


Abstract 

Questions are posed regarding the influence that the 
column sums of the transition probabilities of a 
stochastic matrix (with row sums all one) have on the 
stationary distribution, the mean first passage times 
and the Kemeny constant of the associated irreducible 
discrete time Markov chain. Some new relationships, 
including some inequalities, and partial answers to the 
questions, are given using a special generalized matrix 
inverse that has not previously been considered in the 
literature on Markov chains. 
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Introduction 

  

Let {Xn }, (n 0) be a finite irreducible, discrete time MC.         

Let S = {1, 2,…, m} be its state space.
Let P =  [pij ] be the transition matrix of the MC.

{Xn } has a unique stationary distribution { j }, j S.           

 and finite mean first passage times {mij }, (i, j) S S.

P  stochastic the row sums are all one.

                     pijj=1

m
=1,  i S.

Let  {c j } be the column sums of the transition matrix.

                    c j = piji=1

m
, j S.    



Questions 

  

What influence does the sequence {c j } have on { j }?

What influence does the sequence {c j } have on {mij }?

Are there relationships connecting the {c j },{ j },{mij }?

Can we deduce bounds on the { j } and the {mij }  

             involving  the {c j }?        

What effect does the {c j } have on Kemeny’s constant

              K = jj=1

m
mij ?    



Technique 

   

We use the generalized matrix inverse 

                      H  [ I P + ecT ] 1

where e  is the column vector of ones and 

cT = (c1,c2,..., cm ) is the row vector of column sums of P. 

Let   = e T  where T = ( 1, 2,..., m ).

H  can also be expressed in terms of Kemeny and Snell’s 
fundamental matrix

                               Z = [I P + ] 1,  
or in terms of Meyer’s group g-inverse

                             (I P)# = Z .



Previous results 

   

1.  Kirkland considers the subdominant eigenvalue 2

     associated  with the set S(c) of m m stochastic

     matrices with column sum vector  cT . The quantity

      (c) = max{ 2(A) A S(c)}   is considered. 

     The vectors cTsuch that (c) < 1  are identified. 

      In those cases, nontrivial upper bounds on (c)
      and weak ergodocity results for forward products 
      are provided. 



Previous results 

  

2.  Kirkland considers an irreducible stochastic 
     matrix P  and studies the extent to which the 
         column sum vector for P  provides information
         on a certain condition number (P), which 
         measures the sensitivity of the stationary 
         distribution vector to perturbations in P. 



Properties of  H  

   

Tt 0 and uTe 0 I P + tuT  is non-singular.

[I P + tuT ] 1 is a generalised inverse of I P.

Te =1 0 and cTe = m 0 I P + ecT  is non-singular.

H = [I P + ecT ] 1is a generalized inverse of I  –  P.



Key properties of  H  

    

If H = [I P + ecT ] 1 = [hij ]  then  cTH = T .

Thus j = cii=1

m
hij  for all j S.

Further He = e m  so that

hi i hijj=1

m
= 1 m  for all i S.

Note also that cTHe = 1.



Proof of key properties of  H  

   

(I P + ecT )H = I H PH + ecTH = I.
Premultiply by T . Since TP = T ,

cTH = T
j = cii=1

m
hij  for all j S.

     

H(I P + ecT ) = I H HP +HecT = I.
Postmultiply by e.  Since Pe = e  and cTe = m,

He = e m hi i hijj=1

m
= 1 m, for all i S.



Properties of the elements of H  

     

Let ei
T   (e j ) be the i-th (j-th) elementary row (col) vector. 

Let h j
(c ) He j  denote the j-th column of H.

Let  hi j = eTh j
(c )  be the sum of the elements of the j-th col.

Let hi
(r )T ei

TH  denote the i-th row of H.

Let  hi i = hi
(r )Te  be the sum of the elements of the i-th row.

Let hrowsum = He = h j
(c )

j=1

m
= [h1i,h2i,...,hmi ]

T , 

Let hcolsum
T = eTH = h j

(r )T
j=1

m
= [hi1,hi2,...,him ], 

 hij = ei
THe j .



