
Full citation: Kirk, D., & MacDonell, S. (2009) A simulation framework to support software
project (re)planning, in Proceedings of the 35th Euromicro Software Engineering and Advanced
Applications (SEAA) Conference. Patras, Greece, IEEE Computer Society Press, pp.285-292.
http://dx.doi.org/10.1109/SEAA.2009.64

A Simulation Framework to Support Software Project (Re)Planning

Diana Kirk, Stephen MacDonell
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142,
New Zealand

dkirk@aut.ac.nz, stephen.macdonell@aut.ac.nz

Abstract

Planning and replanning software projects involves
selecting activities according to organisational policies,
project goals and contexts, deciding how to effect the
activities, and dealing with uncertainty in activity outputs.
There is at the present time no general model to support
project managers with all of these tasks. The
contributions of this paper are to propose a set of
properties that are desirable in a model for (re)planning
and to create a framework based on these properties. The
purpose of the framework is to support the modelling and
simulation of (re)planning during software projects. Key
aspects of the framework are a focus on project objectives
as drivers of activity selection, and activity prediction that
supports uncertainty and that may be based on previous
activity data, expert opinion or experimental evidence.
We present a ‘proof-of-concept’ case study to illustrate
how the framework can be applied to support planning.

Keywords - Software system; simulation; planning;
planning framework

1. INTRODUCTION

Planning for software projects involves selecting the
process and management activities that will be carried out
and making decisions about some of the parameters for
these activities, for example, who will carry them out and
which tools will be provided for support. Sometimes the
activities are fixed according to which software lifecycle
is mandated at a company level. In this case, planning
involves parameter selection only. In other instances
activities are selected in a flexible way according to
project specifics.

As a project progresses, replanning occur. Again, in some
cases parameters only are adjusted, for example, when
more experienced developers are assigned to replace
inexperienced ones on a project experiencing quality
issues. In other cases, a change in the activity itself is
indicated, for example, when a planned review is omitted
for a project that is behind schedule.

Although a number of models exist to support
(re)planning, most are limited to the selection of
parameters i.e do not provide general support for activity
selection and uncertainty. The contribution of this paper is
to propose a framework that addresses these gaps.

Two key ideas are of interest in the (re)planning effort.
The first is the idea that all process and management
activities are aimed at moving the project towards some
desired goals. For example, a delivered product generally
must meet some agreed quality criteria and at an agreed
cost. Replanning occurs when the project is not on track
to meet goals and planned activities are adjusted or
changed in an effort to increase the likelihood that the
goals will be met. The second idea is that of prediction
uncertainty. For example, a project manager might predict
that a coding activity will consume a certain number of
developer hours but this number is approximate and its
accuracy reflects, among other things, the experience of
the project manager. Such uncertainty is present even
when predictions are based on company data for previous
projects, as the source projects that provide the data are
likely to differ in some way from the project under
consideration. For example, it is unlikely that all
developers on the new project have the same experience
and subject area knowledge as those from earlier projects.

The contributions of this paper are to propose a set of
properties that are desirable in a model for (re)planning
and to create a framework based on these properties. The
purpose of the framework is to support the modelling and
simulation of (re)planning during software projects. Key
aspects of the framework are a focus on project objectives
as drivers of activity and parameter selection, and activity
prediction that supports uncertainty and that may be based
on previous activity data, expert opinion or experimental
evidence. This means that the framework is appropriate
for both organisations with previous process data and
organisations with none.

In Section 2, we suggest some properties that are
desirable in a model for (re)planning. In Section 3, we
describe our proposed framework. In Section 4, we
present a ‘proof-of-concept’ case study to illustrate
practical use of the framework. In Section 5, we discuss

http://dx.doi.org/10.1109/SEAA.2009.64�

related work and, in Section 6, we discuss limitations of
the proposed framework and plans for implementation
and evaluation.

