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Abstract

Many of us use encryption frequently whether realising it or not; it is
the active yet often invisible element keeping our information and data
safe. Despite this, many of us underestimate the value of encryption
in our daily lives. Schneier (2016) explains encryption is instrumental
in protecting identities, governments, lawmakers, law enforcement,
military, critical infrastructure, communications networks, power grids,
transportation, and everything else we rely on in society. “As we move
to the Internet of Things ... encryption will become even more critical
to our personal and national security” (Schneier, 2016). Understanding
the ever-changing threat landscape, predicting potential trends, and
current security issues are the core roles of the security researcher. The
process of establishing frameworks helps mitigate risks of the critical

reliance on encryption.

One of the challenges encryption faces is it 1is inherently
computationally intensive and therefore slow. Due to mobile devices’
focus on performance over security, it is vital to find methods
to accelerate modern encryption algorithms to preserve information
security in the future. Previous research has successfully investigated
the use of hardware to accelerate encryption algorithms. Algorithm
accelerators have used Graphics Processing Units (GPU) for many
years and have proven these to be effective for parallel workloads. An
advantage is that GPUs are already part of most computer systems,
making them a fertile area for research into hardware performance.
However, previous research has been limited to system specific compiled

code.

This research explores the ability to perform acceleration on any
modern browser through a scripted programming language. The
selection of NTRUEncrypt for this experiment was due to its suitability
towards acceleration, protection against quantum computers and as
an alternative to RSA or Elliptic Curve Cryptography (ECC). A
pure JavaScript and GPU accelerated version of NTRUEncrypt were
developed. The Three.js library was selected to utilise the latest version
of WebGL in modern browsers and reduce development time. OpenGL
ES 1.0 compatible shaders then replaced the addition and convolution

operations of NTRUEncrypt, utilising the system GPU for processing.

Performance comparison of encryption and decryption between
NTRUEncrypt.js and NTRUEncrypt-GPU.js was then performed.

Polynomial convolution at the highest security settings was 1.6



times faster on the GPU compared to the Central Processing Unit
(CPU). However, results from this experiment show NTRUEncrypt-
GPU js failed to accelerate the NTRUEncrypt cryptographic algorithm.
Furthermore, comparisons within this research showed JavaScript was

up to 80 times slower than C, C+-+, and Java.

Future research into accelerated cryptography would provide further
knowledge, understanding and open new opportunities for improvement
to information security. While NTRUEncrypt-GPU.js failed to
accelerated NTRUEncrypt using currently available standards,
preliminary testing using Compute Shaders proved successful and

warrents further investigation.
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1 Introduction

Rivest (1990) describes cryptography as secure communication between
parties in the presence of adversaries. It is the process of transforming
data in such a way that it is incomprehensible to anyone other
than the intended recipients. Cryptography is essential for information
security as it provides confidentiality, integrity, authentication, and
non-repudiation. Maintaining information security requires continuous
academic research, especially due to the public nature of networks
such as the Internet. Cryptography algorithms consist of three major
operations - key generation, encryption, and decryption. A key is
required to perform the encryption, which transforms plaintext into
ciphertext. A key is then required to perform decryption operations to
obtain the plaintext. All cryptographic algorithms can be constructed
using either of two different techniques: substitution or transposition.
This initial examination of the foundation of cryptography in section
2.1.1 provides a basic understanding of these two techniques. The
following sections then examine in chronological order the development
to modern day cryptographic algorithms. Cryptographic history is of
particular importance to explore as many older algorithms are still
widely used today. Comparatively, asymmetric cryptography, such as
Diffie-Hellman, has only been available since 1978. Further study is

required to improve cryptographic knowledge and information security.

Moore’s Law (1965) is a simple observation that the number of
components per silicon chip would double every two years. A doubling
in the number of components available for processing leads to increased
efficiency and higher processing capabilities. Moore’s Law (1965) and
the availability of quantum computers will make the currently used
algorithms obsolete within a few years. Thus, an investigation into
alternative algorithms is required to maintain information security and

improve efficiency in the future.

Recently, there has been a movement toward mobile devices that
favour power efficiency over performance. These devices have physical
limitations of size, heat, and power consumption, meaning they are
not as powerful as current desktop or server hardware. Investigations
into the more efficient use of processing power are essential to sustain
mobile device functionality. A large proportion of processing power on
mobile devices is communication with other devices. Implementation of
secure communication using industry best practices requires frequent

use of cryptography. An issue plagued by previous research is that

12



most algorithm acceleration requires either specialised hardware or
software compiled specifically for that particular hardware system.
Implementing an algorithm in a device agnostic language, such as
JavaScript, means eliminating the software compilation problem and
alleviating the hardware requirement problem. Any device with a
modern browser can then utilise the algorithm to communicate securely.
However, this does not completely solve the problem associated with
Moore’s Law. As previously stated, one problem with algorithm
acceleration is the reliance on specialised hardware. Many devices that
can run a modern browser will additionally have a modern GPU. Many
researchers have investigated accelerating various algorithms, including
cryptography, and most demonstrate some success. Previous research
affirms it is possible to accelerate cryptography using a GPU. The
current software and hardware technology ready for implementation
leads to a confirmation of the problem solution. Therefore, this research
seeks to investigate, confirm, and develop the in-browser acceleration

of a cryptographic algorithm using a device’s GPU.
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2 Literature Review

2.1 Cryptography

In the following sections this research investigates and provides
the foundation for cryptography. In section 2.1.1 reasoning for why
cryptography exists, where it has come from, and the building blocks
for modern cryptography are briefly discussed. Section 2.1.2 introduces
cryptography’s fit within information security. A brief discussion in
section 2.1.3 introduces secure random number generation and its
importance to cryptography. Next, in section 2.1.4 this paper moves
into a discussion of modern symmetric cryptographic algorithms,
why they were selected, replaced and how they operate. Finally in
section 2.1.5 is an in depth investigation into available asymmetric

cryptographic algorithms.

2.1.1 Foundation

Damico (2009) suggests cryptography has been utilised for
communication for thousands of years, as early as 1900 BC. Secure
communication is vital to survival and is considered to have been
born out of the military and used for communicating troop movements
and intelligence. Attempts were made to intercept and manipulate
the information the enemy knows while maintaining the security of
your own communications. One example that highlights the issues
of poor security standards is discussed by Weadon (2000). Weadon
mentions that cryptanalysis helped the United States in the lead-up to
the World War II Battle of Midway. United States cryptanalysts had
partially broken the Japanese JN-25 Naval code. Many communication
interceptions allowed the cryptanalysts to infer that an operation or
objective “AF” would soon be underway by the Japanese navy. The US
cryptanalysts concluded the code “AF” probably referred to Midway.
The US confirmed this by sending out a false unencrypted broadcast
that the Water purification system on Midway had broken, they then
intercepted Japanese communications that mentioned “AF” had a water
problem. As a result, the intelligence gathered from this communication
flaw allowed the US time to set up a pre-emptive strike against the
Japanese navy, resulting in a victory that is considered the turning

point in the Pacific War.

To discuss modern cryptography it is important to understand the

historical basis that it derives from. All cryptographic systems are

14



based on either transposition, changing the order of characters; or
substitution, replacing plaintext characters with other characters or
symbols. These two techniques provide the basis for all currently known

cryptography, classical to modern.

A straightforward example of substitution is the Caesar cipher. To
perform a Caesar cipher encryption, shift the alphabet a number of
places left or right and substitute the plaintext letters for the now
ciphertext letters, then reverse this process to obtain the plaintext

message as illustrated in figure 2.1.

| Plaintext Alphabet | ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext Alphabet | XYZABCDEFGHIJKLMNOPQRSTUVW
Key Shift right 3
| Plaintext Message | HELLO WORLD |
’Encrypted Message ‘EBIIL TLOIA

Figure 2.1: Example of Caesar Cipher

An example that clearly illustrates transposition is the Route cipher.
As illustrated in figure 2.2 simply place all plaintext characters in a

grid, then read off in a given pattern.

Plaintext Message | UNDER ATTACK

Route UEAA

NRTC

D TK
Ciphertext UEAANRTCD TK

Figure 2.2: Example of Route Cipher

The total number of possible keys for a given encryption algorithm is
known as the key space. The complication with many early examples of
cryptographic ciphers is that they do not have a large enough key space.
For example, the Caesar cipher has a key space of only 25 and while
this may take time for a human to go through every single combination,
a modern desktop computer would take a matter of milliseconds to
brute force this encryption algorithm. Classical ciphers, therefore, offer
poor security for modern communications systems. However, they have
provided a fundamental basis without which modern cryptographic

algorithms could not have developed.
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2.1.2 Information Security Aspects

Authentication, availability, confidentiality, integrity, and non-
repudiation create the five foundational aspects of information security.
Cryptography provides four of these five aspects. The keys or
certificates used in asymmetric encryption provide authentication,
proving the bearer is who they say they are. Cryptography additionally
provides confidentiality by allowing parties to encrypt data, therefore
limiting access to only entities in possession of the decryption key.
A single change to the ciphertext would result in failure to decrypt
the message, making any tampering plainly evident and assuring
integrity. Message signing can provide an additional layer of integrity.
In adhering to the principles of authentication, confidentiality and
integrity, cryptography also achieves non-repudiation. Non-repudiation
is achieved as only the holder of the key is able to participate in
successful encryption or decryption. Cryptography, when implemented

correctly, an essential part of an effective information security strategy.

2.1.3 Random Number Generation Weaknesses

Before examining cryptographic algorithms directly, an important,
although often overlooked, part of the implementation of a
cryptographic algorithm is secure random number generation. It is
often quicker to exploit a weakness in the random number generator
of an implementation of a cryptographic algorithm, due to a large
key space or algorithm complexity. There are three types of random
number generators: Pseudo-Random Number Generator (PRNG),
Cryptographic Pseudo-Random Number Generator (CSPRNG) and
True Random Number Generator (TRNG). PRNG’s are pseudo-
random meaning they eventually have some pattern of predictability,
and this makes them unsuitable for cryptographic algorithms.
CSPRNGs are PRNGs that meet certain requirements and require
a larger amount of entropy, therefore requiring a larger amount
of processing power. This increased processing power means that a
developer’s implementation has to decide between speed and security,
providing an opportunity for an attacker to exploit. One-way functions,
such as hashing, create another level of entropy and are comparable to
one-time pads, which are considered unbreakable. TRNG in computing
require generating entropy outside of the computer system. A hardware
device affected by physical phenomena, such as nuclear decay, thermal

noise or atmospheric noise that then converts this into a random series
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of bits is used to create true entropy. Specialised hardware and the
speed of entropy generation are two issues with this process. Many
hardware TRNGs are implemented by taking only a limited amount
of entropy, then passing this entropy through a hashing algorithm to
provide quick and secure CSPRNG.

2.1.4 Symmetric Encryption

Symmetric encryption algorithms use the same key for both encryption
and decryption. Therefore, during communication both parties must

have the same key or shared secret.

Data Encryption Standard (DES) Published in 1977 as a
Federal Information Processing Standard (FIPS), the Data Encryption
Standard (DES) was the first symmetric encryption algorithm
standardised for public use. DES provided security for unclassified
electronic government data until 1999. Only legacy systems continue
to use DES afterwards, while Triple DES was designed to replace it.
DES is a block cipher and works with 64-bit blocks of plaintext at a
time. The key must be 64-bits, 56-bits are used for the key and 8-bits
are used for parity. DES performs 16 rounds on the plaintext input
and an initial and final permutation. DES utilises a Feistel function
for each round, this splits the input into two 32-bit halves, left and
right. The left half is exclusive-OR (XOR) with the output of the
Feistel function of the right half, before the next round where the
halves are swapped. The Feistel function takes an input of 32-bits,
performs expansion to 48-bits, and then an XOR of the 48-bits with
a round subkey. The S-boxes perform substitution which reduces the
output back to 32-bits; finally, the output of the S-boxes is permutated.
Creating the input key requires a permutation, which is a simple bit
rotation incremented per round, this calculates the subkey for each
round. Due to its operations, DES requires little memory, and can,
therefore, be cheaply implemented in hardware. Because DES has
existed for a comparatively long time there are numerous libraries
available for any architecture or programming language. Compared to
modern cryptography alternatives it is considered slow. Since 2008 DES
research indicates it is vulnerable to brute force attacks as the key
space is only 25, While an implementation of 3DES (DES performed
three times) is used to alleviate the security concerns of DES, this is

extremely slow and thus an alternative was sought.
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Advanced Encryption Standard (AES) The Advanced
Encryption Standard (AES), originally known as Rijndael, was
first published in 1998 by Daemen & Rijmen. The National Institute
of Standards and Technology (NIST) held a competition in 2001
and Rijndael was selected as the replacement for DES. AES has an
increased keyspace compared to DES, which alleviates the problem
of brute force attacks. The design of AES requires fewer rounds,
only table lookups, and XOR. operations, which makes AES less
computationally intensive than DES. The number of rounds AES
performs is dependent on the key size. AES supports three key
sizes: 128-bit, 192-bit, and 256-bit which use 10, 12, and 14 rounds
respectively. Initialisation derives the round keys from the input cipher

key; this is done using the Rijndael key schedule.

The schedule begins with a simple 8-bit rotation on a 32-bit word. Next
is an rcon operation in the exponentiated Galois field of 2, followed by
the S-Box operation. The rcon operation performs exponentiation of
an input value within Rijndael’s finite field, similar to a substitution.
The output of the S-Box operation then produces an expanded key for
each round of AES. The first round only performs an AddRoundKey
operation, which is simply a bitwise XOR with the input state
and round key. Each round then performs SubBytes, ShiftRows,
MixColumns, and AddRoundKey operations until the final round which

excludes the MixColumns operation.

SubBytes performs a substitution of the state bytes with a lookup
table. ShiftRows performs transposition of the state where the last
three rows are shifted a set number of steps. Finally, MixColumns is
another transposition operation that shifts each column a fixed number

of steps.

AES has a considerably larger key space than DES, making brute force
attacks infeasible. Some hardware implementations, such as Intel AES-
NI as initially defined by Gueron (n.d.), allow for fast and efficient use
of AES. Harrison & Waldron (2007) examined the acceleration of AES
on a Graphics Processing Unit (GPU). Their findings demonstrated a
GPU was only useful for bulk AES encryption and decryption; they
achieved a maximum of 870.8Mbits/s (108.85 MB/s). Furthermore
Yang & Goodman (2007) investigated accelerating both AES and
DES symmetric key encryption algorithms on two different GPUs.
Their experiment demonstrated a significantly improved acceleration,
3.5 Gbits/s (437.5 MB/s) on an HD 2900 XT GPU, compared
to 1.6 Gbits/s (200 MB/s) on a high-performance CPU. However
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Chesebrough & Conlon (2012) demonstrated an implementation that
took advantage of Intel AES-NT and achieved 579.9MB /s which is more
than five times faster than Harrison et al.’s implementation and almost
1.5 times faster than Yang & Goodman’s. One issue that both Harrison
& Waldron and Yang & Goodman encountered was the limiting factor
of memory bandwidth. Yang & Goodman (2007) discuss how comparing
AES on two different GPUs, one with more processing units than the
other, did not scale as expected. Instead, both cards had an equal
number of memory fetch units, and they found this to be the limiting

factor.

Even with algorithms that are considered secure, such as AES,
communicating the key for use in symmetric encryption between two
parties is difficult, given the only line of communication may be
public. If the symmetric key is compromised, then communication
from all parties is compromised. As the number of authorised parties
increases this adds additional risk. Asymmetric encryption is used
to overcome these symmetric encryption problems and communicate

securely between parties.

2.1.5 Asymmetric Encryption

Asymmetric cryptography, also known as public-key cryptography,
is a newer concept than symmetric cryptographic systems. Many
asymmetric cryptography systems exist and are based on the various
strengths of underlying mathematical properties. The three most widely
used asymmetric cryptographic systems are Diffie-Hellman (Merkle,
1978), RSA (Rivest, Shamir & Adleman, 1978) and Elliptic Curve
Cryptography (ECC) (Miller, 1986; Koblitz, 1987).

Trapdoor functions provide the basis for most asymmetric
cryptography. Trapdoor functions are mathematical functions
that are easy to compute in one direction yet difficult to compute
in the opposite direction without knowledge of the private key. The
important distinction between a trapdoor and one-way function is that
the trapdoor can be reversed, given the private data. For example,
given the number 3397 which is the product of two prime numbers, it
is challenging to obtain the original two prime numbers (43 and 79)
without calculating all possible combinations of prime numbers. It is,
however, comparatively trivial to multiply 43 and 79. The product of
two primes is an example of the prime factorization problem, which
is utilised by RSA. The discrete logarithm problem, used by ECC,
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and the shortest vector problem, used by NTRUEncrypt, are both

considered trapdoor functions.

