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Abstract 

In New Zealand all land mammals (except bats) were introduced through human 

migration. These animals mostly came to the country as pets, or were introduced for 

economic reasons. Currently there is a huge problem with these introduced species. 

Currently species recognition is one of the key methods to understand and control certain 

animal in an area. This thesis investigates three existing techniques for recognising 

possum and cat. These techniques Eigenface, Fisherface and Support Vector Machine 

(SVM) are a novel application in animal recognition domain. When these techniques are 

trialled with possum and cat images, recognition rates are not acceptable for application. 

To improve the recognition rate a few methods are investigated. They are different colour 

schemes, different image resolutions and finally an error weight-based algorithm to 

measure the distance between average image and test image for the Eigenface technique. 

This developed technique produced favourable results for possums and cats detection. 

This new technique is compared with typical Eigenface, Fisherface and SVM techniques 

to investigate its performance. To further investigate, the developed algorithm is tested 

with dogs to check the performance with other animal species. Results show that there is 

an acceptable separation, with this multiclass problem. The performance (class 

separation) is analysed using the Receiver Operating Characteristic (ROC) method. This 

method provides a unique way to compare the class separation of the above three 

techniques.  

Finally, a ROC-based feature selection method is developed to use with Principal 

Component Analysis (PCA), Fisherface and SVM techniques. This new technique helps 

to find the optimal dataset for training the above techniques. Lastly one of the main 

challenges to this investigation was the limited availability of training images for the 

algorithms. Due to the prohibitive cost of animal ethics approval, the training images were 

obtained from the internet. Hence all developed identification algorithms were optimised 

for small training sets. 
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Chapter 1  
Introduction 

1.1 Research Motivation 

The research presented in this thesis was motivated by a desire to develop a species 

recognition algorithm for resettable traps using species identification-techniques in New 

Zealand. Classical pest-control techniques are currently used to identify the pest 

population in New Zealand forests. The New Zealand Department of Conservation (NZ-

DOC) aims to identify pests before setting the traps, and to collect pest-population 

information regarding certain types of pests. The main objective of this research was to 

design and develop a robust vision system, which can be used to identify animals in real 

time in different environmental conditions. 

The New Zealand government invested NZ$4 million in 2010 to introduce and carry out 

extensive research on self-resettable trap technologies [1]. Self-resettable traps have been 

introduced and trial runs have been and are still carried out. However, a major 

disadvantage of the current technology is that it does not identify the species trapped 

before it activates the killing mechanism. Therefore, such traps could kill any species 

which goes into these traps.  

At present NZ-DOC spends about NZ$20 million a year in controlling possums and 

ground-based pests like rats and stoats [1]. This money is mainly spent on traditional traps 

and maintenance. There is currently huge public opposition in New Zealand to using 

present pest-control practices such as sodium fluoroacetate (NaFC2H2O), known in 

pesticide form as 1080 drops, which is biodegradable. 

The main motivation for this research is therefore to develop an intelligent alternative to 

existing animal-trapping technologies and other pest-control techniques. This research 

has developed an image-based set of algorithms, which could be used to help identify 

NZ-DOC recognized targeted pests such as feral cats and possums. This alternative 

solution presented in this thesis can recognize and classify and determine the animal as 

whether it is a targeted species or not.  
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1.2 Research Objectives 

The main research objective was to develop a suitable algorithm to detect small animals 

such as cats and possums found in New Zealand. Currently literature has shown there is 

limited knowledge regarding identifying small animals with most current investigations 

are generally focused on large animal identification [2-5].  

By developing an algorithm, the major challenge would be to make it compatible with an 

embedded system such as Raspberry PI or a similar device. The main performance 

indicator will be the execution time of the algorithm, which is dependent on the 

complexity of the algorithms code along with the image pre-processing tasks. By 

implementing the system, the total processing time of the algorithm will determine the 

captivation time of the animal. 