Properties of the elements of H  

     

(a) (Row properties)

       hi
(r )T pi

(r )TH = ei
T  T , 

       hi
(r )T hi

(r )TP = ei
T  cT m,

       and hi i = 1/ m.

(b) (Column properties)

      h j
(c ) Ph j

(c ) = e j  je ,  

      h j
(c ) Hp j

(c ) = e j (c j m)e ,

      and hi j = 1 (m 1) j .



Properties of the elements of H  

    

(c) (Element properties)

hij = pikhkjk=1

m
+ ij j , 

hij = hik pkjk=1

m
+ ij c j m .

(d) (Row and Column sum properties)
hrowsum = e m, 

hcolsum
T = eT (m 1) T .

Explicit row and column sums of the elements of H. 
Explicit expressions for individual hij  not readily available. 



Stationary distributions 

  

MC irreducible 
 exists a unique stationary distribution { j }, j S.

The stationary probabities found as the solution of
the stationary equations:

            j = i piji=1

m
 ( j S) with i = 1

i=1

m
.

We have shown 

            j = cihiji=1

m
 with cii=1

m
= m.



Doubly stochastic matrices 

     

Let the stationary probability vector be 
T = ( 1, 2,..., m ) so that T = TP  with Te = 1.

For doubly stochastic P, eT = eTP  so that cT  = eT ,
                       c = e  = e m.
ci = 1 for all   i S  i = 1 m  for all i S.

        



Generalized inverses  

  

Kemeny and Snell’s fundamental matrix of ergodic MCs

Z = [I P + ] 1.
Meyer’s group inverse of I  –  P,

(I P)#  = Z . 

Z  and (I P)#  are generalized inverses of I  P.

If G is any generalized inverse of I  –  P,

(I – P)G(I – P) is invariant and =  (I P)#.
              



Relationship between H and Z 

   

If H = [I P + ecT ] 1 and  Z [I P + e T ] 1 then
(a) Z = H +  – H, 

(b)     H = Z +
1
m

1
m

ecT Z, 

(c)     (1+m) = m H + ecT Z,
(d)     (1+m) T = m TH + cT Z.



Elemental relationships 

   

If H = [hij ] = [I P +ecT ] 1 

and   Z = [zij ] = [I P +e T ] 1, 

then

(a)    zij = hij + j kk=1

m
hkj ,

(b)   hij = zij +
1
m j

1
m

ckk=1

m
zkj ,

(c)   (1+m) j =m kk=1

m
hkj + ckk=1

m
zkj .



Properties of Z and H 

  

For ergodic Markov chains the diagonal elements 
of Z, zij , are positive.

Matlab examples show that a similar relationship  
holds for the diagonal elements of H, hij .

(Formally established later.) 

 zij hij = j kk=1

m
hkj = ( ckk=1

m
zkj j ) m,  

i.e. zij hij  is independent of i, and thus = zjj hjj . 

Consequently, zjj zij = hjj hij  for all i, j. 



Mean first passage times 

   

For an irreducible finite MC with transition matrix P, 

let M = mij  be the matrix of expected first passage

times from state i  to state j.
M  satisfies the matrix equation  
                  (I – P)M  =  E – PMd ,

where E  = eeT  = [1],  Md = [ ijmij ] = ( d ) 1  D. 

 
If G is any g-inverse of I – P, then
M  =  [G – E(G )d + I – G + EGd ]D.



Mean first passage times 

   

Under any of the following three equivalent conditions:
(i)  Ge  =  ge, g  a constant,
(ii)     GE   –  E(G )d D  =  0,

(iii) G   –  E(G )d  =  0,  

               M = [I – G + EGd ]D.

H   satisfies (i) ( He = (1/ m)e  and g = 1/ m)
         M = [I – H + EHd ]D.

Z  satisfies (i) (since Ze = e  and g = 1) 
         M = [I – Z + EZd ]D.



Mean first passage times 

  

Thus

           mij =

1

j

=
1

cihiji=1

m , i = j,

hjj hij

j

=
hjj hij

cihiji=1

m , i j.

Thus a knowledge of the {ci } and the {hij }  

leads directly to expressions for the {mij }.   



