
Capturing Recurring Concepts
in High Speed Data Streams

Sakthithasan Sripirakas

A thesis submitted to Auckland University of Technology

in ful�lment of the requirement for

the degree of Doctor of Philosophy

Supervisors:

Assoc. Prof. Russel Pears

Dr. Kate Lee

prepared at The School of Computing and Mathematical

Sciences, SCMS

submitted on 27.11.2014

School of Computing and Mathematical

Sciences

Abstract: This research addresses two key issues in high speed data stream

mining that are related to each other. One fundamental issue is the detec-

tion of concept change that is an inherent feature of data streams in general

in order to make timely and accurate structural changes to classi�cation or

prediction models. The shortcomings in the past research were addressed in

two versions of a change detector that were produced during this research.

The second major issue is the detection of recurring patterns in a supervised

learning context to gain signi�cant e�ciency and accuracy advantages over

systems that have severe time constraints on response time to change due to

safety and time critical requirements. Capturing recurrent patterns requires

the detection of concept change with minimal false positives. This research

addresses this latter problem as a pre-requisite to formulating a novel mech-

anism for recognizing recurrences in a dynamic data stream environment.

The �rst approach to change detection, termed SeqDrift1 that relies on a

detection threshold derived using the Bernstein bound and sequential hypoth-

esis strategy ensured much lower false positive rates and processing time than

the most widely used change detector, ADWIN.

The second version of the change detector, SeqDrift2, achieved signi�-

cant improvement on detection sensitivity over SeqDrift1. This was achieved

through two separate strategies. The �rst was the use of reservoir sampling to

retain a larger proportion of older instances thus providing for better contrast

with newer arriving instances belonging to a changed concept. The second

strategy was to trade o� false positive rate for detection delay in an opti-

mization procedure. The net result was that SeqDrift2 achieved much lower

detection delay than SeqDrift1 but sacri�ced some of its false positive rate

ii

when compared to SeqDrift1, while still retaining its superiority with respect

to this measure vis-à-vis ADWIN and other change detectors.

Having proposed a robust and e�cient mechanism for change detection

two di�erent meta- learning schemes for recurrent concept capture were pro-

posed. A novel framework using the two schemes consists of concept change

detectors to locate concept boundaries, a Hoe�ding tree compressor to exploit

the application of Discrete Fourier Transform on Decision Trees to produce

compact Fourier Spectra, a forest of Hoe�ding Trees to actively learn and a

pool of Fourier spectra to be reused on similar recurring concepts.

In the �rst scheme, termed Fourier Concept Trees (FCT), each Fourier

spectrum is separately stored and reused on similar concepts. Accuracy and

memory advantages have been empirically shown over an existing method

called, MetaCT. In the second scheme, instead of storing each spectrum on

its own, an ensemble approach, Ensemble Pool (EP), was adopted whereby

several spectra were aggregated into single composite spectrum. The major

advantage of this strategy over the �rst was the reduction in storage overhead

as redundancies in separate spectra are eliminated by merging into one single

entity. In addition, Fourier spectrum generation is optimized with theoreti-

cal guarantees to suit high speed environments. Extensive experimentation

that demonstrated the bene�ts including accuracy stabilization, memory gain,

reusability of existing models etc., has been done with a number of synthetic

and real world datasets. This includes a case study on a Flight simulator

system which is one of the target applications of this research.

Keywords: Recurrent Concepts, Concept Drift Detection, Data Stream

Mining,Discrete Fourier Transform, Bernstein Bound, Sequential Hypothesis

Testing, Reservoir Sampling

Contents

1 Introduction 1

1.1 High Speed Data Mining and its Research Challenges 1

1.2 Objectives . 6

1.3 Research Questions . 7

1.4 Scope . 7

1.5 Overview of Research Strategy 9

1.5.1 Theoretical Contribution of This Research 11

1.6 Publications . 12

1.7 Thesis Structure . 13

2 A General Framework for Capturing Recurring Concepts 15

2.1 Data Mining and its Components 15

2.2 Data Stream Mining and its Properties 16

2.3 Challenges in Recurring Concepts Environments 22

2.4 A General Framework for Data Stream Mining with Recurrent

Concept Capturing . 24

2.5 Summary . 30

3 Change Detection in High Speed Data Streams 31

3.1 Introduction . 31

3.2 Rationale for Change Detection 32

3.3 Change Detection Problem De�nition 33

3.4 Related Work . 35

3.5 Research Contributions . 39

3.6 Use of Bernstein Bound in Bounding Deviation of Population

Mean from Sample Mean . 41

3.7 Summary . 43

Contents iv

4 SeqDrift1: An Algorithm Based on SlidingWindow Approach 44

4.1 Introduction . 44

4.2 Core Algorithm Overview . 45

4.3 Memory Management in SeqDrift1 46

4.4 Computation of Cut Point Threshold ε 48

4.5 Compensating for Repeated Hypothesis Testing 50

4.6 SeqDrift1 Change Detection Algorithm 52

4.7 SeqDrift1 versus ADWIN: Similarities and Di�erences 54

4.8 Empirical Study . 55

4.8.1 Comparative Performance Study 56

4.8.2 Sensitivity Analysis on SeqDrift1 59

4.9 Summary . 62

5 SeqDrift2 Change Detector 63

5.1 Introduction . 63

5.2 SeqDrift2 Design Fundamentals 63

5.3 Memory Management within SeqDrift2 64

5.4 Use of Bernstein Bound in SeqDrift2 65

5.5 Cutpoint Threshold for SeqDrift2 65

5.6 Optimizing SeqDrift2 Detection Delay 71

5.6.1 Convergence of Algorithm 5.1 72

5.7 Driver Routines for SeqDrift2 86

5.8 Time Complexity for SeqDrift2 87

5.9 Space, Time and Detection Delay Expectations 88

5.10 Empirical Study . 90

5.10.1 False Positive Rate Assessment 90

5.10.2 Detection Delays and False Negative Rate 104

5.10.3 E�ects of Reservoir Sampling 107

Contents v

5.10.4 E�ects of Detection Thresholds and Window Manage-

ment Strategies . 109

5.10.5 Integration with Adaptive Hoe�ding Tree Classi�er . . 111

5.11 Summary . 115

6 Capturing Recurrent Concepts Using Discrete Fourier Trans-

form 118

6.1 Introduction . 118

6.2 Related Research . 120

6.3 Application of the Discrete Fourier Transform on Decision Trees 123

6.4 Transforming a Decision Tree into Fourier Spectrum 124

6.5 Exploitation of the Fourier Transform for Recurrent Concept

Capture . 129

6.5.1 The FCT algorithm . 129

6.5.2 Optimizing the Energy Thresholding Process 133

6.6 Experimental Study . 134

6.6.1 Parameter Values . 134

6.6.2 Datasets Used for the Experimental study 135

6.6.3 Tuning MetaCT Key Parameter 137

6.6.4 Comparative Study: CBDT vs FCT vs MetaCT 137

6.6.5 Sensitivity Analysis on FCT 143

6.7 Empirical Study on FCT with SeqDrift2 Change Detector . . 146

6.7.1 Accuracy Comparison 148

6.7.2 Processing Time and Memory Comparison 150

6.8 Summary . 151

7 The Role of Fourier Ensembles in Capturing Recurring Con-

cepts 153

7.1 Introduction . 153

7.1.1 Aggregation of Fourier Spectrum 156

Contents vi

7.2 Exploitation of the Fourier Transform for Recurrent Concept

Capture . 158

7.2.1 The EP Algorithm . 160

7.2.2 Optimizing the Energy Thresholding Process 162

7.2.3 Optimizing the Computation of the Fourier Basis Function165

7.2.4 Localized Approach to Ensemble Learning in the Fourier

Domain . 167

7.3 Experimental Study . 169

7.3.1 Parameter Values . 169

7.3.2 Datasets used for the experimental study 171

7.3.3 Models used in empirical study 172

7.3.4 Comparative Study : FCT Vs EPa Vs EP 173

7.3.5 E�ects of Pool Size . 174

7.3.6 E�ects of Noise . 182

7.3.7 E�ects of Spectral Energy Thresholding 186

7.3.8 E�ects of Structural Similarity Threshold 189

7.3.9 Memory . 191

7.3.10 Processing Speed . 194

7.4 Empirical Study on EP with SeqDrift2 Change Detector . . . 196

7.4.1 Processing Speed and Memory Comparison 198

7.5 Summary . 199

8 Case Study 201

8.1 Introduction . 201

8.2 Description of the dataset used 202

8.2.1 The models used for empirical study 203

8.3 Empirical Study . 204

8.3.1 Accuracy Comparison 204

8.3.2 Memory consumption comparison 210

Contents vii

8.3.3 Processing Speed Comparison 213

8.3.4 Robustness to Concept Change 215

8.4 Summary . 217

9 Conclusion and Future Work 219

9.1 Research Accomplishments . 219

9.2 Overall Re�ection on Achievements 223

9.2.1 Limitations of this Research 225

9.2.2 Interesting Open Research Questions 228

9.3 Future Work . 230

A Appendix for Chapter 4 234

B Appendix for Chapter 6 239

C Appendix for Chapter 7 241

Bibliography 244

List of Figures

2.1 A recurrent concept capturing framework for data streams . . 26

2.2 The strategy for recurrence capture in a data stream environment 29

4.1 A sequential block based approach to change detection 45

4.2 Comparative Change Detection Performance of SeqDrift1 and

ADWIN . 58

4.3 E�ects of Block Size and Warning Level on Detection Delay

Time for SeqDrift1 . 59

4.4 E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 . 60

5.1 Minimization of the sum of two negative exponents 68

5.2 Fine adjustment to k based on the data rate using the concave

function . 81

5.3 Error rate Vs Time with optimized values of ε 83

5.4 Average False Detections of SeqDrift1, SeqDrift2 and ADWIN 93

5.5 E�ects of Noise Injection . 97

5.6 Detection delays of SeqDrift1, SeqDrift2 and ADWIN on streams

with various slopes and lengths 105

5.7 Variation of Accuracy with Training Set Size 114

6.1 Decision tree with 3 binary features, truth table of classi�cation

and its Fourier Spectrum representation 125

6.2 This graph shows an example based on Figure 6.1, Energy con-

tained in low order coe�cients decreases exponentially as shown

in this graph. Therefore, low order coe�cients are capable of

capturing most of the energy contained in a tree 127

List of Figures ix

6.3 An architecture for concept re-use with the FCT approach . . 130

6.4 Exponential Decay of Energy with Coe�cient Order in FCT

on RBF dataset . 138

6.5 Classi�cation Accuracy for CBDT, FCT and MetaCT 140

6.6 Memory pro�les of FCT and MetaCT on Rotating Hyperplane

Dataset . 142

6.7 Sensitivity of Accuracy on Spectral Energy 144

6.8 Sensitivity of Accuracy on Spectral Energy 144

6.9 Sensitivity of Accuracy for FCT and MetaCT on Noise Level . 147

6.10 Accuracy comparison between FCT+ADWIN and FCT+SeqDrift2

on RBF dataset . 148

6.11 Accuracy comparison between FCT+ADWIN and FCT+SeqDrift2

on Rotating Hyperplane dataset 148

6.12 Accuracy comparison between FCT+ADWIN and FCT+SeqDrift2

on NSW Electricity dataset 149

7.1 Decision Tree 1 with 3 binary features 157

7.2 Decision Tree 2 with 3 binary features 157

7.3 EP Structural Diagram . 158

7.4 Accuracy Pro�le of FCT, EPa and EP on RBF dataset for pool

sizes 3,5 and 10 . 176

7.5 Accuracy Pro�le of FCT, EPa and EP on Rotating Hyperplane

dataset for pool sizes 3,5 and 10 177

7.6 Accuracy Pro�le of FCT, EPa and EP on NSW Electricity

dataset for pool sizes 3,5 and 10 178

7.7 Accuracy pro�le comparison of FCT, EPa and EP by algo-

rithm for pool sizes 3,5 and 10 on rotating hyperplane dataset 180

7.8 Accuracy pro�les of FCT, EPa and EP by algorithm for pool

sizes 3,5 and 10 on NSW Electricity dataset 181

List of Figures x

7.9 Noise resilience of FCT, EPa and EP on noisy RBF datasets . 183

7.10 Noise resilience of FCT, EPa and EP on noisy NSW Electricity

datasets . 184

7.11 Noise resilience of FCT, EPa and EP on noisy Rotaing Hyper-

plane datasets . 185

7.12 Noise resilience of FCT, EPa and EP on noisy SEA datasets . 186

7.13 Accuracy pro�le of FCT, EPa and EP for various levels of en-

ergy thresholding on RBF dataset 187

7.14 Accuracy pro�le of FCT, EPa and EP for various levels of en-

ergy thresholding on NSW Electricity dataset 188

7.15 Accuracy pro�les of EP for the structural similarity threshold

values 30%, 50% and 70% . 190

7.16 Accuracy comparison between EP+ADWIN and EP+seqdrift2

on all datasets . 197

8.1 Accuracy pro�les of all four algorithms on �ight dataset for

various pool size values . 205

8.2 Accuracy comparison between each of the adaptive algorithms

and EP+SeqDrift2 for pool size=1 on �ight dataset 209

8.3 Memory pro�le of all algorithms on Flight dataset for pool size

= 10 . 212

8.4 Processing speed pro�le of all algorithms on Flight dataset for

pool size = 3 . 214

8.5 Accuracy recovery after concept change 216

A.1 E�ects of Block Size on Detection Delay Time for SeqDrift1 for

the data length 10,000 . 234

A.2 E�ects of Block Size on Detection Delay Time for SeqDrift1 for

the data length 50,000 . 235

List of Figures xi

A.3 E�ects of Block Size on Detection Delay Time for SeqDrift1 for

the data length 100,000 . 235

A.4 E�ects of Warning Level on Detection Delay Time for SeqDrift1

for the data length 10,000 . 236

A.5 E�ects of Warning Level on Detection Delay Time for SeqDrift1

for the data length 50,000 . 236

A.6 E�ects of Warning Level on Detection Delay Time for SeqDrift1

for the data length 1,000,000 237

A.7 E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 for data length 10,000 237

A.8 E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 for data length 50,000 238

A.9 E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 for data length 100,000 238

B.1 Memory pro�les of FCT and MetaCT on RBF, SEA, Electricity

and Spam Datasets . 240

C.1 Accuracy pro�le of FCT, EPa and EP on SEA dataset for pool

sizes 3,5 and 10 . 241

C.2 Accuracy pro�le of FCT, EPa and EP on Spam dataset for pool

sizes 3,5 and 10 . 242

C.3 Accuracy pro�le of FCT, EPa and EP on Rotating Hyperplane

for various energy thresholds 243

List of Tables

4.1 False Positive Rate of SeqDrift1 and ADWIN for all stationary

Bernoulli Distributions and Signi�cance level values 56

4.2 Detection delay for varying window sizes 61

5.1 Optimization of k value by Algorithm 5.1 79

5.2 Complexity analysis of change detectors 89

5.3 Average False Change Comparison across all chosen detectors 93

5.4 Average False Positive Rates across all chosen detectors 95

5.5 Average Number of Changes Detected on a Noisy Stream . . . 98

5.6 Comparison of the change detectors SeqDrift1, SeqDrift2 and

ADWIN on an abrupt drift of various mean increments 100

5.7 Average false change detections over di�erent stationary Bernoulli

distributions . 102

5.8 Processing times of SeqDrift1, SeqDrift2 and ADWIN on streams

with di�erent slopes and lengths 106

5.9 Sensitivity of Reservoir over Sliding Window Approach 108

5.10 Further Experimentation on SeqDrift2 and ADWIN 110

5.11 Integration of Change Detectors with Adaptive Hoe�ding Tree.

A - Accuracy, T- Mining Time, K - Kappa coe�cient, N - Total

number of nodes and L - Number of leaf nodes 113

6.1 Average Memory Consumption (in KBs) Comparison 141

6.2 (Processing Speed Instances per second) Comparison 143

6.3 Average Memory Consumption (in KBs) and Processing Speed

Instances per second Comparison 150

List of Tables xiii

7.1 Raw memory values consumed (in KBs) by FCT on all �ve

datasets for pool sizes 3,5,10 and 20. As FCT has a forest of

tree and a Fourier pool, memory consumption is divided into

two columns for each pool size experimented. 192

7.2 Raw memory values consumed (in KBs) by EPa on all �ve

datasets for pool sizes 3,5,10 and 20. As EPa has a forest of

tree and a Fourier pool, memory consumption is divided into

two columns for each pool size experimented. 193

7.3 Raw memory values consumed (in KBs) by EP on all �ve

datasets for pool sizes 3,5,10 and 20. As EP has a forest of

tree and a Fourier pool, memory consumption is divided into

two columns for each pool size experimented. 193

7.4 Processing speed of FCT for the pool sizes 3, 5, 10 and 20

is shown in this table. It is measured as number of instances

processed per second . 194

7.5 Processing speed of EPa for the pool sizes 3, 5, 10 and 20 is

shown in this table. It is measured as number of instances

processed per second . 194

7.6 Processing speed of EP for the pool sizes 3, 5, 10 and 20 is

shown in this table. It is measured as number of instances

processed per second . 195

7.7 Average Memory Consumption (in KBs) and Processing Speed

(Instances per second) Comparison 199

List of Tables xiv

8.1 This table shows average accuracy of various classi�ers that

are designed for data stream mining. Each classi�er is tested

�rst and trained with each instance (Prequential Evaluation)

with the sample frequency= 1 instance thus, recording accuracy

for each instance. Single classi�er models were chosen for a

fair comparison with both EP models because EP models were

restricted to have only one Fourier tree in the pool for this

comparison . 208

8.2 Raw memory values consumed by all four algorithms on Flight

dataset for the pool sizes 1,3 and 10. As all algorithms have

a forest of trees and a Fourier pool, memory consumption is

divided into two columns for each pool size experimented. . . 211

8.3 Processing speed (number of instances processed per second) of

all four algorithms on �ight dataset for various pool size values. 213

8.4 Average relative accuracy (scale of 0 to 1) gain until recovery

after a concept change is detected 217

List of Tables xv

Attestation of Authorship

I hereby declare that this submission is my own work and that,

to the best of my knowledge and belief, it contains no material

previously published or written by another person (except where

explicitly de�ned in the acknowledgments), nor material which to a

substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.

...................

Signature

Chapter 1

Introduction

1.1 High Speed Data Mining and its Research

Challenges

Data is an invaluable resource in this information technology era. Even before

the start of this era data was recorded and stored but the importance of it

was hardly realized to the extent that is re�ected in contemporary times.

Data records often describe the past and embedded in them are trends that

describe the behavior of the underlying data generation mechanism. Prior

to the information era, discovery of trends was very limited due to enormous

degree of manual work involved. Furthermore, methods to capture hidden

trends did not exist or were simply not pragmatic.

Only a few organizations such as governments and large manufacturing

plants recorded data about people, employees, production, products etc. The

main purpose of collection of data was simply to query in order to retrieve

more details attached to a record. Introduction of computerized database

management systems minimized the manual work involved with the evolution

of computers. However, the requirement of organizations started to change

from just queries into analysis of the past to prediction of the future. This

is when data mining emerged as a �eld of research and application. Data

mining can be categorized into: Classi�cation and Prediction, Clustering,

Association rule mining, Anomaly detection, Regression and Summarization

[Fayyad 1996].

1.1. High Speed Data Mining and its Research Challenges 2

Methods that support each of these categories can be used to reveal hid-

den information about the data. The retrieved information is then converted

into knowledge that is directly useful to the end users, for example a business

organization. Traditional data mining techniques were designed to be applied

on static data chunks. Therefore, several algorithms used in traditional data

mining utilize statistics or the properties of the entire dataset. With the ad-

vancement of communication technologies, real time data transfers have been

increasingly becoming popular. Banks, large retailers, astronomical observa-

tories, weather forecasting centers, �nancial markets and Internet applications

are a few industries that generate and use the data obtained from real time

data transfers. The availability of data �owing in real time was the trigger for

real-time data analysis. As a result of this new requirement of real time data

processing, data stream mining techniques emerged. Several algorithms and

methodologies have been proposed aiming at each of the above data mining

categories. In addition, stream mining imposes additional challenges. The

below is a list of such challenges [Gaber 2005] [Krempl 2014].

� Continuous learning as new data stream instances arrive and incremental

update to classi�ers

� Uncertain future instances question the applicability of current models

in use

� Detecting changes in concepts in underlying data stream to know when

and where to perform modi�cations to current models to cope with new

concepts

� Memory and computational complexity problems of the algorithms and

data structures due to in�nite nature of data streams

� Theoretical bounds on performance of algorithms

1.1. High Speed Data Mining and its Research Challenges 3

� Optimal use of models constructed and performance stabilization over

changing data streams

� Interactivity and visualization of mining outcomes and models

� Preprocessing of data stream to remove noise, to reduce number of fea-

tures etc. to improve mining activity and model and memory complexity

� Real time performance evaluation even in a very high speed data stream

� Prediction of future status of the data stream using the historical statis-

tics gathered

� Other requirements of real time applications such as hardware software

requirements and limitations etc.

Addressing all the above challenges in a single system is a too ambitious

task. Prioritizing a few of the above challenges is more feasible. This research

focuses on designing a system that is not susceptible to changing concepts in a

data stream. The research primarily addresses the challenge to stabilize model

performance through optimal use of past models. Due to strong dependence

of the solution to this challenge on change detection, substantial focus is laid

on constructing a change detector that could positively support the primary

objective of performance stabilization. Moreover, models are compressed and

aggregated to save memory consumption and processing overhead to favor

high speed data streams.

The solution proposed by this research has a number of attractive prop-

erties and bene�ts in application. As mentioned earlier, it is a necessity to

have consistently good performance in terms of accuracy and processing speed

in time critical applications such as auto-pilot systems, military applications,

stock markets, disaster monitoring systems, patient monitoring systems and

driving systems found in driver-less trains and cars. Incorrect predictions and

1.1. High Speed Data Mining and its Research Challenges 4

classi�cations even for a very short period of time causes serious damages

to end users and equipment. In all of the above examples, there is a high

probability that a previously seen situation reappears in future. An autopilot

system faces similar weather patterns, similar �ight segments such as take o�,

cruise and landing and similar �ying paths over a number of di�erent �ights.

Similarly, stock markets show similar trends and scenarios over a period of

time. Relearning under similar situations is not only a waste of e�ort but has

the possibility of long delay to recover from the impact of a concept change.

The simple, practical and e�ective scheme would be to reuse a model con-

structed during the previous occurrence of the current concept in order to

prevent relearning and thus minimize delay. An attempt to reuse knowledge

from the past whenever concepts recur in a data stream is the problem of

capturing recurring concepts in machine learning research.

In past research, recurrence concept capture has received little attention.

There are a number of reasons for this: Data Stream Mining was at its ini-

tial stage of development, applications of Data Stream Mining hardly existed,

the modules to design a Recurrence Capturing Framework such as Concept

Change Detector were poor in performance. Nowadays, recurrent concept

capture has started to attract the attention of an increasing number of re-

searchers.

Previous research laid its focus on this problem based on a few di�er-

ent approaches. Among such approaches are: the construction and reuse of

concept representations by caching representative data instances or classi�ers

[Alippi 2013]; classi�er adaptation mechanisms [Lazarescu 2005] and ensemble

based methods [Ramamurthy 2007], [Katakis 2008] are a few of which have

proved to be promising. Some solutions are dependent on concept change

detectors to recognize signi�cant changes in the underlying data stream and

to trigger speci�c tasks to store or reuse an existing concept representation.

Models presented in [Gama 2011] and [Gomes 2010] are examples that are

1.1. High Speed Data Mining and its Research Challenges 5

dependent on Concept Change Detectors. These models rely on the per-

formance of Concept Change Detectors. False positive change detections

and long delay in detection negatively impact recurrence capture. Addition-

ally, required parameters of change detectors are hard to set and adjust on

data streams until ADWIN [Bifet 2007], which is essentially a parameter free

method [Bifet 2007] was introduced. ADWIN has been widely used in many

applications and praised for its sensitivity even on slowly varying data streams.

The major drawback of ADWIN is its high false positive rate and noise in-

tolerance, as shown in [Pears 2014]. Reducing the maximum allowable false

positive rate parameter has a negative impact of decreasing sensitivity to

changes. The other change detectors like Page-Hinckley Test [Mouss 2004]

[Page 1954], Gama's method [Gama 2010], EDDM [Baena-García 2006] and

EWMA [Ross 2012] charts have poor performance compared to ADWIN and

are ine�ective in practice in coping with various degree of changes in under-

lying data streams. There is a high correlation between a concept change and

the performance of current model. Concept change often causes a decrease in

accuracy of the current model. All of the above change detectors are designed

to monitor the error rate of a model to �ag a concept change. The other strat-

egy is to recognize changes in concepts directly from data stream instances.

This approach is rarely used due to its high computational complexity and

several limitations on its existing implementations.

This research addresses a number of shortcomings in previous approaches

in addition to proposing enhancements for capturing recurrent concepts and

reuse of classi�ers. Two change detectors, namely SeqDrift1 and SeqDrift2

that monitor classi�er accuracy to recognize statistically signi�cantly decreases

in accuracy in order to �ag a concept change have been proposed. The Se-

qDrift algorithms have been designed with an improved test statistic, data

structures, and algorithmic optimizations to minimize false positive rate and

to process data stream instances faster than ADWIN, while achieving com-

1.2. Objectives 6

parable detection delay. A detailed experimentation has also been done com-

paring their performances against a number of other change detectors.

The next section presents the key objectives of this research.

1.2 Objectives

This research is aimed at a solution that reuses past models when similar con-

cepts reappear in a high speed data stream. At a granular level, the purpose

of this research is to assess the e�ectiveness of Discrete Fourier Transform

of Decision Trees in a recurring concept environment. The Discrete Fourier

Transform has long being recognized as a mechanism for capturing recurrences

and it would be interesting to test its e�ectiveness in capturing recurrences

of concepts represented by decision trees built from data in a data stream

environment.

The novel framework that is introduced in this work depends on a concept

change detector to identify when to update the current classi�er model to suit

new concepts in a data stream.

False signals generated by a change detector have the potential to introduce

instability in classi�er performance. Moreover, a change detector should have

the capability to process data instances at the speed that they arrive. Though

there are a number of change detectors proposed in the literature as mentioned

earlier, each of these su�ers from one or more of key performance problems

such as high detection delay, high rate of false signals, high processing speed,

complex parameter optimization procedures or high memory consumption.

Therefore, further objectives of this research are set at implementing a change

detector that has all the above performance metrics at an acceptable level

in a concept recurring data stream. In addition to empirical evidence, this

research is aimed at providing theoretical guarantees on the performance of the

proposed models, wherever applicable. These objectives are explored through

1.3. Research Questions 7

the use of the research questions listed in the next section.

1.3 Research Questions

This section presents the set of research questions to achieve the objectives of

this research.

� How do we reduce the false positive rate while ensuring that the other

key performance measures such as processing time, detection delay, true

positive rate, noise tolerance and memory consumption are competitive

with respect to the current state of art change detectors?

� How does the Discrete Fourier Transform (DFT) perform in relation to

the storage and computational overheads when compared to standard

methods of recurrent concept capture?

� Are DFT encoded concepts capable of generalizing to new forms of con-

cepts that have appeared in the past? A better generalization ability

will improve the recurrence capture rate and lead to better classi�cation

accuracy.

� What are the alternative schemes for encoding concepts using the DFT?

How does the aggregation of DFT encoded concepts e�ect standard

performance metrics when compared to a non-aggregation strategy?

The next section de�nes the scope of this study.

1.4 Scope

The scope of this research is limited to the application of the Discrete Fourier

Transformation (DFT) on Hoe�ding Decision Trees [Hoeglinger 2007]. with

the assumption that this provides a good representation to capture recurring

1.4. Scope 8

concepts in highly compressed form. Hoe�ding Decision Trees represent the

modi�ed version of the standard decision tree algorithm that has been adapted

to suit incremental learning in a data stream environment. There are a num-

ber of variations of Hoe�ding Decision Trees such as the Hoe�ding Adaptive

Tree, the Hoe�ding Option Tree [Bifet 2010a],[Hulten 2001] that have been

proposed in literature.

As mentioned earlier, the application of the DFT on Decision Trees have

been shown to produce compact schema which are highly compressed versions

of the underlying decision tree without compromising on classi�cation accu-

racy [Kargupta 2004], [Kargupta 2006]. However Kargupta et al's research

was in the distributed data arena and not aimed at capturing recurring con-

cepts in data streams. Thus the application of the DFT will enable the main

hypothesis to be tested in this research which is that the DFT will enable re-

curring concepts to be captured in a memory e�cient manner while preserving

or enhancing the classi�cation accuracy achieved by standard incremental de-

cision tree classi�er such as the Hoe�ding Tree. The framework and methods

developed used in this research can easily be used on variants of the Hoe�ding

Tree.

In addition, the scope of the work on change detection is de�ned to con-

struct a change detector that is versatile enough to operate in any type of data

stream environment and recognize either gradual concept change or abrupt

change with high sensitivity.

The experimentation in this research tracks performance metrics such as

accuracy, processing speed, noise tolerance, memory consumption, model sta-

bility, ability to recognize recurring concepts and comparative delay in recov-

ery due to a concept change. As the base model, an implementation of a

Hoe�ding Tree forest (CBDT) [Hoeglinger 2009] forest is used.

As experimental testbeds, the benchmark synthetic data generators as well

as real world datasets, including a case study that exempli�es the problem

1.5. Overview of Research Strategy 9

addressed by this research that is the recurring concepts, are used.

1.5 Overview of Research Strategy

The overall research strategy is presented brie�y in this section. Two change

detectors are developed with di�erent objectives to suit the recurrence captur-

ing context. This is because recurrence capture depends on a reliable change

detector that is good at locating only the actual change points. In other

words, false alarm rate should be minimal to get an undistorted representa-

tion of concepts. The �rst change detector named SeqDrift1 is proposed with

the key aim of minimal false alarm rate and high processing speed. The second

change detector namely SeqDrift2 has then been presented to optimize detec-

tion delay while maintaining the bene�ts of SeqDrift1. Both change detectors

are modeled using statistical techniques such as sequential hypothesis test-

ing and Bernstein Bound. A performance comparison has been made with a

number of widely used change detectors namely, Page-Hinckley Test, Gama's

methods, EWMA charts and ADWIN. This demonstrates the strengths and

limitations of each of the change detectors and helps with deciding on the

choice to be used for the recurrence capture model that is the ultimate aim

of this research.

As mentioned earlier, to produce a highly compressed model that extracts

the essence of a concept that occurs in a data stream, the Discrete Fourier

Transform has been selected to be applied on the Hoe�ding Decision Tree.

Decision trees were preferred over the other classi�ers mainly due to its self-

interpretability of knowledge captured. The Discrete Fourier Transform pro-

duces a set of coe�cients that fully captures the classi�cation power of the

underlying decision tree. As mentioned earlier, the CBDT Descision Tree

forest is the choice of the base classi�er model to implement the recurrence

capture model. At each concept change point, the winner tree that has the

1.5. Overview of Research Strategy 10

best classi�cation accuracy over the current concept among all trees in a forest

is converted into Fourier form (Fourier Tree) and stored in a repository for

future use. At each concept change point, an assessment is also made on all

Fourier Trees for a possibility of reuse on the newly emerging concept that has

been signaled by the concept change detector. If no existing Fourier Tree is

found to be better in terms of accuracy than all of the Hoe�ding Trees in the

CBDT forest, the system is set to learn the newly emerging concept using the

decision trees in the forest. This overall strategy is named as Fourier Concept

Trees (FCT) and is evaluated against MetaCT and the base classi�er CBDT.

An improvement to FCT is made by exploiting a key property of Fourier

spectra that support aggregation of di�erent spectra into one integrated spec-

tral unit. A Fourier spectrum, in essence being a mathematical function, lends

itself easily to aggregation via a relatively simple algebraic process which is

described in detail in a subsequent chapter of this thesis. This in e�ect creates

a simple way of aggregating two or more decision trees together. In a recur-

rence capturing context, aggregation of classi�ers can have a positive e�ect by

generalizing concept representations to extend the ability to recognize similar

concepts that occur in the future. This hypothesis is tested with a model

named Ensemble Pool, EP as an extension to FCT. Structurally similar trees

are aggregated to produce better representation and to reduce memory and

computational overheads. In addition, a number of computational optimiza-

tions also has been proposed. Performance is primarily compared against FCT

to study the impact of aggregation in concept recurring environment.

In addition, the contribution of a change detector especially with respect

to its false alarm rate is also assessed by evaluating FCT and EP with ADWIN

and EP change detectors.

The following sections presents the contributions made by this research.

1.5. Overview of Research Strategy 11

1.5.1 Theoretical Contribution of This Research

This research introduces a strategy to capture recurring concepts using change

detectors and a pool of classi�ers. Therefore, the key theoretical contribution

is the assessment on how well an explicit use of change detectors monitoring

classi�er error rate and storing previously best �tted classi�ers for future use

perform in a data stream that has concept recurrences. Moreover, this research

is the �rst work that evaluates whether classi�er compression and aggregation

is a promising method that yields better performance measures compared to

the methods that do not apply the above in concept recurring environment.

The above theoretical contribution is made with proposing a number of

new and modi�ed methods in granular level with a number of low level sub-

contributions.

Such sub-contributions made in this research are summarized below:

� A new detection threshold for change detection based on the Bernstein

Bound that minimizes the false positive rate, along with theoretical

guarantees on key performance metrics [Sripirakas 2013], [Pears 2014]

� Novel application of reservoir sampling algorithm in the change detection

context to draw a representative sample e�ciently within the memory

constraints inherent in a very high speed data stream [Pears 2014]

� A novel scheme to compensate for accumulated false positive error due

to multiple sequential hypothesis testing in place of the conservative

Bonferroni correction [Pears 2014]

� Two novel algorithms, namely SeqDrift1 and SeqDrift2, with signi�-

cantly better false positive rates than existing change detectors have

been proposed. In addition to the above, processing time and noise tol-

erance advantages over the widely used ADWIN change detector were

also obtained [Sripirakas 2013], [Pears 2014].

1.6. Publications 12

� Novel application of Discrete Fourier Transform on decision trees con-

structed in a data stream environment and exploitation of its key prop-

erties such as aggregation of decision trees to capture similar recurring

concepts [Sripirakas 2014a], [Sripirakas 2014b]

� Optimizations in the derivation of Fourier coe�cient generation along

with theoretical guarantees [Sripirakas 2014b] on the computational over-

heads of the inner product operation required to derive Fourier coe�-

cients.

� Two novel algorithms, named Fourier Concept Trees and Ensemble Pool

to capture recurring concepts and to reuse stored models when similar

concepts reappear in a data stream [Sripirakas 2014a], [Sripirakas 2014b].

� A novel scheme for energy thresholding on the Fourier spectrum that

results in a more e�cient method for extracting a core subset of signi�-

cant Fourier coe�cients that together preserve a guaranteed amount of

energy in the resulting spectrum. This ensures that the resulting spec-

trum faithfully captures the classi�cation power inherent in the original

decision tree while ensuring the resulting spectrum is as compact as

possible [Sripirakas 2014b].

� An improved set of experimental strategies to assess a concept change de-

tector and a recurrence concept capturing algorithm [Sripirakas 2014b]

1.6 Publications

� Pears, Sakthithasan Sripirakas and Yun Sing Koh. Detecting concept

change in dynamic data streams. Machine Learning,vol. 97(3), pages

259-293, 2014.

1.7. Thesis Structure 13

� Sakthithasan Sripirakas, Russel Pears and Yun Sing Koh. One Pass

Concept Change Detection for Data Streams. In Advances in Knowledge

Discovery and Data Mining, volume 7819 of Lecture Notes in Computer

Science, pages 461-472. Springer Berlin Heidelberg, 2013.

� Sakthithasan Sripirakas and Russel Pears. Mining Recurrent Concepts

in Data Streams Using the Discrete Fourier Transform.In Ladjel Bella-

treche and Mukesh K. Mohania, editors, Data Warehousing and Knowl-

edge Discovery, volume 8646 of Lecture Notes in Computer Science,

pages 439-451. Springer International Publishing.

� Sakthithasan Sripirakas and Russel Pears. Use of Ensembles of Fourier

Spectra in Capturing Recurring Concepts in Data Streams. Interna-

tional Joint Conference on Neural Networks. 2015, Ireland.

The algorithms, SeqDrift1 and SeqDrift2 presented in Chapter 4 and 5 are

available in Massive Online Analysis (MOA) [Bifet 2010b] software 1.

1.7 Thesis Structure

The next Chapter outlines the basics of data mining and data stream min-

ing identifying the key challenges including recurrence capture and concept

change detection. In addition, it proposes a general framework to recurring

concept capturing algorithm. Chapter 3 introduces the problem of concept

change detection in a data stream environment and presents the state of art of

the research. Chapter 4 and 5 propose the two change detection algorithms,

SeqDrift1 and SeqDrift2 respectively proposed in the research as an enhance-

ment to the current state of change detectors. Then, recurrence capture in

data stream environment is described in Chapter 6 with recent literature and
1https://code.google.com/p/moa/

1.7. Thesis Structure 14

an algorithm called, FCT that applies Discrete Fourier Transform (DFT) on

decision trees to capture recurring concepts. Chapter 7 presents an extended

version of FCT, termed EP that exploits DFT by aggregating Fourier spectra

of similar concepts with two computational optimizations on Discrete Fourier

Transform. Chapter 8 evaluates the performance of FCT and EP when cou-

pled with SeqDrift2 change detector on a real world dataset that approximates

a data stream which is the target application of this research. The research

achievements, limitations, future directions and work and open questions are

discussed in Chapter 9.

Chapter 2

A General Framework for

Capturing Recurring Concepts

This chapter summarizes the evolution of data mining research along with

the associated problems and challenges faced in capturing recurring concepts

in a data stream environment. Beginning with a traditional broad de�nition

of data mining, the focus is laid on specialized environments such as data

streams and recurring concepts. Finally, it proposes a general framework for

integrating all components together in order to capture recurring concepts.

2.1 Data Mining and its Components

Data Analysis is the process of analyzing data with a view to extracting use-

ful information from it. The information extracted is signi�cantly useful in

virtually any type of application including Business, Crime analysis, Health

Informatics, Scienti�c Data Analysis etc. Beginning as a data collection pro-

cess, Data Analysis then evolved into Data Management, followed by Data

Warehousing and Decision Support through the use of On Line Analytical

Processing (OLAP) technology. In the next phase of evolution Data Mining

emerged. With numerous real world applications producing data streams, a

new category of Data Mining has emerged over the last decade or so, known

as "Data Stream Mining".

A typical Data Mining system consists of a number of components or sub-

2.2. Data Stream Mining and its Properties 16

systems. Sub-systems are required to store and access data; a set of algorithms

to perform classi�cation, categorization and prediction; a number of methods

to represent and visualize data and knowledge; and a number of evaluation

methods including data generators and evaluation metrics. Decision trees,

Arti�cial Neural Networks, Genetic algorithms, k-nearest neighbor and rule

extraction algorithms are but a few examples of algorithms used in Data

Mining. In the classi�cation context, k-fold cross validation, holdout method,

random sub sampling, leave one out method, bootstrap, confusion matrix and

receiver operating curves are a few of the many evaluation methods used in

Data Mining.

Traditional data mining algorithms are specialized to operate on a given

training data set in o�-line mode rather than on an incoming stream of data

arriving in real time. In o�-line, models could be learned and tuned on the

entire training data set to capture the knowledge hidden in the data. In addi-

tion, availability of the full training data set enables static model construction

which can then be applied either on historical hold out test data or incoming

data not used in the training process. Though there are challenges in learn-

ing from a dataset in capturing signi�cant patterns/information, incremental

updates to current models constructed are not addressed in traditional data

mining contexts. In contrast, data stream mining introduces additional com-

plexities and challenges compared to data mining. The next section briefs

what data stream mining is and its components.

2.2 Data Stream Mining and its Properties

Dynamic incoming data are found in many real world applications. Videos,

ongoing chats and transactions, real time web monitoring systems, stock ex-

change applications, incoming sensor data from ground or space based sen-

sors, cellular records and social media data are some examples of data streams

2.2. Data Stream Mining and its Properties 17

which often require analysis to e�ectively prepare for future trends in the data.

Data Stream Mining can be viewed as a method that does repetitive and

incremental application of data mining techniques. When underlying data

changes are compared to the past, the models built need to be updated to

re�ect new trends. Therefore model learning needs to be carried out on an

on-going basis. At the same time, current model needs to be re�ned incre-

mentally as new data instances arrive. This implies that the evaluation cri-

teria/metrics used in traditional data mining are applicable for data stream

mining methods as well. In addition, the properties of data streams such as

speed of incoming instances, and delay in receiving true class labels impose

new metrics in assessing performance of data stream mining algorithms.

The next section focuses on the new challenges faced in data stream mining

approaches. The below is a list of such challenges [Gaber 2005] [Krempl 2014].

� Continuous learning as new data stream instances arrive. This involves

challenges in developing models from summary statistics to predict fu-

ture trends in the stream. Furthermore, continuous learning forces mod-

els to incrementally learn. Therefore, traditional models designed for a

data mining environment should be redesigned to support incremental

learning. In addition, computer hardware and software also need to be

improved to process high speed streams.

� Uncertain future instances. The time dimension of a data stream adds a

further complication on the status of current trends or concepts. Thus,

in a classi�cation setting, the degree of correlation between the target

variable and predictor variables changes over time. This precipitates

current models to be outdated. Therefore, a data stream mining algo-

rithm needs to handle such changes and update models accordingly.

� Detecting changes in concepts. Many real world data streams carry

changing concepts over time. For example, data stream produced from

2.2. Data Stream Mining and its Properties 18

Sales may embed di�erent concepts due to seasonal e�ects. The un-

known nature of future data instances thwarts model construction that

is suitable for every possible variation in a data stream. The only prag-

matic solution would be to use di�erent models on dissimilar segments

of data chunks or to modify the current model to suit di�erent concepts

whenever those appear in the data stream. In order to perform any of

the above mentioned actions, changes in stream elements need to be rec-

ognized as those occur. A very challenging requirement of such change

detection is that it should be independent of domain knowledge or of

any particular concept that may occur in any given data stream in order

for it to be both generalizable and robust.

� Memory and computational complexity problems. Incoming data should

be processed in real time, otherwise data is lost. In a high speed high

dimensional data stream, it would be impractical to store data from

the very beginning of the stream due to limited available memory. Pro-

cessing such a large dataset would also be a bottleneck in a real world

application. In order to satisfy memory and computational complex-

ity requirements, there should be methods that summarize, sample or

index data instances. Incorporating such methods should not overload

existing models.

� Theoretical bounds on performance. Though this is not a unique re-

quirement imposed by data stream mining per se, this introduces extra

challenges in a stream mining environment. The uncertainty of data

distribution and unbounded nature of data streams are root causes that

complicate the speci�cation of bounds on performance on models per-

forming classi�cation, change detection etc.

� Optimal use of models constructed and performance stabilization. This is

2.2. Data Stream Mining and its Properties 19

an important requirement especially in safety critical systems. Changes

in data stream elements could make current models obsolete. Construc-

tion of new models or modi�cations to existing models will be made in

response to a detected change in data stream. Due to the delay in adapt-

ing an existing model into a new one, performance will deteriorate in

this learning period. To overcome signi�cant performance degradation,

one solution would be to minimize delay by optimizing learning process.

