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Abstract

There is a need to provide low cost electric power systems in a number of locations around the

world. However, the size and cost of renewable energy generators and storage increase when

they are used alone, due to the stochastic nature of sources. Reliability similar to the grid

power supply can only be achieved by combining more complementary energy sources in

the presence of storage devices; thus creating a hybrid renewable or distributed energy system.

The optimal sizing of a hybrid renewable energy system (HRES) is important in order

to keep the system reliable with low investment cost and with adequate or full use of

resources. In this work, the stochastic nature of renewable generation and demand and

non-linear system characteristics are explored in the process of optimizing the size of a

HRES. In achieving this, a hybrid optimization methodology was developed for the intention

of matching the renewable generation with the demand of a site. The results showed that

the demand profile dictates the size of a HRES and is as important as the optimization method.

In previous studies, average hourly demand profiles for a day, total monthly load, seasonal

daily load profile, average hourly demand profile repeated throughout the year have been
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examined, however, this work demonstrates that these demand profiles fail to represent real

life electrical demand. As such, this work extends our understanding of the influence of

demand, using multiple “real world” demand profiles, on sizing a HRES that result in varying

temporal position of loads and the peak energy demand. It shows that the total daily demand

of a site can vary significantly due to socio-demographic factors and that in sizing a HRES,

the variation of the annual demand profile due to these factors must be considered.

Moreover, it furthers this by exploring the random day to day variations of peak demand

both in magnitude and temporal position throughout the year that occur due to the varying

weather conditions and habits of the user. It was determined that the effect of this random

variation of electrical load on the optimal size of a HRES was significant and an advanced

method for sizing a HRES under these conditions was developed and demonstrated.

Finally, a series of demand side management (DSM) options were proposed for the HRES

and incorporated with the sizing method. It was shown that the investment costs could be

significantly reduced with the introduction of each of the DSM options, in particular, by

utilizing excess energy generated by the HRES to heat a thermal storage system.
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Chapter 1

Introduction

1.1 Importance of using renewable energy sources

According to the World Bank, more than two billion people in the world live in remote

villages that are not yet connected to utility lines [1, 2]. The extension of utility grids is not

a feasible option for those villages due to the high investment cost. Diesel generators are

costly as well as a source of pollution and so renewable sources are the only low cost and

green option for those remote locations.

More broadly fossil fuels such as oil, gas and coal are exhausting rapidly. Though the

statistics of fossil fuel reserve varies, it is estimated that world oil and gas reserves can only

last for roughly 40 and 60 years respectively and coal is thought to be coming to an end in

another 200 years [3]. Thus, it becomes necessary to look for a alternative energy sources to

cater for the increasing demand of the world.
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Global environmental concern is another key reason for moving to renewable energy. Carbon

dioxide is naturally present in atmosphere and constantly being produced and absorbed by

many microorganisms, plants and animals in the ocean and on the lands surface. The carbon

cycle of emission and removal by natural processes tends to balance the carbon dioxide in

the atmosphere. However, human activities such as the generation of electricity from fossil

fuel, transportation and industrial processes dramatically increases the main greenhouse gas,

carbon dioxide [4].

Technologies related to renewable energy sources such as solar and wind energy have

developed to such an extent that the cost of the renewable energy has become comparable

to energy from conventional sources. The average wholesale prices of conventional power

varied approximated from 25 USD/MWh to around 100 USD/MWh in the year 2012 [5]. On

the other hand, the cost of the onshore and offshore wind generation at utility scale reached

150 USD/MWh and 350 USD/MWh respectively, and solar PV at utility and small scale

reached to 250 USD/MWh and 400 USD/MWh respectively [5].

1.2 Renewable energy sources

Renewable energy is abundantly available in different forms all over the world and most of

them are cost free and sustainable. As a result, several renewable energy options have already

become popular. They are:
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1. geothermal,

2. wind,

3. solar and

4. hydro and micro-hydro.

They are briefly discussed below:

1.2.1 Geothermal energy

The thermal energy generated and stored inside the earth can be used directly for space

heating and generating electricity. The internal structure and the physical process of the

planet Earth are responsible for the inexhaustible quantities of thermal energy in the Earth’s

crust and is also cost effective, reliable and green [6]. The average geothermal gradient is

around 30° C per km of depth [7]. With the temperature at the core-mantle boundary being

over 4000° C.

A carrier, which is essentially rainwater, is used to extract the heat at accessible depths

underneath the Earth’s surface for utilization. The carrier is stored in a reservoir covered by

impermeable rocks so that hot fluids can not easily reach to the surface and thus keep them

under pressure. The fluid is extracted by drilling a well into the reservoir.

The installed electrical energy generation from geothermal resources reached 7974 MW in

the year 2000 and the generated electrical energy represents 0.3% of total electrical energy
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generation [7]. About 13% of the total electrical supply in New Zealand is sourced from

geothermal energy [8]. Among other countries the Philippines, El Salvador, Nicaragua Costa

Rica and Kenya produce significant amount of electricity from geothermal sources.

1.2.2 Solar energy

The sun is a source of abundant energy and approximately around 1.7×1017 W reaches to

the earth and its atmosphere [9]. If only one percent of the received energy on the earth’s

surface could be converted into useful energy with an efficiency of 10%, solar energy could

meet the total energy requirement of the world. Unfortunately most of the energy is lost

in the atmosphere by scattering and absorption. Only a fraction of the extraterrestrial solar

radiation reaches the surface of the earth with essentially no change in direction and it is

called direct or beam radiation. The fraction of solar radiation that is scattered in the sky

and comes back to earth is known as sky diffuse radiation. The direct solar radiation can be

converted to useful energy with solar collectors. Fig. 1.1 [10] depicts the solar radiation that

reaches the earths surface after losses due to reflection, scattering and absorption as it passes

through the atmosphere.

The amount of the direct solar radiation that reaches the earth surface depends on the

cloudiness and position of the sun. The average annual direct normal solar radiation on the

horizontal surface varies from 800 W/m2 to higher than 1000 W/m2 [11].

As solar energy is free from any pollution and its collection does not require any moving parts,
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Fig. 1.1 Solar radiation that reaches the earth surface.

it does not require much maintenance. Moreover, with time solar energy technology has

matured and its cost has reduced. As a result, the annual global installation of photovoltaics

(PV) has expanded all over the world [12]. The total solar energy installation in worldwide

has reached 135 GW in the year 2013 and continues to expand rapidly.
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1.2.3 Wind energy

Wind energy is the oldest form of harnessed mechanized energy and is abundantly available

in most parts of the world. It is low in cost, sustainable, safe, pollution free and is popular

[3]. In contrast to the solar energy, it is potentially available 24 hours a day in a suitable site.

It is evident that sufficient wind is not only available on the land area but is also accessible

in off-shore areas. However, offshore wind is under pressure due to the cost gap relative to

more conventional (including onshore wind) energy sources. However, with the increased

population of the world, the available land area has become scarce and off-shore wind farms

are options for generating energy. It is also noticed that the cost of wind energy technology is

decreasing day by day. With all these considerations, the on shore and off shore wind energy

installations have increased dramatically in the last decade.

Global cumulative installed capacity of wind energy reached 318,105 MW in the year

2013 and the global annual installed capacity was around 35,289 MW in 2013 alone [13]. In

New Zealand around 5% of total electricity is generated from wind energy and the target is

set to 20% by the year 2030 [14].

1.2.4 Hydro and micro-hydro

Hydro power is one of the most important form of renewable energy used for generating

electrical power. Hydro electric power comes from flowing water where the kinetic energy

of flowing water is used to produce electricity. Both small and large scale implementation of
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hydro-electrical power are possible. Small hydro often uses the flowing water of a river or

dam. It provides approximately 19% of total global electrical energy generation [15] and

about 57% of the total electricity generation in New Zealand [16].

Among these various options, wind and solar energy systems can be developed both in

distributed (small scale) and centralized (utility scale) with cost comparable to existing

grid power generated from fossil fuel. They can complement each other well in temporal

distribution, thus, the storage requirement in matching the demand is reduced.

1.3 Stand-alone hybrid renewable energy system

As mentioned, renewable energy sources are only option for many remote locations in this

world. The stochastic energy generation from renewable energy sources such as wind and

solar may not match with the time distribution of demand [17] when they are used alone.

Battery banks or hydrogen storage with electrolyzer and fuel cells or super capacitor are

usually used as a backup power supply to satisfy the loads when energy from the renewable

sources is not available. However, the problem associated with this kind of system is that the

size of both the renewable generator and storage becomes extremely large. The solution to this

problem is to integrate more than one complementary sources such as wind or photovoltaics

in the presence of storage devices. Such a system is known as a hybrid renewable energy

system (HRES) . The complementary power production capability of photovoltaics (PV) and

wind turbine generators (WG) helps eliminate the weaknesses associated with each other
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and reduces the requirement of energy sources as well as storage devices. A HRES which

supplies energy in remote areas without any interconnection to external utility grid is known

as a stand-alone HRES. Stand alone applications, PV and WG as a HRES promise to be a

good alternative to grid extension or diesel generators if they are designed correctly [18].

Moreover, a WG-PV-battery system is considered as one of the most viable commercial

configurations of HRES [19].

1.4 Energy storage system

The stochastic energy generation from renewable sources is often unable to meet a desired

reliability criteria in the absence of any energy storage system. The application of any energy

storage allows time shifting of generation by storing energy during off-peak hours and supply

at peak hours. Energy storage technology can be classified as follows [20]:

1. Electrical energy storage: (i) capacitors and super-capacitors store energy in electrostatic

form and (ii) magnetic/current energy storage including super-conducting magnetic

storage (SMES) .

2. Mechanical energy storage: (i)kinetic energy storage (flywheels) and (ii) potential energy

storage (pumped hydro storage and Compressed air energy storage (CAES)) .

3. Chemical energy storage: (i) electrochemical energy storage (conventional batteries such

as lead-acid, nickel metal hydride, lithium ion and flow cell batteries such as zinc

bromine and vanadium redox) (ii) chemical energy storage (fuel cells, molten-carbonate
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fuel cells (MCFC) and metal air batteries (ii) thermochemical energy storage (solar

hydrogen, solar metal, solar ammonia dissociation – recombination and solar methane

dissociation – recombination).

4. Thermal energy storage: (i) low temperature energy storage (ice slurries, cryogenic energy

storage), (ii) high temperature energy storage (sensible heat systems such as steam or

hot water accumulators, graphite, hot rocks and concrete, latent heat systems such as

phase change materials).

1.5 Sizing method for HRES

An optimum mix and selection of each HRES device is crucial in order to make a system

reliable and cost effective. The non-linear system characteristics, the random user demand

and uncertain generation from WG and PV make the size optimization of a HRES more

complicated. Therefore, an optimization method that matches the generation with the demand

of a site, needs to be applied to ensure the lowest investment with adequate and full use of

resources. A number of different optimization methods have been suggested for this purpose

so far. The optimization methods can be classified as follows:

1. graphical construction methods,

2. exhaustive search (iterative) methods,

3. probabilistic methods,

4. heuristic methods and
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5. hybrid methods.

A problem with one or two variables can be optimized using a simple graphical construction

technique [21]. This method is not effective for WG-PV-battery HRES optimization as there

are many variables involved. In order to get an idea of optimum value, this method might be

effective.