2. PROPERTIES FOR (RE)PLANNING

As a preliminary to framework creation, we consider the
kinds of properties that are relevant for modelling the
(re)planning function. The aim is to provide some context
for our proposed framework and for the assessment of this
and related work. To source the properties, we consider
some orthogonal aspects of (re)planning and use each as a
basis for property identification. The resulting list is a
proposed set of necessary properties.

2.1 Organisational context

The first set of properties relates to the project within the
larger organisational context.

• Focus on objectives. Software projects exist to meet
specific organisational objectives. These objectives may
differ between projects. For example, one project may be
delivering software to an early adopter market while
another may be creating a high dependability system. Key
factors for the former may not include ‘reliability’, while
those for the latter certainly will. Planning must aim to
achieve a successful outcome for the key factors
identified for each project.

• Product line management. A project may be only one of
many in the development or maintenance of a product
line. For many projects, then, the state of the ‘project
system’ is not empty at commencement. The delivered
product will be associated with a ‘cost so far’, perhaps a
certain level of ‘reliability’, and the product source will
be characterised by a certain ‘complexity’. Project
personnel also have a state prior to project
commencement, for example, a certain level of
‘experience’ will be associated with project staff. These
will all affect project decisions, for example, ‘include
refactoring to reduce source complexity’ or ‘omit
inspections to reduce cost’.

2.2 Process activities

The next set of properties relates to activity selection. We
include any activities required to meet the defined
organisational objectives.

• System perspective. Several authors warn against a focus
on single outcomes as this leads to the identification of
local project maxima only i.e. to a sub-optimisation of the
whole system [1], [2], [3]. Generally, several objectives
are of interest and these may relate to any aspect of the
system, for example, to people and project as well as
product. For example, a project manager will most likely
need to balance a reduction in defects as a result of a new
inspection technique with the cost of implementing such a
technique and may also want to monitor the motivation of
project team members.

• Process granularity. There is generally a need to plan at
the ‘whole process’ level (for example, as for most cost
estimation models) but support for planning at the task
level (for example, ‘code from designs’) is also desirable.

• Process content. As noted above, objectives may include
those other than product-related, for example, ‘increase
developer product knowledge’. This means that we would
like to model ‘normal’ activities, such as ‘design’ or
‘test’, and also activities such as ‘team meeting’ and
‘knowledge transfer’.

• Process comparison. Planning and replanning activity
often includes some ‘what-if’ analysis. For example, how
much difference will it make to final outcomes if a formal
inspection is replaced by a less formal inspection carried
out by an experienced developer?

2.3 Process management

The final set of properties relates to managing the
process.

• Policy support. Project managers must often decide
when to commence or complete a development activity,
for example, when to start coding or stop testing. The rule
of ‘start coding when designs are complete’ is overly
simplistic as in the real world there is generally some
overlap. These kinds of decisions will depend upon
context and a useful framework must support them but
not dictate policy i.e. we desire a decoupling of process
and policy.

• Process monitoring. Project managers generally monitor
projects by checking the status of activities with project
staff. Sometimes this results in a change to an activity-in-
progress, for example, to add an experienced developer to
an activity that is late. An effective framework must
support this ‘mid-activity’ monitoring and replanning
function.

• Planning uncertainty. Software projects are
characterised by uncertainty [4], [5] and so expected
values for outcomes and predictions for activities are
more accurately characterised as distributions rather than
single points [6], [7], [8], [9].

All properties presented above are relevant for
(re)planning and decision-making during software
projects. At this stage, we suggest that the properties
represent a necessary set but we do not claim
completeness or orthogonality. For example, there may be
other important properties not yet identified, and it is
likely that ‘Product Line Management’ and ‘Focus on
Objectives’ are related.

In the next Section, we propose a framework to support
(re)planning based on the above properties.

3. PROPOSED FRAMEWORK

3.1 System Variables-of-Interest (SVoI) as
drivers of activities

The approach to planning the software process for a
project generally involves selecting which life-cycle
model or methodology will be applied, how this will be
tailored for the project and who will carry out the chosen
activities. For example, an ‘agile’ group may implement
eXtreme Programming (XP), and tailoring discussions
may centre around how much documentation to produce.