The other would be to reuse any existing models that can cope up with

the new concept. The �rst solution would be impractical as su�cient

samples of a new concept should be gathered for learning and there is

always an inherent upper limit in the ability of any learning process.

The second would be a plausible method to regain or maintain the per-

formance of stream mining models by simply switching to an existing

model or to an aggregated structure of existing models to face new data

instances.

� Interactivity and visualization of mining outcomes and models. From an

end user's perspective, this requirement may be essential. Models should

be capable of describing the patterns captured rather than being just a

black box of mathematical values. The Decision Tree is an example of

such a descriptive model that can be presented to end users. In addition

to detecting concept changes, it would be desirable to describe a concept

and its change over time. This will bene�t end users to understand and

interpret the data generation process and data stream elements.

� Preprocessing of data stream. Preprocessing, in theory, could reduce

memory and complexity overheads of a high speed high dimensional

data stream. However, the presence of concept changes over time makes

a consistent preprocessing inapplicable in a data stream environment.

Moreover, in an unsupervised preprocessing setting, uncertainty of the

2.2. Data Stream Mining and its Properties 20

composition of future data instances would be a major barrier for a

machine learner to decide on a suitable preprocessing technique.

� Real time performance evaluation. This is an interesting problem that

needs to be addressed when evaluating data stream mining models. As

opposed to traditional, static data mining, the time frames of evalua-

tion metrics should also change as concepts changes in a data stream.

Otherwise, performance metrics would show an erroneous real time per-

formance value that does not represent the currency of the data stream

mining models. Dependent on concept change detection, evaluation met-

rics need to be reset or weighted to re�ect the importance of current

concept rather than being historic.

� Prediction of future status of the data stream. Assuming that there is

a relationship between the past and the future, meta mining techniques

could be used to predict how data stream could behave in the future. So-

lutions to this problem provides valuable information to prepare models

to face the future changes promptly. However, strict theoretical guar-

antees on such prediction can hardly be given.

� Minimum delay in learning. In a highly dynamic high velocity streaming

environment, models need to be learned with minimum delay consequent

to changes taking place in data stream elements.

� Other requirements of real time applications. This includes the require-

ments such as distributed data streams and processing, communication

over networks using compressed formats, speci�c software and hardware

requirements of various devices including mobile phones, merging of mul-

tiple data streams of di�erent formats and di�erent dimensions, noisy

and missing valued attributes and expectations on predictions such as

for how long and how far ahead. Optimizing a data stream mining model

2.2. Data Stream Mining and its Properties 21

to address any of these problems is very challenging.

The challenge due to high speed is often addressed with classi�ers that

process instances with high processing speed by means of statistical models

that forecast future trends based on data observed in the past. Moreover, data

summarization techniques such as sampling used to forecast future trends need

to have rigorous guarantees within acceptable probabilistic con�dence limits.

In addition, to cope with the speed of stream elements, models should �t in

fast access memory such as RAM with no reference to secondary storage.

When a data stream is dynamic, models which are kept in memory should

be updated to suit new data instances. If such changes occur with high fre-

quency, the length of the stream segment that carries such knowledge will be

correspondingly small. As such, this requires classi�ers that can operate on

small training sets and yet produce acceptable performance. This challenge

is hard to resolve as the construction of a mature classi�er exhibiting high

accuracy needs a statistically large sample. The data stream version of the

well-known Decision Tree algorithm called Hoe�ding Tree is one such exam-

ple of a classi�er that requires su�ciently large sample sizes to achieve high

accuracy. Due to lack of sample elements, the learning process may become

unstable with a low accuracy pro�le in highly dynamic environments.

Identi�cation of change position creates a boundary between outdated and

current stream elements thus providing a well-de�ned reference point for ei-

ther modi�cation of the existing classi�er or storage of the existing version

of the classi�er in a repository for future use when concepts recur. A delay

in recognizing the change point may restrict model updates thus resulting in

degraded performance. Thus, alongside with a classi�er, a change detection

algorithm operating in parallel also should process in real time by coping with

the speed of data stream elements.

Some classi�ers depend on statistics over the entire data segment avail-

2.3. Challenges in Recurring Concepts Environments 22

able to construct their model representation. These are not suitable in a data

stream environment as only partial/incomplete statistics are available at a

time. Therefore, classi�ers should only use partial/incomplete statistics to

construct the initial model and then incrementally re�ne its model represen-

tation as more instances are seen. As opposed to a standard Decision Tree

algorithm such as C4.5 that depends on a full data set, a specialized ver-

sion known as the Hoe�ding Tree [Bifet 2010a] is designed to exploit available

statistics.

As changes occur in data, models are invalidated and the current model is

modi�ed or replaced by a new model. This leads to loss of information that

was gathered in the past. Moreover, learning is duplicated (relearning) if the

models are not saved but past trends repeat. As a solution to this problem

past models could be archived and reused when similar trends repeat. The

focus of this research is on such environments and the unique challenges faced

in capturing recurring concepts are presented in the following section.

2.3 Challenges in Recurring Concepts Environ-

ments

As this is a specialized data stream environment where concepts reoccur, all

issues presented in the previous section should be resolved in addition to the

following:

� Remembering and compressing past models to store in a memory-e�ective

manner

� Choosing the right model that suits the current concept in the data

stream, from the archived classi�er set

� Memory management of archived Classi�er set to retain the most reusable/highly

2.3. Challenges in Recurring Concepts Environments 23

accurate classi�ers

� Capturing exactly recurring concepts versus similar concepts

The �rst challenge is to decide which models to remember and in what form.

It is necessary to store a classi�er in a way that it can be reused when a

concept recurs in the future. All classi�ers constructed need not necessarily be

archived. Archival criteria could include the signi�cance of a classi�er and its

dissimilarity to existing archived models. It is obvious that preference be given

to the ones with high performance and those that are distinct from the existing

set. At the same time, if classi�ers are too large, memory will be �ooded soon.

To reduce the severity of memory �ooding issue, a compression mechanism

if applicable is an appropriate strategy to reduce memory consumption and

complexity of the model archived.

The next question is that how the classi�er that best suits the current

concept could be selected from the archived set. A number of strategies may

be used. A sample taken from current concept can be used to evaluate the

performances of all archived models. Then the best one based on a criterion

like accuracy can be used to select the best available model. If class labels are

available for the instances of current concept, current accuracy on the current

concept may be compared to choose the best model rather than drawing a

sample of elements. Otherwise, meta learning may be used to identify the

best classi�er. Whatever the method employed, the method needs to be pre-

cise. An incorrect selection of classi�ers may lead to arti�cial instability in

performance.

The other issue is the management of memory, especially in memory con-

strained environments. In data streams that are highly volatile and embed

a large number of distinct concepts, a large number of classi�ers need to be

archived. In cases where memory is insu�cient to store classi�ers represent-

ing all recurring concepts, a strategy to maintain the most signi�cant set of

2.4. A General Framework for Data Stream Mining with
Recurrent Concept Capturing 24

classi�ers should be employed. This strategy should be aimed at minimizing

relearning by exploiting the bene�ts of available archived set.

In many real world environments, concepts rarely recur in the exact form.

In other words, concepts usually recur in a similar form. The most signi�cant

patterns seen in a concept survive but there will almost inevitably be some

degree of di�erence between the current and its most similar counterpart seen

earlier. It would be an advantage if classi�ers are re�ned to only hold the most

signi�cant patterns in such environments. Otherwise, a small dissimilarity

may be su�cient to disqualify a similar existing archived model from being

reused.

In this research, each one of the above mentioned problems is addressed

and solutions have been proposed. The next section identi�es the components

of a framework to capture recurring concepts and shows the interconnections

among those.

2.4 A General Framework for Data StreamMin-

ing with Recurrent Concept Capturing

As shown in Chapter 6 there are two major strategies to tackle recurrent

concepts in data streams. One method is to create a conceptual representation

using stream instances (conceptual maps [Katakis 2008]) whereas the second

method is to archive classi�ers that performed well on previously seen concepts

so that they can be reused in the future. The conceptual maps created could

be exploited to construct a new classi�er or to adapt the current classi�er

to suit the current concept. A number of previous works prefer the second

strategy due to its simplicity and precision over the �rst which lacks the ability

to create conceptual maps accurately. Also, the second strategy has the added

advantage of not requiring additional computation to construct the conceptual

2.4. A General Framework for Data Stream Mining with
Recurrent Concept Capturing 25

maps. This research also favors the second strategy and enhances it further

by optimizing the representation and reuse of archived classi�ers.

A general framework for a data stream with a recurrent concept capture

capability requires the use of a number of components. Each component is

designed to resolve each sub-problem. A collection of classi�ers that actively

learn the current concepts, a concept change detector and an archival pool

consisting of classi�ers that captured past concepts are the main components

of this framework. Figure 2.1 shows how each component interacts with each

other in conceptual terms.

2.4. A General Framework for Data Stream Mining with
Recurrent Concept Capturing 26

Figure 2.1: A recurrent concept capturing framework for data streams

The classi�er component performs classi�cation or prediction by directly

processing the incoming data instances. The concept change detector com-

ponent may either interact directly with data stream elements or indirectly

via the classi�er. If concept change detection is carried out by directly by

processing data stream instances, concept change is signaled by detecting a

statistically signi�cant di�erence in values of the attributes of data instances

2.4. A General Framework for Data Stream Mining with
Recurrent Concept Capturing 27

between consecutive stream segments [Ho 2005]. Otherwise, classi�er output

for each data instance in conjunction with the true class label can be used to

generate a binary stream of digits, with binary value "1" if the classi�cation

for the given data instance is correct or "0" otherwise. This value has to be

fed to the concept change detector that monitors the classi�er performance.

The next component pair that closely interacts with each other is the

current classi�er pool and the archival classi�er pool. At concept change

points, if criteria are met to archive the current classi�er, it is transferred

to the archival pool. Subsequently, the archival classi�er pool is searched to

�nd any reusable classi�er that suits the current concept. Classi�er update

functionality is wholly contained within the classi�er component. The test

to check eligibility criteria for archival and pool management functionality is

embedded in the archival classi�er pool component.

Required functionality for change detection such as a statistical test to rec-

ognize when statistically signi�cant changes occur in the stream are embedded

in the concept change detector component.

This component model allows for parallelization to a greater degree. If

multiple classi�ers are active to process a single instance, then each classi-

�er could be assigned to a dedicated processing unit in a parallel processing

environment. Similarly, while checking for archival criteria, the selection of

reusable classi�ers could be performed in parallel. If there are multiple con-

cept change detectors monitoring di�erent classi�ers or parts of a classi�er

(sub trees in a decision tree) then each concept change detector can be as-

signed to di�erent processors for simultaneous processing. This will drastically

reduce processing time of the overall system.

Execution of this system involves timely activation of functionality of each

component. The next paragraph elaborates the algorithm that implements

the framework presented in Figure 2.1.

The algorithm is brie�y depicted in Figure 2.2. Incoming data instances

2.4. A General Framework for Data Stream Mining with
Recurrent Concept Capturing 28

are processed by the current classi�er.The Current classi�er may be stand-

alone or an ensemble. Once true class labels are available, the accuracy of

the classi�er could be computed. Changes in underlying concepts often leads

to a decrease in accuracy of current classi�er. A signi�cant decrease in accu-

racy indicates a noticeable change in underlying concept. Therefore, accuracy

can be monitored by a concept change detector to identify concept changes.

At this point, a decision can be made on adapting the system to cope with

the current concept. The options are to modify classi�ers using the stream

instance or to attempt to reuse any of the archived classi�ers.

The �rst method is applied by making structural or statistical changes

to classi�ers whereas the second requires another decision on whether any

existing archived classi�er could be reused or not. To implement the sec-

ond method, it is necessary that outdated classi�ers be put into an archival

classi�er pool right after a concept change detection. At the same time, it

is necessary to ensure that duplicate classi�ers are not added to this pool

in order to avoid unnecessary computation and memory consumption. The

decision to reuse any existing classi�er can be made with reference to meta

statistics that estimates classi�er performance or the accuracy on the current

set of instances if true class labels are available. A criterion that sets the

threshold on the estimated performance or actual accuracy has to be de�ned

to choose the archived classi�er that best �ts the current concept. This is

the second crucial step in the process. If the threshold is set to a low value,

there is a possibility of being repeatedly stuck with poor selection of archived

classi�ers. This would prevent the construction of new classi�ers on unseen

concepts thus a�ecting the performance of the system. At the same time,

high value of this threshold decreases the usage of archival pool. Thus, the

aim to avoid relearning on previously seen concepts may not be achieved. In

the event that there is no suitable archived classi�er for a reasonable value of

this threshold, a new classi�er should be constructed.

2.4. A General Framework for Data Stream Mining with
Recurrent Concept Capturing 29

Figure 2.2: The strategy for recurrence capture in a data stream environment

The next complication arises when memory consumption is constrained.

This constraint limits the number of archived trees in the pool. A mechanism

has to be used to ensure that the set of frequently reusable classi�ers are

retained while obeying the memory limitation.

The problem of recurrence capture will become more complex if stream

instances arrive at very high speed. To cope with high speed, the classi�ers

must be able to learn and process instances with minimal processing time. In

addition, archival pool management and the strategy for classi�er selection

from the pool should be optimized to minimize the time.

2.5. Summary 30

As mentioned earlier in this chapter, the design to capture recurring con-

cepts in exact form has very limited applicability in practice because data

streams produce similar, rather than exactly recurring concepts. Therefore,

outdated classi�ers should be modi�ed only to remember the most signi�cant

trends of a concepts rather than being too speci�c to a certain concept. This

goal may be achieved through a pruning or compression mechanism.

This research proposes two di�erent strategies that support the above

framework in addition to two novel algorithms to detect concept changes

in e�ective and e�cient ways with respect to accuracy, memory usage and

computational complexity.

2.5 Summary

In a nutshell, this chapter has presented an overview of the problem Recur-

rent Concept Capturing and its sub-problems with the use of a framework that

connects a number of components to provide a comprehensive solution. The

crucial steps involved in addressing this problem are the precise capture of

concept boundaries with minimum of delay and the maximization of archival

classi�er pool usage. A scheme that e�ectively addresses these issues will im-

prove stability and accuracy in dynamic environments. The next �ve chapters

of this thesis address the major challenges identi�ed in this Chapter.

Chapter 3

Change Detection in High Speed

Data Streams

3.1 Introduction

In this chapter, the problem of concept change detection is introduced and its

role in a data stream environment is discussed. Concept change occurs when

the underlying stochastic data distribution changes, causing changes to con-

cepts and ultimately causing models to degrade in accuracy. In a supervised

learning context, two general approaches to concept change detection exist.

Firstly, a multivariate approach that tracks whether statistically signi�cant

changes have occurred in the set of predictor features taken together. Such a

change is taken to signal that a concept change has taken place. The other

approach takes explicit advantage of the supervised nature of the learning

process and is based on the class itself. The classi�cation error is tracked on

a per instance basis and a vector of binary values (0 denoting a correct clas-

si�cation and 1 as an error) is fed to a change detector that detects whether

a statistically signi�cant shift has occurred in the error rate. The rationale

behind this approach is that a change in error rate signals the arrival of a new

concept which is not embedded in the present version of the classi�er.

The latter approach has been used in the vast majority of studies and is

the approach that is used in this research as well.

3.2. Rationale for Change Detection 32

3.2 Rationale for Change Detection

Concept change detection has been studied extensively by both the statistical

and machine learning communities. The main incentive within the statistical

community has been in the manufacturing and process control applications,

whereby changes in equipment due to wear and tear over time can cause

changes in the quality of products. The machine learning community has

a di�erent interest: whether models induced from historical data perform

equally well on newly arriving data or whether performance has degraded due

to changes in the underlying data distribution. In a data stream environment,

data arrives on a continuous basis and concept change causes changes in pat-

terns, thus requiring models to be changed on an ongoing basis and hence a

need arises for the automation of the concept change detection process.

The fundamental issue with data stream mining is to manage the sheer

volume of data which grows continuously over time. A standard method of

coping with this issue is to use a �xed size window of width w, where only

the most recent w instances are used to update the model built [Wang 2003a].

While this method is conceptually appealing on account of its simplicity, the

major limitation is that concept change can occur at intervals that are quite

distinct from window boundaries. If rapid changes occur within a window,

then these multiple changes will be not be detected by the mining algorithm

thus reducing the e�ectiveness of the model generated. Ideally a data stream

algorithm should use long periods of stability to build a more detailed model

whereas in time of rapid change the window needs to be shrunk at each change,

the data representing the old concept purged and the model updated with the

new concept. Concept change detection with variable-sized adaptive windows

has received very little attention compared to the well established area of

algorithm development for data stream mining.

The methods proposed for concept change detection all tend to su�er from

3.3. Change Detection Problem De�nition 33

limitations with respect to one or more key performance factors such as high

computational complexity and memory consumption, poor sensitivity to grad-

ual change or drift, or the opposite problem of high false positive rate. In this

research, two novel sequential approaches to change detection, namely Se-

qDrift1 and SeqDrift2 are proposed with the objective of achieving overall

improvement in all the above key performance factors.

The following section formally de�nes the problem of Concept Change

Detection before going into the details of related work.

3.3 Change Detection Problem De�nition

Let S1 = (x1, x2, ..., xm) and S2 = (xm+1, ..., xn) with 0 <m<n representing

two samples of instances from a stream with population means µ1 and µ2

respectively. Then the change detection problem can be expressed as testing

the null hypothesis H0 that µ1 = µ2 that the two samples are drawn from

the same distribution against the alternate hypothesis H1 that they arrive

from di�erent distributions with µ1 6= µ2. In practice, the underlying data

distribution is unknown and a test statistic based on sample means needs to

be constructed by the change detector M to test H0. If the null hypothesis

is not rejected when a change has occurred, then, a false negative is said to

have taken place. On the other hand, if M rejects H0 when no change has

occurred in the data distribution, then, a false positive is said to have occurred.

Since the population mean of the underlying distribution is unknown, sample

means need to be used to perform the above hypothesis tests. A further issue

is that the population variance is also unknown in practice and once again it is

resorted to estimation, this time by using the sample variance as an estimator.

In section 3.6, it is shown that the sample variance converges rapidly to the

population variance as sample size increases.

Now, the change detection problem is formally de�ned as: Reject the null

3.3. Change Detection Problem De�nition 34

hypothesis H0 whenever Pr(|µ̂S1 − µ̂S2|) ≥ ε) > δ, where δ lies in the interval

(0, 1) and is a parameter that controls the maximum allowable false positive

rate, while ε is a function of δ when test statistics based on the Hoe�ding or

Bernstein type bounds are used to model the di�erence between the sample

means.

The �ve evaluation measures that are used in the study are detection delay,

false positive rate, false negative rate, memory consumption and processing

time. These measures, taken together, cover all aspects of performance perti-

nent to change detection and hence have been widely used in previous research.

Detection Delay : Detection delay can be expressed as the distance between

c and m, where c is the instance at which the change occurred and m is the

instance at which change is detected. In other words, detection delay equals:

(m− c). It should be noted that in practice the true change point may not

be known and in such cases it is only possible to record the di�erence in delay

times between di�erent change point detectors.

False Positive Rate: The false positive rate is the probability of falsely reject-

ing the null hypothesis for a given test. de�ned as: icc
nh
, where icc represents

the number of concept changes incorrectly signaled by the change detector

measured across a given segment of the stream and nh is the number of hy-

pothesis tests conducted across that same segment.

False negative Rate: The false negative rate is the probability of falsely ac-

cepting the null hypothesis when it is in fact true. de�ned as: 1− ccd
acc
, where

ccd represents the number of concept changes correctly signaled by the change

detector measured across a given segment of the stream and acc is the total

number of concept changes in the stream that actually occur across the same

sized data segment.

3.4. Related Work 35

Processing Time: Processing time is the time taken by the change detec-

tor in performing hypothesis testing to detect possible concept changes in the

given stream segment.

3.4 Related Work

The concept change detection problem has a classic statistical interpretation:

given a sample of data, does this sample represent a single homogeneous dis-

tribution or is there some point in the data (i.e the concept change point) at

which the data distribution has undergone a signi�cant shift from a statistical

point of view? All concept change detection approaches in the literature for-

mulate the problem from this viewpoint but the models and the algorithmics

used to solve this problem di�er greatly in their detail.

[Basseville 1993] present extensive coverage of methods for detection of

abrupt changes. They categorized change detection into four classes of meth-

ods: Control Charts, Filtered Derivative Algorithms, CUSUM based methods

and �nally methods based on Bayesian inference. All four classes of methods

use sliding windowing schemes to compute test statistics that are expressed in

terms of a log likelihood ratio that computes the probability of change. The

�rst three classes of methods di�er mainly in the choice of threshold used for

detection, with the Filtered Derivative and CUSUM approaches using adap-

tive thresholds. In addition, the Bayesian approaches assume a certain a priori

distribution which is used in conjunction with Bayes theorem to compute a

posteriori probability of change.

[Sebastiao 2009] present a concise survey on change detection methods.

They point out that methods used fall into four basic categories: Statistical

Process Control (SPC), Adaptive Windowing, Fixed Cumulative Windowing

Schemes and �nally other classic statistical change detection methods such as

3.4. Related Work 36

the Page Hinkley test [Page 1954], Martingale frameworks [Ho 2005], kernel

density methods [Aggarwal 2003] and support vector machines [Klinkenberg 2000].

[Gama 2004] adapt SPC methods to the change detection and formulate an

algorithm in a data stream context. They use two thresholds for this purpose:

when the classi�cation error rate exceeds the lower of the two thresholds an

alarm is activated and the system stores a time stamp tw at which the alarm

was generated. If the error rate in the subsequent instances decreases then

the warning is canceled, else if the error rate exceeds the upper threshold

value at time td then a change is declared. The mean error rate pi and its

standard deviation si is used to implement the Warning and Change states.

The general form of the model is (pi + si ≥ pmin + κsmin) where κ = α for

change alarm and κ = β is for warning change, α and β are user de�ned

parameters. Gama's method performs well for abrupt changes but is poor at

detecting gradual changes [Baena-García 2006].

A subsequent approach, called Early Drift Detection Method or EDDM

[Baena-García 2006] was formulated by Baena-Garcia et al. to address this

problem. EDDM tracks the mean distance and mean standard deviation be-

tween errors. EDDM was shown to outperform Gama's SPC based method

proposed in [Gama 2004] on certain datasets but did not show signi�cant

improvement in detecting gradual changes on some of the other datasets.

[Kifer 2004] proposed an implementation of the �xed cumulative window-

ing scheme. They used two sliding windows, a reference window which was

used as a baseline to detect changes and a current window to gather samples.

The Kolmorogov Smirno� (KS) test statistic computed through the use of a

KS Tree was used to determine whether the samples arrived from the same

distribution. The major issue is the high computational cost of maintaining

a balanced form of the KS tree.

[Nishida 2007] and [Kuncheva 2013a] also used the two window approach

for change detection. In [Kuncheva 2013a] a semi-parametric log-likelihood

3.4. Related Work 37

change detector is proposed based on Kullback-Leibler statistics. The authors

show that change detection through K-L distance and Hotelling t2 test can be

accommodated in a log likelihood framework. Since the objective was not to

propose an optimal detection threshold evaluation the area under the curve

was used in place of standard measures such as the true and false positive

rates, detection delay and processing time.

A scheme for tackling change detection based on the use of martingale tests

was proposed by Ho in [Ho 2005]. Two martingale tests, Martingale Values

and Martingale Di�erence were proposed based on the use of parametric tests

and the impact of these parameters were analyzed. The authors claimed that

the method is feasible on high dimensional, numerical/categorical and multi

class data. Furthermore, neither is the base classi�er monitored for the detec-

tion nor is there a requirement for a sliding window as in [Kifer 2004]. The

weakness is the setting of appropriate values for the user non-understandable

parameters.

[Bifet 2007] proposed an adaptive windowing scheme called ADWIN that

is based on the use of the Hoe�ding bound to detect concept change. The

ADWIN algorithm was shown to outperform the SPC approach and has the

attractive property of providing rigorous guarantees on false positive and false

negative rates. The initial version, called ADWIN0, maintains a window (W)

of instances at a given time and compares the mean di�erence of any two sub

windows (W0 of older instances and W1 of recent instances) from W . If the

mean di�erence is statistically signi�cant, then ADWIN0 removes all instances

of W0 considered to represent the old concept and only carries W1 forward to

the next test.

However, as mentioned in [Bifet 2009], ADWIN0 su�ers from the use of

Hoe�ding Bound which greatly over estimates the probability of large devi-

ations for distributions of small variance. As such, a much tighter Bernstein

Bound was used in a follow up method, titled ADWIN [Bifet 2007]. ADWIN0

3.4. Related Work 38

also su�ers from high computational cost due to (n− 1) hypothesis tests that

need to be conducted in a window containing n elements in W .

ADWIN was proposed which used a variation of exponential histograms

and a memory parameter to limit the number of hypothesis tests done on

a given window. ADWIN was shown to be superior to Gama's method and

�xed size window with �ushing [Kifer 2004] on almost all performance mea-

sures such as the false positive rate, false negative rate and sensitivity to slow

gradual changes [Bifet 2007]. Despite the improvements made in ADWIN,

some issues remain namely, the fact that multiple passes on data are made in

the current window and an improvement in the false positive rate for noisy

data environments.

[Ross 2012] propose a method for drift detection based on the use of expo-

nentially weighted moving average (EWMA) chart which is a classical statis-

tical technique for detecting an increase in the mean of a sequence of random

variables. EWMA that uses Monte Carlo simulation to �nd a key control limit

parameter L that determines the extent of change in the mean before a con-

cept drift is �agged. As Monte Carlo simulation is computationally expensive

it is used for only for a limited number of L values and produces a look-up

table, thus enabling the method to be one pass. Ross et al did not conduct

a study on the false positive rate, and so the di�erence between the actual

false positive rate and the theoretical false positive rate (as determined by

the L parameter) is unclear. Apart from this, the other limitation is that the

method's applicability is limited to a small set of alternative formulations for

L in the look-up table; a change will require the use of Monte Carlo simulation,

thus increasing computational overhead.

Change detection in a non-classi�cation context is also a promising ap-

proach in data streams. This approach is found to be more challenging in

multi dimensional data streams. Two windows of multi dimensional data

stream elements need to be compared to decide whether those are from the

3.5. Research Contributions 39

same underlying distribution. Kullback-Leibler distance or relative entropy

is the distance measure in [Inglada 2007]. This method uses bootstrapping

method to establish statistical signi�cance of the measurements.This method

is nonparametric and requires no assumption on the distributions of the el-

ements.In addition, the subregions of the highly varying data are also found

in this method. Song et al in [Song 2007] claim that the previous method

[Inglada 2007] is not scalable for high dimensional data as it relies on dis-

cretization of data space. Song et al proposes a method called density test

which avoids space partitioning. In order to infer the baseline distribution a

unique Expectation Maximization algorithm with kernel density estimator is

used. In [Kuncheva 2013b] proposes a semiparametric log-likelihood change

detectors using Kullback-Leibler statistics. The authors show that change de-

tection through K-L distance and Hotelling t2 test can be accommodated in

a log likelihood framework. A computationally simple criterion called semi-

parametric log likelihood detector is also mentioned in [Kuncheva 2013b].

3.5 Research Contributions

The following major contributions are made in this research with respect to

change detection are:

1. Two change detectors, SeqDrift1 and SeqDrift2 that have signi�-

cantly better false positive rates than the Page Hinkley [Page 1954],

EWMA [Ross 2012] and ADWIN [Bifet 2007] change detectors are

proposed while maintaining processing times that are competitive

with the Page Hinkley detector.

2. Bernstein bound [Bernstein 1946] for detecting changes within the

change detection window is used in the detectors proposed. Al-

though the Bernstein bound has been used before in ADWIN, this

3.5. Research Contributions 40

research presents a di�erent formulation of the change detection

problem to compute a detection threshold that results in signi�-

cantly better execution time and false positive rate when compared

to widely used concept change detectors.

3. The experiments are done with reservoir sampling for implement-

ing the change detection window and demonstrate its ability in

improving detection with data that has low gradient of change.

Furthermore, instead of using a �xed size reservoir, the size of the

reservoir is dynamically varied according to the rate of change in

the data stream.

4. The change detectors proposed have strict theoretical guarantees

on false positive and false negative rates.

5. A new scheme for compensating for false positive error arising out

of repeated hypothesis testing instead of the overly conservative

Bonferroni correction is proposed. When combined with the opti-

mized cut threshold value based on variable reservoir size, the new

correction factor for false positives enabled the detection delay to

be reduced by more than half in certain cases.

6. An enhanced empirical study that subjected the two SeqDrift de-

tectors and ADWIN to varying levels of noise and abrupt concept

shifts in order to assess their robustness with respect to the false

positive rate is carried out.

3.6. Use of Bernstein Bound in Bounding Deviation of Population
Mean from Sample Mean 41

3.6 Use of Bernstein Bound in Bounding Devia-

tion of Population Mean from Sample Mean

The approach proposed in this research relies on well established bounds for

the di�erence between the true population and sample mean. A number of

such bounds exist that do not assume a particular data distribution. Among

them are the Hoe�ding, Chebyshev [Hardy 1988], Cherno� [Hardy 1988] and

Bernstein inequalities [Bernstein 1946]. The Hoe�ding inequality has been

widely used in the context of machine learning but has been found to be too

conservative [Bifet 2007], over estimating the probability of large deviations

for distributions of small variance.

The Hoe�ding inequality states that

Pr

(∣∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣∣ > ε

)
≤ 2 exp(−2nε2) (3.1)

whereX1, ..., Xn are independent random variables, E[X] is the expected value

or population mean.

The Bernstein inequality takes into account the variance and is de�ned as:

Pr

(∣∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣∣ > ε

)
≤ 2 exp

(−nε2

2σ2 + 2
3
ε(c− a)

)
(3.2)

where Xi ∈ [a, c] ∀i and σ2 is the population variance. In the classi�cation

context, Xi ∈ [0, 1] and thus a = 0, c = 1. Also, since Xi ∈ [0, 1] the maximum

value that the population variance can take is 1
4
.

From equations (3.1) and (3.2), when σ2 ≤ 1
4
− ε

3
is satis�ed, the Bernstein

Bound is guaranteed to be tighter than the Hoe�ding Bound. Therefore,

for distributions of low variance it is highly likely that the Hoe�ding Bound

overestimates the probability of large deviations, given that ε is small, as

mentioned in [Bifet 2007].

In the preliminary experimentation in this research, the performance of

the Hoe�ding and Bernstein bounds re-contrasted and found that the latter

3.6. Use of Bernstein Bound in Bounding Deviation of Population
Mean from Sample Mean 42

produced much smaller detection delays than with the Hoe�ding bound, thus

in�uencing the decision to use the Bernstein bound, just as is done with

ADWIN.

Population variance, in general, is unknown in a real world data stream

environment. An empirical form of the Bernstein inequality has however being

used in a number of recent studies in a machine learning context including

[Shivaswamy 2010], [Audibert 2007], [Mnih 2008], [Maurer 2009]. In all of

these studies, the Bernstein bound was expressed in terms of the observable

sample variance rather than the population variance. The empirical Bernstein

inequality expressed in probabilistic form is given by [Shivaswamy 2010].

Pr

(∣∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣∣ > ε

)
≤ 2 exp

(−nε2
2σ2 + 7

3
ε

)
(3.3)

Comparing expressions 3.3 and 3.2, it can be seen that a penalty factor of
7
2
has been introduced into the bound to compensate for the use of the sample

variance. However, this penalty is in practice extremely conservative since it

was designed to be applicable for small sized data segments. In the two con-

cept change detectors that are proposed in this research, the minimum data

segment size that the variance is sampled from is 200 (this is the block size

b, and therefore the minimum size of data bu�er). With these segment sizes,

the normality distribution assumption holds well and hence a (1 − δ) con�-

dence interval for the population variance is given by:
(

(n−1)σs2
χ2

δ
2
(n−1) ,

(n−1)σs2
χ2

1− δ2
(n−1)

)
,

where σs2 is the sample variance, n is the segment size, with χ2
δ
2
(n− 1) and

χ2
1− δ

2
(n− 1) being the critical values of the chi-squared distribution at sig-

ni�cance levels δ
2
and 1− δ

2
respectively. With δ = 0.1 and n = 200 the ratio

between the two limits of the interval is 1.39, giving an expected deviation

from the median of 0.19. With n = 400 the ratio is 1.26; with n = 560 it is

1.20 and with n = 800 it converges to 1.0. Given that both the change detec-

tors proposed use a minimum segment size of 200, the population variance can

be approximated very well with the sample variance. The alternative would

3.7. Summary 43

be to use the empirical formulation of the bound but as can be seen from the

con�dence interval limits this option would have been far too conservative and

would have resulted in an unnecessary lengthening of the detection delay.

3.7 Summary

This chapter has introduced the problem of Change Detection with the prob-

lem de�nition and a literature review on the recent and relevant works. The

contributions of this research with respect to change detection have also been

outlined. Moreover, Bernstein Bound that de�nes the di�erence between pop-

ulation and sample mean has also been explained. In the following chapters

4 and 5, the two change detectors namely SeqDrift1 and SeqDrift2 that make

use of Bernstein Bound are described.

Chapter 4

SeqDrift1: An Algorithm Based

on Sliding Window Approach

4.1 Introduction

In this Chapter, the �rst of two algorithms that were developed for change

detection is introduced. The algorithm, called SeqDrift1 accumulates a binary

stream of instances representing classi�cation decisions as input to a bu�er.

In common with ADWIN, the SeqDrift1 change detector uses the Bernstein

bound to derive a detection threshold to determine when change takes place

in the data stream. Unlike ADWIN, the SeqDrift1 uses a sequential approach

to change detection, in the sense that it only examines whether the data in

the current block has a statistically di�erent mean value from the data in the

rest of its bu�er. Thus, for every block of data, only one candidate cut point

is examined unlike ADWIN which examines all possible combinations of cut

points in its current window. Further, SeqDrift1 never re-examines previous

candidates. This approach meant that a new detection threshold had to be

formulated. This sequential approach to change detection had two important

outcomes. Firstly, a dramatic improvement in execution time results as a

direct result of not having to examine multiple cut points at a new block

boundary. Secondly, the false positive rate reduced signi�cantly, once again

due to the fact that lesser number of cut points are being examined.

4.2. Core Algorithm Overview 45

4.2 Core Algorithm Overview

First, a basic sketch of the algorithm proposed is presented before discussing

details of hypothesis testing. The following simple example is used to illus-

trate the working of the algorithm. SeqDrift1 accumulates data instances into

blocks of size b. When attached to a classi�er that uses SeqDrift1 to detect

change points, input data instances consists of a binary sequence of bits where

binary 1 denotes a misclassi�cation error and binary 0 denotes a correct clas-

si�cation decision. A block of data instances are considered as the basic unit

instead of instances as it would both be very ine�cient and unnecessary from

a statistical point of view to test for concept changes at the arrival of every

instance.

Figure 4.1: A sequential block based approach to change detection

Figure 4.1 shows the strategy brie�y. Suppose that at time t1 blocks B1

and B2 have arrived. SeqDrift1 then checks whether a concept change has

occurred at the B1|B2 boundary by testing H1 above. If H1 is rejected then

blocks B1 and B2 are concatenated into one single block B12 and H1 is next

4.3. Memory Management in SeqDrift1 46

tested on the B12|B3 boundary. In this check, the sample mean of sub-window

B12 is computed by taking the average value of a random sample of size b

from the sub-window of size 2b. This sample mean is then compared with the

sample mean computed from block B3, also of size b. This process continues

until H1 is accepted, at which point a concept change is declared; instances

in the left sub-window are removed and the instances in the right sub-window

are transferred to the left. At all testing points, equal sized samples are used

to compare the sample means from the two sides of the window. The use of

random sampling accelerates the process of the computation of the sample

mean while maintaining robustness. The use of the averaging function as

seen in the experimentation helps to smooth variation in the data and makes

SeqDrift1 more robust to noise than ADWIN.

In essence, SeqDrift1 does a single forward scan through its memory bu�er

without the use of expensive backtracking as employed ADWIN. While the use

of random sampling ensures that sample means can be computed e�ciently,

a memory management strategy is required to ensure e�cient use of memory

as the left sub-window has the potential to grow inde�nitely during periods

of long stability in the stream.

4.3 Memory Management in SeqDrift1

As SeqDrift1 never re-examines previous candidate cut points, it does not

need to maintain a history of such cut-points and thus does not need to store

memory synopses in the form of exponential histograms as ADWIN does.

Instead, SeqDrift1 only requires the means of its left and right sub-windows.

In order to e�ciently support the computation of sample averages a random

sampling strategy is employed.

In addition to improving e�ciency, random sampling is also necessary to

satisfy the independence requirement for data used in the computation of

4.3. Memory Management in SeqDrift1 47

the Bernstein bound. In a data stream environment, independence between

data instances in the same locality may not always be true as changes in the

underlying data causes instances arriving after such a change to have very

similar data characteristics, thus violating the independence property. One

simple and e�ective method of addressing this dependence e�ect is to perform

random sampling.

The memory management strategy used in SeqDrift detectors is based on

the use of arrays to store blocks of data. An array enables fast access to speci�c

data blocks that are sampled via the use of random sampling. The array is

used to capture data in SeqDrift1's memory bu�er. The memory bu�er is

divided into a left sub-window and a right sub-window, each of which uses an

array for storage. When a new data block arrives, the block is temporarily

inserted into the right sub-window and the sample means from the two sub-

windows are compared to check for statistically signi�cant di�erences. If no

such di�erence exists, data in the right sub-window is copied into the left

sub-window and is then removed from the right sub-window. Essentially this

means that the left sub-window consists of a set of largely homogeneous blocks.

In this context, it is more e�cient from a memory point of view to slide the

oldest w
b
block from the sub-window, where w is the width of the window and

b is the data block size.

In certain circumstances, the right sub-window may hold more than one

data block. This happens when SeqDrift1 enters a warning state after which

newly arriving data blocks are added to the right sub-window instead of the

left sub-window. A warning state is triggered when the mean of the data

block in the right sub-window is not signi�cantly di�erent from the mean in

the left sub-window on the basis of the change con�dence value 1−δchange but

is signi�cantly di�erent with respect to a warning con�dence value 1−δwarning.

In cases when a warning state is entered, a sliding window scheme is used for

the right sub-window as well.

4.4. Computation of Cut Point Threshold ε 48

Given the SeqDrift1's worst case memory requirements are bounded above

by 2w as two memory bu�ers are allocated of size w for each of the two sub-

windows. Di�erent values of w are chosen for the experiments and it is shown

that the quality of change detection (false positive rate, false negative rate

and detection delay) is largely insensitive to the size of w, provided that w

exceeds the block size b.

4.4 Computation of Cut Point Threshold ε

The value of the cut threshold is established against a null hypothesis that the

data in the left and right sub-windows are drawn from the same population.

The null hypothesis is expressed as: H0 is H0 : µl = µr = µ and the alternate

hypothesis as H1 : µl 6= µr. Let Sl = a random sample {z1, z2, . . . , zl}of size l

from {x1, x2, ..., xm} which comprise the m blocks in the left sub-window and

let Sr = a random sample {z1, z2, . . . , zr} of size r from {xm+1, xm+2, . . . , xn}

which comprises the (n-m) blocks in the right sub-window. With the applica-

tion of the union bound on expression 4.1, the following is derived for every

real number k ∈ (0, 1):

Pr [|µ̂l − µ̂r| ≥ ε] ≤ Pr [|µ̂l − µ| ≥ kε] + Pr [|µ− µ̂r| ≥ (1− k) ε] (4.1)

Applying the Bernstein inequality on the R.H.S of Equation 4.1 results:

Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(

−b(kε)2
2σ2
s
2
3
kε(c−a)

)
+2 exp

(
−b((1−k)ε)2

2σ2
s+

2
3
(1−k)ε(c−a)

)
(4.2)

In the classi�cation context, the bounds a and c for the Bernstein bound take

values a = 0, c = 1. Substituting this in 4.2 results:

Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(−b(kε)2

2σ2
s + 2

3
kε

)
+ 2 exp

(−b((1− k)ε)2

2σ2
s + 2

3
(1− k)ε

)
(4.3)

4.4. Computation of Cut Point Threshold ε 49

The probability Pr [|µ̂l − µ̂r| ≥ ε] represents the false positive rate δ and

hence:

δ = Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(−b(kε)2

2σ2
s + 2

3
kε

)
+ 2 exp

(−b((1− k)ε)2

2σ2
s + 2

3
(1− k)ε

)
(4.4)

The RHS of 4.4 needs to be minimized in order to minimize the upper bound

δ for the false positive rate. Given the two exponential terms, the RHS of 4.4

can be minimized when:

−b(kε)2

2σ2
s + 2

3
kε

=
−b((1− k)ε)2

2σ2
s + 2

3
(1− k)ε

(4.5)

Note that k = 1
2
satis�es 4.5 above. Substituting k = 1

2
in 4.4 gives:

δ ≤ 2 exp
(−b1

4
ε2

2σ2
s + 2

3
.1
2
ε

)
+ 2 exp

(−b1
4
ε2

2σ2
s + 2

3
.1
2
ε

)
(4.6)

Solving 4.6 to �nd ε gives:

ε =
2

3b

{
p+

√
p2 + 18σ2

sbp
}

(4.7)

where p = ln
(
4
δ

)
. If |µ̂l − µ̂r| ≥ ε, concept change is declared at instance

(m + 1) and Sl, Sr can be considered to be from di�erent distributions with

probability (1− δ), otherwise, hypothesis H0 is accepted that there is no con-

cept change in the window of instances Sn.

A change detection algorithm, by its very nature, needs to test multiple

cut points before an actual change point is detected. Each test involves a hy-

pothesis test applied at a certain con�dence level. The e�ect of multiple tests

is to reduce the con�dence from δ to δ
′
which represents the e�ective (overall)

con�dence after n successive hypothesis tests have been carried. However,

it needs to be noted that the hypothesis tests in the change detection sce-

nario are not independent of each other as the probability of a false positive

(i.e incorrectly accepting hypothesis H1 that the means across the left and

and right sub-windows are di�erent) at a particular test has an in�uence on

whether a false positive occurs at subsequent tests and hence methods such

4.5. Compensating for Repeated Hypothesis Testing 50

as Bonferroni do not apply. This research introduces a new error correction

factor that best suits the sequential hypothesis testing in change detection.

The following section explains the error correction factor.

4.5 Compensating for Repeated Hypothesis Test-

ing

Repeated hypothesis testing carries with it the risk of increased type 1 errors,

which in the concept change context is the increased risk of rejecting the null

hypothesis H0 (that the means across the two data repositories are equal)

when it is in fact true. The commonly adopted solution to this problem is

to use the Bonferroni correction whereby the given δ value is divided by the

number of hypotheses (n) tested since the last concept change point detected.

However, the Bonferroni correction has been widely acknowledged to be too

conservative in nature [Bender 1999], [Narum 2006], by erring on the side of

caution in setting the δ value too high and thus decreasing the sensitivity of

the detection process. This is due to the fact the hypotheses tested in the

change detection problem context are not independent of each other. The

motivation is to derive a less conservative correction factor and to give an

expression for its update as each hypothesis test is carried out.

A general scenario is considered, where n+ 1 blocks B1, B2, . . . , Bn, Bn+1

(with mean values µ1, µ2, . . . , µn, µn+1 respectively) have arrived at time

point n+ 1 when n hypothesis tests have been carried out.

