on the mining and

learning process [20].

As has already been discussed, the project data

that is extracted from Jazz was gathered during the

development of Jazz. As a consequence features that

automatically capture project processes did not exist until

later development stages had been completed. The

implication of this is that gaps often appear at early stages

of the project data set. Excluded from the data set were

build instances that had no work items associated with a

build, build warning results and builds that had missing

values within the derived software metrics.

Software metrics from continuous builds were

used to construct the data set, however in doing so there

were more instances of successful builds than failed

builds. In order to balance the data set failed builds were

injected from nightly and integration builds. This option

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 197

was preferred over removing successful builds from the

data set, thus decreasing the possibility of model over-

fitting. In total, 129 builds were included, out of which

there were 51 successful builds and 78 failed builds. This

presents a situation where the number of features is fairly

close to the number of instances available for analysis,

which is not an ideal scenario, particularly given the

multicollinearity that is apparent in the metric values.

It is therefore important to investigate various

strategies for reducing the number of metrics used to

classify the relatively small number of builds in the

dataset. Previous work [3, 7] has shown that there is a lack

of consistency in terms of identifying significant metrics.

In this paper, hybrid strategies for identifying the most

significant metrics that are based on attempting to classify

and cross-classify across datasets derived from different

snapshots (or “slices”) of the available source code are

investigated. This approach is adopted because previous

work [7] has shown that using metrics calculated from the

final commit of the source code prior to the build taking

place can be used to predict the outcomes of the build

when applied to the classification of source code prior to

the development iteration commencing. The work

presented in this paper is the first attempt to explore why

such an approach leads to good results and attempt to

further reduce the number of significant metrics down to

the smallest possible number.

A. Dataset Representations

In the Jazz dataset a given build consists of a

number of different work items. Each work item contains

a changeset that indicates the actual source code files that

are modified during the implementation of the work item.

Each build has a corresponding before and after state.

Initial work involving the extraction and mining of Jazz

software metrics [3] used the after state to extract source

code that included all changes in the build. The after state

was utilised in order to ensure that the source code

snapshot represented the actual software artefact that

either failed or succeeded. Subsequent work has shown

that it is possible to predict the outcome of a build on the

basis of the before state source code [7]. The best

classification arose by applying significant metrics

identified using the metrics derived from the after state

applied to the before state classification. The reason for

this remains to be determined and in this work attempt to

systematically explore the use of the metrics derived from

after and before states as well as the difference between

them and determine whether cross-dataset classification

can lead to further insight. Cross-dataset classification is

defined as the use of significant metrics determined from

one dataset being used to classify the contents of a

different dataset.

Source code metrics are calculated for each

source code file in the changeset using the IBM Software

Analyser tool. Previous work [3] has investigated different

ways of characterising the changeset using a single metric

value to represent all source code files in the changeset.

This showed that the most reliable approach was to

calculate the value for each metric for each source code

file and then propagate the maximum determined value up

to the build level. This approach is adopted in the current

work.

B. Experiment Descriptions

The goal of the experimentation is to determine

which software metrics give the best indicators of whether

the build will be successful or will fail. The experiments

systematically filter the available metrics using a variety

of methods to simplify the problem space and determine

the best classification outcomes. This is necessary as

previous work [3] has determined that the ratio of metrics

(42) to build instances (129) creates a complex

classification scenario due to the multicollinearity of the

metric values.

The methods used to filter the metrics used are

shown in Table 2 and are limited to feature selection

approaches available in Weka. Each involves selecting a

relatively small number of the available software metrics

and comparing them to the baseline classification where

no filtering of the metrics is done.

Table 2: Metric Filtering Strategies

ID Strategy
1 No filtering

2 Weka Feature Selection (CfsSubset)

3 Weka Feature Selection (Infogain)

In the first instance, each strategy is applied to

the four distinct datasets that have been derived from the

source code. The first two datasets correspond to metrics

calculated from the before state and the after state of the

builds. The third dataset is calculated by subtracting the

values of the before state metrics from the value of the

after state metrics. This dataset represents the degree of

change to the source code that occurs during a

development iteration leading to a build. The final dataset

results from combining the before and after datasets into a

larger dataset.

It has been noted in previous work [7] that

applying the significant metrics determined from

analysing one state to the classification of build outcome

of another state can lead to improved classification. In

particular, using significant metrics from the after state

improves the ability to predict build outcomes on the

before state source code. As a result, this work extends

this Cross-dataset classification and applies significant

metrics identified from each state to all other states.