A trade off curve of PV module and WG was utilized in [22] for a desired loss of power

supply probability (LPSP) . In [23] a graphical construction technique was presented to

optimize theoretical size (m2) of solar module and wind turbine.

An iterative optimization method is very simple and easy to carry out and is implemented by

linearly changing decision variables from a minimum to a maximum value or by employing

linear programming [24]. An algorithm for sizing PV array only, in a Wind-PV-battery hybrid

system was presented in [25]. The same authors later presented a methodology to optimize

the size of battery along with the number of PV modules in order to meet a desired loss of

power supply probability (LPSP) [22]. Their study in [26] distinguished the serial connection

of components from the parallel connection and introduced more accurate mathematical

model in order to improve the methodology proposed in [22]. Further [27] presented a

simple iterative procedure based on energy balance to determine optimal size of WG, PV

and battery in a standalone wind, PV and hybrid wind/PV system. An iterative method

based on the trade off among reliability, minimum cost and use of diesel generator was

presented to select an optimal combination and size of a HRES in [28]. An iterative method
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for sizing a PV/wind/battery was presented in [29]. This method was well suited to high

wind potential regions [30]. In order to generalize the method given in [29] for any region,

the method in [30] is modified by considering both wind and PV as primary source. A novel

iterative method for the hybrid solar-wind system optimization sizing model (HSWSO) , was

presented in [31] for a WG-PV-battery hybrid system, and a hybrid PV-WG-battery power

system for remote telecom station was optimized using an iterative algorithm by [32] taking

into consideration LPSP.

The iterative algorithm discussed so far could only optimize three sizing parameters –

the number or capacity of PV modules, wind generator and battery for a given load. It was

unable to optimize the PV module slope angle and wind turbine installation height which are

believed to be important parameters in the case of a system optimization.

An alternative is linear programming (LP) which is a deterministic method employing

seasonal/annual average values of resources (wind speed or solar radiation) and load for the

analysis purpose. In their study, [33] presented an optimization method using the dynamic

programming model ‘RAPSODY’ that was used for sizing and operation of remote area

power supply. Similarly, [34] utilized a linear programming technique to minimize the cost

by optimizing the size of PV and WG for a reliable power supply.

Further, heuristic methods can solve an optimization problem on the basis of experience

and judgment and usually result in a good solution within a short time. Though the best
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result is not always guaranteed with a limited number of iterations, an approximate to

optimum can be obtained. However, the solution of many optimization problems using

classical mathematical techniques, like linear-programming (LP), Nelder-Mead simplex

(NMS) dynamic programming (DP), Quadratic programming (QP) are unlikely to be solved

within a reasonable time due to computational complexity. The user might not also satisfy

with only one solution of a given problem as they may want to choose a solution from a set

of solutions. In recent decades heuristic optimization approaches like genetic algorithm (GA)

, particle swarm optimization (PSO) , evolutionary algorithm (EA) and simulating annealing

(SA) have been applied for hybrid renewable energy optimization. All of them usually start

with not only one solution but rather a group of solutions from the solution space of a given

problem.

A genetic algorithm (GA) was introduced into the optimization of a HRES in [35] to select

the type and number of WGs, number of PV modules and number of batteries to satisfy a

constant load demand. The tilt angle of the PV was kept constant and the height of the WG

was not considered [35]. Reference [36] utilized GA to optimize a WG-PV-battery hybrid

system with a diesel generator as an auxiliary power source, while [18] utilized GA and

proposed a methodology to suggest an optimum set from a list of commercially available

system devices. Further [17] showed that the annualized cost of the system could be reduced

further with a compromise in reliability index, LPSP. The developed methodology was used

to optimize a system for telecommunication relay station at a desired LPSP of 2%. Finally

[37] utilized GA in order to size the system devices of WG-PV-Battery with diesel generators
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under variable load conditions.

Particle swarm optimization (PSO) is another heuristic global optimization technique that

has been successfully applied to size a hybrid power system. In [38] hybrid WG, electrolyzer,

hydrogen tank-fuel cell was optimized using PSO for two different system configurations,

while [39] optimized a hydrogen-based stand-alone wind-PV generating system considering

component outages. Similarly [40] sized a WG-PV-battery hybrid system employing PSO.

Outage probability of system components was included in this analysis as was done in [39].

From these studies, it was found that GA reaches close to the best result within a short

time uses less iterations but a complete convergence of the algorithm requires a large number

of iterations. As a consequence, the computational time required to get the best result is

very long. It has been suggested that utilizing a hybrid optimization method such as the

combination of GA and simplex algorithm in [41] could address this problem.

1.6 Electrical demand

Electrical demand is an important input parameter in the sizing method and dictates the size

of a HRES. However, the stochastic nature of the electrical energy usage patterns makes it

difficult to model electrical demand profile of a site. The load profile is usually determined

by the switching “on” or “off” of an individual electrical appliances, and it is influenced by
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various environmental, dwelling and occupant characteristics [42]. The factors that influence

the energy consumption of a house are identified as follows [43]:

• floor area of a house,

• number of residents,

• geographical location,

• occupancy patterns,

• seasonal and daily factors,

• appliances level of ownership,

• fuel used for domestics hot water, space heating and cooking,

• social status,

These various factors can be grouped broadly in two categories. They are:- (i) socio-demographic

factors and (ii) seasonal factors. The floor area and geographical location evidently belong

to seasonal factors [43] whereas the remaining factors belong to socio-demographic factors.

It was also shown in [44] that domestic energy consumption is influenced by the age of

residents. The operation of some appliances such as television, video recorder, computer or

laptops and others are linked with life-style-related psychological factor. The usage pattern

of appliances is determined by single or multiple factors and shapes the load profiles.

The continuous and standby power use of cold and active appliances were investigated
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for finding the period and duration of “switching on” in [45]. The continuous and standby

power use of appliances found to be “on”over a 24 hours period form the base load of the

profile along with the cold appliances. This energy consumption was classified as predictable

and moderately predictable in [46]. The predictable energy consumption is independent

of the user actions where as moderately predictable consumption is related to the habitual

behavior of the occupant and is cyclical in nature. However, the consumed energy by the

active appliances such as kettles and electrically heated showers are more random in nature

and typically consume high power. The vast majority of electric appliances are in the group of

active appliances and the energy consumption of these appliances in a house is unpredictable.

Further the external and internal temperature of a house is linked with seasonal variations

and switching on and off of many appliances depends on the seasonal variations. Fig. 1.2

shows electrical load variations in summer and winter due to temperature variation in New

Zealand.

An electrical load profile can therefore be considered as the combination of deterministic

and stochastic process [42]. The electrical demand at any time can be assumed to be a

combination of four separate components: the normal part, the weather sensitive part, the

special event part and a random part [47]. The modeling of the deterministic part of electric

load is easy, however, the stochastic nature of the random load is difficult to predict and is

linked with many factors as discussed above. The base electrical load remains relatively

constant throughout the year but the operation of many appliances is cyclic in nature and the
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Fig. 1.2 Hourly winter and summer load of typical house of a day .

operating period of these cyclic appliances is not always fixed. As such the magnitude and

temporal position of the stochastic portion of electric demand varies significantly.

The demand profile generator [48], a simulation tool was developed based on the studies of

[44] to explore the effect of the usage patterns of different appliances on demand profiles.

The data and information from [44, 49, 50] were used in developing that tool. They classified

the appliances into different categories and probable operating time for each of these groups

was identified. Each hour of the likely operating time was identified with a given probability.

The washing machine as an example was classified in wet appliances category and set the

operating period from 18:00 hr to 24:00 hr. Each hour has a probability of 0.2 except the

hours 22:00 hr-23:00 hr and 23:00 hr-24:00 hr. The probability of operating a washing
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machine at these hours was set to 0.1. This was also varied with number, age and status of

the occupants.

As a result, the magnitude and temporal position of peak electrical demand varies day

to day. Fig. 1.3 shows random variation of peak electrical demand for different types of

users.
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Fig. 1.3 Classified six different profiles of a site based on socio-demographic factors

Chronological modeling of electrical load keeping all these factors in mind is quite difficult

and cumbersome. However, input of real life electrical load is as important as the sizing

method.
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1.7 Motivation

The optimal sizing methods usually match the variable generation from renewable sources

with an existing demand of a site. It is therefore important to input a realistic demand profile

to the method so that the optimized size would able to meet with the desired reliability.

Hourly electrical load of a day was considered in [25, 27] in sizing a PV module and a given

wind turbine generator. Hourly generation and demand for a typical day in each month was

taken into consideration for sizing PV modules and batteries in [22]. The average monthly

demand data was considered in sizing the WG swept area and surface area of PV modules in

[23, 51], while an hourly constant load was assumed in [17, 31, 52, 53]. The electrical load

of an energy saving light and a street lamp which was turned on at night only was satisfied

by PV modules and batteries for a fixed WG generation in [26] and [41]. Hourly demand for

a day repeated throughout the year was examined for sizing a HRES by [18, 28, 29, 54, 55]

and day to day demand variation of 30 percent was introduced with the hourly demand of a

day in considering randomness of the load [37]. The load data for the IEEE reliability test

system (IEEE RTS) [56] was taken into consideration in [39] and five different load profiles

(constant low load, hourly domestic load, farm load, high load and continuous high load)

were considered in [57]. Two days in a week, weekend and weekday load were taken into

consideration in [58] in order to include the effect of the working pattern of the residents

while sizing a HRES. Six different demand profiles was considered in [59] while using Fuzzy

logic for sizing a HRES. The demand profiles included midday and midnight peak of summer

and winter load as well as constant summer and winter demand, in order to consider the same
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and varying annual electrical load. However, there is a greater need to include realistic load

profiles in the sizing and optimization of HRES.

1.8 Scope of research

Optimal sizing of a HRES plays important role to ensure lowest investment cost as well as

full use of system resources. The optimization method thus matches the generated energy

from a HRES with a given demand in such a way that some constrains are satisfied. The

demand which is the key driving input in sizing a power generating system [60], has not been

given much attention so far for sizing optimization.

In most of the previous studies, the emphasis was given to the optimization method rather

than the load profile of the site. In almost all the previous studies, the hourly demand of a day

[17, 18, 25] repeated throughout the year or monthly average daily demand [22] or seasonal

demand [23] was only considered during the sizing optimization of a HRES and so does

not represent the real load of the site. The demand is usually stochastic in nature and varies

both in magnitude and temporal position. The variation of the load depends on both internal

and external factors [61]. The internal factors include the number and age of the house hold

occupants, their social status, characteristics of building material and the external factor

includes external temperature. The optimized size of HRES without considering this load

variation fails to meet the desired reliability. Thus, the demand profile needs to be modeled

considering the above mentioned factors while sizing a HRES.
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1.9 Contributions

The research undertaken in this thesis has made the following contributions to advance the

current state of the field.

• For many applications, particularly residential dwellings, this load is generally stochastic

in nature and governed by a wide range of internal and external factors such as the

socio-demographic characteristics of the households’ occupants (like number and age

of occupants, their working pattern and their social status) and also seasonal variations

[61]. In this study, the socio-demographic factors are integrated while sizing a HRES.

• The hourly demand of a day repeated throughout the year does not represent real life load

of a site. The load usually varies randomly both in magnitude and temporal position.

This time varying demand variations is incorporated in optimal sizing of a HRES.