Another main challenge of this research was the limited number of usable training images 

on targeted species. So, the aim of this research was to develop species identification 

algorithms that will work with smaller training sets, this was due to the prohibitive cost 

and time of animal ethics approval at Auckland University of Technology and so all the 

training images were obtained from internet. 

Lastly, all the developed algorithms were benchmarked against existing algorithms to 

investigate performance and determine how well the targeted species classes are able to 

be separated. 

1.3 Thesis Organisation  

This chapter provides a brief background of the research problem, highlighting the need 

for animal identification system to identify small-animal pests in New Zealand and 

introduces the challenges that arise during then investigation. 

Chapter 2 presents a detailed literature review which covers the developments in animal 

identification systems and related work in other research areas. This chapter also presents 

the fundamental theories used for the techniques that have been applied in the during this 

research. 

Chapter 3 describes the pre-processing stages of the training and test images. It outlines 

the standard deviation-based edge detection technique and Hough transform circle 



3 

detection-based eye detection techniques that were used to correct the head orientation of 

small animals. 

In Chapter 4 the Eigenface technique is investigated in relation to cat and possum 

identification. The performance of this technique is improved by the development of a 

novel eigenvalue-based distance formula. Identification is further improved by 

introducing an error weight-based classification technique. This chapter also describes 

the use of multivariate Bayesian decision theory based on classifiers for the Eigenface 

technique. The Eigenface performance improvement is demonstrated by optimising the 

resolution of test and training images and the colour scheme. 

Chapter 5 defines the use of Fisherface technique for cat and possum identification. This 

chapter investigates species class separation by grayscale colour schemes and image 

resolutions. It also compares different colour schemes and image resolutions against 

operation time to find the optimal resolution and colour scheme. 

Chapter 6 focuses on the use of support vector machines (SVMs) for cat and possum 

classification. The SVM technique’s applicability to the novel application is investigated 

and the integration of principal component analysis (PCA) into SVM to improve the 

classification rate is described. 

In Chapter 7 comparisons are made between the standard Eigenface technique; the 

standard Eigenface technique with the developed distance algorithm; the standard 

Eigenface technique with the developed distance algorithm and error weights; the 

Fisherface technique; and the SVM technique under fixed operating conditions. This 

chapter also explains the use of receiver operating characteristic (ROC) curves to analyse 

the performance of each technique under fixed operating conditions. 

Chapter 8 describes the novel ROC-based face feature selection technique. This novel 

technique helps to identify critical face features from all the measured features. These 

critical face features enable typical discrimination techniques such as PCA, Fisherface 

and SVM to better separate animal species in high dimensional space. 

Chapter 9 presents the conclusions of the research and makes recommendations for future 

work. 
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1.4 Contributions of the thesis 

The main contributions of this study are listed below: 

1. To correct animal head orientaton, a Hough transform-based eye detection method 

was developed.  This technique is based on the standard devation-based edge 

detction technique.  The standard devaion-based image is sliced into separate 

images depending on the grayscale value and then Hough tranform-based circule 

detection is used to identify the eyes.  Each separate image (sliced sub-image) 

consists of same circular patten for the pair of eyes. 

2. An improved Eigenface classification algorithm.  The developed distance formula 

calculates the distance from the training faces to the test image with respect to the 

eigenvalues.  Previous researchers have found that eigenvectors with large 

eigenvalues produce poor results and therefore have tended to remove such 

eigenvectors.  But these eigenvectors contain some useful training face features 

buried under background and light information.  The developed distance formula 

takes such eigenvectors into the distance calculation; their effect is inversely 

proportional to the size of the eigenvalue. 

3. Introduction of error weights to the Eigenface technique with distance algorithm.  

In this method, the test image is reconstructed with training weights.  Then the 

difference is measured from actual test image and the reconstructed test image.  

The difference vector is added as a new eigenvector with projected new 

eigenvalues from the existing eigenvalues.  This approach improved the 

performance of the standard Eigenface technique significantly. 