V. RESULTS

For each of the experiments a metric filtering

strategy is applied and then the J48 classification

algorithm is used to attempt to discover common patterns

amongst the selected metrics. Given the relatively small

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 198

size of the data, 10-fold cross validation is used in order to

make the best use of the training data. Cross validation

does result in a relatively optimistic outcome which is a

limitation that will be addressed in future work when more

data becomes available from the Jazz project.

A. Classification Results: Before State

The results of applying the filtering strategies

from Table 2 to the metrics calculated from the before

state source code are shown in Table 3. It can be seen that

the Infogain method has identified a great number of

significant metrics, which is to be expected as the

CfsSubset method looks for inter-relationships between

metrics to identify significant associations.

Table 3: Selected Metrics

ID Selected Metrics
1 N/A

2 4,5,6,11,18,22,36,39

3 30,11,18,4,22,6,40,36,23,39,37,20,34,25,5,12,35,24

Table 4 shows the results of the classification for

applying the selected metrics to the classification of the

before state source code. The overall accuracy is given in

each case along with the number of correctly (and

incorrectly) classified builds. The bracketed values refer to

the number falsely predicted to be either failures (in the

case of the “Failed Builds” column) or successes (in the

case of the “Successful Builds”) column.

Table 4: Classification Results

ID Accuracy # Failed Builds

Correct (Incorrect)

Successful Builds

Correct (Incorrect)
1 67.4419% 22 (29) 65 (13)

2 72.8682% 25 (26) 69 (9)

3 68.9922% 22 (29) 67 (11)

These results are a subset of those presented in

previous work [7] and indicate that the prediction of failed

builds is generally more challenging than the classification

of successful builds. As with previous work the overall

accuracy of the prediction is hovering around the 70%

value, however using the significant metrics determined

from the before state on the before state data tends to

produce poorer classification of failures. Figure 2

illustrates the best classification tree achieved as a result

of these experiments (ID: 2).

Figure 2: Classification Tree: Before State

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 199

B. Classification Results: After State

The results of applying the filtering strategies

from Table 2 to the metrics calculated from the after state

source code are shown in Table 5. As with the before

state, it can be seen that the Infogain method has identified

a great number of significant metrics.

Table 5: Selected Metrics

ID Selected Metrics
1 N/A

2 4,6,11,18,19,25,28,35,37

3 11,6,4,28,37,36,40,25,19,18,24,34,35,20,13

Table 6 shows the accuracy of the classification

for each dataset with the features selected using the each

metric selection strategy. The overall accuracy is given in

each case along with the number of correctly (and

incorrectly) classified builds. The bracketed values refer to

the number falsely predicted to be either failures (in the

case of the “Failed Builds” column) or successes (in the

case of the “Successful Builds”) column.

Table 6: Classification Results

ID Accuracy # Failed Builds

Correct (Incorrect)

Successful Builds

Correct (Incorrect)
1 75.1938% 36 (15) 61 (17)

2 75.9690% 27 (24) 71 (7)

3 77.5194% 33 (18) 67 (11)

These results are a subset of those presented in

previous work [3], however differ from those previously

published. This is due to a change in data extraction from

the Jazz repository. The data extraction approach As with

the results shown in Table 4 there is clearly more

difficulty in identifying failed builds, though the outcome

of applying the after state significant metrics to the after

state data results in slightly higher overall accuracy and an

improvement in identifying failed builds over the use of

before state metrics to the before state data.

Figure 3 illustrates the best classification tree

achieved as a result of these experiments (ID: 3) based on

the overall accuracy.

Figure 3: Classification Tree: After State

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 200

C. Classification Results: Difference

The results of applying the filtering strategies

from Table 2 to the calculated difference in metric values

between the after and before states are shown in Table 7.

As with the before state, it can be seen that the Infogain

method has identified a great number of significant

metrics.

Table 7: Selected Metrics

ID Selected Metrics

1 N/A

2 4,6,7,18,21,22,23,39

3 4,22,23,42,21,32,38,39,7,33,18,6,10

Table 8 shows the accuracy of the classification

for each dataset with the features selected using the each

metric selection strategy. The overall accuracy is given in

each case along with the number of correctly (and

incorrectly) classified builds. The bracketed values refer to

the number falsely predicted to be either failures (in the

case of the “Failed Builds” column) or successes (in the

case of the “Successful Builds”) column.