Groups favouring a more traditional life-cycle may
implement an ‘iterative waterfall’ with tailoring
discussions relating to the process for inspections.

We have suggested elsewhere that a change in focus from
performing activities to transforming System Variables-
of-Interest (SVoI) provides a more holistic and flexible
support for decision-makers [10], [11]. In this approach,
we first identify the key objectives for the project, for
example ‘quality’, and establish each as a system factor-
of-interest. Each key factor is then operationalised as at
least one SVoI and assigned an appropriate target value,
for example, ‘no more than ten known defects’.

Figure 1. Activities changing Effort and Defects

Process and management activities are then viewed as
transformations on these variables. The aim of
transformations is to ‘move’ the values of the variables
towards the desired outcome values. As illustration, in
Figure 1, we depict three activities, ‘Code’, ‘Unit test’
and ‘Fix defects’, changing system variables representing
‘Effort’ and ‘Defects’.

In this illustration, the ‘Code’ activity increases ‘Effort’
and a number of ‘Defects’ are injected. ‘Unit Test’ also
increases ‘Effort’ but no change is effected to ‘Defects’
(although some defects may be uncovered). ‘Fix Defects’
increments ‘Effort’ and reduces ‘Defects’ as existing
defects are resolved and a smaller number are injected as
a result of the activity.

Note that we are transforming variables, not process
outputs, i.e. documents. In our approach, documents may
represent variables but the variables are, in fact,
abstractions of process outcomes. For example, the
quality-related aspects of the process may be captured in a
number of documents, but the SVoI for the project
represents an abstraction of quality in which we have
some interest i.e. represents how we operationalise
quality.

3.2 RealisedProcess

The approach described above supports the creation of
RealisedProcesses to represent variable transformations
[11]. The standard use of the term process generally
refers to a description of a set of technical tasks and does
not include any non-technical factors, for example,
relating to humans. Our definition as transformation on

SVoI means that all aspects of the transformation are
included. This means that we can include, for example,
factors such as ‘developer experience’ and ’user
satisfaction’. If we consider an inspection that transforms
‘Defects’ and ‘Effort’, we understand, for example, that
two actual inspections will effect different sizes of
transformations according to the experience of the
participants and that the experience values may also
increase as a result of participation in the inspection.

Figure 2. State machine for RealisedProcess

In order to simulate a RealisedProcess, we require a more
formal representation. In Figure 2, we show a state
machine for RealisedProcess rp with nodes representing
system states and edges transitions between states. State
transition may occur in a planned way, for example, when
an activity is completed as planned, or in an unplanned
way, for example, when a project manager perturbs the
activity mid-way. The state space is the vector of SVoI
for rp and we denote this as sv. Points of visibility into rp
are the input stimulii. These are Start rp, Perturb rp and
End rp.

Prior to commencement, the system is in state A0 i.e. the
system variables vector has state sv and no activity is
active (rp is ‘null’). Once rp is commenced, the system
moves to state (A1), where rp has state rp. Note that in
A1 the state of sv is unchanged because there is no
visibility into the system while an activity is in progress,
unless the activity is perturbed, taking the state to C0.
Transformation from A1 to B0 moves the state of sv to the
new value sv’ and returns the activity state to ‘null’. The
accepting states for rp are states for which values of
system variables are compliant with objectives. More
details are available in [11].

3.3 Distributions for SVoI and transformations

Software projects are characterised by many kinds of
uncertainty. Some relate to issues of vagueness and
ambiguity and include, for example, failure to clearly
define objectives, lack of a clear specification and product
complexity [4]. Others relate to human aspects and
include factors such as the motivation, availability and
capabilities of the project participants and shallow subject
area knowledge [4]. Still others relate to the project
environment and include factors such as dependence on
external participants [5] and market change [9].

