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A B S T R A C T   

Electric vehicles (EVs) are regarded as essential solutions for alleviating climate change and energy crises. EVs 
can store excess Photovoltaic (PV) generation and transfer energy to other EVs, reducing distribution network 
upgrade costs. However, the limited range of EVs coupled with inadequate charging infrastructure leads to range 
anxiety among EV users, thereby becoming a barrier to implementing a transactive energy management system. 
This research quantifies the range anxiety among EV users and proposes a novel trading mechanism for trans-
active trading between workplace EVs. The case study solved for a commercial region in Auckland shows a 
3–10% reduction in charging cost compared to a conventional V2G system. Further analysis shows that public 
charging stations can also result in cost savings from 1% to 5%. Still, their impact is limited compared to the 
number of discharging EVs participating in transactive trading. The uncertainty analysis of PV generation under 
different scenarios also shows the cost savings of the proposed strategy. The simulation results verify the 
feasibility and effectiveness of the proposed strategy while alleviating range anxiety among EV users.   

1. Introduction 

Electric vehicles (EVs) are becoming increasingly popular due to 
their many benefits, including reduced environmental impact, lower 
operating costs, and improved performance over traditional gasoline- 
powered vehicles. With zero tailpipe emissions and the ability to use 
renewable energy sources for charging, EVs are a cleaner alternative to 
gasoline-powered cars, which helps to reduce our reliance on finite fossil 
fuels, thereby reducing energy import dependency, air pollution and 
climate change. As the technology advances, EVs are becoming more 
practical for everyday use, with longer ranges and a growing number of 
charging stations available. 

With fossil fuel-based electricity generation a significant contributor 
to climate change, renewable energy-based generation like Photovoltaic 
(PV) is becoming increasingly crucial for a sustainable and cost-effective 
mode of electricity generation. Due to a mismatch between peak PV 
generation period and peak load consumption, energy storage is 
required for reliability, flexibility and higher utilization. As EVs spend 
most of their time in a parked state, their batteries can be effectively 
utilized to store excess PV generation for usage at peak load periods in 
the evenings. This is known as Vehicle-to-Grid (V2G), and much 
research has been done on this topic covering all aspects [1]. However, 

using EVs as dynamic energy storage can lead to range anxiety among 
drivers. Range anxiety refers to the fear of running out of charge while 
on a long journey or being unable to find a charging station when one is 
needed. This concern is the main barrier to widespread EV adoption as 
mainstream EVs have a limited range compared to gasoline-powered 
vehicles, and charging infrastructure may be less widely available in 
some areas [2]. 

EV users experiencing high-range anxiety with large commutes or 
busy charging station occupiedness will choose to charge their EVs 
despite peak load periods with high electricity prices. In comparison, EV 
users with short commutes or high battery State of Charge (SoC) can 
provide necessary charging power to high-range anxiety users and profit 
despite delivering power at a lower cost than the network distribution 
prices. This will reduce the peak demand of the distribution network. 