Theorem 4.1 The correction factor CF (n) to be used for the nth hypothesis

4.5. Compensating for Repeated Hypothesis Testing 51

test is given by:

CF (n) =
1

1
CF (n−1) + 1

2n−1

(4.8)

Proof In the �rst test (1) on |µ2−µ1| on B1, B2 boundary, the false positive

error resulting from a cut is δ
′

= δ. In the second test (2), there are three

cases to consider.

Case (1) corresponds to the case when no cut was made on the B1, B2 bound-

ary. This case does not contribute to a false positive error rate and hence can

be ignored.

Case (2) arises when a cut was made on the B1, B2 boundary and when

|µ1+µ2
2
− µ3| > |µ3 − µ2|. It can be seen that Case (2) does not contribute to

the false positive rate as the cut made on theB1, B2 boundary has ensured that

a reduction in the mean di�erence |µ3 − µ2| between the two samples used in

the second hypothesis test. This is due to the fact that |µ1+µ2
2
−µ3| > |µ3−µ2|.

Case (3) which corresponds to the situation where a cut was made on the

B1, B2 boundary and |µ1+µ2
2
− µ3| < |µ3 − µ2|. This case increases the false

positive rate. The degree of increase has been estimated by enumerating the

fraction of all possible scenarios possible with the arrival of 3 blocks in the

stream.

With the arrival of 3 blocks there are a total of 6 possible orderings for µ1,

µ2 and µ3. These orderings are (in ascending order of value): (µ1, µ2, µ3),

(µ1, µ3, µ2), (µ2, µ1, µ3), (µ2, µ3, µ1), (µ3, µ1, µ2), (µ3, µ2, µ1). Out of these ex-

actly half (3 out of 6) cause an increase of |µ3−µ2| over |µ1+µ22
−µ3|, and thus

contribute to the increase in the false positive rate.

4.6. SeqDrift1 Change Detection Algorithm 52

With an assumption of uniformity (equal priors in the general case) of the

probability of occurrence of these 6 triples it can be inferred that the false

positive error δ in test (1) has contributed an amount δ
2
to the false positive

error in test (2), thus giving an overall false positive error of δ + δ
2
and a

correction factor CF (1) of 2
3
to be applied.

Generalizing this situation to test (3) the overall false positive error at this

test of δ +
δ+ δ

2

2
= δ + δ

2
+ δ

4
and a correction factor CF (2) of 4

7
which is

δ
1

CF (1)
+ 1

4

. Thus, in general after n hypothesis tests the false positive error is:

δ + δ
2

+ δ
4

+ ...+ δ
2n−1 . and the CF (t) to be applied is:

CF (n) =
1

1
CF (n−1) + 1

2n−1

(4.9)

which proves the theorem.

It can be observed that the correction factor computed above is much less

conservative than the Bonferroni correction and converges to 1
2
for large values

of n.

This, in the model the change signi�cance level δ is scaled by the correction

factor given by Theorem 4.1 to control the false positive probability. The

correction factor computed by Theorem 4.1 is much less conservative than the

Bonferroni correction and converges to 1
2
for large values of n.

4.6 SeqDrift1 Change Detection Algorithm

This section presents the core algorithms used in the change detector system.

Sr and Sl denote the right and left sub windows. Algorithm 4.1 decides the

change type given the mean values µ̂r and µ̂l of Sr and Sl respectively, εchange

(the threshold mean di�erence for δchange) and εwarning (the warning threshold

mean di�erence for δwarning). εchange and εwarning are calculated using the

4.6. SeqDrift1 Change Detection Algorithm 53

equation 4.7. Though SeqDrift1 detects changes in any variation in the mean,

algorithm 4.1 only reports the change when mean increases (µ̂r > µ̂l). In the

event of a concept change, Algorithm 4.2 transfers the contents of the right

sub-window into the left (Step 2 to 8). When a warning state is triggered, it

increases the sample size (Step 14), in expectation of a subsequent concept

change. This increase has the e�ect of increasing precision in sampling and

the algorithm may become more sensitive to slow gradual change.

Algorithm 4.1 GetChangeType()

Input: µ̂l,µ̂r,εChange ,εWarning

Output: Change || Warning || Internal
1 if εWarning ≤ |µ̂l − µ̂r| then
2 if εChange ≤ |µ̂l − µ̂r| then
3 if µ̂r > µ̂l then

4 return Change

5 return Internal

6 return Warning

7 return None

4.7. SeqDrift1 versus ADWIN: Similarities and Di�erences 54

Algorithm 4.2 IsChange()

Input: An instance(Ins), BlockSize, Sl, Sr
Output: True/False

1 Increment the instance counter

2 Sr ∪{Ins}
3 if At the block boundary then

4 ChangeType = GetChangeType()

5 if (DriftType is Change or Internal) then

6 Remove all elements from Sl

7 Copy all elements of Sr to Sl

8 Remove all elements from Sr

9 Set SampleSize to BlockSize

10 if (DriftType is Change) then

11 return True

12 return False

13 else if (DriftType is Warning) then

14 Double the sample size

15 return False

16 Copy all elements of Sr to Sl

17 SampleSize = BlockSize

18 return False

4.7 SeqDrift1 versus ADWIN: Similarities and

Di�erences

Two major design di�erences exist between the two change detectors. The �rst

lies in the policy used in determining cuts. When new data arrives, ADWIN

creates a new bucket and adds it to its memory bu�er. It then searches

through all buckets currently stored in its memory bu�er for a possible cut

point. A cut point in ADWIN lies on the boundary between buckets. With

N buckets currently in storage, ADWIN will examine a total of (N − 1)

possible cut points. Furthermore, as each new bucket arrives previous bucket

4.8. Empirical Study 55

boundaries that were examined before will be re-examined for possible cuts.

E�ectively, ADWIN makes multiple passes through its memory bu�er. In

contrast, SeqDrift1 never re-examines previous block (equivalent of ADWIN's

bucket) boundaries for cuts and only examines the boundary between the

newly arrived block and the collection of blocks that arrived previously for a

possible cut. In this sense, SeqDrift1 can be said to do a single pass through

its memory bu�er when searching for cuts.

The second major di�erence lies in the estimation strategy for assessing

means of data segments. ADWIN relies on exponential histograms for es-

timating mean values, whereas SeqDrift1 uses random sampling base on an

e�cient array structure to estimate means. The problem with exponential

histograms is that some of the buckets, typically the more recent ones may be

too small in size to yield accurate estimations for mean values. This is due

to the fact that in ADWIN a bucket is created whenever a 1 appears in the

stream, and when data has high variation bucket size will vary widely. For

buckets that are too small in size to support accurate estimation, ADWIN

will end up overestimating the true mean and false positives may then result.

4.8 Empirical Study

There were two objectives of the empirical study presented in this section.

The �rst objective was to compare SeqDrift1 and ADWIN on key performance

criteria such as the true positive rate, the false positive rate, the time delay

in detecting changes and the execution time overheads involved in change

detection.

In the second part of the experimentation SeqDrift1 was subjected to a

sensitivity analysis of the e�ects of block size, warning level and sliding window

size on the delay detection time for SeqDrift1.

Dataset was generated as a Bernoulli distribution, consisting of 1s and 0s

4.8. Empirical Study 56

in all experiments to simulate classi�er outputs though SeqDrift1 is a general

drift detector for any distribution.

4.8.1 Comparative Performance Study

The �rst experiment was designed to test SeqDrift1's false positive rate vis-a-

vis ADWIN. A stationary Bernoulli distribution could create a dataset that

has a single concept. Therefore, a stationary Bernoulli has been used for

this experiment. To statistically generalize the results, di�erent stationary

distributions with di�erent mean values for di�erent experiments have been

used. The mean values are shown in Table 4.1. In addition, with each mean

value, the parameter of SeqDrift1 signi�cance level has also been adjusted

to test the e�ect of this parameter.

The other parameter block size of SeqDrift1 was set to its default value

of 100 and ADWIN's internal parameter M was also set to its default value.

A total of 100 trials has been conducted for each combination of µ and δ

and the average false positive rate for each combination was recorded.

Table 4.1: False Positive Rate of SeqDrift1 and ADWIN for all stationary

Bernoulli Distributions and Signi�cance level values

One Pass Sampler ADWIN

µ δ =0.05 δ =0.1 δ =0.3 δ =0.05 δ =0.1 δ =0.3

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0000 0.0000 0.0000 0.0001 0.0002 0.0018

0.3 0.0000 0.0000 0.0001 0.0008 0.0017 0.0100

0.5 0.0000 0.0000 0.0001 0.0012 0.0030 0.0128

Table 4.1 shows that both SeqDrift1 and ADWIN have good false positive

rates that are substantially lower than the con�dence level set. However,

it is interesting to note that as the variance in the data increases with the

4.8. Empirical Study 57

increase in the µ value (for a Bernoulli distribution, the variance is µ×(1−µ))

that ADWIN starts to register false positives. ADWIN's false positive rate

increases progressively with the increase in the variance as well as the lowering

of con�dence (ie higher signi�cance (δ) values). On the other hand, SeqDrift1

retains a virtually zero false positive rate except when the con�dence is low at

0.3 when it registers a rate of 0.01%, compared to the ADWIN rate of 1.28%

at µ = 0.5 and δ = 0.3. As the con�dence becomes lower, the ε value decreases

and this results in an increase in the false positive rate for ADWIN. However,

SeqDrift1 is virtually insensitive to the decrease in ε due to the fact that the

mean value can be estimated more accurately through the combined use of

random sampling and the use of the aggregated running average mechanism.

The second experiment was designed to test the true positive (detection)

rates of SeqDrift1 and ADWIN over data that was also generated from a

Bernoulli distribution. Four di�erent data streams of length L = 10, 000,

50,000, 100,000 and 1,000,000 bits from a Bernoulli distribution have been

generated. The data generated was stationary with mean 0.01 in the �rst

L − 2300 time steps and the distribution has been varied in a linear fashion

with di�erent gradients in the last 2300 time steps. Di�erent data stream

lengths help understanding the history e�ect on change detectors.

A total of 100 trials were conducted for each combination of data length

and slope values. The key performance indicators such as the true detection

rate, average execution time and the detection delay time have been tracked.

Both SeqDrift1 and ADWIN managed to achieve a true detection rate of 100%

for all combinations of data length and change gradients.

Figure 4.2 also illustrates that ADWIN was much slower in stream process-

ing than SeqDrift1. Furthermore, the gap between the two processing times

becomes wider as the length of the stable segment of the stream becomes

longer. This was expected as ADWIN spends much time doing repeated scans

through the histogram and examines every possible combination of cuts de-

4.8. Empirical Study 58

Figure 4.2: Comparative Change Detection Performance of SeqDrift1 and

ADWIN

�ned by the buckets. SeqDrift1, on the other hand does a single pass through

the window segment and at each block of data it assesses whether the newly

arrived block is su�ciently di�erent from the previous blocks in its memory

bu�er.

However, it is clear from Figure 4.2 that ADWIN has better mean detec-

tion delay when compared to SeqDrift1. SeqDrift1 needs a relatively larger

window segment before it can decide whether a newly arrived block is su�-

ciently di�erent due to the sampling strategy that it uses. As expected, the

delay times reduced with increasing gradient of change, although it is expected

that SeqDrift1 reduces at a faster rate than ADWIN with the gap between

the two closing for higher gradients of change. Section 4.8.2 shows that Seq-

Drift1's detection delay can be reduced with proper use of warning level and

particularly block size on which it is most sensitive with respect to delay.

The �nal part of the experimentation involved an investigation of the sen-

sitivity of SeqDrift1's key parameters on detection delay time. From previous

experimentation with Bernoulli data, it was observed that SeqDrift1 had a

higher detection delay time than ADWIN and thus the motivation was to

determine parameter settings that minimize SeqDrift1's detection delay time.

4.8. Empirical Study 59

4.8.2 Sensitivity Analysis on SeqDrift1

In the �rst experiment, the e�ect of block size is investigated on Bernoulli

data streams with di�erent gradients. Figure 4.3 shows that as block size

increases, delay time initially decreases, reaches a minimum value and then

starts to rise once again. In order to detect changes in data distribution, a

sample of su�cient size is required, which in turn is determined by the block

size.

Figure 4.3: E�ects of Block Size and Warning Level on Detection Delay Time

for SeqDrift1

If the size of the block (sample size) is too low, then in common with other

statistical tests of signi�cance, a statistical di�erence cannot be determined

until a greater change occurs with time, thus delaying the detection. On the

other hand, if the block size is too large then the probability increases that

a change occurs too late within a given block for the change to be detected

and so the change will go undetected until at least a new block arrives, thus

giving rise to an increased detection delay. A block size of 200 appears to be

optimal across a range of di�erent change gradients, except when the change

is very gradual, in which case 500 gives a slightly lower delay.

Next, the e�ect of warning level on delay was checked. Figure 4.3 shows

that warning level has a much smaller e�ect on delay than block size. With a

4.8. Empirical Study 60

slope of 1.00E − 04 the warning level setting has a negligible e�ect on delay

and thus a pragmatic setting that is twice the signi�cance level should su�ce

in most cases to reduce the delay. The other graphs describing the e�ect of

the above two parameters for the other data lengths are included in Appendix

A.

In the next experiment, the e�ect of sample size increment was assessed.

Whenever the warning level is triggered the sample size is incremented in the

hope of trapping an impending change earlier. A range of increments has

been investigated and as Figure 4.4 shows, a doubling of sample size produces

optimal results across the entire spectrum. Please refer Appendix A for the

results with various other data lengths. As with the warning level, too large

an increase results in an increase in the detection delay.

Figure 4.4: E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1

Overall, it appears that block size is of prime importance in minimizing

delay time; a block size of 200 works well for a range of datasets with di�erent

change dynamics. The other two parameters have a much smaller e�ect in

4.8. Empirical Study 61

Table 4.2: Detection delay for varying window sizes
Sliding Window Size 500 1000 2000 4000 6000 8000 10000

True Positive Rate 100 100 100 100 100 100 100

Delay Time 1300 1330 1350 1320 1350 1370 1330

False Positive Rate 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000

general but can also contribute to smaller delay times with settings that were

discussed above, especially in the case of slowly varying data.

Finally, the e�ects of the sliding window size on true positive rate have

been assessed, false positive rate and delay time. The sliding window size has

been varied in the range 500 to 10,000. For each window size, 30 trials were

conducted on data from a Bernoulli distribution and the average for each of

the performance measures were recorded. The detection delay for the smallest

change gradient of 1.00E − 4 is only presented because the results for the

other change gradients followed very similar trends. As Table 4.2 shows, the

detection delay is largely insensitive to window size. In addition, all window

sizes recorded a true positive rate of 100%. The false positive rate was in line

with the other two measures, virtually no change in rate was observed across

the entire range of window sizes used. The case with mean value 0.3 and delta

0.3 is only shown here. All other combinations of mean and delta returned

virtually identical results.

These results indicate that window size when set at a reasonable multiple

of block size has no signi�cant e�ect on key factors such as the true positive

rate and delay time. These results are to be expected as data that is slid out

of the window consists of a set of homogeneous instances from SeqDrift1's left

sub-window.

4.9. Summary 62

4.9 Summary

In conclusion, it is clear that SeqDrift1 signals relatively very less false alarms

compared to ADWIN even in a high variance environment while achieving

100% true detection rate. Both warning level and sliding window parameters

produces negligible e�ect on SeqDrift1's performance for reasonable param-

eter values. The key disadvantage of SeqDrift1 is the high detection delay

compared to ADWIN. The reasons for the high detection delay would be as

follows:

� Insensitivity to small variations in means of both windows due to high

ε value

� Inability to capture good history of a distribution in left sub window

due to limited memory and �rst come �rst out policy.

� Di�culty in �nding optimal parameter values manually

Therefore, SeqDrift1 is optimized addressing the above issues as SeqDrift2

in the next chapter.

Chapter 5

SeqDrift2 Change Detector

5.1 Introduction

In the previous Chapter, it was seen that although SeqDrift1 had signi�cant

execution time and false positive rate advantages over ADWIN. ADWIN out-

performed in the area of detection delay, particularly for slowly varying data.

This is a direct consequence of restricting cut point determination to block

boundaries instead of per instance. In order to increase sensitivity of Seq-

Drift1, two strategies are presented in this Chapter. The �rst is based on a

new derivation of the evaluation cut point threshold. Essentially, false positive

rate is traded o� for improved detection delay. Secondly, reservoir sampling is

employed to implement the detection window. With reservoir sampling, older

instances tend to persist in the detection window thus allowing for a better

contrast between the window and the newly arriving block of data which in

turn helps to trigger the detection threshold earlier.

5.2 SeqDrift2 Design Fundamentals

SeqDrift2 uses the same basic sequential hypothesis testing strategy as Seq-

Drift1 (refer Chapter 4 but, contains a number of important enhancements,

including the use of reservoir sampling for memory management and the use

of a much tighter bound for the ε cut threshold.

5.3. Memory Management within SeqDrift2 64

5.3 Memory Management within SeqDrift2

Whilst memory management in SeqDrift1 is e�cient, the integrity of the sam-

pling process may be compromised by sliding out data instances older than

the chosen window size w. At any given time point in the progression of the

stream, all instances that have arrived since the last cut point should have

an equal chance of being sampled. This is not the case with SeqDrift1 as

older instances are not available, resulting in a possible loss of sensitivity in

detection of concepts that change very gradually. With slowly varying data,

older instances should be preserved as much as possible in the left repository

L so as to provide the best possible contrast with newer instances that arrive

in the right repository R. The higher the contrast in the means, the greater

is the chance of detecting change.

In SeqDrift2, an adaptive sampling strategy based on reservoir sampling is

adopted. The reservoir sampling algorithm was proposed by [Vitter 1985] and

is an elegant one pass method of obtaining a random sample of a given size

from a data pool whose size is not known in advance. Thus, this algorithm is

ideally suited to a data stream environment.

In reservoir sampling, a data repository of a certain size is �rst �lled with

instances that arrive in the stream. Thereafter, each subsequent instance will

replace a randomly chosen existing instance in the repository with a proba-

bility that diminishes with each new instance that arrives. Over a period of

time, the repository will consist of a mix of older and newer instances, with

the exact mix being determined by the length of the stream segment measured

from the last cut point. Unlike with the sliding window approach adopted in

SeqDrift1, there is a non-zero probability of an instance surviving that arrived

more than s instances prior to the current instance. Thus, the left repository L

is implemented as a reservoir and use the reservoir sampling algorithm for its

maintenance. The right repository R, as in SeqDrift1 remains as a temporary

5.4. Use of Bernstein Bound in SeqDrift2 65

staging area to store the newly arrived block in the stream.

In addition to improving sensitivity, another advantage of the reservoir

sampling approach is the computational e�ciency in maintaining and sam-

pling it against the complexity of maintaining and accessing structures like

exponential histograms [Datar 2002] and this was the main reason why this

strategy of implementing the data repositories was adopted.

SeqDrift2 also uses Bernstein Bound to compute test statistic to compare

the mean values of L and R. The use of the Bernstein bound in SeqDrift2 is

reviewed in the next section.

5.4 Use of Bernstein Bound in SeqDrift2

Bernstein Bound described in Chapter 3 is again the fundamental mechanism

on which the test statistic is based. However a di�erent derivation is used

to increase its sensitivity, while assuring that the false positive rate does not

exceed a user de�ned threshold. Moreover, the use of Bernstein Bound in

SeqDrift2 also requires the population variance. The same argument in the

previous chapter that proves that sample variance is an unbiased estimation

in Change Detection context holds for SeqDrift2 as well.Therefore, sample

variance of the two segments of data streams replaces population variance in

calculating test statistic.

5.5 Cutpoint Threshold for SeqDrift2

Let µ̂l, µ̂r represent the sample means on the left and right repositories.

Theorem 5.1 False Positive Guarantee for SeqDrift2.

When Pr [|µ̂l − µ̂r| ≥ ε] < δ with ε = 1
3(1−k)nr

(
p+
√
p2 + 18σ2

snrp
)
the proba-

5.5. Cutpoint Threshold for SeqDrift2 66

bility that SeqDrift2 makes a false cut is at most δ, where p = ln
(
4
δ

)
, k = nr

nl+nr

and nl, nr are the sizes of the left and right repositories respectively.

Proof In the computation of the ε cut point threshold for SeqDrift1, the

value of k that weighs the relative contributions of the means from the left

and right repositories to be 1
2
are �xed. However, this value of k may not be

optimal and in SeqDrift2, an alternative method for computing the value of

k is presented.

The Bernstein inequality is de�ned as:

Pr

(∣∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣∣ > ε

)
≤ 2 exp

(−nε2

2σ2 + 2
3
ε(c− a)

)
(5.1)

where Xi ∈ [a, c] ∀i and σ2 is the population variance. Applying the union

bound, the following can be derived for every real number k ∈ (0, 1):

Pr [|µ̂l − µ̂r| ≥ ε] ≤ Pr [|µ̂l − µ| ≥ kε] + Pr [|µ− µ̂r| ≥ (1− k) ε] (5.2)

Applying the Bernstein inequality on the R.H.S of expression 5.2 results:

Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(−nlk2ε2

2σ2
l + 2

3
kε

)
+ 2 exp

(−nr(1− k)2ε2

2σ2
r + 2

3
(1− k)ε

)
= δ′ (5.3)

where δ′ represents the empirical false positive rate based on an ε thresh-

old computed; σ2
l , σ

2
r represent population variances across the left and right

repositories respectively.

The optimization of the false positive rate involves �nding an ε value that

is larger than the di�erence in means between any two randomly selected

data segments from a stable stream where no concept change occurs. From

5.5. Cutpoint Threshold for SeqDrift2 67

equation 5.3, it can be understood that k, σ2
l and σ

2
r contribute to the value of

ε for a given δ
′
. Note that the contribution made by the two variance terms is

proportionately less in low variance environments, thus requiring an increase

in the relative proportion contributed by k in such environments. At the same

time, in low variance environments an underestimation in the value of ε will

increase the risk, δ′, of false positives occurring. In the limit, as variance

approaches zero, the risk δ′ becomes higher unless k is appropriately set to

o�set the loss in contribution from σ2
s to the ε value. This suggests that the

determination of both k and ε should be driven by low variance environments.

In the limit as σ2
l and σ

2
r approach zero in expression 5.3 results:

δ′ = 2 exp
(−3nlεk

2

)
+ 2 exp

(−3nrε(1− k)

2

)
(5.4)

Equation 5.4 represents an equation with two variables k and ε. The goal is to

�nd functions for k and ε that optimizes δ′ for a given window con�guration

having sizes nl and nr. To do this, partial derivatives of δ′ with respect to k

and ε are taken and each of them are set to zero, giving:

∂δ′

∂ε
= 2
(
−3nlk

2

)
exp
(−3nlεk

2

)
+ 2
(
−3nr(1− k)

2

)
exp
(−3nrε(1− k)

2

)
= 0

(5.5)
∂δ′

∂k
= 2
(
−3nlε

2

)
exp
(−3nlεk

2

)
+ 2(−1)

(
−3nrε

2

)
exp
(−3nrε(1− k)

2

)
= 0

(5.6)

Equations 5.5 and 5.6 yields, k = nr
nr+nl

. In other words, k is determined

by equating the two exponent terms in expression 5.3. Note that this solution

for k is a generalization of k = 1
2
used for SeqDrift1.

An alternative way of formulating the optimization problem is to visualize

a function consisting of the sum of two exponent terms in three dimensional

space. The graphic in Figure 5.1 shows clearly that the sum of two negative

exponent terms, exp(−X)+exp(−Y) is minimized when (X, Y) lie on the line

5.5. Cutpoint Threshold for SeqDrift2 68

segment X = Y , as shown by the highlighted line in the Figure 5.1 This pro-

vides geometrical support for the algebraic derivation of k and ε done through

expressions (5.2 - 5.6).

However, it should be pointed out that both formulations of the optimiza-

tion problem for determining k is based on asymptotic behavior and hence

the value of k determined is an approximate one.

Figure 5.1: Minimization of the sum of two negative exponents

Using the expression for k derived above and equating the two terms in

expression 5.3 yields:

nlσ
2
l = nrσ

2
r (5.7)

An expression for ε can be formulated now as k is determined. Equating δ′ in

expression 5.3 to the user-assigned δ and setting the two exponent terms to

5.5. Cutpoint Threshold for SeqDrift2 69

be of equal value:

δ = 4 exp
(−nr(1− k)2ε2

2σ2
r + 2

3
(1− k)ε

)
= 4 exp

(−nr(1− k)2ε2

2
nlσ

2
l

nr
+ 2

3
(1− k)ε

)
(5.8)

δ could have been equated to the left exponential term in 5.3 instead of the

right to obtain ε, but as the terms asymptotically approach each other in a

low variance environment, an equivalent expression will result which yields

approximately the same numerical value.

Solving 5.8 above for ε and the use of expression 5.7 yields:

ε =
1

3(1− k)nr

(
p+

√
p2 + 18

nlσ2
l

nr
nrp
)

(5.9)

where p = ln 4
δ
and k = nr

nr+nl
.

In the expression above involves the population variance σ2
l across the reser-

voir. As noted earlier in Chapter 3 with the segment sizes used for the reser-

voir, the sample variance provides a good approximation for population vari-

ance even for the worst-case scenario where the reservoir size is 200, while

improving progressively with reservoir size. Thus, henceforth, in this research

sample variance σ2
sl is used as a good approximation of the population variance

σ2
l . For simplicity of notation σ2

s is used in place of nlσ
2
sl

nr
, thus giving:

ε =
1

3(1− k)nr

(
p+

√
p2 + 18σ2

snrp
)

(5.10)

Comparing 5.10 with the corresponding ε cut value for SeqDrift1 de�ned in

Theorem 5.1, the following observations can be made:

� The ε cut threshold for SeqDrift2 is more �exible and accommodates

a greater range of values for k other than the single value 1
2
, which

SeqDrift1 always uses.

5.5. Cutpoint Threshold for SeqDrift2 70

� The ε cut threshold for SeqDrift2 is tighter than its SeqDrift counter-

part, and thus can be expected to yield better delay times for SeqDrift2.

In SeqDrift2, the right repository size is set to the block size b, so essen-

tially the di�erence amounts to the factor 1
3(1−k) in SeqDrift2 replacing

the factor 2
3
in SeqDrift1. Thus for all values of k < 0.5, SeqDrift2 would

yield a tighter ε threshold value.

Theorem 5.2 False Negative Guarantee for SeqDrift2

With ε de�ned as in Theorem 5.1, and |µl − µr| > 2ε, then the probability of

occurrence of a false negative with SeqDrift2 is < δ.

Proof Pr(2|µl − µr| ≤ 2ε) = Pr(|µl − µ̂l + µ̂l − µr + µl − µ̂r + µ̂r − µr| ≤ 2ε)

= Pr(µl − µ̂l + µ̂l − µr + µl − µ̂r + µ̂r − µr| ≤ kε+ (1− k)ε+ kε+ (1− k)ε)

= Pr(|µl − µ̂l| ≤ kε) + Pr|(µl − µ̂r)| ≤ (1− k)ε)

+ Pr(|µl − µ̂r| ≤ kε) + Pr(|µr − µ̂r|) ≤ (1− k)ε) for some k ∈ (0, 1)

From the union bound: Pr(|µ̂l−µ̂r| ≤ ε) ≤ Pr(|µl−µ̂l| ≤ kε)+Pr|(µl−µ̂r|) ≤

(1−k)ε) and Pr(|µ̂l− µ̂r| ≤ ε) ≤ Pr(|µl− µ̂r| ≤ kε)+Pr(|µr− µ̂r| ≤ (1−k)ε

But from the starting assumption, the following is true: Pr(|µ̂l − µ̂r| ≤ ε) >

1− δ

Thus Pr(2|µl − µr| ≤ 2ε) > 2Pr(|µ̂l − µ̂r| ≤ ε) > 2(1 − δ), or in other

words: Pr(|µl − µr| ≤ 2ε) > (1 − δ)which leads to a contradiction since

Pr(|µl − µr| > 2ε) with probability 1.

Thus the assumption of Pr(|µ̂l− µ̂r| ≤ ε) > 1−δ is false and so Pr(|µ̂l− µ̂r| >

ε) > 1− δ which means that the probability of a false negative is < δ, which

in turn proves the theorem.

5.6. Optimizing SeqDrift2 Detection Delay 71

5.6 Optimizing SeqDrift2 Detection Delay

The determination of the ε cut threshold so far has been completely deter-

mined by the false positive rate, with no consideration given to sensitivity. A

method whereby sensitivity is explicitly taken into account by reducing ε as

long as the estimated false positive rate remains well below the user de�ned

permissible rate of δ.

An equally important objective of the optimization procedure is to auto-

matically determine the size of the reservoir (left repository) to be used as

concept changes occur in the stream. In the SeqDrift detectors, change point

detection is activated at intervals of the block size. Thus, if detection delay

was the only consideration then block size should be set as small as possible.

If the right repository was a multiple m (> 1) of the block size, then the

minimum possible detection delay would be mb, as cut point determination

is only done when a new block arrives. Thus the only choice left to minimize

detection delay would be to either make b as small as possible or m as small

as possible. The latter choice is opted as making b too small would increase

the risk that the sample mean taken from the right repository will have higher

deviations from the true population mean, especially when the natural vari-

ance in the data is relatively high. Assigning m = 1 is opted, thus e�ectively

making the size of the right repository equal to the block size. In terms of

an adequate size for b, a value of 200 is taken. A smaller value such as 100

might be a choice, but the experimentation showed that a slightly better false

positive rate could be achieved with a size of 200.

Having set the block and right repository sizes, the left repository size then

becomes an important parameter that a�ects both the false positive rate and

the detection delay time. The probability that a randomly chosen instance in

the left repository being replaced by a new instance arriving in the stream is

inversely proportional to its size [Vitter 1985]. Thus the smaller the size of

5.6. Optimizing SeqDrift2 Detection Delay 72

the left repository the smaller is the capacity of the left repository to keep an

accurate record of its past; put simply its memory of the past is limited. Thus

it is clear that the size of the left repository is crucial to improving sensitivity.

This suggests that an optimization procedure for reservoir sizing that takes

into account the various trade-o�s between false positive rate, detection delay

and memory overheads is needed. Determination of the ε cut threshold has

ensured that the false positive rate is minimized. It is now necessary to en-

sure that sensitivity is increased by increasing the size of the reservoir while

ensuring that the false positive rate does not increase above the user-de�ned

δ threshold.

A logical starting point for the optimization procedure is to begin the

process with equal sized repositories (e�ectively making k =0.5) and to pro-

gressively reduce k (and thus increase nl) until the false positive rate is smaller

than δ. In a real world environment, especially in a high speed data stream

environment concept changes cannot be signaled externally and thus an esti-

mate of the false positive rate is needed. This estimate is a function of the

current k value, the variance in the stream and ε.

5.6.1 Convergence of Algorithm 5.1

In this section, Algorithm 5.1 is described and examined for its speed of con-

vergence. The procedure runs for each new data block and �nds the optimal

value of k subject to the constraint expressed by 5.10. In order to ensure

that memory usage remains within reasonable bounds a maximum size Nlmax

is set for the reservoir according to the system memory available, just as is

done in ADWIN. Starting with an initial con�guration of nl = nr = b a value

for ε is calculated using equation 5.10 with k = 0.5 and the sample variance

(line 3). The value of k is then reduced by a factor of 3
4
and the ε value is

updated (line 5). Whenever the constraint expressed by 5.11 is not violated,

5.6. Optimizing SeqDrift2 Detection Delay 73

k is decreased further and ε is updated as in the previous iteration. When the

constraint expressed by 5.11 is violated, the value of k is reset by undoing the

latest update to k and a function AdjustForDataRate(k, µ̂l, µ̂r) is called that

further adjusts k according to the data rate.

The rationale behind Algorithm 5.1 is that SeqDrift2's sensitivity can be

enhanced by decreasing the value of its cut point threshold ε as long as the

estimated false positive rate δ′ does not exceed the maximum user de�ned

permissible rate δ. This is accomplished by progressively decreasing the value

of k until the constraint δ′ < δ is violated. As the starting value of k is 0.5,

the initial value of δ′ is much smaller than δ. However, with each iteration δ′

will increase with each decrease in the value of k and will approach the value

of δ. In practice convergence based on the violation of δ′ < δ can be quite

slow and so to increase the speed of convergence, the following condition is

used:
δ′i−1 − δ′i
δ′i−1

< t (5.11)

instead, where t is a tolerance value, set to a small value such as 0.0001.

Convergence governed by 5.11 ensures that the risk estimate has stabilized at

the convergence point and while it may be possible for the δ′ value to increase

by small amounts beyond the convergence point, the gains in sensitivity gained

by further iterations are marginal and outweighed by the increased execution

overhead. Lemma 1 establishes that 5.11 can be replaced by the constraint

5.12 which can be enforced more conveniently.

εi−1 − εi
εi−1

< t (5.12)

5.6. Optimizing SeqDrift2 Detection Delay 74

Algorithm 5.1 GetOptimalEpsilon()
Input: Block Size b, µ̂l, µ̂r, δ, σs, Nlmax, t
Output: optimized value for εopt
/* µ̂l is the sample mean of reservoir */
/* µ̂r is the sample mean of repository */
/* δ is the user-defined maximum false positive rate */
/* σs is the sample variance within the reservoir */
/* Nlmax is the maximum permissible memory size of the reservoir */

1 nl = b, nr = b, k1 = 0.5

2 i = 2

/* calculate ε using equation 5.10 */

3 εi−1 = 1
3(1−ki−1)nr

(
ln
(

4
δ

)
+

√
p2 + 18σ2

snr ln
(

4
δ

))
/* decrement k in small steps */

4 ki = 3
4
ki−1

5 εi = 1
3(1−ki)nr

(
ln
(

4
δ

)
+

√
p2 + 18σ2

snr ln
(

4
δ

))
6 if εi−1−εi

εi−1
< t then

7 i = i+ 1

8 go to Step 3

9 else
/* reset k as it decreased beyond the optimal value */

10 ki = 4
3
ki−1

/* Now adjust k according to the rate of change in data */

11 k = AdjustForDataRate(ki, µ̂l, µ̂r)

12 εopt = 1
3(1−k)nr

(
ln
(

4
δ

)
+

√
ln
(

4
δ

)2
+ 18σ2

snr ln
(

4
δ

))
/* Set the left reservoir size according to new k value */

13 nl = nr ∗ 1−k
k

14 if nl > Nlmax then
15 nl = Nlmax
16 return εopt

5.6. Optimizing SeqDrift2 Detection Delay 75

Algorithm 5.2 AdjustForDataRate()
Input: kcurr,µ̂l, µ̂r
Output: Optimal value of k
/* Determine the current rate of change */

1 rate = (|µ̂l − µ̂r|)
/* Calculate the optimal k value based on rate of change */

2 k = kcurr + (−rate4 + 1) ∗ kcurr
return k

Lemma 1 is stated below and then it is used to examine Algorithm 5.1's

convergence properties.

Lemma 1. Whenever εi−1−εi
εi−1

< t, then δ
′
i−δ
′
i−1

δ
′
i−1

< t where i is the iteration

number.

Proof: εi−1−εi
εi−1

< t can be rewritten as: εi−1

εi
< 1

1−t

From equation 5.10, the following is true:

εi−1 =
αi−1

3nr(1− ki−1)
(5.13)

and

εi =
αi

3nr(1− ki)
(5.14)

where αi−1 =
(

ln
(

4
δ′i−1

)
+

√
ln
(

4
δ′i−1

)2
+ 18σ2

snr ln
(

4
δ′i−1

))
and αi =

(
ln
(

4
δ′i

)
+√

ln
(

4
δ′i

)2
+ 18σ2

snr ln
(

4
δ′i

))
where δ′i−1, δ

′
i are the estimated false positive

rates associated with iterations i− 1 and i respectively

Dividing equation 5.13 by equation 5.14 yields,

εi−1
εi

=
(1− ki)

(1− ki−1)
∗ αi−1

αi
(5.15)

Rearranging equation 5.15,

5.6. Optimizing SeqDrift2 Detection Delay 76

αi−1
αi

=
(1− ki−1)
(1− ki)

∗ εi−1
εi

(5.16)

Now (1−ki−1)
(1−ki) < 1 as ki−1 = 1

f
ki ⇒ ki−1 > ki

Thus from equation 5.16 and expression 5.11, the following can be derived:
αi−1−αi
αi−1

< t which in turn means that δ′i−δ′i−1

δ′i−1
< t, thus proving the Lemma.

Theorem 5.3 Algorithm 5.1's convergence is O(log(log(1
δ
))) and O(log(σ2

s)).

Proof Denote ε1 as the cut threshold used at the �rst iteration with k =

k1 = 0.5. Now ε1 is given by: ε1 = 1
3(1−0.5)nr

(
p +

√
p2 + 18σ2

snrp
)
and

ε2 = 1
3(1−k2)nr

(
p+
√
p2 + 18σ2

snrp
)
. Thus ε2 = 1

2

(
1

(1−k2)

)
ε1. Generalizing the

derivation of ε to the (i− 1)th iteration yields:

εi =
1

2

(1

(1− ki)

)
ε1 (5.17)

From 5.10, the following can be stated:

εi−1 =
1

3(1− ki−1)nr

(
p+

√
p2 + 18σ2

snrp
)

(5.18)

Applying the result from Lemma 1 on equations 5.15 and 5.16, the following

quadratic is obtained:

3ε1
2nrq

2 − 4(1− t)ε1pq − 24(1− t)σ2
sp = 0 (5.19)

where q = (1−ki−1)
(1−ki) and t is the tolerance factor.

Equation 5.19 when solved yields

q =
(1− t)(2p+

√
(4p2 + 72nrσ2

sp)

3ε1nr
(5.20)

Therefore:
(1− ki−1)
(1− ki)

=
(2p+

√
(4p2 + 72nrσ2

sp)

3ε1nr
(5.21)

5.6. Optimizing SeqDrift2 Detection Delay 77

Also, ki−1 = 1
k
ki = 0.5f i−2

Substituting for ki−1 and ki in (24) above and replacing the right hand side

of (24) by q for simplicity, gives:

1− f0.5i−2

1− 0.5i−2
= q (5.22)

which when solved yields:

i = 2 + logf

(
2

(q − 1)

(q − f)

)
(5.23)

Equation 5.23 shows that the number of iterations i in which Algorithm

5.1 converges is logarithmic (to base f) in q, and combined with equation 5.19

which expresses q as a square root function of σ2
s , it is concluded that i is

a logarithmic function (to base f) of σ2
s . With respect to δ, i is logarithmic

(again with base f) with respect to p, which in turn is inverse logarithmic (to

base e) with respect to δ. Thus overall, with adjustment of logarithmic bases,

i = O(log(log(1
δ
))

With a f value of 0.75, a p value of 5.99 (corresponding to a δ value of 0.01),

a σ2
s value of 0.2, and nr = 200, the use of (25) and (22) yields convergence

at the 20th iteration which corresponds to δ′ = 0.0099 (see Table 5.1) which

is very close to the desired value of 0.01. Using the same f value of 0.75, and

p value of 5.99, a σ2
s value of 0.02, and nr = 200, convergence was signaled

by (25) and (22) at the 18th iteration, corresponding to δ′ value of 0.0099 (see

Table 5.1) which again is very close to the desired value of 0.01.

Although the value of 0.75 is used for f in Algorithm 5.1(line 4), in principle

other values such as 0.8 or 0.9 can be used to produce very similar results.

Di�erent values of f were experimented and found that the di�erence in results

is insigni�cant. Even an extreme value for f of 0.1 yields an ε value of 0.1199

(very similar to the 0.1202 value achieved with f = 0.75) at convergence for

5.6. Optimizing SeqDrift2 Detection Delay 78

the high variance case, a very similar result to the one that is achieved with

f = 0.75. The same holds true for the low variance case; with f = 0.1,

convergence was achieved with an ε value of 0.0460 (again, very similar to the

0.0461 achieved with f = 0.75. Therefore it is concluded that the optimization

process is not sensitive to the value of f used, provided that a reasonable value

for f is used, say in the range [0.1, 0.9].

5.6. Optimizing SeqDrift2 Detection Delay 79

σ2
s =0.2 σ2

s =0.02

εcurr kcurr knew δ′ εnew εcurr kcurr knew δ′ εnew

0.2398 0.500 0.375 0.00050 0.1919 0.0920 0.500 0.375 0.00086 0.0736

0.1919 0.375 0.281 0.00176 0.1668 0.0736 0.375 0.281 0.00235 0.0640

0.1668 0.281 0.211 0.00328 0.1520 0.0640 0.281 0.211 0.00392 0.0583

0.1520 0.211 0.158 0.00471 0.1424 0.0583 0.211 0.158 0.00530 0.0547

0.1424 0.158 0.119 0.00591 0.1360 0.0547 0.158 0.119 0.00641 0.0522

0.1360 0.119 0.089 0.00688 0.1316 0.0522 0.119 0.089 0.00728 0.0505

0.1316 0.089 0.067 0.00763 0.1285 0.0505 0.089 0.067 0.00794 0.0493

0.1285 0.067 0.050 0.00821 0.1262 0.0493 0.067 0.050 0.00845 0.0484

0.1262 0.050 0.038 0.00865 0.1246 0.0484 0.050 0.038 0.00883 0.0478

0.1246 0.038 0.028 0.00898 0.1234 0.0478 0.038 0.028 0.00912 0.0473

0.1234 0.028 0.021 0.00923 0.1225 0.0473 0.028 0.021 0.00934 0.0470

0.1225 0.021 0.016 0.00942 0.1218 0.0470 0.021 0.016 0.00951 0.0468

0.1218 0.016 0.012 0.00957 0.1213 0.0468 0.016 0.012 0.00963 0.0466

0.1213 0.012 0.009 0.00967 0.1210 0.0466 0.012 0.009 0.00972 0.0464

0.1210 0.009 0.007 0.00976 0.1207 0.0464 0.009 0.007 0.00979 0.0463

0.1207 0.007 0.005 0.00982 0.1205 0.0463 0.007 0.005 0.00984 0.0462

0.1205 0.005 0.004 0.00986 0.1204 0.0462 0.005 0.004 0.00988 0.0462

0.1204 0.004 0.003 0.00990 0.1202 0.0462 0.004 0.003 0.00991 0.0461

0.1202 0.003 0.002 0.00992 0.1202 0.0461 0.003 0.002 0.00993 0.0461

0.1202 0.002 0.002 0.00994 0.1201 0.0461 0.002 0.002 0.00995 0.0461

0.1201 0.002 0.001 0.00996 0.1200 0.0461 0.002 0.001 0.00996 0.0461

0.1200 0.001 0.001 0.00997 0.1200 0.0461 0.001 0.001 0.00997 0.0461

0.1200 0.001 0.001 0.00998 0.1200 0.0461 0.001 0.001 0.00998 0.0460

Table 5.1: Optimization of k value by Algorithm 5.1

Table 5.1 clearly shows the utility of the optimization process. In the high

5.6. Optimizing SeqDrift2 Detection Delay 80

variance scenario the ε value starts o� at a high value of approximately 0.24

for an equal-sized data repository con�guration and decreases by around 0.12

at the point of convergence (it is de�ned that convergence is achieved when

the di�erence between consecutive δ′ values is less than or equal to 0.0001, a

tolerance factor) to reach a value of 0.1202, thus greatly increasing sensitivity

while ensuring that the false positive rate is kept within user-de�ned bounds.

A similar behavior is observed for the low variance case, although the reduction

in the ε value at 0.045 is not so drastic in absolute terms. As expected,

the ε values at convergence are very much di�erent from each other, as the

determination of ε is dominated by the variance term, as shown in equation

5.10.

