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Abstract IEEE 802.16, also known as Worldwide Interoperability for Mi-
crowave Access (WiMAX), is a standardization effort carried out by the IEEE
to provide last-mile broadband access to end users. The IEEE 802.16 standard
supports two medium access control (MAC) modes - a mandatory point to mul-
tipoint (PMP) mode and an optional mesh mode. In this paper, we propose an
asymmetric interference aware routing algorithm and a new multipointer ap-
proach in implementing scheduling algorithms for IEEE 802.16 mesh networks.
We modify three different centralized scheduling algorithms, fixed scheduling,
ordered scheduling and per-slot scheduling using multipointer approach to al-
low for spatial reuse (SR) in IEEE 802.16 mesh networks. Simulation results
reveal that fixed scheduling with SR provides the best performance.
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1 Introduction

The IEEE 802.16 Standard [1], better known as Wireless Interoperability for
Microwave Access (WiMAX) was designed to provide last-mile wireless broad-
band access to users in remote areas. Its performance is comparable to that of
a cable network or digital subscriber line (DSL). A WiMAX network is cheap
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to deploy and easy to maintain. With the advent of other wireless technolo-
gies, WiMAX is considered to be a promising and easy alternative to wirelines
infrastructure [2].

A IEEE 802.16 network consists of a base station (BS) with backhaul ac-
cess to the network and many substations (SSs) with advanced multiple-input
multiple-output (MIMO) transceivers. The BS and SSs maintain connectivity
with all nodes which are within transmission range. The IEEE 802.16 [3] net-
work operates in two modes - the mandatory point-to-multipoint (PMP) mode
and the optional mesh mode. In the PMP mode, SSs interact only with the
BS, and all traffic exchange occurs only between a SS and the BS. In the mesh
mode, traffic is allowed to travel via SSs to their final destination. Compared to
the PMP mode, the mesh mode exhibits better scalability, enhanced coverage,
higher throughput and stronger resilience to node failures.

Inherently, the IEEE 802.16 standard adopts time division multiple access
(TDMA), under which each frame is divided into a number of transmission
opportunities that are allocated to SSs using a scheduling algorithm. Scheduling
can be centrally carried out at the BS or distributively completed by individual
SS using the three-way handshake. Since the IEEE 802.16 standard does not
specify any particular scheduling algorithm, scheduling in IEEE 802.16 mesh
networks has attracted considerable amount of attention from both academia
and industrial communities in recent years.

Liao et al. proposed a clique partitioning approach for centralized scheduling
in IEEE 802.16 mesh networks, which was to optimize the schedule length,
maximize number of concurrent transmissions and minimize the buffer size
required at stations [4]. Huang et al. studied fair rate-balance in order to ensure
link fairness and network stability in [5]. First-come-first-serve algorithm was
proposed to be used in conjunction with priority algorithm [6]. Joint bandwidth
allocation and packet scheduling was studied in order to improve throughput
[7]. Mnif et al. evaluated the performance of various scheduling algorithms
using OPNET in [8], and proposed enhanced adaptive proportional fairness
as a new scheduling algorithm. Similarly, a comparative study was presented
in [9]. Channel aware cross-layer scheduling for WiMAX in PMP mode was
proposed in [10], and a similar concept for mobile WiMAX was presented in
[11]. Zubairi et al. studied fair scheduling in WiMAX and Long Term Evolution
(LTE) in [12]. Akashdeep et al. presented a survey on scheduling algorithms
in IEEE 802.16 networks [13], and Yadav et al. presented their classifications
in [14].

Besides scheduling, routing is another important issue in IEEE 802.16
mesh networks, which was missed out in the works mentioned above. Different
routing algorithms were proposed for IEEE 802.16 mesh networks. Wei et
al. proposed an interference-aware routing scheme and a centralized mesh
scheduling scheme in [15]. They mentioned that interference-aware design
resulted in better spatial reuse (SR). In [16], Tao et al. proposed to use the
protocol interference model to enhance throughput with concurrent transmission.
However, none of them considered the effect of scheduling algorithms. Xie
et al. investigated video-on-demand streaming over WiMAX and proposed a
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multicast routing technique [17], where scheduling was achieved with admission
control and SR was not included. Guo et al. studied interference-avoidance
scheduling for two-tier cluster based routing tree [18], where the intra-cluster
scheduling and extra-cluster scheduling was managed by the clusterhead and
BS, respectively.

It becomes even more challenging to achieve joint optimization in routing
and scheduling in IEEE 802.16 mesh networks. Shetiya and Sharma studied
joint routing and centralized scheduling and proposed several simpler suboptimal
scheduling algorithms [19]. Each algorithm had a specific node selection mechanism
that was used in a vanilla BGreedy algorithm. However, they did not consider
buffer constraints of IEEE 802.16 mesh networks. Due to certain hardware
buffer queueing and processing, data received in a frame ‘n’ cannot be made
available for transmission until the next frame ‘n+ 1’. Furthermore, they did
not study the performance of their proposed algorithms in terms of end-to-end
delay. Jin et al. showed the NP-completeness of the problem of joint packet
scheduling and routing in general topology, and proposed routing/scheduling
algorithms for mesh networks based on their study of a linear chain network
[20]. Later, Lo and Ou studied the application of BGreedy algorithm [20]
in a tree-topology [21]. However, SR was not considered. Nahle and Malouch
proposed a joint routing and scheduling algorithm to maximize network throughput
[22]. However, they did not discuss the performance of their algorithm in terms
of end-to-end delay. Study of schedule length was discussed in [23], where
the authors proposed maximum spatial reuse (MSR) algorithm to maximize
the SR by minimizing the schedule length and allowing as many concurrent
transmission as possible.

We noticed the following three issues through careful study of existing
works: (i) optimal scheduling schemes were dependent on the instantaneous
queue length [20] [22] [23]. However, for practical implementations of IEEE
802.16 mesh networks, parameters like queue length and network load are not
readily available at the BS. We should take this into account when designing
scheduling algorithms. (ii) The optimal scheduling algorithms were based on
the assumption that all links have equal data rates. However, effective link
rates are asymmetric due to varying medium access control (MAC) layer
encoding/decoding. (iii) Conventional packet scheduling is based one single
pointer, which shifts from the first available slot towards the last one. This
works well in IEEE 802.16 networks operating in PMP mode. However, for
IEEE 802.16 networks operating in mesh mode, practical buffer constraints
and multihop distances could render single-pointer based iteration useless. As
a result, multi-pointer based implementation of scheduling algorithms should
be adopted. Corresponding to these three issues, the main contributions of
this paper are threefold: (i) We propose a new routing algorithm, asymmetric
interference aware routing (AIAR), which is based on effective link rates and
adopts the interference model to obtain optimum throughput while considering
SR. (ii) We are particularly enlightened by the three suboptimal algorithms
originally proposed in [19], namely fixed allocation scheme, ordering scheme
and per slot maximum transmission scheme. Our proposed scheduling algorithms
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are based on similar philosophy, but they are essentially different from those
three proposed in [19]. To emphasize the difference, we deliberately rename
them as fixed scheduling (FS), ordered scheduling (OS) and per-slot scheduling
(PSS). We further modify FS, OS and PSS to implement SR and obtain
FS with SR (FS-SR), OS with SR (OS-SR) and PSS with SR (PSS-SR),
respectively. (iii) By taking buffer size and hardware delay into account, we
propose a new multipointer approach to implement scheduling algorithms so as
to minimize scheduling time, to reduce end-to-end delay and to improve system
throughput. Simulation results demonstrate the feasibility of these algorithms.

The rest of this paper is organized as follows. Section 2 presents the system
model with underlying assumptions. In Section 3, we analyze the interference
model and propose the AIAR scheme. Section 4 introduces multipointer ap-
proach and discusses our proposed FS, OS, PSS, FS-SR, OS-SR and PSS-SR
schemes. Simulation design is presented in Section 5. In Section 6, we present
the results from the OMNeT++ simulations and evaluate the performance of
the multipointer scheduling algorithms. Finally, Section 7 concludes the paper.

2 System Model

In this paper, we consider a IEEE 802.16 mesh network with a BS and 10 SSs
as shown in Fig. 1. The network is modeled as a graph G(V, E). V is the set
of SSs in the network and E is the set of links with (i, j)∈ E iff SSi and SSj
are within transmission range. All links in the network are bidirectional, thus,
(i, j) ∈E⇒ (j, i) ∈E .

In the mesh mode, traffic can flow among SSs without going through
the BS. Two types of physical layers were defined in the standard, namely
WirelessMAN-OFDM and WirelessHUMAN, operating in the licensed spec-
trum and unlicensed spectrum under 11GHz, respectively. They both use 256
point Fast Fourier Transform (FFT) in a TDMA/TDM structure for channel
access. They support adaptive coding and modulation, and the link rates vary
according to the channel conditions.

Both uplink and downlink scheduling can be achieved in a centralized fash-
ion, while we focus on scheduling uplink packets. Scheduling of downlink pack-
ets can be done similarly using the same algorithm. We assume that each node
is allowed to transmits at a maximum power. Uplink scheduling is carried out
using mesh request (MSH-REQ) packets generated from each SS once every
scheduling period (SP), which is defined as the period over which the generated
scheduling map is deemed valid. Each scheduling is hence valid for a SP of K
frames. Each frame consists of N time slots, among which MSH-CTRL-LEN
time slots are reserved for centralized scheduling messages like MSH-REQ,
MSH-GRANT, MSH-NENT, etc.

Each node on arrival interacts with the nodes within transmission range
and chooses a sponsor node as the parent node, which helps register the new
node at the BS. Once the node is registered, it can participate in schedul-
ing by requesting bandwidth from the BS. This is done via the bandwidth
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Fig. 2 Bandwidth Request/Grant Mechanism in Mesh Networks

request/grant mechanism. Each node forwards its bandwidth request to its
parent node. A parent node assimilates the requests of its children nodes in
its own request and sends it to its parent node. This repeats recursively until
the BS receives the bandwidth request. The BS executes the scheduling algo-
rithm and broadcasts bandwidth grants to all nodes. This grant is broadcasted
throughout the network by intermediate nodes. As illustrated in Fig. 2, due to
buffering limitations, the grant/request received from a node in the previous



6 Xue Jun Li, Maode Ma

Table 1 List of Notations

C concurrent transmission set
H connection matrix
k frame number
λi mean number of bits arriving at node i at the beginning of frame k
M number of SSs in the mesh network
N number of slots in a frame
ni number of slots assigned to node i

Qi(k) queue length at the beginning of frame k
ri (k) transmission rate of the medium during frame k
rij the data rate of the link between SSi and SSj

E[rij ] the average data rate of the link (i, j)
σi order of transmission of node i as given in the configuration file
SP scheduling period
SQ spillover queue
w fixed scheduling weighting factor

Xi(k) external arrival at node i during frame k
Y i(k) arrival from other nodes to node i during frame k

frame can be forwarded only in the next frame. Hence, an entire MSH-REQ
and MSH-GRANT cycles takes two scheduling periods. Hence, packets origi-
nating in scheduling period k, will request for resources in scheduling period
k + 1 and get granted resources in scheduling period k + 2. Hence, resources
to these packets are actually assigned in scheduling period k + 3. This allows
us to bound the delay to a maximum value if we provide an efficient routing
and scheduling algorithm.

2.1 Spatial Reuse and Interference Model

The IEEE 802.16 standard allows us to implement SR. Two or more nodes
can transmit concurrently if they do not interfere with one another. We follow
the protocol model and define rules under which links are considered to be
interfering. There are two types of interference that a link can experience:
(i) primary interference and (ii) secondary interference. All the links in our
network are bidirectional. A transmitting node cannot receive at the same
time and vice-versa. This type of interference is called primary interference.
Secondary interference occurs when an active link interferes with other links
which do not share the same source/destination.