The potential of EVs transferring energy to one another has been a 
research focus in recent years. This is also known as transactive energy 
systems and has been shown to reduce the distribution network upgra-
dation cost, load levelling and reduction in charging costs [3]. Accurate 
estimation of EV battery parameters is essential for designing a trans-
active energy management system, as presented in [4]. Ref [5] presents 
game theory based on conflicting transactive energy management sys-
tems between residential consumers owing EVs and utilities to improve 
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network voltage profile and consumer profits. The work in [6] presents 
the optimal distribution system planning using electric vehicle charging 
stations using scenario-based optimization. Ref [7] proposed a multi-
agent transactive trading mechanism to maximize cost savings for con-
sumers and minimize the overloading of distribution transformers. 
However, the transactive model lacks price and user range flexibility. A 
centralized residential transactive energy management system is pro-
posed in [8] with integrated PV consumers to optimize energy cost and 
self-reliability. However, the consumers’ flexibility and energy storage 
health aren’t considered. Ref [9] proposes a transactive energy trading 
mechanism to minimize the electricity purchase cost of EVs. The work 
considers uncertainty in EVs arrival and departure times but assumes the 
inflexible participation of EV users. A local energy market-based energy 
management system is proposed in [10] between residential consumers, 
a distribution network and a centralized energy storage system to 
maximize revenue generation and optimal resource allocation of all 
participants. A blockchain-based intelligent transactive trading contract 
between EVs and distribution networks is presented in [11] to minimize 
electricity purchase costs without considering the user’s flexibility and 
input parameters uncertainty. Ref [12] proposes a transactive-based EV 
charging scheduling optimization considering user preferences and un-
certainties using the Monte Carlo method without accounting for users’ 
range anxiety. A bilateral auction-based transactive trading approach 
between EVs and aggregators based on decentralized blockchain dis-
tribution is proposed in [13]. The scheduling strategy outlined in [14] 
adopts a hierarchical framework, where each EVSC independently plans 
its operations to optimize its earnings. This paper employs a single-sided 
auction mechanism that lacks complete information to execute the 
market clearing process. A game theory-based transactive trading 
approach between microgrids is proposed in [15], accounting for fore-
casting errors in input parameters. A day-ahead optimization of 
PV-integrated EV charging stations under a transactive energy envi-
ronment is presented in [16] while considering the uncertainty only in 
PV generation. 

The existing literature on transactive energy management between 
EVs generally does not account for the range anxiety of EV users, which 
is a significant factor for EV participation in transactive energy transfers. 
Some research works, like [17] and [18], consider range anxiety but do 
not account for the practical parameters like trading mechanisms, sto-
chasticity of EV demand, electricity price and uncertainty present. 

The main contribution of this research can be highlighted as follows:  

• This paper proposes a novel transactive trading mechanism for EVs 
accounting for the range anxiety of EV users.  

• The proposed transactive trading mechanism is incorporated with 
practical parameters like driving distance, forecasting of PV gener-
ation with uncertainty analysis, battery degradation, electricity pri-
ces, etc., to assess the system close to actual conditions accurately.  

• The proposed system is optimized for minimum cost and verified by 
comparing it with conventional grid-integrated systems for a com-
mercial region in Auckland, New Zealand. 

The rest of the paper is organized as follows: The system modelling is 
introduced in Section II. Section III shows the forecasting of required 
inputs: PV and charging demand. The trading model is presented in 
Section IV, while the case study simulation, results and discussion are 
elaborated in Section V. Finally, the paper’s conclusions and future 
research are provided in Section V. 

2. System modelling 

Multiple commercial parking lots based in Auckland are considered 
in this paper. The charging demand of each parking lot is fulfilled 
through power supplied by the PV system and distribution grid. The 
system model is shown in Fig. 1. Abundant charging points are assumed 
to be available in each parking lot through a modular converter [19]. All 
system components communicate with each other through micro-
controllers attached to them. 

Fig. 1. Model of the proposed transactive system.  
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The Energy Management System (EMS) plays a crucial role in opti-
mizing the performance of a system that involves photovoltaic (PV) 
output, electricity prices, electric vehicle (EV) demand, and EV 
charging/discharging. Through the use of forecasting, the EMS antici-
pates PV output and electricity prices while coordinating the charging/ 
discharging of EVs through charging controllers. Additionally, the EMS 
serves as an aggregator, making decisions regarding the charging and 
discharging of individual EVs based on factors such as initial state of 
charge (SoC), target SoC, parking duration, and charging cost. The 
EMS’s function within the system can be divided into three main stages: 
forecasting, aligning EV demand with supply, and engaging in trans-
active energy trading to minimize costs. Specifically, the EMS estimates 
each hour’s overall energy demand and PV generation. It communicates 
surplus energy availability to a local trading agent, overseeing an auc-
tion process for buying and selling. 

The local trading agent supervises an auction system wherein buyers 
and sellers present bids for energy transactions. Within the aggregator 
(parking lots), the EMS calculates the total energy demand and PV en-
ergy production for each hour, striving to balance supply and demand. 
Additionally, the EMS assesses surplus available energy and relays this 
information to the local trading agent, who disseminates the average 
surplus energy to potential buyers. Prospective buyers individually 
evaluate their energy requirements and submit bids to the local trading 
agent, while sellers, following their assessments, also submit bids to sell 
excess energy. The local trading agent then employs a double-sided 
auction method to clear the market and distribute energy based on the 
accumulated bids. 