The optimization provided by Algorithm 5.1 in reducing k does not ex-

plicitly take into account changes in the classi�er error rate The value of k

determined by Algorithm 5.1 cannot be further decreased as this would entail

a higher risk of false positives. On the other hand, �ne tuning, involving small

increases to the k value can be made to improve the false positive rate in ac-

cordance with the error rate trajectory. Smaller gradients of change require

higher increases to the k value in order to minimize the false positive rate -

in the limit when the gradient is 0, then k should receive its highest boost.

By the same token higher gradients require smaller increases to the k value as

sensitivity is less of a concern in such cases. In the limit when the gradient is

1, no increase in k value is needed from the false positive perspective as con-

cept change is occurring, and hence there is no need to increase k to counter

false positives. At the same time, from the sensitivity point of view detection

times will be lesser for steeper gradients of change. With the above principles

and boundary conditions established, the concave function de�ned in 5.11 is

proposed to increment k and make it sensitive to the error trajectory.

∆k = (−rate4 + 1) (5.24)

5.6. Optimizing SeqDrift2 Detection Delay 81

where rate refers to the di�erence in sample means between the right and left

repositories.

It can be seen that the function de�ned in 5.24 satis�es the necessary

boundary conditions have been established. In reality, any algebraic function

that decreases with increasing rate will su�ce, but a concave function is delib-

erately chosen in preference to a linear function. The concavity in the function

introduces a bias towards false positive minimization vis-a-vis detection delay

minimization. When the rate increases from zero, a concave function will al-

ways provide a higher boost to the k value than a linear function as shown in

the graphic in Figure 5.2. Thus a linear function will introduce the opposite

bias: i.e. towards detection delay minimization as opposed to minimization

of the false positive rate.

Figure 5.2: Fine adjustment to k based on the data rate using the concave

function

Having decided on a concave function to implement the policy of biasing

5.6. Optimizing SeqDrift2 Detection Delay 82

the detection process in favor of false positives, the exact composition of the

function is relatively unimportant as long as concavity is preserved. In prin-

ciple, the function in 5.24 can be replaced by any other concave function that

has the same shape and satis�es the boundary conditions but will lead to very

similar results.

5.6.1.1 Motivating Example

The above mechanism has the e�ect of making the ε detection threshold sen-

sitive to the changes in the stream data rate. Consider a virus checker appli-

cation running on a Web server that processes tens of thousands of instances

arriving per second. The virus checker is implemented through a classi�er

that learns a set of signatures that indicates the presence of viruses. The

virus checker classi�es each incoming instance (�le request) as a threat (class

1, indicating the presence of a virus) or as a non threat (class 0, no virus).

The classi�er receives periodic updates of class labels from the virus checker

vendor and users. In general these periodic updates will be available at the

vendor site with varying frequency, but it is reasonable to assume that they

will be distributed to client sites in average frequency intervals of the order

of minutes rather than seconds. In between updates from the central server

the classi�er will use its current signature database to classify new instances

that arrive. In this type of application the two priorities are processing speed

and minimization of false positives. Processing speed is critical as the virus

checker's speed of classi�cation needs to match with the rate of arrival of

instances. If it is below, load shedding will be forced on the server, thus in-

creasing the risk of infection. At the same time the false positive rate needs

to be as small as possible in order to reduce system overheads. Each instance

wrongly tagged as a virus will require the generation of an alert to the user

who made the �le request to desist from downloading the �le concerned, thus

5.6. Optimizing SeqDrift2 Detection Delay 83

not only generating additional system overhead but also potentially denying

the user access to a legitimate �le.

In this application concept change signi�es that a new strain of viruses

have been introduced into the stream. The longer the detection delay, the

longer the time taken by the virus checker in discovering a new strain of virus.

In this type of application detection delay will be determined primarily by

the frequency of updates that arrive from the central site, which as discussed

earlier can be expected to be in the order of minutes. It is thus established for

this type of application (and there are many others like it, such as Spam de-

tection, detecting changes in behavioral patterns in social media applications,

etc) that maximization of throughput is essential, Likewise, minimization of

the false positive rate is also a priority in such types of applications in order to

minimize system overheads as well as to avoid unnecessarily burdening users

with false alerts. Apart from the above mentioned applications the �eld of

radio astronomy has opened up a vast opportunity for knowledge discovery on

distant galaxies through the use of data mining. Radio Astronomy data repre-

sents an ultra high speed data stream, is highly noisy, has slow rate of concept

change and has potentially high false positive rate [Das 2009], [Borne 2007].

Figure 5.3: Error rate Vs Time with optimized values of ε

5.6. Optimizing SeqDrift2 Detection Delay 84

A virus checker application is used to illustrate the need for varying the

detection threshold in order to minimize the false positive rate. Figure 5.3

illustrates the error rate vs time along with the optimized cut point threshold

value ε. Suppose that the AdjustForDataRate() method increases ε to 0.07

to protect against false positives in (R,S]. Similarly, due to the stability of the

error rate, with a mean value of approximately 0.03 in (S,T], (except for the

short lived spike at U), AdjustForDataRate() increases ε to 0.08. No concept

change is triggered at U unlike at point S which also had an error rate of 0.08

due to the higher setting of the detection threshold by AdjustForDataRate(),

which will only trigger changes at 0.11 or above. Thus coupling the detection

threshold to data rate has enabled the change detector to avoid false positives

in the segment (S, T]. This example also illustrates that the necessity of

di�erent probabilities of detection for the same magnitude of error rate change

that is registered over di�erent segments of the data stream.

While it could be argued that an increase in variance in sub segments

of (S, T] would by itself contribute to an increase in value of the detection

threshold, in fact this will not happen as the data in segment (S, T] as a whole

is stable, and hence an external mechanism such as AdjustForDataRate() is

needed.

Algorithm 5.3 GetChangeType()
Input: µ̂l,µ̂r,εChange
Output: Change || Internal || Homogeneous

1 if εChange ≤ |µ̂l − µ̂r| then
2 if µ̂r > µ̂l then
3 return Change

4 return Internal
5 return Homogenous

5.6. Optimizing SeqDrift2 Detection Delay 85

Algorithm 5.4 UpdateUsingReservoirSampling()

Input: R, L
Output: void

1 CurrentSize = Get the current size of the reservoir L

2 MaxSize = Get the maximum size of the reservoir L

3 for Each instance Ins of R do
4 Increment the TotalInstancesSeen of L

5 if CurrentSize is less than MaxSize then
6 Add the element to L

7 Increment the CurrentSize of L

8 else
9 RandomIndex = Generate a random index in 0 and

TotalInstancesSeen

10 if RandomIndex is less than MaxSize then
/* With probability MaxSize

TotalInstancesSeen */

11 Replace the instance of L at RandomIndex by Ins

12 Remove Ins from R

13 update the mean µ̂l and variance σ2
s

5.7. Driver Routines for SeqDrift2 86

Algorithm 5.5 SeqDrift2: IsChange()
Input: An instance (Ins), BlockSize b, Left Repository Rl,

Right Repository Rr

Output: Change / NoChange
1 Increment the instance counter

2 Insert Ins into R

3 Update the mean µ̂r of R

4 if At the block boundary then
5 εChange = GetOptimalEpsilon(b, µ̂l, µ̂r, δ, σ2

s, Nlmax)

6 µ̂l = Get the mean of L

7 ChangeType = GetChangeType(µ̂l, µ̂r,εChange)

8 if (ChangeType is Change or Internal) then
9 Remove all elements from L

10 Copy the elements from R to L

11 Remove all elements from R
if (ChangeType is Change) then

12 return Change

13 return NoChange

14 UpdateUsingReservoirSampling(R,L)

15 return NoChange

5.7 Driver Routines for SeqDrift2

Algorithms 5.3, 5.5 and 5.2 show the pseudo code for the driver routines for

the SeqDrift2 change detector. Algorithm 5.5 is the main driver routine that

starts o� by inserting a new instance into R, incrementally maintaining its

(R) mean, and computing the sample variance, taken across all instances in

L and R (lines 2 to 3). At a block boundary it calls Algorithm 5.1 (line 5) to

optimize the values of k and ε. Having obtained the optimal ε and optimal

L value it obtains the mean across L (line 6) and then calls Algorithm 5.3 to

determine if concept change has occurred. Algorithm 5.3 performs hypothesis

testing (lines 1) and returns the change type, as appropriate. Three possible

5.8. Time Complexity for SeqDrift2 87

states exist: homogeneous, when no concept change has occurred, change when

change has occurred, and �nally internal when the ε threshold is triggered but

the error rate of the classi�er (i.e. when µ̂r ≤ µ̂l) decreases.

If the change type returned by Algorithm 5.3 is of type change or internal,

then Algorithm 5.5 �ushes L, copies R into L and then �ushes R (lines 9

to 11). If no change has occurred then it calls Algorithm 5.4 to perform an

update on L using the reservoir sampling algorithm (line 14).

5.8 Time Complexity for SeqDrift2

The time complexity of SeqDrift2 is O(1) with respect to a stream instance.

SeqDrift2's detection strategy is broken down into 3 major steps and analyze

the time complexity involved in each step.

1. As each new instance is received it is bu�ered in the right repository

and an incremental update is made to the sample mean in the right

repository. Overall, the time complexity of this step is O(1).

2. When b instances are received (where b is the block size), Algo-

rithms 5.1 and 5.2 are executed to optimize the value of k. As

Algorithms 5.1 and 5.2 only require already calculated summary

measures such as means and variance, no iteration over already

read instances is required, so time complexity remains at O(1).

3. The �nal step involves hypothesis testing and updating the reser-

voir with instances from the right repository. The time complexity

for the hypothesis testing operation is O(1) as no iteration through

past instances is required. If the null hypothesis H0 holds true that

no signi�cant di�erence in means exist between the left and right

repositories then the instances bu�ered in the right repository up-

date the reservoir in the left repository. This update requires a

5.9. Space, Time and Detection Delay Expectations 88

single further pass through the instances in the right repository as

it involves computing a random number in the range [1..nl+1] (line

9 in Algorithm 5.4), and then determining whether an instance in

the reservoir needs to be replaced (line 10).

Thus the �rst two steps have time complexity O(1), while the third step is also

O(1) but requires a further scan through the right repository, thus making Se-

qDrift2 a two pass algorithm with respect to its internal bu�er. The internal

bu�er is much more compact than the raw data as in a classi�cation context

the bu�er consists of a bit stream as each data instance once classi�ed will end

up as a 0 for a correct classi�cation or 1 in the case of a miss-classi�cation.

Also, in common with SeqDrift1, it is one-pass with respect to cut point ex-

amination, as it never reexamines previous cut points. The theorem 5.2 is

stated to establish a theoretical guarantee on the false negative rate for the

SeqDrift2 detector.

5.9 Space, Time and Detection Delay Expecta-

tions

Before undertaking the empirical study on the �ve change detectors, namely

SeqDrift1, SeqDrift2, ADWIN, PHT and EWMA, the following are summa-

rized in Table 5.2: the space, time and detection delay complexities. In order

to provide easy reference to the methods named parameters have been used,

as proposed by the authors of the methods concerned.

5.9. Space, Time and Detection Delay Expectations 89

Memory Time Best Case

Complexity Complexity Detection Delay

PHT O(1) O(1) 0

EWMA O(1) O(1) 0

SeqDrift1 and SeqDrift2 O(W) O(2) O(b)

ADWIN O(MlogW
M

) O(log(W) passes O(g)

Table 5.2: Complexity analysis of change detectors

As shown in Table 5.2 PHT and EWMA are essentially memory less meth-

ods and are thus the most space e�cient. The SeqDrift and ADWIN detectors

store data instances in the detection window of size W. The latter uses com-

pression in the form of an exponential histogram and is in general more space

e�cient than the SeqDrift detectors. The PHT,and EWMA detectors make a

singe pass through the data, the SeqDrift detectors make two passes (one for

bu�ering instances in the window and the other for updates), while ADWIN

in the worst case makes O(logW) passes as it checks each possible combina-

tions of cuts in its window. In the case of detection delay, PHT and EWMA

have best case delays of 0 for the scenario that the change takes place at the

�rst instance of the current block/grace period, as they check for changes with

the arrival of each new instance whereas the SeqDrift detectors and ADWIN

check in intervals of b (block size) and g (grace period) respectively.

On the basis of the above measures both PHT and EWMA are attractive

but other measures such as false positive rate and actual processing times

need to be evaluated empirically before �nal judgments can be made on the

relative e�ectiveness of these di�erent approaches. The empirical evaluation

has shown that both PHT and EWMA have signi�cantly higher false positive

rates than SeqDrift2 and ADWIN. In fact, EWMA had such high false positive

5.10. Empirical Study 90

rates that could render it unusable as a change detector in its present form.

5.10 Empirical Study

The Empirical study had �ve broad objectives to test the following that are

listed below:

� A �ve-way comparative study between SeqDrift1, SeqDrift2, ADWIN,

PHT and EWMA on the false positive rate by recording the number of

false positives made on stationary data.

� The robustness of the detectors to noise by injecting data with varying

amounts of noise and recording the number of changes �agged by each

of the detectors.

� Tolerance of the detectors to abrupt changes and the impact of upstream

changes that are �agged by the detectors.

� The sensitivity of the change detectors by subjecting them to data that

varied by di�erent amounts over time and recorded the detection delay

time and the processing time.

� The impact on classi�cation accuracy, mining time and memory usage

5.10.1 False Positive Rate Assessment

This section elaborates the experimental procedure and the outcome in term

of average false detection rates of SeqDrift1, SeqDrift2 and ADWIN.

5.10.1.1 Experimental Setup

The �rst experiment was designed to compare the false positive rates of the two

SeqDrift detectors against ADWIN, Page Hinkley Test (PHT) and the Expo-

nential Weighted Moving Average (EWMA)methods. A stationary Bernoulli

5.10. Empirical Study 91

distribution of 200,000 instances was used for this and tested the e�ect of

various combinations of mean value (µ) and maximum allowable false positive

rate (δ). For this experiment the block size for the SeqDrift detectors was

set to the default value of 200 and ADWIN's internal grace period parameter

(the equivalent of the SeqDrift detector's block size parameter) was also set

to its default value of 32. In the case of PHT, its internal parameters, drift

level=10 and delta=0.02 were set to achieve a detection delay that was ap-

proximately equal to that of ADWIN and SeqDrift2 so that an assessment of

its performance could then be on the basis of its false positive rate. In the case

of EWMA, a setting of its control parameters lamda=0.2, ARL0=1000 and

warning level=0.1 was used that resulted in the lowest possible false positive

rate. With this setting it turned out that its detection delay was similar to

that of SeqDrift2, ADWIN, PHT thus enabling it to be compared with the

others as well on the false positive rate. The implementations of PHT and

EWMA from MOA Extensions by Paulo Mauricio Gonçalves Jr 1 were used.

A total of 100 trials for each combination of µ and δ were conducted and the

average false positive count for each combination was recorded for the three

change detectors. In order to obtain statistically reliable results a separate

Bernoulli stream segment was generated for each trial, with the statistical

properties mentioned above.

5.10.1.2 Comparison of SeqDrift1, SeqDrift2 and ADWIN

The comparison of SeqDrift with ADWIN is reported �rst as they both explic-

itly make use of a signi�cance level δ and so the e�ects of this parameter can

be assessed for the two di�erent types of detectors. Figure 5.4 shows that all

three detectors have good false positive rates that are substantially lower than

the user de�ned maximum permissible level (δ) set. However, it is observed

1From sites.google.com/site/moaextensions/

5.10. Empirical Study 92

that as the variance in the data increases with the increase in the µ value (for

a Bernoulli distribution, the variance is µ× (1−µ)) the gap between ADWIN

and the SeqDrift detectors widens. The ADWIN false positive rate increases

progressively with the increase in variance as well as the lowering of con�-

dence (i.e higher δ values). On the other hand the SeqDrift detectors retain

a virtually zero false positive rate except when the con�dence is low at 0.7

(δ = 0.3), with SeqDrift1 and SeqDrift2 returning rates of .0028%, compared

to the ADWIN rate of .0128% at µ = 0.5. As the con�dence becomes lower,

the ε value decreases and this results in an increase in the false positive rate

for ADWIN. The relatively higher false positive rate for ADWIN is due to the

use of compression to reduce storage size of its bu�er.

ADWIN uses exponential histograms to compress its bu�er and estimates

true population means from the compressed version, thus introducing a degree

of imprecision in the estimation of the population mean as explained in detail

in Section 5.10.1.5. As the variance in the data increases so does the degree of

imprecision in estimating the mean. In contrast, the SeqDrift detectors do not

employ compression and estimate population means using random sampling

techniques described in section 5.2.

While both SeqDrift detectors exhibit better false positive rates than AD-

WIN, it is clear from Figure 5.4 that SeqDrift1's rate is better than that of

SeqDrift2. This is to be expected as SeqDrift2 was speci�cally optimized for

detection delay through the use of Algorithm 5.1 which trades o� detection

delay time with the false positive rate, while ensuring that the false positive

rate does not rise above the user de�ned permissible rate of δ.

5.10. Empirical Study 93

Figure 5.4: Average False Detections of SeqDrift1, SeqDrift2 and ADWIN

5.10.1.3 Overall Assessment of False Positive Performance

Since ADWIN and the SeqDrift detectors use an explicit signi�cance parame-

ter it was necessary to choose a signi�cance level for these detectors. A level of

0.1 was chosen as levels below will be in favor of these detectors while a level

of 0.3 would bias against them as the ε threshold for these detectors would

then be too loose, thus increasing their false positive rate unfairly. Table 5.3

shows the average number of false positives recorded across the stable segment

of the stream of length 200,000.

Mean 0.05 0.1 0.3 0.5

SeqDrift1 0 0 0 0

SeqDrift2 0.61 1.23 1.15 1.02

ADWIN 0.64 4.14 5.53 6.29

PHT 0 26.96 189.95 252.02

EWMA 1722.25 2727.79 549.86 16371.77

Table 5.3: Average False Change Comparison across all chosen detectors

5.10. Empirical Study 94

Table 5.3 shows that the false positive count for PHT and EWMA detec-

tors is orders of magnitude higher than for the rest of the detectors. Such

a high number of false positives would result in signi�cant degradation of

performance for classi�ers using these two detectors, both in terms of compu-

tational time (to adjust models) and in terms of classi�er accuracy (in wrongly

restructuring existing accurate models). The results clearly show that the de-

fault behavior of these detectors in operating on a per instance basis is not

desirable. A better performance from them can be expected when they check

for change in intervals, rather than individual instances. This will enable all

detectors to be compared on an equal footing.

Table 5.4 shows that the gap between the (PHT, EWMA) pair and the rest

has narrowed but it is clear that they have much higher false positive rates

(except for PHT at mean 0.05) than the rest. Methods such as ADWIN and

the SeqDrift detectors use detection thresholds that are speci�cally designed

to minimize the false positive rate for a given signi�cance level and this is the

key reason for the di�erence in robustness of these methods.

Interestingly, it is observed that EWMA's false positive rate for mean 0.3

is much smaller than its rate for mean 0.05 but the rate climbs very sharply

for mean 0.5. Several more trials were done for EWMA but this trend was

always observed, strongly suggesting that this is an inherent feature of the

method, possibly due to increased precision in the Monte Carlo simulation for

mean values around 0.3.

Next, memory utilization across a stable stream was measured as this rep-

resents the worst case scenario for methods such as the SeqDrift and ADWIN

which are not memory less unlike PHT and EWMA. False positives were sup-

pressed in order to eliminate the confounding e�ect of memory �ushing by

SeqDrift2 and ADWIN. As expected, PHT and EWMA had trivial memory

consumption with 64 bytes and 48 bytes for PHT and EWMA respectively.

For SeqDrift2 its memory consumption increased until its reservoir �lled and

5.10. Empirical Study 95

then remained constant at 26k (with a reservoir of size of 50,000), while for

ADWIN it increased throughout and reached 2.8K at the end of the 200,000

stream segment. The three detectors that had the best false positive rates are

carried forward, that is SeqDrift1, SeqDrift2 and ADWIN for further analysis.

Mean 0.05 0.1 0.3 0.5

SeqDrift1 0 0 0.00005 0

SeqDrift2 0.00061 0.00123 0.00115 0.00102

ADWIN 0.00039 0.00158 0.00266 0.00257

PHT 0 0.00983 0.07198 0.09665

EWMA 0.06501 0.05270 0.00290 0.72522

Table 5.4: Average False Positive Rates across all chosen detectors

The experiments above reveal that SeqDrift change detectors are superior

with respect to the number of false positive signals compared to the other

three algorithms while consuming a constant memory in worst case. The next

objective was to test the robustness to noisy data. The results are presented

in the following section.

5.10.1.4 Robustness to Noisy Data

This experiment was designed to test the robustness of the change detectors

to noise. Noise causes sudden �uctuations in sample means, thus creating

the potential to increase the false positive rate for any given change detector.

The higher the tolerance to noise, the more robust is the change detector.

Ideally, a change detector should be immune to noise and maintain its false

positive rate in the presence of noise, but in practice any change detector will

be a�ected by noise, given a su�ciently high level and duration of the noise

signal. The objective, then, of this experiment was to measure the level of

tolerance to noise in the three change detectors that were experimented.

5.10. Empirical Study 96

A noisy environment was simulated by introducing spikes in the error rate

distribution that would typically arise from a classi�er operating in a noisy

environment. The key challenge was to su�ciently di�erentiate noise from

the true signal so that noise could not be interpreted as true concept change.

This was achieved by superimposing a distribution consisting of spikes on a

stationary Bernoulli distribution.

The noise distribution was simulated by a Bernoulli distribution, but was

su�ciently di�erentiated from the underlying stationary one by choosing a sig-

ni�cantly higher population mean. It is noted that for a Bernoulli distribution

its mean and variance are related by the expression σ2 = µ(1−µ), thus giving

µ =
(1−
√

(1−4σ2))

2
. Thus, by introducing a factor k into the variance term σ2

it was able to compute the corresponding mean value, µn value required to

generate new distributions that were su�ciently di�erent from the stationary

(base) distribution with mean µb that corresponds to a k value of 1. Di�erent

noise distributions were generated to test the e�ects of di�erent levels of noise

by varying k in the range 1 to 2.5 in increments of 0.1. A base mean value of

0.01 was used for the stationary signal (with k = 1.0) which meant that the

expected value of the variance was very low at 0.0099. For each value of k,

100 separate trials were conducted and the average false positive rate for the

three change detectors were For each value of k, instances are drawn from a

Bernoulli distribution with a mean value chosen at random between the base

mean µb and µn.

As k increases, the variance of the noise signal increases and this has the

e�ect of elongating the spike duration as well as the amplitude of the noise

signal, as the noise trajectory for k = 2.5 shows in Figure 5.5. On the other

hand the noise trajectory for k = 1.5 is barely above that of the baseline value

(with k = 1.0), thus explaining why both ADWIN and SeqDrift detectors did

not register an increase in the false positive rate.

An alternative way of generating noise would have been to increase the

5.10. Empirical Study 97

population mean from its base value by certain predetermined amounts, but

manipulating variance instead gave a higher level of control as it was possible

to ensure that on average, �uctuations from the mean in the noise distribution

exceeded the usual statistically inherent �uctuations present in the stationary

(base) signal. A base mean value of 0.01 was used for the stationary signal

(with k = 1.0) which meant that the expected value of the variance was very

low at 0.0099. For each value of k, 100 separate trials were conducted and the

average false positive rate for the three change detectors were recorded.

Figure 5.5: E�ects of Noise Injection

5.10. Empirical Study 98

k Max Mean Increment SeqDrift1 SeqDrift2 ADWIN

1 0 0 0 0

1.1 0.001 0 0 0

1.2 0.002 0 0 0

1.3 0.003 0 0 0

1.4 0.004 0 0 0

1.5 0.005 0 0 0

1.6 0.006 0 0 0

1.7 0.007 0 0 0.03

1.8 0.008 0 0 0

1.9 0.009 0 0 0.03

2.0 0.010 0 0 0.05

2.1 0.011 0 0 0.02

2.2 0.012 0 0 0.09

2.3 0.013 0 0.02 0.11

2.4 0.014 0 0 0.21

2.5 0.015 0 0 0.27

Table 5.5: Average Number of Changes Detected on a Noisy Stream

Table 5.5 shows that both SeqDrift1 and SeqDrift2 were very stable on

noisy stream segments whereas ADWIN signaled a signi�cant number of false

positives when the level of noise increased. Given that noise is inevitable in

most real world environments, this experiment clearly illustrates that both

SeqDrift1 and SeqDrift2 are more robust to noise and hence better choices

with respect to change detection.Values of k in the range [1.0, 1.6] yielded a

zero false positive rate for all three detectors. A comparison of ADWIN's false

positive rate for values of k in the range 2.0 to 2.5 reveals a signi�cant increase,

thus exposing a fundamental weakness of ADWIN to noisy data distributions

5.10. Empirical Study 99

containing spikes.

The underlying reasons for the higher tolerance of the SeqDrift detectors to

noise are basically the same as for the experimentation with a pure stationary

signal that was discussed in Section 5.10.1.2 above. The spikes in the noise

signal have a much lower e�ect on the SeqDrift detector's false positive rate

as the data representing such spikes is very short-lived and is added in general

to a much larger pool (the reservoir) from which it is smoothed through the

use of the averaging process.

5.10.1.5 Flow-on E�ect of Abrupt Change on False Positive Rate

Abrupt changes are relatively easily detected by most change detectors in

contrast to more gradual changes. In an environment where abrupt changes

occur it is essential that such changes are detected with the minimum possible

delay while ensuring that no false detections are made as a result of the

abrupt change. When a sudden increase in the mean error rate for a classi�er

occurs its model needs to be updated to re�ect such a change. Once the

classi�er's model is updated to re�ect the new concept the expectation is that

its performance will improve and thus further updates to its model will be

unnecessary until a further actual change occurs. However, if as a result of the

sudden change the detector falsely signals further changes, then unnecessary

overhead will be incurred by the classi�er in performing updates to its model.

In order to test the vulnerability of the detectors to the �ow on e�ects of

abrupt changes, a Bernoulli stream of 100,000 instances was generated with

initial mean = 0.01 and then another 100,000 instances were drawn from a

distribution with an increased mean value. Thus, abrupt change was injected

into the stream at the 100, 000th instance and the concept changes �agged by

each of the detectors were observed after processing the �rst 100,000 instances.

5.10. Empirical Study 100

Initial End SeqDrift1 Det. SeqDrift2 Det. ADWIN Det.

Mean Mean Changes Point Changes Point Changes Points

0.01 0.02 0 N/A 0 N/A 5 102911,103135,103199

103295,103583

0.01 0.04 0 N/A 1 100399 7 100607,100927,100959

101311,101343,101439

101727

0.01 0.08 1 101199 1 100199 6 100159,100191,100223

100319,100351,100543

0.01 0.16 1 100199 1 100199 6 100095,100127,100159

100191,100255,100319

0.01 0.32 1 100199 1 100199 4 100031,100063,100127

100351

0.01 0.64 1 100199 1 100199 2 100031,100063

0.01 0.83 1 100199 1 100199 2 100031,100063

Table 5.6: Comparison of the change detectors SeqDrift1, SeqDrift2 and AD-

WIN on an abrupt drift of various mean increments

As Table 5.6 clearly shows ADWIN �ags false changes upstream from its

�rst detection point. For example, when the mean changes from the baseline

value of 0.01 to 0.04, ADWIN �rst detects the change at point 100607 and

then goes to �ag 6 additional points further upstream from this point. In

contrast, both SeqDrift detectors consistently report a single change point,

with the exception of the less abrupt change scenario when a modest change

was made to the mean from the 0.01 baseline to 0.02, for which no change

was reported by either of the two detectors.

As with the stationary distribution scenario the cause for false detections

with ADWIN lies with its use of exponential histograms in approximating the

true data distribution. In the case of abrupt shift, however the estimation

error is much greater due to the speed of change. ADWIN approximates the

state of a window segment by maintaining at most M buckets for a given value

2i, for integers i ranging from 0 upwards. In the case of an abrupt increase

in the mean value of the data distribution, the probability of the appearance

of 1s is subject to rapid change due to increase in variance that accompanies

an increase in the mean value. This rapid change in the frequency of 1s in

the stream causes the most recent buckets generated by ADWIN - i.e buck-

5.10. Empirical Study 101

ets containing a single 1 to occur with widely di�erent buckets lengths. This

in turn causes the segments encapsulated by these buckets to have signi�-

cantly di�erent means, even when the underlying data distribution remains

stationary after the change point. ADWIN stabilizes and stops detecting false

change points only after a su�cient number of instances have been generated

after the change point. When the number of buckets with value 1 exceeds

the M threshold, merging of buckets occurs and sharp di�erences in mean

values between buckets is smoothed due to the merging operation. Of course,

a decrease in ADWIN's M parameter will help to alleviate this problem, but

as mentioned before this will come at a heavy price in terms of computational

overheads.

Interestingly, ADWIN's false alarms seem to disappear at the higher end

of the µ range with no false positives reported for µ values 0.16 and greater.

Although higher variability occurs in the data for such µ values, this is com-

pensated by the increased frequency of the merge operation which is triggered

by the higher frequency of 1s in the stream that occur with distributions

having higher mean values.

The SeqDrift detectors do not arti�cially slice the stream into discrete

storage units but represent the entire window segment after the last cut point

as one single storage unit for sampling and are thus in a better position to avoid

errors arising from comparing units (buckets) of arbitrary and insu�cient

length to estimate mean values accurately.

5.10. Empirical Study 102

5.10.1.6 E�ect of ADWIN's Grace Period on False Positive Rate

Mean Signi�cance ADWIN Grace Period SeqDrift1 SeqDrift2

Level 32 100 200 300

0.01 0.05 0.26 0.14 0.17 0.10 0 0.05

0.01 0.10 0.64 0.51 0.35 0.42 0 0.61

0.01 0.30 3.48 2.51 1.90 1.76 0 2.55

0.10 0.05 1.95 1.17 0.40 0.73 0 0.06

0.10 0.10 4.14 2.24 1.34 1.31 0 1.23

0.10 0.30 14.91 9.42 5.52 4.98 0.05 4.93

0.30 0.05 2.58 1.94 1.00 0.86 0 0.06

0.30 0.10 5.53 3.56 1.92 1.72 0 1.15

0.30 0.30 25.21 15.33 7.41 7.48 0.23 5.49

0.50 0.05 3.15 1.76 0.98 0.98 0 0.09

0.50 0.10 6.29 3.34 1.87 2.06 0 1.02

0.50 0.30 25.67 16.25 7.89 7.22 0.16 5.61

Table 5.7: Average false change detections over di�erent stationary Bernoulli

distributions

The ADWIN change detector is claimed to have no design parameters except

for an internal parameter grace period parameter set to its default value of

32 instances [Bifet 2007]. The grace period parameter is the closest analogue

to SeqDrift detector's block parameter and controls the processing time, the

higher the value, the smaller the processing time. With its default setting,

ADWIN checks for change in intervals of 32 instances. Higher values for

this parameter could possibly improve ADWIN's false positive rate since false

positives are checked at longer intervals of time. As such, the interest was

in adjusting this parameter value in order to study its e�ect on ADWIN's

performance. In addition, this enabled the comparison of SeqDrift detectors

5.10. Empirical Study 103

with ADWIN on an equal footing. This is the motivation behind equalizing

the grace period parameter to block size.

In order for the comparison to be fair SeqDrift1 and SeqDrift2 are not

designed to capture changes on small sample sizes such as 32 due to insensi-

tivity of Bernstein Bound. Therefore, the block size = 32 for SeqDrift1 and

SeqDrift2 was not a suitable solution for a fair comparison to ADWIN. Given

that both SeqDrift detectors had signi�cantly better false positive rates than

ADWIN with its default grace period setting of 32, it was more reasonable to

increase the grace period to match the SeqDrift detector's block size of 200,

rather than downsizing the block size to match the default grace period set-

ting of 32. Accordingly, the false positive experiment was repeated in Section

5.10.1.3 with grace period set to 200. Table 5.7 shows that grace period has a

signi�cant e�ect on false changes as shown in Table 5.7. There was a substan-

tial reduction in the false positive rate when the parameter was change from 32

to 200. No such reduction was observed when it was further increased to 300.

Even though the grace period increase proved to be bene�cial to ADWIN,

Table 5.7 shows that both SeqDrift detectors (false positive rates reproduced

for easy comparison from Figure 5.4) still outperform ADWIN even for higher

grace period values. Intuitively, the improvement in ADWIN's false positive

rate at higher grace period values is likely to come at a price of higher de-

tection delay for ADWIN as it is now forced to check for change in larger

intervals. The experimentation in Section 5.10.1.3 con�rms that this is the

case.

It can be observed that SeqDrift1 and SeqDrift2 outperformed ADWIN's

best average false changes with grace period 200,thus being superior to the

State of Art Change Detector ADWIN, in minimal average false changes gen-

eration.

5.10. Empirical Study 104

5.10.2 Detection Delays and False Negative Rate

In addition to the false positive rate, detection delay is an important perfor-

mance measure as minimal delay in detecting changes will assist the classi�er

in responding to concept changes quickly. However detection delay needs to

be assessed against false negative rate. A low false negative rate combined

with a small detection delay ensures that the change detector is responsive to

concept changes, thus helping to improve classi�cation accuracy.

In a high speed data stream environment another crucial performance

factor is the processing speed of the change detector. A high processing time

can lead to a bottleneck in the classi�er, slowing down the speed with which

it can classify instances. This is due to the fact that concept change detectors

are invoked very often by the classi�er (which for ADWIN will be 32 instances

and for the SeqDrift detectors, every 200 instances). Each invocation requires

the detector to compare means for one or more divisions of its bu�er in its

search for potential cut points. In general, the more extensive the search, i.e.

the greater the number of candidates examined, the greater is the potential

for detecting changes earlier but with a corresponding increase in processing

time. In summary, a trade-o� exists between detection delay and processing

time. Given that the SeqDrift detectors and ADWIN have quite di�erent

change detection strategies it will be interesting to examine the trade-o� in

environments with di�erent gradients of change.

Moreover, the e�ect of history in delay was also assessed.

The �rst experiment to compare the delays was designed in the follow-

ing manner. A stationary Bernoulli data stream of di�erent lengths 10000,

50000, 100,000 and 1,000,000 with mean = 0.01(initial mean) were generated

in separate trials. Di�erent data lengths were used to ascertain the e�ects of

history, if any.

With each data length, concept change was injected into the stream by

5.10. Empirical Study 105

generating the last 2300 instances with di�erent gradients of change corre-

sponding to 1 Ö10−4, 2 Ö10−4, 3 Ö10−4 and 4 Ö10−4. The processing time

and the delay in detecting concept change injected were measured for each

combination of data length and gradient of change. Each combination was

repeated 100 times to boost reliability. In order to remove the confounding

e�ect of reading time, the processing time measured only the actual time

taken by the respective change detectors in executing their change detection

algorithms.

ADWIN was used with its default grace period of 32, SeqDrift1 and Seq-

Drift2 with default block size of 200, and a signi�cance level = 0.01 was used

for all three change detectors.

Figure 5.6: Detection delays of SeqDrift1, SeqDrift2 and ADWIN on streams

with various slopes and lengths

5.10. Empirical Study 106

Slope Data Length

in 10000 100000 10000000

(10−4) 1 2 3 4 1 2 3 4 1 2 3 4

SeqDrift1 3.6 3.5 3.3 3.5 42.5 44.0 45.7 43.4 460.8 455.9 454.9 454.1

SeqDrift2 1.5 1.2 1.2 1.5 16.5 16.2 15.6 14.6 174.9 175.1 164.9 165.0

ADWIN 7.3 7.5 7.5 7.5 124.7 125.8 127.4 126.4 1635.7 1638.2 1639.7 1655.7

PHT 1.5 1.4 1.4 1.3 12.4 11.0 11.4 10.3 121.7 121.9 120.5 120.5

EWMA 2.6 2.8 3.4 3.2 42.8 44.5 48.6 45.3 418.9 426.7 418.1 425.0

Table 5.8: Processing times of SeqDrift1, SeqDrift2 and ADWIN on streams

with di�erent slopes and lengths

Figure 5.6, together with Table 5.8, clearly illustrates the detection delay

versus processing time trade-o�. In terms of processing time the two SeqDrift

detectors were far superior to ADWIN. At the smallest data length of 10,000

ADWIN was around 3 times slower than SeqDrift1 and around 6 times lower

than SeqDrift2. The gap between ADWIN and SeqDrift detectors widens

as the data length increases: the processing speed of the SeqDrift detectors

is essentially linear in data segment length while ADWIN is super-linear, as

can be seen from the growth in processing times when the segment length

is increased by factors of 10 and 100. This super-linear growth in ADWIN's

processing time is only to be expected as the number of hypotheses it tests is

n (n−1)
2

, versus n−1 for the SeqDrift detectors on a bu�er of size n. Given that

the processing time for the SeqDrift detectors start o� at a much lower level

than ADWIN and that the latter's growth in time is super-linear in segment

length, the SeqDrift detectors are by far the better choice for a high speed

data stream environment.

In terms of detection delay, however, it is clear from Figure 5.6 that AD-

WIN has better mean detection delay when compared to the SeqDrift detec-

tors. The SeqDrift detectors only examine a single candidate cut point for

concept change that corresponds to the current boundary between the left

and right repositories, whereas ADWIN examines all possible combinations

of points in its bu�er, and as such can be expected to detect change points

5.10. Empirical Study 107

sooner. As expected, the delay times reduced with increasing gradient of

change, although it is observed that the SeqDrift detector's delay reduces at a

faster rate than ADWIN with the gap closing for higher gradients of change.

In terms of detection rate, all �ve detectors returned a value of 100% for all

combinations of data length and gradient of change.

It is also observed from Figure 5.6 and Table 5.8 that SeqDrift2's detec-

tion delay times are much closer to that of ADWIN, PHT and EWMA than

SeqDrift1, while maintaining a superior processing speed advantage. The

slower speed of SeqDrift1 over SeqDrift2 is due to the fact that it requires nl
b

passes through its left repository to perform sub-sampling, as opposed to two

passes for the latter. On the other hand, SeqDrift2 does not use sub-samples

but computes means across the two repositories in a one-pass incremental

manner. In fact, SeqDrift2's processing times are competitive with PHT and

better than EWMA throughout the data length range. Despite the fact that

EWMA is one pass, it has higher processing times than SeqDrift2 due to the

large number of �oating point calculations required in the computation of the

control parameter L which is needed in �agging concept change.

Thus, from all the results examined so far, it is concluded that SeqDrift2

is superior to SeqDrift1 as it maintains a competitive false positive rate to the

latter while exhibiting superior detection delay and processing times. Hence-

forth in the experimentation, it focus will be exclusively on the SeqDrift2 and

ADWIN change detectors.

5.10.3 E�ects of Reservoir Sampling

In Section 5.10.2, it was observed that replacing the sliding window by a

reservoir in the implementation of the reference window reduces processing

by around 50%, as shown in Table 5.8. Now another potential bene�t of the

reservoir is investigated which is improving sensitivity with respect to slowly

5.10. Empirical Study 108

varying data. Data from a stationary Bernoulli distribution was generated

with mean 0.01 for 200,000 instances. Thereafter, concept change was injected

into the stream in two stages. In the �rst stage, change with a slope of 10−6 was

injected for the next 10,000 instances. This was followed by injecting change

at a higher rate of 10−5 for the next 70,000 instances. This experiment models

a real-world scenario where data is �rst in a stable state after detection of the

previous concept change. Thereafter in stage 2, due to the emergence of a

new concept, data is subject to a slow rate of change, followed by an increase

in the rate of change after emergence of the new concept in stage 3. It would

be of interest to investigate the e�ect of memory retention of the oldest data

samples from stage 1 on detection sensitivity measures. The performance

measures of interest here are the detection rate, detection delay, stability of

detection, as measured by the standard deviation of the detection delay over

the 100 trials conducted, and the memory retention capacity of each of the

two memory management schemes.

Ref. Window Detection Detection Delay Std. Dev. % Replacement

Size Rate (SW) Rate (Res) Ratio (SW/R) Ratio (SW/R) Res, SW

5000 10 100 3.34 12.58 0.16,100

10000 83 100 1.84 6.9 0.3,100

20000 100 100 1.1 1.71 0.6, 73

40000 100 100 1.05 0.96 1.19, 33.6

50000 100 100 0.99 1.39 1.5, 25.6

Table 5.9: Sensitivity of Reservoir over Sliding Window Approach

Table 5.9 shows that with reference windows of size 5,000 and 10,000 the

reservoir scheme signi�cantly outperformed the sliding window scheme on all

measures. When the window size is less than 10,000 the sliding window ap-

proach was unable to store any samples from the oldest (stage 1) state and

its bu�er consisted entirely of samples from stage 2 and stage 3 thus severely

a�ecting its sensitivity, causing it to return an average detection delay time

which are 3.34 and 1.84 times that of the reservoir for sizes 5000 and 10,000

5.10. Empirical Study 109

respectively. Furthermore, its detection behavior is highly unstable as the

corresponding standard deviations of its detection times are 12.58 and 6.9

times that of the reservoir approach. However, as the reference window size

increases the sensitivity of the sliding window approach improves and con-

verges to that of the reservoir at around the 40-50,000 window size setting.

As expected, Table 5.9 also shows that the relative performances of the two

approaches is highly correlated to the memory retention capacity which is the

percentage of data samples retained from the original stable state (stage 1).

In a real world setting the length of concept formation (the sum of stage 2 and

stage 3 lengths) may be much greater than memory available in the reference

window and in such situations the reservoir approach is by far the superior

choice.

5.10.4 E�ects of Detection Thresholds andWindowMan-

agement Strategies

Given that SeqDrift2 had the best false positive performance and that ADWIN

maintains a good balance between detection delay and false positive rate it

is of interest to examine whether each of these two best performing methods

can bene�t from using features implemented in each other.

5.10. Empirical Study 110

Table 5.10: Further Experimentation on SeqDrift2 and ADWIN

Table 5.10 shows clearly that neither of the two change detectors bene�t

from using each other's features. When ADWIN uses SeqDrift2's detection

threshold its false positive rate increased (measured for mean 0.3 and δ = 0.1)

while only a very marginal improvement resulted for detection delay (mea-

sured for slope 1× (10)−4). The opposite was observed when SeqDrift2 used

ADWIN's threshold: its false positive decreased marginally but its detection

delay increased quite considerably, showing that SeqDrift2's detection thresh-

old is more sensitive than that of ADWIN. Unlike SeqDrift2, ADWIN cannot

bene�t from SeqDrift2's more sensitive detection threshold as it maintains

multiple cut points in its window thus contributing to an increased false posi-

tive rate. These results are not unexpected as each of the two change detectors

are optimized to work with their own detection thresholds.

The third experiment showed once again the e�ectiveness of the reservoir

sampling strategy. Replacement of the reservoir with a bu�er that grows in

an unbounded fashion led to a very marginal improvement in detection delay

while increasing the false positive rate. It should be noted that an unbounded

bu�er may be impractical in many situations as in a stable stream segment

of large size the left repository could exceed the memory available. Apart

5.10. Empirical Study 111

from that the computational cost of sampling the left repository would also

increase considerably.

The �nal experiment with ADWIN operating on a single cut point does

not yield any clear material bene�ts: although its false positive rate decreased

quite considerably its detection delay increased sharply yielding values that

were much higher than SeqDrift2 Thus the overall conclusion is that each of

the two change detectors are best served by keeping them in their default

con�gurations with their native detection thresholds.