One problem resulting from this inherent uncertainty is
that project planners cannot reliably predict outcomes, for
example, relating to cost and quality, in a deterministic
way. A common approach to this problem is to represent
predictions by a prediction interval along with confidence
level [12], [7]. This approach allows ‘best case’ and
‘worst case’ scenarios to be explored. Another approach
involves representing predictions as probability
distributions and applying a stochastic approach to model
the project [6], [7], [8]. In this approach, outcomes are
also represented as probability distributions.

Figure 3. Activities changing Effort with uncertainty

For our framework, we represent a prediction of how an
activity changes a SVoI as a probability distribution. In
Figure 3, we again depict transformations on ’Effort’
when activities ‘Code’, ‘Unit test’, and ‘Fix defects’ are
carried out.

The end result for the system variable ‘Effort’ is a
distribution that effectively represents the risk inherent in
the prediction [6]. For example, a distribution skewed to
the right alerts project management to the need to plan for
higher levels of required effort [6]. Predictions supplied
may be based on existing prior project data, expert
opinion or evidence obtained from studies and formal
experiments. Simulation occurs by a stochastic execution
of the state machine described in the previous Section and
the elements of the state vector sv are now represented as
distributions rather than point values. We note that the
choice of probability distributions for predictions
provides us with flexibility, in that all of point values
(single value), intervals (rectangular), worst-case
(triangular), mean plus standard deviation (normal) and
activity-specific (custom curve, as suggested by
Kitchenham et. al. [7]) are supported.

3.4 Framework and (re)planning properties

We submit that the framework presented above
effectively addresses all (re)planning properties described
in Section 2.

1) Organisational context:

• Focus on objectives. Objectives are defined as ‘system
factors of interest’ and operationalised as SVoI.

• Product line management. SVoI have a specific state at
project start as a result of previous projects.

2) Process activities:

• System perspective. Choice of objectives is
unconstrained and multiple objectives may be considered.

• RealisedProcess granularity. There are no constraints on
the transformation size i.e. granularity is unconstrained.

• RealisedProcess content. There are no constraints on the
selection of objectives or transformation content.

• RealisedProcess comparison. This is a straightforward
comparison of the effects of transformations. We note that
comparison is possible only if the compared
RealisedProcesses transform the same SVoI [11].

3) Process management:

• Policy support. System state is described by values of
SVoI and activities may be defined to commence when
these variables reach specific values. For example, a
‘code’ activity may commence when a ‘design’ state is at
80 percent or 100 percent. Policy and process are
decoupled.

• RealisedProcess monitoring. The state that describes an
active activity accepts a ‘Perturb rp’ event which returns
the activity value to ‘null’ and changes the SVoI to the
values at the time of perturbation.

• Planning uncertainty. Variables-of-interest and
transformations are represented as probability
distributions.

4. PROOF-OF-CONCEPT CASE STUDY

In this Section, we present a proof-of-concept case study
to illustrate how the framework may be applied to support
project management planning. For ease of illustration, we
select a study that does not involve uncertainty. Data for
the study is taken from a study by MacCormack et. al.
[13].

A project manager would like to increase customer
satisfaction levels (objective) and, after interviewing some
key customers, learns that quality is an issue. He is also
interested in maintaining project expenditure at existing
levels (objective). He decides to focus on increasing
quality while maintaining cost levels (factors-of-interest).
He finds a study in the literature that suggest that
adopting a practice of integration or regression testing at
code check-in is associated with a 36 percent reduction in
defect rates and the introduction of design reviews is
correlated with a defect rate reduction of 55 percent [13].
The organisation maintains a data repository for past
projects and data includes effort and defect counts. He
decides to focus on these for his investigation (SVoI). He
understands from the repository that the expected effort
for ‘design, code and build’ for his project is 2,000 person
hours, duration is 25 weeks and the expected final defect
count is 60. Developers advise that regression testing will
incur a cost of 2 person hours per run. As the project
currently carries out weekly builds, this relates to an
additional cost of 50 person hours. Developers also advise
that design reviews will add an overhead of 100 person
hours. From the study, the manager learns that the
introduction of daily builds is correlated with a 35 percent
increase in productivity. He applies the framework to
explore the trade-offs between expected productivity and
defect levels when the various options are implemented.