Along with trapdoor functions many cryptographic algorithms, both
symmetric and asymmetric, rely on prime numbers. A prime number
is a natural number greater than one which has no positive divisors
other than 1 and itself. This property makes prime numbers useful
for many cryptographic algorithms. Testing if a number is prime is
computationally intensive, as the only sure way of accurately checking
is to perform a full
(n/2) mod2 ==

test (where n is the number to test). This results in O(n) computations
which, for large prime numbers, becomes infeasible. For some
cryptographic algorithms, coprime integers are necessary; this is two

integers that have their greatest common divisor equal to 1.

Another important mathematical basis is Fermat’s little theorem,
which is used by all three asymmetric cryptographic systems: Diffie-
Hellman, ECC and RSA. Liskov (2011) defines Fermat’s little theorem
as stating that if p is a prime number and « is any number not divisible
by p, then

a* ' =1 modp

This theorem is important because it allows us to perform fewer
calculations to determine if p is probably prime. While considerably
faster than performing a full test, this theorem fails for Carmichael
numbers, which pass Fermat’s little theorem for primality; however,
they are not truly prime. In most cases, Fermat’s little theorem can
quickly establish if a number is prime and then a more accurate method
can be used to determine if p is truly prime if that level of accuracy is

required.

Diffie-Hellman Having been first published in 1978 by Diffie,
Hellman, and Merkle (1978), Diffie-Hellman is the oldest asymmetric
cryptographic algorithm. Given that two parties want to communicate
securely over an insecure network, Diffie-Hellman can be used to
generate a shared secret. For example, both Alice and Bob select two
values g and p, which can be publicly known, where p is a prime number,
and g is a primitive root modulo of p. Alice and Bob then each select
a secret integer a and b respectively. Alice calculates and sends Bob A,
where A = ¢® mod p. Bob performs a calculation and sends Alice B,

where B = ¢® mod p. Alice then computes s, where s = B® mod p while
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Bob computes s, where s = A® modp. Further secret communication
can occur as now both Alice and Bob have the same shared secret s
that was not publicly transmitted. An illustration of a Diffie-Hellman

key exchange is demonstrated in figure 2.3.

‘ ALICE ‘ Publicly Exchanged ‘ BoB ‘
g=10 g=10 p=>541 g=10
p = 541 p = 541
a="17 b=13
A= g% modp B = ¢" modp
A =107 mod 541 B = 10' mod 541
A =156 A=156 B =486 B = 486
s = B®modp s = A modp
s = 486" mod 541 s = 156 mod 541
s =333 s =333

Figure 2.3: Example of Diffie-Hellman

Diffie-Hellman on its own only provides a key exchange between
parties. Therefore, the parties must then decide on another encryption
algorithm to utilise the shared secret key. Due to this limitation,
Diffie-Hellman does not provide authentication and is thus susceptible
to a man-in-the-middle attack. However, Diffie-Hellman can be
implemented to provide Perfect Forward Secrecy (PFS) by generating
ephemeral keys for one-time use or single session use. Thus, if
an attacker compromises one communication session, other sessions

performed between the same parties would not be compromised.

RSA The RSA public-key cryptosystem published by Rivest, Shamir
and Adleman in 1978 is similar to Diffie-Hellman. RSA relies upon
the difficulty of factoring large prime numbers for security. RSA
has an advantage over Diffie-Hellman, that is the ability to provide
authentication, through message signing. Key generation for RSA is
computationally intensive compared to its encryption and decryption
operations. RSA consists of four essential functions: key generation,
encryption, decryption and signing. Key generation is the most
computationally intensive function of RSA as the selection of two large
prime numbers can be O(n) for each in the worst case. RSA utilises
modular exponentiation for encryption and decryption, specifically the
functions C' = P®mod n and P = C%mod n. Modular exponentiation
requires the base number be taken to the power of either e or d
(dependent on encryption or decryption) within modn. While this

operation is trivial for a computer to perform on small numbers e.g.,
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3% = 27. This operation becomes increasingly computationally intensive
with large numbers. This shortcoming of RSA, led to the development
of algorithms more efficient at performing modular exponentiation. As
illustrated in figure 2.4 an example of repeated squaring allows quicker
calculation as only the calculation of the square exponents less than
the input exponent is required. A continuation of repeated squaring,
the modulus is converted to base 2 and calculating each square of the
base number in this modulus the rule 2% +b = 2 - z* then applies. For
example 329 mod 50 = 3128 . 354 . 3% mod 50 as 200 base 2 = 11001000
(or 128 + 64 + 8, which is where all the 1’s are in base 2).

| 3% mod 50 |
3" mod 50 = 3 mod 50 | 3'% mod 50 = 21 mod 50
3% mod 50 = 9 mod 50 | 3%? mod 50 = 41 mod 50
3* mod 50 — 31 mod 50 | 3%* mod 50 — 31 mod 50
3% mod 50 = 11 mod 50 | 3'® mod 50 = 11 mod 50
2005 = 11001000
200 — 128 + 64 + 8

3200, 0750 — 3128 T 61T 8
3%9mod 50 = 31?8 . 3% . 3%mod 50
320mod 50 = 11 - 31 - 11 mod 50

3?%mod 50 = 3751 mod 50

3299mod 50 = 1 mod 50

Figure 2.4: Repeated Squaring Example

In the case of RSA, the selection of prime numbers must be random and
large. The Euclidian Algorithm is an efficient method for computing the
greatest common divisor (GCD) of two numbers which is the largest
number that divides both without leaving a remainder, example as

illustrated in figure 2.5.

a =200 and b =45
GCD(a,b)
amodb=r

Whiler # 0 :
200 mod 45 = 20
a=45 b=20
45 mod 20 =5
a=20 b=5
20 mod5 =0
. the GC'D(200,45) =5

Figure 2.5: Example of Euclidian Algorithm

Key generation for RSA commences with selecting two large prime

numbers p and ¢. The product n of these two numbers is computed
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where n = p - q. ¢(n) is then calculated where
¢(n)=p-1)-(¢-1)

A small odd number e is selected (normally 65537) where e is relatively
prime to ¢(n) alternatively, where the greatest common divisor of ¢(n)

and e is 1. The private integer d is computed where

d-emod(p(n)) =1

The public key consists of e and n and can then be given out to any
party that wishes to communicate. The private key, made up of d and
n, must be kept secret. Illustrated in figure 2.6 is an example of RSA

key generation.

] ALICE \
Key Bits — 16
p="179
q=29
n=p-q
n="179-29
n = 2291

*n)=(p-1)-(¢—1)

P(n)=(79-1)-(29-1)
d(n) = 2184
e =29
d:(d-e)ymod®(n) =1
Compute d = (7 . 5) mod 2184 =1
d = 437
Public Key (e, n) = (5, 2291)
Private Key (d, n) = (437, 2291)

Figure 2.6: Example of RSA Key Generation

RSA encryption is simple. Firstly, Bob must obtain Alice’s public
key. Bob then selects an integer P to encrypt. He then computes the
ciphertext C' using Alice’s public key where

C = P°mnmodn

Bob can then send the encrypted integer C' to Alice, and only Alice
will be able to decrypt with her private key. An example illustrated in

figure 2.7 shows this process.
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’ ALICE ‘ Publicly Exchanged ‘ Bos ‘

Public Key — Alice’s Public Key
(e, n) = (5, 2291) (e, n) = (5, 2291)
P =90
C = P°mod n
C = 90° mod 2291
C = 997 C = 997 C = 997

Figure 2.7: RSA Encryption Example

RSA decryption is performed similarly to encryption. As illustrated in
figure 2.8 once Alice has received the encrypted integer C' from Bob, she
computes plaintext P where P = C%mod n, d and n are from Alice’s

Private Key.

ALICE | Publicly Exchanged | BoB |
C = 997 C = 997 C = 997
Private Key (d, n) = (437, 2291) P =90
P = C%mod n
P = 9974%" mod 2291
P =290

Figure 2.8: RSA Decryption Example

The advantage of RSA over Diffie-Hellman is that the sender’s private
key could additionally sign an encrypted message. In this case, Bob
could sign the message and in this way Alice knows that only Bob
(or the computer in possession of Bob’s private key) could have
sent the message. In this way RSA provides authentication and non-
repudiation, and a correct implementation makes man-in-the-middle
attacks impossible. While both RSA and Diffie-Hellman are considered
reliable and secure, they are both computationally intensive. Using
anything more than 4096-bit RSA on a mobile device is infeasible, and

thus, alternatives are sought.

Elliptic Curve Cryptography (ECC) Published separately by
both Miller (1986) and Koblitz (1987), Elliptic Curve Cryptography
(ECC) did not enter into wide use until included in OpenSSL version
0.9.8 in 2005. The reasoning behind the slow adoption of new encryption
algorithms is to allow academic researchers and cryptanalysts time
to attempt to find problems with the algorithm. At the time of
ECC’s publication, RSA had already become a widely implemented
standard, and no immediate threat to security required replacement.

Comparing ECC to RSA, ECC can provide an equivalent level of
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security at a significantly smaller key size. ECC is reliant on the
discrete logarithm problem for its security. Based on special curves
that satisfy the equation y* = z® + az + b. Scalar point multiplication
is utilised extensively in ECC; this is the method for multiplying an
integer value with a point on a curve. The simplest method which
Hankerson, Menezes & Vanstone (2006) describes is double-and-add.
Given the random number r = 2, and the point G = (g) performing
double-and-add (in mod23) would give us the results G2 = (13) as
a9 — (2*9 (mod23)>‘

245 (mod 23)
Selection of an Elliptic Curve determines parameters used for key
exchange and signing. p is a prime number that the curve operates
in as all point calculations performed modulo p, usually noted as Fj,. a
and b are integers that define the curve. G is the generator or base point,
given in point form this is a point on the curve that provides the basis
for further calculations. n the number of different distinct points on
the curve. h the ratio of curve points, calculated using 2. Alice selects
a curve then selects a random number d4, where 0 < d, < n. Alice
then computes Q)4 by performing point scalar multiplication where
Qs = dy - G. Alice’s public key is Q4 which is a distinct point on
the curve Fbs. Alice’s private key is d4 which is an integer. An example

in figure 2.9 of ECC key generation illustrates this process.
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| CURVE Fy3 PARAMETERS

y =23+
a=1
b=0
p =23

G =1(9,5)
n =23
ALICE

Curve = Fys
dy=6
Qa=ds-G
QA =6- (97 5)
G:(9,5)
G2:(8,7)
G3:(2,19)

G4 :(12,22)

G5 : (3,17)

G6 : (18,10)

10% mod 23 = 18° + 18 mod 23
Qa = (18,10)
Public Key Q4 = (18,10)
Private Key d4 = 6

Figure 2.9: Example of ECC Key Generation

Similar to Diffie-Hellman, ECC on its own is unable to provide
encryption and decryption. It can, however, perform a key exchange,
enabling communicating parties to generate a secret key for secure
symmetric encryption. Elliptic Curve Diffie-Hellman (ECDH) begins
with obtaining the public key of the recipient. If Bob is communicating
with Alice, he must first select a random integer r where 0 < r < n.
Bob then computes R by performing point scalar multiplication where
R =r-G. Bob sends Alice R, and the shared secret key s is computed
where s = 1 - Q) 4. Alice receives the computed point R from Bob. Alice
can compute the shared secret key s where s = d4- R. Finally, an agreed
symmetric algorithm can use the shared secret s that Alice and Bob
now have as illustrated in figure 2.10 of an example of Elliptic Curve
Diffie-Hellman (ECDH) key exchange.
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’ ALICE ‘ Publicly Exchanged ‘ Bos ‘
Public Key Alice’s Public Key | Alice’s Public Key
Q4 = (18,10) Qa4 = (18,10) Qa4 = (18,10)
r=7
R=r-G
R=7-(9,5)
R = (13,20) R = (13,20) R = (13,20)
s=dy- R s=1-Qa
s =6-(13,20) s=17-(18,10)
s=(3,17) s=(3,17)

Figure 2.10: Example of ECDH

Although ECC is considerably faster than RSA and Diffie-Hellman,
both parties must agree on using the same elliptic curve. Patents on
curves have further prevented many from using ECC, and this has
significantly impacted the confidence in systems that use ECC. There
are many other confidence issues surrounding ECC. Some security
experts have been sceptical about suggested curves from privately
funded cryptographic institutions and governments. In 2007 it was
proposed by Shumow & Ferguson that the NSA had deliberately placed
a backdoor in the Dual Elliptic Curve Deterministic Random Bit
Generator (Dual EC DRBG). The NSA initially denied they had
intentionally created a backdoor. However, documents later leaked by
Edward Snowden demonstrated the NSA had pushed to become the sole
editor of the Dual EC DRBG standard. These issues have slowed the
uptake and confidence in ECC.

Many have sought replacements for Diffie-Hellman, RSA, and ECC.
Both Diffie-Hellman and RSA are computationally intensive and as
processors become more efficient, a linear increase in bit size to
increase security in turn results in a larger increase in computational
intensity. ECC has many political and confidence problems and, while
less computationally intensive than RSA and Diffie-Hellman, does
not provide the ability to encrypt or decrypt on its own. While
these three options are secure for now, the underlying problem
with all three algorithms is that they are not secure against
quantum computers. Jaeger (2007) describes cryptography as an
arms race between cryptographers and cryptanalysts. This war forces
constant research as cryptographers search for secure algorithms, while
cryptanalysts attempt to break these algorithms. Perlner & Cooper
(2009) investigated several quantum resistant public key cryptography

algorithms due to the current reliance on factorisation and discrete
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logarithm problem, both of which will become trivial to break once

quantum computers are available.

2.2 Quantum Computing
2.2.1 Introduction

Significant advances have recently been made in the development
of quantum computing, with Veldhorst et al. (2014) producing a
2-qubit quantum computer on silicon. More recently Monz et al.
(2015) have scaled the Shor algorithm on a 7-qubit system. Shor’s
algorithm (1999) allows a quantum computer to reduce the prime
factorisation and discrete logarithm problems to polynomial time. The
prime factorization and discrete logarithm problems are what Diffie-
Hellman, RSA, and ECC rely on for security. Thus, a sufficiently
large quantum computer running Shor’s algorithm would render
these algorithms ineffective. Therefore security research needs to
seek emerging technology and provide solutions to prevent security
breaches from future hardware developments. Bernstein (2009) briefly
describes some alternative asymmetric algorithms such as hash-based
Merkle signature scheme (Merkle, Charles et al., 1979), code-based
McEliece scheme (McEliece, 1978), and lattice-based NTRU public-
key-encryption (Hoffstein, Pipher & Silverman, 1998). NTRU consists
of both a public-key-encryption scheme known as NTRUEncrypt
and a signing scheme NTRUSign. The research and scrutiny that
NTRUEncrypt has undergone, its publication as a standard and it’s
resistance to known quantum computing attacks makes it the most

likely replacement in a post-quantum cryptography world.

2.2.2 NTRUEncrypt

NTRUEncrypt was first published in 1998 by Hoffstein et al.
and described by Perlner & Cooper (2009) as the most practical
lattice-based cryptography. The IEEE P1363 standard on public-key
cryptography added NTRUEncrypt in 2008 and in 2011 NTRUEncrypt
was added to the X9.98 standard, both provide further confidence
and assurance in NTRUEncrypt. NTRUEncrypt’s security relies on
the shortest vector problem (SVP). Given the basis for a lattice, the
shortest vector to a random non-lattice vector must be found. Where,
RSA performs a selection of two large prime numbers, comparatively

NTRUEncrypt has an input of three publicly known parameters
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(N, p, q) that affect the selection of private polynomial f and
its computed inverse f,. All operations are performed using small
polynomial rings with the number of coefficients being parameter N, a

power of two modulus ¢, and a small prime number p.

Key generation for NTRUEncrypt commences by selecting two random
small polynomials (coefficients between {—1,0,1}) f and g. Polynomial
selection allows computing the inverses f, and f, where f-fp = 1(modp)
and f - f¢ = 1 (mod q) is performed using a modified Euclidean
algorithm, f and f, comprise the private key pair. Finally the public
key polynomial & is computed where h = p- fq- g (mod q). An example
of NTRUEncrypt key generation is illustrated in 2.11.

N=11,¢=32,p=3

f=-14+x+x2-x*+x5 4 x%-x!0

g—-1+x*+x>+x°-x2-xt0

fo: where f - fp =1 (mod p)

fo=1+2x+2x% + 2x* + x° + 2x" + x* + 2x°

fo: where f- fq=1(mod q)

fo =5+ 9x + 6x% + 16x% + 4x* + 15x° + 16x° + 22x"+ 20x® + 18x” + 30x'"

h=p- fq-g(modq)

h =8 + 25x + 22x? + 20x* + 12x* + 24x° + 15x°® + 19x"+ 12x® + 19x° + 16x%°

Figure 2.11: Example of NTRUEncrypt Key Generation

As illustrated in figure 2.12 encryption is performed where: e = h -
r + m (modq). First, polynomial convolution with public key h and
blinding value r is performed, then the message to be encrypted in
binary is added to this output. Finally, each coefficient is calculated
modulo ¢. Only the holder of the private key can now decrypt the

encrypted polynomial e.