5.10.5 Integration with Adaptive Hoe�ding Tree Classi-

�er

In a typical data stream environment, a change detector operates in conjunc-

tion with a classi�er. To the extent that a change detector is able to detect

concept changes e�ciently in the minimal possible time with the least number

of false detections, it will support the classi�er in processing the data stream

quicker and return higher classi�cation accuracy. To investigate this premise,

SeqDrift2 and ADWIN were integrated with the Hoe�ding Adaptive Decision

tree [Bifet 2009] and conducted a series of experiments on datasets generated

with various di�erent stream generators, sea concepts2 and the real world data

sets, airline and poker hand 3. For the synthetic data the degree of concept

change was controlled by specifying the number of features (f) that were sub-

ject to change. More details of the characteristics of these data generators is

available from [Bifet 2010b].

For each experiment, the four performance measures were tracked: classi-

�cation time, classi�cation accuracy, the Kappa statistic and memory, mea-

sured in terms of tree size. These statistics represent averages over a stream
2From www.liaad.up.pt
3from moa.cms.waikato.ac.nz

5.10. Empirical Study 112

length which varied for each dataset.

5.10. Empirical Study 113

Data Generator Parameters Performance Hoe�ding Tree Size

ADWIN SeqDrift2 ADWIN SeqDrift2

SEA Concepts (A)81.76 82.23 (N)34 37

(K)79.53 80.05 (L)17 19

(T)0.28s 0.23s

Wave Form -Drift Attr 10 a(A)80.06 80.47 (N)2437 2444

Generator (K)70.10 70.70 (L)1218 1222

(T)241.20s 139.48s

Wave Form -Drift Attr 20 (A)79.71 80.18 (N)2381 2378

Generator (K)69.57 70.27 (L)1190 1189

(T)228.47s 127.96s

Wave Form -Drift Attr 30 (A)74.28 75.15 (N)2432 2412

Generator (K)62.23 62.72 (L)1216 1206

(T)237.05s 129.29s

LED -Drift Attr 5 (A)73.41 73.44 (N)486 466

Generator (K)70.46 70.49 (L)243 233

(T)199.93s 107.50s

RBF -Speed Change 0.2 (A)52.91 56.34 (N)4975 4798

Generator (K)5.83 12.68 (L)2487 2399

(T)136.54s 123.16s

Rotating -Total Attr 20 (A)87.23 90.09 (N)7383 5318

Hyperplane -Drift Attr 2 (K)74.46 80.18 (L)3691 2659

Generator -Mag Change 0.1 (T)97.87s 90.07s

Rotating -Total Attr 20 (A)78.68 85.47 (N)6044 5579

Hyperplane -Drift Attr 6 (K)57.37 70.95 (L)3022 2789

Generator -Mag Change 0.1 (T)113.16s 109.79s

Rotating -Total Attr 20 (A)77.81 78.99 (N)5494 5681

Hyperplane -Drift Attr 10 (K)55.63 57.99 (L)2747 2840

Generator -Mag Change 0.1 (T)156.92s 121.41s

Airline (A)57.23 58.90 (N)82555 48367

(K)13.49 15.49 (L)82206 48153

(T)17.99s 11.56s

Poker Hand (A) 59.08 58.85 (N) 227 191

(K) 5.63 3.82 (L)123 104

(T)5.21s 4.63s

Table 5.11: Integration of Change Detectors with Adaptive Hoe�ding Tree.

A - Accuracy, T- Mining Time, K - Kappa coe�cient, N - Total number of

nodes and L - Number of leaf nodes

5.10. Empirical Study 114

Table 5.11 shows that SeqDrift2 clearly outperforms ADWIN in terms of all

four measures that were tracked. In terms of classi�cation accuracy, SeqDrift2

was better in 10 out of 11 experiments conducted. In the experimentation with

the rotating hyperplane (with 6 drifting attributes) substantial improvements

in accuracy of around 5% or greater was achieved. SeqDrift2's better accuracy

is attributed to its superior false positive rate. When detections are signaled

at a given node in the tree, the sub-tree rooted at that node is removed as

it is thought to represent an old or outdated concept. If the detection is

false, then the removal of the sub-tree will reduce accuracy as the concept

it represents is actually current. Given that ADWIN registers a higher false

positive rate than SeqDrift2 in general, the incidence of erroneous pruning will

be proportionately higher than in SeqDrift2, thus resulting in a lower accuracy.

The learning curves given in Figure 5.7 support this line of reasoning. The

learning curves in Figure 5.7 were generated using the holdout evaluation

method in MOA [Bifet 2010b] and represents 3 of the 11 datasets used. The

curves for the rest follow the same trends and have been omitted to conserve

space.

Figure 5.7: Variation of Accuracy with Training Set Size

5.11. Summary 115

As Figure 5.7 shows, the learning curves for ADWIN �uctuate signi�cantly

throughout the range of training set size. In contrast, SeqDrift2's curves are

smoother and behave closer to the ideal scenario of smooth incremental growth

in accuracy with increasing training set size.

The improvements in classi�cation accuracy for SeqDrift2 are closely mir-

rored by improvements in Kappa value. The Kappa statistic for a given clas-

si�er measures the degree of improvement of the classi�cation decisions over

pure chance. SeqDrift2's Kappa values are consistently greater than that of

ADWIN (with the exception of the Poker Hand dataset), thus inspiring greater

con�dence that the decisions taken with it in operation are better than chance.

The most signi�cant improvements in performance for SeqDrift2, however,

occur in the area of classi�cation time. In some cases the mining time more

than halved with the use of SeqDrift2 in place of ADWIN. The major rea-

son for this reduction in time is due to SeqDrift2's e�cient change detection

strategy that employs a single forward sequential scan of its memory bu�er

instead of repeated backward scans and checks for cut points at every bucket

boundary, as ADWIN does.

Finally, it is noted that SeqDrift2's induced smaller trees than ADWIN

in 8 of 11 cases that were considered. As with accuracy the major cause for

higher memory utilization with ADWIN as the change detector is its higher

false positive rate. When a sub-tree is pruned as a result of concept change

being signaled, a new alternate sub-tree is grown and maintained.

5.11 Summary

In this chapter, a novel scheme for concept change detection that employs a

sequential one pass strategy has been presented along with extensive empirical

evidence to proof its e�ectiveness in terms of various performance measures.

In a nut shell, SeqDrift2 outperformed ADWIN with respect to false positive

5.11. Summary 116

rate and processing time, while maintaining competitive detection delay times.

Sequential hypothesis testing as opposed to multiple hypothesis tests for a

given pair of left and right bu�ers of stream instances is the reason for the

gain in processing time in SeqDrift detectors. Sequential hypothesis testing

ensures that no previously examined cut points are revisited.

In addition, it has been shown that SeqDrift2 has outperformed Page Hink-

ley detector with respect to false positive rate while maintaining competitive

processing and detection delay times.

Now, the underlying reasons for these improvements are summarized.

There are two major factors that caused such improvements. Low false posi-

tive rates were achieved with the help of reservoir sampling. In maintaining a

bu�er for change detection, there are two important considerations that need

to be taken into account. First and foremost is the need for maintaining recent

memory.Given that the memory is maintained within de�ned bounds, good

representation of the trends in data streams need to be remembered even on

an inde�nite stable data segments. SeqDrift2 resolves this challenge through

reservoir sampling, rather than by data compression, as employed by ADWIN.

The use of the reservoir enabled SeqDrift2 to keep a representative sample of

the data from the stream without relying on data compression/data aggrega-

tion strategy such as used by ADWIN that causes the latter to return higher

false positive rates. Therefore, Reservoir sampling can be stated as the key

to the success of SeqDrift2 superior performance over ADWIN. In an ultra

high speed data stream environment, reservoir sampling e�ectively gathers

a representative sample with minimal processing e�orts avoiding bottlenecks

in coping with high input rate. This sample helps both the change detector

and classi�er to avoid bu�ering or loss of information by simply deleting in-

stances to cope up with the input. Such deletions will probably lead to loss

of information thus distorting the underlying concepts.

Once concepts boundaries are identi�ed precisely with the help of change

5.11. Summary 117

detectors such as seqDrift, current classi�ers can be updated or newly created

to respond to new concept. At the same time, outdated classi�ers can also

be archived to be reused when similar concept recurs in future. This is the

next problem that this research proposes solutions.The next chapter focuses

on recurring concepts capturing with the use of drift detectors and Fourier

compression mechanism of decision trees.

Chapter 6

Capturing Recurrent Concepts

Using Discrete Fourier Transform

6.1 Introduction

In the previous chapters, two e�ective methods have been proposed to detect

changes in data streams. Changes in the underlying concepts cause current

classi�er models to become obsolete and unsuitable, thus leading to a potential

loss in classi�cation accuracy. Rapid changes in concept require classi�ers to

perform more frequent checks to monitor accuracy. On the other hand, in pe-

riods of relative stability, the frequency of checks can be decreased drastically,

while allowing learning to take place in a more incremental fashion.

Machine learning applications that model, capture such concepts and rec-

ognize their re-occurrence gain signi�cant e�ciency and accuracy advantages

over the systems that simply re-learn concepts each time they re-occur. When

such applications include safety and time critical requirements, the need for

concept re-use to support decision making becomes even more compelling.

Such applications are the hardest ones to be replaced by fully autonomous

systems due to unbearable cost of damage made by mistakes. One such appli-

cation is the auto-pilot system in an aircraft or drone. An auto-pilot system

needs to be extremely dependable and accurate.

Auto-pilot systems sense environmental changes and take appropriate ac-

tion (classi�ers, in the supervised machine learning context) to avoid disasters

6.1. Introduction 119

and to �y smoothly. As environmental conditions change, appropriate actions

must be taken in the shortest possible time in the interest of safety. Thus for

example, a situation that involves the occurrence of a sudden low pressure area

coupled with high winds (a concept that would be captured by a classi�er)

would require appropriate action to keep the aircraft on a steady trajectory.

A machine learning system that is coupled to a �ight simulator can learn such

concepts in the form of classi�ers and store them in a repository for timely

re-use when the aircraft is on live �ying missions. In live �ying mode, the

autopilot system can quickly re-use the stored classi�er when such situations

re-occur. Additionally, in live �ying mode, new potentially hazardous situ-

ations not experienced in simulator mode can also be learned and stored as

classi�ers in the repository for future use.

In a real world setting, there is an abundance of applications that exhibit

such recurring behavior in the �nancial area such as stock market and sales

applications where timely decision making results in improved productivity.

The research setting here is a data stream environment where the objective is

to capture concepts as they occur, store them in highly compressed form in a

repository and to re-use such concepts for classi�cation when the need arises

in the future.

A number of methods have been proposed that deal with the capture and

exploitation of recurring concepts [Gama 2011], [Gomes 2010], [Hosseini 2012],

[Alippi 2013] and [Morshedlou 2009]. Although achieving higher accuracy as

expected during phases of concept recurrence in the stream is a challenge, the

a major issue is the setting of user de�ned parameters to determine whether

a current concept matches with one from the past with existing approaches

Such parameters are di�cult to set, particularly due to the drifting na-

ture of real world data streams. The proposed approach avoids this problem

by applying the Discrete Fourier Transform (DFT) as a meta learner. The

DFT, when applied on a concept (Decision Tree model) results in a spectral

6.2. Related Research 120

representation that captures the classi�cation power of the original models.

One very attractive property of the Fourier representation of Decision Tree is

that most of the energy and classi�cation power is contained within the low

order coe�cients [Kargupta 2006]. The implication of this is that that when

a concept C recurs as concept C* with relatively small di�erences caused by

noise or concept change, then such di�erences are likely to manifest in the high

order coe�cients of spectra S and S* (derived from C and C* respectively),

thus increasing the likelihood of C* being recognized as a recurrence of C.

The DFT, apart from its use in meta learning, has a number of other de-

sirable properties that make it attractive for mining high speed data streams.

This includes the ability to classify directly from the spectra generated, thus

eliminating the need for expensive traversal of a tree structure.

The experimental results in section 6.6 clearly show the accuracy, process-

ing speed and memory advantages of applying the DFT as opposed to the

meta learning approach proposed by Gama and Kosina in [Gama 2011].

6.2 Related Research

While a vast literature on concept change detection exists, [Pears 2014] only

a small body of work exists so far on exploitation of recurrent concepts. The

methods that exist fall into two broad categories. Firstly, methods that store

past concepts as models and then use a meta learning mechanism to �nd the

best match when a concept change is triggered [Gama 2011], [Gomes 2010].

Secondly, methods that store past concepts as an ensemble of classi�ers.

Lazarescu in [Lazarescu 2005] proposes an evidence forgetting mechanism

for data instances based on a multiple window approach and a prediction

module to adapt classi�ers based on an estimation of the future rate of

change. Whenever the di�erence between the observed and estimated rates

of change is above a user de�ned threshold, a classi�er that best represents

6.2. Related Research 121

the current concept is stored in a repository. Experimentation on the STAG-

GER [Schlimmer 1986] dataset showed that the proposed approach outper-

formed the FLORA [Widmer 1996] method on classi�cation accuracy with

re-emergence of previous concepts in the stream.

Ramamurthy and Bhatnagar [Ramamurthy 2007] use an ensemble ap-

proach based on a set of classi�ers in a global set G. An ensemble of classi�ers

is built dynamically from a collection of classi�ers in G if none of the existing

individual classi�ers are able to meet a minimum accuracy threshold based on

a user de�ned acceptance factor. Whenever the ensemble accuracy falls below

the accuracy threshold, then the global set G is updated with a new classi�er

trained on the current chunk of data.

Another ensemble based approach by Katakis et al. is proposed in [Katakis 2008].

A mapping function is applied on data stream instances to form conceptual

vectors which are then grouped together into a set of clusters. A classi�er is

incrementally built on each cluster and an ensemble is formed based on the

set of classi�ers. Experimentation on the Usenet dataset showed that the en-

semble approach produced better accuracy than a simple incremental version

of the Naive Bayes classi�er.

Gomes et al [Gomes 2010] used a two layer approach with the �rst layer

consisting of a set of classi�ers trained on the current concept while the second

contains classi�ers created from past concepts. A concept change detector is

used to �ag changes in concept and when a warning state is triggered incoming

data instances are bu�ered in a window to prepare a new classi�er. If the

number of instances in the warning window is below a user de�ned threshold,

then the classi�er in layer 1 is used instead of re-using classi�ers in layer

2. One major issue with this method is the validity of the assumption that

explicit contextual information is available in the data stream.

Gama and Kosina also proposed a two layered system in [Gama 2011]

designed for delayed labeling, similar in some respects to the Gomes et al.

6.2. Related Research 122

[Gomes 2010] approach. In their approach, Gama and Kosina pair a base

classi�er in the �rst layer with a referee in second layer.. Referee learns regions

of feature space which its corresponding base classi�er predicts accurately and

is thus able to express a level of con�dence on its base classi�er with respect

to a newly generated concept. The base classi�er which receives the highest

con�dence score is selected, provided that it is above a user de�ned hit ratio

parameter; if not, a new classi�er is learned.

Just-in-Time classi�ers is the solution proposed by Allipi et al. [Alippi 2013]

to deal with recurrent concepts. JIT classi�ers operate di�erently in station-

ary and non-stationary data streams. Concept change detection is carried

out on the classi�cation accuracy as well as by observing the distribution

of input instances. The models consist of a set of concept representations

and operators. Their concept representation stores a sequence of supervised

instances, a set of concept de�ning features and drifting features. In station-

ary environments, supervised methods help enhance the performance whereas

in non-stationary streams, concept change detection deactivates the current

model and activate the best suitable model. The drawback is that this model

is designed for abrupt drifts and is weak at handling gradual changes whereas

both changes are handled well in the model proposed in this chapter.

Prior to describing the algorithmic aspects of the model proposed, the key

technique that is the Application of Discrete Fourier Transform is described

in the following section to illustrate its attractive properties that are exploited

in this research.

6.3. Application of the Discrete Fourier Transform on Decision
Trees 123

6.3 Application of the Discrete Fourier Trans-

form on Decision Trees

The Discrete Fourier Transform (DFT) has a vast area of application in very

diverse domains such as time series analysis, signal processing, image pro-

cessing and so on. It turns out as Park [Byung-Hoon 2001] and Kargupta

[Kargupta 2006] show that the DFT is very e�ective in terms of classi�cation

and compression when applied on a decision tree model.

Kargupta et al. [Kargupta 2006] working in the domain of distributed

data mining showed that the Fourier spectrum consisting of a set of Fourier

coe�cients fully captures a decision tree in algebraic form, meaning that the

Fourier representation preserves the same classi�cation power as the original

decision tree. In addition, as a decision tree is converted into algebraic form,

it becomes a straightforward aggregation to add any two decision trees in

Fourier space. A decision tree has a self-explanatory property meaning that

it is not a black box approach like neural network. Even in Fourier space,

visualization of Fourier spectrum can be useful as shown in [Kargupta 2006].

Moreover, Kargupta et al. presents an algorithm to reconstruct a decision

tree from Fourier spectrum, which again adds strength to the Fourier Spec-

trum representation. All the above properties can be exploited in data stream

mining as well, especially in recurrent concept mining. The process of trans-

forming a decision tree into Fourier spectrum is illustrated using an example

in the next section.

6.4. Transforming a Decision Tree into Fourier Spectrum 124

6.4 Transforming a Decision Tree into Fourier

Spectrum

A decision tree can be represented in compact algebraic form by applying

the DFT to the paths of the tree. The process is illustrated by considering

a binary tree for simplicity, but in practice the DFT can be applied to non

binary trees as well [Kargupta 2006]. Each Fourier coe�cient ωj is given by:

ωj =
1

2d

∑
x

f(x)ψλj (x); (6.1)

ψλj (x) =
∏

m exp
2πi
λm

xmjm = (−1)j.x(for binary data) where j and x are strings

of length d, xm and jm are mth attribute value in j and x, f(x) is the classi-

�cation outcome of path vector x and ψλj (x) is the Fourier basis function. xm

may have a wild card character ′∗′ if mth attribute is not present in the path.

The wild card character ′∗′ enables groups of coe�cients that share attribute

values to be de�ned with ease; thus for example ω∗1∗ denotes the group of

coe�cients that take values either 0 or 1 for attribute x1 and x3, value 1 for

attribute x2. The order of a coe�cient is equal to the number of 1s in j

vector.

6.4. Transforming a Decision Tree into Fourier Spectrum 125

Figure 6.1: Decision tree with 3 binary features, truth table of classi�cation

and its Fourier Spectrum representation

Figure 6.1 shows a simple example with 3 binary valued features x1, x2 and

x3, out of which only x1 and x3 are actually used in the classi�cation. For ex-

ample, for the path x3⇒ 1, x is (∗ ∗ 0), f(x) is 1, j ∈ {000, 001, 010, . . . , 111}
and j.x is the inner product of vectors j and x.

The coe�cient values ω000 and ω010 are calculated as:

ω000 =
1

2d
f(000)(−1)000.000 + 1

2d
f(001)(−1)000.001

+
1

2d
f(010)(−1)000.010 + 1

2d
f(011)(−1)000.011+

+
1

2d
f(100)(−1)000.100 + 1

2d
f(101)(−1)000.101

+
1

2d
f(110)(−1)000.110 + 1

2d
f(111)(−1)000.111 = 3

4

(6.2)

6.4. Transforming a Decision Tree into Fourier Spectrum 126

ω010 =
1

2d
f(000)(−1)010.000 + 1

2d
f(001)(−1)010.001

+
1

2d
f(010)(−1)010.010 + 1

2d
f(011)(−1)010.011

+
1

2d
f(100)(−1)010.100 + 1

2d
f(101)(−1)010.101

+
1

2d
f(110)(−1)010.110 + 1

2d
f(111)(−1)010.111 = 0 (6.3)

As shown in [Byung-Hoon 2001], only the coe�cients for paths that are de-

�ned by attributes that actually appear in the tree need to be computed as all

other coe�cients are guaranteed to be zero in value (for example ω010). The

coe�cient ω∗1∗ will be zero since attribute x2 does not appear in the tree in

Figure 6.1.

The energy contained in each coe�cient ωj is de�ned as,

Eωj = ||ωj||2 (6.4)

Thus the total energy contained within all order 1 coe�cients (E1) for the

spectrum in Figure 6.1 is given by:

E1 =||ω001||2 + ||ω010||2 + ||ω100||2

=
1

4

2

+
1

4

2

+ 02 = 0.125 (6.5)

Similarly, the energies of all other orders can be calculated. For the spec-

trum in Figure 6.1, E0 = 0.5627, E1 = 0.125, E2 = 0.0625 and E3 = 0.

This example illustrates that most of the energy is contained in the low order

coe�cients as in Figure 6.2.

6.4. Transforming a Decision Tree into Fourier Spectrum 127

Figure 6.2: This graph shows an example based on Figure 6.1, Energy con-

tained in low order coe�cients decreases exponentially as shown in this graph.

Therefore, low order coe�cients are capable of capturing most of the energy

contained in a tree

Kargupta et al in [Kargupta 2006] showed that the Fourier spectrum of a

given decision tree has two very useful properties that make it attractive as a

tree compression technique. [Kargupta 2006], [Linial 1993]:

1. All coe�cients corresponding to partitions not de�ned in the tree

are zero.

2. The magnitudes of the Fourier coe�cients decrease exponentially

with their order, where the order is taken as the number of de�ning

attributes in the partition.

Taken together these properties mean that the spectrum of a decision tree can

be approximated by computing only a small number of low order coe�cients,

thus reducing storage overhead. With a suitable thresholding scheme in place,

the Fourier spectrum consisting of the set of low order coe�cients is thus an

ideal mechanism for capturing past concepts.

Furthermore, classi�cation of unlabeled data instances can be done directly

in the Fourier domain as it is well known that the inverse of the DFT de�ned

6.4. Transforming a Decision Tree into Fourier Spectrum 128

in expression 6.1 can be used to recover the classi�cation value, instead of the

use of a tree traversal which can be expensive in the case of an ensemble of

trees. The inverse Fourier Transform is given by:

f(x) =
∑
j

ωjψ
λ
j (x) (6.6)

where ψ
λ

j (x) is the complex conjugate of ψλj (x).

An instance can be transformed into binary vector through the symbolic

mapping between the actual attribute value and mapped value (either 0 or 1

in binary case). It can then be classi�ed using the inverse function in equation

6.6. Suppose the instances are 000 and 010, the classi�cation values f(000)

and f(010) can be calculated as follows:

f(000) =
1

2d
(−1)000.000ω000 +

1

2d
(−1)001.000ω001

+
1

2d
(−1)010.000ω010 +

1

2d
(−1)011.000ω011

+
1

2d
(−1)100.000ω100 +

1

2d
(−1)101.000ω101

+
1

2d
(−1)110.000ω110 +

1

2d
(−1)111.000ω111 = 1 (6.7)

f(010) =
1

2d
(−1)000.010ω000 +

1

2d
(−1)001.010ω001

+
1

2d
(−1)010.010ω010 +

1

2d
(−1)011.010ω011

+
1

2d
(−1)100.010ω100 +

1

2d
(−1)101.010ω101

+
1

2d
(−1)110.010ω110 +

1

2d
(−1)111.010ω111 = 1 (6.8)

In terms of its application to decision trees, the DFT is not restricted

to nominal valued attributes as splits on numeric attributes can be mapped

easily to a set of discrete nominal values.

Due to thresholding and loss of some high order coe�cient values, the

classi�cation value f(x) for a given data instance x may need to be rounded

to the nearest integer in order to assign the class value. For example, with

binary classes a value for f is rounded up to 1 if it is in the range [0.5, 1) and

rounded down to 0 in the range (0, 0.5).

6.5. Exploitation of the Fourier Transform for Recurrent Concept
Capture 129

6.5 Exploitation of the Fourier Transform for

Recurrent Concept Capture

In this section, the application of DFT in the context of recurrence capture is

elaborated.

In data streams, a variant of decision tree that learns incrementally and

splits on a threshold de�ned with Hoe�ding Bound is used [Domingos 2000],

[Hulten 2001] and [Gama 2005]. In this research, DFT is applied on Hoe�ding

Tree implemented in CBDT [Hoeglinger 2009] forest.

The basic algorithm termed Fourier Concept Trees (FCT) is presented

�rst in section 6.5.1 and then an optimization used for energy thresholding is

described in section 6.5.2.

6.5.1 The FCT algorithm

CBDT is used as the base algorithm which maintains a forest of trees as

mentioned earlier. This forest of trees is dynamic in the sense that it can

adapt to changing concepts at drift detection points. Thus memory consumed

by this forest is de�ned as active. In regular intervals, a winner tree that has

the highest accuracy is chosen to represent the CBDT system. Classi�cation

output of CBDT depends on the winner chosen. In order words, winner

tree is considered to be the best representation of the current concept in the

underlying data stream.

6.5. Exploitation of the Fourier Transform for Recurrent Concept
Capture 130

Figure 6.3: An architecture for concept re-use with the FCT approach

The basic CBDT algorithm 6.1 is integrated with the ADWIN [Bifet 2007]

change detector to signal concept change. ADWIN serves two purposes in FCT

model: detection of concept change depending on the error rate of the winner

tree and showing the accuracy of a Hoe�ding Tree over the current concept.

6.5. Exploitation of the Fourier Transform for Recurrent Concept
Capture 131

Traditionally, accuracy values are calculated historically from the beginning

of a data stream. These historical accuracy values are poor representations of

the performance of an algorithm due to time related changes in a data stream.

ADWIN and SeqDrift change detectors store a bu�er consisting of 1's and 0's

(refer Chapters 4 and 5). The average of this bu�er is the current error rate

over current concept as the above change detectors �ush the bu�er belonging

to all previous concepts. Therefore, this error rate is an ideal performance

metric and it is used to calculate all accuracy values in this research.

Algorithm 6.1 fct algorithm
Input: Energy Threshold ET , Accuracy Tie Threshold τ
Output: Best Performing model M that suits current concept

1 Plant a decision tree rooted on each attribute found in the data
stream

2 M is set to a randomly selected decision tree model from the
forest

3 Initialize the repository to null

4 read an instance I from the data stream

5 while change is not detected by the ADWIN instance of the current best model
M do

6 if best model M is in repository call
ClassifyUsingFourierSpectrum (Algorithm 6.2) to classify
I

7 append 0 to ADWIN's window for M if classification is
correct, else append 1

8 if M is from active memory then
9 identify best performing model F in repository

10 if (accuracy(M)-accuracy(F))> τ then
11 apply DFT on model M to produce F* using energy

threshold ET

12 if F* is not already in repository then
13 insert F* into repository

14 Identify best performing model M by polling active memory and
repository

15 GoTo 4

6.5. Exploitation of the Fourier Transform for Recurrent Concept
Capture 132

Algorithm 6.2 ClassifyUsingFourierSpectrum()
Input: Instance I, Fourier Spectrum F

Output: class value

1 for all coe�cients in F do

2 If f(x) calculated using equation 6.6 is greater than 0.5, return class1,

otherwise class2

CBDT initializes d number of trees if there are d number of features present

in a data stream (step 1). A random tree is chosen at the beginning until the

�rst concept change is detected (step 2). At the �rst concept change point,

the best performing tree (line 5) (in terms of accuracy) is identi�ed and the

DFT is applied after energy thresholding. Then, the resulting spectrum is

stored in the repository for future use if the current concept recurs (line 11 to

13). The spectra stored in the repository are �xed in nature as the intention

is to capture past concepts. At each subsequent change point, a winner model

is chosen by polling both the active memory and the repository. If the win-

ner emerges from the active memory, two checks are made before the DFT is

applied. First of all, a test is made to see whether the di�erence in accuracy

between the winner tree in active memory (T) and the best performing model

in the repository is greater than a tie threshold τ (line 10). This is to avoid

storing two similar performing classi�ers (redundant) on a particular concept.

If this check is passed, then the DFT is applied to T and a further check is

made to ensure that its Fourier representation is not already in the Reposi-

tory. This situation arises when two structurally similar trees are converted

into Fourier Spectra. During the conversion, the minor di�erences between

the two trees may disappear in Fourier Spectrum that consists of only the

high energy coe�cients. Therefore, to eliminate the possibility of redundant

Fourier Spectra, the above test is necessary. If the winner model at a change

point emerges from an already existing spectrum in the Repository, no Fourier

6.5. Exploitation of the Fourier Transform for Recurrent Concept
Capture 133

conversion is applied on any of the trees in active memory. Whichever model

is chosen as the winner, it is applied to classify all unlabeled data instances

until a new winner emerges at a subsequent change point. The least perform-

ing model M having the lowest weighted accuracy function is deleted if the

repository has no room for new models. The weighted accuracy of M is de�ned

by: weight(M) = winner_tally(M) ∗ accuracy(M), where winner_tally is

the number of times that M was declared a winner since it was inserted into

the repository. FCT procedure is visually depicted in Figure 6.3.

6.5.2 Optimizing the Energy Thresholding Process

In order to avoid unnecessary computation of higher order coe�cients which

yield increasingly low returns on classi�cation accuracy, energy threshold is

highly desirable. To threshold on energy a subset S of the (lower order)

coe�cients needs to be determined such that E(S)
E(T)

> ε, where E(T) denotes

the total energy across the spectrum and ε is the desired energy threshold

value. In the optimized thresholding, the cumulative energy CEi at order i is

computed �rst and it is given by: CEi =
∑i

j=0

∑
k(wk

2|order(k) = j).

Given an order i, an upper bound estimate for the cumulative energy across

the rest of the spectrum is given by: (d+1−(i+1)+1)CEi, as the exponential

decay property ensures that the energy at each of the orders i+1, i+2, · · · , d is

less than energy Ei at order i, where d is number of attributes in the dataset.

Thus a lower bound estimate for the fraction of the cumulative energy CEFi

at order i to the total energy across all orders can then be expressed as:

CEFi =
CEi

CEi + (d− i+ 1)Ei
(6.9)

where Ei is actual (computed) energy at order i. The lower bound estimate

allows the speci�cation of a threshold ε based on the energy captured by

a given order i which is more meaningful to set rather than an arbitrary

threshold.

6.6. Experimental Study 134

The scheme expressed by equation (6.9) enables the thresholding process

to be done algorithmically. If the cumulative energy fraction CEFi ≥ ε, then

the actual energy captured is at least ε can be guaranteed, since CEFi is a

lower bound estimate. On the other hand, if CEFi < ε, then CEFi+1 can be

expressed as:

CEFi+1 =
CEi+1

CEi+1 + (d− i)Ei+1

=
CEi + Ei+1

CEi + dEi+1

(6.10)

Thus equation (6.10) enables the cumulative fraction to be easily updated

incrementally for the next higher order (i + 1) by simply computing the en-

ergy at that order while exploiting the exponential decay property of Fourier

spectrum. The thresholding method guarantees that no early termination will

take place. This is because CEFi is a lower bound estimate and hence the

order that it returns will never be less than the true order that captures a

given fraction ε of the total actual energy in the spectrum.

6.6 Experimental Study

This section elaborates on the empirical study involving the following learn-

ing systems: CBDT, FCT and MetaCT. Gama's meta learning approach

[Gama 2011] with CBDT as the base learner is implemented as MetaCT.

The main focus of the study is to assess the extent to which recurrences are

recognized using old models preserved in classi�er pools.

6.6.1 Parameter Values

All experimentation was done with the following default parameter values:

� Hoe�ding Tree Default Parameters

� The desired probability of choosing the correct split attribute=0.99

� Tie Threshold=0.01

6.6. Experimental Study 135

� Growth check interval=32

� Tree Forest Default Parameter Values

� Maximum Node Count=5000

� Maximum Number of Hoe�ding Trees=50

� Fourier Pool Default Parameter Values

� Accuracy Tie Threshold τ=0.01 which is the minimum accuracy

di�erence between a new candidate Fourier Tree and any existing

Fourier Tree in the Fourier pool

� Maximum Fourier Trees = 50

� Fourier Tree Default Parameter Values

� Energy Threshold = 95%

� ADWIN Default Paramater Values

� drift signi�cance value=0.01

� warning signi�cance value=0.3 (for MetaCT only)

All experiments were done on the same software with C# .net runtime and

hardware with Intel i5 CPU and 8GB RAM, clearning the memory in each

run to have a fair comparison.

6.6.2 Datasets Used for the Experimental study

The experimentation was done with data generated from 3 synthetic data

generators commonly used in change detection and recurrent concept min-

ing, namely SEA concept [Street 2001], RBF (generated using RBF kernels)

and Rotating hyperplane [Hulten 2001] generators. In addition, 2 real-world

6.6. Experimental Study 136

datasets Spam and the NSW electricity which were commonly used in pre-

vious research was also used in this research to compare the performances of

the models.

For the synthetic datasets, each of the 4 concepts spanned 5,000 instances

and reappeared 25 times in a data set, yielding a total of 500,000 instances

with 100 true concept change points.

In order to challenge the concept recognition process, a 10% noise level is

added for all synthetic data sets to ensure that concepts recur in similar, but

not exact form.

6.6.2.1 Synthetic Data Sets

MOA [Bifet 2010b] was as the tool to generate these datasets.

1. SEA: The concepts are de�ned by the function feature1+feature2 >

threshold. The concepts are ordered as concept1, concept2, concept3

and concept4 generated using threshold values 8,7,9 and 9.5 respectively

on the �rst data segment of size 20,000. 96 recurrences of a modi�ed form

of these concepts have been generated by using di�erent seed values in

MOA for each sequence of recurrence. Thus, the version of this dataset

di�ered from the one used by Gama and Kosina [Gama 2011]. who

simply used 3 concepts with the third being an exact copy of the �rst.

2. RBF: Number of centroids parameter was adjusted to generate dif-

ferent concepts for the RBF dataset. Concept1, concept2, concept3

and concept4 were produced with the number of centroids set to 5, 15,

25 and 35 respectively. Similar to the SEA dataset, the seed parameter

helped producing similar concepts for a given centroid count value. This

dataset had 10 attributes.

3. Rotating hyperplane: The number of drifting attributes was ad-

justed to 2, 4, 6, and 8 in a 10 dimensional data set to create the four

6.6. Experimental Study 137

concepts. The concept ordering, generation of similar concepts and con-

catenation were exactly the same as in the other data sets mentioned

above.

6.6.2.2 Real World datasets

1. Spam Data Set: The Spam dataset was used in it original form 1 which

encapsulates an evolution of Spam messages. There are 9,324 instances

and 499 informative attributes, which was di�erent from the one version

used by Gama that had 850 attributes.

2. Electricity Data Set: NSW Electricity dataset is also used in its original

form 2. There are two classes Up and Down that indicate the change of

price with respect to the moving average of the prices in last 24 hours.

6.6.3 Tuning MetaCT Key Parameter

In the preliminary experiments, optimal value for the parameter hit percentage

threshold value was as 80%. This parameter re�ects the estimated similarity

of the current concept with one from the past and thus controls the degree of

usage of classi�ers from the pool.

MetaCT was observed having good accuracy for the delay in receiving true

class labels for the instances in short term memory, when it was set to 200.

6.6.4 Comparative Study: CBDT vs FCT vs MetaCT

The focus in this series of experiments was to assess the models in terms of

accuracy, memory consumption and processing times. None of the previous

studies reported in the recurrent concept mining literature undertook a com-

parative study against other approaches and so this empirical study is the
1from http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
2from http://moa.cms.waikato.ac.nz/datasets/

6.6. Experimental Study 138

�rst such e�ort. Furthermore, all of the previous studies focused exclusively

on accuracy without tracking memory and execution time overheads and so

this study would also be the �rst of its kind.

Before analyzing the performance of FCT, the exponential decay property

of Fourier trees are investigated empirically. Figure 6.4 shows the average

spectral energy captured by each order. Average value was calculated on

RBF dataset (the same trend exists on the other datasets as well) by taking

energy readings in an interval of 100 instances. It is clear that the low order

coe�cients capture most of the energy. This empirically validates the claim

made by [Kargupta 2006]. Therefore, only a few low order coe�cients need

to be kept to achieve competitive classi�cation power as a complete decision

tree.

Figure 6.4: Exponential Decay of Energy with Coe�cient Order in FCT on

RBF dataset

The next section focuses on evaluation metrics accuracy, memory and pro-

cessing speed.

6.6.4.1 Accuracy

A delay period of 200 was used with all three approaches in order to perform

a fair comparison. Figure 6.5 clearly shows that overall, FCT signi�cantly

6.6. Experimental Study 139

outperforms its two rivals with respect to classi�cation accuracy. The major

reason for FCT's superior performance was its ability to re-use previous clas-

si�ers as shown in the segment 20k-25k on the RBF dataset where the concept

is similar to concept1 that occurred in interval 1-5K. This is in contrast to

MetaCT which was unable to recognize the recurrence of concept1. A similar

situation occurs in the interval 25k-35k where the concept is similar to the

previously occurring concepts, which are concept2 and 3. As expected CBDT,

operating on its own without support for concept recurrence had a relatively

�at trajectory throughout the stream segment.

A similar trend to the RBF dataset was observed in Rotating Hyperplane

and SEA datasets as well. It can be clearly seen that FCT was successful in

reusing the models learned before on data segments from 20k to 25k and from

30k to 35k. Though a preserved model was reused on the data segment from

25k to 30k (corresponding to concept3), the accuracy was not as high as in

the above two segments. On the segment from 35k to 40k, concept recurrence

was not picked up by either FCT or MetaCT resulting in a new classi�er being

used.

In summary, FCT outperformed MetaCT over 90 recurring concepts in

RBF dataset whereas MetaCT did better in 6 occurrences, maintaining the

similar trend as with the other 2 synthetic datasets.

The next experiment was on the NSW Electricity data set. Figure 6.5

shows that in overall, FCT was the winner here as well, outperforming MetaCT

at 25 segments out of 35 that were tracked. Sudden fall in accuracy of MetaCT

is occasional but due to incorrect selection of winner which was a decision

stump.

MetaCT grows new classi�er pair (base and referee) using its bu�er popu-

lated during a warning phase before a concept change, if no existing classi�er in

its pool is reusable. This bu�er has labeled and unlabeled instances. Whereas

both types of instances help deciding on re-use of an existing model, only

6.6. Experimental Study 140

the labeled instances are used to train and develop a new classi�er. When

MetaCT runs with classi�er such as Hoe�ding Tree that requires a large num-

ber of data instances to learn, MetaCT is only able to plant decision tree

stumps as the number of data instances accumulated during a warning phase

is small except over slow gradual change. These decision stumps acting as

referee and base classi�er often introduce instability in MetaCT by trigger-

ing a large number of concept change indications with �uctuating error rate.

This was one of the causes of the poor performance of MetaCT. In addition,

MetaCT has no mechanism to capture only the essence of a concept rather

than the full representation, as opposed to DFT application in FCT. This also

caused the lower accuracy of MetaCT compared to FCT.

Figure 6.5: Classi�cation Accuracy for CBDT, FCT and MetaCT

6.6. Experimental Study 141

6.6.4.2 Memory

The experimentation on accuracy has revealed, especially in the case of FCT,

the key role that concept capture and re-use has played in improving accuracy.

The question is, what price has to be paid in terms of memory overhead in

storing these recurrent concepts? Table 6.1 clearly shows that the Fourier

transformed trees consume a small fraction of the memory used by the pool

of trees kept in FCT's active memory, despite the fact that collectively these

models outperform their decision tree counterparts at a greater number of

points in the stream progression.

Comparison of overall memory consumption across FCT and MetaCT is

complicated by the fact that the latter tended to have immature trees in its

classi�er pool that under �ts concepts. Despite this, Table 6.1 reveals that

FCT's memory consumption is competitive to that of MetaCT. The only case

where MetaCT had a substantially lower consumption was with the Spam

dataset with a lower overhead for active memory.

Datasets

Memory Memory

FCT MetaCT

Tree Fourier Tree Pool

Forest Pool Forest

RBF 97.9 24.8 122.7 14.9

Rot. Hy/plane 187.4 59.7 148.7 43.4

SEA 29.3 34.8 28.0 18.1

Spam 1712.8 18.8 878.0 15.3

Electricity 48.4 39.9 19.8 18.9

Table 6.1: Average Memory Consumption (in KBs) Comparison

Figure 6.6 shows memory pro�le over rotating hyperplane dataset. As seen

on Figure 6.6, the growth rate of pool memory is much less than that of tree

forest. Tree forest releases memory when a tree is transfered to pool or when

a tree or leaf node is collapsed. Pool virtually consumes the same amount of

memory after all di�erent concepts have been captured. As mentioned earlier,

6.6. Experimental Study 142

MetaCT was not successful in capturing some concepts due to the limitations

of the use of Hoe�ding trees. Therefore, after �rst 10K instances, MetaCT

stopped growing its pool. This would have enabled MetaCT to remember

the decision trees representing the �rst two concepts only. FCT continued to

re�ne its pool by capturing the other two concepts as well. Note that pool

size can be limited to a maximum value speci�ed as a parameter. Therefore,

there is no possibility of an in�nite growth of pool size.

Figure 6.6: Memory pro�les of FCT and MetaCT on Rotating Hyperplane

Dataset

Please refer Appendix B for the memory pro�les on RBF, SEA, Electricity

and Spam datasets.

6.6.4.3 Processing Speed

FCT routes an instances to all classi�ers to update statistics. In addition, FCT

has potentially more overhead at concept change points if the winner tree is

one that is selected from the active forest as this tree needs to be converted into

its Fourier representation. MetaCT has one active classi�er pair consisting of

base classi�er and its referee for classi�cation. It has to maintain its bu�er

during warning phase. After a concept change, hit percentage needs to be

computed using cached instances for all classi�ers in its pool. In addition,

6.6. Experimental Study 143

new classi�er needs to be grown using the labeled instances in its bu�er.

Moreover, use of Hoe�ding Tree in MetaCT introduces overhead by repeating

the above operations often due to �uctuating accuracy. Thus it is interesting

to contrast the run time performances of the two approaches.

Datasets

Processing Processing

Speed Speed

FCT MetaCT

RBF 3540.6 2662.5

Rot. Hy/plane 2686.2 2180.1

SEA 11368.2 10125.8

Spam 4.1 4.3

Electricity 5705.7 7191.42

Table 6.2: (Processing Speed Instances per second) Comparison

Table 6.2 shows that in general FCT has a higher processing speed (mea-

sured in instances processed per second); the only exception was with the

Electricity dataset where MetaCT was faster. The electricity data contains a

relatively larger number of concept change points in comparison to the other

datasets and this in turn required a greater number of DFT operations to be

performed, thus slowing down the processing.

Discrete Fourier Transform (DFT), as expected, was able to capture the

essence of a concept to the extent that when it reappeared in a modi�ed form

in the presence of noise, it helped recognizing similar recurrences and was able

to classify it accurately.

6.6.5 Sensitivity Analysis on FCT

Having established the superiority of FCT, it would be interesting to explore

the sensitivity of FCT's accuracy on two key factors: Energy Threshold and

Noise level in data stream.

6.6. Experimental Study 144

Figure 6.7: Sensitivity of Accuracy on Spectral Energy

Figure 6.8: Sensitivity of Accuracy on Spectral Energy

6.6.5.1 Energy Threshold

FCT's energy threshold parameter controls the extent to which it captures

recurring contexts. All datasets have been used in experiments and accuracy

has been tracked across four di�erent thresholds: 95%, 80%, 40% and 20%.

Figure 6.7 clearly shows that very little di�erence in accuracy exists between

the trajectories for 40% and 95%, showing the resilience of the DFT in cap-

turing the classi�cation power of concepts at low energy levels such as 40%.