For this exploration, our SVoI are ‘Effort’ and ‘Defects’.
We illustrate the various options in Figure 4. Starting
values for ‘Effort’ and ‘Defects’ will be dependent on
previous activities, but will be the same for all options.
For simplicity, we assume zero starting values for both
‘Effort’ and ‘Defects’. From the illustrations, we see that
the choice between ‘Regression Testing’ and ‘Design
Reviews’ is not clear cut. Although ‘Design Reviews’
provides a better outcome as regards defect totals, the
expected effort is greater. The introduction of ‘Daily
Builds’ alone reduces ‘as-is’ effort to 1,300 person hours.
However, when combined with ‘Regression Testing’, the
regression testing overhead is now 250 person hours, and
so the option ‘Daily Builds plus Regression Testing’ has
an expected effort of 1,550, while the ‘Daily Builds plus
Design Reviews’ has expected effort 1,400. The manager
realises that the objectives relating to quality and project
expenditure can be met most effectively by introducing a
regime of daily builds to control effort plus design
reviews to increase quality.

Figure 4. Exploring trade-offs

5. RELATED WORK

In this section, we overview some research aimed at
supporting planning during software projects. We then
compare models with our proposed framework using the
desired (re)planning properties described above as
criteria.

5.1 Modelling and simulation

The main source of related work is the modelling and
simulation community. Software process simulation and
modelling has become an “increasingly active research

area” with growing numbers of publications and related
activities [14]. Techniques applied include discrete-event
simulation and system dynamics.

In a discrete event simulation, discrete entities (‘units of
traffic’) move (‘flow’) from point to point in the system.
Entities instigate and respond to events (things that
happen and change the state of the system). When this
paradigm is applied to software development, the
‘product artifact’ entities flow through process blocks.
Reported limitations of this paradigm include an inability
to model smoothly-varying aspects, for example,
‘schedule pressure’, and the need to pre-define activities
[15] i.e. a direct application of this paradigm would
present difficulties if we want to change the process in a
non predetermined way.

In a system dynamics approach, a process is treated as a
system with many feedback loops. System variables are
represented as levels and these levels rise and fall
according to flows created as a result of the effects of
other ‘levels’. Feedback from individual flows is linear,
and the total result for a level may be exponential
increase, exponential decrease or oscillations depending
upon the multiplication factors for the various flows.
Variables thus change in a ‘continuous’ way and the
approach is suitable for modelling, for example,
developer motivation changing through long projects.
One limitation of the approach is the inability to capture
attributes for variables represented as ‘levels’, for
example, the attribute ‘code complexity’ for level
‘amount of completed code’ [16]. A second limitation is
the need to change the model if the underlying process
changes.

The specific models overviewed below address the issue
of flexibility by building processes from a number of
predefined activity ‘building blocks’.

Lakey [2] introduces a model to support software project
prediction and management. The model is intended as a
theoretical framework. It comprises four building blocks,
‘preliminary design’, ‘detailed design’, ‘code and unit
test’ and ‘subsystem integration and test’. In this
framework, project-specific process models are built by
creating an appropriate number of building blocks and
calibrating the equations for each with project, process
and product data from the project to be modelled.
Examples of project factors included are ‘communication
overhead’, ‘tool support’ and ‘skill levels’. Examples of
process factors are ‘defects injected’ and ‘estimated
calendar weeks’. Product factors include ‘size’ and
‘quality’. A strength of this framework is the inclusion of
cost, schedule and quality performance parameters in a
holistic system as “the primary software project
performance parameters of cost, schedule and quality are
not independent, and they cannot be tracked and managed
independently”. However, customisation is achieved by
copying and renaming building blocks to achieve the
correct process structure and then providing the relevant
input values. This means that there is no possibility of
representing any activities that do not comply with one of
these blocks. We suggest that customisation thus refers to
changing input values rather than changing the process.
Another limitation is in the pre-definition of the factors

that are believed to affect outcomes. The beliefs are
effectively model assumptions.