3. Forecasting 

Forecasting is an essential step for effective EMS designing for EV 
charging management, as it helps predict the future relevant inputs and 
ensure sufficient capacity to meet this demand. Accurate forecasting can 
help optimize the use of charging infrastructure, better utilize PV gen-
eration, and improve customer satisfaction by optimizing EV usage. This 
section presents the forecasting of PV generation and EV demand. 

3.1. PV output forecasting 

There are three main approaches to predicting the output of photo-
voltaic (PV) systems: physical models, statistical models and neural 
networks-based models. While all the methods can be effective, statis-
tical models are generally considered easily interpretable and more 
reliable for short-term or intraday forecasting. Among statistical 
methods, Autoregressive Integrated Moving Average (ARIMA) models 
have been found to be remarkably accurate at low temporal resolutions. 
Hence, ARIMA is used to forecast the PV output in this work. The yearly 
irradiation and temperature data were taken from the National Institute 
of Water and Atmosphere (NIWA) for Auckland, New Zealand [20]. 

ARIMA is a statistical model used for forecasting time series data. It is 
a linear model that assumes that the underlying data follows a specific 
pattern, such as a trend or seasonality, and that this pattern can be 
captured using a combination of autoregressive (AR), integrated (I), and 
moving average (MA) terms. The AR terms in an ARIMA model capture 
the autocorrelation in the data, which refers to the relationship between 
the current value of the time series and previous values. The I term 
represents the integration of the time series, which helps to remove any 
non-stationarity (trend or seasonality) from the data. The MA terms 
capture the error or noise in the data, which is assumed to be a random 
process. The ARIMA model is extended to seasonal ARIMA (SARIMA) to 
account for periodic patterns in the irradiation data. In addition to 
ARIMA’s three components, SARIMA models include seasonal terms. 
The seasonal terms have seasonal autoregression (SAR), seasonal inte-
gration (SI), and seasonal moving average (SMA). The SARIMA process 
can be represented using the notation (p,d,q) x (P, D, Q)s. In this case, 
the chosen SARIMA model has the parameters (p=3, d=0, q=2) x (P=1, 

D=0, Q=1)s=24, which are listed in Table 1. 
To assess the implemented SARIMA model, we scrutinize its R2 and 

root-mean-square error, yielding values of 0.938 and 62 W/m2, corre-
spondingly. The observed irradiance peaks range between 800 and 
1000 W/m2. Consequently, the chosen model proves to be well-suited 
for forecasting. 

Fig. 2 illustrates the contrast between the forecasted daily profile of 
PV power and the actual observed PV power. This analysis focuses on 
monocrystalline PV panels boasting a 19% efficiency. The computed PV 
output is derived from the predicted irradiation [21] using (1). 

PPVt = ηAPVGF

(

1 −
TC − 25

200

)

(1)  

where η = efficiency of PV module, 
APV = PV module’s surface area (m2) 
GF = forecasted solar irradiation (kW/m2) 
TC = panels’ operating temperature (◦C). 

3.2. EV charging demand 

The parking facilities are anticipated to serve predominantly those 
utilizing EVs for workplace purposes. As a result, the occupancy of the 
parking lots is linked to the typical working hours between 9:00 a.m. 
and 5:00 p.m. The assumption is made that the distribution of arrival 
and departure times for EVs follows a normal distribution as outlined in 
(2). 

f(ti) =
1

σt
̅̅̅̅̅
2π

√ e
−

[

(ti − μt)
2

2σ2
t

]

t > 0 (2)  

Table 1 
SARIMA Model Parameters.  

Parameters Value (PV Forecasting)  

AR (2)  0.813  
AR (3)  -0.813  
MA (1)  -1.051  
MA (2)  -0.51  
Seasonal AR (1)  0.995  
Seasonal MA (1)  0.889  

Fig. 2. Single-day profile of observed and forecasted PV power.  
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where i = {1,2,…N} represents ith EV, σt and μt are mean and 
standard deviation respectively. Table 2 shows the EV distribution 
characteristics adopted from [22]. 