3 System Stability and Proposed Routing Scheme

Let us define the following notations in Table 1. Then, the queue length at
node i can be calculated as

Qi (k + 1) = {Qi (k)− niri (k)}+ +Xi (k) + Yi (k) (1)
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For the sake of system stability, we need to ensure the capacity of the
network must be greater than the demand of the nodes; otherwise, the queue
length may continue to increase and the system might become unstable. Thus,

niE [ri] > E [Xi + Yi] = λi + E [Yi] (2)

In (2), E[ri] is the output data transmission rate of node i, and the total
data originating at other nodes and passing through node i is given by E [Yi] =∑mi

j=1 λai,j , where {ai,1, ai,2, ai,3 . . . ai,mi} are the nodes whose data passes
through node i. Hence, we get the number of slots required by node i,

ni >
λi +

∑mi

j=1 λai,j

E [ri]
(3)

To be within the stability range, the total number of slots allocated through-
out the network should not exceed ‘N ’- the total number of available slots,
i.e.,

∑M
i=1 ni ≤ N . By rearranging the terms in (3), we can obtain,

M∑
i=1

λi

hi∑
j=1

(
E
[
rpi,j

])−1

 < N (4)

where {pi,1, pi,2, pi,3 . . . pi,hi} are the intermediate nodes for which data
from node i is routed, including node i. From (4), we get the upper bound on
the arrival rate λi of each node. This is the maximum load on the network.

Hence, to maximize the stability region, the value of
∑hi

j=1

(
E
[
rpi,j

])−1
should

be minimized. This translates to shortest path routing, which essentially re-
sembles a path that has the maximum rate of transfer to the MBS.

3.1 Asymmetric Interference Aware Routing

Routing in WiMAX can be either fixed or adaptive. However, using adaptive
routing in such a dynamic environment like WiMAX will lead to continuous
path changes [24]. These changes would affect data delivery. Packets traveling
from one node to another could experience out of order delivery and high jitter.
Moreover, most data transfer (video and voice, etc) require that packets arrive
in the same order in which they have been transmitted. Therefore, fixed routing
is adopted for most deployments. Assuming that data from a given node follows
a single path, we can obtain an optimum tree routing structure. To enable SR
and optimize throughput, we propose a routing algorithm, namely asymmetric
interference aware routing (AIAR).

As shown in Algorithm 1, consider a graph G (V, E) where link Ei with
source sEi and destination dEi. A link E1 is said to be non-interfering with
another link E2 if: (i) dE2 /∈ neighbour (sE1), i.e., no receiver in the neighbour-
hood of the transmitter; (ii) sE2 /∈ neighbour (dE1), i.e., no transmitter in the
neighbourhood of the receiver; (iii) dE2 ̸= dE1 , i.e., one node cannot receive
from two transmitters.
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Fig. 3 Mesh Network Architecture with underlying Graph Structure

We use a parameter link interference parameter, L(x, y) to denote the sum
of data rates of all links that it interferes with. A node on entry calculates
the L(x, y) of every link it is involved in. It then selects a suitable node as its
parent node using node blocking parameter B(n)

B (n) = arg min
∀ni∈neighbours(n)

{B (ni) + L (n, ni)} (5)

The parent node is hence the node that offers minimal interference with
other links. This algorithm is dependent on the order in which the nodes enter
the network. Let H denote the hop count of the farthest node from BS, if we
execute the algorithm H times, we can obtain an optimal routing tree. Our
following discussion on scheduling algorithms is based on an assumption that
the minimum interference routing tree is pre-determined.

4 Enhanced Scheduling using Multi-pointer Approach

In this section, the new multipointer scheduling algorithm is presented, fol-
lowed by modifications to the three scheduling algorithms in order to take
into account SR. Finally, a multipointer scheduling example is presented.
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Algorithm 1 Asymmetric Interference Aware Routing
Input: Graph of the network including all edges and nodes - G(V,E)
Output: Routing tree with parents of each node - G′

(V,E ′ )
1: Initialize: V ← {1, 2, 3, ...,M}, V ′ ← {0}
2: For every edge in E, calculate L(x, y) from the above given conditions
3: B(n)=0 for n=0; otherwise infinity
4: while (V̸= ∅) do
5: Choose a node i from V with least number of hops to the MBS
6: for j = each neighbour of i in V do
7: B(i) = minimum{B(i), L(i, j)+B(j)}
8: parent(i) = j, for which B(i) is minimum
9: end for
10: V ←V−{i}
11: V ′ ←V ′

+{i}
12: E ′ ←E ′+{i, parent(i)}
13: end while

4.1 Multi-pointer Algorithm for Packet Scheduling

In most algorithms that we have seen, the scheduling of resources is done from
the first available slot towards the last available slot. This is acceptable for the
PMP mode [25]. However, for the mesh mode, buffering constraints and the
multihop distance to the destination render the normal iteration useless. Un-
der these circumstances, we need to develop a different approach. Scheduling
validity is defined as the number of frames over which a particular sched-
ule grant is valid. For WiMAX deployments with centralized scheduling, the
scheduling validity is set to the hop count of the farthest node from the BS.
As shown in Algorithm 2, the number of pointers used for scheduling is equal
to the scheduling validity. Consequently, we require one pointer for each frame
in the scheduling period. When all the slots in that particular frame have been
allocated, the pointer is merged with the pointer in the next frame.

Algorithm 2 Multi-pointer Algorithm Structure

1: Initialize: multipointer Pi ← the first data slot in ith frame, ni
j ← the number of slots

required by the jth node in the ith frame, where j ≤M, i ≤ SP
2: for i = 1 : SP do
3: while ni

j > 0 do
4: Pi ← j
5: ni

j ← ni
j − 1

6: Pi ← Pi + 1
7: if pi = end of frame then
8: Pi ← Pi+1

9: end if
10: end while
11: end for

Let us look at how a multipointer algorithm works. Consider a IEEE 802.16
network with four nodes as given in Fig. 4. Since the maximum hop count of
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Fig. 4 IEEE 802.16 network with four nodes
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Fig. 5 Working of Multi-pointer Algorithm: (a) before scheduling (b) after first frame of
scheduling (c) after second frame of scheduling (d) after third frame of scheduling

the farthest node to the MBS is 3, we use a scheduling period of 3 frames. As
depicted in Fig. 5(a), for the sake of simplicity, let us assume that each frame
has 20 time slots, where the pointers in each of these frames are denoted by
P1, P2 and P3, and initialized to the first slot in the 1st, 2nd and 3rd frame,
respectively. Assuming that each node has a request of eight slots, we can
obtain the results are shown in Fig. 5 after running the multipointer algorithm.
In Fig. 5, a slot with a circle mark inside indicates its allocation to a node; a
slot with a diamond mark inside indicates during which data transfer is being
done; a shaded slot without any mark indicates during which data is received
for a node.

4.2 Fixed Scheduling with Spatial Reuse

FS follows the principle of allocating resources proportional to the arrival rate
at a node. The arrival rate at the node comprises of external arrivals from other
nodes and arrivals from users of the node itself. The number of slots required
for node i without concurrency is given in (3). We calculate the number of
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slots for all nodes and then allocate slots to the nodes in order of their hop
count from the BS, as specified by σi.

To incorporate SR in terms of concurrent transmissions, we define a child
matrix ci,j , to denote whether or not a node j is a child/sub-child of node i.
This helps in calculating the total arrival rate at a given node. Then, we use
Ii,j to define the interference matrix, where if link i interferes with link j, then
Ii,j is equal to 1. We should note that the interference matrix is a symmetric
matrix. Hence, Ii,j=Ij,i≤ 1.

As we consider only uplink scheduling and a routing tree, each node has
only one uplink, and this link from node i to its parent node can be denoted as
Li,parent(i). Since no other link from i can serve as an uplink, we can simplify
the notation as Li. The order in which each node transmits is given in MSH-
CSCF. This is denoted by σi for node i. The scheduling output gives a set of
nodes that can transmit concurrently during a slot.

FS-SR follows a staggered approach. The arrival rate to each node is cal-
culated as a sum of arrival rate to itself and its children nodes. The number
of slots hence required in total at each node is the sum arrival rate divided
by the rate of data transfer per slot. In particular, if the total number of slots
cannot be serviced by the scheduling period, the number of slots granted to
each node is multiplied by a scheduling weight, w, which is defined as the ratio
of the number of slots in the scheduling period to the total number of slots
required.

Algorithm 3 Fixed Scheduling with Spatial Reuse
Input: arrival rates, children matrix, order of each node Output: scheduling grant for all
nodes

1: calculate ni and w
2: if w < 1 then
3: ni = ni × w, i = 1 : M
4: end if
5: Initialize: multipointers for all frames Pi, i = 1 : SP
6: set Qi = λi × SP
7: for i=1:SP do
8: for j=1:N do
9: find node ns=argmini=1...M {σi}, Qns > 0 and Insnt = 0 ∀ nt ∈ C
10: C ← {C, ns}
11: continue steps 8-10 until all nodes have been considered
12: if C = ∅ then
13: break
14: end if
15: allocate slot Pi to C
16: Pi ← Pi + 1
17: Qk = Qk − rk and SQparent(k) = SQparent(k) + rk, ∀k ∈ C
18: if Pi=end of frame then
19: Pi = Pi+1

20: end if
21: end for
22: Qk = Qk + SQk, k = 1 : M
23: end for
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4.3 Ordered Scheduling with Spatial Reuse

In OS, the scheduling weight for node is defined as

wi =
∑hi

j=1

(
E
[
rpi,j

])−1
(6)

Given the parameter wi, interference matrix I, and individual queue lengths
Qi, OS orders the nodes based on their wi values and assigns each slot to
the first node that can fully utilize that slot. Preference is given to a node
with a lower wi value. Furthermore, we propose OS-SR to implement SR (See
Algorithm 4). The concurrent set ‘C’ allocated to each slot contains the set of
all nodes that can transmit during that slot.

For each slot, OS-SR first selects the node that has the minimum wi value
and queue length longer enough to use the entire slot. Then, it selects other
nodes that can fully utilize a slot and can transmit concurrently with the first
selected node in order of their respective parameter values. The corresponding
uplinks of these nodes are added into the concurrent set ‘C’. This method
continues until all nodes are scheduled.

Algorithm 4 Ordered Scheduling with Spatial Reuse
Input: arrival rates, children matrix, order of each node
Output: scheduling grant for all nodes

1: calculate wi

2: Initialize: multipointers Pi, i = 1 : SP
3: set queue length of all nodes to Qi from MSH −REQ packet received
4: for i=1:SP do
5: for j=1:N do
6: find node ns=argmini=1...M {wi}, Qns > rns and Insnt = 0 ∀ nt ∈ C
7: C ← {C, ns}
8: continue steps 6-8 until all nodes have been considered
9: if C = ∅ then
10: find node ns=argmini=1...M {wi}, Qns > 0 and Insnt = 0 ∀ nt ∈ C
11: C ← {C, ns}
12: continue steps 9-11 until all nodes have been considered
13: end if
14: if C = ∅ then
15: break
16: end if
17: allocate slot Pi to C
18: Pi ← Pi + 1
19: Qk = Qk −min{Qk, rk} and SQparent(k) = SQparent(k) +min{Qk, rk},∀k ∈ C
20: if Pi=end of frame then
21: Pi = Pi+1

22: end if
23: end for
24: Qk = Qk + SQk, k = 1 : M
25: end for
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4.4 Per Slot Scheduling with Spatial Reuse

PSS works on a dynamic programming principle (See Algorithm 5) to schedule
one slot at a time to a node which can transmit the maximum number of bits in
that given slot. With SR, a slot is scheduled to nodes in the concurrent set ‘C’,
which can transmit simultaneously without experiencing severe interference.

One advantage of PSS is that the average resources required at nodes which
have a higher egress rate is low. However, the corresponding disadvantage is
that under high loads, the nodes with a lower transmission rate are allocated
resources towards the end of the scheduling frame. Hence, these nodes have
longer queue lengths. The data drop probability at these nodes is also high
due to the prioritized scheduling of nodes with higher egress rates.