Munch applies a patterns approach to the development of
custom-tailored process models [17]. He believes that
“The development of high-quality software or software-
intensive systems requires custom-tailored process
models that fit the organizational and project goals as well
as the independent contexts” (page 1). In Munch’s
solution, a process pattern is a reusable fragment of a
process model that represents an activity. Patterns can be
combined to represent combinations of process models.
Information for each pattern includes attributes and a
description of how attributes change when the pattern is
applied, for example, causing a change to ‘reliability’
[17]. In this model attributes may relate to process state
(for example, ‘not in maintenance activity’) or process
goals (for example, ‘Maximal effort is less than 2000’).
Required goals are thus modelled as restrictions on
project attributes and include only those over which the
project has control. This means that the model does not
support SVoI such as ‘developer subject area knowledge’
and other human-related goals i.e. the model is fixed as
regards inclusion of SVoIs. In addition, the rules for
transformation form an integral part of the model i.e.
assumptions are embedded in the model.

Raffo et. al. describe an approach for creating
Generalised Process Simulation Models (GPSM) [18].
The approach consists of constructing a process from a
library of generic process building blocks, for example,
relating to ‘Design’, configuring the inputs to blocks for
specific environments and viewing outputs relating to
time, cost, quality and functionality. Although the
approach supports a degree of flexibility in process
construction, there is an assumption of ‘traditional
process’ and a restriction of outputs to those relating to
time, cost, quality or functionality [19]. This means that
the GPSM model as constructed cannot be used for
simulating less traditional processes or for modelling, for
example, the effects of ‘team meeting’ on ‘developer
product knowledge’. The lack of a systems perspective
also means that product line development is not
supported.

5.2 Other frameworks

Several authors have proposed approaches that reduce
risk by enabling a planner to select activities that will
support organisational objectives. Models such as Spiral
[20] and Rational Unified Process (RUP) [21] aim to
address risk by facilitating flexibility as regards which
development activities are performed. However,
‘performing activities’ is the focus of interest for each and
there is no concept of an activity being defined by how it
transforms SVoI.

Recent contributions from collaborations involving the
University of Southern California include combining
process elements [22], tailoring the process according to
business cases [23], [9] and dealing with uncertainty by
fixing the system variable ‘Schedule’ [9]. The underlying
paradigm for these contributions is that of value-based
engineering, where key mechanisms include
understanding what is the key objective for a project from

a value perspective (for example, cost, quality), selecting
activities that will ensure the objective is reached in the
most cost-effective way and monitoring the project to
ensure both objective and activity selection remain
appropriate. The modelling of objectives is not formalised
and so the contributions support only a subset of the
points described above. We do, however, note that the
approach described in this paper supports the ideas of
value-based software engineering [24] as the SVoI
represent relevant values for a project and these can be
monitored as the project progresses.

Figure 5. Comparison of various planning modelling

approaches

Other tailoring approaches include Basili and Rombach’s
approach for tailoring processes towards project goals and
environments [25]. Again, a specific project objective is
identified and activities selected that will ensure the
objective is met. However, there is no provision for
examining multiple project objectives and the framework
upon which the approach is based contains a number of
process-related assumptions that constrain flexibility.

5.3 Practical application

Rao et. al. report a successful implementation of an
initiative to create a framework for quantitative project
management [8]. Predictions relating to effort, quality,
schedule and scope are sourced from company baseline
capability reports and comprise distributions for each
planned activity. The expected results from a project are
obtained by applying a Monte Carlo simulation technique.
Results are also distributions and are effectively “a
function of all the distributions associated with each
activity” [8]. Activities are selected to achieve results that
best meet objectives.

The described implementation provides an excellent
example of a constrained implementation of the
framework proposed in this paper. Constraints include the
limiting of project objectives to those relating to effort,
quality, schedule and scope and the assumption of
normality for activity input distributions. The first means
that objectives such as those relating to humans, for
example, ‘motivation’, and economic value, are not
supported. The assumption of normality is not consistent
with the possibility that transformations relating to some
activities may be better described by, for example, a
Gamma distribution [7].