EV fleets in Auckland include a diverse range of EV types, each 
equipped with batteries of varying capacities ranging from 9 to 60 kWh 
[23]. According to [24], workplace charging is noted for extending the 
range of EVs but does not fully charge them. The literature commonly 
represents SoC using uniform [25], normal [26] and log-normal [27] 
probability functions. In this context, a log-normal distribution function 
with a maximum and minimum SoC limit of 0.9 and 0.1, respectively, is 
assumed as per (3). The EV characteristic data is presented in Table 3 

f(SoCi) =
1

SoCi × σSoC
̅̅̅̅̅
2π

√ e
−

[

(lnSoCi − μSoC)
2

2σ2
SoC

]

t > 0 (3)  

4. Transactive energy management modelling 

This section describes the mathematical modelling of a transactive 
energy management system. 

4.1. EV modelling 

The EV charging process is generally nonlinear in nature, but for this 
work, it is assumed to be linear for generic problem formulation. The 
mathematical model of EV charging is adopted from [28]. 

To model the range anxiety, it is essential to model the local trans-
portation infrastructure, estimating battery consumption for travelling 
to the destination. Traditional EV travel planning models and optimal 
path algorithms, such as [29], can be utilized to simulate EV travel 
behaviour. However, these methods tend to require extensive data 

sampling and involve complex path optimization, which can be 
time-consuming and inefficient. 

Based on [30], a simple algorithm models optimal pathfinding 
driving behaviour. In this algorithm, the traffic system is approximated 
by a two-dimensional grid, assuming that all the roads are either parallel 
or perpendicular to each other. The traffic model then can be easily 
integrated into a cartesian coordinate system. Fig. 3 shows the simplified 
traffic model based on a cartesian coordinates system. Many different 
paths can be taken to reach location B from location A. Because of the 
cartesian coordinate system, the distance between locations A and B will 
be the same irrespective of the chosen path. The EV driving distance 
from locations A to B can be calculated in (4). 

DAB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|yB − yA|
2
+ |xB − xA|

2
√

(4)  

where yA, xA, yB, xB represent the coordinates of the locations A & B. 
For the simplicity of the traffic model, obstacles and traffic conges-

tion aren’t considered. 
Nonetheless, roads might not adhere strictly to orthogonal patterns 

within actual transportation networks, and EVs may deviate from the 
shortest route. Consequently, introducing a normal distribution is 
employed to address uncertainties in driving in (5) [30]. 

f(di) =
1

DAB
̅̅̅̅̅
2π

√ e
−

[

(di − μAB)
2

2D2
AB

]

d > 0 (5)  

where DAB is actual driving distance, and μAB is standard deviation. 

4.2. Electricity prices 

The electricity pricing used in this research is taken from [31] as 
30c/kWh for the peak period as fixed pricing and 20c/kWh for the 
non-peak period. The peak periods considered are from 8 am to 10 am 
and 5 pm to 7 pm in the winter season. With NZ being a winter-peaking 
country, winters have a higher need for EV management. Hence, the 
winter season is considered for analysis in this research. 

4.3. Range anxiety 

EV drivers frequently experience range anxiety as they drive. The 
level of range anxiety is directly related to the driving distance of the 
electric vehicle and inversely related to its battery capacity. As a result, 
the range anxiety of an EV intending to transact energy is quantified in 
(6). 

Ri,t =
SoCMax − SoCi,t

SoCMax
×

Di + Di,p

max(Di + Di,p + BCi ∗ SoCi,t
/

αi)
(6)  

where SoCMax is the maximum SoC of ith EV, SoCi,t is the SoC of ith EV at 
time t, Di is the driving distance between EV and its destination, Di,p is 
the distance between ith EV and pth parking lot and αi is the power 
consumption. 

The EV users will be influenced by range anxiety based on the 
charging capacity of the vehicle. The more the range anxiety EV user 
has; its charging demand will be more. Hence, the charging re-
quirements of electric vehicle (EV) users can be articulated in (7) in 
terms of range anxiety and the upper/lower limits of charging capac-
ities. 