Similarly, Figure 6.8 also con�rms that the accuracy drop for a lower value of

energy is not very signi�cant. The average di�erence of accuracy between 40%

6.6. Experimental Study 145

and 95% on RBF dataset is 0.058. Thus the low order Fourier coe�cients that

survive the 40% threshold hold almost the same classi�cation power of spectra

at the 80% or 90% levels which contain more coe�cients. Such higher energy

spectra would represent larger decision trees in which some of the decision

nodes would be split into leaf nodes, thus enabling them to reach a slightly

higher level of accuracy. Interestingly, over short data segments, trees with

20% energy show better performance than that of 40%.

6.6.5.2 Noise Level

In section 6.6.4.1, it was observed that FCT outperformed MetaCT by recog-

nizing concepts from the past even though the concepts did not recur exactly

in their original form due partly to noise and partly due to di�erent data

instances being produced as a result of re-seeding of the concept generation

functions. In this experiment the resilience of FCT to noise level is explicitly

tested by subjecting it to three di�erent levels of noise - 10%, 20% and 30%.

Figure 6.9 reveals three interesting pieces of information. Firstly, FCT is

still able to recognize recurring concepts at the 20% noise level even though

the models it re-uses do not have quite the same classi�cation power (when

compared to the 10% noise level) on the current concept due to data instances

being corrupted by a relatively higher level of noise.

Secondly, FCT's concept recurrence recognition is essentially disabled at

the 30% noise level as shown by its �at trajectory, thus essentially performing

at the level of the base CBDT system. It is able to avoid drops in accuracy on

account of the forest of trees that is maintained and is able to switch quickly

and seamlessly from one tree to another when concepts change occurs.

Thirdly, although MetaCT is not the focus of this experiment it can be

seen that the ability of MetaCT to recognize recurring concepts is disabled at

the 20% level, showing once gain the resilience of the DFT to noise. At the

6.7. Empirical Study on FCT with SeqDrift2 Change Detector146

30% level its accuracy drops quite sharply at certain points in the stream.This

is due to the fact that it learns a single new classi�er and relies on it to classify

instances in the current concept. In contrast, FCT exploits the entire forest of

trees and switches from one tree to another tree in its active forest in response

to concept change.

As mentioned earlier, FCT relies on the choice of a change detector to

identify concept boundaries. Delay in concept change detection or false posi-

tive signals impact FCT's performance. Higher delay in detection would force

FCT to postpone classi�er update. This causes drop in accuracy over the

new concept. At the same time, false positive change signals will cause un-

necessary archival of a well-performing classier and �uctuations in accuracy.

ADWIN has been chosen for all the previous experiments due to its popularity

in data stream mining applications. As this research proposes a better change

detection strategy called SeqDrift2, FCT is again evaluated with SeqDrift2

in place of ADWIN. The next section presents the results and comparative

study with the ADWIN version.

6.7 Empirical Study on FCT with SeqDrift2 Change

Detector

In this section, the impact of a change detector on FCT is analyzed. Two ver-

sions of FCT have been tested on all the datasets used in the previous section.

The results for accuracy evaluation only includes the datasets RBF, Rotating

Hyperplane and Electricity as the other two follow the same trend as the ones

presented here. The �rst version is the default FCT with ADWIN change

detector namely FCT+ADWIN. The second one is the FCT with SeqDrift2

namely FCT+SeqDrift2.

6.7. Empirical Study on FCT with SeqDrift2 Change Detector147

F
ig
ur
e
6.
9:

Se
ns
it
iv
it
y
of

A
cc
ur
ac
y
fo
r
F
C
T
an
d
M
et
aC

T
on

N
oi
se

L
ev
el

6.7. Empirical Study on FCT with SeqDrift2 Change Detector148

Figure 6.10: Accuracy comparison between FCT+ADWIN and

FCT+SeqDrift2 on RBF dataset

6.7.1 Accuracy Comparison

Figure 6.11: Accuracy comparison between FCT+ADWIN and

FCT+SeqDrift2 on Rotating Hyperplane dataset

6.7. Empirical Study on FCT with SeqDrift2 Change Detector149

Figure 6.12: Accuracy comparison between FCT+ADWIN and

FCT+SeqDrift2 on NSW Electricity dataset

Figures 6.10, 6.11 and 6.12 show that the accuracy �uctuation in FCT+SeqDrift2

is not as severe as FCT+ADWIN. On each dataset, there are regions of sta-

bility while FCT+ADWIN drops or temporarily gains accuracy. This trend

is an evidence that ADWIN has triggered false positive signals though there

was no true concept change. Due to the robustness of SeqDrift2, the mining

model is better at deciding when to update a classi�er. This is an important

observation in this research as the two algorithms that are proposed are a

better combination over exiting algorithm.

The other two metrics chosen for this empirical study are the processing

speed and the memory consumption.

6.7. Empirical Study on FCT with SeqDrift2 Change Detector150

6.7.2 Processing Time and Memory Comparison

Datasets

Memory Memory Processing Processing

FCT+ADWIN FCT+SeqDrift2 Speed Speed

Tree Fourier Tree Fourier

Forest Pool Forest Pool FCT+ADWIN FCT+SeqDrift2

RBF 97.9 24.8 98.2 20.9 3540.6 3652.6

Rot. Hy/plane 187.4 59.7 190.4 52.6 2686.2 2659.2

SEA 29.3 34.8 26.5 33.6 11368.2 12006.4

Spam 1712.8 18.8 1816.4 17.3 4.1 4.1

Electricity 48.4 39.9 56.2 31.6 5705.7 6945.2

Table 6.3: Average Memory Consumption (in KBs) and Processing Speed

Instances per second Comparison

Table 6.3 presents the average memory and processing speed values over

the entire data set taken in an interval of 100 instances. There are three

clear trends here. Except SEA dataset, tree forest of FCT+SeqDrift2 con-

sumes slightly larger amount of memory than its counterpart. This is ex-

pected because SeqDrift2 has lower false positive rate than ADWIN, therefore,

trees in the forest are not collapsed or transfered less frequently compared to

FCT+ADWIN. Tree forest in FCT+SeqDrift2 learns the current instances

and grows its trees to produce a more precise representation of a concept.

The other trend is the compactness of pool in FCT+SeqDrift2 compared to

that of FCT+ADWIN. The same explanation follows here as well. Low false

positive rate implies lower number of Fourier Spectra thus smaller memory

consumption.

FCT+SeqDrift2 is again the winner because of its higher processing speed.

Lower number of change signals reduces computationally expensive task of

transforming a tree into its Fourier coe�cients. In addition, less number of

Fourier Trees also decreases processing time in polling to select a winner and

in processing an instance.

6.8. Summary 151

6.8 Summary

In this chapter, a novel mechanism for mining data streams by capturing and

exploiting recurring concepts is proposed. The experimentation showed that

the Discrete Fourier Transform when applied on Decision Trees captures con-

cepts very e�ectively, both in terms of information content and conciseness.

The Fourier transformed trees were robust to noise and were thus able to

recognize concepts that reappeared in modi�ed form, thus contributing sig-

ni�cantly to improving accuracy. Overall the proposed approach signi�cantly

outperformed the meta learning approach by Gama and Kosina [Gama 2011]

in terms of classi�cation accuracy while being competitive in terms of memory

and processing speed.

As the last experiment, ADWIN change detector was replaced by Seq-

Drift2. There is noticeable gain in stability, memory consumption and pro-

cessing speed when SeqDrift2 is used. The gain is mainly due to SeqDrift2's

ability to avoid many false positive signals which are triggered by ADWIN.

The derivation of the Fourier spectrum is optimized by an e�cient thresh-

olding process but there is further scope for optimization. Currently all sig-

ni�cant concepts are stored in the repository in the form of Fourier spectra.

While energy thresholding was shown to be very e�ective in producing com-

pact spectra the overhead of storing such spectra will grow over time and could

potentially �ood memory in highly dynamic high dimensional environment.

Thus a mechanism for repository memory management is needed to ensure

that memory over�ow does not take place. On simple solution would be to

characterize concepts into some importance measure based on their previous

classi�cation performance and their usage frequency and then use a window

on the importance measure to slide out the least important concepts when

memory is running low. Although attractive from the viewpoint of concep-

tual simplicity, such an approach has serious drawbacks. The major issue

6.8. Summary 152

is one of currency, concepts are poorly rated in the past could assume more

importance in the future and purging such concepts would lead to a loss in ac-

curacy upstream. In the next Chapter, an ensemble approach that e�ectively

addresses this problem is proposed. In the ensemble approach, Fourier are ag-

gregated into single entities thus reducing memory overhead while preserving

concept integrity.

Chapter 7

The Role of Fourier Ensembles in

Capturing Recurring Concepts

7.1 Introduction

Ensemble of classi�ers are widely used in machine learning as ensembles have

been shown to reduce learning bias and improve accuracy [Brown 2010]. In

[Wang 2003b], ensemble approaches are claimed to be e�ective in avoiding

over �tting problems and con�icting concepts. In addition, ensemble avoids

the dependence on a single classi�er and incorporates suggestions from a num-

ber of models that could reduce the need for the high degree tuning required

for single models. Ensembles have the potential to perform better than a

single classi�er when the correlation of errors of individual classi�ers are low

[Freund 1996]. Gavin in [Brown 2010] mentions that ensemble learning have

been often found to be superior than single models in numerous empirical and

theoretical studies. Unstable learners such as Decision Trees can have high

sensitivity to training conditions that result in high variance in its perfor-

mance. High variance can be averaged out in ensemble learning. Therefore, it

can be expected that the proposed method in this chapter that relies on the

Decision Tree would bene�t from an ensemble approach.

Physical aggregation of classi�ers have the advantages of lower redun-

dancy, lesser memory and lesser computational complexity than a group of

classi�ers in an ensemble. Ensemble learning may produce classi�ers that are

7.1. Introduction 154

not comprehensible or transferable and therefore would bene�t from mecha-

nisms that provide transparency in the decision making process. The work in

[Iqbal 2012] attempts to extract common rules by aggregating decision trees.

The approach presented in this chapter is a similar approach in extracting

and weighting common patterns found in a group of decision trees in Fourier

space through the use of Fourier coe�cients.

This chapter investigates the e�ectiveness of using ensembles of Fourier

spectra in capturing recurring concepts. In the case of classi�ers produced

by Fourier spectra, ensemble learning can be implemented by taking a linear

weighted sum of spectra as described later in this Chapter. However, given

that the objective is to capture recurring concepts from the past, the approach

to ensemble learning will be to maintain a pool of ensembles rather than

one single ensemble, with each ensemble capturing di�erent concepts. Each

ensemble will embed variants on the same concept that arise due to drift that

causes a concept to change with time. In this respect, the method chosen

to aggregate concepts into an ensemble is of vital importance to preserve the

integrity of a concept and ensure that any given ensemble is not polluted by

aggregating with a spectrum belonging to another very di�erent concept. At

the same time, a certain amount of diversity is maintained within any given

ensemble in order to improve its generalization capability and thus to make

it more robust to concept change and noise in the stream.

In a high speed highly volatile environment, classi�er stability becomes an

important issue as there is always a delay for a classi�er to change its struc-

ture to suit changes taking place in a data stream. If changes take place at a

higher speed than its (i.e. the classi�er's) ability to learn new concepts, then

both accuracy and stability will be severely compromised unless classi�ers are

robust enough to generalize to new changes taking place. In this respect,

an ensemble of classi�ers can be expected to more stable than a single clas-

si�er approach. Such highly volatile environments exist in many real world

7.1. Introduction 155

applications such as highly volatile stock markets, social networks etc.

On the other hand, when data instances arrive at low speed, a single

classi�er can also su�er, due to a di�erent reason altogether. In this case, the

delay associated with detecting change is the cause of the problem. As an

example, suppose that a sensor network sends data at a rate of one instance

per day. Suppose that the delay with tracking change is 200 instances; then,

a change in this data stream can only be recognized after 200 days during

which time the current classi�er will be outdated and will su�er from a loss in

accuracy. Since the change was not detected there will not be an opportunity

to re-use a classi�er from the past that is better suited to the new concept as

re-use is only triggered at concept change detection for reasons of e�ciency.

Thus, as with the high speed scenario, an ensemble classi�er that is not overly

dependent on sensitivity of the change detector and is able to generalize is

expected to perform better in this scenario as well.

In order to meet the above challenges, the work proposed in the previ-

ous Chapter is extended. Firstly, instead of encoding each concept using its

own Fourier spectrum, an ensemble approach is used to aggregate individual

spectra into a collection of uni�ed spectra. This has the two above mentioned

advantages: �rstly, memory overhead is further reduced as Fourier coe�cients

that are in common between di�erent spectra can be combined into a single

coe�cient, thus eliminating redundancy. Secondly, due to the presence of

ensembles, new concepts that manifest as a combination of previously occur-

ring concepts have a higher likelihood of being recognized, resulting in better

accuracy and stability over large segments of the data stream.

The second extension, as presented in Theorem 7.1, is the derivation of

an e�cient method for spectral energy thresholding that directly controls

the degree of compression that can be obtained in encoding concepts in the

repository.

The third major extension is optimization of the DFT encoding process for

7.1. Introduction 156

which a potentially expensive inner product operation is required. Theorem

7.2 in section 7.2.3. reduces the computational overhead by identifying two

cases where the inner product can be computed in O(1) time.

The empirical study covers two di�erent types of environments where con-

cepts recur in di�erent fashion. The �rst environment is a simulation of a

large number of concepts recurring in similar form. This is to analyze how

well highly volatile environments are handled by ensembles operating under

a memory constrained environment. In addition, two di�erent ensemble for-

mulation schemes are compared to understand the in�uence of a similarity

measure on classi�cation accuracy and stability. The scheme with the best

aggregation strategy has then been taken to further experiment with the Seq-

Drift2 change detector that has been proposed in this research to understand

the in�uence of a change detector on performance.

The next section covers the theoretical aspects of decision tree aggregation

in Fourier space.

7.1.1 Aggregation of Fourier Spectrum

The fundamental aggregation operation is straightforward, as described by

Kargupta et al. in [Kargupta 2006]. Kargupta et al. use a weighted linear

combination of spectra to produce an ensemble.

sc(x) =
∑
i

Wi

∑
i

si(x) =
∑
i

Wi

∑
j∈Pi

ωj
(i)ψλj (x) (7.1)

where sc(x) denotes the ensemble spectrum produced from the individual

spectra si(x). Wi is the relative accuracy of the corresponding spectrum and

Pi is the set of partitions for non zero coe�cients in spectrum si.

7.1. Introduction 157

Figure 7.1: Decision Tree 1 with 3 binary features

Figure 7.2: Decision Tree 2 with 3 binary features

With reference to Figures 7.1 and 7.2 , the aggregation of coe�cient ωj

can be done as follows:

ωcj =
Accs1

Accs1 + Accs2
ω(s1)j +

Accs2
Accs1 + Accs2

ω(s2)j (7.2)

where ωcj denotes the aggregated j
th coe�cient and Accs1 and Accs2 are the

accuracies of the Fourier spectrum generated from Figures 7.1 and 7.2 respec-

tively.

This process needs to be repeated for all coe�cients that are present in

both s1 and s2.

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 158

7.2 Exploitation of the Fourier Transform for

Recurrent Concept Capture

The basic algorithm used in Section 7.2.1 is also presented in Figure 7.3 as

a structural diagram. The discussion on an optimization used for energy

thresholding is explained in Section 7.2.3.

Figure 7.3: EP Structural Diagram

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 159

CBDT [Hoeglinger 2009] has been as the base classi�er which maintains a

forest of Hoe�ding Trees [Hoeglinger 2007], as in the previous chapter.

As shown in Figure 7.3, the memory is divided into two segments: �rstly

to support the growth of a forest of decision trees; and secondly, to support a

collection of Fourier Ensemble Spectra encoded and aggregated from several

Decision Trees. Each of the decision trees is encoded into a Fourier Spectrum

that had the best classi�cation accuracy across the forest at a particular con-

cept change point, as with the operation of the FCT algorithm in the previous

Chapter. Each Hoe�ding Tree and Fourier Spectrum in the pool is equipped

with an instance of the change detector, ADWIN [Bifet 2007]. In FCT each

Fourier spectrum is represented individually as a Fourier Concept Tree (FCT).

In this work, spectra are aggregated as described and maintained in a pool of

ensemble spectra known as Ensemble Pool (EP). The EP creation process is

described in Algorithm EP (7.1) and how FCT can be generated from it as a

special case is also discussed.

In practice, any incremental decision tree approach that uses a forest of

decision trees can be used to create a system like EP.

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 160

7.2.1 The EP Algorithm

Algorithm 7.1 EP Algorithm
Input: Energy Threshold ET , Accuracy Tie Threshold τ
Output: Best Performing model M that suits current concept

1 Plant a decision tree rooted on each attribute found in the data
stream

2 M is set to a randomly selected decision tree model from the
forest

3 Initialize the repository to null

4 Read an instance I from the data stream

5 while change is not detected by the ADWIN instance of the current best model
M do

6 Apply all models in the forest and the repository on I to
classify I

7 if the overall winner is a tree from the forest then
8 Increase the counter of each ensemble in the pool if the

classification output matches with that of the current
active winner

9 Append 0 to the embedded ADWIN's window for each model if
classification is correct, else 1

10 if M is from decision tree forest then
11 Identify the best performing model F in repository

12 if (accuracy(M)-accuracy(F))> τ then

13 apply DFT on model M to produce F* using energy threshold
ET

14 if F* is not already in repository then

15 Call Aggregation algorithm 7.2 and insert F* into the
repository

16 Reset the counter of ensemble trees in the pool

17 Identify best performing model M by polling active memory and
repository

18 GoTo 4

In step 1 of Algorithm EP, 7.1 a decision tree rooted on each attribute is

created. In step 2 a randomly selected decision tree that is created in step 1

is chosen as the best performing model M . Next, an empty pool is created in

step 3. Each incoming instance is routed to all trees in the forest and the pool,

until a concept change signal is triggered by the ADWIN instance attached to

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 161

Algorithm 7.2 Aggregation
Input: Spectrum S derived from best performing tree T in

active memory, set of existing ensembles E, concept
length L, similarity threshold

Output: Aggregated Spectrum F*
1 Select the ensemble E* that has the maximum number of matching
classification outputs with T

2 Calculate matching percentage (MPE∗) of E* over L

3 if MPE∗ > Similarity Threshold or no room for a new ensemble in the pool
then

4 Aggregate E* and S using equation 7.10 to produce F*

5 else
6 Return S as F*

the winner tree (steps 6 to 9). At the same time, the counter of each ensemble

tree is increased whenever the classi�cations of an ensemble and an active tree

matches in the event that an active tree emerges as the overall winner at the

current concept change point. This counter remembers the number of times

both an ensemble and active winner tree agrees in classi�cation.

The empirical study tests another aggregation strategy based on similarity

of accuracy as the aggregation criterion. With this strategy, there is no need to

keep a counter for each ensemble and the selection of best matching ensemble

is based on an accuracy tie threshold.

At the �rst concept change point, the best performing tree (in terms of AD-

WIN's estimate of accuracy) is identi�ed and the DFT is applied after energy

thresholding. Thereafter, the resulting spectrum is stored in the repository

for future use if the current concept recurs. The spectra stored in the pool

are �xed in nature as the intention is to capture past concepts. A new winner

is then identi�ed as shown in step 17.

At each subsequent change point, if the winner model at a change point

emerges from an already existing spectrum in the pool, then no Fourier con-

version is applied on any of the trees in active memory. The winner model is

applied to classify all unlabeled data instances until a new winner emerges at

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 162

a subsequent change point, Otherwise, if the winner emerges from the active

memory, a check is made before the DFT is applied. First of all, a comparison

is made to see whether the di�erence in accuracy between the winner tree in

active memory (T) and the best performing model in the repository (from step

11) is greater than a tie threshold τ (step 12). If this check is passed then the

DFT is applied to T (step 13) and a further check is made to ensure that its

Fourier representation is not already in the pool (step 14). If this check is also

passed, algorithm Aggregation 7.2 is called to integrate the current Fourier

representation (Fourier Spectrum) into an existing Fourier Spectrum or plant

it as a separate Fourier spectrum in the pool (step 2 to 6).

The algorithm 7.2 searches for the spectrum having the greatest structural

similarity to the currently generated spectrum (step 1). Step 1 evaluates the

degree of agreement (d) between the classi�cation decisions (c) for S and E*

over the entire concept length using counters that remembers the matching

classi�cation outputs of S and E*. As mentioned earlier, an alternative strat-

egy to aggregating structurally similar spectra would be aggregation based on

similar accuracy. To distinguish with ensembles created with the structural

similarity criterion, these ensembles are referred to as EPa.

As stated before, the FCT algorithm is a special case of the EP algorithm

that omits the call to the aggregation algorithm made in step 15. The next

section describes the three optimizations done on EP to enhance the perfor-

mance of EP especially in terms of processing speed and memory.

7.2.2 Optimizing the Energy Thresholding Process

Sakthihasan et al. in [Sripirakas 2014a] showed that classi�cation accuracy

is sensitive to spectral energy; the higher the energy the greater is the clas-

si�cation accuracy in general, although the relationship is by no means a

linear one as energy thresholding at values of 40% and 60% yielded accuracy

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 163

pro�les similar to the 95% energy level. Thresholding on spectral energy is

thus an e�ective method of obtaining a compact spectrum while retaining the

classi�cation power inherent in the decision tree counterpart.

A solution described in [Sripirakas 2014a] was to iterate through each order

of the spectrum and compute the cumulative energy fraction as in the equation

7.3.

CEFi+1 =
CEi + Ei+1

CEi + dEi+1

(7.3)

where CEi is the cumulative energy calculated from order 0 to i, Ei+1 is

the energy of order i+1, d is the number of orders that are not included in the

calculation of CEi. This thresholding depends on the estimation computed by

d.Ei+1. Though, this will ensure that the actual fraction at order i will be at

least the estimated value CEFi+1, due to the over estimation of total energy

CEi + dEi+1, the thresholding procedure is not guaranteed to terminate at

the optimal number of orders that captures the energy percentage speci�ed

as a parameter. An alternative approach is to calculate E(Oi)
E(Oi−1)

where E(Oi),

E(Oi−1) are the energies at orders i and i− 1 respectively. Thresholding can

then be implemented at order O when the ratio is less than some small toler-

ance value, say 0.01. The drawback of this simple solution is that it does not

guarantee that the cumulative energy up to order O contains a proportion (ε)

of the total energy. Fortunately, a solution exists for this problem. Theorem

7.1 proves that E(T) equals to ω0 (The 0th coe�cient). Thus total energy can

be computed e�ciently, without having to enumerate all coe�cients in the

spectrum.

Theorem 7.1 The total spectral energy E =
∑

j ω
2
j = ω0, where ω0 denotes

the coe�cient with order 0, which is easily computed as its Fourier basis func-

tion is unity.

Proof Induction is used for the proof. The case when the number of at-

tributes in the tree is 1 is proved �rst. Suppose that there are c classes in

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 164

total. Without loss of generality, a binary tree can be used for classi�cation

with x1 as input and a classi�cation of 0 if x1 = 0 and 1 otherwise. If the class

outcome is not 0 then the binary tree is simply reused with x1 to obtain a

result. If the 0 class outcome was obtained after n iterations (n ≤ c) then the

class outcome can be deduced as n. This means that a single binary tree is

su�cient. For this binary tree ω0 = 1
2
and

∑
j ω

2
j = 1

2
, thus giving ω0 =

∑
j ω

2
j

and proving the theorem when the number of attributes is 1.

Now it is assumed that the theorem is true when the number of attributes is

k. This means that for any tree Ti with k attributes x0, x1, · · · , xk−1, thus,

E(Ti) = ω0
Ti (7.4)

λk sub-trees of a larger tree LT with an additional (new) attribute xk as the

root attribute is considered, where λk is the cardinality of the new attribute xk

For any Ti, E(Ti) =
∑λi−1

p=0 E(Ti)p as the energy of any given tree is sim-

ply the sum of the energies along each of its path vectors p. For tree LT

with k + 1 attributes, each of its constituent sub-trees Ti will contribute a

proportion λi
λk

to the total energy of tree LT . Thus:

E(LT)i =
λi
λk
E(Ti) (7.5)

After sub-trees T0, T1, · · · , Tk−1 are combined into LT , the following must be

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 165

true,

E(T) = E(LT)0 + E(LT)1 + · · ·+ E(LT)k−1

=
(λ0
λk

)
E(T0) +

(λ1
λk

)
E(T1) + · · ·+

(λk−1
λk

)
E(Tλk−1) from eq 7.5

=
(λ0
λk

)
ωT00 +

(λ1
λk

)
ωT10 + · · ·+

(λk−1
λk

)
ω
Tλk−1

0 from eq 7.4

=

∑
fT0 +

∑
fT1 + · · ·+

∑
f
Tλk−1

λk
as∑

fT−i as the classi�cationsum is λiω
T−i
i

= ωLT0 as ωLT0 is the sum of the classi�cation over

all paths dividedby the cardinality λk

This optimization signi�cantly increased processing speed in the preliminary

experiments, especially when a large number of attributes were present in the

data stream.

The next optimization is applied on the inner product calculation. The

Fourier Basis function calculation is optimized ((−1)j.x) in equation 6.1 in

Chapter 6 especially when wild card characters are present in path vector x.

The following optimization shows a strategy to directly calculate the Fourier

basis function, not the inner product itself.

7.2.3 Optimizing the Computation of the Fourier Basis

Function

The computation of a Fourier basis function for a given partition j in generic

n− ary (n ≥ 2) domain is given by:∑
x∈S

(ψj(x)) =
∑
x∈S

∏
m

exp
2πijmxm

λm (7.6)

Thus, it can be seen from 7.6 that the computation of
∑

x∈S ψ(j) over a set of

schema S requires the computation of an expensive inner product operation

between the x and j. However, it is possible to optimize this inner product

computation as de�ned in Theorem 7.2.

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 166

Theorem 7.2 The computation of
∑

x∈S ψj(x) can be optimized as follows:

� Case 1: If there exists at least one (p, ∗) combinations with p ∈ j,

p 6= 0 and ∗ a wildcard character de�ning a set of schema S, then∑
x∈S ψj(x) = 0.

� Case 2: else if there exists n combinations of (0, ∗) pairs in the j and x

vectors respectively, then

∑
x∈S

ψj(x) = λ

λk−1∏
k=n

exp
2πijkxk
λk where λ =

∏n−1
l=0 λl

Proof For case 1, the result is proved when exactly one such combination ex-

ists and the extension to the case when more than one combination is present

is discussed. Without loss of generality, the proof is illustrated when the wild

card characters occur at the beginning of vector x; if they occur in any other

position, then a simple reordering operation can be used without a�ecting the

validity of the proof.

Suppose that the cardinality of the attributes after reordering are λi where

i ∈ [0, d− 1], where d is the dimensionality of the dataset.

∑
x∈S

ψj(x) = exp
(2πij00

λ0

)
× exp

(2πij1x1
λ1

)
× · · · × exp

(2πijd−1xd−1
λd−1

)
+ exp

(2πij01
λ0

)
× exp

(2πij1x1
λ1

)
× · · · × exp

(2πijd−1xd−1
λd−1

)
...

+ exp
(2πij0(λ0 − 1)

λ0

)
× exp

(2πij1x1
λ1

)
× · · · × exp

(2πijd−1xd−1
λd−1

)
= exp

(2πij1x1
λ1

)
× · · · × exp

(2πijd−1xd−1
λd−1

) λ0−1∑
k=0

(
exp
(2πij0k

λ0

))

= exp
(2πij1x1

λ1

)
× · · · × exp

(2πijd−1xd−1
λd−1

) λ0−1∑
k=0

(
ψoψk

)
as ψ0 = 1

= 0 due to orthogonality of the Fourier basis functions

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 167

When n wild cards are present, the extension is straightforward and results

in:

∑
x∈S

ψj(x) = exp
(2πijnxn

λn

)
× · · · × exp

(2πijd−1xd−1
λd−1

) n−1∏
l=0

λl−1∑
k=0

(
exp
(2πijlk

λl

))
(7.7)

∑
x∈S

ψj(x) = exp
(2πijnxn

λn

)
× · · · × exp

(2πijd−1xd−1
λd−1

) n−1∏
l=0

λl−1∑
k=0

(
ψ0ψk

)
(7.8)

The value of Case 1 is that a simple scan of the j and x vectors will save a

total of d multiplications and d− 1 additions.

Now Case 2 is considered.

For convenience of proof, a re-ordering operation is performed to bring all

the n (0, ∗) pairs to the beginning, just as with Case 1. Following expression

(7.8), thus,

∑
x∈S

ψj(x) = exp
(2πijnxn

λn

)
× · · · × exp

(2πijd−1xd−1
λd−1

) n−1∏
l=0

λl−1∑
k=0

exp
(2πijn0

λk

)
(7.9)

= exp
(2πijnxn

λn

)
× · · · × exp

(2πijd−1xd−1
λd−1

) n−1∏
l=0

λl

as each summation term i in equation 7.9 reduces to 1 Since
∏

l λl is a constant

for all possible values of j and y, the value of Case 2 is that a scan of the two

vectors will avoid the overhead of n multiplications and n− 1 additions.

7.2.4 Localized Approach to Ensemble Learning in the

Fourier Domain

In order to realize the full bene�ts of ensemble learning in the Fourier do-

main, individual spectra that represent di�erent concepts which manifest at

di�erent points in the stream are aggregated. The aggregation operation is

7.2. Exploitation of the Fourier Transform for Recurrent Concept
Capture 168

straightforward, as described in section 7.1.1.

sc(x) =
∑
i

Ai
∑
i

si(x) =
∑
i

Ai
∑
j∈Pi

ωj
(i)ψj(x) (7.10)

where sc(x) denotes the ensemble spectrum produced from the individual spec-

tra si(x) produced at di�erent points i in the stream; Ai is the classi�cation

accuracy of its corresponding spectrum and Pi is the set of partitions for non

zero coe�cients in spectrum si.

Park in [Byung-Hoon 2001] used ensemble learning with Fourier spectra in

a di�erent setting to this research. They considered a distributed system with

each node i producing its own spectrum si(x) with aggregation taking place

at a central node. In a data stream environment setting, all spectra are not

present in advance but the same principle can be used due to the distributive

nature of the linear weighted sum expressed by (7.10). Hence:

s(i+1)
c (x) = s(i)c (x) + Ai+1si+1(x) (7.11)

where s(i+1)
c (x), s(i)c represent the ensemble spectra at concept change points

i + 1 and i respectively in the stream and si+1(x) is the spectrum produced

at change point i+ 1 with accuracy Ai+1.

The expression (7.11) is used for implementing ensemble learning but with

one essential di�erence. A direct application of (7.11) using the entire (global)

set of attributes G comprising the dataset would be ine�cient. As there are

exponential number of coe�cients with respect to the number of attributes

present in the stream, this would be a bottleneck in high dimensional envi-

ronments. One practical solution is to populate the spectrum only using the

attributes present in a given decision tree. The major advantage of this ap-

proach is smaller computational overhead as the Fourier computational e�ort

is directly proportional to the size of the attribute set used. Then this initial

spectrum can be extended to a full length spectrum containing the attributes

that are absent in the given tree, using a simple transformation scheme.

7.3. Experimental Study 169

An attribute set of a Decision Tree is de�ned as that subset of attributes

which de�ne splits in the tree. Suppose that the spectra from decision trees

D1 and D2 having attribute sets L and M respectively are integrated. The

DFT is applied on D1 to obtain S1 using only the attributes in its attribute

set L and not all attributes in G. SimilarlyS2 is generated from D2 using only

the attributes de�ned in M .

Now, in order to integrate S1 with S2 the di�erences in the attribute sets

L and M are needed to be accounted for. To do this, S1 is taken and expand

the spectrum by incorporating attributes in the set M \ L. The expansion is

de�ned by a single operation:

For each schema instance in the spectrum (say S1) expand the spectrum by

adding 0 to all attribute index positions in setM\L. The coe�cient value after

expansion will remain the same as the classi�cation f value for all of these

added index positions remains unchanged. Now the two spectra produced

from their own localized set of attributes can be integrated. Essentially, this

means that this is a more e�cient method of implementing ensemble learning

using expression (7.11). The next section presents the empirical outcomes of

the proposed model with the above mentioned three optimizations.

7.3 Experimental Study

The main focus of the study is to assess the e�ectiveness of the ensemble EP

approach vis-a-vis FCT in respect of accuracy, memory consumption, process-

ing speed, and tolerance to noise.

7.3.1 Parameter Values

All experimentation was done with the following default parameter values:

� Hoe�ding Tree Default Parameters

7.3. Experimental Study 170

� The desired probability of choosing the correct split attribute=0.99

� Tie Threshold=0.01

� Growth check interval=32

� Tree Forest Default Parameter Values

� Maximum Node Count=5000

� Maximum Number of Hoe�ding Trees=50

� Fourier Pool Default Parameter Values

� Accuracy Tie Threshold τ=0.01 which is the minimum accuracy

di�erence between a new candidate Fourier Tree and any existing

Fourier Tree in the Fourier pool

� Maximum Fourier/Ensemble Trees = 3

� Similarity Threshold = 30% (for EP)

� Fourier Tree Default Parameter Values

� Energy Threshold = 80%

� ADWIN Default Paramater Values

� drift signi�cance value=0.01

� warning signi�cance value=0.3 (MetaCT only)

All experiments were done on the same software with C# .net runtime and

hardware with Intel i5 CPU and 8GB RAM, with a memory �ush at each run

in order to have a fair comparison.

7.3. Experimental Study 171

7.3.2 Datasets used for the experimental study

The experimentation has been done with 3 synthetic data generators com-

monly used in change detection and recurrent concept mining, namely SEA,

RBF and Rotating hyperplane generators. The same data generators were

used in the previous chapter as well. All synthetic datasets were gener-

ated within the MOA data stream tool [Bifet 2010b]. Please refer Chapter

6 for more details on the data generation process. The di�erence between the

datasets used in Chapter 6 and this Chapter is the method by which multiple

concepts are concatenated together. The target environment of the experi-

mentation to evaluate aggregation is a highly volatile environment. Therefore

10 di�erent concepts were generated using RBF and Rotating Hyperplane

data generators, each of which spanned 5,000 instances and each occurred a

total of 3 times at di�erent points in the stream. SEA generator is designed

to create 4 concepts only, therefore, SEA data set has been limited only to

4 concepts. In order to challenge the concept recognition process, 10% noise

was added for all synthetic data sets to ensure that concepts recur in similar,

but not exact form.

Each of those 10 concepts has been generated by adjusting one in�uential

parameter of each data generator. 10%, 20% and 30% random noise have been

added to the entire dataset to produce each noisy dataset. Noisy datasets play

two roles. It simulates a real world data stream in addition to being a similar

(but not exact) reproduction of the original concept. The details of parameters

adjusted are given below:

� SEA [Street 2001]: The concepts are de�ned by the function feature1+

feature2 > threshold. The concepts are ordered as concept1, concept2,

concept3 and concept4 generated using threshold values 8,7,9 and 9.5

respectively on the �rst data segment of size 20,000. Three recurrences

of a modi�ed form of these concepts were generated by using di�erent

7.3. Experimental Study 172

seed values in MOA for each sequence of recurrence.

� RBF: The number of centroids parameter was adjusted to generate

di�erent concepts for the RBF dataset. Concept1... 10 were produced

with the number of changeing centroids set to 5, 10, 15, 20, 25, 30, 35,

40, 45 and 50 respectively and the total number of centroids was set to

50. Each of the 10 concepts was repeated three times.

� The number of changing attributes was set to 2 and sigma percentage

was adjusted to 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 in a 10

dimensional dataset to create the four concepts.

7.3.2.1 Real World datasets

1. Spam Data Set: The Spam dataset was used in it original form 1 which

encapsulates an evolution of Spam messages. There are 9,324 instances

and 499 informative attributes.

2. Electricity Data Set: NSW Electricity dataset is also used in its original

form 2. There are two classes Up and Down that indicate the change of

price with respect to the moving average of the prices in last 24 hours.

The next section describes the three models that were used to evaluate

the e�ectiveness of ensemble (aggregated) approach over single Fourier Trees

(Fourier Spectra). All three models were evaluated on the above �ve datasets.

7.3.3 Models used in empirical study

The experiments included two aggregation based models and a non-aggregation

approach. FCT, the proposed approach in Chapter 6 is one of the chosen and

it is based on a non-aggregation strategy. Two di�erent aggregation methods
1from http://www.liaad.up.pt/kdus/products/datasets-for-concept-change
2from http://moa.cms.waikato.ac.nz/datasets/

7.3. Experimental Study 173

were tested using Algorithm 7.1 as the base. One method, namely EPa that

aggregates similar performing classi�ers based on the accuracy values whereas

the other method, EP focuses on structural aggregation.

The hypothesis behind EPa is that the aggregation of similar performing

spectra produces better spectra in terms of performance and memory. As long

as enough space for a new ensemble tree is available in Fourier Pool, aggrega-

tion is strictly carried out between the best ensemble and new Fourier Spectra

if and only if an accuracy tie threshold is satis�ed. Please refer Algorithm 7.2.

EP performs aggregation on the basis of structural similarity. Structural

similarity can be indirectly checked by comparing classi�cations (not depen-

dent on whether classi�cation is correct or not) of an ensemble and a new

Fourier spectrum for a given set of data instances. Algorithm 7.1 incremen-

tally increases a counter at each of the ensemble classi�er in the pool if its

classi�cation matches that of current winner tree in the forest. This can be

done with an instance bu�er that gathers data instances from the beginning

of a concept, but it will be memory and computationally intensive. Therefore,

counters are updated as each ensemble processes each instance of the current

concept. This is a memory-less operation as opposed to a bu�er based strategy

and is computationally inexpensive.

Comparison of EPa and EP against FCT reveals the contribution of ag-

gregation in a recurring concept data stream whereas the comparison between

EPa and EP helps analyze the in�uence of di�erent aggregation methods.

7.3.4 Comparative Study : FCT Vs EPa Vs EP

The focus here is on a comparative study of the Ensemble versus single spec-

trum approach. With this in mind, three types of experiments have been

designed to study the impact of aggregation of spectra via an ensemble.

Firstly, the e�ects of constraining the number of objects that could be

7.3. Experimental Study 174

stored in the repository are investigated. In a highly volatile real world stream

where new concepts emerge very often, a limited number of concepts can be

accommodated in a repository and so the purpose was to assess classi�cation

accuracy against repository pool size for each approach.

Secondly, the e�ects of noise on accuracy is studied. Noise is an integral

part of any real world data stream and as the level of noise increases, concepts

will increasingly deviate from their original form. A robust mechanism is then

needed to recognize partial recurrence of concepts. The hypothesis here is that

ensemble spectra are better equipped to handle partial recurrences.

Thirdly, the e�ects of the energy thresholding level are investigated. As

the threshold is increased, accuracy is expected to increase as spectra contain

more coe�cients, thus improving the chances of reproducing classi�cation

decisions made by the original decision tree. However it is hypothesized that

the ensemble approach will have better resilience than FCT at low energy levels

due to di�erent spectra complementing each other.

7.3.5 E�ects of Pool Size

In this experiment, the e�ects of a highly volatile stream are simulated by

constraining the number of objects that could be stored in the repository. In

terms of the EP method, the number of objects correspond to the number

of ensemble spectra whereas with FCT it refers to the number of individual

spectra. The object sizes used were 3, 5 and 10 and for each size and the

classi�cation accuracy for all 5 datasets were recorded with the progression of

the stream.

At size 3, memory is severely limited as 10 concepts are present in the

stream. This limitation is felt more severely by FCT as at a given concept

recurrence point, it has on the average 3
10

probability of having the correct

concept stored in its repository. Thus on the average (assuming uniform priors

7.3. Experimental Study 175

for concept recurrence) 7
10

of the time it will need to rely on trees in active

memory for classi�cation. The drawback of using such trees is that they may

not be suited to the current concept until such trees have adapted to the new

concept, which will take time as su�cient number of training samples will

need to be gathered. EP, on the other hand does not su�er from this problem

to the same extent as FCT does as the concept (along with others) will be

embedded in one or more of the 3 ensembles especially when the threshold to

�nd the best matching pair of Fourier Spectra is slightly relaxed.

In a highly volatile high speed environment, the disparity between EP and

FCT will be much larger than with the experimentation carried out here as

the probability of a cache hit in the repository for FCT will in general be of

the order of N
M

where N is the size of the repository and M is the number of

concepts that can recur at a given point in time. In practice, M � N , thus

favoring EP over FCT.

7.3. Experimental Study 176

Figure 7.4: Accuracy Pro�le of FCT, EPa and EP on RBF dataset for pool

sizes 3,5 and 10

7.3. Experimental Study 177

Figure 7.5: Accuracy Pro�le of FCT, EPa and EP on Rotating Hyperplane

dataset for pool sizes 3,5 and 10

7.3. Experimental Study 178

Figure 7.6: Accuracy Pro�le of FCT, EPa and EP on NSW Electricity dataset

for pool sizes 3,5 and 10

Figures 7.4, 7.5 and 7.6 trace the behavior of the two ensemble methods

EPa and EP against FCT for each of the 3 pool sizes 3, 5 and 10. Accuracy

values have been recorded on a per instance basis. In addition, ADWIN's esti-

mation referring to the accuracy over the current concept has been monitored

and shown in the graphs. Therefore, these values are free from any history ef-

fect of past concepts. Accuracy pro�le on RBF dataset is shown 100K to 150K

which is the period of third round of occurrence of all 10 concepts. For the

Rotating Hyperplane dataset, the trajectory of accuracy was tracked across a

concept recurrence period spanning instances 50K to around 100K. This pe-

7.3. Experimental Study 179

riod spanned the second round of occurrence of the 10 concepts injected into

the dataset. For the Electricity dataset the data segment spanning instances

28K to around 38K has been tracked.

Although experimentation was done on the other 2 datasets, selected data

segments for only 3 algorithms are presented because of interesting contrasts

and insights. The performance on the other two datasets were similar to

the selected ones or did not show any signi�cant di�erence among the three

algorithms. Please refer Appendix C for the results on the other datasets.

First of all, it could be noted that the other two datasets presented in

Figures 7.4, 7.5 and 7.6 have very contrasting volatility pro�les compared to

Electricity. The Electricity dataset is highly volatile as evident from Fig 7.6.

For the same size of data segment, accuracies of all algorithms with all pool

sizes on RBF dataset did not �uctuate as much as on Rotating Hyperplane.

This is due to the nature of the data streams generated by these generators.

There is a very clear pattern on RBF dataset. EP is superior most of the

time over all 10 concepts. EPa, the accuracy based aggregation method fails at

a number of instances to reuse or even relearn concepts. EP had very similar

accuracy values for any pool size values whereas FCT lost in its competition

to EP especially when pool size is three. This is an evidence that aggregated

ensembles remembers history well even memory is very limited.

The Rotating Hyperplane dataset did not show high contrast as with the

RBF dataset. Accuracy values �uctuated more frequently than that of RBF.

In general, it can be observed from the graphs in Fig 7.5 that the di�erences

between EP and FCT decreases for pool size=3. FCT did not su�er from a

large drop in accuracy as seen in RBF dataset.

However, with the Electricity dataset the trend is very di�erent. Again the

trend seen on RBF dataset is clear on Electricity dataset. FCT slightly out-

performs when it has more memory to remember past models on Electricity

dataset whereas it loses its classi�cation power in a memory constrained envi-

7.3. Experimental Study 180

ronment. This illustrates the essential di�erence between the two approaches:

as expected, an ensemble provides stability in periods of concept change or

noise in the stream. For FCT to gain the degree of stability that EP attains

it would need to use a larger pool size (10 for this dataset). In a memory-

challenged highly volatile environment FCT is less likely to be able to a�ord

the use of additional memory.