• DSM has attracted the attention of the system planners for its ability to modify the demand

profile and thus can reduce the investment cost. The DSM program includes the use of

efficient utilities, cutting off the peak demand, shifting the peak demand to the off-peak

time etc. DSM can play a great role in optimal sizing of a HRES which has never been

considered in any of the previous studies.
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Chapter 2

System Model

2.1 Introduction

The optimal sizing of a HRES requires the power generation to be matched with the demand

of a site. The estimation of power generation depends on the available resources at a site as

well as the performance of the generators. A system simulation can provide a good estimation

of power generation when it is correctly modeled. Quite often it is found that one renewable

source is not able to provide sufficient power to meet the demand and so it is necessary to

combine several complementary renewable sources and storage elements in a stand-alone

application. The complementary nature of renewable sources reduces the size of the storage

elements in a combination, thus delivering a low cost system.
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2.2 System configuration

Numerous hybrid renewable energy systems have been investigated previously for stand-alone

applications including wind-PV-battery, wind-PV-diesel generator, wind-PV-battery-diesel

generator, PV-hydrogen storage-fuel cell and wind-PV-hydrogen storage-fuel cell [19].

However extensive research has developed PV and WG technologies to such an extent

that they can compete as an economical alternative to conventional power generating systems.

Therefore, among the available potential configurations of HRES wind-PV has proven to be

commercially more viable than other options [19]. Similarly, for storage devices, batteries

are one of the most common choices due to their low cost and advancement in technology.

Thus, in this work, a wind-PV-battery hybrid renewable energy system is considered for

further investigation as shown in Fig.2.1. For this system, the WGs, PV modules and batteries

are considered to be connected to DC and AC loads through a 24V DC bus.

2.3 Objective function formulation

Sizing a hybrid renewable energy system correctly, requires a careful balancing and optimization

of the generation and storage with respect to the demand for electricity placed on the system

by the users. Therefore, it can be viewed as an optimization problem with a constrained

variable that can be stated by equation (2.1)

maximize/minimize f (x) (2.1)
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Fig. 2.1 A Wind-Photovoltaic-Battery hybrid renewable energy system

subject to the constraint in equation (2.2)

xmin ≥ x ≥ xmax (2.2)

where f (x) is an objective function.

For this study, the aim is to minimize the total cost of ownership over the life of a HRES

while also maintaining an LPSP of zero. The total cost consists of the capital cost of WGs,

PV modules and batteries and 20 years total maintenance in addition to the operational cost
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of WGs, PV modules and batteries as given by equation (2.3) [18].

Minimize f (NPV ,NWG,Nbat ,h,β ) (2.3)

= NPV (CPV +20MPV )

+NWG(CWG +20MWG +hCh +20hMh)

+Nbat(Cbat + ybatCbat +(20− ybat −1)Mbat)]

Subject to the constraints in equation (2.4):

NPV ≥ 0, (2.4)

NWG ≥ 0,

Nbat ≥ 0,

βmax ≥ β ≥ βmin,

hmax ≥ h ≥ hmin,

PV modules are assumed to be f aced true North.

where, NPV = (NS ×NP) is the number of photovoltaic modules, NWG is the number

of wind turbine generators, Nbat = (NSbat ×NPbat) is the number of batteries, NSbat is the

number of series connected batteries determined by the bus voltage, NPbat is the number of

parallel connected batteries which is determined by the optimization, β is the photovoltaic

tilt angle, h is the WG installation height, CPV is the capital cost of a photovoltaic module,

CWG is the capital cost of a WG, Ch is the capital cost per unit height of a WG tower, Cbat is
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the capital cost of a battery, MPV is the yearly maintenance cost of a PV module, MWG is the

yearly maintenance cost of a WG, Mh is the yearly maintenance cost per unit height of a WG

tower, Mbat is the yearly maintenance cost of a battery and ybat is the expected number of

battery replacements during a 20 year period.

2.4 Modeling of the system for optimization

In order to optimize the system, it is necessary to understand the environmental conditions

in which the system will operate, as well as the demand that will be placed on the system.

For this study it was assumed that the system would be installed for a single dwelling in

Auckland, New Zealand (latitude 36.85° S and longitude 174.78° E). Figs. 2.2, 2.3 and 2.4

show hourly wind speed (m/s), solar radiation (W/m2) and ambient temperature (°C) across

a typical meteorological year (TMY) data for Auckland that were used in the determination

of the electrical output from the HRES [62].

In addition to understanding the prevailing weather conditions, that determine the output

from the generators, it is also necessary to understand the typical loading conditions for the

HRES. In [61], 239 electrical demand profiles from 40 houses were recorded and classified

into six different classes based on the time of energy usage patterns. The average of these six

classes as presented in Fig 2.5 was taken for this study. Close examination of the demand

profile reveals that the electrical load is typically low (<1 kW) from 02:00 hr to 03:00 hr and
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Fig. 2.2 Hourly wind speed (m/s) of a year in Auckland, New Zealand.

Fig. 2.3 Hourly global horizontal radiation (W/m2) of a year in Auckland, New Zealand.

from 12:00 hr to 16:00 hr. The peak load (1.8 kW) is at 20:00 hr and it is higher than 1.5 kW

from 19:00 hr and 24:00 hr. Between the hours 07:00 hr to 11:00 hr the load is above 1 kW.
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Fig. 2.4 Hourly temperature (° C) of a typical year in Auckland, New Zealand.

Fig. 2.5 Average hourly electrical load profile of a day.
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Finally, although the weather data provides an indication of the potential output from wind

and PV generators, to fully optimize a HRES it is necessary to have a characteristic model

of the system. In this situation the system is made from a number of sub-components with

varying individual characteristics, hence it is necessary to describe each of these individually

before they are encompassed in the optimization.

2.4.1 Wind turbine generator model

When selecting a wind turbine, the manufacturer provides a nonlinear power characteristic

curve for the WG that relates the wind speed and specific power output (W/m2) from the

WG. Fig. 2.6 shows a typical power characteristic curve of a WG.

Fig. 2.6 Power characteristic of a typical wind turbine generator (WG).

However, in determining the output from the WG, it is necessary to know the wind speed at

the site. The hourly wind speed of a site at a reference height (approximately 33m) can be
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sourced from typical meteorological year (TMY) data and subsequently, the wind speed at

any height can be calculated by equation (2.5) [63].

v = vre f

(
h

hre f

)α

(2.5)

where, vre f and v are the wind speed at the referenced height and the hub height respectively,

and α is a power law coefficient. The value of this coefficient is less than 0.10 for very flat

land, water or ice and it is more than 0.25 for a heavily forested landscape [17]. In general the

one-seventh power law (α = 0.14) is a good approximation for relatively flat surfaces such as

the open terrain of grasslands away from tall trees or buildings [64] and so is used in this study.

Therefore the specific power output, Pw(W/m2) from a WG can be expressed by equation

(2.6) [34].

Pw(v) =,



0 if v < vci,

av3 −bPr if vci ≤ v < vr,

pr if vr ≤ v < vco,

0 if v ≥ vco,

(2.6)

where, a = Pr
v3

r−v3
ci

, b =
v3

ci
v3

r−v3
ci

, Pr is the rated power, vci,vco and vr are the cut-in, cut-out and

rated speed of the wind turbine respectively, as specified by the manufacturer.
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As such, the actual electrical power from a WG can be found from equation (2.7).

PWG = PwAWGηWG (2.7)

where AWG is the total swept area of the WG and ηWG is the efficiency of the wind turbine

generator and corresponding converters.

The characteristics and price of the wind turbine used in this study are shown in Table 2.1

Table 2.1 Specification of the WG

Pr Vci Vco Vr hmin hmax WG capital cost Tower capital cost
(W) (m/s) (m/s) (m/s) (m) (m) ($) ($ per unit length)
1000 3.58 64.4 11.0 11 35 2400 35

2.4.2 Photovoltaic module model

The performance of a PV module is highly influenced by weather conditions such as

solar radiation, wind speed and ambient temperature which influence the PV module cell

temperature. The maximum output power of a PV module at any time can be determined

from equation (2.8) [18] for the standard test conditions (STC) (cell temperature at 25°-C and

solar irradiance of 1kW/m2) given by the manufacturer, as well as the ambient temperature

and irradiation conditions.
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PPV (t,β ) =VOC(t,β )ISC(t,β )FF(t) (2.8)

ISC(t,β ) = {ISC−STC +KI[Tc(t)−25oC]} G(t,β )
1000

VOC(t,β ) =VOC−STC −KV Tc(t)

Tc(t) = TA +

{
(NCOT −20oC)

800

}
G(t,β )

where ISC(t,β ) is the short circuit current, ISC−STC is the short-circuit current under standard

test conditions (STC), G(t,β ) is the global solar irradiance incident on the PV module at

a tilt angle of β °, KI is the short-circuit current temperature coefficient, VOC(t,β ) is the

open circuit voltage, VOC−STC is the open circuit voltage under STC, KV is the open circuit

voltage temperature coefficient, TA is the ambient temperature (oC), NCOT is the nominal

cell operating temperature and FF(t) is the fill factor. It should be noted that under STC, the

irradiance and cell temperature are taken to be 1000 W/m2 and 25°C respectively, whereas

the nominal cell operating conditions are taken to have an irradiance of 800 W/m2 and an

ambient temperature of 20° C.

In considering this, hourly global irradiation on a horizontal plane can often be obtained

from typical meteorological year (TMY) data sets. However total global horizontal radiation

consists of beam and diffuse radiation so to determine irradiance on a tilted PV module it is

necessary to decompose the global radiation into beam and diffuse components. The ratio

of beam (G) and diffuse (D) components of this hourly global radiation can be obtained
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from the hourly clearness index (kT ) expressed by equation (2.9) [65], determined by the

correlation between G
D and kT provided in [66–68].

G
D

=



1.0 − 0.09kT for 0 < kT < 0.22,

0.9511 − 0.1604kT + 4.388kT
2 − 16.638kT

3 + 12.336kT
4 for 0.22 < kT ≤ 0.80,

0.065 for kT > 0.8,

(2.9)

Subsequently the total hourly radiation on a surface tilted at an angle β can be expressed by

equation (2.10) [65].

G(t,β ) = (G−D)Rb + D
(

1+ cosβ

2

)
+ Gρg

(
1+ cosβ

2

)
(2.10)

where ρg is the ground reflectance and Rb is given by equation (2.11) [65]. This assumes that

the PV modules are at a fixed angle and facing true north, as New Zealand is located in the

southern hemisphere.

Rb =
cos(φ +β )cosδcosω + sin(φ +β )sinδ

cosφcosδcosω + sinφsinδ
(2.11)

where ω is the solar hour angle, φ is the latitude and δ is the declination.
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Thus, the total power output from a PV array is given by equation (2.12).

Parray(t,β ) = ηPV NSNSPPV (t,β ) (2.12)

where NS and NP are the number of PV modules connected in series and in parallel

respectively and ηPV is the efficiency of the PV modules and corresponding converters.

In this study, the employed sizing optimization method determines the number of parallel

connections of PV modules and the number of PV modules connected in series as defined by

the bus voltage.

The characteristics and price of the PV modules used in this study are shown in Table 2.2.