Parameters N=11,¢q=32,p=3
h 31 + 152 + 22% + 72° + 5x° + 122°
+2627 + 62 + 82° + 16210
r —1z + 122
r-h —8 — 15z + 1622 + 132> — 52t + 72°
—525 — 72" — 142® + 202° — 2210
m 1+ 122+ 12° + 12°
r-h+m —7 — 152 + 1722 + 132> — 52* + 82°
—425 — 72" — 142® + 202° — 2210
e=h-r+m(modq) | 25+ 17z + 172> + 132> + 272" + 82°
+2825 + 2527 + 182% + 202° + 30210

Figure 2.12: Example of NTRUEncrypt Encryption
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Obtaining an encrypted polynomial e is the first operation required
for decryption. Next, the polynomial convolution of private polynomial
f and e within modulus ¢ produces polynomial a. Polynomial a is
then reduced within modulus p, producing polynomial b. Finally, the
plaintext message c is calculated ¢ = fp-b(modp) where f, is the private
polynomial f inverse modulo p. An illustrated example in figure 2.13

describes this process of decryption.

Parameters N=11,q=32,p =3
e 25+ 17z + 172* + 132° + 272" + 82°
+2825 4 2527 4 1828 4 202° + 30210
f 1ot — 12° — 125 + 127 4 12% — 12° + 1210
Ip 2+ 2x + 227 + 223 + 22 + 225 4+ 227 + 12® + 12°
a=f-e(modq) | —3+4x— 12 —22* + 32° — 3% + 72 — 12!
b= a (modp) 0,1,-1,0,1,0,0,0,0,1, —1
c¢= fp-b(modp) 1+ 122 + 12° + 125

Figure 2.13: Example of NTRUEncrypt Decryption

The  NTRUOpenSourceProject  provides an  open  source
implementation of NTRUEncrypt, discussed in section 3.6.1. A
key feature of NTRUOpenSourceProject is the definition of usable
key parameters. These key parameters use a naming convention:
eesd01lepl, where 401 is the N parameter. Both the parameter ¢ and
p are hard-coded for every key parameter where p=38 and ¢=20/8.

The SVP, which forms the security basis of NTRUEncrypt, is
considered a non-deterministic polynomial-time hard (NP-hard)
problem. Even with approaches published by Lenstra, Lenstra &
Lovasz (1982), a quantum computer would not reduce the security
of the algorithm. Thus NTRUEncrypt is one algorithm of several that
researchers are investigating for use after quantum computers become

widespread.

Part of the reason for the slower uptake of any cryptographic
algorithm in information security is that “new” does not always mean
“better”. Standards require many years of academic research before
they will be considered fit for use. Approval of expert research is a
defensive mechanism to prevent non-experts from utilising a “new” and
“improved” security algorithm, only to have an expert quickly defeat it
months later. Due to this approach, NTRUEncrypt is still considered
relatively new and only continued research by information security

researchers will prove its soundness.
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Another criticism of NTRUEncrypt is the fact that the company
Security Innovation Inc hold a patent for the NTRUEncrypt
cryptosystem. While they do provide an open source a version
written in both Java and C, previous experience of patents around
cryptographic algorithms creates difficulties for information security
experts, and thus they are less likely to research and implement
these algorithms. An example of this is the patenting of certain ECC
curves which caused some issues for those wishing to implement the
cryptographic algorithm. However, it is important to understand that
even with a patent, the underlying security comes from a mathematical

problem and shouldn’t therefore limit research.

Investigating research into accelerating NTRUEncrypt Hermans,
Vercauteren & Preneel (2010) compared NTRUEncrypt, RSA, and
ECC and accelerated each algorithm using CUDA. Their research
showed NTRUEncrypt was up to 1300 times faster than 2048-bit
RSA. Hermans et al. research experiment additionally found that
NTRUEncrypt, with parameters (1171, 2048, 3), was up to 117 times
faster at encryption operations than ECC using the NIST-224 curve.
This result is a considerable improvement as, during Hermans et al.
(2010) experiment, they operated NTRUEncrypt at a considerably
higher security level than RSA 2048-bit and ECC NIST-224.

2.3 Hardware
2.3.1 Central Processing Unit (CPU)

Oancea, Andrei & Dragoescu (2014) discuss the development of parallel
computing, and the history of the movement towards General Purpose
GPU (GPGPU) programming. The number of transistors and the clock
frequency of processors has increased over time, (Oancea et al., 2014)
compare the Intel 8086 with 29,000 transistors to the Intel Core i7-920
with 731,000,000 transistors. This process has continued to accelerate
since 2014, and a modern Intel Broadwell microarchitecture now has
approximately 1,900,000,000 transistors (Kowaliski, 2015), more than
2.5 times more transistors in the same area. This acceleration comes
at the cost of increased heat generation and therefore thermal design
becomes a limiting factor. To somewhat alleviate this issue, processor
designers can introduce multiple cores. By 2015 it was common to
have a modern computer with a dual core processor, with some being
quad core with high-end servers and workstations being up to 12

cores per processor. While these significant increases are important,
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computing power requirements however, have increased at a faster rate

and software now demands significantly higher performance.

2.3.2 Graphics Processing Unit (GPU)

Nvidia GPUs take advantage of the power of a Single Instruction,
Multiple Data (SIMD) stream architecture. Classified by Flynn in 1972,
SIMD architecture and many others are used throughout computing.
The advantage of SIMD over Single Instruction, Single Data (SISD) is
the natural parallelism that it provides, allowing larger amounts of data
to be processed simultaneously. While SIMD is the general architecture,
Nvidia has slight differences in design and implement what they call
Streaming Multiprocessors (SM). The difference between Nvidia’s SMs,
compared to other SIMDs, is their design. Nvidia has attempted to
reduce complexity for developers, allowing them to take advantage
of hardware to accelerate different algorithms, thus removing some of
the control over low-level SIMD controls. At the same time, Nvidia’s
system is highly optimised to maximise the use of each SM, improving
efficiency. Nvidia concentrates on allowing code to be deployed from
one system to another without the need to rewrite accelerated code.
Yang & Goodman (2007) explain that the increased use of GPGPU
programming is due in large part to advances in the performance of
GPUs over CPUs, as well as industry leaders, such as Nvidia, creating

easier development platforms such as CUDA.
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GPU Accelerator

Optimized for Few Optimized for Many
Serial Tasks Parallel Tasks

Figure 2.14: CPU vs GPU(Nvidia, 2008)

As illustrated in figure 2.14, the difference between a CPU and a
GPU is at the hardware design level. A CPU consists of many cores,
called arithmetic units that perform a series of calculations. While a
single CPU can contain many arithmetic units, they have a control bus
for communication, and thus do not operate directly in parallel. The
instruction set of a CPU is significantly larger than a GPU, as it must
be able to perform a larger set of variable calculations. A GPU is made
up of many floating-point units. Dedicated units perform addition,
subtraction and multiplication with floating point numbers. Due to the
extremely specific application, these circuits can be highly optimised
and when multiple units are combined, produce SIMD architecture.
This dedicated use case is extremely useful for processing large datasets,

or algorithms that perform well when parallelised.

Harrison & Waldron (2009) utilised an Nvidia 8300 GTX for their
research. This model was the latest that allowed the use of DirectX
10, CUDA and 32-bit integer processing. Harrison & Waldron (2009)
noted the need to take into account different memory architectures to
improve performance. Each SM has a small amount of fast local storage,
however, the bulk of memory is off-chip, making transfers comparably

slower.
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2.4 Software
2.4.1 Accelerated Programming

There is a constant battle between program efficiency and hardware
performance. Traditionally it was inexpensive to develop more efficient
algorithms, than to assign more processing power to a particular
problem. This efficiency cost has alleviated for most basic tasks;
however the requirements of computers to perform actions quickly has
increased. This requirement is demonstrated by the differences between
Nielsen (1994) and Ritter, Kempter & Werner (2015)’s studies. Nielsen
(1994) suggests that 0.1 seconds is required for an application to feel
instantaneous, while 1.0 second is required not to interrupt a user’s
flow. In contrast, Ritter, Kempter & Werner (2015) study, showed
the highest level of acceptable latency was around 170 milliseconds
for dragging tasks, and 300 milliseconds for low attention tasks such
as tapping a button on a touchscreen. The problem is that data sets
for more advanced calculations have increased at a rate greater than
that of hardware or software efficiency. There are three routes that
developers rely on: improve the user experience, improve the algorithms

or functions used and improved processing resources.

A significant amount of research is undertaken every year, by both
academia and industry, to improve the efficiency of applications. Since
the inception of the CUDA platform by Nvidia, as well as OpenCL
and OpenGL by the Khronos Working Group, it has become easier
for software developers to implement, and a considerable number of
programs now take advantage of this increase in computing capability.
For example, software such as the latest Adobe Photoshop CC 2015,
takes advantage of this technology to improve image manipulation.
This same technology can be applied to research software, such as
MATLAB, to allow for faster and more in-depth study by researchers.
CUDA however, is only supported by Nvidia hardware and this limits
its usefulness as many devices do not possess their hardware, especially

mobile devices. CUDA is discussed further in section 2.4.2.

Creating new algorithms or improving the efficiency of existing
algorithms can considerably improve the processing capabilities. An
example is a dedicated hardware chip for video decoding built into
modern systems. The implementation of this dedicated chip is more
efficient and therefore requires less power than a CPU. Unfortunately,

this chip will only work for a particular video codec, and due to its
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speciality would not accelerate any other systems or processes on a

device.

This can create complexities, for both developers and hardware
designers to include low-level processing capabilities that will be utilised
and as mentioned, many accelerated techniques are narrowly focused
as the algorithm is tailor made to perform one function in the most

efficient way possible.

Amdahl (1967) presents what is known as Amdahl’s Law, which is used
to find the maximum expected improvement to a system when only part
of it is improved. This law is useful for parallel computing to identify
the maximum increase in speed an algorithm may be able to achieve
with multiple processors. Applying this law to cryptography algorithms
would allow the identification of the minimum possible amount of time

for execution, and therefore the algorithms efficiency.

2.4.2 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is described by Nvidia
(2008) as a parallel programming model and software environment,
with ease of use and low learning curve in mind. Harrison & Waldron
(2009) were the first to be able to take advantage of this environment,
as it was not available prior to 2008. It allows software developers to use
a set of C extensions to abstract otherwise complicated hardware calls,
thus allowing developers to take advantage of the increased processing
power of an Nvidia GPU. A major criticism of CUDA is it is only able
to run on Nvidia hardware. While Nvidia is considered an industry
leader, this condition means many devices cannot take advantage of
CUDA accelerated software.

2.4.3 Open Computing Language (OpenCL)

To overcome Nvidia’s limitation on CUDA, the Open Computing
Language (OpenCL) framework was developed and published (2008)
through the non-profit company Khronos Group. This openness allows
many technology industry leaders to design and implement this
framework on their devices. OpenCL considers a system as many
computing units, thus devices other than GPUs can also process
algorithms. OpenCL allows for greater portability than CUDA, as most
of Nvidia’s GPUs can also run OpenCL; however portability comes at

the cost of performance.
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2.4.4 Open Graphics Library (OpenGL) and the OpenGL
Rendering Pipeline

Introduced in 1992, OpenGL is designed to make it easier for developers
to create 2D and 3D graphics applications on multiple device platforms.
Woo, Neider, Davis & Shreiner (1999) describe the essential operations
of OpenGL. Geometric data is required to construct shapes; various
shaders are then executed to generate colour, position and other
attributes. Next shaders convert into fragments, through a process
called rasterization. Finally, each fragment can run a fragment shader
to determine final attributes. An example illustration, in figure 2.15,
of the OpenGL pipeline process as described by Woo, Neider, Davis &
Shreiner (1999).

Vertex Vertex
Data Shader

Tessellation Tessellation
2 Geometry
Control Evaluation Shader
Shader Shader

Fragment
Shader

Figure 2.15: OpenGL Pipeline (Woo et al., 1999)

24.5 C

Considered the foundation of modern computer programming,
developed in the early 1970’s by Ritchie. C is currently in the top 10
most used programming languages according to Borges, Valente, Hora
& Coelho (2015). Historically tied to the development and release of
the Unix operating system, the operating system development moved
from assembly to C. Popularity for the C programming language grew

due to its efficiency and cross-platform functionality. Development of
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the C language still continues to this day, and has influenced many

other programming languages.

C is extremely efficient. “Comparing Java vs. C/C++ Efficiency
Differences to Interpersonal Differences” (n.d.) investigate the
performance difference between Java and C/C++ on 40 different
implementations of the same program. “Comparing Java vs. C/C++
Efficiency Differences to Interpersonal Differences” found that Java
required 2-3 times more memory and three times more runtime than the
C or C++ implementations. Considering the hardware available in the
early 1970’s, it was especially important for programming languages
to be more efficient with resources. C is a compiled language, and
thus optimisation occurs during program compilation. C’s compilers
are mature and efficient, and many powerful compilers exist for various
systems and hardware configurations. An advantage of C is its ability
to utilise memory pointers. Operating on variables in place, rather
than being copied, which allows for more efficient memory control.
Memory pointers have produced efficient data structures, such as
arrays. Compared to other programming languages available around
1970, C was also the first to provide a platform for developing graphical
interfaces. The source code can be transferred to other systems and
compiled specifically for each system using their compiler. While
possible, for C program compilation for multiple different architectures,

it cannot achieve the same level of portability as Java.

Although not as complex linguistically or syntactically as the assembly
programming language, C is considered a difficult language to learn,
when compared to modern languages such as Java or Python. This
complexity can cause developers to mishandle pointers and memory
which can produce problems, such as crashes or memory leaks. Some
compilers can attempt to fix or warn the developer about these issues,
while other compilers might mask certain problems or cause them to
become worse. Perhaps the reason for movement away from C is due
to C not being an object oriented programming language and therefore
does not benefit from the object oriented design. Due to the age of
C, there are multiple versions: ANSI, C99, C11. Some compilers and
architectures have additional custom versions. CUDA specifically is an
extension of C++ and thus will not compile and run on a machine
that does not have the CUDA environment. While this was a better
alternative for cross-platform development in the early 1970’s many
alternative modern programming languages now handle this cross-

platform development in a simpler way.
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2.4.6 JavaScript

According to Borges, Valente, Hora & Coelho (2015), JavaScript is the
language with the highest number of popular systems. Borges, Valente,
Hora & Coelho’s research found JavaScript is responsible for more
than one-third of the popular applications on GitHub. Herhut et al.
(2013) describe JavaScript as the most popular language on the web,
with the ability to run on many platforms. Flanagan (2011) points out
that all modern browsers include JavaScript interpreters, this, in his
opinion, makes JavaScript the most ubiquitous programming language
in history. One of the primary drivers towards the use of JavaScript
is the emergence of HTML5. According to Flanagan, this has changed
JavaScript from a simple scripting language into an efficient general

purpose programming language.

As mentioned by Flanagan, all modern browsers have JavaScript
interpreters. Recent research by Gartner (2015) suggests almost a
doubling of the number of Internet-connected devices every two years.
This research would indicate an increase of expected interactivity
between different systems. Developers, therefore, search for platforms
that allow them to code the least, while accessing the greatest number
of users for their software. Java and other similar programming
languages follow a ‘write once, run everywhere’ approach. However, the
reliance on a single company or organisation to provide an interpreter
for every system makes this difficult on closed source systems. Most
modern computer systems provide a browser, and all modern browsers
support JavaScript. The end user does not have to install anything to

utilise JavaScript based applications through the browser.

Nicholls (2012) discussed an early attempt at implementing JavaScript
on a GPU. Nicholls’s creation of LateralJS was an attempt to allow
JavaScript to take advantage of hardware accelerated operations and
data parallelization on GPUs. Nicholls chose OpenCL over CUDA, as it
would run on many different hardware configurations. The benchmark
that Nicholls (2012) performed was a small loop of FLOPs on an
ATI Radeon 6770m GPU, Intel Core i7 CPU CL and within the V8
JavaScript engine purely on the Intel Core i7 CPU. Unfortunately,
the experiment was unsuccessful in demonstrating acceleration using
a GPU as illustrated in figure 2.16.
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GPU CL LPU CL V8

ATl Radeon 6770m Intel Core i7 4x2.4Chz Intel Core i7 4x2.4Chz

116.571533ms | 0.226007ms 0.090664ms

Figure 2.16: Execution Time (Nicholls, 2012)

JavaScript executes on the client side when implemented through
a browser. Client side execution means the web server can transfer
some processing requirements to the end user’s computer or device.
JavaScript allows for manipulating the graphical interface for the end
user, of which the client has more information about their system.
JavaScript does not require installation and JavaScript code is minimal
or can be minimised. Compared to other programming languages
JavaScript is considered an easy language to learn because it is

dynamic, weakly typed and is executed by any modern browser.