5.4 Comparison

In Figure 5, we compare the schemes discussed in this
section with respect to the desired (re)planning properties
presented in Section II.

It is evident that none of the models considered here
supports a ‘system perspective’ i.e. objectives are either
pre-defined or constrained. The lack of extensibility in
objectives means that flexibility in ‘process content’ is
not supported, for example, ‘team meeting’ cannot be
modelled. Indeed, none of the models supports the
introduction of new kinds of activity, for example, ‘test
first design’ or ‘pair programming’. We also observe that
decoupling of process and policy is not supported i.e. it is
not possible to model, for example, ‘commence coding
when designs are 80 percent complete’.

6. DISCUSSION AND FUTURE WORK

We have proposed a set of properties for models for
software project (re)planning and a framework to support
(re)planning based on these properties. One aspect of the
framework, the provision of a distribution to describe the
effect of a transformation on a system variable, has both
practical advantages and disadvantages. A distribution
effectively ‘wraps up’ all factors that might affect
outcomes as a single curve. This means that, at the
present time, when there is little evidence to support ideas
about what are the key influencing factors, planners can
supply curves based on their experience i.e. simulations
can still take place without assumptions being embedded
in the model itself. In cases where either suitable data or
evidence does exist, the curves will be provided from the
data or evidence. The source of the input distributions is
irrelevant for the framework. One limitation of the use of
distributions relates to the need for planners to supply
mathematical distributions for each transformation and
for each SVoI. To facilitate this, we are researching the
application of a ‘fuzzy’ layer to provide a more friendly
interface to planners while providing a distribution to the
simulation engine. Another possible limitation relates to
issues of sensitivity - it is not clear whether long process
chains will be overly sensitive to the shape of curves early
in the chain. This is an area for future research.

Other immediate plans for the research are to further
investigate the proposed properties with a view to
understanding conditions of necessity and sufficiency and
to implement the framework as a basis for studies within
the local community of small to medium sized software
organisations.

7. REFERENCES

[1] B. A. Kitchenham, S. L. Pfleeger, D. C. Hoaglin, K. E.
Emam, and J. Rosenberg, “Preliminary Guidelines for Empirical
Research in Software Engineering,” IEEE Transactions on
Software Engineering, vol. 28, no. 8, 2002.

[2] P. B. Lakey, “A Hybrid Software Process Simulation Model
for Project Management,” in Proceedings of the 2003
International Workshop on Software Process Simulation and
Modeling (ProSim’03), Portland, Oregan, U.S.A., 2003.

[3] M. Lehman, “Process Modelling - Where Next,” in
Proceedings of the 1997 Conference on Software Engineering.
IEEE Computer Society Press, 1997.

[4] R. Atkinson, L. Crawford, and S. Ward, “Fundamental
uncertainties in projects and the scope of project management,”
International Journal of Project Management, vol. 24, pp. 687–
698, 2006.

[5] O. Perminova, M. Gustaffson, and K. Wikstrom, “Defining
uncertainty in projects a new perspective,” International Journal
of Project Management, vol. 26, pp. 73–79, 2007.

[6] A. Connor, “Probabilistic estimation of software project
duration,” New Zealand Journal of Applied Computing and
Information Technology, vol. 11, no. 1, pp. 11–22, 2007.

[7] B. Kitchenham and S. Linkman, “Estimates, Uncertainty and
Risk,” IEEE Software, vol. May/June, 1997.

[8] U. S. Rao, S. Kestur, and C. Pradhan, “Stochastic
Optimization and Modeling and Quantitative Project
Management,” IEEE Software, vol. May/June, pp. 29–36, 2008.

[9] D. Yang, B. Boehm, Y. Yang, Q. Wang, and M. Li, “Coping
with the Cone of Uncertainty: An Empirical Study of the SAIV
Process Model,” in ICSP 2007, Lecture Notes in Computer
Science (LNCS), Q. Wang, D. Pfahl, and D. Raffo, Eds., vol.
4470. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 37–48.