New relationships  

   

For all j {1,2,…,m},

                    miji=1

m
cii j

mij =m.

 a new connection between the {c j } and {mij }.

            cii=1

m
mij =

c j

j

1+
mhjj

j

,

           miji=1

m
=mi j =m 1+

mhjj

j

.     



Expressions for 

  

For all j {1,2,…,m},

j =
c j

m miji=1

m
+ cii=1

m
mij

=
1

m miji j
+ cii j

mij

.

j =
c j +mhjj

1+ cii=1

m
mij

=
mhjj

1+ cii j
mij

,

j =
mhjj

1+ mij m
i=1

m
=

mhjj  1

1+ mij m
i j

.

  { j }



 Positivity of the zjj and hjj 

   

TM = eT ZdD = z11 1,...,zjj j ,...,zmm m( )
zjj > 0 for all j.

mjjmhjj = 1+ cii j

m
mij > 0 hjj > 0  for all j.

Since jmij = hjj hij = zjj zij >  0 hjj > hij .

 No surety regarding the sign of any of the {hij } for i j.



  Doubly stochastic matrices 

   

If ci = 1 for all i, then

mi j = m 1+m2hjj = m2zjj .

Also
mi j mi i zjj zii hjj hii .



   Kemeny’s constant 

  

The expression Ki  = mij j  j=1

m
is in fact independent 

of i {1,2,....,m} Ki = K, "Kemeny's constant".

K  has many important interpretations in terms of 
properties of the Markov chain.
K  is used in the properties of mixing of Markov chains
(expected time to stationarity) 
K  is used in bounding overall differences in the 
stationary probs of a MC subjected to perturbations.



    Expressions for K 

    

If G = [gij ] is any g-inverse of I P, then

K = 1+ tr (G) tr (G ) = 1+ (gjjj=1

m
gj i j ),

K = 1 (1 m) + tr (H) = 1 (1 m) + hjjj=1

m
,

K = tr (Z) = zjjj=1

m
.

For any irreducible m-state MC, K m +1
2

,

tr (H) = hjjj=1

m m 1
2

+
1
m

.



 Doubly stochastic MCs  

   

If ci = 1 for all i, then  

mi i = mK = m 1+mtr (H) = mtr (Z). 

Further, for all i,  

                     mi i

m(m +1)
2

,

 a new result.



 Example – Two state MCs  

  

Let P =
p11 p12

p21 p22

=
1 a a

b 1 b

, 

(0 a 1, 0 b 1).   Let d = 1– a – b.
MC  irreducible –1 d < 1. 
MC has a unique stationary probability vector 

T = ( 1, 2) = (b (a + b),a (a + b)) = (b (1 d),a (1 d)).

–1< d < 1 MC is regular and the stationary distribution 
                     is the limiting distribution of the MC. 
d  = – 1 MC is irreducible periodic, period 2.



 Example – Two state MCs  

   

 cT = (c1,c2) = (1 a + b,1+ a b).

a and b specify all the transition probabilities.

c1 and c2do not uniquely specify the transition 

probabilities since c1 + c2 = 2.

We cannot solve for a and b in terms of  c1 and c2

Note  c2 c1 = 2(a b).



 Example – Two state MCs  

   

H = [I P + ecT ] 1 =
1

2(a + b)
1+ a (1 b)
(1 a) 1+ b

.

Z = [I P + e T ] 1 =
1

a + b

b + a
a + b

a a
a + b

b b
a + b

a + b
a + b

.

M =
m11 m12

m21 m22

=
(a + b) b 1 a

1 b (a + b) a
.



 Example – Two state MCs  

   

 K = 1+ 1
a + b

1.5, 

K  = 1.5  a = b = 1.

c1 c2 b a 1 2 m22 m11

and
h11 h22 a b m11 +m21 = mi1 mi2 = m12 +m22.



 Example – Three state MCs  

  

P = pij =

1 p2 p3 p2 p3

q1 1 q1 q3 q3

r1 r2 1 r1 r2

.

Six constrained parameters with 
0 < p2 + p3 1, 0 < q1 + q3 1 and 0 < r1 + r2 1. 

Let 1 q3r1 + q1r2 + q1r1, 2 r1p2 + r2p3 + r2p2,

3 p2q3 + p3q1 + p3q3,   1 + 2 + 3.