Table 8: Classification Results

ID Accuracy # Failed Builds

Correct (Incorrect)

Successful Builds

Correct (Incorrect)

1 73.6434% 34 (17) 61 (17)

2 66.6667% 21 (30) 65 (13)

3 71.3178% 30 (21) 62 (16)

The best accuracy is obtained with no feature

selection. This differs from the previous results in Tables 4

and 6. This is perhaps an indication that inspecting the

change in metric values is reducing the extent to which

significance can be identified. This is borne out to some

extent by the classification tree show in Figure 4 which

illustrates the best classification tree achieved as a result

of these experiments (ID: 3). The classification tree is

somewhat more complex than those shown in Figure 2 and

3 which implies that a clear classification is not possible

for this data.

Figure 4: Classification Tree: Difference

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 201

D. Classification Results: Combined

Dataset

The results of applying the filtering strategies

from Table 2 to the dataset that combines the before and

after state data. It can be seen that the Infogain method has

identified a great number of significant metrics, which is

to be expected as the CfsSubset method looks for inter-

relationships between metrics to identify significant

associations.

Table 4: Selected Metrics

ID Selected Metrics

1 N/A

2 4,5,6,9,10,11,13,18,21,22,25,34,35,36,37

3 6,18,9,8,10,34,11,36,40,37,25,3,28,13,4,24,35,5,22,

23,20,21,7,19

Table 4 shows the results of the classification for

applying the selected metrics to the classification of the

before state source code. The overall accuracy is given in

each case along with the number of correctly (and

incorrectly) classified builds. The bracketed values refer to

the number falsely predicted to be either failures (in the

case of the “Failed Builds” column) or successes (in the

case of the “Successful Builds”) column.

Table 4: Classification Results

ID Accuracy # Failed Builds

Correct

(Incorrect)

Successful

Builds

Correct

(Incorrect)

1 79.0698% 71 (31) 133 (23)

2 82.1705% 74 (28) 138 (18)

3 79.0698% 69 (33) 135 (21)

Increasing the size of the dataset has slightly

improved the overall accuracy and has improved the

ability to identify failed builds.

Figure 5 illustrates the best classification tree

achieved as a result of these experiments (ID: 2) based on

the overall accuracy. It is interesting to note that a total of

53 failed builds are correctly classified on the basis of just

three metrics, namely: Comment-Code Ratio, Average

Number of Attributes per Class and Number of

Comments. This differs from the previous classification

outcomes where the upper nodes in the classification tree

tend to classify successful rather than failed builds.

Figure 5: Classification Tree: Combined Data

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 202

E. Cross-Dataset Classification Results

It has been noted in previous work [7] that

applying significant metrics from the after state to the

before state data resulted in an improved classification of

failure. Whilst it is possible that there is some data-

interaction that predisposes this approach to over-fitting of

the data, it is an interesting concept that needs further

study.

In this paper the goal is conduct an initial

investigation into the impact of cross-dataset

classification. Hence the final results presented investigate

the outcome of classifying the different datasets using

metrics that are deemed significant for other datasets. The

exception is that the difference between before and after

states did not result in any significant metrics being

identified.

Table 9: Experiment

ID Cross-Dataset Classification
1 Applying best after state metrics to before state data

2 Applying best after state metrics to difference data

3 Applying best after state metrics to combined data

4 Applying best before state metrics to after state data

5 Applying best before state metrics to difference data

6 Applying best before state metrics to combined data

7 Applying best combined metrics to after state data

8 Applying best combined metrics to before data

9 Applying best combined metrics to difference data

Table 10 shows the results of the cross-dataset

classification for each dataset with the features selected

from other datasets. The overall accuracy is given in each

case along with the number of correctly (and incorrectly)

classified builds. The bracketed values refer to the number

falsely predicted to be either failures (in the case of the

“Failed Builds” column) or successes (in the case of the

“Successful Builds”) column.

Table 10: Cross-Dataset Classification Results

ID Accuracy # Failed Builds

Correct (Incorrect)

Successful Builds

Correct (Incorrect)
1 79.8450% 38 (13) 65 (13)

2 77.5194% 34 (17) 66 (12)

3 79.8450% 72 (30) 134 (22)

4 79.8450% 27 (24) 76 (2)

5 76.7442% 31 (20) 68 (10)

6 75.1938% 50 (52) 144 (12)

7 71.3178% 29 (22) 63 (15)

8 80.6202% 34 (17) 70 (8)

9 75.9690% 34 (17) 64 (14)

The highest overall accuracy is just over 80%,

however the greatest successful classification of failed

builds is associated with experiment 1. This has a very

small reduction in overall accuracy and as such would be

considered the best results achieved.

It is interesting to note that again applying

significant metrics from the after state data to the before

state data has produced the best classification. Not only is

experiment 1 the best classification in these cross-dataset

classification but it also improves on the classification

results presented in the previous sections.

