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Abstract 

Planning and replanning software projects involves 
selecting activities according to organisational policies, 
project goals and contexts, deciding how to effect the 
activities, and dealing with uncertainty in activity outputs. 
There is at the present time no general model to support 
project managers with all of these tasks. The 
contributions of this paper are to propose a set of 
properties that are desirable in a model for (re)planning 
and to create a framework based on these properties. The 
purpose of the framework is to support the modelling and 
simulation of (re)planning during software projects. Key 
aspects of the framework are a focus on project objectives 
as drivers of activity selection, and activity prediction that 
supports uncertainty and that may be based on previous 
activity data, expert opinion or experimental evidence. 
We present a ‘proof-of-concept’ case study to illustrate 
how the framework can be applied to support planning. 
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1. INTRODUCTION 

Planning for software projects involves selecting the 
process and management activities that will be carried out 
and making decisions about some of the parameters for 
these activities, for example, who will carry them out and 
which tools will be provided for support. Sometimes the 
activities are fixed according to which software lifecycle 
is mandated at a company level. In this case, planning 
involves parameter selection only. In other instances 
activities are selected in a flexible way according to 
project specifics. 

As a project progresses, replanning occur. Again, in some 
cases parameters only are adjusted, for example, when 
more experienced developers are assigned to replace 
inexperienced ones on a project experiencing quality 
issues. In other cases, a change in the activity itself is 
indicated, for example, when a planned review is omitted 
for a project that is behind schedule. 

Although a number of models exist to support 
(re)planning, most are limited to the selection of 
parameters i.e do not provide general support for activity 
selection and uncertainty. The contribution of this paper is 
to propose a framework that addresses these gaps. 

Two key ideas are of interest in the (re)planning effort. 
The first is the idea that all process and management 
activities are aimed at moving the project towards some 
desired goals. For example, a delivered product generally 
must meet some agreed quality criteria and at an agreed 
cost. Replanning occurs when the project is not on track 
to meet goals and planned activities are adjusted or 
changed in an effort to increase the likelihood that the 
goals will be met. The second idea is that of prediction 
uncertainty. For example, a project manager might predict 
that a coding activity will consume a certain number of 
developer hours but this number is approximate and its 
accuracy reflects, among other things, the experience of 
the project manager. Such uncertainty is present even 
when predictions are based on company data for previous 
projects, as the source projects that provide the data are 
likely to differ in some way from the project under 
consideration. For example, it is unlikely that all 
developers on the new project have the same experience 
and subject area knowledge as those from earlier projects. 

The contributions of this paper are to propose a set of 
properties that are desirable in a model for (re)planning 
and to create a framework based on these properties. The 
purpose of the framework is to support the modelling and 
simulation of (re)planning during software projects. Key 
aspects of the framework are a focus on project objectives 
as drivers of activity and parameter selection, and activity 
prediction that supports uncertainty and that may be based 
on previous activity data, expert opinion or experimental 
evidence. This means that the framework is appropriate 
for both organisations with previous process data and 
organisations with none. 

In Section 2, we suggest some properties that are 
desirable in a model for (re)planning. In Section 3, we 
describe our proposed framework. In Section 4, we 
present a ‘proof-of-concept’ case study to illustrate 
practical use of the framework. In Section 5, we discuss 
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related work and, in Section 6, we discuss limitations of 
the proposed framework and plans for implementation 
and evaluation. 

 
2. PROPERTIES FOR (RE)PLANNING 

As a preliminary to framework creation, we consider the 
kinds of properties that are relevant for modelling the 
(re)planning function. The aim is to provide some context 
for our proposed framework and for the assessment of this 
and related work. To source the properties, we consider 
some orthogonal aspects of (re)planning and use each as a 
basis for property identification. The resulting list is a 
proposed set of necessary properties. 

2.1 Organisational context 

The first set of properties relates to the project within the 
larger organisational context. 

• Focus on objectives. Software projects exist to meet 
specific organisational objectives. These objectives may 
differ between projects. For example, one project may be 
delivering software to an early adopter market while 
another may be creating a high dependability system. Key 
factors for the former may not include ‘reliability’, while 
those for the latter certainly will. Planning must aim to 
achieve a successful outcome for the key factors 
identified for each project. 