[10] D. Kirk and E. Tempero, “A Conceptual Model of the
Software Development Process,” in Proceedings of the 6th
International Workshop on Software Process Simulation and
Modeling (ProSim’05). St. Louis, Missouri: Fraunhofer IRB,
2005.

[11] D. Kirk, “A flexible software process model,” Ph.D.
dissertation, University of Auckland, Auckland, New Zealand,
2007.

[12] M. Jorgensen, K. H. Teigen, and K. Molokken, “Better sure
than safe? Over-confidence in judgement based software
development effort prediction intervals,” Journal of Systems and
Software, vol. 70, pp. 79–93, 2004.

[13] A. MacCormack, C. Kemerer, Cusumano, and Crandall,
“Trade-offs between Productivity and Quality in Selecting
Software Development Practices,” IEEE Software, vol. 20, no.
5, pp. 86–93, 2003.

[14] H. Zhang, B. Kitchenham, and D. Pfahl, “Reflections on 10
Years of Software Process Simulation Modeling: A Systematic
Review,” in ICSP 2008, Lecture Notes in Computer Science
(LNCS), Q. Wang, D. Pfahl, and D. Raffo, Eds., vol. 5007.
Berlin, Heidelberg: Springer-Verlag, 2008, pp.345–356.

[15] A. Drappa and J. Ludewig, “Quantitative modeling for the
interaction simulation of software projects,” Journal of Systems
and Software, vol. 46, no. 2/3, 1999.

[16] R. H. Martin and D. M. Raffo, “Application of a hybrid
process simulation model to a software development project,”
Journal of Systems and Software, vol. 59, no. 3/3, 2001.

[17] J. Munch, “Goal-oriented Composition of Software Process
Patterns,” in Proceedings of the 6th International Workshop on
Software Process Simulation and Modeling (ProSim’05). St.
Louis, Missouri: Fraunhofer IRB, 2005, pp. 164–168.

[18] D. Raffo, U. Nayak, and W. Wakeland, “Implementing
Generalized Process Simulation Models,” in Proceedings of the
6th International Workshop on Software Process Simulation and
Modeling (ProSim’05). St. Louis, Missouri: Fraunhofer IRB,
2005, pp. 139–143.

[19] D. M. Raffo, “System and method for simulating product
design and development,” http://www.freepatentsonline.
com/20050160103.html, July 2005.

[20] B. W. Boehm, “A Spiral Model of Software Development
and Enhancement,” IEEE Computer, vol. May, no. 11, 1988.

[21] P. Kruchten, The Rational Unified Process: An
Introduction, Second Edition. United States of America:
Addison-Wesley, 2000.

[22] J. Bhuta, B. Boehm, and S. Meyers, “Process Elements:
Components of Software Process Architectures,” in SPW 2005,
Lecture Notes in Computer Science (LNCS), M. Li, B. Boehm,
and L. Osterweil, Eds., vol. 3840. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 332–346.

[23] L. Huang, H. Hu, J. Ge, B. Boehm, and J. Lu, “Tailor the
Value-Based Software Quality Achievement Process to Project
Business Case,” in SPW/ProSim 2006, Lecture Notes in
Computer Science (LNCS), Q. W. et. al., Ed., vol. 3966. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 56– 63.

[24] B. Boehm and L. G. Huang, “Value-Based Software
Engineering: A Case Study,” IEEE Computer, vol. 36, no. 3, pp.
21–29, 2003.

[25] V. R. Basili and H. D. Rombach, “Tailoring the Software
Process to Project Goals and Environments,” in Proceedings of
the Ninth International Conference on Software Engineering,
IEEE. IEEE Computer Society Press, 1987.

	A Simulation Framework to Support Software Project (Re)Planning
	1. Introduction
	2. PRoperties For (Re)Planning
	3. Proposed Framework
	5. RELATED WORK