JavaScript is an interpreted language, and therefore developers do
not have access to lower level system controls, and must rely on an
interface. JavaScript receives some criticism for being dynamic and
weakly typed, resulting in a considerable number of error checking
and parsing, especially of user input data. As JavaScript’s execution
is client side, there is no guarantee that the client is either genuine
or malicious. Malicious JavaScript can also be passed from the server
to the client to execute. Similar to this security issue, the reliance
on the end user and their system to interpret JavaScript can cause
problems. Different systems can handle execution differently, especially
bleeding edge applications. Constant sanitisation of end user input is
required to ensure it does not contain errors or is a malicious attack. As
of 2015, the majority of multi-core systems cannot take advantage of
multiple cores as JavaScript is still single-threaded. The remedy for this
is with web workers and compiled web code, however neither have been

standardised, and web workers are not compatible with all browsers.
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2.4.7 WebGL

Until recently, it has been difficult to create modern cross-platform
programs that utilise hardware acceleration, given the complexity of
accelerated programming. The ubiquity of JavaScript meant a solution
was sought to enable hardware acceleration in a modern browser.
In March 2013, WebGL became a standard and since then it has
been integrated into most modern desktop and mobile browsers. The
advantage of WebGL is that it provides a Javascript API for 3D
and 2D graphics processing without the requirement to download
extra software. The obvious advantage is access to the GPU through

JavaScript, as this was not previously available to developers.

2.4.8 Three.js

While WebGL gives access to the GPU via JavaScript; it does not,
however, make it easier for developers to write applications which
take advantage of the hardware access. Three.JS is a library that
makes WebGL easy to use. Three.JS wraps many key OpenGL, and
WebGL features in an easy to use library, while still allowing access
to lower levels such as fragment shaders, vertex shaders, and multipass

rendering.

2.5 GPU Cryptography

Cook & Keromytis (2006) first investigated the use of GPUs for
cryptography by implementing the AES encryption standard through
OpenGL. While their research provided promising results, it ran into
many problems such as the lack of modular arithmetic, unsigned
integers, branching and large integers. These limitations meant
that Cook & Keromytis could only implement simple symmetric

cryptographic algorithms on a GPU.

Yang & Goodman (2007) furthered Cook & Keromytis’s research by
taking two more modern GPUs, the AMD HD 2900 XT and AMD
X1950 XTX. Due to the advancement in technology in only a year,
Yang & Goodman were able to produce a positive result, managing up
to 16 times faster execution of AES. While Yang & Goodman overcame
some of the issues faced by Cook & Keromytis’s research, many still
remained. The GPU hardware available in 2007 provided integers and
branching although it still did not provide support for large integers,
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hence the continued concentration on symmetric encryption such as
DES and AES.

At a similar time, Harrison & Waldron (2007) investigation produced
similar results as Yang & Goodman They, however, utilised a Nvidia
GeForce 7900GT GPU and their conclusion was that the available GPU
hardware was still too limited, and only bulk encryption and decryption
was useful. One suggestion made was looking to future work, utilising
the new Nvidia G80 architecture with CUDA.

Harrison & Waldron (2009) were able to take advantage of the new
development environment provided by the Nvidia CUDA API. As
noted in their previous research published in 2007, this environment
was not available prior to 2008. Harrison & Waldron provide some
of the first research investigating asymmetric cryptography executed
using a GPU. Their research demonstrates 1024-bit RSA decryption
on a GPU operating four times faster than a similar implementation
on a CPU. Not only did this demonstrate an impressive acceleration of
RSA, they additionally demonstrated higher throughput and decreased
latency. Limitations on large numbers still existed, however Harrison &
Waldron demonstrated, through previous research, that this restriction
would most likely cease to be a problem in the next generation of GPU

hardware.

The research Harrison & Waldron (2010) investigated accelerated
cryptography at the operating system level. Operating system level
cryptography provides many advantages over previously researched
cryptography, as it means a developer no longer has to include special
accelerated cryptography libraries to use this feature. However, this
approach, and others before it, are limited to extremely specific use
cases and hardware architectures. While Harrison & Waldron (2009)
and Harrison & Waldron (2010) saw great improvements to acceleration
from the utilisation of the CUDA API, the requirement that a system
must have a Nvidia GPU limits its overall use. However, all previous
research from 2006 to 2010 was written in C or C++, and this requires
performing the compilation of each program or library for each system

architecture.

Nicholls (2012) research attempted to implement an OpenCL interface
via JavaScript. This early attempt at implementing JavaScript on a
GPU was unsuccessful. However since 2012 many previously discussed
libraries, technologies, and standards have advanced and with the
current software and hardware convergence on this topic should

finally provide a strong foundation for device agnostic accelerated
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cryptography.

In sections 2.1 to 2.2, an examination of what cryptography is, the
development of different cryptographic algorithms, and the current
state of modern cryptography. In sections 2.3 to 2.4, a discussion was
made of the currently available hardware and software. All discussed
research should establish an understanding of the current state
of cryptography in information security. Cryptography represents a
computation problem, increased security requires increased processing
capability. Thus algorithms such as Diffie-Hellman, RSA, and ECC are
considerably slow and inefficient compared to NTRUEncrypt. Given the
successful research into the area of NTRUEncrypt acceleration using a

GPU, this speedup may be able to be increased further.

Moore’s law and the pending threat of quantum computers, require
further research into current alternatives, and while currently used
cryptographic algorithms are sufficient at the moment they are
inefficient on mobile platforms. Previous researchers in the area of
accelerated cryptography were constrained by existing hardware and

software, of which these problems no longer exist.
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3 Research Design

3.1 Aims

This research aims to:

e Improve overall cryptographic research and knowledge.

Increase the body of knowledge in information security.

Provide a research platform for other accelerated cryptographic algorithms.

Create more efficient security options for mobile and low power systems.

Investigate quantum secure algorithms.

Investigate the growing use of JavaScript and provide some insight into its

validity for cryptography.

3.2 Methodology

The experimental research design allows for control over the
variables defined in the experiment, allowing more accurate results
to determine relationships between sets of data. This approach,
however, requires knowledge of all of the possible variables in a
system for experimentation. For most experiments, this is infeasible.
Some variables are unknown at the time of experiment design.
Known variables are either controlled, variable, or insignificant.
The experiment designer must be cautious not to dismiss variables
as insignificant when they may appear to be. The advantage of
this approach is that effective experiment design should make
the experiment repeatable and results comparable to others. The
data is first-hand, direct observation allows for a reduction in
miscommunicated or misinterpreted data. March & Smith (1995)
discuss two dimensions for research in information technology, a broad
research design, and broad type of outputs. The first dimension
concentrates on the design and research activities: build, evaluate,
theorise, and justify. While the first dimension takes its strengths
from natural science research, the second is derived specifically for
information technology, concentrating on outputs: representational
constructs, models, methods, and instantiations. The research
experiment presented in this paper covers both of these dimensions
in order to provide validation for the proposed hypothesis and increase

human knowledge in the area of information security.
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3.3 Questions

The questions that will be answered from this research are as follows:

1. Can in-browser cryptography be accelerated using a GPU?

2. Does increasing the bit size of a cryptographic algorithm have a positive linear

correlation to processing time and security?

3. Does the programming language that a cryptographic algorithm is implemented

in have an effect on processing time?

4. Does measuring the processing time of cryptographic algorithms provide an

accurate means of comparison?

5. Is a GPU faster at performing public key encryption than a CPU

implementation of the same algorithm?

6. Is a GPU faster at performing private key decryption than a CPU

implementation of the same algorithm?
7. What is the impact of latency on a cryptographic algorithm?

8. Does a GPU implementation of a cryptographic algorithm increase throughput

compared to a CPU implementation?

3.4 Hypothesis
Question 1

Can in-browser cryptography be accelerated using a GPU?
Previous research, discussed in section 2.5 of this research, indicates
that accelerating a cryptographic algorithm is possible. Based on
previous research utilising OpenGL and cryptographic acceleration this
research will achieve a similarly successful result. The advancement of
the JavaScript language and the libraries available provide evidence

that this examination and experiment will produce a positive result.

Question 2

Does increasing the bit size of a cryptographic algorithm have
a positive linear correlation to processing time and security?
Many cryptographic algorithms have a positive exponential correlation
to the bit size. Algorithms such as RSA have been studied and
demonstrate cubic growth for time complexity. Increasing the bit size
of a cryptographic algorithm should enhance security, although not

proportionally and this proportion differs between various algorithms.
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Question 3

Does the programming language of an implemented
cryptographic algorithm have an effect on processing time?
Compiled languages can adapt for the intended system or architecture.
During execution languages such as C do not require the overhead of
interpretation, unlike a language such as JavaScript. However given
recent advancements in increasing JavaScript performance, the results
of this experiment should show that JavaScript is not significantly
slower than C, C++, or Java.

Question 4

Does measuring the processing time of cryptographic

algorithms provide an accurate means of comparison?

Measuring the time required to solve a problem allows an understanding
of the computational complexity of an algorithm. In this research
algorithms that provide the highest security in exchange for the lowest
complexity are considered the most efficient. Measuring the processing
time should provide an accurate real world benchmark for comparison

between other cryptographic algorithms.

Question 5

Is a GPU faster at performing public key encryption than
a CPU implementation of the same algorithm? Based on
previous research, as discussed in section 2.5, the results from desktop
systems should only see acceleration at the highest bit size and data
throughput. However, lower bit size values will be similar or slightly
slower in speed than a CPU implementation. Tested mobile devices
should receive the greatest acceleration of encryption as the mobile
systems specified in section 3.6.2 have more powerful GPUs compared
to their CPU.

Question 6

Is a GPU faster at performing private key decryption
than a CPU implementation of the same algorithm? Some
acceleration should be observed however only at the higher end of
bit size and data throughput. Similar to the encryption hypothesis,

however, for researched cryptographic algorithms, the decryption
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operation appears to be more computationally intensive compared to
encryption. Therefore a greater level of acceleration in decryption is

expected.

Question 7

What is the impact of latency on a cryptographic algorithm?
Due to the architecture of all systems listed in section 3.6.2, the latency
between the CPU and GPU should be greater between the CPU and
RAM. Jang, Han, Han, Moon & Park (2011) produced results showing
up to 15 times increased latency for GPU operations compared to CPU.
For GPU operations this latency will be the largest portion of time
taken by encryption or decryption. Latency should not be an issue for

CPU bound operations.

Question 8

Does a GPU implementation of a cryptographic algorithm
increase throughput compared to a CPU implementation?
Based on the research discussed in section 2.5, the output of
this research should show an increase in throughput from a GPU

implementation compared to a CPU implementation.

3.5 Phases

The aim of this research is to answer the research questions from section
3.3. The research consists of four major phases, with a total of 13 minor
phases. The major phases are research, development, experiment, and

analysis and discussion.

3.5.1 Research

Initial Research This research is required to find and test various
libraries and options for development and examination. The first
stage is to examine research that already exists and see what and
how previous studies may have implemented their solutions. Next,
a selection of cryptographic algorithms is compared against previous
investigations, future potential and previous success of acceleration.
Finally, a selection of implementation strategies and libraries is briefly

tested to ensure successful performance of the research.
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Pilot Test The pilot test demonstrates if algorithms could be
accurately measured across different systems and the comparisons
between the two matched previous research and knowledge about how

the algorithms operate.

3.5.2 Development

At the time of this research, there is no benchmark software for
academic research for NTRUEncrypt. Development of many other
benchmarks was required to answer the research questions. A number
of benchmarks are needed to establish a baseline between compiled
code executed on each device, interpreted code and accelerated code.
This approach allowed the comparison of benchmarks previously used
by cryptographic researchers on to the JavaScript, and accelerated

JavaScript code implemented specifically for this research.

Android Benchmark The development of an Android application
allows collection of results from the mobile devices listed in section
3.6.2. The application utilises the built-in encryption libraries available
to Java and Android as well as the open source version of
NTRUEncrypt.

Java Benchmark Development of a simple command-line version
running the same classes as the Android application to provide
experimental testing benchmark results for all Desktop, Server and

Laptop hardware listed in section 3.6.2.

JavaScript Benchmark Development of a JavaScript benchmark
to provide a clear comparison between compiled implementations of

cryptographic algorithms and interpreted implementations.

NTRUEncrypt.js Development of a JavaScript version of
NTRUEncrypt. The open source Java version provided a basis

for which to implement the algorithm.

NTRUEncrypt-GPU.js Extension of NTRUEncrypt.js except
using the Three.js library to place some of the computational load onto

the GPU of the system executing the code.
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3.5.3 Experiment

Crypto-+-+ is used to establish a comparison to other researchers’ efforts

at accelerating cryptography.

Java provides a comparison of a compiled language. A desktop
and Android version would be similar to minimise variables in
implementation differences. NTRUEncrypt currently has an open

source version written in Java.

The JavaScript experiment is executed on hardware systems that
support a modern browser. The experiment includes RSA and ECC
from a well known cryptographic JavaScript library as well as
NTRUEncrypt entirely developed for this research. Finally, the testing
of an accelerated JavaScript NTRUEncrypt provides the data required

to answer the key questions of this research.

3.5.4 Analysis and Discussion

Data Gathering Gathering data created by the experiments and

organising it in such a way as to be useful for later analysis.

Data Analysis Analysis of data, creating comparisons, looking for
trends. Graphing data related to answering research questions as well

as interesting or unexplained results.

Discussion The discussion surrounding findings from the
experiments. Allows the discussion of obtained results, answers

the research questions and either supports or disproves the hypothesis.

Conclusions Conclusions are drawn from results directly related
to the research investigation, and this provides a statement of facts
obtained through research and experimentation.

3.6 Experimental Setup

3.6.1 Software

Crypto-++ (Version 5.6.1)

Crypto+-+ is an open source library that implements a large number

of cryptographic algorithms. Initially released in 1995 it has provided
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the basis for academic research, this makes it especially useful for
comparison of past and future research in cryptography. The version
of Crypto++ that was installed was only able to provide relevant
benchmarks for AES.

OpenSSL (Version 1.0.1f 6 Jan 2014)

OpenSSL, initially founded in 1998, is a library of functions to allows
communication using SSL or TLS protocols. It is widely used on Linux
operating systems and provides some basic cryptographic functions for

the operating system.

Android Studio (Version 1.3.2)

Android Studio is the official IDE for Android application development.
Utilised to develop a mobile application to provide performance
data into the difference between native cryptography and JavaScript.
Base Java security libraries provide RSA, ECC, AES, and Hashing
algorithms to compare to both JavaScript and GPU accelerated
cryptographic algorithms.

AsmCrypto (Version 11/12/2015)

Minified JavaScript was downloaded from GitHub. A performance
JavaScript implementation of cryptographic algorithms. It was
developed in response to a growing demand for cryptographic
algorithms in JavaScript and a requirement for a focus on performance.
Optimisations made for this library demonstrate increases up to 40%
faster than other cryptographic libraries. For the focus of this research,
it only supports AES and RSA, with plans to implement ECC support

in the future.

Web Cryptography API

The Web Cryptography API, also known as WebCrypto, is an
interface for JavaScript. It allows operating system agnostic access
to implementations of cryptographic algorithms, without exposing
the data directly to JavaScript. Encryption algorithms available are
dependent on the browser and operating system used. WebCrypto was
able to provide AES, RSA, and ECC for all systems tested.
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Firefox (Desktop Version 45.0.1) (Mobile Version 45.0.1)

Firefox is a modern web browser built by the Mozilla Foundation. It
provides emphasis on open standards, security, extensions and internet

communities.

Chrome (Desktop Version 49.0.2623.110) (Mobile Version
39.0.2171.93)

Chrome is another modern web browser developed by Google.
According to StatCounter (2016), it is the most used browser with
47.16% market share.

NTRUOpenSourceProject ntru-crypto (Version 01/02/2016)

Available from GitHub, NTRUOpenSourceProject provides an open
source NTRUEncrypt cryptographic algorithm and reference code for

C and Java programming languages.

Three.js (Version T67)

Described as a lightweight 3D library, the goal of Three.js is to wrap
functions of WebGL and make it easier for developers. Available from
GitHub, this library is constantly receiving updates to increase the

number of features and stability.