• Product line management. A project may be only one of 
many in the development or maintenance of a product 
line. For many projects, then, the state of the ‘project 
system’ is not empty at commencement. The delivered 
product will be associated with a ‘cost so far’, perhaps a 
certain level of ‘reliability’, and the product source will 
be characterised by a certain ‘complexity’. Project 
personnel also have a state prior to project 
commencement, for example, a certain level of 
‘experience’ will be associated with project staff. These 
will all affect project decisions, for example, ‘include 
refactoring to reduce source complexity’ or ‘omit 
inspections to reduce cost’. 

2.2 Process activities 

The next set of properties relates to activity selection. We 
include any activities required to meet the defined 
organisational objectives. 

• System perspective. Several authors warn against a focus 
on single outcomes as this leads to the identification of 
local project maxima only i.e. to a sub-optimisation of the 
whole system [1], [2], [3]. Generally, several objectives 
are of interest and these may relate to any aspect of the 
system, for example, to people and project as well as 
product. For example, a project manager will most likely 
need to balance a reduction in defects as a result of a new 
inspection technique with the cost of implementing such a 
technique and may also want to monitor the motivation of 
project team members. 

• Process granularity. There is generally a need to plan at 
the ‘whole process’ level (for example, as for most cost 
estimation models) but support for planning at the task 
level (for example, ‘code from designs’) is also desirable. 

• Process content. As noted above, objectives may include 
those other than product-related, for example, ‘increase 
developer product knowledge’. This means that we would 
like to model ‘normal’ activities, such as ‘design’ or 
‘test’, and also activities such as ‘team meeting’ and 
‘knowledge transfer’. 

• Process comparison. Planning and replanning activity 
often includes some ‘what-if’ analysis. For example, how 
much difference will it make to final outcomes if a formal 
inspection is replaced by a less formal inspection carried 
out by an experienced developer? 

2.3 Process management 

The final set of properties relates to managing the 
process. 

• Policy support. Project managers must often decide 
when to commence or complete a development activity, 
for example, when to start coding or stop testing. The rule 
of ‘start coding when designs are complete’ is overly 
simplistic as in the real world there is generally some 
overlap. These kinds of decisions will depend upon 
context and a useful framework must support them but 
not dictate policy i.e. we desire a decoupling of process 
and policy. 

• Process monitoring. Project managers generally monitor 
projects by checking the status of activities with project 
staff. Sometimes this results in a change to an activity-in-
progress, for example, to add an experienced developer to 
an activity that is late. An effective framework must 
support this ‘mid-activity’ monitoring and replanning 
function. 

• Planning uncertainty. Software projects are 
characterised by uncertainty [4], [5] and so expected 
values for outcomes and predictions for activities are 
more accurately characterised as distributions rather than 
single points [6], [7], [8], [9]. 

All properties presented above are relevant for 
(re)planning and decision-making during software 
projects. At this stage, we suggest that the properties 
represent a necessary set but we do not claim 
completeness or orthogonality. For example, there may be 
other important properties not yet identified, and it is 
likely that ‘Product Line Management’ and ‘Focus on 
Objectives’ are related. 

In the next Section, we propose a framework to support 
(re)planning based on the above properties. 
 
3. PROPOSED FRAMEWORK 

3.1 System Variables-of-Interest (SVoI) as 
drivers of activities 

The approach to planning the software process for a 
project generally involves selecting which life-cycle 
model or methodology will be applied, how this will be 
tailored for the project and who will carry out the chosen 
activities. For example, an ‘agile’ group may implement 
eXtreme Programming (XP), and tailoring discussions 
may centre around how much documentation to produce. 



Groups favouring a more traditional life-cycle may 
implement an ‘iterative waterfall’ with tailoring 
discussions relating to the process for inspections. 

We have suggested elsewhere that a change in focus from 
performing activities to transforming System Variables-
of-Interest (SVoI) provides a more holistic and flexible 
support for decision-makers [10], [11]. In this approach, 
we first identify the key objectives for the project, for 
example ‘quality’, and establish each as a system factor-
of-interest. Each key factor is then operationalised as at 
least one SVoI and assigned an appropriate target value, 
for example, ‘no more than ten known defects’. 

 

Figure 1. Activities changing Effort and Defects 

Process and management activities are then viewed as 
transformations on these variables. The aim of 
transformations is to ‘move’ the values of the variables 
towards the desired outcome values. As illustration, in 
Figure 1, we depict three activities, ‘Code’, ‘Unit test’ 
and ‘Fix defects’, changing system variables representing 
‘Effort’ and ‘Defects’. 