Algorithm 5 Per Slot Scheduling (Concurrency) with Spillover
Input: arrival rates, children matrix, order of each node
Output: scheduling scheme for all nodes

1: Initialize: multipointers Pi, i = 1 : SP
2: set queue length of all nodes to Qi from MSH −REQ packet received
3: for i=1:SP do
4: for j=1:N do
5: find node ns=argmax∀i/∈C {min (Qi, ri)} and Insnt = 0 ∀ nt ∈ C
6: C ← {C, ns}
7: continue steps 6-8 until all nodes have been considered
8: if C = ∅ then
9: break
10: end if
11: allocate slot Pi to C
12: Pi ← Pi + 1
13: Qk = Qk −min{Qk, rk} and SQparent(k) = SQparent(k) +min{Qk, rk},∀k ∈ C
14: if Pi=end of frame then
15: Pi = Pi+1

16: end if
17: end for
18: Qk = Qk + SQk, k = 1 : M
19: end for

5 Simulation Design

Our simulation in OMNeT++ used the IEEE 802.16 mesh network as shown
in Fig. 1, designed using a Network Descriptor (NED). If a node was in trans-
mission range of another node, then it was connected to that node via a link.
All links were bidirectional and the link parameters were governed by their
burst profiles as shown in Table 2. The burst profile governed the modula-
tion, coding rate of that link. Hence, a different burst profile translated to a
different data rate. The link rates (in Mbps) between any two nodes were pre-
determined, as specified in a NED, and they were aggregated in a connection
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matrix, H with element (i, j) corresponding to burst profile of link between

node i and node j. H11×11 =



0 6 0 0 0 0 0 0 4 0 0
6 0 3 0 0 0 2 0 0 0 0
0 3 0 6 4 0 0 0 0 0 0
0 0 6 0 0 3 0 0 0 0 0
0 0 4 0 0 4 0 6 0 0 0
0 0 0 3 4 0 0 0 0 0 0
0 2 0 0 0 0 0 3 2 0 0
0 0 0 0 6 0 3 0 0 2 2
4 0 0 0 0 0 2 0 0 3 3
0 0 0 0 0 0 0 2 3 0 0
0 0 0 0 0 0 0 2 3 0 0



Table 2 Physical Parameters of Burst Profile

Burst
Profile No.

Modulation Coding Rate Uncoded bytes per
OFDM Symbol

Uncoded bytes
per slot

1 QPSK 1/2 24 96
2 QPSK 3/4 36 144
3 16QAM 1/2 48 192
4 16QAM 3/4 72 288
5 64QAM 2/3 96 384
6 64QAM 3/4 108 432

The maximum load on the network with respect to arrival rate at each SS
was calculated using the method in Section 3 and the load is 1.74Mbps, which
was corresponding to a normalized load of 1.0. The normalized load on the
network was varied from 0 to 1.0 with a step size of 0.1. Poisson packet arrival
was considered and the packet size was varied exponentially with respect to the
mean. Traffic generation occurred in the trafgen submodule of the substation.
The mean packet size was fixed at 768 bits. If all the nodes have the same
average arrival rate λi, the average size of the packet is fixed at L and the
packet inter-arrival time is calculated as

E [τ ] =
L

λ
(7)

All traffic is directed towards the BS. The traffic generator can also be adapted
to include priority, tardiness and drop probability of the packets, which has
been left out for our future study. Upon receiving data packets, either self-
generated or from other nodes, SSs put them into a reserved buffer, and then
moved them into the transmitter buffer at the beginning of each frame. This
perfectly simulated the buffer constraints of the IEEE 802.16 network. The
queuing rule was first-in first-out (FIFO). Other queuing methods like earliest
deadline first and fair scheduling could also be employed.

Each packet was time-stamped on of creation at the traffic-generator, and
given a time-to-live (TTL) value that was also varied exponentially with re-
spect to the mean. We tested our algorithms for four mean TTL values: 60ms,
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120ms, 240ms and 480ms. Packets which experienced a delay longer than their
TTL values were dropped by intermediate nodes or the BS.

The simulation was run for 5000s or 5× 106 frames. We can safely assume
that simulations could accurately record the real-time performance of the IEEE
802.16 mesh network. Each frame was assigned a duration of 10ms and the
scheduling period was set to 4 frames, as the maximum hop-count amongst all
leaf nodes is 4 in Fig. 1.

During initialization, we first execute AIAR to obtain the optimal routing
tree and then applied a scheduling algorithm. We simulated the request and
grant process and data transmission with buffer constraints in the IEEE 802.16
mesh network, and analyzed the performance of each of the six scheduling
algorithms discussed above, namely, FS, OS, PSS, FS-SR, OS-SR and PSS-
SR.

6 Results Analysis

To analyze the performance of a IEEE 802.16 network, we mainly look into
two main aspects: (i) mean delay – end-to-end time taken by a packet to reach
its destination; and (ii) throughput – the number of packets which have been
successfully delivered.

6.1 Mean Delay

The delay of a packet is defined as the time it takes from the time when it is
created by the traffic generator to the time when it reaches its destination.

As shown in Fig. 6, at low traffic load with low TTL values (60ms∼120ms),
FS outperformed other algorithms, which makes FS a suitable scheduling al-
gorrithm for low-data-rate and time-critical applications like VoIP and Telnet.
Next, scheduling priority under OS was to the node with the fastest path to-
wards the BS; while under PSS was to the fastest link. Due to this selective
nature of these algorithms, nodes with slower links/paths were allocated re-
source at the end of a scheduling period, leading to a higher mean delay. In
addition, every scheme outperformed its corresponding counterpart when im-
plemented with SR. This reduction in mean delay could be attributed to less
mean medium access time due to the concurrent transmissions.

At low traffic load with high TTL value (240ms∼480ms), there was no ap-
parent difference in the performance of the six scheduling schemes. Scheduling
algorithms employing SR performed just marginally better because they in-
creased the effective capacity of the network, thereby enabling more packets to
reach the destination faster. Furthermore, we find that proactive scheduling al-
gorithms like FS significantly outperformed the reactive scheduling algorithms
like OS and PSS. If we define ‘reaction time’ as the number of scheduling peri-
ods taken by the mesh network to respond to a given mesh-request. As shown
in Fig. 2, for PSS and OS that are based on the queue length of nodes, the
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reaction time is 2 scheduling periods. However, for FS, this is reduced to zero,
as FS is based on arrival rate at each node. Therefore, FS offered the smallest
delay amongst the six.

At high traffic load with low TTL values (60ms∼120ms), OS and PSS out-
performed FS. This is because the fact that FS would allocate more resources
to weaker links, giving rise to a longer waiting time for data with stronger links
and an overall increase in average delay. In particular, the ‘selective’ nature
of OS and PSS did not favor scheduling to moderate and weak paths/links.
Some packets were lost due to excessive delay and many packets were delayed
as the algorithm allocated resources first to stronger links and paths and then
to weaker links. The overall delay hence increases at high traffic load for these
algorithms. Packets with slower links (See Fig. 6) were dropped and hence
the average delay of packet delivery was comparable between OS and PSS.
Next, with SR, OS-SR and PSS-SR outperformed OS and PSS, respectively.
Furthermore, FS-SR provided the best performance. This was because of si-
multaneous allocations to strong and weak links at the same time. Since FS
was not selective in nature, data were allocated slots uniformly and hence we
had a lower average delay.

At high traffic load with high TTL value (240ms∼480ms), FS-SR offered
the best average delay under all loads and all TTL conditions, and it could
be used for almost all applications. Furthermore, PSS outperformed OS, while
OS-SR and PSS-SR performed similarly.

6.2 Throughput

Throughput of a system is a measure of the data generated by the node com-
pared to the amount of data received by the MBS. In our case, data which
were not delivered with a TTL were dropped and hence an unfair scheduling
algorithm may lead to a low throughput.

As shown in Fig. 7, at low traffic load, FS outperformed FS-SR, implying
that SR does not improve throughput. Furthermore, the performance of other
four schemes was about the same. Interestingly, the performance of six schemes
were converging when the TTL values were increased at low traffic load.

At high traffic load, without SR, PSS provided the highest throughput as
it strived to transmit the maximum number of bits in every slot. The path-
selective OS provided a lower throughput than PSS; FS resulted in the lowest
throughput. With SR, FS-SR offered the maximum throughput. The proactive
scheduling saved ‘reaction time’ and hence allowed faster delivery of nodes.
Furthermore, OS-SR and PSS-SR offered comparable throughput. When the
TTL values were increased, the performance of FS-SR, OS-SR and PSS-SR
converged.
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Fig. 6 Mean Delay Analysis

7 Conclusion

A concurrent routing scheme with spatial reuse (SR), asymmetric interfer-
ence aware routing (AIAR) was proposed. Then, a multi-pointer approach
of implementing scheduling algorithms for IEEE 802.16 mesh networks was
proposed. Six scheduling algorithms, fixed scheduling (FS), ordered schedul-
ing (OS) and per-slot scheduling (PSS), FS-SR, OS-SR and PSS-SR were
proposed. Through computer simulations, we found that without SR, PSS
provides highest throughput while FS gives lowest packet delay. While incor-
porating SR, the FS-SR scheme offers the best overall performance.

In our proposed multi-pointer approach of implementing scheduling algorithm,
the number of pointers used for scheduling is equal to the scheduling validity.
As such, it will work well if the scheduling period is not excessively long.
However, for large IEEE 802.16 mesh networks with fairly fixed network topology,
the proposed multi-pointer approach might have a scalability issue. This has
been left for our future work in this topic. Furthermore, we also plan to test
the proposed algorithms in a WiMAX testbed in order to investigate their
real-time performance.
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Abstract IEEE 802.16, also known as Worldwide Interoperability for Mi-
crowave Access (WiMAX), is a standardization effort carried out by the IEEE
to provide last-mile broadband access to end users. The IEEE 802.16 standard
supports two medium access control (MAC) modes - a mandatory point to mul-
tipoint (PMP) mode and an optional mesh mode. In this paper, we propose an
asymmetric interference aware routing algorithm and a new multipointer ap-
proach in implementing scheduling algorithms for IEEE 802.16 mesh networks.
We modify three different centralized scheduling algorithms, fixed scheduling,
ordered scheduling and per-slot scheduling using multipointer approach to al-
low for spatial reuse (SR) in IEEE 802.16 mesh networks. Simulation results
reveal that fixed scheduling with SR provides the best performance.
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1 Introduction

The IEEE 802.16 Standard [1], better known as Wireless Interoperability for
Microwave Access (WiMAX) was designed to provide last-mile wireless broad-
band access to users in remote areas. Its performance is comparable to that of
a cable network or digital subscriber line (DSL). A WiMAX network is cheap
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to deploy and easy to maintain. With the advent of other wireless technolo-
gies, WiMAX is considered to be a promising and easy alternative to wirelines
infrastructure [2].

A IEEE 802.16 network consists of a base station (BS) with backhaul ac-
cess to the network and many substations (SSs) with advanced multiple-input
multiple-output (MIMO) transceivers. The BS and SSs maintain connectivity
with all nodes which are within transmission range. The IEEE 802.16 [3] net-
work operates in two modes - the mandatory point-to-multipoint (PMP) mode
and the optional mesh mode. In the PMP mode, SSs interact only with the
BS, and all traffic exchange occurs only between a SS and the BS. In the mesh
mode, traffic is allowed to travel via SSs to their final destination. Compared to
the PMP mode, the mesh mode exhibits better scalability, enhanced coverage,
higher throughput and stronger resilience to node failures.

Inherently, the IEEE 802.16 standard adopts time division multiple access
(TDMA), under which each frame is divided into a number of transmission
opportunities that are allocated to SSs using a scheduling algorithm. Scheduling
can be centrally carried out at the BS or distributively completed by individual
SS using the three-way handshake. Since the IEEE 802.16 standard does not
specify any particular scheduling algorithm, scheduling in IEEE 802.16 mesh
networks has attracted considerable amount of attention from both academia
and industrial communities in recent years.

Liao et al. proposed a clique partitioning approach for centralized scheduling
in IEEE 802.16 mesh networks, which was to optimize the schedule length,
maximize number of concurrent transmissions and minimize the buffer size
required at stations [4]. Huang et al. studied fair rate-balance in order to ensure
link fairness and network stability in [5]. First-come-first-serve algorithm was
proposed to be used in conjunction with priority algorithm [6]. Joint bandwidth
allocation and packet scheduling was studied in order to improve throughput
[7]. Mnif et al. evaluated the performance of various scheduling algorithms
using OPNET in [8], and proposed enhanced adaptive proportional fairness
as a new scheduling algorithm. Similarly, a comparative study was presented
in [9]. Channel aware cross-layer scheduling for WiMAX in PMP mode was
proposed in [10], and a similar concept for mobile WiMAX was presented in
[11]. Zubairi et al. studied fair scheduling in WiMAX and Long Term Evolution
(LTE) in [12]. Akashdeep et al. presented a survey on scheduling algorithms
in IEEE 802.16 networks [13], and Yadav et al. presented their classifications
in [14].