3.6.2 Hardware

Table 3.1: List of Mobile Hardware used for Experiments

Samsung ASUS Samsung Nvidia
Galaxy S2 Zenfone 2 Tab 10.1 TK1
CPU Dual-Core Quad-Core Dual-Core Quad-Core
Cortex-A9 Atom 73580 Cortex-A9 Cortex-A15
GPU | Mali-400 GPU | PowerVR G6430 | Nvidia Tegra 2 | Nvidia Kepler
T20 ULP Geforce
RAM 1 GB 4 GB 1 GB 2 GB
(O}) Android Android Android Ubuntu
4.1.2 5.0 3.1 14.04 LTS
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Table 3.2: List of Desktop and Laptop Hardware used for Experiments

Custom HP Toshiba
Desktop Desktop Thinkpad
CPU Quad-Core Quad-Core Dual-Core
Intel i5 3570k Intel i5 4570 Intel Core 2 Duo T9400
GPU | Nvidia 660 GTX | AMD Radeon R7 360 | Intel GMA 4500MHD
RAM 16 GB 16 GB 2 GB
0OS Windows Ubuntu Lubuntu
10 14.04 LTS 14.04 LTS

Table 3.3: List of Server Hardware used for Experiments

Pohutukawa Tesla

Server Server
CPU Hex-Core with HT Hex-Core with HT
Intel Xeon X5660 Intel Xeon E5-2620

GPU | Nvidia Quadro 6000 GPU | Nvidia Tesla K40m GPU
GPU2 | Nvidia Tesla C2070 GPU | Nvidia Tesla K40m GPU

RAM 24 GB 32 GB
OS Ubuntu Server Ubuntu Server
16.04 LTS 14.04 LTS

3.6.3 Variables

Table 3.4: Crypto++ Benchmark Variables

Independent Variables Dependent Variables
Operating System Algorithm Megabytes per Second
CPU Architecture Algorithm Operations per Millisecond

Number of CPU Cores
CPU Clock Rate
Algorithm

Table 3.5: Android and Java Benchmark Variables

Independent Variables Dependent Variables
Operating System Algorithm Megabytes per Second
CPU Architecture Algorithm Operations per Millisecond

Number of CPU Cores
CPU Clock Rate
Algorithm
Java Version
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Table 3.6:

JavaScript Benchmark Variables

Independent Variables

Dependent Variables

Operating System

Algorithm Megabytes per Second

CPU Architecture

Algorithm Operations per Millisecond

Number of CPU Cores

CPU Clock Rate

Algorithm

Browser

Table 3.7: NTRUEncrypt.js Benchmark Variables

Independent Variables

Dependent Variables

Operating System

Algorithm Megabytes per Second

CPU Architecture

NTRUEncrypt Encryption Polynomial Convolution

Number of CPU Cores

NTRUEncrypt Encryption Polynomial Addition

CPU Clock Rate

NTRUEncrypt Decryption Polynomial Convolution 1

Algorithm

NTRUEncrypt Decryption Polynomial Convolution 2

Browser

Algorithm Operations per Millisecond

Table 3.8: NTRUEncrypt-GPU.js Benchmark Variables

Independent Variables

Dependent Variables

Operating System

Algorithm Megabytes per Second

CPU Architecture

NTRUEncrypt Encryption Polynomial Convolution

Number of CPU Cores

NTRUEncrypt Encryption Polynomial Addition

CPU Clock Rate

NTRUEncrypt Decryption Polynomial Convolution 1

GPU Architecture

NTRUEncrypt Decryption Polynomial Convolution 2

Bus between CPU and GPU

Algorithm Operations per Millisecond

Algorithm

Browser

3.6.4 NTRUEncrypt

3.6.5 Pilot Test

To test the hypothesis of this research an investigation into the trend
of the difference in speed between AES, RSA, and ECC was required.
Two tests were executed on each the HP Elite Desktop and the Tesla
Server. The first test was to establish whether Crypto++ would operate

correctly, this was simply installed on both systems and then run using

the command: cryptest -

b

Examining the results in table 3.9 it is evident that AES, on the HP

Desktop, is significantly faster than on the Tesla Server. The reason for

this becomes clear when the command: cat /proc/cpuinfo | grep aes
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is executed displaying that the HP Elite Desktop has AES-NI enabled

while the Tesla Server does not.

Table 3.9: Crypto++ Pilot Test Results (in MB/s)

Algorithm HP Desktop | Tesla Server

AES/GCM 2115 248

AES/CCM 584 146
AES/CBC (128-bit key) 693 257
AES/CBC (192-bit key) 586 220
AES/CBC (256-bit key) 508 192

Executing: openssl speed rsa ecdh on each machine produced the
results shown in table 3.10. These results show that while the HP Elite
Desktop is slightly faster than the Tesla Server, it does not have the
same hardware acceleration available for RSA and ECDH. As expected
for both RSA and ECDH as the bit size is increased, the number
of operations per second decreases, due to the added computational
requirements. Taking into consideration equivalent security bit sizes,
as illustrated in table 3.11, comparing ECDH nistp192 and RSA-1024,
the HP Elite Desktop ECDH nistp192 is 1656.5 operations per second
slower than RSA -1024 Signing. However as the bit size of ECDH is
increased, using curve nistk571 which is equivalent to 15360 bit RSA
(which provides 3.75x more security than 4096 bit RSA), it can be
observed that ECDH nistk571 is 4.85 times faster than 4096 bit RSA
Signing.

Table 3.10: OpenSSL Pilot Test Results (in Operations per Second)

Algorithm HP Desktop | Tesla Server
RSA-512 Sign 22209.1 21236.4
RSA-512 Verify 278142.7 252911.1
RSA-1024 Sign 7154.8 6531.2
RSA-1024 Verify 102538.4 93238.0
RSA-2048 Sign 920.6 859.9
RSA-2048 Verify 31434.7 28045.3
RSA-4096 Sign 124.4 121.9
RSA-4096 Verify 8513.3 7622.0
ECDH secp160rl 6733.0 6034.3
ECDH nistp192 5498.3 5000.9
ECDH nistp224 9685.7 8763.8
ECDH nistp256 5438.7 4923.4
ECDH nistp384 1652.5 1460.0
ECDH nistp521 1473.1 1319.6
ECDH nistk571 602.9 541.1
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Table 3.11: Encryption Equivalent Bit Sizes
‘ Bits of Security ‘ AES ‘ ECC ‘ RSA ‘ NTRUEncrypt ‘

80 - 160 | 1024 449
112 - 224 | 2048 677
128 128 256 | 3072 761
192 192 384 | 7680 1087
256 256 521 | 15360 1499

These results demonstrate that the initial set up of benchmarking
software is correct, as well as providing a primary basis for comparison
of cryptographic algorithms and positive evidence for hypothesis posed

for this research.
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4 Research Implementation

4.1 Crypto+-+ Benchmark

Crypto+-+ was selected to provide a baseline examination between the
speed of different cryptographic algorithms. Both Yang & Goodman
(2007) and Harrison & Waldron (2009) have used Crypto+-+ in previous
cryptographic research, and the results gathered from this research
experiment allows comparisons between them. Since Crypto-+- is built
using the C language, its compiler requirements make it extremely
complicated to compile and execute on mobile platforms. Therefore,
for these experiments it was installed and executed on all desktop,

laptop or server hardware as defined in section 3.6.2.

First, the latest sourcecode for Crypto++ was downloaded and
compiled. Next, executing the command ./cryptest.exe produces an
HTML document with timings of each algorithm. For accuracy, this
benchmark was run several times to gather minimums, maximums, and
variance of each algorithm on every system. The results can be found

in section 5.1.

4.2 Android and Java Encryption Benchmark

Mobile platforms are not the designed target for Crypto++; thus
a Java cryptographic benchmark was developed to produce relevant
comparisons. The Java benchmark implementation used the standard
cryptographic libraries for Java, as well as the latest version of the
open source NTRUEncrypt available on GitHub. The Java benchmark
was then directly imported into both an Android and Java project.
The benchmark provides timing information for RSA, ECC, and
NTRUEncrypt.

The Android Application Package (APK) was copied to the Android
devices listed in section 3.6.2 and installed and executed. The Android
application simply measures the time taken for the execution of each
algorithm, and outputs this information to the screen via a multi-
line textbox. This data is then collected into tables for later analysis.
The Java version involved copying the compiled Java Archive (JAR)
file to the target system and executing it via the command java -jar
CryptoBenchmark.jar. The timing of each algorithm outputs to the

command line and is then entered into tables for later analysis.
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4.3 JavaScript Crypto Benchmark

Similar to the Android implementation, there are few benchmarked
numbers available in cryptographic research. To provide a basis for
comparison, two libraries were selected: AsmCrypto and WebCrypto.
These libraries were chosen to provide timings for hashing, AES, RSA
and ECC. Executing JavaScript cryptography initially encountered a
problem; the browser tab would close or crash. Crashing occurred due
to a feature within the browser that assumed the JavaScript had failed
if it took longer than 10 seconds. Several workarounds for this issue were
tested. The first option was to place the browser in debug mode, thus
disabling the timeout issue. However, the desktop version of Chrome
was the only browser that allowed, or correctly followed, this particular
feature. The second option was to run the tests on a separate thread,
however at the time of writing this research JavaScript does not provide
a way of running separate threads. There is, however, a limitation
of threading within JavaScript using Promises. Promises execute and
attempt to return and provide the expected result of the called function.
The timing tests follow using this second option of Promises. However,
some of the libraries and algorithms had a considerable variance, and
this may be the result of the Promises and is discussed in further detail

in section 5.3.

4.4 NTRUEncrypt.js

A current implementation of NTRUEncrypt in JavaScript did not
exist. The first portion of the experiment is to break apart
the NTRUEncrypt algorithm, understanding each part, and then
complete an implementation in JavaScript. Fortunately, many technical
documents exist as well as open source versions written in C and
Java, and these provided a strong foundation. This benchmark was

implemented over the course of several weeks.

The creation of NTRUEncrypt.js required no extra libraries. The
possibility of optimisations made in the future was maintained by not

implementing additional mathematical libraries.

JavaScript has no native way to represent polynomials. This was
an initial problem. However, as illustrated in figure 4.1, a solution
was to utilise arrays and the value’s position within the array. The
position in the array is viewed mathematically as the coefficient = power

component. Thus the first value is 2° and then next 2! and so on, for the
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length of the polynomial. The array representation makes polynomial
addition trivial, adding like terms consists of adding the two values at

the same point from two arrays.

Array Position 0,1, 2, 3, 4, 5]
JavaScript Array 3,4, 8, 3,6, 3]
Polynomial 3+ 4z + 8% + 323 + 62t + 32°

Figure 4.1: Example of Polynomial Representation in JavaScript

Multiplication of polynomials, also known as convolution, is different
for NTRUEncrypt as the polynomial is within a ring. Convolution
involves multiplying every value by every other value, performing
multiplication of coefficients with an addition of variables. The data
structure provides the difference where the position in the array is the
variable power. The ring causes variable powers to wrap around. For
example, using the values in figure 4.1 [3, 4, 8, 3, 6, 3] and performing
a convolution with another polynomial: [8, 7, 1, 3, 2, 4] taking the
value 6 (position 4) and multiplying it by 1 (position 2) results in 6z°.
However these polynomials are of length 6, therefore the result would
wrap around, and the output would be 62° as 6 mod6 = 0. Next,
each result is added to the value already stored in the output array at

that position. An illustrated example in figure 4.2 shows polynomial

convolution.
Polynomial Array 1 3,4, 8, 3,6, 3]
Polynomial Array 2 8,7, 1, 3, 2, 4]
24 21 3 6 12

9
16 32 28 4 12 8
16 32 64 56 8 24
9 6 12 24 21 3
6 18 12 24 48 42
21 3 9 6 12 24
Result 02, 112, 128, 123, 107, 113]

Convolution Values

Figure 4.2: Example of Polynomial Convolution

Some operations require the polynomial coefficients to operate within a
positive modulus. The operation takes the modulus of each coefficient,
and while that result is negative adds the modulus until the value
is positive. For example —19 mod5 = —4 this coefficient would then
become 1 modb5 as —4+5 = 1.

Two other operations required were dividing or multiplying a

polynomial by z. Effectively dividing the polynomial by z within a ring
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shifts all coefficients left and multiplying shifts all coefficients right,
both with wrap around. The example in figure 4.3 illustrates both the

multiplication and division operations.

Polynomial Array A | [3, 4, 8, 3, 6, 3]
Divide A by z [4, 8, 3,6, 3, 3]
Multiply A by z 3, 3, 4, 8, 3, 6]

Figure 4.3: Example of Polynomial Multiplication and Division by z

Key generation took up a large portion of development time, specifically
finding the inverse of a polynomial. The polynomial inverse operation
calculates fq and fp, which first requires the selection of the private
polynomial f. The algorithm is similar to the Euclidean algorithm,
although for polynomials, performing a large number of shifts and
swapping. Not all polynomials generated have inverses and thus
calculating the polynomial inverse will fail in this case and return null;

therefore another polynomial f must be selected.

The process of calculating the two inverse polynomials f, and f; is
performed by two separate algorithms. The first approach, as illustrated
in code in figure 4.4, calculates the inverse polynomial f in modulo
prime p. The second takes the output f, and reduces the computation

time by taking advantage of the fact that ¢ is a power of two.

28



function calculatePolynomialInverse (polyF, prime, invModArray) {
var k = 0; var b = []; var ¢ = []; tmpf = []; tmpg = [];

for(i = 0; i < N + 1; i++) {
b[i] = 0; c[i]l = 0; tmpf[i]l = 0; tmpgli] = 0;
}
b[0] = 1;
for(i = 0; i < N; i++) {
tmpf [i] = modPrime(f[i]l, prime);
}

tmpg [N] = 1; tmpgl[0] = (prime 1)
var degreeF = getDegree(polyF); var degreeG = N;
while (true) {
while ((tmpf [0] == 0) && (degreeF > 0))
{
degreeF ; tmpf = divideByX (tmpf) ;
c = multiplyByX(c); k++;
}
if (degreeF == 0
var f0Inv = invModArray [tmpf [0]];
if (f0Inv == 0) A
return null;
}
var shifty = N k; shifty = shifty % N;
if (shifty < N) {
shifty = shifty + N;
}
var inversePoly = [];
for(i = 0; i < N; i++) {
inversePoly [(i+shifty) % N] = modPrime (f0Inv * b[i],
prime) ;
}
return inversePoly;
}
if (degreeF < degreeG) {
var tmpSwapl; tmpSwapl = tmpf;
tmpf = tmpg; tmpg = tmpSwapl;
var tmpSwap2; tmpSwap2 = b;
b = c; ¢ = tmpSwap2;
var tmpSwap3; tmpSwap3 = degreeF;
degreeF = degreeG; degreeG = tmpSwap3;
}
var u = modPrime (tmpf [0] * invModArray[tmpg[0]], prime);
for(i = 0; i < tmpf.length; i++) A
tmpf [i] = modPrime ((tmpf [i] (u*xtmpgl[il)), prime);
}
for(i = 0; i < b.length; i++) {
b[i]l] = modPrime(b[il] (uxc[i]), prime);
}

Figure 4.4: NTRUEncrypt.js Polynomial Inverse Calculation Code Sample

Dissecting this first process took a significant amount of time. First,

the value N, which is the size of the polynomial to be inverted, must
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be known. Initialisation creates a counter value & = 0 and several
polynomials: b, ¢, f, g. The initialisation of polynomial b begins with
the first coefficient equal to 1 and the rest equal to 0. The polynomial f,
not to be confused with the private polynomial f, is equal to the input
polynomial with the coefficients modulo prime p. Finally, the N** value
of the polynomial g is set equal to 1 and the first value equal to the
prime p — 1.

The degree of f is required, df is equal to the power of the largest
coefficient value in polynomial f. Degree dg, which is the degree of
polynomial ¢ is always initialized to the size N. Now that initialization
is complete, the computation of the inverse can begin; the algorithm

can be broken down into four main components.

The first is a loop that performs many divisions of polynomial f by z, a
simple shift left operation; and a multiply polynomial ¢ by z operation,
a simple shift right operation. For every iteration of this loop, k is
incremented, and df is decremented. Once the condition of the first
loop is false, a check if df is equal to 0 is completed, then the operation

has finished. It will return the inverted polynomial if there is one.

The inverted polynomial check is performed first by taking the inverse
modulo p of the first coefficient in polynomial f; if this is equal to
0, then the polynomial provided does not have an inverse. If the
inverted polynomial check produces a value other than 0, a shift value
is calculated where

shift=N —k

and then readjusted within the polynomial ring N. Finally, the inverse
polynomial is calculated, using the shift value and setting the location
coefficient value equal to the inverse modulo p of f/0/ multiplied by
the value in polynomial b at position ¢ within the loop. The resulting
returned polynomial is the calculated inverse of the input polynomial.
If the value df is not yet equal to 0, then a check to see if df is less than
dg is performed. If it is, then many swaps are performed. Polynomials
f and ¢ swap, polynomials b and ¢ swap, and finally the values df and

dg swap.

The final portion of the loop calculates a value u where
u = (f[0] x invModPrime[g[0]]) mod p

This value is then used for all values of the polynomials f and b to

modify the coefficients and maintain them within the polynomial ring
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p. The loop continues until the condition of df = 0 is met. The difficulty
with this calculation is that it is intensive, and given the default
approach a polynomial, may not have an inverse. Therefore private
polynomial selection has to be repeated until a suitable polynomial is

obtained.

function calculatePowerPolynomiallnverse (polyA, invModArray)

{

consoleMessage ("Computing Polynomial Inverse fq...");
var tmpq = p 1;
var b = calculatePolynomiallInverse (polyA, 2, invModArray) ;

while (tmpq < q) {

tmpq *= tmpq;

var ¢ = modConvolution(f, b, tmpq);

c[0o] = 2 c[0];

if (c[0] < 0)

{
c[0] += tmpgq;

}

for(i = 1; i < b.length; i++) {
c[i]l = (tmpq c[il);

}
b = modConvolution(b, c, tmpq);
}
for(i = 0; i < b.length; i++)
{
b[il = bl[il % q;
}
return b;

}

Figure 4.5: NTRUEncrypt.js Polynomial Inverse Power of Two Calculation Code
Sample

The process of calculating the inverse polynomial power of two is
quicker, as the only requirement is to perform the first inverse
calculation for f,, that is private polynomial inverse modulo p. Having
already calculated f,, processing is halved by performing another series
of polynomial convolutions and shifts. The output of this function, code

illustrated in figure 4.5, provides f,.