Figure 6 illustrates the best classification tree

achieved as a result of these experiments (ID: 1) based on

the ability to correctly classify the highest number of

failed builds. As with Figure 5, the classification tree has a

high number of correctly classified failed builds in the

upper nodes of the tree. Given the acknowledged difficulty

in identifying failed builds this characteristic may be most

desirable for the classification tree.

The overall classification has not yet met the

accuracy and ability to classify failures determined in

previous work [7]. However the results presented here

have provided some insight into the potential value offered

by cross-dataset classification.

Figure 6: Classification Tree: Cross-Dataset Classification (After/Before)

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 203

VI. LIMITATIONS & FURTHER WORK

Most of the limitations in the current study are

products of the relatively small sample size of build data

from the Jazz project combined with the sparseness of

the data itself. For example, the ratio of metrics (42) to

builds (129) is such that it is difficult to truly identify

significant metrics. Whilst various strategies for

reducing the number of metrics used in the classification

have been investigated, this does not address the

fundamental problem that the dataset is very small. Even

combining datasets from the before and after states to

double the size of the data has not significantly impact

the quality of the classification.

Whilst a new release of the Jazz repository is

pending, in the meantime the main thrust of future work

is to further expand the build data to improve the degree

of granularity and potentially improve the quality of the

classification.

Therefore another key aspect for further study is

to investigate why using significant metrics calculated

from source code at the end of a development cycle are

better at predicting failure when applied to the code at

the beginning of the build cycle. Some evidence exists in

the literature that may explain this phenomenon.

Kitcheham [21] has observed that “Code metrics

extracted at a specific point in time are unlikely to

predict fault rates well in evolving system” and also that

“Code change metrics are likely to predict fault rates in

an evolving system better than simple snap-shot based

metrics”. Examining the degree of change in metric

values hasn’t resulted in a significant improvement in

classification accuracy in this paper, though this may be

due to the relatively small size of the dataset.

It is possible that the use of after state metrics

to predict the outcome of a build based on the before

state source is a process of examining source code for

the potential of failure. Therefore future work will be

based around the idea of simulating the emergence of the

existing data and whether the analysis of completed

builds can be used to predict the outcome of the next

build. By simulating the development process as a time

series it may be possible to investigate whether there is

the potential to learn from past erroneous builds to

further improve early prediction of failure in future

builds.

VII. CONCLUSIONS

This paper presents the outcomes of a study

exploring the value of cross-dataset classification to

predict build success and/or failure for a software

product by utilizing source code metrics. Prediction

accuracies of up to 82% have been achieved through the

use of the J48 classification algorithm combined with

10-fold cross validation. The results presented confirm

that there is value in using the metrics derived from

different slices of source code in the early prediction of

build outcome. The strategy of using metrics associated

with the after state of the build to classify the before

state source code may in some way be overfitting the

data to the classification strategy and further work is

needed to fully validate this approach.

REFERENCES

[1] Kagdi, H. H., Collard, M. L. and Maletic, J. I. 2007.

A survey and taxonomy of approaches for mining

software repositories in the context of software

evolution. Journal of Software and Maintenance,

19(2):77-131.

[2] Herzig, K. and Zeller, A. 2009. Mining the Jazz

repository: Challenges and opportunities,

Proceedings of the 6th IEEE International Working

Conference on Mining Software Repositories,

(Vancouver, Canada, May 16-17, 2009). IEEE. 159-

162. DOI: 0.1109/MSR.2009.5069495.

[3] Finlay, J., Connor, A.M. and Pears, R. 2011. Mining

software metrics from Jazz. Proceedings of the 9
th

ACIS Conference on Software Engineering

Management, Research and Applications,

(Baltimore, USA, Aug 10-12, 2011). IEEE Computer

Society. 39-45.

[4] Wolf, T., Schroter, A., Damian, D. and Nguyen, T.

2009. Predicting build failures using social network

analysis on developer communication, Proceedings

of the IEEE 31st International Conference on

Software Engineering, (Vancouver, Canada, May

16-24, 2009). IEEE. 1-11. DOI:

10.1109/ICSE.2009.5070503

[5] Park, S., Maurer, F., Eberlein, A. and Fung, T-S.

2010. Requirements attributes to predict

requirements related defects, Proceedings of the

20th Annual International Conference on Computer

Science and Software Engineering, (Markham,

Canada, Nov 1-2, 2010), ACM, 42-56.