Table 2.2 Specification of the PV module

VOC ISC Vmax Imax Pmax KV KI Fill factor Capital cost
(V) (A) (V) (A) (W) (V/°C) (A/°C) ($)
64.8 6.24 54.7 5.86 320 −0.0032 0.0055 0.893 640

2.4.3 Battery model

It is assumed that the surplus electrical energy from the WG and PV would be stored in

lead-acid battery banks, and energy would be extracted from the batteries when energy

generated by the sources was not sufficient. The number of series connected batteries, NSbat

depends on the DC bus voltage, VBUS and if the nominal voltage of each individual battery is
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Vbat , then this number is calculated using equation (2.13).

NSbat =
VBUS

Vbat
(2.13)

The capacity of the battery bank is related to the number of batteries connected in parallel

and is given by equation (2.14).

Cn = NPbat ×Cbat (2.14)

Thus, the total number of batteries can be found from equation (2.15)

Nbat = NSbat ×NPbat (2.15)

In doing this it is important that the battery bank is not allowed to discharge fully to ensure

longer battery life. In this regard the maximum permissible depth of discharge (DOD) of

the battery is specified by the system designer as a percentage. The minimum permissible

battery capacity during discharging is therefore given by equation (2.16).

Cmin = DOD×Cn (2.16)

The knowledge of the real state of charge (SOC) of a battery depends on the initial SOC, the

charge or discharge time and the current. The losses during the charging or discharging time

and also during the storage need to be taken into account. The current SOC can be determined
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from the previous SOC and the charge or discharge current as well as self-discharge of a

battery. Subsequently the SOC is defined by equation (2.17) [17]:

SOC(t) = SOC(t −1)
(

1− σ∆t
24

)
+

Ibat(t)∆tηbat

Cbat
(2.17)

where σ is the self-discharge rate depending on the accumulated charge [17], taken to be

0.2% per day as recommended by [69], and Cbat is the capacity of the batteries. As in [17],

the depth of discharge (DOD) was set to 0.8, the battery charge efficiency (ηbat) was set to

0.8 and the discharge efficiency was set to 1.

Finally, the battery current of the hybrid WG-PV at any time (t) is given by equation

(2.18).

Ibat(t) =
PPV (t)+PWG(t)−PLoad(t)

Vbat(t)
(2.18)

where, PPV (t) and PWG(t) are the instantaneous power produced by the PV modules and the

WGs respectively, PLOAD(t) is the demand and Vbat(t) is the battery voltage.

Table 2.3 Specification of the battery

Price Voltage Capacity
($) (V) (Ah)

1239 12 357
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2.5 Reliability model based on loss of power supply probability

(LPSP)

Finally, in characterizing the nature of this system, this study uses an LPSP approach. The

loss of power supply probability (LPSP) is used to measure the reliability of the optimized

HRES and is defined as the average fraction of a load that can not be satisfied by the system

in a given time period [22] as shown in equation (2.19).

LPSP =
∑

T
t=0 LPS(t)

∑
T
t=0 PLoad(t)

(2.19)

where, LPS(t) is the loss of power supply at hour t. The power supply can be disrupted if the

demand is higher than the available power from the WG, PV modules and battery, hence the

range of LPSP varies from zero to one. The load will always be satisfied with an LPSP of

zero and will never be satisfied with an LPSP of one. In this research work, the probabilistic

approach to LPSP calculation is incorporated with the objective function, where LPSP is

defined by equation (2.20) [17].

LPSP =
∑

T
t=0 Loss o f Power Supply Time

T
=

∑
T
t=0 Time(Pavailable(t)< PLoad(t))

T
(2.20)

The loss of power supply time is the time when the available power from the renewable

sources and batteries is less than the demand at that time. The available power from the
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system can be found by the equation (2.21) [17].

Pavailable = PPV (t)+PWG(t)+C.Vbat .Min
[
Ibat,max =

0.2Cbat

∆t
,
Cbat .(SOC(t)−SOCmin)

∆t

]
(2.21)

Here, the available power at a time t is Pavailable, Cbat is the capacity of the batteries, state

of the charge of the batteries at time t is SOC(t), and C is a constant and its value is 0 for

for battery charging process and 1 during the battery discharging process. As the analysis is

done on hourly basis, the numerical values of power is equivalent to energy.

2.6 Optimization Methodology

Among the various optimization methods, genetic algorithm (GA) and the exhaustive search

technique do not require any complex mathematical calculations (derivative calculation).

However, they are capable of finding optimal solutions efficiently and they were utilized for

this study.

2.6.1 Genetic algorithm

Genetic algorithms (GAs) are a global optimization method and can be applied for solving a

multi-variate and non-linear optimization problem such as the sizing of a HRES. The process

consists of selection, crossover and mutation operations that mimic the natural evolution of
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genetics [70].

Genetic algorithms are different from other optimization techniques in that they are a

population based method; that is to say, they start with several probable solutions (chromosomes)

at a time. These solutions may be coded with binary, real or mixed values, and the

initial population is generated randomly. Thus, the solutions are scattered throughout

the search space. Each of the solutions consists of multiple variables, known as the genes

of the chromosome and each gene (variable) is tested against the given constraint. An

objective function (for this study the 20-year total system cost) is evaluated for each of the

chromosomes, provided that each gene in that chromosome satisfies the desired constraints.

If the solution fails to satisfy the constraints it is then replaced with a new solution, generated

randomly. The best fitted solutions are selected and sorted based on the corresponding value

of the objective function. The selected solutions will be crossed among each other to get the

solutions of the next generation, this is known as a crossover operation. Finally, mutation

allows some of the solutions to be changed randomly to prevent immature convergence of the

solution. The flow chart of the implemented GA optimization process is depicted in Fig. 2.7.

In each case, the number of chromosome was taken to be 32, natural selection rate was 0.5,

crossover rate was 0.8 and mutation rate was 0.4. These parameters are selected in a way to

optimize the required computation time and to prevent immature convergence. The elitist

technique of the crossover operation generates a new generation of chromosome from the

selected solutions except the best solution of the previous generation. As the chromosomes
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Fig. 2.7 Flow chart of the implemented genetic algorithm (GA).
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converge quickly with lower mutation rates, the new generation of population due to the

crossover operation may scatter within the limited search space and become trapped in local

minima. The mutation rate was therefore kept higher so that the GAs could explore a much

wider region in the search space. The best solution in each generation was compared with

the global best and any improved result was stored as a new global best. This increased

the probability of reaching the global optimum solution within a reasonable number of

generations.

However, GAs are unable to guarantee the optimal sizing of a HRES within a limited

number of generations as the solution may become trapped in a local optimum rather than the

global optimum. On the other hand a large number of iterations require longer computation

time [41].

2.6.2 Exhaustive (iterative) search method

The exhaustive search method on the other hand looks for every probable solution by linearly

changing the variables within the search space. The easy to implement exhaustive search

method is less likely to be trapped into local optima provided that the upper and lower bounds

of each decision variable are selected correctly. However, it requires a large number of

iterations that increase the computation time, or the optimal size may be trapped into local

optima due to the selection of searching space. In most previous studies using exhaustive

search methods the number of variables was thus limited to only three. However, the number

of variables can be increased by reducing the searching space and by selecting upper and
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lower bounds of variables within a reasonable ranges. Fig. 2.8 shows the flow chart of an

iterative method.

Fig. 2.8 Flow chart of the implemented exhaustive search (iterative) method
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2.6.3 Hybrid (GA-exhaustive search) optimization method

It is noted that the exhaustive search technique and the GA global optimization method,

require a large number of iterations in order to converge to the optimal size of a HRES.

Furthermore, stochastic GA methods are unable to guarantee an optimal solution even with a

large number of generations [41]. Thus, a hybrid method has been implemented and utilized

for sizing a HRES throughout this work. The method utilizes the advantages of both GA

and the exhaustive search technique thereby eliminating the drawbacks associated with each

individually.

A key property of a GA is that it converges quickly to the approximate optimal solution, this

property is exploited to define the bounds of the decision variables. Several runs of only 300

generations of a GA are used for this purpose. Each run of this limited generation of GA

closely approximates the optimal size of a HRES and confines the search space. Subsequently

the exhaustive search technique is employed to find all combinations within the bounds that

satisfy the desired reliability index, LPSP. The combination with the lowest life-time cost

is taken as the optimal size of the HRES for the given demand. As the searching space of

the iterative method can be reduced by the GA, the PV module tilt angle (β o) and the WG

installation height (h) can also be included in the decision variables. The flow chart of the

implemented hybrid optimization method is shown in Fig. 2.9.
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Fig. 2.9 Flow-chart of hybrid optimization method
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2.7 Results and Discussion

2.7.1 Optimal size of a HRES for typical annual demand profile

In order to validate the method, a HRES was sized for the average electrical load profile

as shown in Fig. 2.5 using the hybrid optimization method and the result obtained was

compared with the result of a GA. The annual hourly demand profile consisted of the daily

electrical demand repeated everyday throughout the year.

To do this the GA was run for 300 generations only and the size of the HRES was approximated.

Several approximate optimal sizes of a HRES resulting from 300 generations of a GA are

shown in Table 2.4.

Table 2.4 Approximate result with 300 Generation of a GA

WG PV Battery Height Tilt angle Total cost
# # # (m) (o) ($)
7 69 16(8×2) 17 60 297,998

18 68 14(7×2) 19 58 310,795

12 72 14(7×2) 17 65 290,791

5 90 14(7×2) 32 34 282,607

11 75 14(7×2) 15 68 288,577

The approximate optimal sizes as shown in Table 2.4 were used to determine the bounds of

the decision variables using one of the following methods.

Method I: Among the sizes in Table 2.4, the optimal solution was assumed to be around the
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size of the lowest total system cost. The nu Thus, the bounds of the decision variables was

taken to be around the size of the lowest system cost shown in Table 2.5.

Table 2.5 Defining the bounds of decision variables using method I

Variable Min Max
NWG 4 6

NPV 70 110

NBat 12(6×2) 16(8×2)

β 20 60

h 20 35

Method II: In this method, the bounds were selected based on the minimum and maximum

values of the decision variables resulting from the approximate optimal sizes of a HRES

suggested by the GA. Table 2.6 shows the minimum and maximum values of the variables as

found from the limited generation of GA.

Table 2.6 The minimum and maximum values of the variables as found from the limited
generation of GA

Variable Min Max
NWG 5 18

NPV 68 90

NBat 14(7×2) 16(8×2)

β 34 68

h 15 32

Thus, the upper and lower bound was taken as shown in Table 2.7.
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Table 2.7 Defining the bounds of decision variables using method II

Variable Min Max
NWG 4 19

NPV 65 75

NBat 14(7×2) 16(8×2)

β 30 70

h 15 35

With the upper and lower limits of the decision variables defined, the exhaustive search

method can find all the feasible combinations within 123,984 iterations using method I and

303,072 iterations using method II. Thus, the hybrid optimization requires only 133,584

and 312,672 iterations with method I and method II respectively. This provides a significant

reduction in iterations compared to the exhaustive search method (2275×106).

Though, the number of iterations performed is comparable with the GA, GA requires longer

times and is unable to guarantee the optimal solution with such a large number of iterations.

As further validation of the method, the optimized size of the HRES obtained by the hybrid

(GA and exhaustive search) method was cross referenced with the solutions obtained by a

GA alone as shown in Table 2.8.
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Table 2.8 Optimal size of a HRES using hybrid method and GA for the average load profile
of Fig. 2.5

Method WG PV Bat Height Tilt angle Total Cost
Name # # # (m) (o) ($)

GA 6 75 14 32 54 275,310

(7×2)

Hybrid 6 75 14 32 54 275,310

(7×2)

2.8 Concluding remarks

It is apparent that both these methods provide the same size HRES for the given load profile,

thus demonstrating the capability of a hybrid optimization method. However, as the hybrid

optimization method obtained can guarantee the optimal size with a limited number of

iterations.