Figure 7.7: Accuracy pro�le comparison of FCT, EPa and EP by algorithm

for pool sizes 3,5 and 10 on rotating hyperplane dataset

7.3. Experimental Study 181

Figure 7.8: Accuracy pro�les of FCT, EPa and EP by algorithm for pool sizes

3,5 and 10 on NSW Electricity dataset

Figures 7.7 and 7.8 show the accuracy comparison by algorithm for the pool

sizes of 3,5 and 10. Accuracy on rotating hyperplane and NSW Electricity

datasets are only shown in the Figures 7.7 and 7.8 due to interesting and

contrasting characteristics.

The Electricity dataset is highly volatile as evident from Figure 7.8. This

makes the comparison interesting as it provides empirical evidence for the

research premise that ensemble spectra can cope better with volatile data

streams. To characterize volatility, the regions where a near vertical drop in

7.3. Experimental Study 182

accuracy occurs (as shown in annotations on the graph) are identi�ed. For

the less volatile Rotating Hyperplane dataset, the number of volatility shifts

for both EP and FCT at pool size of 3 is small with no signi�cant di�erence

in number between the two approaches. However, with the Electricity dataset

the trend is very di�erent. For FCT, the number at pool size 3 is more

than double the corresponding number for EP. This illustrates the essential

di�erence between the two approaches: as expected, an ensemble provides

stability in periods of concept change or noise in the stream. For FCT to gain

the degree of stability that EP attains, it would need to use a larger pool size

(10 for this dataset). In a memory challenged highly volatile environment,

FCT is less likely to be able to a�ord the use of additional memory. EP is

more resilient at small pool sizes as any given concept that recurs can be

approximated by a linear combination of spectra embedded in the ensemble,

just as a waveform of arbitrary shape can be approximated by a large enough

sum of sine or cosine functions in signal processing.

Based on empirical evidence from the pool size adjustment experiments,

EP is more resilient at small pool sizes as any given concept that recurs can be

approximated by a linear combination of spectra embedded in the ensemble,

just as a waveform of arbitrary shape can be approximated by a large enough

sum of sine or cosine functions in signal processing.

7.3.6 E�ects of Noise

Having established the di�erence in behavior of the approaches at the base

10% noise level, the next interest was in the degree of resilience at the higher

noise levels of 20% and 30%. Realistically, expectations cannot be high at the

30% level, as even for a two class problem (Electricity), one would expect the

signal to be buried in noise at certain points in the stream. However, if the

average accuracy across the stream did not drop in proportion to the added

7.3. Experimental Study 183

noise level of 20%, then the performance can be judged as good.

The experiments were with the default parameters on the datasets with

randomly injected noise. It should be noted that the initial percentage of

noise in Electricity and Spam datasets are unknown. Therefore, adding extra

noise may have a severe impact than seen on synthetic dataset.

Figure 7.9: Noise resilience of FCT, EPa and EP on noisy RBF datasets

7.3. Experimental Study 184

Figure 7.10: Noise resilience of FCT, EPa and EP on noisy NSW Electricity

datasets

7.3. Experimental Study 185

Figure 7.11: Noise resilience of FCT, EPa and EP on noisy Rotaing Hyper-

plane datasets

7.3. Experimental Study 186

Figure 7.12: Noise resilience of FCT, EPa and EP on noisy SEA datasets

Figures 7.9, 7.10, 7.11 and 7.12 show a general trend as expected. There

is a decrease in accuracy as more noise is added to a dataset. Interestingly,

aggregation based methods EP and EPa have noticeable regions where there

is a higher accuracy on 30% noise over 20% noisy dataset. This can be seen

in the �gures 7.10, 7.11, 7.9 clearly. FCT easily loses its classi�cation power

as the noise percentage increases as seen on all graphs.

7.3.7 E�ects of Spectral Energy Thresholding

In this experiment, Spectral Energy has been thresholded at energy levels

40%, 60% and 80% and the accuracy of EP is compared with that of FCT.

7.3. Experimental Study 187

EPa has been excluded due to its poor performance in previous experiment.

Figure 7.13: Accuracy pro�le of FCT, EPa and EP for various levels of energy

thresholding on RBF dataset

7.3. Experimental Study 188

Figure 7.14: Accuracy pro�le of FCT, EPa and EP for various levels of energy

thresholding on NSW Electricity dataset

Figure 7.13 and 7.14 show the di�erence in accuracy for a number of energy

threshold values. In general, the noticeable trend is that the accuracy is higher

at 80% energy threshold. At the same time the performance at 40% energy is

also competitive in many segments of the data streams.

Out of the three algorithms, EP had many regions with higher or equal

accuracy at 40% compared to that of 80%. This trend repeated across all

datasets that were experimented with. At low energy levels, individual spectra

will be generated from shallow decision trees with di�erent root attributes.

This situation is then analogous to better accuracy obtained by bagging a

collection of small decision trees (such as decision stumps) in contrast to a

7.3. Experimental Study 189

single large tree that may over-�t the current concept.

Also,from a pair-wise comparison between the accuracy pro�les at the 40%

spectra between the two approaches, it is quite evident that EP outperformed

FCT on RBF dataset. There was a 1.3% increase in accuracy on RBF dataset

in the region 100K to 150K where concept recurrences were in place for the

third time. At the same time, the accuracy of EP was signi�cantly higher in

the region 100K to 107K for 40% energy threshold. This supports the hypoth-

esis the ensemble approach has better resilience than FCT at low energy levels

due to di�erent spectra complementing each other. For Electricity dataset,

there was a decrease in accuracy in the region 28K to 38K though there are

many short regions (32.3K to 33K, 33.3K to 34.4K) where EP had steady or

higher accuracy than that of FCT.

Please refer Appendix C for the graphs on Rotating Hyperplane dataset

for various energy levels.

7.3.8 E�ects of Structural Similarity Threshold

The impact of structural similarity threshold that controls aggregability of two

Fourier spectra. The lower the value of this parameter, the higher the tendency

for aggregation. Very low values cause very di�erent spectra to be merged

together. This could lead to the pollution of the concept representation kept

by spectra in the aggregated form. High values discourage aggregation, thus

producing model representations similar to that of FCT presented in Chapter

6. Therefore, it is interesting to study what values are best for which datasets.

In general, a moderate value between 30% and 80% is recommended. The

experiments conducted to analyse the impact of this parameter consist of

three threshold values 30%, 50% and 70%.

7.3. Experimental Study 190

Figure 7.15: Accuracy pro�les of EP for the structural similarity threshold

values 30%, 50% and 70%

For the Rotating Hyperplane and NSW Electricity datasets, slightly better

accuracy is observed for threshold values of 50% and 70%. On average, taken

across the full length of Rotating Hyperplane dataset, there is around a 1%

and 0.7% increase in accuracy for 50% and 70% threshold values respectively

compared to that of the threshold value of 30%. Electricity dataset has 1.1%

and 1.3% increase in accuracy for the structural similarity values 50% and 70%

in comparison to 30%. For the RBF dataset, no di�erence has been observed

between the values 30% and 50% for the structural similarity threshold. There

7.3. Experimental Study 191

is a marginal decrease of 0.6% in accuracy found for 70% similarity threshold

compared to the 30% one.

This experiment does not show a very signi�cant impact of structural

similarity threshold on average though there are short intervals of accuracy

gain or decrease depending on the dataset. RBF dataset is an evidence that

supports the hypothesis Accuracy gain for larger values for a given dataset

indicates that the concepts present in the dataset are polluted by inappropriate

aggregation.

7.3.9 Memory

The experimentation on accuracy has revealed, especially in the case of EP,

concept re-use has the potential in improving accuracy. The research reported

in Chapter 6 showed that Fourier spectra consume a small fraction of the

memory used by trees kept in active memory; thus the focus in this study

is to compare the performance of EP vis-a-vis FCT in terms of their spectra

memory usage.

Average memory consumption has been measured in bytes per instance

basis across the stream for each method and for each dataset. Tables 7.1, 7.2

and 7.3 show the raw memory values consumed by each algorithm for di�erent

pool sizes. Lower pool sizes arti�cially force the algorithms to consume limited

memory whereas high values would show the true contrast in consumption.

Table 7.1 and 7.3 clearly show that EP uses memory more e�ciently than FCT

as EP starts o� at a lower base usage at pool size of 3 and the percentage

di�erence is always in favor of EP (with on exception for the RBF dataset;

the SEA dataset produced a compact spectrum which never grew for both

approaches). In a very high dimensional dataset like Spam that has 499

attributes, EP consumes 36% less memory compared to FCT. For a larger

pool size value of 20, the clear winner is EP which takes 30% less average

7.3. Experimental Study 192

memory over all datasets compared to FCT. EP's memory consumption is

57% less than that of FCT on the high dimensional Spam dataset. Similar

trends are found for the pool sizes 5 and 10. Furthermore the percentage

di�erences widens at the larger pool sizes.

Percentage increases for a given algorithm are always lower at pool sizes

of 5 and 10 whichever dataset is considered (the exception is SEA which

did not increase for both algorithms). Thus it is evident that EP's memory

consumption scales better than that of FCT. This is to be expected as, for a

given pool size, EP will, in general, be more economical as it combines spectra

with many coe�cients in common, whereas for FCT every di�erent spectrum

having the same coe�cient will require its own storage.

As noted in the experiments on accuracy, EP often acquires the same or

higher accuracy at lower pool sizes and this further increases the disparity

in memory consumption of EP vis-a-vis FCT. This proves the hypothesis the

aggregation of similar performing spectra produces better spectra in terms of

performance and memory.

Dataset 3 5 10 20

Forest Pool Forest Pool Forest Pool Forest Pool

rbf 82.6 13.9 81.7 17.2 81.7 17.2 81.7 17.2

rh 113.6 14.5 120.6 18.8 109.9 29.2 111.5 47.3

sea 18.0 0.4 18.0 0.4 18.0 0.4 18.0 0.4

electricity 49.6 19.6 46.3 24.1 46.1 31.4 46.1 41.2

spam 35103.2 22.6 35103.2 29.0 35218.3 33.4 35218.3 33.4

Table 7.1: Raw memory values consumed (in KBs) by FCT on all �ve datasets

for pool sizes 3,5,10 and 20. As FCT has a forest of tree and a Fourier

pool, memory consumption is divided into two columns for each pool size

experimented.

7.3. Experimental Study 193

Dataset 3 5 10 20

Forest Pool Forest Pool Forest Pool Forest Pool

rbf 106.3 12.9 107.4 16.2 106.6 18.9 106.6 18.9

rh 145.7 13.7 144.3 18.2 152.4 28.2 152.5 40.2

sea 18.0 0.4 17.6 0.4 18.0 0.4 18.0 0.4

electricity 58.1 12.6 63.9 17.2 60.9 25.3 59.6 29.3

spam 37075.0 20.3 37736.7 26.5 37316.2 32.4 37316.2 32.4

Table 7.2: Raw memory values consumed (in KBs) by EPa on all �ve datasets

for pool sizes 3,5,10 and 20. As EPa has a forest of tree and a Fourier pool,

memory consumption is divided into two columns for each pool size experi-

mented.

Dataset 3 5 10 20

Forest Pool Forest Pool Forest Pool Forest Pool

rbf 94.8 13.9 94.7 14.4 94.7 14.4 94.7 14.4

rh 121.0 13.3 113.8 17.7 116.5 25.8 115.8 35.0

sea 18.1 0.4 18.1 0.4 18.1 0.4 18.1 0.4

electricity 51.6 12.8 50.6 16.3 51.7 19.6 51.7 19.6

spam 35163.9 14.3 35163.9 14.3 35163.9 14.3 35163.9 14.3

Table 7.3: Raw memory values consumed (in KBs) by EP on all �ve datasets

for pool sizes 3,5,10 and 20. As EP has a forest of tree and a Fourier pool,

memory consumption is divided into two columns for each pool size experi-

mented.

7.3. Experimental Study 194

7.3.10 Processing Speed

Scalability in terms of processing speed has also been measured. This is

an important metric to cope with the speed of instances in high speed data

stream. The average processing speed was measured by sampling the stream

on a per instance basis and by counting the number of instances processed

per second and then averaging the speed. The processing speed was tracked

for all pool sizes for each approach.

Dataset 3 5 10 20

rbf 6669.3 6991.3 6739.4 6998.9

rh 5828.2 5778.1 5627.7 5292.6

sea 59939.2 59051.8 59871.9 58149.8

electricity 10036.8 9803.1 9156.7 8680.8

spam 1.5 1.4 1.4 1.4

Table 7.4: Processing speed of FCT for the pool sizes 3, 5, 10 and 20 is shown

in this table. It is measured as number of instances processed per second

Dataset 3 5 10 20

rbf 6298.7 6737.0 6732.0 6468.6

rh 5458.9 5212.1 4954.2 4742.1

sea 58816.2 59034.0 59606.0 57547.9

electricity 9889.3 9104.3 8482.7 8538.4

spam 1.4 1.4 1.3 1.4

Table 7.5: Processing speed of EPa for the pool sizes 3, 5, 10 and 20 is shown

in this table. It is measured as number of instances processed per second

7.3. Experimental Study 195

Dataset 3 5 10 20

rbf 6433.6 6726.4 6615.8 6778.1

rh 5990.2 5766.7 5590.5 5466.4

sea 59561.6 58446.4 60566.2 60686.9

electricity 10197.0 9796.2 9691.6 9493.6

spam 1.5 1.4 1.5 1.3

Table 7.6: Processing speed of EP for the pool sizes 3, 5, 10 and 20 is shown

in this table. It is measured as number of instances processed per second

Based on the Tables 7.4, 7.5 and 7.6, it can be observed that processing

speed does not vary by a large amount for various pool sizes. When there are

many classi�ers in memory, instance routing and classi�cation slows down the

speed of processing.

EPa is found to be having the highest processing speed in general over

all datasets. Compared to FCT, EP takes lesser time to process instances

based on the values in the above tables. At each concept change point FCT

will require more computational overhead than EP as it needs to poll a larger

number of objects in the repository to identify whether the best performing

active tree is better or not than existing classi�ers (spectra) in the repository.

It has been noted from execution logs that FCT had more objects in its

repository (for a given pool size FCT tended to �ll its pool, whereas EP did

not have to make use of all slots available). In addition, as each instance is

routed to all classi�ers, FCT needs higher processing time than EP due to the

higher count of classi�ers.

Therefore, it is evident that aggregated ensembles are faster than single

Fourier trees.

In conclusion, aggregated ensemble based methods are memory e�cient

while achieving competitive accuracy to a single classi�er. The decrease in

7.4. Empirical Study on EP with SeqDrift2 Change Detector 196

memory and processing time are signi�cant especially in high dimensional

data streams.

7.4 Empirical Study on EP with SeqDrift2 Change

Detector

This section analyzes the impact of a change detector on EP. Two versions of

EP have been tested on all datasets used in the previous section. The �rst ver-

sion is the default FCT with ADWIN change detector namely FCT+ADWIN.

The second is FCT with seqdrift2, namely FCT+seqdrift2. The seqdrift2 de-

tector has lower false positive rate than ADWIN. Therefore, it could be ex-

pected that EP+seqdrift2 has lesser �uctuations over stable data segments.

The results for accuracy evaluation includes all datasets.

The experiments did not involve any parameter adjustments. The default

parameter values were chosen as the objective of this study is simply to assess

the e�ect of replacing ADWIN with SeqDrift2.

7.4. Empirical Study on EP with SeqDrift2 Change Detector 197

Figure 7.16: Accuracy comparison between EP+ADWIN and EP+seqdrift2

on all datasets

7.4. Empirical Study on EP with SeqDrift2 Change Detector 198

Similar to FCT+seqdrift2 in Chapter 6, EP+seqdrift2 also maintains its

capability of being more stable as opposed to its counterpart EP+ADWIN.

This is empirically shown in Figure 7.16 on all datasets. In addition to being

more stable, it has higher accuracy over EP+ADWIN on RBF and Electricity

datasets.

The same explanation holds for EP+seqdrift2 as FCT+seqdrift2 in Chap-

ter 6 for its stability and higher accuracy. This result is due to the lower false

positive rate of seqdrift2 change detector when compared to ADWIN. Low

false positive rate helps keep the most appropriate classi�er/ensemble as the

winner until actual concept change occurs. False alarms trigger unnecessary

archiving of current winner classi�er into pool. This introduces �uctuations

in accuracy.

7.4.1 Processing Speed and Memory Comparison

Table 7.7 contains the average memory consumption and processing speed

values taken in per instance basis.

The main observation with respect to memory is that EP+seqdrift2 has

compact pool compared to that of EP+ADWIN. Less false positive rate of

seqdrift2 means less insertions of new Fourier Trees into the pool, thus less

aggregation. This has resulted in smaller Fourier trees in EP+seqdrift2 model.

EP+seqdrift2 has advantage on high speed data streams with its higher

processing speed compared to EP+ADWIN. Inherently, seqdrift2 is faster than

ADWIN. Moreover, the lower false positive rate also contributed to a lower

processing time.

7.5. Summary 199

Datasets

Memory Memory Processing Processing

EP+ADWIN EP+seqdrift2 Speed Speed

Tree Fourier Tree Pool

Forest Pool Forest EP+ADWIN EP+seqdrift2

rbf 94.8 13.9 95.9 12.6 6433.6 6529.2

rh 121.0 13.3 120.6 13.0 5990.2 6201.2

sea 18.1 0.4 19.2 0.4 59561.6 60936.7

electricity 51.6 12.8 51.6 12.6 10197.0 10263.4

spam 35163.9 14.3 34954.6 14.2 1.5 1.5

Table 7.7: Average Memory Consumption (in KBs) and Processing Speed

(Instances per second) Comparison

7.5 Summary

In this Chapter, aggregation, a key property of Discrete Fourier Transform of

decision trees has been exploited in two versions of algorithms called EP and

EPa. Aggregation of classi�ers, as expected introduced stability in memory

constrained environments. This is due to the fact that with individual spectra,

memory must be freed to plant new classi�ers into the pool. This results in

loss of some useful classi�ers learned on past instances. Aggregation has the

power to remember large number of past classi�ers while at the same time

removing redundancies.

Two di�erent types of aggregation of Fourier spectra were tested on �ve

commonly used datasets with respect to accuracy, memory, noise tolerance

and processing time. EPa performs aggregation of an existing Fourier en-

semble with a Fourier Spectrum if both has similar performance. The other

algorithm EP combines the above two spectra if those are structurally similar.

A heuristic based on a memoryless and computationally inexpensive method

to check structural similarity has also been introduced.

Empirical results show that EP is more stable in its performance than FCT

as expected while consuming less memory and processing instances faster. The

7.5. Summary 200

parameters, pool size and energy threshold have also been adjusted to study

the in�uence on corresponding algorithms.

Lastly, the change detector of EP has been replaced by SeqDrift2 pro-

posed in Chapter 5 and compared with the default change detector ADWIN.

Interestingly, EP an SeqDrift2 combination is found to be generally superior

than the default EP+ADWIN combination in accuracy, memory and pro-

cessing speed aspects mainly due to lesser false positive change detections by

SeqDrift2.

Chapter 8

Case Study

8.1 Introduction

This chapter presents a speci�c case study with experimental results to further

validate the performance of the FCT and EP algorithms through an in-depth

case study. Though concept recurrence is injected on the synthetic datasets

and was thus able to trace recurrence exploitation by the algorithms, the same

could not be said of the two real world datasets used, namely Electricity and

Spam. Hence it would be of interest to validate performance against a real

world dataset whose patterns of recurrence are known in advance.

The case study that is used revolves around the motivating example sce-

nario on �ight of an aircraft that was described in Chapter 7. In a �ight,

similar environmental and �ight conditions cause sensors to produce similar

data stream segments. For example, low pressure, rainy, cloudy etc. weather

causes an aircraft to take certain well de�ned �ight actions. Similarly take o�,

climb, cruise and landing also requires similar actions to be performed each

time that they are actioned.

An aircraft could face low pressure environments a number of times dur-

ing a �ight time. If a classi�er(s) are built on a certain scenario like low

pressure and are kept in memory, those can be reused when the same environ-

mental conditions recur. This avoids relearning and the delay in responding

to environmental change. Minimum delay is crucial to prevent unfavorable

events. Aircraft like small drones may have constraints on processing power

8.2. Description of the dataset used 202

and memory. Moreover an automatic �ight system must recognize changes in

data streams autonomously in order to adapt its model. Therefore a model

that captures recurrences in data streams and adapts itself with minimum

delay is an absolute necessity in this safety-critical scenario.

8.2 Description of the dataset used

As a case study, a dataset obtained from a �ight simulator has been selected

and analyzed by applying the algorithms proposed in this research to study

the e�ectiveness. This dataset is publicly available from this web link 1. It has

been generated with NASA's FLTz �ight simulator 2. It is available as a set

of 20 separate �les. Each �le contains the data about a single �ight with four

scenarios: take o�, climb, cruise and landing. Data is recorded every second

and a data instance is produced. Based on the requirements of an auto pilot

system, "Velocity" has been chosen as the target class based on the features

and sensor readings of an aircraft. "Velocity" is the most appropriate feature

as it needs to be adjusted in order to maintain aircraft stability during various

manoeuvres such as take o� and landing.

The dataset was formed by concatenating all 20 datasets after removing

irrelevant features such as time stamp, latitude and longitude positional co-

ordinates. The Velocity attribute was discretized into binary outcomes "UP"

or "DOWN" depending on the directional change of the moving average in a

window of size 10 data instances.

This dataset �ts an appropriate testing environment for the models pro-

posed in the following ways:

� It has four concepts generated during take o�, climb, cruise and landing.

Therefore this creates a well-de�ned concept change environment and it
1https://c3.nasa.gov/dashlink/static/media/dataset/FLTz_2.zip
2https://c3.nasa.gov/dashlink/projects/42/

8.2. Description of the dataset used 203

can be used to test the e�ectiveness of the change detectors presented

in this research.

� As 20 �ights are concatenated together, each of the above concepts re-

peats 20 times. This provides an opportunity to assess whether recur-

rences are captured and models are appropriately switched to suit the

current concept.

� As each �ight is di�erent from another, the four concepts would not

recur in similar but not exact form. This is one of the objectives of

this research. One of the hypotheses of applying the Discrete Fourier

Transform is that it results in capturing the essence of a concept without

being too speci�c to a particular concept so that it generalizes well to

similar, but not exactly recurring concepts.

� The auto pilot scenario is a time and safety critical application.Therefore,

it would be possible to evaluate how quickly the changes have been rec-

ognized and models chosen without relearning.

� This dataset closely re�ect a real life situation rather than being syn-

thetic

8.2.1 The models used for empirical study

Based on the previous analysis on all �ve datasets (refer Chapter 7), EPa

has been excluded due to its poor performance. Therefore, FCT and EP

are selected to study the impact of a single classi�er vs aggregated ensemble

approach. Moreover, the in�uence of a change detector has also been eval-

uated by replacing the default ADWIN by SeqDrift2 change detector. The

four models were named as FCT+ADWIN: the same algorithm referred to as

FCT in Chapter 6, FCT+SeqDrift2: SeqDrift2 replaces ADWIN as change

8.3. Empirical Study 204

detector, EP+ADWIN: the same algorithm referred to as EP in Chapter 7

and EP+SeqDrift2: SeqDrift2 replaces ADWIN as change detector.

8.3 Empirical Study

Empirical study has focused on the following performance metrics:

� Accuracy comparison

� Memory consumption and processing speed

� Robustness to Concept Change (Refer 8.3.4)

The last metric is de�ned in this research as novel measure that quanti�es spe-

cial performance considerations in recurrence capture. This metric is de�ned

and explained in section 8.3.4.

The above metrics were assessed in a memory constrained environment by

adjusting maximum pool size parameter for both FCT and EP in order to

assess their relative e�ectiveness against each other.

8.3.1 Accuracy Comparison

This section presents an accuracy comparison of the four algorithms exper-

imented in this research. The sensitive parameter pool size (equivalent to

maximum memory) has been adjusted to investigate its e�ects on accuracy.

8.3. Empirical Study 205

Figure 8.1: Accuracy pro�les of all four algorithms on �ight dataset for various

pool size values

Figure 8.1 shows interesting patterns embedded in the accuracy pro�les.

The data segment 20K to 25K is presented in Figure 8.1 to avoid overcrowding

of curves. Moreover, as this is the last segment of the dataset and has data

on two separate �ights, this provides an opportunity to contrast EP and FCT

on their recurrence capture capability. EP has the opportunity to improve its

ensemble by aggregating small-scale di�erences when similar concepts reap-

pear. There are a number of clear observations that can be made from Figure

8.1:

8.3. Empirical Study 206

� EP quickly adapted to changing concepts, compared to FCT when mem-

ory was constrained. This is visible on the �rst graph in Figure 8.1.

After an accuracy drop, EP+SeqDrift2 was found to be the best algo-

rithm as it regained its classi�cation power quickly for pool size = 1

when memory was at an absolute premium. With this pool size setting,

FCT must �ush an existing Fourier spectrum in order to insert a new

one into the pool. Therefore, FCT needs to relearn concepts often. Due

to aggregation, EP has an advantage as it can keep a single ensemble

containing spectra learned on many di�erent concepts. This leads to

quick adaptation.

� As pool size increases FCT's ability to adapt to changing concepts visi-

bly improved, as expected. A couple of contrasting trends are apparent.

First of all, FCT kept on generating more than 4 concept representa-

tions as Fourier Spectra in the pool even though only 4 basic concepts

were inherent in the dataset. This was re�ected in its higher accuracy

at certain data segments with pool size of 10 when compared to the pool

size of 3. This shows that FCT's generalization capability is weaker than

that of EP. On the other hand there was virtually no change in perfor-

mance between EP at levels 3 and 10, given that just 4 base concepts

exist.

� EP in general had better stability when compared to FCT. Stability

in performance was a direct result of aggregation. Aggregation helped

avoid the removal of useful classi�ers when memory is constrained.

Figure 8.1 also reveals two interesting trends with respect to the perfor-

mance of the change detectors. With the ADWIN detector sharp drops in

accuracy occurred with both FCT and EP at di�erent points in the stream.

These drops caused accuracy to dip below 50%, which for a two class prob-

lem was far from being desirable. In contrast, SeqDrift2 was stable at these

8.3. Empirical Study 207

points in the stream. In Chapter 5, it was shown that ADWIN's false positive

rate was higher than that of SeqDrift2 and false positives signaled by ADWIN

can cause existing spectra that are performing well to be switched to a new

spectrum which under performs. This problem was particularly acute at low

memory setting of pool size 1. Both algorithms under ADWIN managed to

avoid these sharp dips in accuracy at the higher pool sizes as other spectra

present in the pool were able to compensate for the loss of the incorrectly

removed spectrum. On the other hand, it was noted that both algorithms

operating under SeqDrift2 did not su�er from this problem at any pool size

setting.

At the higher memory settings, there was little to distinguish between the

two detectors, both of them supported the classi�ers equally well; each one

outperforming the other at di�erent points in the stream but overall returning

around the same average accuracy.

To quantify the contribution of recurring concept capture over other adap-

tive data mining algorithms, a number of classi�ers (the �rst 6 algorithms in

Table 8.1 in MOA software) were chosen for a comparative study. These al-

gorithms do not have a mechanism to capture recurrences but are capable of

adapting their models to suit current concepts.

8.3. Empirical Study 208

Algorithm Average Accuracy

Adaptive Naive Bayes (NB) 66.61

Hoe�ding Adaptive Tree 72.99

Hoe�ding Option Tree 73.32

Hoe�ding tree 72.96

Adaptive Decision Stump 60.08

Adaptive Hoe�ding Option Tree with NB at leaves 74.29

EP+SeqDrift2 78.0

EP+ADWIN 75.6

Table 8.1: This table shows average accuracy of various classi�ers that are

designed for data stream mining. Each classi�er is tested �rst and trained

with each instance (Prequential Evaluation) with the sample frequency= 1

instance thus, recording accuracy for each instance. Single classi�er models

were chosen for a fair comparison with both EP models because EP models

were restricted to have only one Fourier tree in the pool for this comparison

This clearly provides empirical evidence that capturing recurring concepts

using ensembles even under severe memory constraints has accuracy advan-

tages. Of course, average accuracy �gures mask much higher gains in accu-

racy at concept recurrence points where both FCT and EP re-used previously

stored classi�er models. The Figure 8.2 is an evidence to support the above

claim. It is very clear to see from the graphs that EP+SeqDrift2 outperformed

frequently over the other three adaptive classi�ers. The accuracy pro�les of

the other three classi�ers Hoe�ding Tree, Adaptive Decision Stump, Adaptive

Hoe�ding Option Tree with NB at Leaves are not shown as they also had the

similar trend as the algorithms presented in Figure 8.2.

8.3. Empirical Study 209

Figure 8.2: Accuracy comparison between each of the adaptive algorithms and

EP+SeqDrift2 for pool size=1 on �ight dataset

As this dataset includes data on 20 separate �ights, each concept (take o�,

cruise etc.) in a single �ight is repeated at least 20 times. Each recurrence

is a similar manifestation of a previous concept. EP has an advantage to im-

prove a concept representation by incrementally adding missing details found

in similar concepts. Therefore, a net accuracy increase can be expected as

many similar concepts are seen and ensembles are updated accordingly. This

property has been analyzed by comparing the average accuracy over the sec-

ond �ight segment which has the �rst recurrence of previously seen concepts

in the �rst �ight. The FCT algorithm has no mechanism to improve an exist-

ing concept representation captured by a Fourier spectra unless it is replaced

by a new spectrum altogether. EP+SeqDrift2 and EP+ADWIN had a net

increase of around 5% increase in average accuracy whereas FCT does not

8.3. Empirical Study 210

have an accuracy increase at all for pool size of 1. This di�erence for both EP

algorithms over FCT was 4% with pool size=3 . The di�erence remained at

the same value for pool size = 10. Thus, it can be concluded that aggregation

of structurally similar classi�ers helps to incorporate previously unseen subtle

but important di�erences among similar concepts.

Having established accuracy and stability advantages, especially in mem-

ory constrained environments, it would be interesting to compare the actual

memory consumed by each algorithm for di�erent levels of pool size settings.

The next section presents the results in terms of memory consumption on

Flight dataset.

8.3.2 Memory consumption comparison

This section compares the four algorithms on the basis of average memory

consumption taken across the entire dataset with the stream sampled at each

instance. Table 8.2 contains the actual memory consumed by the decision

tree forest and Fourier pool for each algorithm for the pool sizes 1, 3 and 10.

The memory values are in KBs. The key observation is that EP+SeqDrift2

consumes the least memory for its Fourier pool for all pool size parameter val-

ues. This is a direct result of aggregation that removes redundancy in Fourier

spectra when structurally similar spectra are aggregated together. At the

same time, EP+ADWIN is the runner up. Though EP is good at producing

highly compressed models, higher memory consumption was due to ADWIN.

Though ADWIN does not by itself consume a large amount of memory for

keeping its bu�er and statistics, its false alarm rate caused a higher number

of Fourier spectra to be aggregated to ensembles in the Fourier pool. This re-

sults in larger ensembles than that of EP+SeqDrift2 combination as SeqDrift2

has a lower false alarm rate than ADWIN. Interestingly, both FCT models

consumes almost equal amount of memory for their pools. As maximum pool

8.3. Empirical Study 211

size parameter increases, there is an increase in average memory consumption

by their respective pools.

Algorithm 1 3 10

Forest Pool Forest Pool Forest Pool

FCT+ADWIN 582.2 27.8 572.6 31.5 570.7 36.9

EP+ADWIN 548.8 14.6 548.8 14.6 547.5 24.5

FCT+SeqDrift2 796.9 27.1 796.8 31.0 799.1 32.1

EP+SeqDrift2 771.2 14.1 792.9 13.8 792.9 18.1

Table 8.2: Raw memory values consumed by all four algorithms on Flight

dataset for the pool sizes 1,3 and 10. As all algorithms have a forest of trees

and a Fourier pool, memory consumption is divided into two columns for each

pool size experimented.

In terms of decision tree forest, EP+SeqDrift2 and FCT+SeqDrift2 have

consumed a larger amount of memory than with corresponding combinations

with ADWIN. Again, the lower false positive rate of SeqDrift2 over ADWIN

would be the explanation. A false alarm causes a winner decision tree to

be converted into Fourier spectrum and to regrow from scratch. Less false

alarms enable a winner decision tree to grow bigger by learning a concept in

greater detail. Therefore, models with ADWIN change detector has a risk

of partial learning over a stable segment of data stream instances. Higher

memory consumption of the models with SeqDrift2 change detector is not of a

major concern in memory constrained environments. The base classi�er forest,

CBDT has a mechanism to control its memory through least used decision

path pruning and maximum memory calibration of each tree depending on

its accuracy. This can shrink memory of the decision trees that have lower

8.3. Empirical Study 212

accuracy than the current winner tree and increase maximum memory allowed

for the current winner to enable it to grow to capture a concept precisely.

Figure 8.3: Memory pro�le of all algorithms on Flight dataset for pool size =

10

It would be interesting to study how memory consumption grows over

the entire data stream. Figure 8.3 illustrates the trend in memory growth of

Fourier pool over all algorithms for pool size 10 that doesn't restrict the models

from maintaining a small number of spectra, thus allowing a clear contrast

between FCT and EP approaches. As seen in 8.3, EP algorithm does not have

a net growth in the interval 17K to 25K. This illustrates that EP has captured

concepts fully and updated its ensembles using similar concepts seen from the

start of the data stream to 17K. The EP+SeqDrift2 combination appears to

have no memory growth after the arrival of the �rst 10K instances that span 4

di�erent �ights. The SeqDrift2 detector has enabled EP to capture concepts

in detail by growing decision trees in the forest without signaling false alarms

as opposed to ADWIN. Therefore, the Fourier spectrum of ensembles kept

in EP+SeqDrift2 algorithm needed no signi�cant update on recurring similar

concepts.

The next performance metric is the processing speed of each algorithm.

8.3. Empirical Study 213

8.3.3 Processing Speed Comparison

This is also an important property of an algorithm especially on high speed

data streams produced by a Flight auto pilot system. In terms of processing

speed, EP+SeqDrift2 is the clear winner with the highest processing speed

for all pool size values as shown in Table 8.3. On average over all pool

sizes, there is a 9.26% increase in processing speed for EP+SeqDrift2 over

FCT+SeqDrift2. This increase is due to the reduced spectra that resulted

through the aggregation process in EP. FCT has to route instances to a larger

number of Fourier spectra than EP. In addition, redundancy reduction pro-

duces more compact structures in EP.

Algorithm 1 3 10

FCT+ADWIN 783.3 716.4 818.0

EP+ADWIN 829.4 863.1 851.8

FCT+SeqDrift2 823.8 818.9 729.2

EP+SeqDrift2 857.9 877.0 856.7

Table 8.3: Processing speed (number of instances processed per second) of all

four algorithms on �ight dataset for various pool size values.

Use of SeqDrift2 in place of ADWIN also has a contribution in process-

ing time reduction in the EP+SeqDrift2 combination. This combination has

2% higher processing speed on average over all pool sizes when compared to

EP+ADWIN. Though the increase may not seem very signi�cant, in reality

EP will bene�t signi�cantly on a very large data stream as the gap between

EP+SeqDrift2 and EP+ADWIN will increase due to large number of false

alarms that lead to expensive updates in the models kept.

8.3. Empirical Study 214

Figure 8.4: Processing speed pro�le of all algorithms on Flight dataset for

pool size = 3

Figure 8.4 shows the pro�le of processing speed across the entire dataset.

All four algorithms show a similar trend. Processing speed decreases as more

and more instances are seen. This is a result of Fourier spectrum generation

and memory management operations in all four models. FCT is expected to

re-learn, create new Fourier spectra and remove the least performing Fourier

spectra in memory constrained environment at high frequency. Therefore,

a net decrease in processing speed can be anticipated throughout the data

stream. Although, EP is designed to reduce relearning and memory manage-

ment operations through aggregation, it too has a net decrease in processing

speed. Analysis on Fourier spectrum generation has revealed that EP also

has spent time in generating spectra even after its ensembles have captured

most of the concepts. Though the newly generated spectra were ignored from

being added to an existing ensemble due to higher level of structural similar-

ity between the existing ensemble and new spectrum (refer Algorithm 7.1 in

Chapter 7), EP su�ers from spectrum generation. Future work will target at

minimizing unnecessary Fourier spectrum generation if any given winner deci-

sion tree results in structurally similar Fourier ensemble spectra that already

exist in the pool.This would stabilize the processing speed of EP algorithms

after learning all the concepts in the underlying data stream.

8.3. Empirical Study 215

At the same time, it should be noted that the speed of incoming instances

in the Flight data stream is one instance per second. Therefore, all four models

with around 750 times higher processing speed is more than adequate for this

stream in practice.

8.3.4 Robustness to Concept Change

This is a new metric introduced in this research. In past literature, there has

been no speci�c metric to compare the relative accuracy gain of any two given

algorithms following a concept drift. Relative Accuracy Gain after a concept

change indicates relative robustness of an algorithm. Here the speci�c inter-

est is in tracking how di�erent algorithms recover from changes in concept.

Approaches that promote re-usability of models can be expected to recover

faster and exhibit higher accuracy than other approaches that are forced to

rely on re-learning the newly emerging concept instead of re-using appropriate

models from the past.

This new metric is de�ned in this research and there has been no such

metric in the literature to measure the relative ability to recover. This new

metric is applicable on any dataset and it doesn't depend on true concept

change points.

8.3. Empirical Study 216

Figure 8.5: Accuracy recovery after concept change

The diagram shown in Figure 8.5 describes the data stream segment of

interest (Point A and Point B) when computing the above metric. As an

algorithm independently processes the stream elements and has a separate

change detector, concept change detection points seen with the use of Algo-

rithm 2 are not necessarily needed to be the same as the ones returned by

Algorithm 1. Therefore, this metric is de�ned to be relative to an algorithm

(say Algorithm 2) considering the concept change points associated with Al-

gorithm 2. The metric quanti�es the average accuracy gain of Algorithm 1

with respect to Algorithm 2 to meet Algorithm 2's accuracy for the �rst time

after a concept change is detected by Algorithm 2. The larger the value, the

more the stability of Algorithm 1 with respect to Algorithm 2.

8.4. Summary 217

Pool Size FCT(ADWIN)/EP(ADWIN) FCT(SeqDrift2)/EP(SeqDrift2)

1 0.0616 0.0592

3 0.006 0.0195

10 -0.012 0.002

Table 8.4: Average relative accuracy (scale of 0 to 1) gain until recovery after

a concept change is detected

Table 8.4 shows the relative accuracy gain until recovery of FCT(ADWIN)

against EP(ADWIN) and FCT(SeqDrift2) against EP(SeqDrift2) respectively.

Each result indicates the average accuracy gain of an aggregated ensemble

approach against a single Fourier Tree approach for a given change detector.

When pool size is limited (memory constrained) there is a signi�cant di�erence

between an aggregated ensemble and single tree approaches for both change

detectors. There is an 6% accuracy di�erence observed for pool size 1. As pool

size increases, as expected, FCT's robustness to change improves as the metric

values become smaller for both types of change detectors. With the maximum

pool size of 10, FCT is almost as good or better than the EP method.

This metric values illustrates that an aggregated ensemble approach is

preferable in a memory constrained environment to produce a more stable

performance in terms of accuracy.

The next section concludes this case study with a summary of experimental

observations.

8.4 Summary

This chapter has analyzed performance of four algorithms on a Flight dataset

that re�ects an environment with a large number of recurring similar con-

cepts. Performance has been compared on the basis of accuracy, memory and

8.4. Summary 218

processing time. In addition, robustness to change in concept and the impact

of memory constraints have also been evaluated.

The EP+SeqDrift2 combination is found to be the best choice, especially

in a memory constrained environment with lesser delay in recovery, stable

accuracy, lesser memory consumption and higher processing speed. The ag-

gregation mechanism that helps to reduce redundancy, memory consumption

and processing complexity has enabled EP to achieve superior results to FCT.

Moreover, SeqDrift2 change detector also have contributed to lesser memory

consumption and higher processing speed through its low false positive rate

on stable data stream segments.

Improvements need to be made to avoid unnecessary Fourier spectrum

generation of a winner decision tree if structurally similar ensembles already

exist in the pool. Such improvements will further enhance the speed and

stability of EP.

In a nutshell, the analysis in this chapter has revealed the e�ectiveness of

the EP approach in recognizing recurring concepts in high speed data streams.

Chapter 9

Conclusion and Future Work

9.1 Research Accomplishments

Data stream mining while continuing to be an intensively researched prob-

lem, has reached a degree of maturity and is now applied to a large number of

real world problems including stock markets, sensor networks, sales analysis,

weather predictions, autonomous devices etc. Many real world applications

produce data streams at high speed. In some application environments, typi-

cally wireless sensor networks, resources such as memory and processing power

are constrained.

In addition, data streams usually embed changing concepts over time.

Many application domains such as stock markets and weather show recur-

ring trends over time. When concepts in the underlying data stream change,

models need to be updated to cope with the change to continue to perform

well. Moreover, when concepts recur, it would be advantageous to minimize

relearning through the reuse of previously learned classi�ers. This reduces

sudden performance drops during relearning as a result of concept change.

This research has focused on capturing recurring concepts in high speed

environments. The objective of this research was to propose a framework

and associated algorithms to minimize relearning on similar recurring con-

cepts while achieving accuracy bene�ts in a high speed environment with

constrained memory.

Prior to formulating a framework for capturing recurring concepts, there

9.1. Research Accomplishments 220

needs to be in place a change detector that does not assume that domain

knowledge on stream elements is available, but is yet able to yield robust

performance on high speed data streams. This research initially used the

ADWIN change detector and su�ered as a result of its relatively high false

positive rate. Therefore, two novel changes detectors were introduced, namely

SeqDrift1 and SeqDrift2.

SeqDrift1 was designed to maintain a sliding window of instances to de-

tect changes using robust statistical bounds such as the Bernstein Bound and

sequential hypothesis testing that assume no prior knowledge on stream char-

acteristics. SeqDriftt1, similar to ADWIN, monitors a classi�er's accuracy to

�nd concept change points. The empirical study that compared SeqDrift1

with ADWIN has shown that SeqDrift1 had lesser false positive rate, higher

noise tolerance and lesser processing time compared to ADWIN. However,

detection delay of SeqDrift1 was higher than that of ADWIN. Therefore, Se-

qDrift1 was optimized into its second version, SeqDrift2, to reduce detection

delay while maintaining the bene�ts of SeqDrift1.

In SeqDrift2, detection delay was minimized by improving the contrast

between instances belonging to the previous and current concept with the use

of a reservoir sampling strategy in place of a sliding window. In addition, the

test statistic used in sequential hypothesis testing was also modi�ed to enhance

its sensitivity on slowly varying data. At the same time, the algorithm was

designed to retain performance bene�ts of SeqDrift1 such as low false positive

rate, high noise tolerance and high processing speed. Extensive experiments

revealed that SeqDrift2 is superior to ADWIN in all of the above performance

aspects while having comparable detection delay to that of ADWIN. With this

improved change detector in place, this research moved on to a new phase of

capturing recurring concepts in data streams.

Capturing recurrences of concepts has its own challenges. If models are to

be remembered, there should be a mechanism to compress models to be e�-

9.1. Research Accomplishments 221

ciently stored and reused in memory. The system has to be able to cope with

the speed of the data stream and thus should operate with the lowest possible

computational complexity without compromising on classi�cation accuracy. .