A technical limitation outside the scope of this research is JavaScript’s
inability to provide a way to access a CSPRNG. Although APIs
have become available, there are many limitations as well as the
considerable debate as to whether these are PRNG or CSPRNG. This
research utilised the JavaScript API window.crypto.getRandomValues

for number generation; production use should replace this.
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During encryption and decryption the message polynomial m is
represented in binary (0, 1), while polynomials used throughout are
in ternary encoding when p = 3 (-1, 0, 1). The encryption result
requires particular care as the result must have positive coefficients
while decryption reveals the message in binary format. Polynomial
convolution in this implementation is performed in ternary encoding,
thus producing coefficients that are negative. The negative coefficient
outputs then require conversion. An example, in figure 4.6, further
illustrates the process of binary to ternary conversion during encryption

convolution and addition operations.

q 32
Polynomial h [7, 26, 1, 24, 28, 23, 19]
Polynomial r 1, -1, 0,0, 0,0, 0]
Polynomial m [0,1,1,0,0,0, 0]
Polynomial r - h [—12, 19, —25, 23, 4, —5, —4]
Polynomial e = (7 - h) + m [—12, 20, —24, 23, 4, —5, —4]
Binary Conversion e = e positive M odulo g [20, 20, 8, 23, 4, 27, 28]

Figure 4.6: Example of Ternary to Binary Polynomial Conversion

Implementation of suggested enhancements into NTRUEncrypt.js was
not performed. Due to the complexity of the algorithm and what could
be accelerated using a GPU many of these improvements were omitted.
Including them would improve the efficiency further, however require

extensive changes to the source code.

4.5 NTRUEncrypt-GPU.js

The development of NTRUEncrypt-GPU.js provided many
complications. Cryptography suits a computational approach such
as OpenCL or CUDA. However, only OpenGL ES through WebGL
was available. As there was no JavaScript version of NTRUEncrypt
or GPU implementation, the development was built entirely for this

thesis.

The HTML5 Canvas object is used to draw graphic elements on a web
page through the use of JavaScript. The library Three.js allows access
to WebGL through a Canvas object that can utilise all the functionality
of WebGL 1.0 as well as providing OpenGL ES 2.0 support. On some
browsers, experimental support is available for WebGL 2.0, and this
provides support for OpenGL ES 3.0+ support. However, this was not

available at the time of research.
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A Vertex shader is required by OpenGL; a simple two-dimensional
plane created to process the data required. While using a three-
dimensional object would initially appear to provide a greater surface
in which to process data, OpenGL only processes viewable vertices and

thus hiding some data when rendered.

NTRUEncrypt-GPU.js requires two fragment shaders for encryption:
polynomial addition and polynomial convolution. These shaders
operate at a per pixel level, and each pixel is made up of four
components: Red, Green, Blue, and Alpha. This is due to fragment
shaders design for computer graphics rather than computation.
However taking advantage of these components, each message to be
encrypted will operate within its channel. Therefore a key of size 167
will operate on 167 pixels and be able to encrypt four messages of size
167 at a time. The fragment shaders operate in a two shader pass,
with the first polynomial multiplication fragment shader outputting its

texture as the input to the polynomial addition fragment shader.

Setting up Three.js, illustrated in figure 4.7, follows most of the
same flow as Woo et al. (1999) illustrated in figure 2.15. Since the
design intention of the library is for graphics output, a scene and
camera object is required. A scene is what defines where and what
will be rendered, and can contain objects, lights and cameras. The
camera object provides the viewport through which a scene can be
viewed, and therefore what will render. A renderer object is created to
facilitate the input of objects to render in a scene. With the Three.js
library there are two types: CanvasRenderer and WebGLRenderer. The
WebGLRenderer is the object required for this research as it utilises
WebGL to render the scene, thus using the GPU of the underlying
system. However the CanvasRenderer is used as a fallback by the
Three.js library. This renderer does not support the operations required

by this research and would not provide the level of acceleration required.

Uniforms are global variables defined within each shader that allow the
passing of data from the instantiating programming language to the
shader itself. These uniforms are limited to integers, floats, vectors,
colours, matrices, textures, and arrays of each of these types. For
accuracy to be maintained, as well as to prevent value clamping, the
float type uniforms were used extensively throughout development.
A JSON variable defines uniforms, where the name and type of the

uniform match the uniform name and type inside the shader.

Finally, a material object is created using JSON which holds the

uniforms and the appropriate vertex and fragment shader. This
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material is then combined with a geometry object into a mesh object
and finally added to the scene for later rendering. BufferGeometry is
used to create custom attributes for geometry utilised by the vertex
shader. The BufferGeometry object provides the vertices of the object

that will later render within the scene.

myUniformsl = {
publicKeyH: { type: "fvl", value: publicKeyHFA 1},
randomPolynomialR: { type: "fvi", value: randomPolynomialRFA }
s

var material_FS = new THREE.ShaderMaterial ({
uniforms: myUniformsl,
vertexShader: document.getElementById(’vertexShader’).
textContent ,
fragmentShader: document.getElementById(’
fragmentShaderEncryptionConvolution’+N).textContent

)

var mesh = new THREE.Mesh(geometry(), material_FS);
scene .add (mesh) ;

var convolutionTexture = new THREE.WebGLRenderTarget( width ,
height , renderTargetParams () );

var startTiming = performance.now() ;

renderer .render (scene, camera, convolutionTexture, true);

var currentTiming = performance.now() ;

var output = "> #### GPU Polynomial Convolution Encryption took
"ot (currentTiming startTiming) + "ms"

outputDiv.innerHTML = outputDiv.innerHTML + ’<p>’ + output + ’</
P>’

Figure 4.7: Sample Code of Three.js Setup

Rendering the scene requires a target. By default, this is the canvas
created on the current web page. However this does not allow for
multi-shader rendering, and the output of the canvas in the browser
returns different data in different browsers. An output texture becomes
the WebGLRenderTarget, and this allows rendering to a texture not
displayed on screen. This WebGLRenderTarget texture can then input

into the next shader that requires its data.

The encryption process consisted of two fragment shaders for the
two major operations required by NTRUEncrypt encryption. These
fragment shaders are required to perform a convolution between the
public key and a blinding value, then the result of this polynomial

convolution is added to the message polynomial.

64




<script id="fragmentShaderEncryptionConvolutionll" type="x
shader/x fragment">
uniform float publicKeyH[11];
uniform float randomPolynomialR[11];
void main() A{
vec2 stCoord = vec2(gl_FragCoord.x,gl_FragCoord.y);
int coordInt = int(floor (stCoord.x));
for(int i = 0; i < 11; i++) {
for(int j = 0; j < 11; j++) {

if (int (floor (mod (float (i+j) ,float(11)))) == coordInt)
{
gl_FragColor.r += publicKeyH[i] * randomPolynomialR[
il;
}

}
}
}
</script>

Figure 4.8: NTRUEncrypt Encryption Polynomial Convolution Fragment Shader

The polynomial convolution fragment shader, illustrated in figure 4.8,
takes two float arrays as input: public key h and the blinding value r.
As shown in figure 4.2, the output is position dependent on the two
polynomial inputs. Therefore, it initially obtains the z position of the
required shader fragment pixel. Finally, a polynomial convolution is

performed by looping through both float arrays and multiplying values
together, to end in its output position.
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<script id="fragmentShaderEncryptionAdditionll" type="x shader/x
fragment">
uniform sampler2D sTexture;
uniform float message[11];
float modulus (float value, float modulus) A{
float outputValue = mod(floor (value), floor (modulus)) ;
if (outputValue < 0.0) {
outputValue += modulus;
}
return floor (outputValue);
}
void main () {
vec2 stCoord = vec2(gl_FragCoord.x,gl_FragCoord.y);
int coordInt int (floor (stCoord.x)) ;
vecd4 inputTextureAtThisPixel = texture2D (sTexture ,vec2 (
gl_FragCoord.x/11.0,0.5));
gl_FragColor.r = inputTextureAtThisPixel.r;
for(int 1 = 0; i < 11; i++) {
if (coordInt == i) {
gl_FragColor.g += float(int (floor (modulus (float (
inputTextureAtThisPixel.r + messagel[il]),float (32)))

D)

}
}
</script>

Figure 4.9: NTRUEncrypt Encryption Polynomial Addition Fragment Shader

The polynomial addition fragment shader, illustrated in figure 4.9,
takes two inputs; the first being the texture output of the polynomial
multiplication fragment shader, and the second the float array of the
message to be encrypted. Each fragment shader only outputs to the
position corresponding to the current fragment shader z position. This
output limitation requires a single for loop and an if check, however, it

can output different encrypted messages to each component.
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<script id="fragmentShaderDecryptionConvolutionll" type="x
shader/x fragment">
uniform float cipherText[11];
uniform float privateF[11];
void main() {
vec2 stCoord = vec2(gl_FragCoord.x,gl_FragCoord.y);

int coordInt = int(floor (stCoord.x));
for(int i = 0; i < 11; i++) {
for(int j = 0; j < 11; j++) {
if (int (floor (mod (float (i+j) ,float(11)))) == coordInt)
{
gl _FragColor.r += cipherText[i] * privateF[j];
}
}
}

}
</script>

Figure 4.10: NTRUEncrypt Decryption Polynomial Convolution Fragment Shader
1

The decryption process has slightly increased complexity, compared
to the encryption process. The decryption process has three major
operations; however only two of these were implemented using the GPU
and fragment shaders. The first polynomial convolution, illustrated in
figure 4.10, is performed with the recipient’s private polynomial f and
the ciphertext e within modulo ¢. The conversion of the output of the
first convolution, from ternary to binary representation, is performed
within modulus p. This conversion is performed faster in JavaScript
on the CPU compared to the GPU. Now that the ciphertext is in
the correct representation modulo p the final polynomial convolution,

illustrated in figure 4.11, is handled by a second fragment shader.
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<script id="fragmentShaderDecryptionFinalConvolutionll" type="x
shader/x fragment">
uniform float fp[11];
uniform float b[11];
float modulus (float value, float modulus) A{
float outputValue = mod(floor (value), floor (modulus)) ;
if (outputValue < 0.0) {
outputValue += modulus;
}
return floor (outputValue);
}
void main() {
vec2 stCoord = vec2(gl_FragCoord.x,gl_FragCoord.y);
int coordInt int (floor (stCoord.x)) ;
for(int i = 0; i < 11; i++) {
for(int j = 0; j < 11; j++) {
if (int (floor (mod (float (i+j) ,float(11)))) == coordInt)
{
gl_FragColor.r += fpl[il * b[jl;
gl_FragColor.g += fpl[il;
gl_FragColor.b += b[j];

}
}
}
}
</script>

Figure 4.11: NTRUEncrypt Decryption Polynomial Convolution Fragment Shader
2

Fragment shader inputs are called uniforms; these are objects defined
by the system available OpenGL standard. Due to the usage of OpenGL
for graphics, uniforms are significantly limited to the type of objects
they can be defined as. Not only is this limitation on objects taken
further with mobile optimised OpenGL ES, some implementations on
hardware platforms will have further limitations while stating support
for an OpenGL ES version. The fragment shaders developed for this
research demonstrate this limitation, as the shaders operate using as
a float type. While the OpenGL ES 1.0 standard supports float type
shaders, many implementations will either not compile at run time or

compile although not run.

OpenGL ES 1.0 comes with many other limitations. The first, as
outlined by the fragment shaders, is that each fragment shader is only
able to access the output of its current pixel position. This output
limitation means that the fragment shader at pixel position 5, is
only able to edit the output at pixel position 5. Even when hard-

coding access to a pixel position it is unable to edit or add to the
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output of another fragment shader. Operationally this is evident, as the
advantage of a GPU is its ability to process in parallel, and each pixel
has a fragment shader that is operating in parallel. Therefore it would
not make sense to allow modification of the output of another fragment
shader without a form of synchronisation between each. Another
limitation, discovered late in development, is that there is a maximum
number of uniforms defined by the graphics hardware and drivers per
system. This restriction, is due to hardware limitations placed by GPU
manufacturers, and the way they process and parallelise the fragment
shaders passed to the GPU. This constraint places hard limits on the
size of the polynomials that can be used by NTRUEncrypt-GPU.js.
This limitation was a significant problem for mobile devices, with
the largest uniform maximum being 224 on the ASUS Zenfone 2.
Furthermore, accuracy was a problem, as with graphics if a blue or
red hue is slightly out, the eye may not even be able to perceive this;
however if the byte output of encryption is even one bit out it will never
decrypt. Mathematically the polynomial coefficients operate within
whole numbers, however inside the fragment shaders, they operate in
floating point. This operational difference means that a large amount
of floating point to integer and integer to floating point conversion is

required. This is illustrated in figure 4.8, the line
if (int( floor(mod( float(i + j), float(11)))) == coordint)

where the variable coordInt integer is compared against the modulus
of two variables ¢ and j being looped through within the shader.
The mod function requires two floating point inputs and produces a
single floating point output. This output can have slight inaccuracy
with trailing decimal numbers and thus the output needs to be floored
and then converted for integer comparison. These issues are difficult to

debug, leading to more floor, int, float conversions than is necessary.
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5 Research Findings

5.1 Crypto+-+

NvidiaTK1

Toshiba Thinkpad

Custom Deskrop

Tesk Server
DEVICES

Pohurukava Server

HP Desktop

Figure 5.1: Crypto++ Total Operations per Second per CPU GHz

Table 5.1: Crypto++ Benchmark Hardware CPU Clock Speeds

Nvidia | Toshiba Tesla | Pohutukawa HP Custom
TK1 Thinkpad | Server Server Desktop | Desktop
2.3 GHz | 2.53 GHz | 2.5 GHz 3.2 GHz 3.6 GHz | 3.8 GHz

The Crypto+-+ benchmark initially appears to suit a single threaded

CPU workload,

and therefore would make a suggestion of an

inverse linear correlation between clock speed and time taken for

each algorithm. Examination of the hardware listed in section 3.6.2

referenced against figure 5.1 and the clock rates in table 5.1, results

appear to support this relationship on every piece of hardware, other
than the Custom Desktop.
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Table 5.2: Crypto+-+ RSA Encryption and Decryption Results (Milliseconds per
Operation)

Algorithm HP Tesla | Nvidia | Toshiba | Pohutukawa | Custom
Desktop | Server | TK1 | Thinkpad Server Desktop
Encryption
RSA 1024 0.01 0.02 0.1 0.03 0.02 0.02
RSA 2048 0.03 0.036 0.23 0.062 0.05 0.04
Decryption
RSA 1024 0.29 0.32 2.584 0.58 0.41 0.324
RSA 2048 1.342 1.536 14.42 2.726 1.98 1.492

Based on the results of the Crypto++ RSA benchmarks in table 5.2, the
HP Desktop takes the least amount of time per operation for both 1024-
bit and 2048-bit encryption and decryption. Alternatively, the Nvidia
TK1 was the slowest, averaging between 7.67 and 10.75 times slower
than the HP Desktop depending on the operation. Overall, RSA 2048-
bit encryption took 2.24 times longer per operation than 1024-bit RSA
across all devices. While with decryption an even larger gap emerged
with RSA 2048-bit decryption taking 5.212 times longer. This evidence
reinforces the idea that doubling the bit security of RSA, increases the

computation time with a closer exponential relationship.

m HP Desktop

B Tesh Server

m Custom Desktop

B Pohutukawa Server
Toshiba Thinkpad

MILLISECOMNDS PER OPERATION

m NvidiaTK1

o m

ECOHC over GF(p) 256 ECDHC over GF(2%n) 233
ALGORITHM

Figure 5.2: Crypto++ ECDHC Key-Pair Generation

Similar to the results for RSA, the ECDHC key-pair generation
operated the quickest on the HP Desktop and slowest on the Nvidia
TK1 as illustrated in figure 5.2.
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Table 5.3: Crypto++ AES Results (MB/s)

Algorithm HP Tesla | Nvidia | Toshiba | Pohutukawa | Custom
Desktop | Server | TK1 | Thinkpad Server Desktop

AES/GCM 2236.4 299 59.2 153.8 739.2 944.4

AES/CCM 586.2 146 41 87.8 490.6 466.6

(128-bit key)

AES/EAX o87.2 145 41 87 011 478.2

(128-bit key)

MB/S

700

400

2

0

AES-NI made a significant difference when enabled on a system. As
illustrated in table 5.3, where AES/GCM on the HP Desktop had
both CPU support for and enabled AES-NI, making it almost 38 times
faster than the Nvidia TK1. Once again, the Nvidia TK1 demonstrates
the speed difference between running these algorithms on a mobile
processor compared to a desktop or server variant. It is important to
highlight AES-NI as it confirms the advantage of having a dedicated
piece of hardware that can perform cryptographic operations. If mobile
devices had an implemented AES-NI or cryptographic co-processor,
some efficiency and power savings could be made. The drawback of
dedicated hardware is that it is expensive, inflexible, and requires levels
of expertise that may not be available within a company producing
these devices. However, it is unclear from Crypto+-+ documentation
what the MB/s represents, as AES performs both encryption and

decryption yet only one result is given for each algorithm.