EReqb,t = EMin,b +Rb,t × (EMax,b − EMin,b)b ∈ ibuy (7)  

where EMax,b and EMin,b refer to maximum and minimum energy of bth EV 
respectively. 

For the discharging EV users, higher range anxiety will lead to lower 
available power to trade. Like above, the discharging demand of EV 
users can also be expressed as in (8). 

Table 2 
EV Probability Distribution Parameters.   

Initial SoC Departure SoC Arrival Departure 

Mean (h)  1.7  2.07 9 am 5 pm 
St. Deviation (h)  0.73  0.52 1 1  

Table 3 
EV Characteristic Parameters.  

Model Battery capacity 
[kWh] 

Max charging power 
[kW] 

No per parking 
lot 

Mitsubishi 
Outlander  

13.8  3.7  3 

Hyundai Ioniq  38.3  7.2  3 
Tesla Model 3  55  7.4  3 
Toyota Prius  8.8  3.3  6 
Nissan Leaf  40  3.6  10  

Fig. 3. A simplified traffic model based on the Cartesian system.  
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EExcs,t = EMin,s +(1 − Rs,t) × (EMax,s − EMin,s)s ∈ isell (8) 

The total EV participating in transactive energy trading can be 
constrained by (9). 

ibuy + isell = N (9) 

For each parking lot, the total available energy of a parking lot p at 
time t for trading will depend on the power available from discharging 
EVs and charging demand for charging EVs and PV energy, as shown in 
(10). Eq. (11) calculates the average available energy. 

EExcp,t =
∑k

i=1
(EExcs,t − EReqb,t )+ PPVp,t ∗ Δts+ b = N (10)  

Eavg
Excp,t

=
EExcp,t

b
(11)  

5. Objective function formulation 

The transactive trading mechanism is adopted from [28], where the 
energy valuation of each parking lot is calculated based on the required 
energy to buy, as shown in (12). 

Evalp,t = EReqp,t − Eavg
Excp,t

for pϵpbuy (12) 

Based on the assessed value, each purchaser submits their bid to the 
local trading agent, with the bid price constrained within the open set 
limit (Celect ,CFIT) for a feasible market structure to maintain a viable 
market structure. The reasoning behind this limitation is that sellers can 
sell surplus energy to the grid at the FIT. At the same time, buyers can 
acquire energy from the grid at an electricity tariff. Consequently, this 
limit fosters energy trading among parking lots, creating a community of 
energy buyers and sellers with minimal direct influence from the grid. 
This setup aims to ensure that the price signal from the central power 
station does not significantly impact the transactive trading perfor-
mance, as observed in the scheduling and trading of energy in existing 
systems [32] 

To succeed in the auction, buyers with higher valuations place bids 
closer to the utility tariff, while sellers with substantial negative valu-
ations bid relative to the feed-in tariff. Eq. (13) shows the bid formula-
tion, which depends on the energy valuation of each parking lot and is 
constrained between the limits (Celect ,CFIT). 

Cbidp,t =
Celect − CFIT

2
∗

Evalp,t
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
(
Evalp,t

)2
√ (13) 

The bid Bidp of a buyer p ∈ pbuy comprises of bidding price and Emax
p , 

maximum energy demand (charging demand of the parking lot). Note 
that this energy demand is the maximum energy the buyer wants from 
the transactive trading. The energy bid of a buyer can be represented as 
(14). The bid formulation for sellers can also be described in the same 
way. 

Bidp ≡
(

Cbidp ,Emax
p

)
∀p ∈ pbuy (14) 

The energy allocation by the local trading agent is determined by the 
bid offers received from participants. An auction-based mechanism is 
well-suited for assessing such trades, where participants have varying 
bid values based on their energy valuations. Transactions are risk- 
averse, excluding bids beyond the limit (Celec,CFIT)to ensure no partici-
pant losses. The local trading agent organizes buyer bids in descending 
order, prioritizing those with higher energy valuations and aligning 
them with the seller’s bid. 

The double-sided auctions operate on bid submissions from multiple 
buyers and sellers, and the proposed bidding system, thanks to its 
generic formulation, remains independent of the number of participants. 
To achieve optimal energy allocation, an optimization problem is 
formulated. 