A robust strategy was designed to recognize concept recurrences and to select

appropriate classi�er models previously stored. Moreover, as concepts do not

recur in exact form, it is necessary to remember the essence of a concept rather

than being too speci�c to minor details of a concept. Having all of the above

challenges in mind, this research designed two algorithms, namely FCT and

EP that operate in conjunction with a base classi�er, the decision tree forest

CBDT.

The Fourier Concept Trees algorithm was optimized to store models in a

highly compressed form in its memory. As the compression mechanism, the

Discrete Fourier Transform was applied on Decision trees. Discrete Fourier

Transform when applied on a decision tree yields a small number of low order

Fourier coe�cients that retain most of the classi�cation power of a regular

decision tree. Moreover, as DFT application captures only signi�cant coe�-

cients, the essence of a concept captured by a decision tree is only remem-

bered. FCT learns a previously unseen concept using its decision tree forest

and stores the best tree learned as a Fourier spectrum in its pool. When a con-

cept similar to the one that has been captured by a Fourier spectrum recurs,

the Fourier spectrum becomes the dominant classi�er to perform classi�ca-

tion. As FCT depends on a change detector to recognize concept changes,

ADWIN and SeqDrift2 have been plugged in and tested. The empirical study

has revealed the bene�ts of recognizing similar concepts compared to an ex-

isting algorithm called MetaCT. Accuracy gains and higher processing speed

have been observed in experiments with a large number of synthetic and real

world datasets over the use of MetaCT and the base classi�er CBDT. The

SeqDrift2 change detector has improved detection and helped reduce �uctua-

tions in accuracy with its low false positive rate compared to ADWIN. FCT

9.1. Research Accomplishments 222

has a memory management mechanism to maintain its pool in a memory con-

strained environment. In memory constrained environments, FCT is at risk

of removing an existing well performing Fourier spectrum to make way for

a new spectrum to be put in place. This may reduce the degree of reuse of

classi�ers and increase the chances of having to relearning. Moreover, FCT

has a tendency to produce separate Fourier spectra with a lot of redundancy

on similar concepts if parameters that govern insertion of spectra in the pool

are not set appropriately. To resolve these issues, an improved version EP was

proposed in this research.

EP exploits the DFT on decision trees by removing redundancies and

optimizing the Fourier spectrum generation process. Fourier spectra being

mathematical functions lend themselves easily to aggregation. EP takes ad-

vantage of this aggregation property of Fourier spectra. Aggregation removes

redundancy by only storing unique coe�cients which are weighted by relative

accuracy which are in turn obtained from the spectrum's underlying deci-

sion tree. When similar concepts are captured by two di�erent decision trees,

aggregation of corresponding Fourier spectra results in common coe�cients

being integrated into a single spectrum. This strengthened the ability to

capture recurring concepts in addition to reducing memory and computation

complexity in classi�er storage and classi�cation.

The next problem that was investigated was a strategy to select a pair of

spectra to aggregate. EP was studied with two aggregation strategies that

are memoryless and e�cient to execute. One strategy was based on the sim-

ilarity in accuracy and the other was on the model structure. As Fourier

coe�cients do not preserve model structure explicitly, a mechanism was in-

troduced to very e�ectively compare two di�erent spectra. In addition to the

above improvements, EP also has enhanced methods to calculate Fourier co-

e�cient values e�ciently. These methods are exact, not heuristics and are

underpinned by two theorems presented in Chapter 7. Application of these

9.2. Overall Re�ection on Achievements 223

methods reduced processing time while returning results which are exactly

the same as in the unoptimized version.

An empirical study was conducted on a di�erent set of datasets than the

ones used in the FCT experiments. A large number of concepts were concate-

nated and reintroduced in similar form to test EP. Both ADWIN and SeqDrift2

change detectors were again chosen to study the impact of change detection.

A reduced number of �uctuations in accuracy, lower memory consumption and

higher processing speed was seen in EP when compared to FCT no matter

which change detector was used. However, it was also observed that SeqDrift2

helps to stabilize model performance compared to ADWIN, no matter which

of FCT or EP was employed. A separate case study was done on a Flight data

set that simulates the targeted application of the models proposed in this re-

search. This case study also con�rms the above bene�ts of EP and FCT

over existing methods. Memory pro�le revealed that EP+SeqDrift2 had the

ability to consume less than 50% lower memory compared to FCT+ADWIN

that su�ers from both the ADWIN's relatively high false positive rate and re-

dundancy in Fourier spectra. In addition, EP+SeqDrift2 was shown to have

around 15% gain in accuracy in memory constrained (pool size=1) environ-

ments in the case study.

Additionally, this research also has proposed a general framework to cap-

ture recurring concepts by archiving classi�ers in a data stream. This frame-

work includes classi�ers, change detectors and model compressors.

9.2 Overall Re�ection on Achievements

Overall, this research claims that the twin research objectives of formulating

a new change detector and recurrent concept detector has been accomplished.

The research question that addressed the reduction in false positive rate

in change detection compared to state of art methods is answered with two

9.2. Overall Re�ection on Achievements 224

di�erent change detectors: SeqDrift1 and SeqDrift2. The second version of the

change detector (SeqDrift2) has been shown to be better or competitive to the

key performance metrics concerned. Theoretical guarantees on performance

and extensive experimentation revealed that it outperforms several widely

used change detectors. Therefore, this research concludes that the use of the

Bernstein Bound, together with the use of Sequential hypothesis testing and

Reservoir sampling form a strong combination that improves the false positive

rate of a change detector while maintaining competitiveness with respect to

other standard performance metrics used in change detection..

It has been shown that in the empirical study that the application of DFT

has signi�cantly reduced storage overhead with comparable or better com-

putational overhead when compared to standard methods that use Hoe�ding

Trees in their original form, such as MetaCT. This provides empirical evidence

in support for the second research question on whether the DFT application

has the potential to improve the values of the above performance metrics.

Similarly the proposed recurrence capture algorithms comprehensively out-

performed the current state-of-the-art meta learning algorithm in terms of

recurrence capture.

Alternatives to encoding a Fourier spectrum to represent a concept are

also explored with two di�erent aggregation strategies and memory manage-

ment mechanisms for the classi�er pool. The empirical study showed that the

strategy based on aggregating structurally similar spectra outperformed the

other that was based on a greedy strategy of aggregating the pair of spectra

that had the closest classi�cation accuracy to each other.

In this sense, the goals that were set at the beginning of the research

have truly been met. However, in the course of the research, a number of

limitations were encountered with the methods that were proposed. In the

following section these limitations are re�ected on and some questions are

posed for future research.

9.2. Overall Re�ection on Achievements 225

9.2.1 Limitations of this Research

The coupled approach with a change detector and a pool of classi�er may

not be the optimal choice for all types of data streams. This is due to the

inherent limitations of change detectors, classi�ers and algorithms employed

for concept encoding and recurrence capture. For example, the proposed ap-

proach may not �t a data stream that has very frequently changing concepts

with very short concept duration. This is due to the fact that inherent de-

lays in detecting changes and learning concepts may lead to imprecision in

the capture of concepts. The Hoe�ding tree requires a su�cient number of

instances to learn and any change detector requires a grace period to make

statistically valid decisions. When concept duration is shorter than the grace

period for learning and detecting changes, the proposed approach may not

produce accurate outcomes. In such cases, decoupling concept detection from

classi�er learning may be a better solution, especially if the learner is able to

adapt to changes quickly. However the danger is that in some cases, concepts

that span very a few data instances may be noise, thus resulting in the learner

erroneously capturing spurious concepts, leading to poor generalization capa-

bility.

The target data stream environment of the proposed approach is where

concepts recur in reasonably lengthy durations so that change detector and

classi�ers will have su�cient statistics to evaluate the stream elements.

Other limitations are listed as follows:

� The scalability of DFT application. The number of Fourier co-

e�cients in a spectrum is exponential with respect to the number of

features in a data stream. Though only a few coe�cients are signi�cant

from the viewpoint of classi�cation accuracy, it is computationally ex-

pensive to extract those signi�cant coe�cients. This research reduced

the severity of this problem by optimizing Fourier coe�cient calculation

9.2. Overall Re�ection on Achievements 226

(in Chapter 7) and a localized approach was adopted that generated

spectra from only the features actually present in a tree (as opposed to

the data stream), without any attendant loss of information. In case,

where all or most of the features are present in a tree constructed from

a very high dimensional data stream, the DFT process will become a

major bottleneck in processing the data stream. The FCT and EP al-

gorithms thus have the potential to su�er from this limitation of DFT

application in a high dimensional data stream.

� The suitability of DFT application for continuous valued at-

tributes. As shown in [Byung-Hoon 2001], DFT transformation of a

decision tree is not an optimal approach for continuous valued data fea-

tures. The reason for this issue is again due to the exponential number

of Fourier coe�cients. Continuous valued features have a tendency to

split on a large number of values in a decision tree. When calculat-

ing Fourier coe�cients for such a tree, each of these values needs to be

considered to be a di�erent feature. Therefore, the number of features

will drastically increase, thus giving rise to an exponential increase in

computational complexity.

� The delay in true class label/feedback. The algorithms FCT and

EP rely on classi�cation accuracy in order to select a winner tree at

stream change points. In addition, change detectors that monitor clas-

si�er accuracy to signal a change are dependent on the availability of

class labels arriving on time. A delay in receiving class labels for data

instances will lead to a delayed response in adapting to new concepts

in underlying data streams. As a workaround, weighted classi�cation

across several di�erent classi�ers could be used as an alternative to de-

pending on a sole winner tree. This could improve classi�cation accu-

racy in intervals where labels are in short supply or are absent altogether.

9.2. Overall Re�ection on Achievements 227

Moreover, the approach used in MetaCT [Gama 2011] to learn the areas

where a classi�er performs well using another classi�er (referee) can be

adopted with the FCT and EP algorithms in environments where there

is a long delay in receiving true class labels. As noted in the research,

experimentation in Chapter 6 con�rmed that MetaCT's performance is

severely a�ected by the choice of a classi�er such as the Hoe�ding Tree

that needs a large sample in order to learn a referee model. Therefore,

an appropriate classi�er that learns quickly at an acceptable rate of per-

formance must be chosen as a solution to handle delay in obtaining class

labels.

� Recognition of very short concepts by SeqDrift algorithms. Se-

qDrift algorithms check for concept changes in an interval of block size

speci�ed as a parameter. In a highly volatile environment, concept du-

rations can be lesser than the size of block size. When such a short

concept occurs within a block, it will not be recognized by the change

detectors. Small values of block size reduce sensitivity of the change de-

tectors. Therefore, an improved test statistic that can exploit statistics

of a small sample and accompanying algorithmic enhancements need to

be applied to the SeqDrift change detectors in such environments.

� Dependence on Decision tree classi�er. Both FCT and EP ex-

plicitly depend on a decision tree structure to apply DFT. Therefore,

the application of the above algorithms is limited to the environments

where decision trees are suitable. In other environments operating with

di�erent classi�ers, the design principles involved in the construction of

the FCT and EP algorithms can be reused by replacing the DFT with

a di�erent compression scheme.

� Dependence on a change detector. Dependence on a change de-

9.2. Overall Re�ection on Achievements 228

tector algorithm propagates the error of a change detector to recurrence

concept capture. The plausible solution would be to choose a change de-

tector that has the best performance especially in terms of false positive

and false negative rates.

In addition, this research opens up a number of research questions that need to

be investigated in the future to understand a recurrence capture methodology

using Discrete Fourier Transform applied on a decision tree.

9.2.2 Interesting Open Research Questions

A number of challenging research questions arise on the basis of this research.

� Can the most signi�cant Fourier coe�cients be extracted in at least in

linear computational complexity as opposed to exponential with respect

to the number of features? A solution to this problem will tremendously

expand the applicability of DFT on any decision tree in any data stream

environment including continuous valued features.

� Can drastic improvement in change detector sensitivity be obtained with-

out compromising on false positive rate? Each change detector has its

own inherent delay in recognition of a change. When delay is minimized,

the data segments that result belong to a speci�c concept precisely. Such

segments will directly be useful to describe concepts, to improve recur-

rence capture and to maximize the use of meta statistics to predict future

concepts in real world applications with volatile data streams.

� How can previously captured models be best exploited to handle totally

unseen data stream environments where new learning is impossible or

hard? This problem is closely connected to the so called "Intelligent"

approach that reuses previous knowledge to handle unseen situations.

9.2. Overall Re�ection on Achievements 229

� How can a concept drift and concept recurrence best be predicted, as op-

posed to being detected reactively? This would be an interesting problem

that has never been addressed in the literature. In a large volatile data

stream, meta statistics about concept change and recurrence capture

could be used to make predictions about the future of data stream at

a conceptual, rather than instance level. A meta classi�er may be even

learned to predict these occurrences to prepare other classi�ers for future

changes in data streams.

� What is the best strategy to aggregate any two classi�ers? In ensemble

based methods, classi�er aggregation has a number of bene�ts including

redundancy reduction in concept representation and decrease in compu-

tational and memory overheads as claimed by this research. Determi-

nation of the best aggregation strategy is a hard problem with lack of

meta knowledge on the concepts present in a data stream.

� How can a change detector or recurrence capturing algorithm be evalu-

ated in a real world data stream with no domain knowledge on change

points? Performance metrics such as false positive rate, false negative

rate assume that actual change points are known. The solution to this

problem could bene�t end users by helping them to choose the best

models on their own without an expert's advice.

� How can concept change be represented precisely in a form that can be

interpreted by end users? Concept change representation or description

is one of the new research areas in data stream mining. This has poten-

tial bene�ts to the end users to understand the data generation process

and even to �nd abnormalities in data. Although practical solutions

such as decision trees exists to represent concepts, the accuracy of rep-

resentation, relevance and usefulness of such representations needs to be

9.3. Future Work 230

evaluated before a precise description of concept change can be made.

� Can frequent pattern mining be extrapolated to capture concept recur-

rence? How can a concept representation be interpolated to extract fre-

quent patterns found in data streams? Concepts consist of patterns. Fre-

quent pattern mining is aimed at extracting dominant patterns in given

data segments. Thus, dominant patterns in a given recurring concept

could be identi�ed in terms of frequent patterns. Once these frequent

patterns are extracted from di�erent concepts then new concepts could

be created by combining these patterns to tackle an unseen environment

intelligently.

� Can any classi�er be used in the Decision Tree DFT framework used

in this research? The DFT requires a truth table that has all possi-

ble instances vectors and corresponding class values to generate Fourier

Spectrum. It is not strictly limited to a decision tree. If a truth ta-

ble can be generated for a classi�er either in an incremental manner

or by using heuristics, then the Fourier Spectrum of that classi�er can

be computed. Once it is in spectral representation, the reconstruction

algorithm proposed in [Byung-Hoon 2001] to reproduce a decision tree

from Fourier Spectrum can be used to obtain the representation of any

classi�er in a decision tree form. This has a potential advantage of re-

vealing the knowledge captured by the so called Black Box classi�ers

such as neural networks.

9.3 Future Work

The future work is aimed at improving the proposed models in many di�erent

aspects.

9.3. Future Work 231

� Extension of the methods proposed. The coupled approach which

lays the foundation for the theoretical contribution can be improved

in many ways. In the proposed method, there is a tight dependence

between the change detection mechanisms and concept representation

schemes. In other words, classi�er error rate is the de�ning factor of a

concept drift. In an unlabeled segments of the data stream, when class

error rate is not relevant, change detection can be applied at the feature

(attribute) level to locate concept changes, in addition to classi�er error

rate. To make the proposed methods better suited for frequent concept

changes with short durations, improvements can be made to the test

statistic and the algorithmic strategy employed by the change detector.

Furthermore, classi�ers that are fast learners may replace Hoe�ding Tree

when concept interpretation is not essential. Moreover, improvements

to strategies on how past classi�ers are aggregated, stored and managed

will strengthen the theoretical contribution and expand the application

domain.

� Further Optimization on Fourier Coe�cient Generation. The

total number of Fourier Coe�cients is exponential in terms of the num-

ber of dimensions (features) present in a data stream. Even though

energy thresholding can be used to restrict generation to low order

coe�cients, the time complexity is O(nm) where n is the number of

dimensions (features) in the tree and m is the order at which the en-

ergy threshold has been reached. For m > 2 and su�ciently large n,

spectrum generation will become a bottleneck. There are two possible

approaches to dealing with this issue. First of all, a multi-dimensional

version of the Fast Fourier Transform (FFT) that currents only exists

on unidimensional data could be devised to speed up spectrum gener-

ation. An alternative strategy would be to use Bayesian methods to

9.3. Future Work 232

estimate higher order coe�cients from low order coe�cients instead of

using computationally expensive inner product operations This would

enable application on a continuous valued attribute datasets which could

generate very large number of attributes resulting from splits on a con-

tinuously valued numerical range

� Parallel Processing and Pipelining Techniques. Both FCT and

EP support the use of parallel processing. Each of the major functional

components such as learning a classi�er, Fourier spectrum generation,

memory management, concept change detection etc., can be assigned

to di�erent processing units. Similarly, Fourier spectrum generation by

itself can also be pipelined to reduce processing time even further.

� Improvements to SeqDrift Change Detectors. Data structures

and test statistics can be optimized to save memory and processing

time in the two change detectors. The test static can be modi�ed with a

more tighter bound than the Bernstein Bound. Moreover, the reservoir

that stores the input to change detectors explicitly can be modi�ed to

remember representative statistics.

� Algorithmic Optimizations on FCT and EP. FCT and EP should

be enhanced to completely avoid the generation of a Fourier spectrum

if it is expected to be similar to any existing Fourier spectrum that is

already in the pool. This saves signi�cant processing time spent on

an unnecessary task. Aggregation in EP needs to be enhanced with a

better weighting of Fourier coe�cients and other aggregation methods.

In addition to the above, delay in responding to recurring concepts also

should be minimized.

� Dynamic Energy Thresholding. In the current models, energy thresh-

old is set as a static value that does not change with data stream dy-

9.3. Future Work 233

namics. Having such a static value is not optimal as new concepts that

appear will vary in complexity thus requiring the use of di�erent sized

thresholds. In this respect it would be worth investigating the rela-

tionship between accuracy and energy threshold. If this relationship is

modeled, then accuracy can be optimized by setting the right value for

energy threshold. This would enhance the ability to capture and classify

concepts precisely as well.

� Use of Meta Mining . Meta mining on model usage and change

detection can be exploited to predict concept changes and the best clas-

si�ers to be used on future concepts. This will also ultimately lead to

a method of describing concept changes in terms that can be explained

to end users.

� Modeling Intelligence of Brain. Intelligence manifests in di�erent

ways. In a novel interpretation, it can be described using a recurring

concept capturing framework. Taking humans as an example, a human

has a number of sensors, processing units and memory. The sensors pro-

duce data streams that are received by brain. Over a lifetime, similar

patterns or concepts are experienced or seen very often. The human

brain can also be considered to be a model that reuses knowledge and

classi�ers built rather than re-learning concepts each time. In addi-

tion, it does prediction and handles unseen environments by relying on

some form of model, which is presumably to a greater or lesser extent,

computational. Once actual unfamiliar environments become familiar it

stores information on it for future reuse. Therefore, a recurring concept

capturing framework can be extended to simulate brain functions.

Appendix A

Appendix for Chapter 4

Figure A.1: E�ects of Block Size on Detection Delay Time for SeqDrift1 for

the data length 10,000

235

Figure A.2: E�ects of Block Size on Detection Delay Time for SeqDrift1 for

the data length 50,000

Figure A.3: E�ects of Block Size on Detection Delay Time for SeqDrift1 for

the data length 100,000

236

Figure A.4: E�ects of Warning Level on Detection Delay Time for SeqDrift1

for the data length 10,000

Figure A.5: E�ects of Warning Level on Detection Delay Time for SeqDrift1

for the data length 50,000

237

Figure A.6: E�ects of Warning Level on Detection Delay Time for SeqDrift1

for the data length 1,000,000

Figure A.7: E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 for data length 10,000

238

Figure A.8: E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 for data length 50,000

Figure A.9: E�ects of Sample Size Increment on Detection Delay Time for

SeqDrift1 for data length 100,000

Appendix B

Appendix for Chapter 6

Figure B.1 shows the memory pro�les of FCT and MetaCT. Each of the

algorithm has two segments of memory. Therefore, there are four in total

namely FCT Tree Forest, FCT Pool, MetaCT Tree Forest and MetaCT Pool.

Please refer 6.6.4.2 for more details on the experiment.

240

Figure B.1: Memory pro�les of FCT and MetaCT on RBF, SEA, Electricity

and Spam Datasets

Appendix C

Appendix for Chapter 7

Figure C.1 shows the accuracy pro�les of FCT, EPa and EP on SEA dataset

for the pool sizes 3, 5 and 10.

Please refer 7.3.5 for more details on the experiment.

Figure C.1: Accuracy pro�le of FCT, EPa and EP on SEA dataset for pool

sizes 3,5 and 10

242

Figure C.2 shows the accuracy pro�les of FCT, EPa and EP on SEA

dataset for the pool sizes 3, 5 and 10.

Figure C.2: Accuracy pro�le of FCT, EPa and EP on Spam dataset for pool

sizes 3,5 and 10

Figure C.3 shows the accuracy pro�les of FCT, EPa and EP for various

energy thresholds on Rotating Hyperplane dataset.

243

Figure C.3: Accuracy pro�le of FCT, EPa and EP on Rotating Hyperplane

for various energy thresholds

Bibliography

[Aggarwal 2003] Charu C. Aggarwal, Jiawei Han, Jianyong Wang and

Philip S. Yu. A Framework for Clustering Evolving Data Streams. In

Proceedings of the 29th International Conference on Very Large Data

Bases, volume 29 of VLDB '03, pages 81�92. VLDB Endowment, 2003.

36

[Alippi 2013] C. Alippi, G. Boracchi and M. Roveri. Just-In-Time Classi�ers

for Recurrent Concepts. IEEE Transactions on Neural Networks and

Learning Systems, vol. 24(4), pages 620�634, 2013. 4, 119, 122

[Audibert 2007] Jean-Yves Audibert, Rémi Munos and Csaba Szepesvári.

Tuning Bandit Algorithms in Stochastic Environments. In Proceedings

of the 18th International Conference on Algorithmic Learning Theory,

ALT '07, pages 150�165, Berlin, Heidelberg, 2007. Springer-Verlag. 42

[Baena-García 2006] Manuel Baena-García, José del Campo-Ávila, Raúl Fi-

dalgo, Albert Bifet, Ricard Gavaldá and Rafael Morales-Bueno. Early

Drift Detection Method. In Proceedings of the 4th ECML PKDD Inter-

national Workshop on Knowledge Discovery from Data Streams, pages

77�86, Berlin, Germany, 2006. 5, 36

[Basseville 1993] Michèle Basseville and Igor V. Nikiforov. Detection of

abrupt changes: Theory and application. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1993. 35

[Bender 1999] Ralf Bender and Stefan Lange. Multiple Test Procedures Other

Than Bonferroni's Deserve Wider Use. BMJ : British Medical Journal,

vol. 318, no. 7183, pages 600�600, 1999. 50

Bibliography 245

[Bernstein 1946] Sergei N. Bernstein. The theory of probabilities. Moscow,

Leningrad, 1946. 39, 41

[Bifet 2007] Albert Bifet and Ricard Gavaldà. Learning from Time-Changing

Data with Adaptive Windowing. In Proceedings of the 7th SIAM In-

ternational Conference on Data Mining, pages 443�448. SIAM, 2007.

5, 37, 38, 39, 41, 102, 130, 159

[Bifet 2009] Albert Bifet and Ricard GavaldÃ. Adaptive Learning from Evolv-

ing Data Streams. In Advances in Intelligent Data Analysis VIII,

volume 5772 of Lecture Notes in Computer Science, pages 249�260.

Springer Berlin Heidelberg, 2009. 37, 111

[Bifet 2010a] Albert Bifet. Adaptive stream mining: Pattern learning and

mining from evolving data streams. IOS Press, Amsterdam, The

Netherlands, The Netherlands, 2010. 8, 22

[Bifet 2010b] Albert Bifet, Geo� Holmes, Richard Kirkby and Bernhard

Pfahringer. MOA: Massive Online Analysis. The Journal of Machine

Learning Research, vol. 11, pages 1601�1604, 2010. 13, 111, 114, 136,

171

[Borne 2007] Kirk D. Borne. A Machine Learning Classi�cation Broker for

Petascale Mining of Large-scale Astronomy Sky Survey Databases. In

Next Generation of Data Mining and Cyber-Enabled Discovery for

Innovation (NGDM07), Baltimore, Maryland, 2007. National Science

Foundation. 83

[Brown 2010] Gavin Brown. Ensemble Learning. In Claude Sammut and

Geo�rey I. Webb, editeurs, Encyclopedia of Machine Learning, pages

312�320. Springer US, 2010. 153

Bibliography 246

[Byung-Hoon 2001] Park Byung-Hoon. Knowledge Discovery from Heteroge-

neous Data Streams Using Fourier Spectrum of Decision Trees. PhD

thesis, Pullman, WA, USA, 2001. 123, 126, 168, 226, 230

[Das 2009] Kamalika Das, Kanishka Bhaduri, Sugandha Arora, Wesley Grif-

�n, Kirk Borne, Chris Giannella and Hillol Kargupta. Scalable Dis-

tributed Change Detection from Astronomy Data Streams using Lo-

cal, Asynchronous Eigen Monitoring Algorithms. In 2009 SIAM In-

ternational Conference on Data Mining, pages 245�156, Nevada, 2009.

SIAM. 83

[Datar 2002] Mayur Datar, Aristides Gionis, Piotr Indyk and Rajeev Mot-

wani. Maintaining Stream Statistics over Sliding Windows. SIAM

Journal on Computing, vol. 31, no. 6, pages 1794�1813, 2002. 65

[Domingos 2000] Pedro Domingos and Geo� Hulten. Mining High-speed Data

Streams. In Proceedings of the Sixth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD '00, pages

71�80, New York, NY, USA, 2000. ACM. 129

[Fayyad 1996] Usama M. Fayyad, Gregory Piatetsky-Shapiro and Padhraic

Smyth. Advances in Knowledge Discovery and Data Mining. chapitre

From Data Mining to Knowledge Discovery: An Overview, pages 1�

34. American Association for Arti�cial Intelligence, Menlo Park, CA,

USA, 1996. 1

[Freund 1996] Yoav Freund and Robert E. Schapire. Experiments with a

New Boosting Algorithm. In Lorenza Saitta, editeur, Proceedings of

the Thirteenth International Conference on Machine Learning (ICML

1996), pages 148�156. Morgan Kaufmann, 1996. 153

Bibliography 247

[Gaber 2005] Mohamed Medhat Gaber, Arkady Zaslavsky and Shonali Krish-

naswamy. Mining Data Streams: A Review. ACM SIGMOD Record,

vol. 34, no. 2, pages 18�26, June 2005. 2, 17

[Gama 2004] João Gama, Pedro Medas, Gladys Castillo and Pedro Rodrigues.

Learning with Drift Detection. In AnaL.C. Bazzan and So�ane Labidi,

editeurs, Advances in Arti�cial Intelligence - SBIA 2004, volume 3171

of Lecture Notes in Computer Science, pages 286�295. Springer Berlin

Heidelberg, 2004. 36

[Gama 2005] João Gama, Pedro Medas and Pedro Rodrigues. Learning De-

cision Trees from Dynamic Data Streams. In Proceedings of the 2005

ACM Symposium on Applied Computing, SAC '05, pages 573�577,

New York, NY, USA, 2005. ACM. 129

[Gama 2010] João Gama. Knowledge discovery from data streams. Data Min-

ing and Knowledge Discovery Series. CRC Press, Minneapolis, 2010.

5

[Gama 2011] João Gama and Petr Kosina. Learning about the Learning Pro-

cess. In João Gama, Elizabeth Bradley and Jaakko Hollmén, editeurs,

Advances in Intelligent Data Analysis X, volume 7014 of Lecture Notes

in Computer Science, pages 162�172. Springer Berlin Heidelberg, 2011.

4, 119, 120, 121, 134, 136, 151, 227

[Gomes 2010] João Bártolo Gomes, Ernestina Menasalvas and Pedro A. C.

Sousa. Tracking Recurrent Concepts Using Context. In Rough Sets and

Current Trends in Computing, volume 6086, pages 168�177. Springer

Berlin Heidelberg, 2010. 4, 119, 120, 121, 122

[Hardy 1988] G. H. Hardy, J. E. Littlewood and G. Polya. Inequalities. Cam-

bridge University Press, Cambridge, England, 1988. 41

Bibliography 248

[Ho 2005] Shen-Shyang Ho. A Martingale Framework for Concept Change

Detection in Time-varying Data Streams. In ICML '05 Proceedings

of the 22nd International Conference on Machine Learning, ICML '05,

pages 321�327, New York, NY, USA, 2005. ACM. 27, 36, 37

[Hoeglinger 2007] Stefan Hoeglinger and Russel Pears. Use of Hoe�ding trees

in concept based data stream mining. In 3rd International Conference

on Information and Automation for Sustainability, ICIAFS 2007, pages

57�62. IEEE, 2007. 7, 159

[Hoeglinger 2009] Stefan Hoeglinger, Russel Pears and Yun Sing Koh. CBDT:

A Concept Based Approach to Data Stream Mining. In Proceedings of

the 13th Paci�c-Asia Conference on Advances in Knowledge Discovery

and Data Mining, PAKDD '09, pages 1006�1012, Berlin, Heidelberg,

2009. Springer-Verlag. 8, 129, 159

[Hosseini 2012] Mohammad J. Hosseini, Zahra Ahmadi and Hamid Beigy.

New Management Operations on Classi�ers Pool to Track Recurring

Concepts. In Alfredo Cuzzocrea and Umeshwar Daya, editeurs, Data

Warehousing and Knowledge Discovery, volume 7448 of Lecture Notes

in Computer Science, pages 327�339. Springer Berlin Heidelberg, 2012.

119

[Hulten 2001] Geo� Hulten, Laurie Spencer and Pedro Domingos. Min-

ing Time-changing Data Streams. In Proceedings of the 7th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD '01, pages 97�106, New York, NY, USA, 2001. ACM. 8,

129, 135

[Inglada 2007] Jordi Inglada and Grégoire Mercier. A New Statistical Sim-

ilarity Measure for Change Detection in Multitemporal SAR Images

and Its Extension to Multiscale Change Analysis. IEEE Transactions

Bibliography 249

on Geoscience and Remote Sensing, vol. 45, no. 5, pages 1432�1445,

May 2007. 39

[Iqbal 2012] Md.RidwanAl Iqbal. Rule Extraction from Ensemble Methods

Using Aggregated Decision Trees. In Tingwen Huang, Zhigang Zeng,

Chuandong Li and ChiSing Leung, editeurs, Neural Information Pro-

cessing, volume 7664 of Lecture Notes in Computer Science, pages

599�607. Springer Berlin Heidelberg, 2012. 154

[Kargupta 2004] Hillol Kargupta and Byung-Hoon Park. A Fourier spectrum-

based approach to represent decision trees for mining data streams in

mobile environments. IEEE Transactions on Knowledge and Data En-

gineering, vol. 16, no. 2, pages 216�229, Feb 2004. 8

[Kargupta 2006] Hillol Kargupta, Byung-Hoon Park and Haimonti Dutta.

Orthogonal Decision Trees. IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 8, pages 1028�1042, 2006. 8, 120, 123, 124,

127, 138, 156

[Katakis 2008] Ioannis Katakis, Grigorios Tsoumakas and Ioannis Vlahavas.

An Ensemble of Classi�ers for Coping with Recurring Contexts in Data

Streams. In Proceedings of the 18th European Conference on Arti�-

cial Intelligence, pages 763�764, Amsterdam, The Netherlands, The

Netherlands, 2008. IOS Press. 4, 24, 121

[Kifer 2004] Daniel Kifer, Shai Ben-David and Johannes Gehrke. Detecting

Change in Data Streams. In Proceedings of the 30th International

Conference on Very Large Data Bases, volume 30 of VLDB '04, pages

180�191. VLDB Endowment, 2004. 36, 37, 38

[Klinkenberg 2000] Ralf Klinkenberg and Thorsten Joachims. Detecting Con-

cept Drift with Support Vector Machines. In Proceedings of the 17th

Bibliography 250

International Conference on Machine Learning, ICML '00, pages 487�

494, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

36

[Krempl 2014] Georg Krempl, Indre �liobaite, Dariusz Brzezi«ski, Eyke

Hüllermeier, Mark Last, Vincent Lemaire, Tino Noack, Ammar

Shaker, Sonja Sievi, Myra Spiliopoulou and Jerzy Stefanowski. Open

Challenges for Data Stream Mining Research. SIGKDD Explorations

Newsletter, vol. 16, no. 1, pages 1�10, 2014. 2, 17

[Kuncheva 2013a] Ludmila I. Kuncheva. Change Detection in Streaming Mul-

tivariate Data Using Likelihood Detectors. IEEE Transactions on

Knowledge and Data Engineering, vol. 25, no. 5, pages 1175�1180,

2013. 36

[Kuncheva 2013b] Ludmila I. Kuncheva. Change Detection in Streaming Mul-

tivariate Data Using Likelihood Detectors. IEEE Transactions on

Knowledge and Data Engineering, vol. 25, no. 5, pages 1175�1180,

May 2013. 39

[Lazarescu 2005] Mihai Lazarescu. A Multi-Resolution Learning Approach to

Tracking Concept Drift and Recurrent Concepts. In 5th international

workshop on Pattern Recognition in Information Systems, page 52,

2005. 4, 120

[Linial 1993] Nathan Linial, Yishay Mansour and Noam Nisan. Constant

Depth Circuits, Fourier Transform, and Learnability. Journal of the

ACM, vol. 40, no. 3, pages 607�620, 1993. 127

[Maurer 2009] Andreas Maurer and Massimiliano Pontil. Empirical Bernstein

Bounds and Sample-Variance Penalization. In The 22nd Conference

on Learning Theory, COLT 2009, 2009. 42

Bibliography 251

[Mnih 2008] Volodymyr Mnih, Csaba Szepesvári and Jean-Yves Audibert.

Empirical Bernstein Stopping. In Proceedings of the 25th Interna-

tional Conference on Machine Learning, ICML '08, pages 672�679,

New York, NY, USA, 2008. ACM. 42

[Morshedlou 2009] Hossein Morshedlou and Ahmad Abdollahzade Bar-

foroush. A New History Based Method to Handle the Recurring Con-

cept Shifts in Data Streams. vol. 3, no. 10, pages 895�900, 2009. 119

[Mouss 2004] H. Mouss, D. Mouss, N. Mouss and L. Sefouhi. Test of Page-

Hinckley, an approach for fault detection in an agro-alimentary pro-

duction system. In 5th Asian Control Conference, 2004, volume 2,

pages 815�818, Melbourne, Victoria, Australia, 2004. IEEE. 5

[Narum 2006] Shawn R. Narum. Beyond Bonferroni: Less conservative anal-

yses for conservation genetics. Conservation Genetics, vol. 7, no. 5,

pages 783�787, 2006. 50

[Nishida 2007] Kyosuke Nishida and Koichiro Yamauchi. Detecting Concept

Drift Using Statistical Testing. In Proceedings of the 10th International

Conference on Discovery Science, volume 4755 of DS'07, pages 264�

269, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. 36

[Page 1954] E. S. Page. Continuous Inspection Schemes. Biometrika, vol. 41,

no. 1/2, pages 100�115, 1954. 5, 36, 39

[Pears 2014] Russel Pears, Sakthithasan Sripirakas and Yun Sing Koh. De-

tecting concept change in dynamic data streams. Machine Learning,

vol. 97(3), pages 259�293, 2014. 5, 11, 120

[Ramamurthy 2007] S. Ramamurthy and R. Bhatnagar. Tracking recurrent

concept drift in streaming data using ensemble classi�ers. In 6th Inter-

Bibliography 252

national Conference on Machine Learning Applications, pages 404�409,

Dec 2007. 4, 121

[Ross 2012] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis and

David J. Hand. Exponentially weighted moving average charts for de-

tecting concept drift. Pattern Recognition Letters, vol. 33, no. 2, pages

191�198, 2012. 5, 38, 39

[Schlimmer 1986] Je�rey C. Schlimmer and Jr. Richard H. Granger. Incre-

mental learning from noisy data. Machine Learning, vol. 1, no. 3, pages

317�354, 1986. 121

[Sebastiao 2009] Raquel Sebastiao and João Gama. A Study on Change De-

tection Methods. In Proceedings of the 14th Portuguese Conference on

Arti�cial Intelligence, EPIA 2009, pages 353�364, Berlin, Heidelberg,

2009. Springer-Verlag. 35

[Shivaswamy 2010] Pannagadatta K. Shivaswamy and Tony Jebara. Empiri-

cal Bernstein Boosting. In Proceedings of the 13th International Con-

ference on Arti�cial Intelligence and Statistics (AISTATS), volume 9

of JMLR Proceedings, pages 733�740. JMLR.org, 2010. 42

[Song 2007] Xiuyao Song, Mingxi Wu, Christopher Jermaine and Sanjay

Ranka. Statistical Change Detection for Multi-dimensional Data. In

Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD '07, pages 667�676, New

York, NY, USA, 2007. ACM. 39

[Sripirakas 2013] Sakthithasan Sripirakas, Russel Pears and Yun Sing Koh.

One Pass Concept Change Detection for Data Streams. In Advances in

Knowledge Discovery and Data Mining, volume 7819 of Lecture Notes

Bibliography 253

in Computer Science, pages 461�472. Springer Berlin Heidelberg, 2013.

11

[Sripirakas 2014a] Sakthithasan Sripirakas and Russel Pears. Mining Recur-

rent Concepts in Data Streams Using the Discrete Fourier Transform.

In Ladjel Bellatreche and Mukesh K. Mohania, editeurs, Data Ware-

housing and Knowledge Discovery, volume 8646 of Lecture Notes in

Computer Science, pages 439�451. Springer International Publishing,

2014. 12, 162, 163

[Sripirakas 2014b] Sakthithasan Sripirakas and Russel Pears. Use of En-

sembles of Fourier Spectra in Capturing Recurring Concepts in Data

Streams. Submitted for SIAM International Conference on Data Min-

ing for review, 2014. 12

[Street 2001] Nick W. Street and YongSeog Kim. A Streaming Ensemble Al-

gorithm (SEA) for Large-scale Classi�cation. In Proceedings of the 7th

ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD '01, pages 3770�382, New York, NY, USA, 2001.

ACM. 135, 171

[Vitter 1985] Je�rey S. Vitter. Random Sampling with a Reservoir. ACM

Transactions on Mathematical Software (TOMS), vol. 11, no. 1, pages

37�57, 1985. 64, 71

[Wang 2003a] Haixun Wang, Wei Fan, Philip S. Yu and Jiawei Han. Mining

concept-drifting data streams using ensemble classi�ers. In Proceedings

of the 9th ACM SIGKDD, KDD '03, pages 226�235, 2003. 32

[Wang 2003b] Haixun Wang, Wei Fan, Philip S. Yu and Jiawei Han. Mining

Concept-drifting Data Streams Using Ensemble Classi�ers. In Proceed-

ings of the Ninth ACM SIGKDD International Conference on Knowl-

Bibliography 254

edge Discovery and Data Mining, KDD '03, pages 226�235, New York,

NY, USA, 2003. ACM. 153

[Widmer 1996] Gerhard Widmer and Miroslav Kubat. Learning in the pres-

ence of concept drift and hidden contexts. Machine Learning, vol. 23,

no. 1, pages 69�101, 1996. 121

	Introduction
	High Speed Data Mining and its Research Challenges
	Objectives
	Research Questions
	Scope
	Overview of Research Strategy
	Theoretical Contribution of This Research

	Publications
	Thesis Structure

	A General Framework for Capturing Recurring Concepts
	Data Mining and its Components
	Data Stream Mining and its Properties
	Challenges in Recurring Concepts Environments
	A General Framework for Data Stream Mining with Recurrent Concept Capturing
	Summary

	Change Detection in High Speed Data Streams
	Introduction
	Rationale for Change Detection
	Change Detection Problem Definition
	Related Work
	Research Contributions
	Use of Bernstein Bound in Bounding Deviation of Population Mean from Sample Mean
	Summary

	SeqDrift1: An Algorithm Based on Sliding Window Approach
	Introduction
	Core Algorithm Overview
	Memory Management in SeqDrift1
	Computation of Cut Point Threshold
	Compensating for Repeated Hypothesis Testing
	SeqDrift1 Change Detection Algorithm
	SeqDrift1 versus ADWIN: Similarities and Differences
	Empirical Study
	Comparative Performance Study
	Sensitivity Analysis on SeqDrift1

	Summary

	SeqDrift2 Change Detector
	Introduction
	SeqDrift2 Design Fundamentals
	Memory Management within SeqDrift2
	Use of Bernstein Bound in SeqDrift2
	Cutpoint Threshold for SeqDrift2
	Optimizing SeqDrift2 Detection Delay
	Convergence of Algorithm 5.1

	Driver Routines for SeqDrift2
	Time Complexity for SeqDrift2
	Space, Time and Detection Delay Expectations
	Empirical Study
	False Positive Rate Assessment
	Detection Delays and False Negative Rate
	Effects of Reservoir Sampling
	Effects of Detection Thresholds and Window Management Strategies
	Integration with Adaptive Hoeffding Tree Classifier

	Summary

	Capturing Recurrent Concepts Using Discrete Fourier Transform
	Introduction
	Related Research
	Application of the Discrete Fourier Transform on Decision Trees
	Transforming a Decision Tree into Fourier Spectrum
	Exploitation of the Fourier Transform for Recurrent Concept Capture
	The FCT algorithm
	Optimizing the Energy Thresholding Process

	Experimental Study
	Parameter Values
	Datasets Used for the Experimental study
	Tuning MetaCT Key Parameter
	Comparative Study: CBDT vs FCT vs MetaCT
	Sensitivity Analysis on FCT

	Empirical Study on FCT with SeqDrift2 Change Detector
	Accuracy Comparison
	Processing Time and Memory Comparison

	Summary

	The Role of Fourier Ensembles in Capturing Recurring Concepts
	Introduction
	Aggregation of Fourier Spectrum

	Exploitation of the Fourier Transform for Recurrent Concept Capture
	The EP Algorithm
	Optimizing the Energy Thresholding Process
	Optimizing the Computation of the Fourier Basis Function
	Localized Approach to Ensemble Learning in the Fourier Domain

	Experimental Study
	Parameter Values
	Datasets used for the experimental study
	Models used in empirical study
	Comparative Study : FCT Vs EPa Vs EP
	Effects of Pool Size
	Effects of Noise
	Effects of Spectral Energy Thresholding
	Effects of Structural Similarity Threshold
	Memory
	Processing Speed

	Empirical Study on EP with SeqDrift2 Change Detector
	Processing Speed and Memory Comparison

	Summary

	Case Study
	Introduction
	Description of the dataset used
	The models used for empirical study

	Empirical Study
	Accuracy Comparison
	Memory consumption comparison
	Processing Speed Comparison
	Robustness to Concept Change

	Summary

	Conclusion and Future Work
	Research Accomplishments
	Overall Reflection on Achievements
	Limitations of this Research
	Interesting Open Research Questions

	Future Work

	Appendix for Chapter 4
	Appendix for Chapter 6
	Appendix for Chapter 7
	Bibliography