In this illustration, the ‘Code’ activity increases ‘Effort’ 
and a number of ‘Defects’ are injected. ‘Unit Test’ also 
increases ‘Effort’ but no change is effected to ‘Defects’ 
(although some defects may be uncovered). ‘Fix Defects’ 
increments ‘Effort’ and reduces ‘Defects’ as existing 
defects are resolved and a smaller number are injected as 
a result of the activity. 

Note that we are transforming variables, not process 
outputs, i.e. documents. In our approach, documents may 
represent variables but the variables are, in fact, 
abstractions of process outcomes. For example, the 
quality-related aspects of the process may be captured in a 
number of documents, but the SVoI for the project 
represents an abstraction of quality in which we have 
some interest i.e. represents how we operationalise 
quality. 

3.2 RealisedProcess 

The approach described above supports the creation of 
RealisedProcesses to represent variable transformations 
[11]. The standard use of the term process generally 
refers to a description of a set of technical tasks and does 
not include any non-technical factors, for example, 
relating to humans. Our definition as transformation on 

SVoI means that all aspects of the transformation are 
included. This means that we can include, for example, 
factors such as ‘developer experience’ and ’user 
satisfaction’. If we consider an inspection that transforms 
‘Defects’ and ‘Effort’, we understand, for example, that 
two actual inspections will effect different sizes of 
transformations according to the experience of the 
participants and that the experience values may also 
increase as a result of participation in the inspection. 

 
Figure 2. State machine for RealisedProcess 

In order to simulate a RealisedProcess, we require a more 
formal representation. In Figure 2, we show a state 
machine for RealisedProcess rp with nodes representing 
system states and edges transitions between states. State 
transition may occur in a planned way, for example, when 
an activity is completed as planned, or in an unplanned 
way, for example, when a project manager perturbs the 
activity mid-way. The state space is the vector of SVoI 
for rp and we denote this as sv. Points of visibility into rp 
are the input stimulii. These are Start rp, Perturb rp and 
End rp. 

Prior to commencement, the system is in state A0 i.e. the 
system variables vector has state sv and no activity is 
active (rp is ‘null’). Once rp is commenced, the system 
moves to state (A1), where rp has state rp. Note that in 
A1 the state of sv is unchanged because there is no 
visibility into the system while an activity is in progress, 
unless the activity is perturbed, taking the state to C0. 
Transformation from A1 to B0 moves the state of sv to the 
new value sv’ and returns the activity state to ‘null’. The 
accepting states for rp are states for which values of 
system variables are compliant with objectives. More 
details are available in [11]. 

3.3 Distributions for SVoI and transformations 

Software projects are characterised by many kinds of 
uncertainty. Some relate to issues of vagueness and 
ambiguity and include, for example, failure to clearly 
define objectives, lack of a clear specification and product 
complexity [4]. Others relate to human aspects and 
include factors such as the motivation, availability and 
capabilities of the project participants and shallow subject 
area knowledge [4]. Still others relate to the project 
environment and include factors such as dependence on 
external participants [5] and market change [9]. 



One problem resulting from this inherent uncertainty is 
that project planners cannot reliably predict outcomes, for 
example, relating to cost and quality, in a deterministic 
way. A common approach to this problem is to represent 
predictions by a prediction interval along with confidence 
level [12], [7]. This approach allows ‘best case’ and 
‘worst case’ scenarios to be explored. Another approach 
involves representing predictions as probability 
distributions and applying a stochastic approach to model 
the project [6], [7], [8]. In this approach, outcomes are 
also represented as probability distributions. 

 
Figure 3. Activities changing Effort with uncertainty 

For our framework, we represent a prediction of how an 
activity changes a SVoI as a probability distribution. In 
Figure 3, we again depict transformations on ’Effort’ 
when activities ‘Code’, ‘Unit test’, and ‘Fix defects’ are 
carried out.  

The end result for the system variable ‘Effort’ is a 
distribution that effectively represents the risk inherent in 
the prediction [6]. For example, a distribution skewed to 
the right alerts project management to the need to plan for 
higher levels of required effort [6]. Predictions supplied 
may be based on existing prior project data, expert 
opinion or evidence obtained from studies and formal 
experiments. Simulation occurs by a stochastic execution 
of the state machine described in the previous Section and 
the elements of the state vector sv are now represented as 
distributions rather than point values. We note that the 
choice of probability distributions for predictions 
provides us with flexibility, in that all of point values 
(single value), intervals (rectangular), worst-case 
(triangular), mean plus standard deviation (normal) and 
activity-specific (custom curve, as suggested by 
Kitchenham et. al. [7]) are supported. 

3.4 Framework and (re)planning properties 

We submit that the framework presented above 
effectively addresses all (re)planning properties described 
in Section 2. 