Ctot,b =

{
∑P

p=1

∑T

t=1

∑N

i=1

((

Pg2vi,p,t −
Ebuyp,t

Δt

)

∗ Celect +Pv2gi,p,t

∗ Cdeg +
(
PPV2EVi,p,t + PPV2Gp,t

)
∗ CPV −

(
Pv2gi,p,t +PPV2Gp,t

)

∗ CFIT

)

+
∑P

p=1

∑T

t=1

(Ebuyp,t

Δt

)

∗ Cbidp,t

}

∗ Δt pϵpbuy (15) 

Eqs. (15) and (16) represent the system cost in the proposed case for 
buyer parking lots. A similar system cost function can be formulated for 
sellers as well. The total cost function to optimize is shown in (16). 

Ctot = min{Ctot,b,Ctot,s} (16) 

The optimization problem is solved by minimizing the system cost 
bounded by the energy constraint represented in (17− 19). 

∑pbuy

p=1
Ebuyt,p ≤ Emax

t,p (17)  

∑psell

p=1
Esellt,p ≤ EExct,p (18)  

0≤ Ebuyt,p or Esellt,p (19) 

The optimization problem formulated involves the multiplication of 
a binary variable with a continuous variable, thus making it non-linear 
in nature. To linearize the optimization problem, a new continuous 
variable ‘x’ is introduced, as shown below, which is linearized with the 
help of constraints demonstrated in (20− 23). 

x = b ∗ c (20)  

x ≤ c (21)  

x ≥ c − (1 − b) ∗ M (22)  

x ≤ b ∗ M (23)  

where b represents the binary variable, c represents the continuous 
variable, and M represents a set of very large numbers. If b = 0, the 
variable x will also be 0 as per (20). However, if b = 1, then (23) shows a 
non-binding constraint. Further, Eqs. (21) and (22) will result in x=c. 
Accordingly, x will show either 0 or c values based on these constraints. 
For more details, Ref. [33] can be referred to. 

5.1. Uncertainty analysis 

The forecasting uncertainty can be categorized into two components: 
the anticipated data value and the forecasting error. These uncertainties 
can be quantified using the probability distribution function. This paper 
quantifies the uncertainties in PV generation by employing discrete-type 
probability distributions adopted from [28]. 

Eq. (24) presents the discrete probability distribution sets for PV 
generation (DPV): 

DPV =
(
P1

PV, ρ1
PV

)
;
(
P2

PV, ρ2
PV

)
;…..;

(
Pn

PV, ρn
PV

)
(24)  

where each set is the pair of expected values and its probability, ρ de-
notes the probability and n is the total number of scenarios. Also, the 
sum of all the probabilities is unity for any variable, as shown in (25). 
∑n

i=1
ρi

PV = 1 (25) 

The previously developed cost function in (15) has been updated to 
incorporate uncertainties for buyers, as shown in (26). In addressing the 
optimization challenge, this function will be adjusted by multiplying it 
with the joint probability associated with each devised scenario. 
Furthermore, the cumulative joint probabilities across all scenarios will 
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be required to sum up to one. 

Ctot,b =

{
∑n

s=1
ρs

{
∑P

p=1

∑T

t=1

∑N

i=1

((

Pg2vi,p,t −
Ebuyp,t

Δt

)

∗ Celect + Pv2gi,p,t

∗ Cdeg +
(
PPV2EVi,p,t + PPV2Gp,t

)
∗ CPV −

(
Pv2gi,p,t +PPV2Gp,t

)

∗ CFIT

)

+
∑P

p=1

∑T

t=1

(Ebuyp,t

Δt

)

∗ Cbidp,t

}

∗ Δt

}

pϵpbuy

(26) 

The initial term in (26) represents the anticipated cost of purchasing 
electricity from the utility for scenario s. The subsequent term accounts 
for the cost related to battery degradation, which, being certain, remains 
unchanged from the original estimate. The third term reflects the cost 
associated with the marginal cost of PV energy, which varies due to the 
uncertain output of PV, thus indicating the expected marginal cost of PV 
in scenario s and likewise. The modified optimization model adheres to 
all previously established constraints, with each variable also 

Table 4 
Details of Probability Distributions.  