Now in considering the results of this optimization, it is important to note that the daily

demand profile typically depends on various factors such as user actions, internal and

external household temperature and the socio-demographic factors of the inhabitants. Thus,

the optimized size considering the daily demand of a single day to be repeated throughout the

year may be unable to meet the demand with desired reliability as affected by these factors.

Therefore, the work following on from this benchmark optimization examines how such

factors can influence the sizing of a HRES.





Chapter 3

Optimal Sizing of a HRES Considering

Socio-Demographic factors

3.1 Introduction

Each device of a stand-alone hybrid renewable energy system (HRES) needs to be selected

and mixed optimally in order to make the system reliable and cost effective. The time varying

user demand, the non-linear system characteristics and uncertain generation from WG and

PV modules make the size optimization of a HRES more complicated. Thus the demand

profile of a site is of great importance as it dictates the size of the system components.

However, for many applications, particularly residential dwellings, this load is generally

stochastic in nature and governed by a wide range of internal and external factors such as the

socio-demographic characteristics of the household occupants and also seasonal variations

[61]. Socio-demographic characteristics usually refer to age, sex, place of residence, religion,
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educational level, marital status, household status, interests, values, social groups and working

patterns. Though climatic factors are mainly responsible for the variation of energy load

profiles of most houses [61], socio-demographic factors of the occupants of a house also

affect demand profiles considerably.

Numerous load profiles have been used in sizing HRES, however, none of these approaches

considered the socio-demographic factors and their effect on the sizing a HRES. In [22] the

seasonal variations were considered in sizing PV modules and batteries for a given WG and

desired loss-of-power-supply-probability (LPSP) and [23] presented a graphical construction

method for determining WG swept area and PV module area for winter and summer seasons.

Weekend and weekday loads were taken into consideration in [38] in order to include the

effect of the working pattern of the residents while sizing a HRES. In [59] six different

demand profiles were considered while using fuzzy logic for sizing a HRES. The demand

profiles included midday and midnight peak of summer and winter load, as well as constant

summer and winter demand, in order to consider the same and varying annual electrical load.

Now, [61] undertook a wide ranging study on household energy use in 40 New Zealand

houses and noted that the demand profiles of a site as a result of the socio-demographic

factors, could be classified into six different classes. In this chapter, the average daily load

profiles of each class are investigated for their influence on the optimal sizing of a HRES

using the hybrid optimization method consisting of a GA and exhaustive search method
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described in chapter two. From this analysis, the optimally sized systems considering

socio-demographic factors are suggested.

3.2 Demand profile

As mentioned earlier, an average daily profile of 40 houses developed from an average

one-month's data was analyzed in [61] for determining generic daily electrical demand

profile. Those profiles were classified into six classes using a Kohonen probabilistic neural

network [71]. This network defines its own criteria that allows the user to set the number of

classes and some of the learning parameters while classifying patterns [61]. Figs. 3.1-3.6

show the six demand profiles identified from this study, each of which is the average of its

class. An examination of these six profiles reveals that each of them is markedly different

from the others both in temporal position and amount of energy use. This is due to the effect

of socio-demographic factors, even though they are only the average for each of the classes.

The profiles are identified as follows:

Class #1: High night use

The energy consumption as shown in Fig. 3.1 is very high over night with a low consumption

during the day and medium in evening. This indicates that the consumers of this profile are

particularly active at night. The energy use increases from 24:00hr and continues to 07:00hr

with a peak demand of about 3700 W. The occupants of this type of household are quite

possibly young and working people who remain outside during the day and come back at
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different times at night. The profile suggests that the occupants remain active for several

hours at night. This may also correspond to weekend energy consumption in a house where

occupants start their activities in the evening, and the whole day they are either sleeping or

remain outside. The consumption may be due to cooking, having hot showers, watching

television, using washing machine or drier.

Fig. 3.1 Demand profile of Class #1 (high night use).

Class #2: Similar morning and evening peak with low midday use

This profile as shown in Fig. 3.2 is characterized by a similar morning and evening peak load.

The consumers of this profile are likely working persons who go to work in the morning

and come home in the afternoon. The residents of this house are likely a working couple or

family with school aged children, as the low day usage suggests they remain outside during
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typical working hours of the day. The hot water shower, cooking appliances and television

might consume most of daily energy consumption during morning and evening.

Fig. 3.2 Demand profile of Class #2 (Similar morning and evening peak with low midday
use).

Class #3: High day use with morning peak

The occupants of the houses of this profile has a relatively constant electrical energy demand

all day long. The profile of Fig. 3.3 shows slightly high usage profile in the morning and

early evening that may be due to cooking and showers. The energy consumption profile

suggests that the occupants of this house are active and present in the house all day and may

work from home.
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Fig. 3.3 Demand profile of Class #3 (high day use with morning peak).

Class #4: Extended evening peak

The profile as shown in 3.4 is characterized with the electrical demand extended for a

longer period in the evening. The demand has a comparatively low and short morning peak

suggesting the residents take showers in the evening. The occupants of this house may be a

couple or a family with children. The consumption peak at 20:00 hr and 21:00 hr may be

due to energy consumption from several televisions, video recorders and may also include

hot water showers after returning from jogging or exercise. The high energy consumption at

peak hours indicates their status and ownership level of different electrical equipment.

Class #5: Medium flat day use with early evening peak

The load profile of this class as shown in Fig. 3.5 shows an increase in energy consumption
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Fig. 3.4 Demand profile of Class #4 (extended evening peak).

during the day and early evening. The largest energy consumption is in between 16:00 hr and

23:00 hr. This suggests that the residents of these profile user remain active during the day.

The energy consumption profile suggests that retired people are likely to live in the house

as the profiles in this class are similar due to similar social status [61]. Almost 80% of its

component profiles are from those of the houses where the occupants’ have similar main

income.

Class #6: Low use with evening peak

This profile as shown in Fig. 3.6 is similar to class # 5. Energy consumption is even lower

during day and having late evening peak. This suggests that a few of the occupants are

remain at home during the day and they may cook, take showers, watch television or work
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Fig. 3.5 Demand profile of Class #5 (medium flat day use with early evening peak).

with computers during the evening period.

Each of the demand profiles for these six classes are unique in terms of their hourly energy

consumption and their temporal distribution. Based on these six classes, it is possible to

illustrate the effect of socio-demographic factors on the optimal sizing of a HRES, as the

profiles are influenced by these factors. As the peak demand magnitude varies significantly

for each of the classes, the optimization was attempted for the average of each profile class

and average of these six profile classes using the hybrid GA/exhaustive search method

described previously, optimization was performed for a HRES operating with each class of

users demand profile repeated across the year.
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Fig. 3.6 Demand profile of Class #6 (low day use with evening peak).

3.3 Results and discussion

3.3.1 Optimal size considering socio-demographic factors

To explore the effect of socio-demographic factors, each of the load profiles shown in Fig.

3.1 to Fig. 3.6 were used for optimal sizing a HRES with zero LPSP. The results are shown

in Table 3.1.

An analysis of these results shows up several important considerations regarding the optimal

size of a HRES and the demand profile. It can be seen that the optimal size for the “overall

low use” profiles (class #5 and #6) is almost the same due to the similarity in magnitude and

distribution of the load.
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Table 3.1 Optimized size of a HRES for each of the profile classes

Load WG PV Battery Height Tilt angle Total Cost
Profile # # # (m) (o) ($)
Class 8 97 18 29 50 354,609

#1 (9×2)

Class 4 77 14 29 45 267,895

#2 (7×2)

Class 6 95 14 34 27 291,175

#3 (7×2)

Class 4 110 14 30 20 293,407

#4 (7×2)

Class 4 65 12 28 50 231,798

#5 (6×2)

Class 4 62 12 29 51 228,894

#6 (6×2)

Avg. 6 75 14 32 54 275,310

(7×2)

However, the “high extended evening peak” profile (class #4) has a distinct morning peak,

low midday and a high evening peak demand extending from 18:00 hr to 24:00 hr. The

outcome of this is that the number PV modules for this class increases significantly from

the “overall low use” profile classes, as does the requirement for battery storage. On the

other hand, the “high day use with morning peak” profile exhibits a flat high day use. A

large morning peak that gradually reduces through the afternoon, before a moderate evening

peak. This causes a significant change in the proportion of both WGs and PV modules in the

optimum sizing, as the solar radiation in the early morning and evening is low, meaning the

demand is satisfied with an increased number of WG. A similar outcome is also observed in
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case of “high night use” profile (class #1), where the loading is principally night based, with

low loading during the day.

Thus, it is clear from the analysis that higher evening and night demand requires more

WGs whereas higher morning and midday demand are satisfied by increasing the number

of PV modules. To illustrate this point further, Pearson’s correlation between hourly load

and the average hourly solar radiation and wind speed for each class of demand profiles

was calculated and presented in Table 3.2. The values can be varied from +1 to −1. The

value of +1, 0 and −1 indicate strong positive correlation, no correlation and strong negative

correlation respectively.

Table 3.2 Pearson's correlation coefficient between average hourly solar radiation and wind
speed with each of the demand classes

Load Pearson’s coefficient Pearson’s coefficient
Profile with solar radiation with wind speed
Class#1 −0.735 −0.736

Class#2 −0.253 −0.149

Class#3 0.536 0.460

Class#4 −0.277 −0.108

Class#5 0.278 0.465

Class#6 −0.211 −0.042

It is evident from the Pearson’s correlation coefficient values that the “high night use

(class #1)” demand profile shows a strong negative correlation with the solar radiation

and wind speed of the site. From this it can be inferred that, for heavy night usage the storage

size needs to be increased significantly to meet the load, as was borne out by the optimization.
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On the other hand, for loads exhibiting a positive correlation, such as the “high day use with

morning peak (class #3)” profile, the solar and wind require less storage capacity as the

instantaneous generation can satisfy much of the demand.

The key consideration of optimizing a HRES based on socio-demographic factors is in

understanding how a system sized for one class of users responds to the demands from

another class of users, for instance if there is transfer of ownership of the system. Therefore,

a cross comparison of the LPSP was undertaken for each system operating with other load

profiles as shown in Table 3.3.

Table 3.3 Cross LPSP results for each sized HRES

System for
LPSP(%) for

Profile Class Class Class Class Class Class
#1 #2 #3 #4 #5 #6

Class 0.00 0.00 0.00 0.00 0.00 0.00

#1

Class 1.83 0.00 0.39 0.27 0.00 0.00

#2

Class 0.57 0.00 0.00 0.01 0.00 0.00

#3

Class 0.50 0.00 0.01 0.00 0.00 0.00

#4

Class 3.97 0.32 2.11 1.78 0.00 0.00

#5

Class 4.52 0.55 2.72 2.28 4.00 0.00

#6
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It was found that only the optimized system for “high night use” profile could provide a zero

LPSP for all loading conditions. However, such a system significantly increases the cost by

trying to satisfy the highest night use and lower day use profile compared to the cost of other

classes. Conversely, the optimized size for classes #3 and #4 shows good performance in

meeting the conditions of all classes with moderate system cost.