 Example – Three state MCs  

 

MC is irreducible 
(and hence a stationary distribution exists) 

  1 > 0, 2 > 0, 3 > 0.

Stationary distribution given by

( 1, 2, 3 ) =
1

( 1, 2, 3 ).

 



 Example – Three state MCs  

  

Let 12 = p3 + r1 + r2, 13 = p2 + q1 + q3, 21 = q3 + r1 + r2,
     23 =  q1 + p2 + p3, 31 = r2 + q1 + q3, 32 = r1 + p2 + p3, 
Let  = p2 + p3 + q1 + q3 + r1 + r2

 = 12 + 13 = 21 + 23 = 31 + 32. 

            M =
1 12 2 13 3

21 1 2 23 3

31 1 32 2 3



 Example – Three state MCs  

  

H =
1

3

1 2 3

1 2 3

1 2 3

 +
1

3

c
2 21

+ c
3 31

c
2 12

+ c
3
(

13 31
) c

2
(

12 21
) c

3 13

c
1 21

+ c
3
(

23 32
) c

1 12
+ c

3 32
c

1
(

21 12
) c

3 23

c
1 31

+ c
2
(

32 23
) c

1
(

31 13
) c

2 32
c

1 13
+ c

2 23



 Example – Three state MCs  

  

Kemeny’s constant:

                              K = 1 +  .

For all three-state irreducible MCs, K   2.

K  = 2 achieved in “the minimal period 3” case 
  when p2 = q3 = r1.



 Example – Three state MCs  

  

Under the imposition of column totals with 
c1 + c2 + c3 = 3, we can reduce the free parameters 

to  p2,p3,q1,q3,c1 and c2  by taking 

r1 = c1 – 1+ p2 + p3 – q1,  r2 = c2 – 1– p2 + q1 + q3.

Let 1  q1 + q3 p2, 2  p2 + p3 q1,then

1 2 m22 m11 1 2 r1 1 r2 2,

c1 c2   r1 + 1  r2 + 2.

No universal inequalities connecting c1 c2  with 1 2.



 Example – Three state MCs  

  

c1 c2 c2 c1

1 2 1 min
r2 2

r1
,r2 r1 + 2 r2 r1 + 2 1

r2 2

r1
r1 1 r2 2

2 1

r2 2

r1
1 r2 r1 + 2 max

r2 2

r1
,r2 r1 + 2 1 r2 2 r1 1

r1 + 1 r2 + 2 r2 + 2 r1 + 1

  

The following table gives parameter regions where the 
stated inequalities occur, in the case where r1 > 0.



 Example – Five state MC  

   

Five state irreducible MC from Kemeny and Snell [10] (p199). 
Rearrange the states so that the column sums are ordered with
c1 c2 c3 c4 c5  with transition matrix

           P =

0.759 0.082 0.065 0.071 0.023
0.095 0.831 0.033 0.028 0.013
0.112 0.046 0.788 0.038 0.016
0.156 0.054 0.045 0.728 0.017
0.107 0.038 0.034 0.036 0.785

.

cT = (c1,c2,c3,c4,c5 ) = (1.229, 1.051, 0.965, 0.910, 0.854)
T = ( 1, 2, 3, 4, 5 ) = (0.3216, 0.2705, 0.1842, 0.1476, 0.0761)

1 2 3 4 5 !         Not what we expected!



 Example – Five state MC  

   

H =

    2.1984   -0.5537   -0.4911   -0.3007   -0.6530
   -0.8883    3.5691   -0.9174   -0.7613   -0.8021
   -0.6457   -1.0375    3.2047   -0.5873   -0.7342
   -0.2485   -0.8505   -0.6652    2.6746   -0.7104
   -0.7023   -1.2092   -0.8680   -0.6157    3.5952

All the diagonal elements of H,hjj , are positive (as expected)

All the off-diagonal terms are negative.
Each row sum is 0.200.
The column sums are given as 

hcolsum
T = ( -0.2863,  -0.0818,  0.2631, 0.4096,  0.6955)

also ordered according to the order in cT .