4. A ROC-based feature selection method for the PCA, Fisherface and SVM 

techniques.  This technique improves the species seperation dramaticially 

compared to  existing image-based techniques.  This represents a addition to 

existing discrimination techniques. 

5. Finally, all the Eigenface, Fisherface and SVM aplications used in this research 

are novel in the animal detection domain.  To the best of the author’s knowledge 

these techniques have not been applied in this domain before. 
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This research has resulted in the publication of three international journal papers and one 

IEEE conference paper, listed below:  

[1] T. A. S. A. Perera and J. Collins, “Novel Embedded System Based Species 

Recognition System for Pest Control” International Journal of Computing and 

Digital Systems, vol.  5, pp.  387-393, September 2016. 

[2] T. A. S. A. Perera and J. Collins, "Image Based Cats and Possums Identification for 

Intelligent Trapping Systems," International Journal of Computer Applications, 

vol.  159, pp.  12-18, February 2017. 

[3] T. A. S. A.  Perera and J. Collins, "A Novel Eigenface based Species Recognition 

System," International Journal of Computer Applications, vol.  115, pp.  19-23, 

April 2015. 

[4] T. A. S. A. Perera and J. Collins, "Image Based Species Recognition System," in 

2015 9th International Conference on Sensing Technology (ICST), Auckland 2015, 

pp.  195-199. 

[5] T. A. S. A. Perera, J. Kilby, “Receiver Operator Characteristics (ROC) Based, 

Feature Selection Method for PCA, Fisher and SVM Techniques for Limited 

Number of Training Data Applications”, IET Image Processing, (Submitted on 

March 2019) 
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Chapter 2  
Literature Review 

2.1 Problem and History 

New Zealand is a country that has a considerable amount of endangered animal and plant 

species.  Before the arrival of humans, native species had evolved for millions of years 

without any predators.  This lack of predators led to the evolution of many flightless bird 

species, such as the kiwi, kakapo, and takahē.  Similarly, native vegetation such as fern, 

kowhai, rātā, kohekohe, tawa and tōtara that have soft succulent leaves without any spikes 

or barbs. 

2.2 Effect of Possums 

In 1837 the native Australian bush possums (Trichosurus vulpecula), were first 

introduced to New Zealand for developing a fur trade.  Between 1837 and 1922 there 

were 30 different possum batches imported and released into the wild.  It is estimated that 

possum population had expanded across 54% of the country by 1948–50, 84% by 1961–

63, 90% by 1974 and 91% by 1980 [6], shown in Figure 2.1.  According to a 2008/09 

Landcare Research survey, there are about 30 to 48 million possums in New Zealand [7]. 
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Figure 2.1: Possum introduction and subsequent spread [8] 

Adult possums typical size is between 65 cm and 95 cm in length and weight between 1.4 

to 6.4 kg [8].  Their typical appearance is a thick, bushy tail, a pointed snout and long 

fox-like tapering ears and generally have two colour form, grey and black, shown in 

Figure 2.2.  Forestry is their main habitat, especially hardwood mixed forests, where 

possum populations are particularly high.  Possums are nocturnal and mainly feed on 

leaves, but they also devour buds and flowers, fruits, ferns, bark, fungi, invertebrates, 

native birds, eggs, snails and carrion.  The total New Zealand possums population eats on 
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average about 12,000 tonnes of vegetation per day [9] and also birds and other insects are 

approximately 4.5% of their diet [8, 10]. 

 

Figure 2.2: Black Possum (left) and Grey Possum (right)  

Possums in Australia face natural threats such as dingoes, owls and bush fires, and deal 

with spiky, less palatable vegetation which keep the possum population under control.  

Compare this with the New Zealand environment, where the possums have no natural 

predators and plenty of palatable vegetation.  Hence there has been excessive growth in 

the possum population, which has a huge impact on New Zealand ecosystems over the 

years. 