3.3.2 Reliability and system cost analysis

The reliability and the system cost are two important concerns in determining the optimal

size of a HRES. Thus, the system cost increases significantly as the reliability of the system

is increased. To illustrate this point, the daily demand of class#1 is examined by the duration

and the level of demand as shown in Fig. 3.7. From this it can be seen that the peak demand

extends for only one hour during the day and the second highest load for two hours of the day

while a base load of approximately 600W only remains throughout the whole day. Taking

this further, from Fig. 3.8 it is evident that the state of charge (SOC) of the optimal size

battery approaches its minimum SOC only once in a typical year, between the year hours of

4210 and 4230. This is due to the fact that the renewable generation through this period is

low relative to demand.

The low renewable generation and higher demand only for a short duration of the year

increases the size of the system while the available energy is much higher than the demand in

the rest of the year. Thus, the excess energy is wasted throughout the year and the utilization
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Fig. 3.7 Level and duration of the demand of a day.

factor of the system is low. In order to better understand this, the total system cost was

analyzed against different values of the LPSP. Hence, a system was sized for the profile of

class#1 where the value of LPSP was allowed to vary from 0% to 1%, the results shown in

Fig. 3.9 illustrate that a significant reduction in life time costs can be achieved with only a

small increase in the LPSP. It is further noticed that the optimized system for “high night

use” demand profile with 0.25 percent LPSP provides minimal unmet demand to all the

classes and the total cost is also comparable with the system optimized for high day use with

morning peak and high extended evening peak demand profiles. The battery SOC for 0.25

percent of LPSP is shown in Fig. 3.10.
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Fig. 3.8 Variation of battery SOC and generated renewable energy from 4000hrs to 5000hrs
of a year.



66 Optimal Sizing of a HRES Considering Socio-Demographic factors

Fig. 3.9 Total system cost variation with the change of LPSP.

Fig. 3.10 Variation of battery SOC for LPSP of 0.25 percent.
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3.4 Concluding Remarks

In this chapter socio-demographic factors of a HRES site were examined to determine their

influence on the optimal size of a WG, PV module and battery HRES. Six profile classes

were identified and utilized for considering these factors. Moreover, it was found that the

optimal size for one class profile either can not satisfy the other class profiles with zero LPSP

unless the system becomes large and therefore costly. In this respect the cost is influenced

significantly by the magnitude and temporal positions of the peak demand. Furthermore,

the temporal position and duration of the peak demand should be taken into account in

order to find the optimal size of HRES. In this regard, the electrical demand variation due to

socio-demographic factors should be integrated to sizing a HRES.

Thus, it is suggested that the HRES size that minimizes the total system cost as well as

the unmet demand with all the classified socio-demographic load profiles of the site for a

desired reliability can be considered as an overall optimum. However, by optimizing based

on socio-demographic profiles the system cost can be reduced.





Chapter 4

Optimal Sizing of a HRES under Time

Varying Load

4.1 Introduction

In the preceding chapters an optimization was performed for a HRES with a fixed daily

load repeated across a full year. In reality though the demand of a site is usually somewhat

stochastic in nature and typically loads vary both in magnitude and temporal position due to

variation of the user’s day-to-day actions as well as seasonal variations. Domestic electricity

load profiles are usually cyclical and are shaped by the individual electrical appliance.

However, the switching on and off of any electrical appliances is usually influenced by

various environmental, dwelling and occupant characteristics. Therefore, an electrical load

profile can be described as the combination of deterministic and stochastic processes [42].

The electrical demand at any time can be assumed to be a combination of four separate
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components: the normal part, the weather sensitive part, the special event part and a random

part [47]. The base load in the profile usually remains constant and continues throughout

the year and is dependent on the use of cold appliances. The later three parts of the power

demand are defined by the user activities and environmental effects and the base demand

[72] while the peak demand of the profile is usually due to the random and weather sensitive

parts.

In this regard, a 30 percent day to day load variation was considered by [37] when sizing

a wind-PV-diesel generator hybrid power system. In [73] six different demand profiles

and weekend and weekdays demand profiles [58] were considered in optimal sizing a

HRES. However, the random variation of magnitude and temporal position of peak values in

stochastic annual demand profile were not considered in previous studies and it was suggested

that this is common in real life demand profiles. In this chapter of the work, it is thus intended

to examine the effect and the size of a HRES under time varying demand.

4.2 Demand profile

As this work aims to examine the effect of random variation both in magnitude and temporal

position on the optimal size of a HRES, the average daily winter and summer load for a single

household in Auckland [74] as shown in Fig 4.1 was examined. From these two time slots

from 07:00 hr to 12:00 hr and 16:00 hr to 21:00 hr were identified based on the temporal

position of the peak demand. During these times, the hourly loads were assumed to randomly
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vary by ±25%. Further it was assumed that the load of any individual hour could change its

temporal position within the identified time slots. This is due to the fact that on average users

activities are broadly similar within a period of a day, but most likely not identical. Outside

these time slots, the load was assumed to remain fixed assuming these as the normal part of

the electrical load profiles.

Fig. 4.1 Hourly electrical load profile of a day.

4.3 Sizing Methodology

If an annual demand profile can be used to optimize the size of a HRES that can satisfy

any randomly varied profiles then the annual demand profile is considered to be a critical

combination of annual demands. However, it is quite difficult to find an absolute critical
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combination of annual demands. Rather an approximate critical combination can be found

using an exhaustive search method in combination with a GA. The size of several approximate

critical combinations of annual demands can be compared in order to find the optimal one

for sizing a HRES.

The flow chart for finding an approximate critical combination of annual demands is shown

in Fig. 4.2. The method starts by optimizing the size of a HRES for zero LPSP with a typical

hourly average daily demand profile repeated throughout the year. The size can then be used

with randomly generated annual demand profile to determine the LPSP. The newly generated

annual demand profile that can not satisfy the desired zero LPSP by the system would be

recorded. Subsequently the size of the lowest energy density source is increased in order to

meet the desired LPSP for the recorded random demand profile.

This method was repeated as long as the new HRES could not satisfy any annual demand

profile that was generated with random variations. The demand profile for which the change in

size of a HRES had last been required, was considered as an approximate critical combination

of annual demands. This approximate critical combination of annual demands was then used

for optimal sizing of a HRES using a GA.

Repeating this method ended with multiple optimal size of a HRES for several approximate

critical combinations of annual demands. If the sizes could satisfy any randomly varied

demand profiles with the desired LPSP, then the system with lowest cost was considered to
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be the optimal one. However, if none of the sizes could satisfy the desired LPSP for all the

recorded randomly varied demand profiles the sizes could be compared in order to find an

optimal one. The HRES which could satisfy all recorded demand profiles for the desired

reliability and a minimum cost, was taken as the optimal size.

4.3.1 Results and Discussion

At the beginning of this investigation, the system was sized using a GA optimization method

as shown in Fig. 2.7 for the average hourly load repeated throughout the year and the results

are presented in Table 4.1.

Table 4.1 Optimal size of a HRES with typical annual demand

Method WG PV Bat Height Tilt angle Total Cost
Name # # # (m) (o) ($)

GA 6 81 18 29 53 303,644

(9×2)

Now, the load of Figure 4.1 is considered to vary randomly within a range of ±25% (in

magnitude) of the values and temporal position in each group from 07:00 hr to 12:00 hr

and from 16:00 hr to 21:00 hr. This is done to simulate the variation of user action and

environmental effect. At the beginning of a GA optimization method, a time varying demand

profile was generated and used for sizing a HRES. Several runs of the method resulted in

different sizing optimization of the HRES due to the random variation of the peak demand.

In all cases, LPSP was taken as the reliability index and the system was sized for zero LPSP.

Table 4.2 shows optimal sizes of a HRES due to random demand variations from three runs
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Fig. 4.2 Flow chart for generating approximate critical combination of annual demand profile.
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of GA .

Table 4.2 Optimal size of a HRES from three run of GA with random load variations

Method WG PV Bat Height Tilt angle Total Cost
Name # # # (m) (o) ($)

GA 6 84 18 28 58 308,700

(9×2)

GA 9 77 14 29 43 288,385

(7×2)

GA 7 75 18 28 58 333,320

(9×2)

The results suggested that random variation of the peak demand in the annual profile affect

the size of a HRES significantly. In the worst case size, the number of PV modules, WGs

and batteries has changed from 81, 6, 16 to 75, 7, 18 and the WG installation height and

PV module tilt angle were changed from 29m, 53° to 28m, 58° respectively. The optimized

HRES was taken as having a total cost of $333,320 as suggested in [70]. However, the

system was unable to meet all demand profile generated by random variations. Thus, the

system was sized using the method suggested in Fig. 4.2.

Several runs of the whole procedure resulted in several optimal sizes with different approximate

critical hourly demand profile of a year as shown in Table 4.3.

None of the systems in Table 4.3 could satisfy all the recorded demand profiles (Appendix A)

with the desired reliability. In all the system, the number of WG was 7 while the number of
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Table 4.3 Optimal size of a HRES for typical and critical hourly load profile

WG PV Bat Height Tilt angle Total Cost
# # # (m) (o) ($)
7 103 16 31 34 329,108

(8×2)

7 75 18 28 58 333,320

(9×2)

PV modules and batteries varies from 75 to 103 and from 16(8×2) to 18(9×2) respectively.

Hence, the optimal system configurations were assumed to be within these ranges. Assuming

the number of batteries is 16, the number of PV modules is changed using the bi-section [75]

method and tested for all the recorded random hourly load profiles. The minimum number of

PV modules that satisfied all loads was considered as one of the optimal sizes. This technique

was subsequently repeated by increasing the number of batteries to 18. With this method, it

was possible to record two probable systems for randomly varied demand profiles, as shown

in Table 4.4.

Table 4.4 Probable optimal size of a HRES for hourly varied random load profile

WG PV Bat Height Tilt angle Total Cost
# # # (m) (o) ($)
7 88 18 28 58 333,320

(9×2)

7 141 16 34 38 433,460

(8×2)

Both systems in Table 4.4 were tested for the randomly varied loads generated by the GA.

If the systems were able to meet any randomly varied demands generated by the GA, the
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system with the lowest cost was considered as the optimal system. This process resulted in

the optimal size as shown in Table 4.5.

Table 4.5 Probable optimal size of a HRES for hourly varied random load profile

WG PV Bat Height Tilt angle Total Cost
# # # (m) (o) ($)
7 88 18 28 58 343,305

(9×2)

Further, it was noticed that there was negligible change to the amount of total annual energy

demand for a randomly varying load profile. The maximum and minimum electrical demand

in the profile was the same for each demand profile as shown in Appendix A. However, it

is shown in chapter 3 that the system optimized for an average of randomly varied demand

profiles repeated throughout the year can not satisfy all time varying annual demand profile

with the desired reliability. This is due to fact that the temporal position of peak demand

varies with each load profile.

4.4 Concluding remarks

It is evident from the presented results that the optimal size of a HRES varies significantly

when random variations of the load are considered, both in magnitude and temporal position.

It is also to be understood that the hourly electrical demand of a day will not repeat throughout

the year rather it would vary significantly due to both user action and seasonal variations.

This finding is significant as random variation in the magnitude and time distribution of loads
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is very common in real systems [70].