Besides scheduling, routing is another important issue in IEEE 802.16
mesh networks, which was missed out in the works mentioned above. Different
routing algorithms were proposed for IEEE 802.16 mesh networks. Wei et
al. proposed an interference-aware routing scheme and a centralized mesh
scheduling scheme in [15]. They mentioned that interference-aware design
resulted in better spatial reuse (SR). In [16], Tao et al. proposed to use the
protocol interference model to enhance throughput with concurrent transmission.
However, none of them considered the effect of scheduling algorithms. Xie
et al. investigated video-on-demand streaming over WiMAX and proposed a
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multicast routing technique [17], where scheduling was achieved with admission
control and SR was not included. Guo et al. studied interference-avoidance
scheduling for two-tier cluster based routing tree [18], where the intra-cluster
scheduling and extra-cluster scheduling was managed by the clusterhead and
BS, respectively.

It becomes even more challenging to achieve joint optimization in routing
and scheduling in IEEE 802.16 mesh networks. Shetiya and Sharma studied
joint routing and centralized scheduling and proposed several simpler suboptimal
scheduling algorithms [19]. Each algorithm had a specific node selection mechanism
that was used in a vanilla BGreedy algorithm. However, they did not consider
buffer constraints of IEEE 802.16 mesh networks. Due to certain hardware
buffer queueing and processing, data received in a frame ‘n’ cannot be made
available for transmission until the next frame ‘n+ 1’. Furthermore, they did
not study the performance of their proposed algorithms in terms of end-to-end
delay. Jin et al. showed the NP-completeness of the problem of joint packet
scheduling and routing in general topology, and proposed routing/scheduling
algorithms for mesh networks based on their study of a linear chain network
[20]. Later, Lo and Ou studied the application of BGreedy algorithm [20]
in a tree-topology [21]. However, SR was not considered. Nahle and Malouch
proposed a joint routing and scheduling algorithm to maximize network throughput
[22]. However, they did not discuss the performance of their algorithm in terms
of end-to-end delay. Study of schedule length was discussed in [23], where
the authors proposed maximum spatial reuse (MSR) algorithm to maximize
the SR by minimizing the schedule length and allowing as many concurrent
transmission as possible.

We noticed the following three issues through careful study of existing
works: (i) optimal scheduling schemes were dependent on the instantaneous
queue length [20] [22] [23]. However, for practical implementations of IEEE
802.16 mesh networks, parameters like queue length and network load are not
readily available at the BS. We should take this into account when designing
scheduling algorithms. (ii) The optimal scheduling algorithms were based on
the assumption that all links have equal data rates. However, effective link
rates are asymmetric due to varying medium access control (MAC) layer
encoding/decoding. (iii) Conventional packet scheduling is based one single
pointer, which shifts from the first available slot towards the last one. This
works well in IEEE 802.16 networks operating in PMP mode. However, for
IEEE 802.16 networks operating in mesh mode, practical buffer constraints
and multihop distances could render single-pointer based iteration useless. As
a result, multi-pointer based implementation of scheduling algorithms should
be adopted. Corresponding to these three issues, the main contributions of
this paper are threefold: (i) We propose a new routing algorithm, asymmetric
interference aware routing (AIAR), which is based on effective link rates and
adopts the interference model to obtain optimum throughput while considering
SR. (ii) We are particularly enlightened by the three suboptimal algorithms
originally proposed in [19], namely fixed allocation scheme, ordering scheme
and per slot maximum transmission scheme. Our proposed scheduling algorithms
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are based on similar philosophy, but they are essentially different from those
three proposed in [19]. To emphasize the difference, we deliberately rename
them as fixed scheduling (FS), ordered scheduling (OS) and per-slot scheduling
(PSS). We further modify FS, OS and PSS to implement SR and obtain
FS with SR (FS-SR), OS with SR (OS-SR) and PSS with SR (PSS-SR),
respectively. (iii) By taking buffer size and hardware delay into account, we
propose a new multipointer approach to implement scheduling algorithms so as
to minimize scheduling time, to reduce end-to-end delay and to improve system
throughput. Simulation results demonstrate the feasibility of these algorithms.

The rest of this paper is organized as follows. Section 2 presents the system
model with underlying assumptions. In Section 3, we analyze the interference
model and propose the AIAR scheme. Section 4 introduces multipointer ap-
proach and discusses our proposed FS, OS, PSS, FS-SR, OS-SR and PSS-SR
schemes. Simulation design is presented in Section 5. In Section 6, we present
the results from the OMNeT++ simulations and evaluate the performance of
the multipointer scheduling algorithms. Finally, Section 7 concludes the paper.

2 System Model

In this paper, we consider a IEEE 802.16 mesh network with a BS and 10 SSs
as shown in Fig. 1. The network is modeled as a graph G(V, E). V is the set
of SSs in the network and E is the set of links with (i, j)∈ E iff SSi and SSj

are within transmission range. All links in the network are bidirectional, thus,
(i, j) ∈E⇒ (j, i) ∈E .

In the mesh mode, traffic can flow among SSs without going through
the BS. Two types of physical layers were defined in the standard, namely
WirelessMAN-OFDM and WirelessHUMAN, operating in the licensed spec-
trum and unlicensed spectrum under 11GHz, respectively. They both use 256
point Fast Fourier Transform (FFT) in a TDMA/TDM structure for channel
access. They support adaptive coding and modulation, and the link rates vary
according to the channel conditions.

Both uplink and downlink scheduling can be achieved in a centralized fash-
ion, while we focus on scheduling uplink packets. Scheduling of downlink pack-
ets can be done similarly using the same algorithm. We assume that each node
is allowed to transmits at a maximum power. Uplink scheduling is carried out
using mesh request (MSH-REQ) packets generated from each SS once every
scheduling period (SP), which is defined as the period over which the generated
scheduling map is deemed valid. Each scheduling is hence valid for a SP of K
frames. Each frame consists of N time slots, among which MSH-CTRL-LEN
time slots are reserved for centralized scheduling messages like MSH-REQ,
MSH-GRANT, MSH-NENT, etc.

Each node on arrival interacts with the nodes within transmission range
and chooses a sponsor node as the parent node, which helps register the new
node at the BS. Once the node is registered, it can participate in schedul-
ing by requesting bandwidth from the BS. This is done via the bandwidth
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Fig. 1 Mesh network architecture with underlying graph structure

request/grant mechanism. Each node forwards its bandwidth request to its
parent node. A parent node assimilates the requests of its children nodes in
its own request and sends it to its parent node. This repeats recursively until
the BS receives the bandwidth request. The BS executes the scheduling algo-
rithm and broadcasts bandwidth grants to all nodes. This grant is broadcasted
throughout the network by intermediate nodes. As illustrated in Fig. 2, due to
buffering limitations, the grant/request received from a node in the previous
frame can be forwarded only in the next frame. Hence, an entire MSH-REQ
and MSH-GRANT cycles takes two scheduling periods. Hence, packets origi-
nating in scheduling period k, will request for resources in scheduling period
k + 1 and get granted resources in scheduling period k + 2. Hence, resources
to these packets are actually assigned in scheduling period k + 3. This allows
us to bound the delay to a maximum value if we provide an efficient routing
and scheduling algorithm.

2.1 Spatial Reuse and Interference Model

The IEEE 802.16 standard allows us to implement SR. Two or more nodes
can transmit concurrently if they do not interfere with one another. We follow
the protocol model and define rules under which links are considered to be
interfering. There are two types of interference that a link can experience:
(i) primary interference and (ii) secondary interference. All the links in our
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Fig. 2 Bandwidth Request/Grant Mechanism in Mesh Networks

network are bidirectional. A transmitting node cannot receive at the same
time and vice-versa. This type of interference is called primary interference.
Secondary interference occurs when an active link interferes with other links
which do not share the same source/destination.

3 System Stability and Proposed Routing Scheme

Let us define the following notations in Table 1. Then, the queue length at
node i can be calculated as

Qi (k + 1) = {Qi (k)− niri (k)}+ +Xi (k) + Yi (k) (1)

For the sake of system stability, we need to ensure the capacity of the
network must be greater than the demand of the nodes; otherwise, the queue
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Table 1 List of Notations

C concurrent transmission set
H connection matrix
k frame number
λi mean number of bits arriving at node i at the beginning of frame k
M number of SSs in the mesh network
N number of slots in a frame
ni number of slots assigned to node i

Qi(k) queue length at the beginning of frame k
ri (k) transmission rate of the medium during frame k
rij the data rate of the link between SSi and SSj

E[rij ] the average data rate of the link (i, j)
σi order of transmission of node i as given in the configuration file
SP scheduling period
SQ spillover queue
w fixed scheduling weighting factor

Xi(k) external arrival at node i during frame k
Y i(k) arrival from other nodes to node i during frame k

length may continue to increase and the system might become unstable. Thus,

niE [ri] > E [Xi + Yi] = λi + E [Yi] (2)

In (2), E[ri] is the output data transmission rate of node i, and the total
data originating at other nodes and passing through node i is given by E [Yi] =∑mi

j=1 λai,j , where {ai,1, ai,2, ai,3 . . . ai,mi} are the nodes whose data passes
through node i. Hence, we get the number of slots required by node i,

ni >
λi +

∑mi

j=1 λai,j

E [ri]
(3)

To be within the stability range, the total number of slots allocated through-
out the network should not exceed ‘N ’- the total number of available slots,
i.e.,

∑M
i=1 ni ≤ N . By rearranging the terms in (3), we can obtain,

M∑
i=1

λi hi∑
j=1

(
E
[
rpi,j

])−1 < N (4)

where {pi,1, pi,2, pi,3 . . . pi,hi
} are the intermediate nodes for which data

from node i is routed, including node i. From (4), we get the upper bound on
the arrival rate λi of each node. This is the maximum load on the network.

Hence, to maximize the stability region, the value of
∑hi

j=1

(
E
[
rpi,j

])−1
should

be minimized. This translates to shortest path routing, which essentially re-
sembles a path that has the maximum rate of transfer to the MBS.

3.1 Asymmetric Interference Aware Routing

Routing in WiMAX can be either fixed or adaptive. However, using adaptive
routing in such a dynamic environment like WiMAX will lead to continuous
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path changes [24]. These changes would affect data delivery. Packets traveling
from one node to another could experience out of order delivery and high jitter.
Moreover, most data transfer (video and voice, etc) require that packets arrive
in the same order in which they have been transmitted. Therefore, fixed routing
is adopted for most deployments. Assuming that data from a given node follows
a single path, we can obtain an optimum tree routing structure. To enable SR
and optimize throughput, we propose a routing algorithm, namely asymmetric
interference aware routing (AIAR).

As shown in Algorithm 1, consider a graph G (V, E) where link Ei with
source sEi and destination dEi. A link E1 is said to be non-interfering with
another link E2 if: (i) dE2 /∈ neighbour (sE1), i.e., no receiver in the neighbour-
hood of the transmitter; (ii) sE2 /∈ neighbour (dE1), i.e., no transmitter in the
neighbourhood of the receiver; (iii) dE2 6= dE1 , i.e., one node cannot receive
from two transmitters.

We use a parameter link interference parameter, L(x, y) to denote the sum
of data rates of all links that it interferes with. A node on entry calculates
the L(x, y) of every link it is involved in. It then selects a suitable node as its
parent node using node blocking parameter B(n)

B (n) = arg min
∀ni∈neighbours(n)

{B (ni) + L (n, ni)} (5)

The parent node is hence the node that offers minimal interference with
other links. This algorithm is dependent on the order in which the nodes enter
the network. Let H denote the hop count of the farthest node from BS, if we
execute the algorithm H times, we can obtain an optimal routing tree. Our
following discussion on scheduling algorithms is based on an assumption that
the minimum interference routing tree is pre-determined.