Possums are a serious problem in New Zealand for two main reasons: (a) damage to native 

ecosystems; and (b) the spread of bovine tuberculosis (BTB) [11].  They also destroy 

pasture, crops, commercial forests, soil conservation plantings, home gardens, and 

contribute to the spread of waterborne diseases such as giardia and cryptosporidium [11]. 

Possums are destroying New Zealand’s native ecosystems mainly through selective 

grazing, which can eliminate species such as rata, kamahi and mistletoe from the forest 

which reduces the main food source for native species.  Possums also feed directly on the 
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eggs of New Zealand’s native birds and on native invertebrates, and compete with kiwis 

for nest sites [11]. 

Possums contribute to BTB by acting as carriers of the disease, on average about 2% of 

possums are infected with BTB [12].  The occurrence of BTB among cattle increased 

from 1980 to 1994, but after the introduction of stringent livestock movement practices 

and increased possum control from 1994 to 1999, the number of affected herds decreased 

by 53% for cattle and 58% for deer [11-13]. 

The New Zealand Animal Health Board (NZ-AHB) has estimated that the potential cost 

of BTB, if not appropriately controlled, could be NZ$1.3 billion over 5 years.  This would 

include loss of expected earnings and additional BTB control measure costs.  From 1990 

to 1997 government investment in possum control measures increased from NZ$3.5 to 

NZ$30 million [11, 13].  In 2006 NZ-AHB alone spent about NZ$60 million on 

controlling possum and an additional NZ$27 million on research on new technologies, 

herd testing and compensation [12].  In  the same year government agencies spent about 

NZ$111 million in possum control [12]. 

In New Zealand the task of possum control is spread across three departments: NZ-AHB, 

NZ-DOC and regional councils.  The other stakeholders are private individuals and 

companies.  Figure 2.3 shows how the funding is divided. 

 

Figure 2.3: Possum control funding in New Zealand for 1998/99 [11] 
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Currently the most effective method of possum control is the use of toxic baits, which are 

the subject of huge public opposition.  A range of toxic bait formulations are available, 

containing one of the six poisons currently registered for possum control: 1080, 

phosphorus, cholecalciferol, cyanide, brodifacoum, or pindone [14]. 

1080 is the most widely used poison (in carrot, cereal and paste baits) for situations where 

possum numbers need to be reduced rapidly over large areas.  Carrot baits are screened 

to remove small pieces so as to reduce the risk of birds eating baits [14].  Cereal baits are 

used for both aerial and bait station control [14].  Paste baits are used extensively for 

ground-based follow-up maintenance control [14].  Cinnamon is sometimes added to 

possum baits to act as a lure and mask the taste of 1080 [14].  The toxin is an odourless, 

non-volatile, virtually tasteless, fine white powder which absorbs water from the 

atmosphere and becomes sticky.  It acts by disrupting the respiration process or the energy 

pathway in the body, causing possums to die humanely from rapid cardiac or respiratory 

failure [6]. 

There are several advantages of using 1080 to control possum numbers, compared to other 

toxins.  It is proven that 1080 is highly effective in gaining vigorous control over possum 

population.  It is one of the registered toxins for aerial broadcast in mainland.  1080 is 

biodegradable in the environment, and insignificant levels of the toxin have been found 

in waterways after mass 1080 drops [13-15].  Residues in sub-lethally poisoned animals 

do not have prolonged persistence.  1080 is a broad-spectrum toxin, which can be 

effective in other rodents.  Due to the extensive use of 1080 over the past decades, there 

is also a large amount of literature which can be used to optimise the application rates and 

amounts for optimal possum control [14, 15]. 

One of the drawbacks in using 1080, currently there is no effective antidote and there is 

also a high risk of secondary poisoning, especially for dogs.  Also possums can develop 

a bait shyness if they receive a sub-lethal dose and there are also concerns about 

humanness of poisoning [14]. 