Expected PV Generation Probability  

110%  0.05  
105%  0.10  
100%  0.70  
95%  0.10  
90%  0.05  

Fig. 4. A flowchart of the EV management system process.  
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incorporating the scenario index, s, as well. The cost function for sellers 
can also be modified similarly before optimizing for total cost as per 
(16). 

Five distinct, discrete probability distributions are analyzed for PV 
generation to examine the effects of uncertainty. The aim of utilizing 
various discrete distributions is to demonstrate how different degrees of 
uncertainty in PV generation influence the overall net cost savings. 
Specifically, the variations include two positive deviations (+5% and 
+10%, indicating higher than predicted values), two negative de-
viations (-5% and − 10%, indicating lower than predicted values), and a 
scenario with no deviation (aligning with the predicted values). Five 
distinct scenarios were considered, with the details of the discrete 
probability distribution functions (values and the probability of occur-
rence) shown in Table 4. The expected x% means the expected value is x 
% of the forecasted value. 

5.2. Energy management algorithm 

The energy management algorithm is highlighted in the following 
steps and shown in the flowchart in Fig. 4: 

1. EVs with charging and discharging need to use the energy manage-
ment system platform to search for an appropriate EV parking lot to 
join. Each EV provides information about its transactions, such as the 
starting point, destination, and current state of charge.  

2. The energy management system platform offers various EV parking 
choices determined by factors such as location, accessible power 
resources, and rates for charging or discharging. The platform uses 
EVs’ status to determine the best parking lot for an EV to join, 
considering factors such as income, time, and route. This information 
is then shared with the EV for its reference. 

3. Based on the information on the energy management system plat-
form, the parking lot accepts or rejects EVs to minimize the total 
system cost. Every parking facility evaluates the advantages of 
various trading options, such as trading with the wholesale market 
and other EV parking lots. The optimal choice is determined by 
comparing these benefits, and the parking lot either accepts or rejects 
EVs accordingly.  

4. The transactive energy trading platform accepts bids from each 
parking lot and clears the market using a double-sided auction 
mechanism. Based on the amount of excess/required energy after 
each trading, a parking lot either accepts EVs from other lots or re-
duces the number of existing ones.  

5. The energy management system platform matches EVs based on the 
parking lot’s selection and transaction requests. The EVs (if not 
already present in a parking lot) then go to the matched parking lot 
to carry out power transfer. The distance between the EV location 
and the parking lot determines the time electric vehicles take to 
reach parking lots. 

6. Results and discussion 

A comparative analysis has been done to demonstrate the feasibility 
of the proposed auction system. The optimization problem is solved 
using a CPLEX solver on neos-server [34]. The base case employs 
optimal charging to minimize the system cost. The excess energy is sold 
back into the grid via parking lots as aggregator, not traded with other 
EV parking lots. For the proposed model, the case study also employs 
optimal charging to minimize the system cost. However, the excess en-
ergy is not sold back into the grid but traded to other EV parking lots 
based on a bidding mechanism. An additional case is considered here 
where EVs can also utilize fast public Charging Stations (CS) to alleviate 
their range anxiety at commercial prices taken as 10% more than the 
electricity price. 

This paper considers six EV parking facilities, each outfitted with a 
10 kWp photovoltaic (PV) system. It is assumed that 25 electric vehicles 

are engaging in V2G per parking facility. The analysis does not consider 
the auxiliary power consumption of the parking lots. Five public 
charging spots are considered in this paper. Fig. 5 shows the spatial 
locations of EV parking lots (in blue) and public charging spots (in 
green). 

The V2G-induced expense related to battery degradation amounts to 
0.065 NZ$ per kWh, as referenced in [35]. To ensure a more realistic 
analysis, the energy generated by PV output is not treated as free. The 
LCOE for PV is set at 0.12 NZ$ per kWh, based on information from[36]. 
The optimization process is conducted over a 24-hour cycle spanning 
from 12 a.m. to 11.59 p.m. The selected Feed-in Tariff (FIT) value is 
0.08 NZ$ per kWh [37]. 