1) Organisational context: 

• Focus on objectives. Objectives are defined as ‘system 
factors of interest’ and operationalised as SVoI. 

• Product line management. SVoI have a specific state at 
project start as a result of previous projects. 

2) Process activities: 

• System perspective. Choice of objectives is 
unconstrained and multiple objectives may be considered. 

• RealisedProcess granularity. There are no constraints on 
the transformation size i.e. granularity is unconstrained. 

• RealisedProcess content. There are no constraints on the 
selection of objectives or transformation content. 

• RealisedProcess comparison. This is a straightforward 
comparison of the effects of transformations. We note that 
comparison is possible only if the compared 
RealisedProcesses transform the same SVoI [11]. 

3) Process management: 

• Policy support. System state is described by values of 
SVoI and activities may be defined to commence when 
these variables reach specific values. For example, a 
‘code’ activity may commence when a ‘design’ state is at 
80 percent or 100 percent. Policy and process are 
decoupled. 

• RealisedProcess monitoring. The state that describes an 
active activity accepts a ‘Perturb rp’ event which returns 
the activity value to ‘null’ and changes the SVoI to the 
values at the time of perturbation. 

• Planning uncertainty. Variables-of-interest and 
transformations are represented as probability 
distributions. 

 

4. PROOF-OF-CONCEPT CASE STUDY 

In this Section, we present a proof-of-concept case study 
to illustrate how the framework may be applied to support 
project management planning. For ease of illustration, we 
select a study that does not involve uncertainty. Data for 
the study is taken from a study by MacCormack et. al. 
[13].  

A project manager would like to increase customer 
satisfaction levels (objective) and, after interviewing some 
key customers, learns that quality is an issue. He is also 
interested in maintaining project expenditure at existing 
levels (objective). He decides to focus on increasing 
quality while maintaining cost levels (factors-of-interest). 
He finds a study in the literature that suggest that 
adopting a practice of integration or regression testing at 
code check-in is associated with a 36 percent reduction in 
defect rates and the introduction of design reviews is 
correlated with a defect rate reduction of 55 percent [13]. 
The organisation maintains a data repository for past 
projects and data includes effort and defect counts. He 
decides to focus on these for his investigation (SVoI). He 
understands from the repository that the expected effort 
for ‘design, code and build’ for his project is 2,000 person 
hours, duration is 25 weeks and the expected final defect 
count is 60. Developers advise that regression testing will 
incur a cost of 2 person hours per run. As the project 
currently carries out weekly builds, this relates to an 
additional cost of 50 person hours. Developers also advise 
that design reviews will add an overhead of 100 person 
hours. From the study, the manager learns that the 
introduction of daily builds is correlated with a 35 percent 
increase in productivity. He applies the framework to 
explore the trade-offs between expected productivity and 
defect levels when the various options are implemented. 



For this exploration, our SVoI are ‘Effort’ and ‘Defects’. 
We illustrate the various options in Figure 4. Starting 
values for ‘Effort’ and ‘Defects’ will be dependent on 
previous activities, but will be the same for all options. 
For simplicity, we assume zero starting values for both 
‘Effort’ and ‘Defects’. From the illustrations, we see that 
the choice between ‘Regression Testing’ and ‘Design 
Reviews’ is not clear cut. Although ‘Design Reviews’ 
provides a better outcome as regards defect totals, the 
expected effort is greater. The introduction of ‘Daily 
Builds’ alone reduces ‘as-is’ effort to 1,300 person hours. 
However, when combined with ‘Regression Testing’, the 
regression testing overhead is now 250 person hours, and 
so the option ‘Daily Builds plus Regression Testing’ has 
an expected effort of 1,550, while the ‘Daily Builds plus 
Design Reviews’ has expected effort 1,400. The manager 
realises that the objectives relating to quality and project 
expenditure can be met most effectively by introducing a 
regime of daily builds to control effort plus design 
reviews to increase quality. 

 

Figure 4. Exploring trade-offs 
 
5. RELATED WORK 

In this section, we overview some research aimed at 
supporting planning during software projects. We then 
compare models with our proposed framework using the 
desired (re)planning properties described above as 
criteria. 

5.1 Modelling and simulation 

The main source of related work is the modelling and 
simulation community. Software process simulation and 
modelling has become an “increasingly active research 

area” with growing numbers of publications and related 
activities [14]. Techniques applied include discrete-event 
simulation and system dynamics. 