Algorithm 1 Asymmetric Interference Aware Routing
Input: Graph of the network including all edges and nodes - G(V,E)

Output: Routing tree with parents of each node - G′
(V,E ′ )

1: Initialize: V ← {1, 2, 3, ...,M}, V ′ ← {0}
2: For every edge in E, calculate L(x, y) from the above given conditions
3: B(n)=0 for n=0; otherwise infinity
4: while (V6= ∅) do
5: Choose a node i from V with least number of hops to the MBS
6: for j = each neighbour of i in V do
7: B(i) = minimum{B(i), L(i, j)+B(j)}
8: parent(i) = j, for which B(i) is minimum
9: end for

10: V ←V−{i}
11: V ′ ←V ′

+{i}
12: E ′ ←E ′+{i, parent(i)}
13: end while
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4 Enhanced Scheduling using Multi-pointer Approach

In this section, the new multipointer scheduling algorithm is presented, fol-
lowed by modifications to the three scheduling algorithms in order to take
into account SR. Finally, a multipointer scheduling example is presented.

4.1 Multi-pointer Algorithm for Packet Scheduling

In most algorithms that we have seen, the scheduling of resources is done from
the first available slot towards the last available slot. This is acceptable for the
PMP mode [25]. However, for the mesh mode, buffering constraints and the
multihop distance to the destination render the normal iteration useless. Un-
der these circumstances, we need to develop a different approach. Scheduling
validity is defined as the number of frames over which a particular sched-
ule grant is valid. For WiMAX deployments with centralized scheduling, the
scheduling validity is set to the hop count of the farthest node from the BS.
As shown in Algorithm 2, the number of pointers used for scheduling is equal
to the scheduling validity. Consequently, we require one pointer for each frame
in the scheduling period. When all the slots in that particular frame have been
allocated, the pointer is merged with the pointer in the next frame.

Algorithm 2 Multi-pointer Algorithm Structure

1: Initialize: multipointer Pi ← the first data slot in ith frame, ni
j ← the number of slots

required by the jth node in the ith frame, where j ≤M, i ≤ SP
2: for i = 1 : SP do
3: while ni

j > 0 do
4: Pi ← j
5: ni

j ← ni
j − 1

6: Pi ← Pi + 1
7: if pi = end of frame then
8: Pi ← Pi+1

9: end if
10: end while
11: end for

Let us look at how a multipointer algorithm works. Consider a IEEE 802.16
network with four nodes as given in Fig. 4. Since the maximum hop count of
the farthest node to the MBS is 3, we use a scheduling period of 3 frames. As
depicted in Fig. 5(a), for the sake of simplicity, let us assume that each frame
has 20 time slots, where the pointers in each of these frames are denoted by
P1, P2 and P3, and initialized to the first slot in the 1st, 2nd and 3rd frame,
respectively. Assuming that each node has a request of eight slots, we can
obtain the results are shown in Fig. 5 after running the multipointer algorithm.
In Fig. 5, a slot with a circle mark inside indicates its allocation to a node; a

slot with a diamond mark inside indicates during which data transfer is being
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MBSSS1SS2SS3

Fig. 4 IEEE 802.16 network with four nodes

done; a shaded slot without any mark indicates during which data is received
for a node.

4.2 Fixed Scheduling with Spatial Reuse

FS follows the principle of allocating resources proportional to the arrival rate
at a node. The arrival rate at the node comprises of external arrivals from other
nodes and arrivals from users of the node itself. The number of slots required
for node i without concurrency is given in (3). We calculate the number of
slots for all nodes and then allocate slots to the nodes in order of their hop
count from the BS, as specified by σi.
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Fig. 5 Working of Multi-pointer Algorithm: (a) before scheduling (b) after first frame of
scheduling (c) after second frame of scheduling (d) after third frame of scheduling

To incorporate SR in terms of concurrent transmissions, we define a child
matrix ci,j , to denote whether or not a node j is a child/sub-child of node i.
This helps in calculating the total arrival rate at a given node. Then, we use
Ii,j to define the interference matrix, where if link i interferes with link j, then
Ii,j is equal to 1. We should note that the interference matrix is a symmetric
matrix. Hence, Ii,j=Ij,i≤ 1.

As we consider only uplink scheduling and a routing tree, each node has
only one uplink, and this link from node i to its parent node can be denoted as
Li,parent(i). Since no other link from i can serve as an uplink, we can simplify
the notation as Li. The order in which each node transmits is given in MSH-
CSCF. This is denoted by σi for node i. The scheduling output gives a set of
nodes that can transmit concurrently during a slot.
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FS-SR follows a staggered approach. The arrival rate to each node is cal-
culated as a sum of arrival rate to itself and its children nodes. The number
of slots hence required in total at each node is the sum arrival rate divided
by the rate of data transfer per slot. In particular, if the total number of slots
cannot be serviced by the scheduling period, the number of slots granted to
each node is multiplied by a scheduling weight, w, which is defined as the ratio
of the number of slots in the scheduling period to the total number of slots
required.

Algorithm 3 Fixed Scheduling with Spatial Reuse
Input: arrival rates, children matrix, order of each node Output: scheduling grant for all
nodes

1: calculate ni and w
2: if w < 1 then
3: ni = ni × w, i = 1 : M
4: end if
5: Initialize: multipointers for all frames Pi, i = 1 : SP
6: set Qi = λi × SP
7: for i=1:SP do
8: for j=1:N do
9: find node ns=arg mini=1...M {σi}, Qns > 0 and Insnt = 0 ∀ nt ∈ C

10: C ← {C, ns}
11: continue steps 8-10 until all nodes have been considered
12: if C = ∅ then
13: break
14: end if
15: allocate slot Pi to C
16: Pi ← Pi + 1
17: Qk = Qk − rk and SQparent(k) = SQparent(k) + rk, ∀k ∈ C
18: if Pi=end of frame then
19: Pi = Pi+1

20: end if
21: end for
22: Qk = Qk + SQk, k = 1 : M
23: end for

4.3 Ordered Scheduling with Spatial Reuse

In OS, the scheduling weight for node is defined as

wi =
∑hi

j=1

(
E
[
rpi,j

])−1
(6)

Given the parameter wi, interference matrix I, and individual queue lengths
Qi, OS orders the nodes based on their wi values and assigns each slot to
the first node that can fully utilize that slot. Preference is given to a node
with a lower wi value. Furthermore, we propose OS-SR to implement SR (See
Algorithm 4). The concurrent set ‘C’ allocated to each slot contains the set of
all nodes that can transmit during that slot.
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For each slot, OS-SR first selects the node that has the minimum wi value
and queue length longer enough to use the entire slot. Then, it selects other
nodes that can fully utilize a slot and can transmit concurrently with the first
selected node in order of their respective parameter values. The corresponding
uplinks of these nodes are added into the concurrent set ‘C’. This method
continues until all nodes are scheduled.

Algorithm 4 Ordered Scheduling with Spatial Reuse
Input: arrival rates, children matrix, order of each node
Output: scheduling grant for all nodes

1: calculate wi

2: Initialize: multipointers Pi, i = 1 : SP
3: set queue length of all nodes to Qi from MSH −REQ packet received
4: for i=1:SP do
5: for j=1:N do
6: find node ns=arg mini=1...M {wi}, Qns > rns and Insnt = 0 ∀ nt ∈ C
7: C ← {C, ns}
8: continue steps 6-8 until all nodes have been considered
9: if C = ∅ then

10: find node ns=arg mini=1...M {wi}, Qns > 0 and Insnt = 0 ∀ nt ∈ C
11: C ← {C, ns}
12: continue steps 9-11 until all nodes have been considered
13: end if
14: if C = ∅ then
15: break
16: end if
17: allocate slot Pi to C
18: Pi ← Pi + 1
19: Qk = Qk −min{Qk, rk} and SQparent(k) = SQparent(k) +min{Qk, rk}, ∀k ∈ C
20: if Pi=end of frame then
21: Pi = Pi+1

22: end if
23: end for
24: Qk = Qk + SQk, k = 1 : M
25: end for

4.4 Per Slot Scheduling with Spatial Reuse

PSS works on a dynamic programming principle (See Algorithm 5) to schedule
one slot at a time to a node which can transmit the maximum number of bits in
that given slot. With SR, a slot is scheduled to nodes in the concurrent set ‘C’,
which can transmit simultaneously without experiencing severe interference.

One advantage of PSS is that the average resources required at nodes which
have a higher egress rate is low. However, the corresponding disadvantage is
that under high loads, the nodes with a lower transmission rate are allocated
resources towards the end of the scheduling frame. Hence, these nodes have
longer queue lengths. The data drop probability at these nodes is also high
due to the prioritized scheduling of nodes with higher egress rates.
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Algorithm 5 Per Slot Scheduling (Concurrency) with Spillover
Input: arrival rates, children matrix, order of each node
Output: scheduling scheme for all nodes

1: Initialize: multipointers Pi, i = 1 : SP
2: set queue length of all nodes to Qi from MSH −REQ packet received
3: for i=1:SP do
4: for j=1:N do
5: find node ns=arg max∀i/∈C {min (Qi, ri)} and Insnt = 0 ∀ nt ∈ C
6: C ← {C, ns}
7: continue steps 6-8 until all nodes have been considered
8: if C = ∅ then
9: break

10: end if
11: allocate slot Pi to C
12: Pi ← Pi + 1
13: Qk = Qk −min{Qk, rk} and SQparent(k) = SQparent(k) +min{Qk, rk}, ∀k ∈ C
14: if Pi=end of frame then
15: Pi = Pi+1

16: end if
17: end for
18: Qk = Qk + SQk, k = 1 : M
19: end for

5 Simulation Design

Our simulation in OMNeT++ used the IEEE 802.16 mesh network as shown
in Fig. 1, designed using a Network Descriptor (NED). If a node was in trans-
mission range of another node, then it was connected to that node via a link.
All links were bidirectional and the link parameters were governed by their
burst profiles as shown in Table 2. The burst profile governed the modula-
tion, coding rate of that link. Hence, a different burst profile translated to a
different data rate. The link rates (in Mbps) between any two nodes were pre-
determined, as specified in a NED, and they were aggregated in a connection
matrix, H with element (i, j) corresponding to burst profile of link between

node i and node j. H11×11 =



0 6 0 0 0 0 0 0 4 0 0
6 0 3 0 0 0 2 0 0 0 0
0 3 0 6 4 0 0 0 0 0 0
0 0 6 0 0 3 0 0 0 0 0
0 0 4 0 0 4 0 6 0 0 0
0 0 0 3 4 0 0 0 0 0 0
0 2 0 0 0 0 0 3 2 0 0
0 0 0 0 6 0 3 0 0 2 2
4 0 0 0 0 0 2 0 0 3 3
0 0 0 0 0 0 0 2 3 0 0
0 0 0 0 0 0 0 2 3 0 0


The maximum load on the network with respect to arrival rate at each SS

was calculated using the method in Section 3 and the load is 1.74Mbps, which
was corresponding to a normalized load of 1.0. The normalized load on the
network was varied from 0 to 1.0 with a step size of 0.1. Poisson packet arrival
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Table 2 Physical Parameters of Burst Profile

Burst
Profile No.

Modulation Coding Rate Uncoded bytes per
OFDM Symbol

Uncoded bytes
per slot

1 QPSK 1/2 24 96
2 QPSK 3/4 36 144
3 16QAM 1/2 48 192
4 16QAM 3/4 72 288
5 64QAM 2/3 96 384
6 64QAM 3/4 108 432

was considered and the packet size was varied exponentially with respect to the
mean. Traffic generation occurred in the trafgen submodule of the substation.
The mean packet size was fixed at 768 bits. If all the nodes have the same
average arrival rate λi, the average size of the packet is fixed at L and the
packet inter-arrival time is calculated as

E [τ ] =
L

λ
(7)

All traffic is directed towards the BS. The traffic generator can also be adapted
to include priority, tardiness and drop probability of the packets, which has
been left out for our future study. Upon receiving data packets, either self-
generated or from other nodes, SSs put them into a reserved buffer, and then
moved them into the transmitter buffer at the beginning of each frame. This
perfectly simulated the buffer constraints of the IEEE 802.16 network. The
queuing rule was first-in first-out (FIFO). Other queuing methods like earliest
deadline first and fair scheduling could also be employed.

Each packet was time-stamped on of creation at the traffic-generator, and
given a time-to-live (TTL) value that was also varied exponentially with re-
spect to the mean. We tested our algorithms for four mean TTL values: 60ms,
120ms, 240ms and 480ms. Packets which experienced a delay longer than their
TTL values were dropped by intermediate nodes or the BS.