MD5 SHA-1 SHA-256

SHA-512
ALGORITHM

Figure 5.3: Crypto++ Hashing Algorithm Results
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As illustrated in figure 5.3 including hashing algorithms in the
experiment provides another comparison between algorithms on
different systems. Comparing SHA-256 and SHA-512 benchmarks, the
latter was quicker across all systems. SHA-512’s quicker operation
may be due to implementation within Crypto++, and it could be a
higher level of operation or the processors tested had better efficiency
with SHA-512 over SHA-256, all of which is outside the scope of this

research.

5.2 Android and Java
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Figure 5.4: Android RSA Key Generation Results

The results from the Android mobile hardware, illustrated in figure 5.4,
provide insight on how the chosen algorithms perform on the selected
systems. What is prominent from this graph is the exponential nature of
increasing RSA’s bit size. As the bit size doubles the computation power
required increases exponentially. This is demonstrated when comparing
RSA key generation of 2048-bit keys to 4096-bit keys, as it takes more

than ten times the amount of time across all tested systems.
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Figure 5.5: Crypto++, Java, and Android Comparison of RSA Decryption

Figure 5.5 illustrates some interesting points, comparing the average
Crypto++ results with that of Java and Android. To begin with,
this continues to illustrate the trend of exponential computation
growth, doubling the RSA bit size, consequently more than doubles
the processing power required. Additionally, the Java benchmark run
on the desktop and server systems are not significantly faster than the

Android version.
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Figure 5.6: Comparison of RSA Decryption on Custom Desktop of Crypto+-+ and
Java
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However the Crypto++ benchmarks, written in C and C+-+, are
significantly faster than the same Java implementations as illustrated
in 5.6. Comparing the results from the Custom Desktop hardware,
Crypto+-+ RSA Decryption was between 3.2 and 3.6 times faster than

its equivalent in Java.

Java, both on the tested Android and Desktop platforms, was
significantly slower than the C and C++ benchmarks in Crypto-++
as discussed in section 5.1. However, Crypto++ had to be compiled
individually on each system and could, therefore, receive optimisation
for each specific hardware platform. This compilation for each platform
makes it significantly more difficult for the average user to utilise on
their system. The application would need to be downloaded, installed
and set up before a user would be able to make use of this optimised

functionality.
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Figure 5.7: Difference between Programming Languages and RSA Decryption

Results from the experiments illustrate a strong reason for the
adaptation of NTRUEncrypt. While the open source versions of
NTRUEncrypt are slower overall compared to similar security of ECC,
the computational difference is more linear. Referring to figure 5.7
about RSA decryption, there is an extremely positive exponential
growth in computational requirement, as the number of bits increase.
This exponential growth means that RSA has a greater efficiency trade-
off for security. The worst case for RSA during this experiment, was a

20 time increase in milliseconds for every bit increase.
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With ECC, as illustrated in figure 5.8, this trade-off is reduced greatly
compared to RSA. However in these experiments, ECC still managed
a four time increase in milliseconds, per bit increase. This security to
processing ratio for ECC is an improvement over RSA, and all of the
time results were well within ranges that would be considered suitable

for mobile use.
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Figure 5.9: Comparison of NTRUEncrypt Encryption in Java, JavaScript, and
JavaScript + GPU
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However, as shown in figure 5.9 the increase in bit size for
NTRUEncrypt has a more linear effect than ECC. NTRUEncrypt was
calculated to have just under a two time increase in milliseconds, per
bit increase. This time increase was relatively stable across all security
values tested for NTRUEncrypt.

These results attempt to highlight the efficiency of NTRUEncrypt
before algorithm acceleration. It is worth noting that both RSA and
ECC did have lower computational differences at lower security levels.
However, it is the exponential increase that makes them difficult
to use at larger bit sizes. Due to this, algorithms that have more
linear increases in computational requirement will better suit security
applications. Moore’s law requires an increase in the number of
bits periodically to maintain security. When algorithm computation

requirements are linear, this trade-off reduces.

5.3 JavaScript
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As illustrated in figure 5.10 JavaScript was overall significantly slower
than both Java and Crypto++.

The selected library ASMCrypto, while slower than WebCrypto,
produced more reliable results. The average variance of ASMCrypto
across RSA experiments was 9,256 milliseconds, while the same

measurement  for WebCrypto produced a variance of 33,641
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Figure 5.10: C/C-++ vs Java vs Android vs JavaScript for RSA Decryption



milliseconds. Although considering the 33-34 second variance is
significant, WebCrypto was up to 18 times faster with RSA key

generation, encryption and decryption.

WebCrypto, specifically RSA-1024-bit, was extremely slow compared
to the same machine running the WebCrypto RSA-2048-bit benchmark.
The result irregularity may be due to benchmark implementation or an
unidentified issue during the experiment. The results from WebCrypto
RSA were removed from the final results for analysis, as these outlying

results skewed data significantly.

While WebCrypto ECC provided the ability to generate ECC keys, they
were significantly slower than operating through Java. Many systems
did not support performing operations, other than key generation,
which make WebCrypto ECC ineffective.

The major advantage of ASMCrypto over WebCrypto, was that once
the library was loaded, every system had access to all algorithms
that ASMCrypto could provide. Each different browser, listed in
section 3.6.1, provided different compatibilities when using WebCrypto.
Varying browser compatibility for WebCrypto meant there was no
guarantee the end user would be able to operate a particular
cryptographic algorithm, or even if they could provide the same
expected output. Once the WebCrypto API becomes more mature and
browsers provide compatibility for all, or most algorithms, then the
performance gain over ASMCrypto will be significant enough that it

will easily be replaced.

Another difficulty that WebCrypto does not address are browser
timeouts. ASMCrypto requires operation within JavaScript Promises;
this means that attempting to generate an RSA key effectively operates
on another thread, and does not prevent other JavaScript execution.
The default behaviour for browsers appeared to be if a script held the
main thread up for more than 10 seconds, it was terminated by the
browser. While an appropriate safety mechanism for users browsing
the web, this proved to be a problem for testing cryptography in a
browser. Many operations, especially on lower-powered devices, would
take longer than the time-out period. WebCrypto did not have built-in
JavaScript Promises, and therefore these had to be added to make sure

time-outs did not occur.

78



5.4 NTRUEncrypt.js

The JavaScript implementation of NTRUEncrypt was between 12 and
25 times slower than the Java implementation. It was, however, 10
milliseconds faster than the Android implementation with ees1087epl
decryption, and only between 1.6 to 1.9 times slower on other

operations.

NTRUEncrypt.js used only the base algorithm and did not include any
of the enhancements suggested by the technical documents provided by
Security Innovations Inc. Given these optimisations, it could have been

as fast as the Java implementations.

Due to its lack of enhancements, NTRUEncrypt.js suffered from
a higher failure rate. During key generation a randomly selected
polynomial f meant there may not be an inverse; thus selection and

computation of a possible inverse would repeat.

Converting all messages from binary and ternary for encryption and
back for decryption is required. To avoid message conversion, the value
of p can also be a polynomial. There is no requirement for p to be an
integer as long as it remains relatively prime to ¢. Explained further
in the Security Innovation NTRU Enhancements 1, when p = 3 the
message produced is ternary with coefficients [1, 0, -1]. However if p =
2+ x then message m will remain binary as coefficients will only be |1,
0]. This enhancement does make decryption more complex and, due to

time constraints, was not implemented in the version used for testing.

Convolution made up the majority of the encryption process time;
between 43% and 93% of total processing time. The reason for the
convolution taking up the majority of the processing time is due to
it performing N - N multiplication and N - N addition operations.
Performing the convolution operation is discussed in section 4.4, and

illustrated in figure 4.2.

The addition only makes up a small portion of processing time in
this JavaScript implementation, between 0.8% and 20%, as the array
data structure outlined in figure 4.2 allows for a simple single iteration
addition.

The development of NTRUEncrypt.js is intended for execution in a
browser. Some of the systems listed in the hardware section 3.6.2, are
server operating systems, meaning only console access was available.
There are some implementations of command line JavaScript execution

engines. However, these were not explored in this research.
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Key generation of NTRUEncrypt.js ees1499epl took on average 4,739
milliseconds to generate compared to WebCrypto ECC P-521, which
took on average 38 milliseconds. Comparing WebCrypto ECC to
NTRUEncrypt at equivalent security for key generation, ECC is
between 86 and 125 times faster. However, as noted in the JavaScript
section 5.3, many systems were unable to perform any other operations
with the ECC key generated after this point.

Table 5.4: JavaScript Comparison of RSA 1024-bit and NTRUEncrypt ees40lepl

Algorithm Processing Time (Milliseconds)
RSA-Key-Gen-1024 1487.43
eesd49epl-Key-Gen 146.77

RSA-Encryption-1024 15.29
ees449epl-Encryption 13.11
RSA-Decryption-1024 60.81
ees449epl-Decryption 25.60

Comparing comparable security between RSA 1024-bit and
NTRUEncrypt.js, as illustrated in table 5.4, NTRUEncrypt.js
is just over ten times faster for key generation. However, the
NTRUEncrypt.js encryption operation is not considerably faster than
RSA. The decryption operation of NTRUEncrypt.js is more than two
times faster than RSA. This difference increases as equivalent security
increases, proving that NTRUEncrypt is more efficient for asymmetric

encryption than RSA.

5.5 NTRUEncrypt-GPU.js

Figure 5.9, highlights the speed difference between Java, Java on
Android, JavaScript, and JavaScript GPU. Results from the experiment
showed NTRUEncrypt.js was slower than both Java and Android
NTRUEncrypt benchmarks. The GPU accelerated NTRUEncrypt-
GPU.js was between 4 and 38 times slower than NTRUEncrypt.js.
NTRUEncrypt-GPU.js reduces this speed difference as the security
increases. If it was possible to experiment with larger values of N,
then NTRUEncrypt-GPU.js may prove to be as fast or faster than
NTRUEncrypt.js.

Many of the systems were unable to run the GPU accelerated
NTRUEncrypt.js, and those that could have further limitations on
them, such as those outlined in the implementation section 4.5. These

restrictions meant from all the hardware systems, listed in section
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3.6.2; only the HP Elite Desktop system was able to provide useful

benchmarks across all tests.

ST PT

Milliseco

—e—JavaSrptGPU

Ne11 eest01epl eesaagepl eessalepl eess13epl eess77epl eesaBTepl ees1087ep2 e=s1499ep1
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Figure 5.11:  Comparison of NTRUEncrypt.js and NTRUEncrypt-GPU.js
Convolution Operation on the HP Elite Desktop

However the HP Elite Desktop system, which was able to run the
entire experiment, displayed promising results in the NTRUEncrypt
encryption convolution operation. The convolution operation suits a
GPU as they are effective at vector and multiplication mathematics.
As illustrated in figure 5.11 the GPU reaches its maximum processing
time at around 80 milliseconds. While the CPU implementation is
significantly faster up until the ess1499epl convolution, where the GPU
convolution is almost twice as fast. The ess1499epl convolution results
provide positive evidence to suggest, even at higher security levels, or
increased message throughput, GPU convolution would be considerably

faster and therefore more efficient.

However, this single positive result was still affected by the limitation
that the setup time for Three.js, and the data required for encryption,
took significantly more time than the encryption operation performed
on the CPU. As illustrated in figure 5.11 the total encryption time for

the GPU was more than 9.5 times slower.

Comparing the results to Harrison & Waldron, ’s (2009) research
utilising CUDA, the RSA decryption is similar to that of the
convolution results seen in figure 5.11. As described in section

2.1.5, RSA decryption involves large exponent mathematics within a
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modulus, which can be simplified and accelerated using binary modular
exponentiation; all of which is mathematically similar to what happens

in a polynomial ring convolution.

The results from this research had problems similar to those faced by
Nicholls (2012). Although many libraries are available that streamline
the development process of WebGL, the actual usefulness of such
libraries is still extremely limited. The advantage gained by utilising the
GPU for processing is negated by the added latency and requirement
to conform within the graphics processing pipeline. Similarly, the issues
highlighted by Yang & Goodman (2007) and the floating point uniform
limits remain the single largest limitation of running on mobile systems

to this approach.
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6 Discussion

6.1 Research Questions

Referring to section 3.3 on page 44 which this research aims to answer.

Question 1

Can in-browser cryptography be accelerated using a GPU?
As discussed in section 2.5 on page 40, a number of researchers
such as: Cook & Keromytis, Yang & Goodman, and Harrison &
Waldron have previously investigated the use of a GPU to successfully
accelerate a cryptographic algorithm. However, the results from this
research demonstrate that acceleration was not achieved. Current
software and hardware support did not allow for the proper acceleration
of a cryptographic algorithm. Given better access and dedicated
GPGPU computing such as Compute Shaders in WebGL 2.0 there is
still a possibility of this being usable. Experimentation with another

algorithm may still be able to take advantage of WebGlL.

Question 2

Does increasing the bit size of a cryptographic algorithm have
a linear positive correlation to processing time and security?
Results from this research demonstrate ECC had a slightly negative
linear relationship. This is an interesting result as the difference
between curve 256 and 384 is approximately 2.15 times speed, while
the difference between curve 384 and 521 is 1.91 times, this gives ECC
a ratio of 4.11.

For example if curve 256 takes 26 milliseconds to generate, using this
ratio if we double the bit security and generate curve 521 it will take
approximately 26-4.11 = 106.86. NTRUEncrypt displayed a somewhat

linear positive correlation between bit size and processing time.

In this research NTRUEncrypt had a ratio of 5.53 for bits of security,
this means that if an ees887ep1l key generation takes 526 milliseconds,
then doubling the security and performing ees1499epl key generation
would take approximately 526 - 5.53 = 2, 908.78 milliseconds.

The relationship for RSA in the results obtained during the experiment,
demonstrated a positive exponential cubed relationship. This is due to
the difference between generating 1024 to 2048 bit, and 2048 to 4096
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bit keys, which the ratio calculated to approximately 5.69 and 8.05
respectively. This clearly demonstrates an almost three times increase
for each bit level of security, and this resulted in a large ratio of 45.81;
which unlike NTRUEncrypt and ECC was not actually a complete
doubling ratio either. This means a system that generates a 1024 bit key
in 674 milliseconds would take approximately 674 - 45.81 = 30, 875.94
milliseconds. Given that 30,875 millisecond key generation is the same
128 bit security level as ECC curve 256, at 26.76 milliseconds and
NTRUEncrypt ees887epl, at 525.97 milliseconds RSA is certainly not

the choice for efficient security performance.

Cryptographers and mathematicians constantly discuss the various
changing security levels provided by cryptographic algorithms.
However, many others rely on the standard comparable strengths
provided by NIST Special Publication 800-57 Barker (2016). As
discussed in the hypothesis, the doubling of an algorithm’s key size
does not directly equate to a doubling of security for all algorithms

tested in this research.

Question 3

Does the programming language that a cryptographic
algorithm is implemented in have an affect on processing
time? As shown in figure 5.7 Crypto++, which is implemented in
C, is significantly faster than Java. Java is considerably faster than

JavaScript.

Question 4

Does measuring the processing time of cryptographic
algorithms provide an accurate means of comparison?
Provided cryptographic algorithms are measured several times with
variance recorded then processing time provides an accurate means of
comparison. A number of tests in this experiment displayed significant
minimum and maximum times that would not be a fair representation

of the average run time.

Question 5

Is a GPU faster at performing public key encryption
than a CPU implementation of the same algorithm?

For NTRUEncrypt-GPU.js only, the encryption convolution using
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ess1499epl displayed an improvement, however only the HP Elite
Desktop system was able to execute it. For hardware defined as mobile
only the Nvidia TK1 was only able to run the lowest test parameters of
NTRUEncrypt-GPU.js. This demonstrated a significant overhead when
attempting to use the GPU.

Question 6

Is a GPU faster at performing private key decryption than
a CPU implementation of the same algorithm? Since the
process of decryption involves two convolutions, comparisons of the
convolutions would support the statement. However the total time
including setup means that in the implementation of NTRUEncrypt-
GPU.js it was not faster than the CPU based version. For hardware
defined as mobile only the Nvidia TK1 was able to run the lowest test
parameters of NTRUENcrypt-GPU.js. This demonstrated a significant
overhead when attempting to use the GPU.

Question 7

What is the impact of latency on a cryptographic algorithm?
The majority of the total time spent utilising the GPU is taken up
preparing, moving, and retrieving the data. Data transfer latency is
why GPUs are better suited to large amounts of data, to make use of
the processing power they possess and minimise the transfer bottleneck.
In the instance of CPU computation, since it is happening directly
within system memory, the bus is fast enough to make the bottleneck

the processor speed.