In a discrete event simulation, discrete entities (‘units of 
traffic’) move (‘flow’) from point to point in the system. 
Entities instigate and respond to events (things that 
happen and change the state of the system). When this 
paradigm is applied to software development, the 
‘product artifact’ entities flow through process blocks. 
Reported limitations of this paradigm include an inability 
to model smoothly-varying aspects, for example, 
‘schedule pressure’, and the need to pre-define activities 
[15] i.e. a direct application of this paradigm would 
present difficulties if we want to change the process in a 
non predetermined way. 

In a system dynamics approach, a process is treated as a 
system with many feedback loops. System variables are 
represented as levels and these levels rise and fall 
according to flows created as a result of the effects of 
other ‘levels’. Feedback from individual flows is linear, 
and the total result for a level may be exponential 
increase, exponential decrease or oscillations depending 
upon the multiplication factors for the various flows. 
Variables thus change in a ‘continuous’ way and the 
approach is suitable for modelling, for example, 
developer motivation changing through long projects. 
One limitation of the approach is the inability to capture 
attributes for variables represented as ‘levels’, for 
example, the attribute ‘code complexity’ for level 
‘amount of completed code’ [16]. A second limitation is 
the need to change the model if the underlying process 
changes. 

The specific models overviewed below address the issue 
of flexibility by building processes from a number of 
predefined activity ‘building blocks’. 

Lakey [2] introduces a model to support software project 
prediction and management. The model is intended as a 
theoretical framework. It comprises four building blocks, 
‘preliminary design’, ‘detailed design’, ‘code and unit 
test’ and ‘subsystem integration and test’. In this 
framework, project-specific process models are built by 
creating an appropriate number of building blocks and 
calibrating the equations for each with project, process 
and product data from the project to be modelled. 
Examples of project factors included are ‘communication 
overhead’, ‘tool support’ and ‘skill levels’. Examples of 
process factors are ‘defects injected’ and ‘estimated 
calendar weeks’. Product factors include ‘size’ and 
‘quality’. A strength of this framework is the inclusion of 
cost, schedule and quality performance parameters in a 
holistic system as “the primary software project 
performance parameters of cost, schedule and quality are 
not independent, and they cannot be tracked and managed 
independently”. However, customisation is achieved by 
copying and renaming building blocks to achieve the 
correct process structure and then providing the relevant 
input values. This means that there is no possibility of 
representing any activities that do not comply with one of 
these blocks. We suggest that customisation thus refers to 
changing input values rather than changing the process. 
Another limitation is in the pre-definition of the factors 



that are believed to affect outcomes. The beliefs are 
effectively model assumptions. 

Munch applies a patterns approach to the development of 
custom-tailored process models [17]. He believes that 
“The development of high-quality software or software-
intensive systems requires custom-tailored process 
models that fit the organizational and project goals as well 
as the independent contexts” (page 1). In Munch’s 
solution, a process pattern is a reusable fragment of a 
process model that represents an activity. Patterns can be 
combined to represent combinations of process models. 
Information for each pattern includes attributes and a 
description of how attributes change when the pattern is 
applied, for example, causing a change to ‘reliability’ 
[17]. In this model attributes may relate to process state 
(for example, ‘not in maintenance activity’) or process 
goals (for example, ‘Maximal effort is less than 2000’). 
Required goals are thus modelled as restrictions on 
project attributes and include only those over which the 
project has control. This means that the model does not 
support SVoI such as ‘developer subject area knowledge’ 
and other human-related goals i.e. the model is fixed as 
regards inclusion of SVoIs. In addition, the rules for 
transformation form an integral part of the model i.e. 
assumptions are embedded in the model. 

Raffo et. al. describe an approach for creating 
Generalised Process Simulation Models (GPSM) [18]. 
The approach consists of constructing a process from a 
library of generic process building blocks, for example, 
relating to ‘Design’, configuring the inputs to blocks for 
specific environments and viewing outputs relating to 
time, cost, quality and functionality. Although the 
approach supports a degree of flexibility in process 
construction, there is an assumption of ‘traditional 
process’ and a restriction of outputs to those relating to 
time, cost, quality or functionality [19]. This means that 
the GPSM model as constructed cannot be used for 
simulating less traditional processes or for modelling, for 
example, the effects of ‘team meeting’ on ‘developer 
product knowledge’. The lack of a systems perspective 
also means that product line development is not 
supported. 