Compared to other countries, New Zealand is unique in not having native mammals apart 

from bats, while having a large population of introduced, highly destructive mammalian 

pests.  While 1080 has been the choice of possum control for the past two decades [15], 

NZ-DOC is presently researching new techniques such as self-resettable smart traps and 

genetic techniques.  However today aerial drops of 1080 remain the most effective 

technique for large scale or fast response possum control [15]. 
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2.3 Effect of Cats 

Cats (Felis catus) were introduced by Captain James Cook around 1769 and later by 

whalers and sealers [16], did not become common till the 1830s.  Cats were mainly used 

to control the exploding rabbit population, and in the 1870s large quantities were released.  

As the feral cat1 population increased, however, the native bird population disappeared 

in areas such as Little Barrier, Cuvier Island, Stephens Island and Herekopare Island in 

New Zealand [16].  To take just one example, the only known bird specimens of the 

Stephens Island wren were caught by a lighthouse keeper’s cat in 1897 [17]. 

Feral cats mostly live in mountains, along the coast, bush, scrub and on farmland.  Unlike 

possums, their main feeding source is young rabbits, rats and mice, but also native birds, 

lizards and larger insects.  Typically 12%–15% of their diet is made up of birds, lizards 

and insects [16, 17].  The average adult cat weight is between 3.6 kg and 4.5 kg [18], with 

a head-to-body length averaging around 46 cm and tails averaging 30 cm in length.  Feral 

cats effectively can maintain the rodent population [17]. 

Typically, it is difficult and very expensive to remove cats from the forest.  Compared to 

possums and other animals, cats are more intelligent and shyer.  As an example, it took 

128 people, and about 400 days, to remove just 100 cats from Little Barrier Island in New 

Zealand [16]. 

As domestic pets, cats are the number one choice for households in New Zealand and 

undeniably offer significant benefits to their owners and society as a whole [19].  But 

feral cats, on the other hand, are connected with animal welfare concerns and danger to 

native wildlife and protected habitats [20].  The feral cat population is therefore identified 

as a significant problem in New Zealand [21].  Low population numbers of feral cats 

population can be devastating to the native wildlife [22].  One study discovered that, 

around New Zealand cities, domestic and feral cats are hampering the persistence of the 

bird population [23].  There are urban regions around Auckland that have substantial areas 

of forest and bushland such as the Waitakere and Hunua Ranges, where nearby urban and 

feral cats pose a great risk to the native bird populations.  So, New Zealand policymakers 

 

1 A feral cat is a domestic cat that lives outdoors and has had little or no human contact. 
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have recently made environmental protection and conservation a priority and placed high 

importance on managing the impact of feral cats [24]. 

Similarly, local authorities are currently introducing new bylaws to limit the number of 

cats per house and also improve accountability of ownership by tagging and registration 

[25].  When human care is lacking, cats naturally become stray due to their nutritional 

and reproductive requirements [26].  As cats can transition to the feral state within one 

generation [27], the best way to limit the population to increase is by limiting the breeding 

population.  Due to lack of lethal control, the best method to control the urban cat 

population is by early sterilisation (pre-pubertal) [28], where New Zealand’s pet cat 

population has a high rate of sterilisation compared to other countries (87%–91.7%) [21] 

with room for improvement, especially as there is very little information about the urban 

feral cat population.  The second most effective technique is educating owners about cat 

care and sterilisation [29].  Since there is limited public funding available in New Zealand 

to promote sterilisation and ownership obligation education.  There is a need to provide 

a forum where owners can access important information on urban and feral cat 

management and its impact on New Zealand’s ecosystem. 

2.4 Current Control Measures and Limitations  

Classical pest control techniques are currently used to identify the pest population in New 

Zealand forests.  NZ-DOC’s main objectives are to identify and collect population 

information of pests before setting the traps these types of pests.  Existing animal 

detection technologies are time-consuming and costly. 

Species recognition is an area in which only a limited research has been carried out.  In 

the pest control domain basic primitive technologies are still in use today.  One example 

of identifying species is a tracking tunnel using ink paper [30] in order to identify, 

understand and study the species in a given location, shown in Figure 2.4. 