The simulation was run for 5000s or 5× 106 frames. We can safely assume
that simulations could accurately record the real-time performance of the IEEE
802.16 mesh network. Each frame was assigned a duration of 10ms and the
scheduling period was set to 4 frames, as the maximum hop-count amongst all
leaf nodes is 4 in Fig. 1.

During initialization, we first execute AIAR to obtain the optimal routing
tree and then applied a scheduling algorithm. We simulated the request and
grant process and data transmission with buffer constraints in the IEEE 802.16
mesh network, and analyzed the performance of each of the six scheduling
algorithms discussed above, namely, FS, OS, PSS, FS-SR, OS-SR and PSS-
SR.
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6 Results Analysis

To analyze the performance of a IEEE 802.16 network, we mainly look into
two main aspects: (i) mean delay – end-to-end time taken by a packet to reach
its destination; and (ii) throughput – the number of packets which have been
successfully delivered.

6.1 Mean Delay

The delay of a packet is defined as the time it takes from the time when it is
created by the traffic generator to the time when it reaches its destination.

As shown in Fig. 6, at low traffic load with low TTL values (60ms∼120ms),
FS outperformed other algorithms, which makes FS a suitable scheduling al-
gorrithm for low-data-rate and time-critical applications like VoIP and Telnet.
Next, scheduling priority under OS was to the node with the fastest path to-
wards the BS; while under PSS was to the fastest link. Due to this selective
nature of these algorithms, nodes with slower links/paths were allocated re-
source at the end of a scheduling period, leading to a higher mean delay. In
addition, every scheme outperformed its corresponding counterpart when im-
plemented with SR. This reduction in mean delay could be attributed to less
mean medium access time due to the concurrent transmissions.

At low traffic load with high TTL value (240ms∼480ms), there was no ap-
parent difference in the performance of the six scheduling schemes. Scheduling
algorithms employing SR performed just marginally better because they in-
creased the effective capacity of the network, thereby enabling more packets to
reach the destination faster. Furthermore, we find that proactive scheduling al-
gorithms like FS significantly outperformed the reactive scheduling algorithms
like OS and PSS. If we define ‘reaction time’ as the number of scheduling peri-
ods taken by the mesh network to respond to a given mesh-request. As shown
in Fig. 2, for PSS and OS that are based on the queue length of nodes, the
reaction time is 2 scheduling periods. However, for FS, this is reduced to zero,
as FS is based on arrival rate at each node. Therefore, FS offered the smallest
delay amongst the six.

At high traffic load with low TTL values (60ms∼120ms), OS and PSS out-
performed FS. This is because the fact that FS would allocate more resources
to weaker links, giving rise to a longer waiting time for data with stronger links
and an overall increase in average delay. In particular, the ‘selective’ nature
of OS and PSS did not favor scheduling to moderate and weak paths/links.
Some packets were lost due to excessive delay and many packets were delayed
as the algorithm allocated resources first to stronger links and paths and then
to weaker links. The overall delay hence increases at high traffic load for these
algorithms. Packets with slower links (See Fig. 6) were dropped and hence
the average delay of packet delivery was comparable between OS and PSS.
Next, with SR, OS-SR and PSS-SR outperformed OS and PSS, respectively.
Furthermore, FS-SR provided the best performance. This was because of si-
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Fig. 6 Mean Delay Analysis

multaneous allocations to strong and weak links at the same time. Since FS
was not selective in nature, data were allocated slots uniformly and hence we
had a lower average delay.

At high traffic load with high TTL value (240ms∼480ms), FS-SR offered
the best average delay under all loads and all TTL conditions, and it could
be used for almost all applications. Furthermore, PSS outperformed OS, while
OS-SR and PSS-SR performed similarly.

6.2 Throughput

Throughput of a system is a measure of the data generated by the node com-
pared to the amount of data received by the MBS. In our case, data which
were not delivered with a TTL were dropped and hence an unfair scheduling
algorithm may lead to a low throughput.

As shown in Fig. 7, at low traffic load, FS outperformed FS-SR, implying
that SR does not improve throughput. Furthermore, the performance of other
four schemes was about the same. Interestingly, the performance of six schemes
were converging when the TTL values were increased at low traffic load.



Title Suppressed Due to Excessive Length 19

0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

Load

T
h
ro

u
g
h
p
u
t

TTL=60ms

 

 

FS

FS−SR

 

 

OS

OS−SR

 

 

PSS

PSS−SR

0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Load

T
h
ro

u
g
h
p
u
t

TTL=120ms

 

 

FS

FS−SR

OS

OS−SR

PSS

PSS−SR

0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Load

T
h
ro

u
g
h
p
u
t

TTL=240ms

 

 

FS

FS−SR

OS

OS−SR

PSS

PSS−SR

0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Load

T
h
ro

u
g
h
p
u
t

TTL=480ms

 

 

FS

FS−SR

OS

OS−SR

PSS

PSS−SR
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At high traffic load, without SR, PSS provided the highest throughput as
it strived to transmit the maximum number of bits in every slot. The path-
selective OS provided a lower throughput than PSS; FS resulted in the lowest
throughput. With SR, FS-SR offered the maximum throughput. The proactive
scheduling saved ‘reaction time’ and hence allowed faster delivery of nodes.
Furthermore, OS-SR and PSS-SR offered comparable throughput. When the
TTL values were increased, the performance of FS-SR, OS-SR and PSS-SR
converged.

7 Conclusion

A concurrent routing scheme with spatial reuse (SR), asymmetric interfer-
ence aware routing (AIAR) was proposed. Then, a multi-pointer approach
of implementing scheduling algorithms for IEEE 802.16 mesh networks was
proposed. Six scheduling algorithms, fixed scheduling (FS), ordered schedul-
ing (OS) and per-slot scheduling (PSS), FS-SR, OS-SR and PSS-SR were
proposed. Through computer simulations, we found that without SR, PSS
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provides highest throughput while FS gives lowest packet delay. While incor-
porating SR, the FS-SR scheme offers the best overall performance.

In our proposed multi-pointer approach of implementing scheduling algorithm,
the number of pointers used for scheduling is equal to the scheduling validity.
As such, it will work well if the scheduling period is not excessively long.
However, for large IEEE 802.16 mesh networks with fairly fixed network topology,
the proposed multi-pointer approach might have a scalability issue. This has
been left for our future work in this topic. Furthermore, we also plan to test
the proposed algorithms in a WiMAX testbed in order to investigate their
real-time performance.
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in WiMAX mesh networks. Simulation results reveal that fixed scheduling with
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to deploy and easy to maintain. With the advent of other wireless technolo-
gies, WiMAX is considered to be a promising and easy alternative to wirelines
infrastructure.

A WiMAX network consists of a base station (BS) with backhaul access
to the network and many substations (SSs) with advanced multiple-input
multiple-output (MIMO) transceivers. The BS and SSs maintain connectiv-
ity with all nodes which are within transmission range. The IEEE 802.16 [9]
network operates in two modes - the mandatory point-to-multipoint (PMP)
mode and the optional mesh mode. In the PMP mode, SSs interact only with
the BS, and all traffic exchange occurs only between a SS and the BS. In the
mesh mode, traffic is allowed to travel via SSs to their final destination. Com-
pared to the PMP mode, the mesh mode exhibits better scalability, enhanced
coverage, higher throughput and stronger resilience to node failures.

Inherently, the IEEE 802.16 Standard adopts time division multiple access
(TDMA), under which each frame is divided into a number of transmission op-
portunities that are allocated to SSs using a scheduling algorithm. Scheduling
can be centrally carried out at the BS or distributively completed by individ-
ual SS using the three-way handshake. Since the IEEE 802.16 does not specify
any particular scheduling algorithm, scheduling in WiMAX mesh networks has
attracted considerable amount of attention from both academia and industrial
communities in recent years. Besides scheduling, routing is another important
issue in WiMAX mesh networks.

Various literatures proposed different routing algorithms for WiMAX mesh
networks. Wei et al. proposed an interference-aware routing scheme and a cen-
tralized mesh scheduling scheme in [13]. They mentioned that interference-
aware design resulted in better spatial reuse (SR). In [14], Tao et al. proposed
to use the protocol interference model to enhance throughput with concur-
rent transmission. However, none of them explored the actual scheduling algo-
rithms. Xie et al. investigated video-on-demand streaming over WiMAX and
proposed a multicast routing technique [11], where scheduling was achieved
with admission control and SR was not included.

It becomes even challenging when one considers joint routing and schedul-
ing in WiMAX mesh networks. Shetiya and Sharma studied joint routing and
centralized scheduling and proposed several simpler suboptimal scheduling al-
gorithms [12]. Each algorithm had a specific node selection mechanism that
was used in a vanilla BGreedy algorithm. They did not consider buffer con-
straints of WiMAX mesh networks. Due to certain hardware buffer queueing
and processing, data received in a frame ‘n’ cannot be made available for
transmission until the next frame ‘n+ 1’. Furthermore, they did not study the
performance of their proposed algorithms in terms of end-to-end delay. Jin et
al. showed the NP-completeness of the problem of joint packet scheduling and
routing in general topology, and proposed routing/scheduling algorithms for
mesh networks based on their study of a linear chain network [10]. Later, Lo
and Ou studied the application of BGreedy algorithm [10] in a tree-topology
[4]. However, SR was not considered. Liao et al. proposed a clique partitioning
approach for centralized scheduling in WiMAX mesh networks, which was to
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optimize the schedule length, maximize number of concurrent transmissions
and minimize the buffer size required at stations [2]. However, they did not
study routing schemes. Huang et al. studied fair rate-balance in order to en-
sure link fairness and network stability in [3]. However, they did not consider
SR and routing. Nahle and Malouch proposed a joint routing and scheduling
algorithm to maximize network throughput [8]. However, they did not dis-
cuss the performance of their algorithm in terms of end-to-end delay. Study
of schedule length was discussed in [5], where the authors proposed maximum
spatial reuse (MSR) algorithm to maximize the SR by minimizing the schedule
length and allowing as many concurrent transmission as possible.

From aforementioned works, we noticed that optimal scheduling schemes
were dependent on the instantaneous queue length [10] [8] [5]. However, for
practical implementations of WiMAX mesh networks, parameters like queue
length and network load are not readily available at the BS, which motivates
us to take this into account when designing scheduling algorithms. Moreover,
the optimal scheduling algorithms were based on the assumption that all links
have equal data rates. However, effective link rates are asymmetric due to
varying medium access control (MAC) layer encoding/decoding.

The main contributions of this paper are threefold: (i) We propose a new
routing algorithm, asymmetric interference aware routing (AIAR), which is
based on effective link rates and use the interference model to obtain optimum
throughput while considering SR. (ii) We are particularly enlightened by the
three suboptimal algorithms originally proposed in [12], namely fixed alloca-
tion scheme, ordering scheme and per slot maximum transmission scheme. Our
proposed scheduling algorithms are based on similar philosophy, but they are
essentially different from those three proposed in [12]. To emphasize the differ-
ence, we deliberately rename them as fixed scheduling (FS), ordered scheduling
(OS) and per-slot scheduling (PSS). We further modify FS, OS and PSS to
implement SR and obtain FS with SR (FS-SR), OS with SR (OS-SR) and
PSS with SR (PSS-SR), respectively. (iii) By taking buffer size and hardware
delay into account, we propose a new multipointer approach to implement
scheduling algorithms so as to minimize scheduling time, to reduce end-to-end
delay and to improve system throughput. Simulation results demonstrate the
feasibility of these algorithms.

The rest of this paper is organized as follows. Section 2 presents the system
model with underlying assumptions. In Section 3, we analyze the interference
model and propose AIAR scheme. Section 4 introduces multipointer approach
and discusses our proposed FS, OS, PSS, FS-SR, OS-SR and PSS-SR schemes.
Simulation design is presented in Section 5. In Section 6, we present the re-
sults from the OMNeT++ simulations and evaluate the performance of the
multipointer scheduling algorithms. Finally, Section 7 concludes the paper.
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Fig. 1 Mesh network architecture with underlying graph structure

2 System Model

In this paper, we consider a WiMAX mesh network with a BS and 10 SSs
as shown in Fig. 1. The network is modeled as a graph G(V, E). V is the set
of SSs in the network and E is the set of links with (i, j)∈ E iff SSi and SSj
are within transmission range. All links in the network are bidirectional, thus,
(i, j) ∈E⇒ (j, i) ∈E .