DOI=10.1145/1923947.1923953

[6] Nguyen, T., Wolf, T. and Damian, D. 2008. Global

Software Development and Delay: Does Distance

Still Matter? Proceedings of the IEEE International

Conference on Global Software Engineering,

(Bangalore, India, August 17-20, 2008). IEEE. 45-

54. DOI: 10.1109/ICGSE.2008.39

[7] Connor, A.M. and Finlay, J. 2011. Predicting

software build failure using source code metrics.

International Journal of Information and

Communication Technology Research. (To appear).

[8] Nagappan, N., Ball, T. and Zeller, A. 2006. Mining

metrics to predict component failures. Proceedings

of the 28th International Conference on Software

Engineering, (Shanghai, China, May 20-28, 2006).

 Volume 1 No. 5, AUGUST 2011 ISSN 2222-9833

ARPN Journal of Systems and Software

 ©2010-11 AJSS Journal. All rights reserved

http://www.scientific-journals.org

 204

IEEE. 452–461.

[9] Basili, V. R., Briand,L. C. and Melo, W. L. 1996. A

validation of object-oriented design metrics as

quality indicators. IEEE Transactions on Software

Engineering, 22(10), 751–761.

[10] Denaro, G., Morasca, S. and Pezz`e, M. 2002.

Deriving models of software fault-proneness.

Proceedings of the 14th International Conference on

Software Engineering and Knowledge Engineering,

(Ischia, Italy, July 15-19, 2002). ACM. 361–368.

[11] Mockus, A. and Weiss, D. M. 2000. Predicting risk

of software changes. Bell Labs Technical Journal,

5(2):169–180.

[12] Dick, S., Meeks, A., Last, M., Bunke, H. and

Kandel, A. 2004. Data mining in software metrics

databases. Fuzzy Sets and Systems, 145(1):81-110.

ISSN 0165-0114. DOI: 10.1016/j.fss.2003.10.006.

[13] Buse, R. P. L. and Zimmermann, T. 2010. Analytics

for Software Development. Proceedings of the

FSE/SDP Workshop on the Future of Software

Engineering Research (Santa Fe, New Mexico,

USA, Nov 7-8, 2010). ACM, 77-80.

DOI=10.1145/1882362.1882379.

[14] Hassan, A.E. 2008. The road ahead for Mining

Software Repositories. Frontiers of Software

Maintenance at the 24th IEEE International

Conference on Software Maintenance (Beijing,

China, Sept 28-Oct 4). 48-57.

DOI: 10.1109/FOSM.2008.4659248

[15] Nguyen, T., Schröter, A., and Damian, D. 2008.

Mining Jazz: An experience report. Proceedings of

the Infrastructure for Research in Collaborative

Software Engineering Conference. Retrieved

24/1/2011 from:

http://home.segal.uvic.ca/~pubs/pdf/112/2008-

iReCoSE.pdf

[16] Zimmerman, T., Premraj, R. & Zellar, A. 2007.

Predicting defects for Eclipse. Proceedings of the

Third International Workshop on Predictor Models

in Software Engineering (Minneapolis, Minnesota,

USA, May 20-16). 9 -15.

DOI=10.1109/PROMISE.2007.10

[17] Manduchi, G. and Taliercio, C. 2002. Measuring

software evolution at a nuclear fusion experiment

site: a test case for the applicability of OO and reuse

metrics in software characterization, Information

and Software Technology, 44(10): 593-600.

DOI: 10.1016/S0950-5849(02)00079-4

[18] Cheng, P., Chulani, S., Ding, Y. B., Delmonico, R.,

Dubinsky, Y., Ehrlich, K., Helander, M., et al. 2008.

Jazz as a research platform: experience from the

Software Development Governance Group at IBM

Research. First International Workshop on

Infrastructure for Research in Collaborative

Software Engineering IRCoSE at FSE 2008

(Atlanta, Georgia, USA, Nov 9, 2008).

[19] Hall, M., Frank, E. Holmes, G.,Pfahringer, B.,

Reutemann, P. and Witten, I. H. 2009. The WEKA

Data Mining Software: An Update; SIGKDD

Explorations, 11(1), 10-18.

DOI=10.1145/1656274.1656278

[20] Chau, D., Pandit, S., and Faloutsos, C. (2006).

Detecting Fraudulent Personalities in Networks of

Online Auctioneers. Knowledge Discovery in

Databases 4213, 103-114,

DOI: 10.1007/11871637_14.

[21] Kitchenham, B. 2010. What’s up with software

metrics? A preliminary mapping study. Journal of

Systems and Software, 83(1):37–51

http://home.segal.uvic.ca/~pubs/pdf/112/2008-iReCoSE.pdf
http://home.segal.uvic.ca/~pubs/pdf/112/2008-iReCoSE.pdf