Once NZ-DOC has gained knowledge on the pest population for a given location, pest 

control traps can be placed to control the population.  The major disadvantage of using 

this approach is that the traps do not have the ability to distinguish the targeted pest from 

another species.  The only means of avoiding killing the wrong animal is by using the 

appropriate bait and lure [14].   
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Clearly, this method is not optimal, and a small number of New Zealand native bird 

species can be affected such as Kea, weka, tomtits and robins are known to be prone to 

eat baits and die.  The approach for minimising such an outcome is to use less palatable 

baits and avoiding open locations to minimise any potential ‘by-kill’ from these species 

[15, 31]. 

 

Figure 2.4: Mouse footprints [30] 

Recently, self-resettable traps have been introduced and trials have been carried out by 

NZ-DOC.  The New Zealand government has invested NZ$4 million to introduce and 

carry out extensive research on self-resetting trap technologies [32].  Resettable trapping 

technology has the potential to be a far more effective technique for trapping pests with 

minimal environmental effects.  The main advantage of this technology is, it kills the 

target pest humanely within 3 minutes, as legally required by the New Zealand Animal 

Welfare Act 1999 [33].  Almost all the existing spring-loaded traps fail to kill within legal 

time period from capture.  The aim of this research was to find a suitable algorithm to 

identify the main targeted species of cats and possums. 

2.5 Current Technologies of Small Mammals Detection 

One of the main methods of identifying small mammals is by their footprint, where 

animals firstly walk through an ink well and then walk over white paper, which records 
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the footprint information, shown in Figure 2.5.  Numerous research studies have been 

carried out to correlate the footprint information to actual species [33-35]. 

 

Figure 2.5: Tracking tunnel with tracking card [35] 

Typically, this type of research is carried out by scanning the tracking card and using a 

pattern detection algorithm to extract the actual footprint from the background [35].  To 

attract the animals into the tunnels, lures are used [35, 36].  Both Yuan’s [36] and James’s 

[35] studies use the technique of identifying footprint patterns by crosschecking against 

an existing footprint database.  If any entry is matched with existing data, the animal can 

be identified. 

Another method of identifying small mammal is by measuring the distance between toe 

marks [34].  In this method, scanned footprints are extracted and then the distance 

between each artefact is measured, which enables thee animal to be identified, shown in 

Figure 2.6. 

 

Figure 2.6: Measured footprints [34] 
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A limitation of footprint recognition systems is that they tend to be post-processors and 

as a result cannot be used with resettable trapping technology.  The main drawback of 

this method is that the animal footprints are not always clear.  Due to environmental 

conditions, the footprints may include other particles that may mislead the identification 

system and hence such a system is not suitable for real-time, remote applications. 

2.6 Computer Vision for Human Face Recognition  

Human face recognition is one of the fastest-growing areas in image processing.  The 

face-recognition algorithms can be categorised into three main categories: feature-based, 

holistic and hybrid approach [34-36].  The feature-based method focuses on extracted 

features such as skin colour, distance between facial features and special patters.  Holistic 

approach uses predefined standard face patterns.  Hybrid-approach use representations of 

local face parts [34, 36, 37]. 

Since there are numerous face recognition algorithms available with their modifications, 

it is more meaningful to tabulate current research.  Table 2.1 provides a summary for each 

of the following: 

a) Method used 

b) Explanation of the method 

c) Advantages/Limitations of the method 

d) Database used 

e) Accuracy of the method 
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Table 2.1: Comparison of Face Recognition Algorithms 

Method Explanation Advantages Limitations Database Accuracy References 

Bayesian Model Uses a probabilistic measure 
of similarity based primarily 
on a Bayesian (MAP2) 
analysis of image differences. 

Error rate is 
minimised compared 
to PCA and LDA. 

Computationally 
costly. 