The daily system cost comparison for the three cases is shown in  
Table 5. The daily system costs are mean (and deviation) when EVs are 
randomly designated as charging or discharging and simulated 50 times. 
The higher charging cost at public charging stations results in fewer cost 
reductions than relying on a transactive trading mechanism. 

Variation of the number of charging EVs versus discharging EVs can 
impact the system cost as fewer discharging EVs lead to more usage of 
public charging stations or less energy available for transactive trading.  
Fig. 6 shows the impact of discharging EVs on the system cost. More 
discharging EVs will only sometimes lead to larger transactive energy 
trading due to demand and supply imbalance, leading to smaller bid 
amounts. 

The availability of fast public chargers also impacts the system cost. 
A higher number of available chargers will increase the system cost as 
parking lots with higher energy valuation (due to the high range anxiety 
of EVs) may not succeed in bidding, depending on the excess energy 

Fig. 5. Map of parking lots and public charging stations.  

Table 5 
Comparison of System Cost.   

Base Model Proposed Model 
(without charging 
stations) 

Proposed Model 
(with charging 
stations) 

System Cost 
(NZ$) 

163.72 
(152.12 – 
191.55) 

153.57 (148.3 ~ 
174.3) 

160.1 (150.3 ~ 
179.5) 

Cost reduction 
wrt base 

- 6.2% (2.5% ~ 9.8%) 2.2% (1.3% ~ 6.4%)  
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Fig. 6. Variation of system cost with respect to the number of discharging EVs.  

Fig. 7. Variation of system cost with number of CS.  

Fig. 8. Variation of system cost with time.  
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available for transactive trading. Such scenarios will lead to public 
charging facility usage by range anxious EVs, albeit at a higher cost.  
Fig. 7 shows the variation in system cost when different numbers of 
charging stations are available while keeping the ratio of charging and 
discharging EVs at 1.5. Each CS is assumed to accommodate only 2 EVs 
at a time and level 3 charging capability. 

The system cost saturates with the increased number of charging 
stations due to non-usage. Additionally, EVs that don’t get charging 
energy from the available excess energy pool (in transactive energy 
trading) can only choose a public charging station when there is one. 
The red dot in Fig. 7 depicts the system cost, which is relatively cheap 
because only some of the demand for EVs can be satisfied. 

As the bidding price is restricted to be less than the electricity 
network price for the feasibility of the transactive energy market, it is 
possible that all EVs couldn’t successfully participate in transactive en-
ergy trading during the evening peak period. This depends mainly on the 
number of available discharging EVs. Fig. 8 shows the variation in sys-
tem cost during the day. 

The uncertainty analysis using discrete probability distribution is 
performed on five generated scenarios to evaluate the impact of un-
certainty in PV generation on the system cost variation. Fig. 9 shows the 
variation of system cost for the base and proposed model in each of these 
scenarios, where Ppv refers to PV generation. 

7. Conclusions 

Range anxiety is one of the significant barriers to the implementation 
of transactive energy management systems for EVs. This paper studies 
the optimal charging problem of the PV integrated range anxious EV 
parking lots. A transactive energy trading mechanism is proposed to 
minimize the system cost. The results achieved from this paper can be 
summarised as follows:  

1. The presented trading strategy results in 3–10% savings compared to 
the system cost in EVs relying only on distribution networks and PV 
energy.  

2. Additionally, the presence of public charging stations can also result 
in cost savings in the range of 1–5%.  

3. The number of discharging EVs significantly impacts cost savings 
versus the number of public charging stations.  

4. The peak or non-peak period of electricity network pricing also 
significantly affects the EVs taking part in transactive energy trading 
compared to charging and discharging into the distribution network. 
When transactive energy trading occurs at non-peak times, the sys-
tem cost is generally greater than the distribution network. That 
instance, transactive energy trading mainly alleviates the EV’s range 
anxiety.  

5. The uncertainty analysis of PV generation results in cost savings 
scenarios ranging from 2% to 9%. 

The parking lots are assumed to be cooperative in nature in this 
paper. However, competitive trading based on a strategic game can be 
investigated in future. 
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