Question 8

Does a GPU implementation of a cryptographic algorithm
increase throughput compared to a CPU implementation? As
illustrated in figure 5.11 on page 81, at higher security bit sizes the
answer is yes. If multiple messages were to be encrypted or decrypted,
specifically the convolution portion of the processing of NTRUEncrypt-
GPU.js, this would make it preferable to a simple CPU implementation.
However compatibility was still an issue on the desktop systems and a

fall back to CPU would be required in any production deployment.

Unfortunately this question cannot be answered for mobile devices

based on the results of this experiment, see section 7.2 on page 88
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for research limitations. Given the possibility of NTRUEncrypt-GPU.js
working then it may have demonstrated an increase in throughput
compared to a CPU implementation as the CPU on all of the mobile

devices tested were comparatively slow.
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7 Conclusions

In this instance, the Three.js library was unable to successfully
accelerate NTRUEncrypt using the GPU. As stated in the discussion,
section 5.5 on page 80, NTRUEncrypt-GPU.js was up to 38 times
slower than NTRUEncrypt.js. However, the convolutions performed by
NTRUEncrypt-GPU.js were 1.6 times as fast as NTRUEncrypt.js at
the highest available security. Furthermore, comparisons within this
research showed JavaScript was up to 80 times slower than C, C++,
and Java. As discussed in section 2.4.5 on page 36, the problems faced
by previous research have been due to the limitations on portability
for code written in C and C++. Despite this research’s attempt to
address these problems the results show NTRUEncrypt-GPU.js had
a similar problem as it was limited to only one of nine systems.
This results were due to a hardware limit on uniform buffers, a
factor that will not change with new libraries, drivers, or operating
systems. Several recommendations can be made from these results.
Firstly, efficiency improvements to JavaScript engines. The results of
this experiment show JavaScript was up to 80 times slower than C,
C++, and Java; indicating JavaScript is not a suitable programming
language for high performance computing. Secondly, as an extension
of more efficient JavaScript engines, developing engines that are truly
multi-threaded. As discussed in section 4.3 on page 56, JavaScript must
emulate threads using Promises or Web Workers. All systems listed
in section 3.6.2 on page 50 had at least two cores, given JavaScript
is currently unable to take advantage of multiple cores, it could see
considerable performance increases if JavaScript could utilise these
additional processing cores. Thirdly, waiting for the implementation
of WebGL 2.1 standard in modern browsers allows the use of Compute
Shaders. As discussed in the Future Research section 7.3.1 on page 89,
Compute Shaders are designed to offer compute capability within
OpenGL, without the restrictions of the standard graphics pipeline.
From the experiment results, NTRUEncrypt should be considered a
suitable replacement for RSA. While NTRUEncrypt was not as quick
as ECC, the ability to perform encryption and decryption operations
make this a better alternative when a single asymmetric algorithm is
required. NTRUEncrypt is also currently considered quantum secure
and based on the efficiency trends seen in both this research experiment
and others, adds further validation to NTRUEncrypt’s suitability for

secure cryptographic systems.
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7.1 Implications

Given this research focuses on in-browser accelerated cryptography,
the concept is to create easier to use platforms, which allow for end-
to-end encryption. Many online services attempt to provide security
by assuring users that they data they send to others online is only
available by those the user has allowed. End-to-end encryption involves
performing cryptography between clients, rather than between the
client and the server. Thus if the service provider is unable to decipher
communication through their system, then no form of interception, be
it legal or illegal, can occur without first compromising both end users.
Referring to the aims of this research in section 3.1 on page 43, it
has added to the overall knowledge of cryptography and information
security. The research experiment has provided useful outputs for
future researchers of accelerated cryptography. The development of a
JavaScript version of NTRUEncrypt will also be of use to researchers,
developers, and others outside of academia. Although this research
and experiment did not produce an accelerated version for mobile
or low power systems, looking at future research and the positive
result of the encryption convolution, this would be possible to pursue
for future research. Another aim of this investigation was to show
that cryptography and information security does not have to be
slow. Cryptography is often viewed as slowing a process down by
adding complexity. With more research into the area of performance
of cryptography, researchers can provide efficient, secure platforms.
Ultimately the goal of this research is to advance end-to-end encryption
options that allow experts to concentrate on providing secure platforms
that enable everyday users to remain protected without knowledge of
how cryptography or information security works. NTRUEncrypt has
been proven to be effective and while JavaScript was slow, considering
that it can be executed on any system with a modern browser it

provides a platform to allow easy to use end-to-end encryption.
7.2 Research Limitations

7.2.1 Available Hardware

Although there are many different hardware platforms described in
section 3.6.2 on page 50, having more platforms may have provided
more data, specifically another system that was compatible across all

tests. It appears from these results that both Linux and another AMD
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Graphics Card would be required to enable more platforms to test
against the HP Elite Desktop.

7.2.2 Development Time

As with all Masters theses, the time is constrained. Additionally, when
developing a piece of software, development needs to be constantly
maintained throughout the lifetime of the project. Due to this time
constraint, many of the optimisations to both the algorithm and the
software itself could not be completed. The software will be made open-
source to allow others to contribute as NTRUEncrypt.js could be useful

for other projects and research.

7.2.3 WebGL and Browser Standards

Many of the problems faced with NTRUEncrypt-GPU.js are due to
the poor implementation of WebGL. WebGL has many advantages
and disadvantages as the OpenGL ES 1.0 specifications do not require
anyone to implement the whole set of OpenGL ES 1.0 standards to call
themselves compliant. Meanwhile, different browsers are implementing
this standard with varying requirements, meaning even if a system
supports floating point uniform buffers in Firefox, it may not be the
case in Chrome on the same system. After performing this research
and retrospectively examining this research this has always been a
disadvantage of OpenGL and OpenCL when compared against similar
technology such as CUDA. Developers prefer standardisation that
makes sense. If a piece of hardware claims to be CUDA 6.5 compliant,
then all specifications set by that standard are available. However, this
is not the case for OpenGL as a piece of hardware claiming to be
compliant with OpenGL version 3.0 could only support 10% of the
total standard.

7.3 Future Research

7.3.1 Compute Shaders

Modern browsers will see the implementation of WebGL 2.0 in the next
specification. The 2016 design specification for WebGL 2.0 provides
an API that conforms to the OpenGL ES 3.0 API, and a planned
WebGL 2.1 will support OpenGL ES 3.1 operations. Compute Shaders
have been integrated into OpenGL ES 3.1 and are specifically designed

89



to run outside of the normal OpenGL pipeline, enabling compute
functions. Many of the limitations faced by this research were due to
performing compute functions confined within the graphics pipeline.
The aim of Compute Shaders fixes this issue and initial implementation
of NTRUEncrypt.js using Compute Shaders has shown significant

improvement over OpenGL shaders.

Table 7.1: Preliminary Results of NTRUEncrypt 1499 on Nvidia TK1

Nvidia TK1
Compute Shaders 264ms
JavaScript 294ms
Java 20ms

As shown in table 7.1, preliminary tests of compute shaders were slower
than Java. The compute shaders were able to perform Vec4 operations,
meaning that in 264 milliseconds 4 messages were encrypted. This
means the encryption time per message using compute shaders is

approximately 66 milliseconds.

The convolution operation contains a double for loop that the compiler
is unable to expand and optimise. By moving these loops back to the
CPU and modifying the convolution computation this should improve
the performance. Future testing, development, and optimisation would

further improve this algorithm.

7.3.2 Power Testing

This research and experiments made the assumption that running
an algorithm as quickly as possible was the best solution for mobile
devices. It additionally made the assumption that running on the GPU
would reduce power consumption or increase efficiency. Proving these
assumptions would require testing by performing power readings of

devices and adjusting the scaling to attempt to answer these questions.

7.3.3 Random Number Generation

When implementing NTRUEncrypt in JavaScript, there is currently
a debate over whether JavaScript can provide CSPRNGs. For this
research window.crypto.getRandomValues was used. However, some
researchers consider this only to be a PRNG. While this research
experiment was attempting to answer a performance question the

security of the developed NTRUEncrypt.js, if used in production, would
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require a suitable random number generator to maintain high levels of

security.
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Appendix

Accelerated CryptoJs

All of the code created specifically for this thesis is available on Github,
https://github.com/cptwin/accelerated cryptojs

92



References

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the april 18-20, 1967, spring joint
computer conference (pp. 483 485). doi: 10.1145/1465482.1465560

Barker, E. (2016). Nist special publication 800-57 part 1 revision 4. NIST Special
Publication, 800(57). Retrieved from http://nvlpubs.nist.gov/

Bernstein, D. J. (2009). Introduction to post-quantum cryptography. In Post-
quantum cryptography (pp. 1 14). Springer.

Borges, H., Valente, M. T., Hora, A. & Coelho, J. (2015). On the popularity of
github applications: A preliminary note. arXiv preprint arXiv:1507.0060/ .

Chesebrough, R. & Conlon, C. (2012). Implementation and performance of aes-ni
in cyassl embedded ssl. yaSSL. Retrieved from https://www.yassl.com/

Comparing java vs. ¢/c++ efficiency differences to interpersonal differences. (n.d.).
Communications of the ACM, 42(10), 109 - 112. Retrieved 18/11/2015, from
https://www.researchgate.net/

Cook, D. & Keromytis, A. D. (2006). Cryptographics: exploiting graphics cards for
security (Vol. 20). Springer Science & Business Media. doi: 10.1007/0-387-34189
-7

Daemen, J. & Rijmen, V. (1998). The block cipher rijndael. In Smart card research
and applications (pp. 277 284). doi: 10.1007/10721064 26

Damico, T. M. (2009). A brief history of cryptography. Student Pulse, 1(11).

Retrieved from http://www.inquiriesjournal.com/

Flanagan, D. (2011). Javascript: The definitive guide: Activate your web pages.
O’Reilly Media. Retrieved from https://books.google.co.nz/

Flynn, M. (1972). Some computer organizations and their effectiveness. Computers,
IEEE Transactions on, C-21(9), 948-960. doi: 10.1109/TC.1972.5009071

Gartner. (2015). Gartner says 6.4 billion connected "things" will be in use in
2016, up 30 percent from 2015. Retrieved 02/05/2016, from http://www.gartner

.com/

Gueron, S. (n.d.). Advanced encryption standard (aes) instructions set. Retrieved
04/03/2016, from https://software.intel.com/

Hankerson, D., Menezes, A. & Vanstone, S. (2006). Guide to elliptic curve
cryptography. Springer New York.

93



Harrison, O. & Waldron, J. (2007). Aes encryption implementation and analysis
on commodity graphics processing units. , 4727, 209-226. doi: 10.1007/978-3-540
-74735-2 15

Harrison, O. & Waldron, J. (2009). Efficient acceleration of asymmetric
cryptography on graphics hardware. , 5580, 350-367. doi: 10.1007/978-3-642
-02384-2 22

Harrison, O. & Waldron, J. (2010). Gpu accelerated cryptography as an os service.
, 6480, 104-130. doi: 10.1007/978-3-642-17697-5 6

Herhut, S., Hudson, R. L., Shpeisman, T. & Sreeram, J. (2013). River trail: A
path to parallelism in javascript. SIGPLAN Not., 48(10), 729 744. doi: 10.1145/
2544173.2509516

Hermans, J., Vercauteren, F. & Preneel, B. (2010). Speed records for ntru. In
Topics in cryptology-ct-rsa 2010 (pp. 73 88). Springer. doi: 10.1007/978-3-642
-11925-5 6

Hoffstein, J., Pipher, J. & Silverman, J. H. (1998). Ntru: A ring-based public
key cryptosystem. In Algorithmic number theory (pp. 267 288). Springer. doi:
10.1007/BFb0054868

Jaeger, T. (2007). Introduction computer and network security. Retrieved
12/01/2016, from http://www.cse.psu.edu/

Jang, K., Han, S., Han, S., Moon, S. B. & Park, K. (2011). Sslshader: Cheap ssl
acceleration with commodity processors. In Nsdi. Retrieved 17/11/2015, from

https://wuw.usenix.org/

Khronos OpenCL Working Group. (2008). The opencl specification. , 1(29), 8.
Retrieved 12/02/2016, from https://www.khronos.org

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation,
48(177), 203 209. doi: 10.1090/50025-5718-1987-0866109-5

Kowaliski, C. (2015). Intel’s broadwell-u arrives aboard 15w, 28w mobile processors.
Retrieved 10/06/2016, from https://techreport.com

Lenstra, A. K., Lenstra, H. W. & Lovész, L. (1982). Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4), 515 534. doi: 10.1007/
BF01457454

Liskov, M. (2011). Fermat’s little theorem. In H. C. A. van Tilborg & S. Jajodia
(Eds.), Encyclopedia of cryptography and security (pp. 456 456). Boston, MA:
Springer US. doi: 10.1007/978-1-4419-5906-5 449

94



March, S. T. & Smith, G. F. (1995). Design and natural science research on
information technology. Decision support systems, 15(4), 251 266. doi: 10.1016/
0167-9236(94)00041-2

McEliece, R. (1978). A public-key cryptosystem based on algebraic coding theory.
, 4244, 114 116. Retrieved 01/09/2015, from http://ntrs.nasa.gov/

Merkle, R. C. (1978, April). Secure communications over insecure channels.
Commun. ACM, 21(4), 294 299. doi: 10.1145/359460.359473

Merkle, R. C., Charles, R. et al. (1979). Secrecy, authentication, and public key

systems.

Miller, V. (1986). Use of elliptic curves in cryptography. In Advances in cryptology-
crypto’85 proceedings (p. 417-426). doi: 10.1007/3-540-39799-X 31

Monz, T., Nigg, D., Martinez, E. A., Brandl, M. F., Schindler, P., Rines, R., ...
Blatt, R. (2015). Realization of a scalable shor algorithm.
doi: 10.1126/science.aad9480

Moore, G. E. (1965). Cramming more components onto integrated circuits.
Electronics, 38: 8, 16. doi: 10.1109/N-SSC.2006.4785860

National Bureau of Standards. (1977). Federal information processing standards
publication 46. National Bureau of Standards, US Department of Commerce.
Retrieved 03/12/2015, from http://csrc.nist.gov/

Nicholls, J. (2012). Javascript on the gpu. Retrieved 02/09/2015, from http://

www.slideshare.net/
Nielsen, J. (1994). Usability engineering.

Nvidia. (2008). Cuda programming guide. Retrieved 04/09/2015, from http://

docs.nvidia.com

Oancea, B., Andrei, T. & Dragoescu, R. M. (2014). GPGPU computing. arXiv
preprint arXiv:1408.6923.

Perlner, R. A. & Cooper, D. A. (2009). Quantum resistant public key cryptography:
A survey. In Proceedings of the 8th symposium on identity and trust on the internet
(pp- 85 93). New York, NY, USA: ACM. doi: 10.1145/1527017.1527028

Ritchie, D. M. (1993, March). The development of the ¢ language. SIGPLAN Not.,
28(3), 201 208. doi: 10.1145,/155360.155580

95



Ritter, W., Kempter, G. & Werner, T. (2015). User-acceptance of latency in touch
interactions. In M. Antona & C. Stephanidis (Eds.), Universal access in human-
computer interaction. access to interaction (Vol. 9176, p. 139-147). Springer
International Publishing. doi: 10.1007/978-3-319-20681-3 13

Rivest, R. L. (1990). Cryptography. In J. V. Leeuwen (Ed.), Handbook of theoretical
computer science (Vol. 1, pp. 717 755). Elsevier.

Rivest, R. L., Shamir, A. & Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2), 120 126. doi:
10.1145/359340.359342

Schneier, B. (2016). The value of encryption. , 50, No. 2. Retrieved 09/04/2016,
from http://www.riponsociety.org/

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2), 303 332. doi: 10.1137/
S50036144598347011

Shumow, D. & Ferguson, N. (2007). On the possibility of a back door in the nist
sp800-90 dual ec prng. In Proc. crypto (Vol. 7). Retrieved 09/04/2016, from
http://rump2007.cr.yp.to/

StatCounter. (2016). Statcounter top 9 browsers from jan to apr 2016. Author.
Retrieved 12/04/2016, from http://gs.statcounter.com/

Veldhorst, M., Yang, C., Hwang, J., Huang, W., Dehollain, J., Muhonen, J., ... Itoh,
K. (2014). A two qubit logic gate in silicon. arXiv preprint arXiv:1411.5760.

Weadon, P. D. (2000). The battle of midway: Af is short of water. NSA. Retrieved
21/08/2015, from https://wuw.nsa.gov/

Woo, M., Neider, J., Davis, T. & Shreiner, D. (1999). Opengl programming guide:
The official guide to learning opengl. Addison-Wesley Reading.

Yang, J. & Goodman, J. (2007). Symmetric key cryptography on modern graphics
hardware. , /833, 249-264. doi: 10.1007/978-3-540-76900-2 15

96