 Example – Five state MC  

   

M =

3.1097 15.2435 20.0601 20.1581 55.7987
9.5987 3.6974 22.3742 23.2789 57.7567
8.8444 17.0326 5.4278 22.1001 56.8645
7.6091 16.3412 21.0051 6.7752 56.5528
9.0204 17.6672 22.1062 22.2926 13.1345

The vector of row sums of M is (mi1,mi2,mi3,mi4,mi5 ) =

(114.3702, 116.7059, 110.2695, 108.2834, 84.2210),
leads to no ordered relationships. 
The vector of column sums is  (m1i,m2i,m3i,m4i,m5i ) =

(38.1824,  69.9820,  90.9734 ,  94.6048,  240.1074), 
with ci c j mi i mj i  for i j.

No general results of such a nature for general finite MCs. 



 Example – Eight state MC  

   

P =

0.478 0.270 0 0 0.150 0 0.055 0.047
0.130 0.870 0 0 0 0 0 0
0.320 0 0.669 0.011 0 0 0 0
0.088 0 0 0.912 0 0 0 0
0.150 0 0 0 0.740 0.110 0 0
0.300 0 0 0.011 0 0.689 0 0
0.260 0 0 0 0 0 0.740 0
0.600 0 0.400 0 0 0 0 0

 

(Funderlic and Meyer, example involving the analysis of radio-
 phosphorous kinetics in an aquarium system. )
States reordered so that P   has column sums with ci > c j  for i  <  j.

cT = (2.326, 1.140, 1.069, 0.934, 0.890, 0.799, 0.795, 0.047)



 Example – Eight state MC  

   

cT = (2.326, 1.140, 1.069, 0.934, 0.890, 0.799, 0.795, 0.047)
T = (0.2378, 0.4938, 0.0135, 0.0078, 0.1372, 0.0485, 0.0503, 0.0112). 

Note, for example 1 < 2  even though c1 > c2.

H =

  1.036   1.056 0.352 1.403   0.170 0.261 0.163   0.043
0.792   4.949 0.456 1.463 0.885 0.634 0.550 0.043

  0.228 0.623   2.623 1.052 0.296 0.426 0.334   0.005
1.666 4.556 0.505   9.872 1.389 0.812 0.735 0.084
0.242 1.599 0.425 1.275   3.279   0.839 0.434 0.017

  0.176 0.731 0.401 1.029 0.326   2.779 0.345   0.002
  0.122 0.844 0.404 1.433 0.358 0.448   3.490 0.000
  0.475 0.110   0.825 1.271 0.154 0.376 0.282   1.017

Diagonal elements of H  are positive. No obvious pattern for off-diagonal elemnts.
Rows sums of H  = 0.125, ( =1/8). Column sums of H  do not exhibit any pattern 



 Example – Eight state MC  

  

M =

  4.21   7.88 220.32  1454.40   22.66  62.66  72.62   87.13
  7.69   2.03 228.01  1462.09   30.35  70.35  80.32   94.82
  3.40  11.28  74.05   1409.09   26.06  66.06  76.02   90.53
11.36   19.25 231.68    128.99   34.03  74.02   83.99   98.49 
  5.38   13.26 225.69  1437.84     7.29  39.99   78.00   92.50
  3.62   11.50 223.93  1406.17   26.23  20.61   76.24   90.74
  3.85   11.73  224.16  1458.24   26.51  66.50  19.88   90.97
  2.36   10.24 133.19   1437.27    25.02 65.02   74.98  89.49

No ordered relationship within the row sums of M
No ordered relationship within the column sums of M
Kemeny’s constant = 29.9194.



 Conjectures:  

   

ci c j  for all i, j i j  for all i, j  hij < 0  for all i  j

Valid in the two-state case and the special 5-state case.
Not true in general. Example: 

If P =
1/2 1/2 0
1/2 0 1/2
1/2 1/2 0

 then H = 2
9

3 1/2 1
3/2 5/2 1/2
3/2 1/2 7/2

. 

cT = (3/2,1,1/2), T = (1/2, 1/3, 1/6),  h23 > 0.              (Kirkland)

Are there any general inter-relationships?
If hij < 0  for all i  j, does i j  for all i, j ?

does ci c j  for all i, j ?  
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