In the mesh mode, traffic can flow among SSs without going through
the BS. Two types of physical layers were defined in the standard, namely
WirelessMAN-OFDM and WirelessHUMAN, operating in the licensed spec-
trum and unlicensed spectrum under 11GHz, respectively. They both use 256
point Fast Fourier Transform (FFT) in a TDMA/TDM structure for channel
access. They support adaptive coding and modulation, and the link rates vary
according to the channel conditions.

Both uplink and downlink scheduling can be achieved in a centralized fash-
ion, while we focus on scheduling uplink packets. Scheduling of downlink pack-
ets can be done similarly using the same algorithm. We assume that each node
is allowed to transmits at a maximum power. Uplink scheduling is carried out
using mesh request (MSH-REQ) packets generated from each SS once every
scheduling period (SP), which is defined as the period over which the generated
scheduling map is deemed valid. Each scheduling is hence valid for a SP of K
frames. Each frame consists of N time slots, among which MSH-CTRL-LEN
time slots are reserved for centralized scheduling messages like MSH-REQ,
MSH-GRANT, MSH-NENT, etc.
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Fig. 2 Bandwidth Request/Grant Mechanism in Mesh Networks

Each node on arrival interacts with the nodes within transmission range
and chooses a sponsor node as the parent node, which helps register the new
node at the BS. Once the node is registered, it can participate in schedul-
ing by requesting bandwidth from the BS. This is done via the bandwidth
request/grant mechanism. Each node forwards its bandwidth request to its
parent node. A parent node assimilates the requests of its children nodes in
its own request and sends it to its parent node. This repeats recursively until
the BS receives the bandwidth request. The BS executes the scheduling algo-
rithm and broadcasts bandwidth grants to all nodes. This grant is broadcasted
throughout the network by intermediate nodes. As illustrated in Fig. 2, due to
buffering limitations, the grant/request received from a node in the previous
frame can be forwarded only in the next frame. Hence, an entire MSH-REQ
and MSH-GRANT cycles takes two scheduling periods. Hence, packets origi-
nating in scheduling period k, will request for resources in scheduling period
k + 1 and get granted resources in scheduling period k + 2. Hence, resources
to these packets are actually assigned in scheduling period k + 3. This allows
us to bound the delay to a maximum value if we provide an efficient routing
and scheduling algorithm.

2.1 Spatial Reuse and Interference Model

The WiMAX standard allows us to implement SR. Two or more nodes can
transmit concurrently if they do not interfere with one another. We follow
the protocol model and define rules under which links are considered to be
interfering. There are two types of interference that a link can experience:
(i) primary interference and (ii) secondary interference. All the links in our
network are bidirectional. A transmitting node cannot receive at the same
time and vice-versa. This type of interference is called primary interference.
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Table 1 List of Notations

C concurrent transmission set
H connection matrix
k frame number
λi mean number of bits arriving at node i at the beginning of frame k
M number of SSs in the mesh network
N number of slots in a frame
ni number of slots assigned to node i

Qi(k) queue length at the beginning of frame k
ri (k) transmission rate of the medium during frame k
rij the data rate of the link between SSi and SSj

E[rij ] the average data rate of the link (i, j)
σi order of transmission of node i as given in the configuration file
SP scheduling period
SQ spillover queue
w fixed scheduling weighting factor

Xi(k) external arrival at node i during frame k
Y i(k) arrival from other nodes to node i during frame k

Secondary interference occurs when an active link interferes with other links
which do not share the same source/destination.

3 System Stability and Proposed Routing Scheme

Let us define the following notations in Table 1. Then, the queue length at
node i can be calculated as

Qi (k + 1) = {Qi (k)− niri (k)}+ +Xi (k) + Yi (k) (1)

For the sake of system stability, we need to ensure the capacity of the
network must be greater than the demand of the nodes; otherwise, the queue
length may continue to increase and the system might become unstable. Thus,

niE [ri] > E [Xi + Yi] = λi + E [Yi] (2)

In (2), E[ri] is the output data transmission rate of node i, and the total
data originating at other nodes and passing through node i is given by E [Yi] =∑mi

j=1 λai,j , where {ai,1, ai,2, ai,3 . . . ai,mi} are the nodes whose data passes
through node i. Hence, we get the number of slots required by node i,

ni >
λi +

∑mi

j=1 λai,j

E [ri]
(3)

To be within the stability range, the total number of slots allocated through-
out the network should not exceed ‘N ’- the total number of available slots,
i.e.,

∑M
i=1 ni ≤ N . By rearranging the terms in (3), we can obtain,

M∑
i=1

λi

hi∑
j=1

(
E
[
rpi,j

])−1

 < N (4)
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where {pi,1, pi,2, pi,3 . . . pi,hi} are the intermediate nodes for which data
from node i is routed, including node i. From (4), we get the upper bound on
the arrival rate λi of each node. This is the maximum load on the network.

Hence, to maximize the stability region, the value of
∑hi

j=1

(
E
[
rpi,j

])−1
should

be minimized. This translates to shortest path routing, which essentially re-
sembles a path that has the maximum rate of transfer to the MBS.

3.1 Asymmetric Interference Aware Routing

Routing in WiMAX can be either fixed or adaptive. However, using adaptive
routing in such a dynamic environment like WiMAX will lead to continuous
path changes [6]. These changes would affect data delivery. Packets traveling
from one node to another could experience out of order delivery and high jitter.
Moreover, most data transfer (video and voice, etc) require that packets arrive
in the same order in which they have been transmitted. Therefore, fixed routing
is adopted for most deployments. Assuming that data from a given node follows
a single path, we can obtain an optimum tree routing structure. To enable SR
and optimize throughput, we propose a routing algorithm, namely asymmetric
interference aware routing (AIAR).

As shown in Algorithm 1, consider a graph G (V, E) where link Ei with
source sEi and destination dEi. A link E1 is said to be non-interfering with
another link E2 if: (i) dE2 /∈ neighbour (sE1), i.e., no receiver in the neighbour-
hood of the transmitter; (ii) sE2 /∈ neighbour (dE1), i.e., no transmitter in the
neighbourhood of the receiver; (iii) dE2 ̸= dE1 , i.e., one node cannot receive
from two transmitters.

We use a parameter link interference parameter, L(x, y) to denote the sum
of data rates of all links that it interferes with. A node on entry calculates
the L(x, y) of every link it is involved in. It then selects a suitable node as its
parent node using node blocking parameter B(n)

B (n) = arg min
∀ni∈neighbours(n)

{B (ni) + L (n, ni)} (5)

The parent node is hence the node that offers minimal interference with
other links. This algorithm is dependent on the order in which the nodes enter
the network. Let H denote the hop count of the farthest node from BS, if we
execute the algorithm H times, we can obtain an optimal routing tree. Our
following discussion on scheduling algorithms is based on an assumption that
the minimum interference routing tree is pre-determined.

4 Enhanced Scheduling using Multipointer Approach

In this section, the new multipointer scheduling algorithm is presented, fol-
lowed by modifications to the three scheduling algorithms in order to take
into account SR. Finally, a multipointer scheduling example is presented.
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Algorithm 1 Asymmetric Interference Aware Routing
Input: Graph of the network including all edges and nodes - G(V,E)
Output: Routing tree with parents of each node - G′

(V,E ′ )
1: Initialize: V ← {1, 2, 3, ...,M}, V ′ ← {0}
2: For every edge in E, calculate L(x, y) from the above given conditions
3: B(n)=0 for n=0; otherwise infinity
4: while (V̸= ∅) do
5: Choose a node i from V with least number of hops to the MBS
6: for j = each neighbour of i in V do
7: B(i) = minimum{B(i), L(i, j)+B(j)}
8: parent(i) = j, for which B(i) is minimum
9: end for
10: V ←V−{i}
11: V ′ ←V ′

+{i}
12: E ′ ←E ′+{i, parent(i)}
13: end while

4.1 Multipointer Algorithm for Packet Scheduling

In most algorithms that we have seen, the scheduling of resources is done from
the first available slot towards the last available slot. This is acceptable for
the PMP mode [7]. However, for the mesh mode, buffering constraints and the
multihop distance to the destination render the normal iteration useless. Un-
der these circumstances, we need to develop a different approach. Scheduling
validity is defined as the number of frames over which a particular sched-
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Fig. 4 WiMAX network with four nodes

ule grant is valid. For WiMAX deployments with centralized scheduling, the
scheduling validity is set to the hop count of the farthest node from the BS.
As shown in Algorithm 2, the number of pointers used for scheduling is equal
to the scheduling validity. Consequently, we require one pointer for each frame
in the scheduling period. When all the slots in that particular frame have been
allocated, the pointer is merged with the pointer in the next frame.

Algorithm 2 Multipointer Algorithm Structure

1: Initialize: multipointer Pi ← the first data slot in ith frame, ni
j ← the number of slots

required by the jth node in the ith frame, where j ≤M, i ≤ SP
2: for i = 1 : SP do
3: while ni

j > 0 do
4: Pi ← j
5: ni

j ← ni
j − 1

6: Pi ← Pi + 1
7: if pi = end of frame then
8: Pi ← Pi+1

9: end if
10: end while
11: end for

Let us look at how a multipointer algorithm works. Consider a WiMAX
network with four nodes as given in Fig. 4. Since the maximum hop count of
the farthest node to the MBS is 3, we use a scheduling period of 3 frames. As
depicted in Fig. 5(a), for the sake of simplicity, let us assume that each frame
has 20 time slots, where the pointers in each of these frames are denoted by
P1, P2 and P3, and initialized to the first slot in the 1st, 2nd and 3rd frame,
respectively. Assuming that each node has a request of eight slots, we can
obtain the results are shown in Fig. 5 after running the multipointer algorithm.
In Fig. 5, a slot with a circle mark inside indicates its allocation to a node; a
slot with a diamond mark inside indicates during which data transfer is being
done; a shaded slot without any mark indicates during which data is received
for a node.

4.2 Fixed Scheduling with Spatial Reuse

FS follows the principle of allocating resources proportional to the arrival rate
at a node. The arrival rate at the node comprises of external arrivals from other
nodes and arrivals from users of the node itself. The number of slots required
for node i without concurrency is given in (3). We calculate the number of
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Fig. 5 Working of Multipointer Algorithm: (a) before scheduling (b) after first frame of
scheduling (c) after second frame of scheduling (d) after third frame of scheduling

slots for all nodes and then allocate slots to the nodes in order of their hop
count from the BS, as specified by σi.

To incorporate SR in terms of concurrent transmissions, we define a child
matrix ci,j , to denote whether or not a node j is a child/sub-child of node i.
This helps in calculating the total arrival rate at a given node. Then, we use
Ii,j to define the interference matrix, where if link i interferes with link j, then
Ii,j is equal to 1. We should note that the interference matrix is a symmetric
matrix. Hence, Ii,j=Ij,i≤ 1.

As we consider only uplink scheduling and a routing tree, each node has
only one uplink, and this link from node i to its parent node can be denoted as
Li,parent(i). Since no other link from i can serve as an uplink, we can simplify
the notation as Li. The order in which each node transmits is given in MSH-
CSCF. This is denoted by σi for node i. The scheduling output gives a set of
nodes that can transmit concurrently during a slot.

FS-SR follows a staggered approach. The arrival rate to each node is cal-
culated as a sum of arrival rate to itself and its children nodes. The number
of slots hence required in total at each node is the sum arrival rate divided
by the rate of data transfer per slot. In particular, if the total number of slots
cannot be serviced by the scheduling period, the number of slots granted to
each node is multiplied by a scheduling weight, w, which is defined as the ratio
of the number of slots in the scheduling period to the total number of slots
required.
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Algorithm 3 Fixed Scheduling with Spatial Reuse
Input: arrival rates, children matrix, order of each node Output: scheduling grant for all
nodes

1: calculate ni and w
2: if w < 1 then
3: ni = ni × w, i = 1 : M
4: end if
5: Initialize: multipointers for all frames Pi, i = 1 : SP
6: set Qi = λi × SP
7: for i=1:SP do
8: for j=1:N do
9: find node ns=argmini=1...M {σi}, Qns > 0 and Insnt = 0 ∀ nt ∈ C
10: C ← {C, ns}
11: continue steps 8-10 until all nodes have been considered
12: if C = ∅ then
13: break
14: end if
15: allocate slot Pi to C
16: Pi ← Pi + 1
17: Qk = Qk − rk and SQparent(k) = SQparent(k) + rk, ∀k ∈ C
18: if Pi=end of frame then
19: Pi = Pi+1

20: end if
21: end for
22: Qk = Qk + SQk, k = 1 : M
23: end for

4.3 Ordered Scheduling with Spatial Reuse

In OS, the scheduling weight for node is defined as

wi =
∑hi

j=1

(
E
[
rpi,j

])−1
(6)

Given the parameter wi, interference matrix I, and individual queue lengths
Qi, OS orders the nodes based on their wi values and assigns each slot to
the first node that can fully utilize that slot. Preference is given to a node
with a lower wi value. Furthermore, we propose OS-SR to implement SR (See
Algorithm 4). The concurrent set ‘C’ allocated to each slot contains the set of
all nodes that can transmit during that slot.