It is suggested in this chapter that the optimal sizing of a HRES needs to consider random

variations both in magnitude and temporal position. Furthermore, a method for finding

critical combination of annual demand profile is suggested and that profile is used for finding

optimal size that can satisfy any randomly varied profiles. The method for finding a critical

combination of annual demands with genetic algorithms can be incorporated with any other

optimization for sizing a HRES with time varying demand profile.



Chapter 5

Optimal Size Integrating Demand Side

Management

5.1 Introduction

As has already been noted, the optimal selection and sizing of distributed energy resources

is crucial in order to deliver lowest investment cost and ensure adequate and full use of

resources while the desired reliability is achieved. Different optimization methods have been

suggested in this regard including linear programming (LP) [34], exhaustive search methods

(iterative method) [22, 25–27, 29, 31], genetic algorithms (GA) [17, 18], particle swarm

optimization (PSO) [76, 77], Markov chain model with GA to expedite the optimization

method [73], combined GA and simplex [41]. In almost all the above mentioned methods, the

total investment of the system was minimized while matching the demand with the renewable

generation for a desired reliability index, LPSP. The monthly average daily load, monthly
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total demand or hourly demand of a day repeated throughout the year was considered in most

of the previous studies. The chronological representation of average daily electrical load is

usually preferred over others. However, the peak electrical load of daily demand profiles

is greatly influenced by seasonal weather variations as well as socio-demographic factors.

As the temporal distribution of this peak electrical demand does not usually match with

the generation of the sources used in stand-alone hybrid renewable energy system (HRES),

the size and the cost are increased significantly to meet the time varying demand profile

with the desired reliability. It was shown in Chapter 4 that for demand profiles of similar

total annual demand, the size of a HRES varied due to changes in temporal position of peak

or maximum demand. Hence, the size of the HRES is essentially determined by the peak

demand at off peak generation hours of a year and the temporal position of the peak demand.

Electrical demand that varies daily and seasonally and the demand is largely uncontrollable

and interruptions are very costly [78], therefore, the installed capacity is designed to meet

maximum (peak) demand. Thus, the utilization factor and efficiency of the renewable energy

generation remain very low while meeting the desired reliability at the lowest cost.

Utility companies usually finance and implement demand-side management (DSM) in order

to control the end user energy consumption and thus reduce the peak and base loads [79]

and improve the efficiency and utilization factor. This is achieved with the introduction of

conservation and energy efficiency programs, by replacing fuel with renewable sources and

management of residential and commercial demand [80–83]. Both the energy consumption

cut-off and shifting the consumption from peak time to off-peak periods are the chief aims
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of residential load management [84]. It was found in [85] that there is a significant scope

for the application of DSM when the utilization (defined as the ratio of electricity demand

to generation) is relatively low (about 50%). Therefore, the DSM has recently attracted the

attention of the system planners for its ability to modify the demand profile and thus can

reduce the investment cost. The key objectives of any DSM program are as follows [86]:

1. Energy efficiency focused on implementation of building, lighting and/or appliance

improvement,

2. Energy efficiency focused on behavioral change andor improved information and

3. Peak demand reduction program.

DSM programs include the use of efficient utilities, cutting peak demand and shifting peak

demand loads to off-peak times. The strongest restriction of DSM is to change the daily

routine in order to achieve load shifting. However, in private households, DSM is often used

to limit demand from storage water heaters and heat pumps [86].

As DSM can balance the fluctuating renewable generation with the time varying demand

profile by reducing the peak, it has the potential to reduce the investment cost of a HRES and

improve its utilization factor. However, despite numerous studies, none considers DSM or

the utilization factor in sizing a HRES. As such, this chapter examines several DSM options

integrated with the optimal sizing of a wind (WG)-photovoltaic (PV)-battery HRES.
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5.2 Demand profile

To size the system, the hourly household demand was obtained from the average hourly

summer and winter domestic demand of Auckland, houses given in [74] and from the number

of houses [87] as shown Fig. 5.1. The summer demand profile is almost constant from

06:00 hr to 18:00 hr at about 1500 W while the usage reduces significantly at night from

22:00 hr to 04:00 hrs. The winter energy use increases significantly from 07:00 hr till

midnight and the peak winter demand reaches approximately 2600 W.

Fig. 5.1 Hourly winter and summer load of a day.

In order to generate an annual load profile, it was assumed that the winter profile could be

applied between the month of April and October [88] while a summer load was applied for

the remaining months.
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As the input for the optimization, typical meteorological year (TMY) data for Auckland, New

Zealand (latitude 36.85°S and longitude 174.78°E) was obtained from the U. S. Department

of Energy [62].

5.3 DSM Options

The final component of the optimization was in the implementation of the DSM strategies.

Previously it was noted that the annual seasonal demand profile was assumed to consist of

a winter and summer portion. It was reported in [89] that approximately 45% of the total

annual consumption of electricity was used for water and space heating in Auckland during

the winter season. Hence it was decided that a DSM program should particularly target the

additional winter demand and thus modify the shape of the electrical load profile. For this

study, four options were examined:

Option-I Excess energy used for hot water and space heating,

Option-II Peak demand reduced throughout the year,

Option-III Peak demand reduced only while SOC reached a minimum and

Option-IV Fraction of peak load shifted to off peak hours.
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5.4 Optimization Methodology

In order to determine the optimal size of the system a GA as shown in Fig. 2.7 was utilized.For

the GA the number of chromosomes was taken to be 32, while each chromosome consisted

of seven genes (variables) for investigating each DSM option and 8 for selecting a DSM

option while sizing a HRES. They are [NWG NPV Nbat h β ch f ] where, NPV = (NS ×NP) is

the number of photovoltaic modules, NWG is the number of wind turbine generators, Nbat is

the number of batteries, β is the PV tilt angle, h is the installation height of WG, ch is the

choice of DSM program and f is the fraction of load curtailment and/or load shift.

5.5 Results and Discussion

5.5.1 Excess energy used for hot water and space heating

In Fig. 5.1 it was shown that energy consumption in winter is increased significantly from

that of summer. As the first option for a DSM implementation, it was assumed that the

additional energy consumption in winter was mainly due to water and space heating loads.

Thus, the system was sized on the basis of a summer demand profile repeating throughout the

year. During the winter months it was assumed that the additional electrical demand would

be met from the excess energy generated by a system optimized for a summer only load

profile, rather than having additional sources. In doing this there is an implicit assumption

that the cost of using electricity hot water storage and heat storage is cheaper than the cost

for the generation of electricity.
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As such, a WG, PV and battery HRES were sized firstly for the hourly summer load repeated

throughout the year and secondly for the hourly demand with seasonal variation. Table 5.1

shows the optimal size of the system for both the cases.

Table 5.1 Optimal size of the system for summer only and seasonal variations

Demand WG PV Bat Height Tilt angle Total Cost
profile # # # (m) (o) ($)

Summer 5 70 14(7×2) 29 52 307,009

Winter-summer 5 100 18(9×2) 35 47 345,879

From Table 5.1, it can be seen that the size of the HRES increases significantly if the seasonal

variations in annual load profile are considered. This is due to the fact that the total annual

demand increases from 104,33 kWh to 122,83 kWh. At a supply level, the optimized

size of a HRES using summer only demand generates approximately 239,91 kWh while

a HRES system optimized for seasonal variations generates approximately 371,04 kWh.

However it was noted that the increase in peak demand of the winter profile and its temporal

position would require additional sources of generation to be met. This very high demand

(greater than 2000 W) lasts only a few hours each day meaning that the additional sources

which were utilized to meet this high demand would be generating significant excess energy

outside this time. Thus, the utilization factor for the cases of demand profile consisting of

seasonal variations was approximately 33% and 43% for a summer only load profile repeated

throughout the year.
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Now, Fig. 5.2 shows the variation in the state of the charge (SOC) of an optimal sized

battery throughout the year. The state of charge of the battery reaches 0.22 at around 4200 hr

and for a significant part of the year it is above 0.7. This indicates that the available energy

from the renewable resources at 4200 hr was very low compared to the electrical load. Thus,

the size of HRES was increased to cope with this demand and was the excess capacity for

the remainder of the year.

Fig. 5.2 The variation of the SOC throughout the year for summer only demand.

To explore this further, it was found that the average increase demand during the winter

season was approximately 400 Wh while the average excess energy (additional to summer

demand) generated by the system optimized considering a summer only load was around

700 Wh. In a typical HRES, this excess generation would be wasted through a dump load to

ensure system stability and would require additional capital outlay, however it is possible to
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instead utilize thermal storage as this “dump load”.

Illustrating this point, Fig. 5.3 and Fig. 5.4 show the increase in additional winter demand

and excess energy generated by the system optimized considering summer only demand

between 3500 hr to 4500 hr of a year. From these it can be concluded that the increase in

additional winter energy demand could be satisfied by the excess generated energy from a

“summer only” system. In doing so, the system utilization can be improved and the cost of

the energy can be reduced significantly, as the utilization factor in the case of a system sized

on the basis of summer only demand and used to meet the winter load, increases to 51%.

Fig. 5.3 The additional energy demand in winter session as compared to summer demand.
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Fig. 5.4 The excess energy generation from the system optimized only for summer load.

5.5.2 Peak demand reduced throughout the year

The second option for DSM was to clip the peaks in the combined summer and winter

demand profile. In doing this the size of the system was optimized with the aim of curtailing

peak demand throughout the year. The curtailed electrical demand required an adjustment to

the usage pattern of the electrical load.

Hence the GA was used to select the amount of curtailed load from the seasonal demand

profile in addition to the size optimization of the HRES. Integrating this DSM option with

the optimization method allowed the determination of an optimal load reduction rather than

merely reducing the total excess winter demand to match a year of summer demand only.

In doing this it was found that this would require a 40% reduction to the winter peak load.
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Hence a modified winter load was developed and Fig. 5.5 illustrates this from 4140 hr to

4280 hr of the year.

Fig. 5.5 The modified winter load from 4140 hrs to 4280 hr of a year.

The system cost for the curtailed load throughout the year is shown in Table 5.2. It is evident

that the total system cost is slightly higher than the cost of summer only system. However, it

is lower than that of the system for annual load profile consisted of hourly winter and summer

load. The new load has a peak demand of 1607 W which is slightly higher than the summer

peak demand.

As the load was curtailed with the same amount throughout the year the system cost was

reduced and an optimized size was reached. In achieving this the utilization factor of the
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optimized system is approximately 42%.

Table 5.2 Optimal size of a system for summer for curtailed load due to seasonal variation

Demand WG PV Bat Height Tilt angle Curtailed energy Total Cost
profile # # # (m) (o) (%) ($)
Winter- 9 75 16 20 53 39 310,928

Summer (8×2)

5.5.3 Peak demand reduced when SOC is low

For the third DSM option, the demand profile consisted of a seasonally varying load (winter

and summer load) and loads were clipped when the battery’s state of charge was particularly

low. The state of charge (SOC) of the optimal sized battery as shown in Fig. 5.2 revealed

that it reached its lowest level during the period of minimum energy generation. Thus, this

DSM option could be used to curtail the peak demand around the hours of a year where the

SOC reaches a pre-set lower level, instead of reducing the load by the same level throughout

the year. In doing this, both the lower level of the pre-set SOC and the amount of peak load

which was to be clipped, were selected using the GA.

Now Fig. 5.2 showed the battery SOC before any DSM option was selected. From this it

was seen that the SOC reached its minimum value during the hours from 4000 to 5500 of the

year. Thus, this DSM option is aimed at curtailing the load only around the hours where the

SOC is close to the pre-set level of SOC, this results in the modified load profile shown in
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Fig. 5.6.