5.2 Other frameworks 

Several authors have proposed approaches that reduce 
risk by enabling a planner to select activities that will 
support organisational objectives. Models such as Spiral 
[20] and Rational Unified Process (RUP) [21] aim to 
address risk by facilitating flexibility as regards which 
development activities are performed. However, 
‘performing activities’ is the focus of interest for each and 
there is no concept of an activity being defined by how it 
transforms SVoI. 

Recent contributions from collaborations involving the 
University of Southern California include combining 
process elements [22], tailoring the process according to 
business cases [23], [9] and dealing with uncertainty by 
fixing the system variable ‘Schedule’ [9]. The underlying 
paradigm for these contributions is that of value-based 
engineering, where key mechanisms include 
understanding what is the key objective for a project from 

a value perspective (for example, cost, quality), selecting 
activities that will ensure the objective is reached in the 
most cost-effective way and monitoring the project to 
ensure both objective and activity selection remain 
appropriate. The modelling of objectives is not formalised 
and so the contributions support only a subset of the 
points described above. We do, however, note that the 
approach described in this paper supports the ideas of 
value-based software engineering [24] as the SVoI 
represent relevant values for a project and these can be 
monitored as the project progresses. 

 
Figure 5. Comparison of various planning modelling 

approaches 

Other tailoring approaches include Basili and Rombach’s 
approach for tailoring processes towards project goals and 
environments [25]. Again, a specific project objective is 
identified and activities selected that will ensure the 
objective is met. However, there is no provision for 
examining multiple project objectives and the framework 
upon which the approach is based contains a number of 
process-related assumptions that constrain flexibility. 

5.3 Practical application 

Rao et. al. report a successful implementation of an 
initiative to create a framework for quantitative project 
management [8]. Predictions relating to effort, quality, 
schedule and scope are sourced from company baseline 
capability reports and comprise distributions for each 
planned activity. The expected results from a project are 
obtained by applying a Monte Carlo simulation technique. 
Results are also distributions and are effectively “a 
function of all the distributions associated with each 
activity” [8]. Activities are selected to achieve results that 
best meet objectives. 

The described implementation provides an excellent 
example of a constrained implementation of the 
framework proposed in this paper. Constraints include the 
limiting of project objectives to those relating to effort, 
quality, schedule and scope and the assumption of 
normality for activity input distributions. The first means 
that objectives such as those relating to humans, for 
example, ‘motivation’, and economic value, are not 
supported. The assumption of normality is not consistent 
with the possibility that transformations relating to some 
activities may be better described by, for example, a 
Gamma distribution [7]. 



5.4 Comparison 

In Figure 5, we compare the schemes discussed in this 
section with respect to the desired (re)planning properties 
presented in Section II. 

It is evident that none of the models considered here 
supports a ‘system perspective’ i.e. objectives are either 
pre-defined or constrained. The lack of extensibility in 
objectives means that flexibility in ‘process content’ is 
not supported, for example, ‘team meeting’ cannot be 
modelled. Indeed, none of the models supports the 
introduction of new kinds of activity, for example, ‘test 
first design’ or ‘pair programming’. We also observe that 
decoupling of process and policy is not supported i.e. it is 
not possible to model, for example, ‘commence coding 
when designs are 80 percent complete’. 
 
6. DISCUSSION AND FUTURE WORK 

We have proposed a set of properties for models for 
software project (re)planning and a framework to support 
(re)planning based on these properties. One aspect of the 
framework, the provision of a distribution to describe the 
effect of a transformation on a system variable, has both 
practical advantages and disadvantages. A distribution 
effectively ‘wraps up’ all factors that might affect 
outcomes as a single curve. This means that, at the 
present time, when there is little evidence to support ideas 
about what are the key influencing factors, planners can 
supply curves based on their experience i.e. simulations 
can still take place without assumptions being embedded 
in the model itself. In cases where either suitable data or 
evidence does exist, the curves will be provided from the 
data or evidence. The source of the input distributions is 
irrelevant for the framework. One limitation of the use of 
distributions relates to the need for planners to supply 
mathematical distributions for each transformation and 
for each SVoI. To facilitate this, we are researching the 
application of a ‘fuzzy’ layer to provide a more friendly 
interface to planners while providing a distribution to the 
simulation engine. Another possible limitation relates to 
issues of sensitivity - it is not clear whether long process 
chains will be overly sensitive to the shape of curves early 
in the chain. This is an area for future research.  

Other immediate plans for the research are to further 
investigate the proposed properties with a view to 
understanding conditions of necessity and sufficiency and 
to implement the framework as a basis for studies within 
the local community of small to medium sized software 
organisations. 
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