For each slot, OS-SR first selects the node that has the minimum wi value
and queue length longer enough to use the entire slot. Then, it selects other
nodes that can fully utilize a slot and can transmit concurrently with the first
selected node in order of their respective parameter values. The corresponding
uplinks of these nodes are added into the concurrent set ‘C’. This method
continues until all nodes are scheduled.

4.4 Per Slot Scheduling with Spatial Reuse

PSS works on a dynamic programming principle (See Algorithm 5) to schedule
one slot at a time to a node which can transmit the maximum number of bits in
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Algorithm 4 Ordered Scheduling with Spatial Reuse
Input: arrival rates, children matrix, order of each node
Output: scheduling grant for all nodes

1: calculate wi

2: Initialize: multipointers Pi, i = 1 : SP
3: set queue length of all nodes to Qi from MSH −REQ packet received
4: for i=1:SP do
5: for j=1:N do
6: find node ns=argmini=1...M {wi}, Qns > rns and Insnt = 0 ∀ nt ∈ C
7: C ← {C, ns}
8: continue steps 6-8 until all nodes have been considered
9: if C = ∅ then
10: find node ns=argmini=1...M {wi}, Qns > 0 and Insnt = 0 ∀ nt ∈ C
11: C ← {C, ns}
12: continue steps 9-11 until all nodes have been considered
13: end if
14: if C = ∅ then
15: break
16: end if
17: allocate slot Pi to C
18: Pi ← Pi + 1
19: Qk = Qk −min{Qk, rk} and SQparent(k) = SQparent(k) +min{Qk, rk},∀k ∈ C
20: if Pi=end of frame then
21: Pi = Pi+1

22: end if
23: end for
24: Qk = Qk + SQk, k = 1 : M
25: end for

that given slot. With SR, a slot is scheduled to nodes in the concurrent set ‘C’,
which can transmit simultaneously without experiencing severe interference.

One advantage of PSS is that the average resources required at nodes which
have a higher egress rate is low. However, the corresponding disadvantage is
that under high loads, the nodes with a lower transmission rate are allocated
resources towards the end of the scheduling frame. Hence, these nodes have
longer queue lengths. The data drop probability at these nodes is also high
due to the prioritized scheduling of nodes with higher egress rates.

5 Simulation Design

Our simulation in OMNeT++ used the WiMAX mesh network as shown in
Fig. 1, designed using a Network Descriptor (NED). If a node was in transmis-
sion range of another node, then it was connected to that node via a link. All
links were bidirectional and the link parameters were governed by their burst
profiles as shown in Table 2. The burst profile governed the modulation, coding
rate of that link. Hence, a different burst profile translated to a different data
rate. The link rates (in Mbps) between any two nodes were predetermined, as
specified in a NED, and they were aggregated in a connection matrix, H with
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Algorithm 5 Per Slot Scheduling (Concurrency) with Spillover
Input: arrival rates, children matrix, order of each node
Output: scheduling scheme for all nodes

1: Initialize: multipointers Pi, i = 1 : SP
2: set queue length of all nodes to Qi from MSH −REQ packet received
3: for i=1:SP do
4: for j=1:N do
5: find node ns=argmax∀i/∈C {min (Qi, ri)} and Insnt = 0 ∀ nt ∈ C
6: C ← {C, ns}
7: continue steps 6-8 until all nodes have been considered
8: if C = ∅ then
9: break
10: end if
11: allocate slot Pi to C
12: Pi ← Pi + 1
13: Qk = Qk −min{Qk, rk} and SQparent(k) = SQparent(k) +min{Qk, rk},∀k ∈ C
14: if Pi=end of frame then
15: Pi = Pi+1

16: end if
17: end for
18: Qk = Qk + SQk, k = 1 : M
19: end for

element (i, j) corresponding to burst profile of link between node i and node

j. H11×11 =



0 6 0 0 0 0 0 0 4 0 0
6 0 3 0 0 0 2 0 0 0 0
0 3 0 6 4 0 0 0 0 0 0
0 0 6 0 0 3 0 0 0 0 0
0 0 4 0 0 4 0 6 0 0 0
0 0 0 3 4 0 0 0 0 0 0
0 2 0 0 0 0 0 3 2 0 0
0 0 0 0 6 0 3 0 0 2 2
4 0 0 0 0 0 2 0 0 3 3
0 0 0 0 0 0 0 2 3 0 0
0 0 0 0 0 0 0 2 3 0 0



Table 2 Physical Parameters of Burst Profile

Burst
Profile No.

Modulation Coding Rate Uncoded bytes per
OFDM Symbol

Uncoded bytes
per slot

1 QPSK 1/2 24 96
2 QPSK 3/4 36 144
3 16QAM 1/2 48 192
4 16QAM 3/4 72 288
5 64QAM 2/3 96 384
6 64QAM 3/4 108 432

The maximum load on the network with respect to arrival rate at each SS
was calculated using the method in Section 3 and the load is 1.74Mbps, which
was corresponding to a normalized load of 1.0. The normalized load on the
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network was varied from 0 to 1.0 with a step size of 0.1. Poisson packet arrival
was considered and the packet size was varied exponentially with respect to the
mean. Traffic generation occurred in the trafgen submodule of the substation.
The mean packet size was fixed at 768 bits. If all the nodes have the same
average arrival rate λi, the average size of the packet is fixed at L and the
packet inter-arrival time is calculated as

E [τ ] =
L

λ
(7)

All traffic is directed towards the BS. The traffic generator can also be adapted
to include priority, tardiness and drop probability of the packets, which has
been left out for our future study. Upon receiving data packets, either self-
generated or from other nodes, SSs put them into a reserved buffer, and then
moved them into the transmitter buffer at the beginning of each frame. This
perfectly simulated the buffer constraints of the WiMAX network. The queuing
rule was first-in first-out (FIFO). Other queuing methods like earliest deadline
first and fair scheduling could also be employed.

Each packet was time-stamped on of creation at the traffic-generator, and
given a time-to-live (TTL) value that was also varied exponentially with re-
spect to the mean. We tested our algorithms for four mean TTL values: 60ms,
120ms, 240ms and 480ms. Packets which experienced a delay longer than their
TTL values were dropped by intermediate nodes or the BS.

The simulation was run for 5000s or 5 × 106 frames. We can safely as-
sume that simulations could accurately record the real-time performance of
the WiMAX mesh network. Each frame was assigned a duration of 10ms and
the scheduling period was set to 4 frames, as the maximum hop-count amongst
all leaf nodes is 4 in Fig. 1.

During initialization, we first execute AIAR to obtain the optimal routing
tree and then applied a scheduling algorithm. We simulated the request and
grant process and data transmission with buffer constraints in the WiMAX
mesh network, and analyzed the performance of each of the six scheduling
algorithms discussed above, namely, FS, OS, PSS, FS-SR, OS-SR and PSS-
SR.

6 Results Analysis

To analyze the performance of a WiMAX network, we mainly look into two
main aspects: (i) mean delay – end-to-end time taken by a packet to reach
its destination; and (ii) throughput – the number of packets which have been
successfully delivered.

6.1 Mean Delay

The delay of a packet is defined as the time it takes from the time when it is
created by the traffic generator to the time when it reaches its destination.
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As shown in Fig. 6, at low traffic load with low TTL values (60ms∼120ms),
FS outperformed other algorithms, which makes FS a suitable scheduling al-
gorrithm for low-data-rate and time-critical applications like VoIP and Telnet.
Next, scheduling priority under OS was to the node with the fastest path to-
wards the BS; while under PSS was to the fastest link. Due to this selective
nature of these algorithms, nodes with slower links/paths were allocated re-
source at the end of a scheduling period, leading to a higher mean delay. In
addition, every scheme outperformed its corresponding counterpart when im-
plemented with SR. This reduction in mean delay could be attributed to less
mean medium access time due to the concurrent transmissions.

At low traffic load with high TTL value (240ms∼480ms), there was no ap-
parent difference in the performance of the six scheduling schemes. Scheduling
algorithms employing SR performed just marginally better because they in-
creased the effective capacity of the network, thereby enabling more packets to
reach the destination faster. Furthermore, we find that proactive scheduling al-
gorithms like FS significantly outperformed the reactive scheduling algorithms
like OS and PSS. If we define ‘reaction time’ as the number of scheduling peri-
ods taken by the mesh network to respond to a given mesh-request. As shown
in Fig. 2, for PSS and OS that are based on the queue length of nodes, the
reaction time is 2 scheduling periods. However, for FS, this is reduced to zero,
as FS is based on arrival rate at each node. Therefore, FS offered the smallest
delay amongst the six.

At high traffic load with low TTL values (60ms∼120ms), OS and PSS out-
performed FS. This is because the fact that FS would allocate more resources
to weaker links, giving rise to a longer waiting time for data with stronger links
and an overall increase in average delay. In particular, the ‘selective’ nature
of OS and PSS did not favor scheduling to moderate and weak paths/links.
Some packets were lost due to excessive delay and many packets were delayed
as the algorithm allocated resources first to stronger links and paths and then
to weaker links. The overall delay hence increases at high traffic load for these
algorithms. Packets with slower links (See Fig. 6) were dropped and hence
the average delay of packet delivery was comparable between OS and PSS.
Next, with SR, OS-SR and PSS-SR outperformed OS and PSS, respectively.
Furthermore, FS-SR provided the best performance. This was because of si-
multaneous allocations to strong and weak links at the same time. Since FS
was not selective in nature, data were allocated slots uniformly and hence we
had a lower average delay.

At high traffic load with high TTL value (240ms∼480ms), FS-SR offered
the best average delay under all loads and all TTL conditions, and it could
be used for almost all applications. Furthermore, PSS outperformed OS, while
OS-SR and PSS-SR performed similarly.
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Fig. 6 Mean Delay Analysis

6.2 Throughput

Throughput of a system is a measure of the data generated by the node com-
pared to the amount of data received by the MBS. In our case, data which
were not delivered with a TTL were dropped and hence an unfair scheduling
algorithm may lead to a low throughput.

As shown in Fig. 7, at low traffic load, FS outperformed FS-SR, implying
that SR does not improve throughput. Furthermore, the performance of other
four schemes was about the same. Interestingly, the performance of six schemes
were converging when the TTL values were increased at low traffic load.

At high traffic load, without SR, PSS provided the highest throughput as
it strived to transmit the maximum number of bits in every slot. The path-
selective OS provided a lower throughput than PSS; FS resulted in the lowest
throughput. With SR, FS-SR offered the maximum throughput. The proactive
scheduling saved ‘reaction time’ and hence allowed faster delivery of nodes.
Furthermore, OS-SR and PSS-SR offered comparable throughput. When the
TTL values were increased, the performance of FS-SR, OS-SR and PSS-SR
converged.
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Fig. 7 Throughput Analysis

7 Conclusion

A concurrent routing scheme with spatial reuse (SR), asymmetric interference
aware routing (AIAR) was proposed. Then, a multipointer approach of imple-
menting scheduling algorithms for WiMAX mesh networks operating in the
mesh mode was proposed. Six scheduling algorithms, fixed scheduling (FS),
ordered scheduling (OS) and per-slot scheduling (PSS), FS-SR, OS-SR and
PSS-SR were proposed. Through computer simulations, we found that with-
out SR, PSS provides highest throughput while FS gives lowest packet delay.
While incorporating SR, the FS-SR scheme offers the best overall performance.
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