Fig. 5.6 Electrical load is modified as per minimum SOC.

The demand profile is modified only few times throughout the year rather than it is modified

throughout the year. It is also explored that the load is reduced only the hours where the SOC

reached below 0.4. The load is reduced approximately 1900 W from 2600 W. The load as

modified by the optimization method from 4140 hr to 4280 hr of a year is shown in Fig. 5.7.

In Fig. 5.7 it can be seen that the peak load, as modified by the optimization method, is

reduced from around 2600 W to 1900 W from 4180 hr to 4230 hr. As such, the optimized

system size and the amount of curtailed load and the set minimum SOC are shown in Table

5.3.
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Fig. 5.7 Modified load from hours 4140 to 4280 of a year.

Table 5.3 Optimal size of a system for modified demand as per minimum SOC

Demand WG PV Bat Height Tilt angle Curtailed energy Total Cost
profile # # # (m) (°) (%) ($)
Winter- 9 108 16 13 31 28 333,626

Summer (8×2)

In Fig. 5.8 it is clearly evident that the SOC has been updated with the modified load. It can

be seen that the SOC of the optimized size battery reaches 0.7 or lower more frequently than

that without any DSM option.

The utilization factor for the system was reduced to 33% which was 36% percent in case of
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Fig. 5.8 The variation of the SOC throughout the year due to modified new load as per
minimum SOC

the system optimized for the annual load consisted of winter and summer seasonal loads.

5.5.4 Fraction of peak load shifted to off peak hours

The final DSM strategy aimed to smooth the load profile through a load shifting strategy

implemented on a seasonally varying demand profile. It is clear that the peak of the hourly

winter load can dictate the size of a HRES when an annual load with seasonal variations is

considered. Thus, this DSM program would reduce the loading from 08:00 hr to 22:00 hr

and shift this to 01:00 hr to 06:00 hr. In doing this the amount of curtailed and shifted load

would be determined by the GA. As such the modified winter demand of a typical day is

shown in Fig. 5.9.
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The winter peak demand from 07:00 hr to 24:00 hr is reduced and the off-peak demand

during 01:00 hr to 06:00 hr is increased. The DSM option is used to reduce the peak demand

and some fraction of this demand is shifted to the off peak period. The option has not meant

to shift the total amount of curtailed demand to the off peak period, rather the method is

used to find the optimal amount of curtailed and shifted peak demand. The modified winter

demand of a day is shown in Fig. 5.9.

Fig. 5.9 Modified demand shift as faction of winter load shifted from peak to off-peak hours.

With this modification to the winter demand throughout the year, the optimal sizing has

seen a reduction of the storage size significantly from 18 to 14 batteries as shown in Table

5.4. However in achieving this the utilization factor of the system is reduced, but, there is a

significant saving in the total investment cost.
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Table 5.4 Optimal size of a system with reduced and shift of peak demand

Demand WG PV Bat Height Tilt angle Curtailed energy Total Cost
profile # # # (m) (o) (%) ($)
Winter- 5 100 14 13 27 40 286,297

Summer (7×2)

The modified profile shows almost an equal temporal distribution of electrical demand. The

peak demand is reduced to approximately 1600 W. The total system cost has reduced to

$286,297 which is lowest among all the options. However, the utilization factor is also

reduced to 28.05% .

5.6 Concluding remarks

In this study it was found that the investment cost of a HRES due to time varying electrical

demand usually increased significantly and the size of a HRES is usually dictated by the

temporal position of peak electrical demand as well as total electrical demand. It was found

in this study that integrating DSM with optimal sizing method could reduce total investment

cost. Among the various DSM options, the system cost is reduced when sizing a system

considering summer load throughout the year and the increased winter demand is met from

the excess energy generated by the system. Further, the utilization factor of generated energy

from the designed system is increased to maximum.

It is further noted that the system size could be reduced without modifying the demand

throughout the year but rather limiting the electrical usage for only a few hours of the year.
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However, among the four different choices, Option IV provides the lowest total system

cost but the system has a low utilization factor. Furthermore, there is a probability that the

curtailed energy would affect the life of consumers. However, the GA would always suggest

option IV due to the low total system cost.



Chapter 6

Conclussion and Future Work

The stochastic nature of renewable energy generation and demand profile, and non-linear

system characteristics make the optimal sizing of a HRES much more complex and difficult.

The application of an optimization method is thus required to match the renewable energy

generation to the demand profile. This requires both utilization of efficient optimization

methods and representation of real life demand profiles. In this study, different aspects

of demand profiles and their effects on optimal sizing of a HRES were investigated. The

magnitude and temporal position of peak hourly demand vary due to different factors such

as socio-demographic, socio-economic and seasonal variations. It was also found that

randomness of the demand profile which is common in real life, and was ignored in previous

studies, significantly influenced the optimal size of a HRES. It was also noticed that the

optimal system for a typical fixed hourly load of day repeated throughout the year was not

able to meet the desired reliability due to stochastic variation both in magnitude and temporal

position of peak hourly demand in the annual demand profile. It was further observed that the
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size of a HRES depends not only on the total annual electrical load but also on the magnitude

and temporal position combination of peak demand in an annual profile. The size of a HRES

considering a fixed average demand profile repeated throughout the year was unable to meet

the desired reliability due to the randomness of the load. The optimized size of a HRES due

to randomly varied demand profile is increased significantly compared to a fixed typical daily

demand profile.

The magnitude and temporal position of peak energy demand are greatly influenced by

the socio-demographic factors and seasonal weather variation. In this case, monthly average

daily profiles had been considered during the analysis. Thus, impact of seasonal variation

was also incorporated with that analysis. Socio-demographic demand profiles were used to

examine the effect of the temporal position and magnitude of peak demand in a daily profile

on the optimal size of a HRES. It was shown that the optimal sized HRES for a site would

meet the demand profiles with minimum LPSP, thus included socio-demographic factors.

Demand side management (DSM) was incorporated for its ability to modify the demand

profile and reduce the size of a system as well as improve utilization factors. The investigation

suggested that the investment cost could be reduced with the integration of DSM in optimal

sizing of a HRES. This reduced cost would be an incentive for an investor to make a choice.

However, due to the lack of appliance specific demand data it was not possible to determine

the affect of DSM on the consumer. In this respect there are a number of avenues of research

that may be pursued in the future.
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1. In this research work, monthly average daily demand data of 40 houses was considered in

order to find link of socio-demographic factors on optimal size of a HRES. Although,

239 demand profiles are enough to infer the influence of socio-demographic factors

on optimal size of a HRES, a large number of demand profiles and more information

regarding consumers such as financial status, use of appliances and age, would enable

a better understanding of what socio-demographic factors determine the profile class.

Additionally, the classification of demand profiles would be more representative to

their classes if a large number of demand profiles were used.

2. Optimal sizing of a HRES requires real life load profiles rather than typical ones. The

modeling of real life demand profiles is a challenging task. Artificial intelligence

techniques have been investigated for modeling or forecasting residential demand

profiles, these could be incorporated with the optimal sizing and control of a HRES.

3. Innovative control methods and DSM could play a major role in reducing the investment

cost while sizing a HRES. Curtailing or shifting the electrical demand for short time

intervals over a year, where the renewable generation is very low, may reduce the size

of the system. The residential demand profile required could be investigated further in

this regard.

4. More robust optimization techniques should be investigated and applied so that computation

time can be reduced and convergence to sub-optimal solutions can be avoided.
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5. Finally, a small pilot project could be initiated and investigated for future studies including

DSM.
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Appendix A

A.1 Investigation on Time Varying load

The generated different random load profiles as generated and recorded in finding the

approximate critical combination of annual demand profile was further investigated. The

critical hourly demand of several days is shown in Fig. A.1. It is to be noted that there are

day to day variations in the critical hourly demand profile of a year. This is more practical

than the hourly load repeated throughout the year. It is more probable that the user will not

repeat his or her action exactly at same hours of the day like a robot. This depends both on

his or her availability and weather condition. Thus, it is expected that there will be variations

of temporal location and amount of demand for a day.

The size of the system was varied significantly from the system as resulted by several runs of

a GA. The PV modules were changed from 75 to 88 in numbers.

The generated different random load profile was also compared with typical demand profile
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Fig. A.1 Hourly critical load of four days.

in regards to minimum, maximum, annual total load and the LPSP resulted due to this

load profile with the system sized without considering the randomness in the annual hourly

demand profile. The data is presented in the Table A.1. The peak and minimum hourly

demand in each profile was found around 2509W and 742W respectively. The total amount

of annual demand was almost similar. However, the size for each profile could not able to

satisfy the other profile with desired reliability. This indicated that the temporal position of

the peak demand profile effects the size of a HRES.

The optimized size of a HRES considering typical hourly electrical load of a day repeated

throughout the year would not able to meet the desired reliability during the project life. The

system which was optimized for zero LPSP, resulted in maximum LPSP of 0.100 percent

with randomly varied demand profiles. This was equivalent to approximately 12kW loss of
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power supply out of 12MW. This resulted in loss of power supply 9 (nine) hours out of 8760

hours a year. It was also evident from the different randomly varied annual demand profiles

that total annual energy usage remained almost similar with the specified variation both in

magnitude and temporal position. It was also found that the size of a HRES does not depend

on the total amount of annual electrical, rather it depends on the hourly combination of

energy usage. The LPSP as resulted with the system for the approximate critical combination

of annual load reduced to 0.011 percent and the optimal size provide zero LPSP for any

randomly varied demand profiles.

Table A.1 Comparison of annual total load and LPSP

Generated

Load#

Total annual

demand (W)

LPSP (%) with the system for

Typical

Load

Critical

load #1

Critical

load #2

Load-A 12017289 0.023 0.000 0.000

Load-B 12001922 0.046 0.000 0.000

Load-C 11990207.78 0.057 0.000 0.000

Load-D 11990207.78 0.100 0.046 0.011

Load-E 12028337.29 0.068 0.000 0.011

Load-F 12003647.76 0.091 0.068 0.011

Load-G 12010086.7 0.057 0.000 0.011

Load-H 11980986.26 0.091 0.023 0.011

Load-I 12043927.33 0.091 0.046 0.011

Continued on next page
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Table A.1 – Comparison of annual total load and LPSP(Continued)

Generated

Load#

Total annual

demand (W)

LPSP (%) with the system for

Typical

Load

Critical

load #1

Critical

load #2

Load-J 12023739.7 0.100 0.000 0.011

Load-K 11978606.58 0.100 0.057 0.011

Load-L 11990694.28 0.068 0.000 0.011

Load-M 12018854.49 0.080 0.000 0.011

Load-N 12024047.86 0.068 0.011 0.00

Load-O 12024496.99 0.100 0.034 0.00

Load-P 12007032.11 0.110 0.091 0.000

Load-Q 12028337.29 0.100 0.046 0.011

Load-R 12003647.76 0.068 0.000 0.011

Load-S 11980986.26 0.057 0.000 0.011

Load-T 12043927.33 0.091 0.046 0.011

Load-U 12023739.7 0.100 0.000 0.011

Load-V 11978606.58 0.100 0.057 0.011

Load-W 11990694.28 0.068 0.000 0.011

Load-X 12018854.49 0.080 0.000 0.011
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