DARPA3 
and FERET4 

95% [38, 39] 

Discrete wavelet 
transform-based 
feature 
extraction for 
hyperspectral 
face recognition 

This method uses a three-
dimensional discrete wavelet 
transform to extract features 
from facial hyperspectral 
images and decomposes 
hyperspectral images into a set 
of spatio-spectral frequency 
sub-bands. 

Under different test 
scenarios revealed 
that accuracy of this 
methods is superior 
to alternative 
methods using 
spatio-spectral 
classification. 

Not stated. PolyU5, 
PIE6 and 
UWA7 

PolyU 
96.66% 

CMU 
98.61% 

UWA 
98.28% 

[40, 41] 

 

2 Maximum A Posteriori Probability 
3 Defense Advanced Research Project Agency  
4 Face recognition technology database  
5 The Hong Kong Polytechnic University (PolyU) NIR Face Database 
6 The CMU Multi-PIE Face Database 
7 UWA Hyperspectral Face Database 
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Table 2.1 (continued) 

Method Explanation Advantages Limitations Database Accuracy References 

Embedded 
Hidden Markov 
Model (HMM) 

This model inherits the partial 
size invariance of the standard 
HMM, and, due to its pseudo 
two-dimensional structure, 
can model two-dimensional 
data such as images, better 
than the standard HMM. 

Flexible with image 
variations in scale, 
natural 
deformations. 

Fast training and 
recognition 
algorithms. 

Numerically 
complex compared 
to Hidden Markov 
Model. 

ORL8 98-100% [42] 

Fisherfaces This method maximizes the 
ratio of between-class scatter 
to within-class scatter.  
Fisherface is one the most 
successful widely-used 
method for face recognition. 

Perform well in 
varying lighting 
conditions and facial 
expressions. 

Requires lager 
number of training 
images and more 
processing time in 
recognition compare 
to Eigenfaces. 

Yale9 Not stated [43-45] 

  

 

8 The ORL Database of Faces 
9 Yale Face Database 
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Table 2.1 (continued) 

Method Explanation Advantages Limitations Database Accuracy References 

Gabor filter-
based feature 
extraction 

Garbor filter is used to capture 
faces aligned at specific 
angles.  Binary Particle 
Swarm optimisation is used to 
find the optimal feature 
subset. 

Superior 
performance in 
presence of pose, 
illumination and 
expression variations 
conditions. 

Not suitable for real 
time applications. 

ORL, 
FERET, 
Yale and 
FEI10 

ORL 76.84% 

FEI 81.20% 

[46, 47] 

Laplacianface Laplacianface technique aims 
to discover local structure of 
the manifold. 

Eliminates or 
reduces unwanted 
variations resulting 
from changes in 
lighting, facial 
expression, and 
pose. 

Require frontal face 
images. 

Need large amount 
of training images. 

Yale 

 

PIE 

Yale 11.3% 
error rate 

PIE 4.6% 
error rate 

[45, 48] 

  

 

10 FEI Face Database Brazilian face database 
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Table 2.1 (continued) 

Method Explanation Advantages Limitations Database Accuracy References 

Local Binary 
Pattern 

The operator assigns a label to 
every pixel of an image by 
thresholding the 3 × 3 
neighbourhood of each pixel 
with the centre pixel value and 
considering the result as a 
binary number.  Then, the 
histogram of the labels can be 
used as a texture descriptor. 

Local Binary Pattern 
is robust to 
challenges caused by 
lighting changes or 
aging of the subjects. 

The performance is 
low compare to the 
other techniques. 

Performance can be 
improved by 
introducing CNN11 
[49]. 

FERET 85% 

97.75% with 
CNN 

[49, 50] 

  

 

11 CNN Convolutional Neural Network 
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Table 2.1 (continued) 

Method Explanation Advantages Limitations Database Accuracy References 

Low-Power 
Convolutional 
Neural Network 
Face Recognition 

System consists of two chips: 
an always-on CMOS12 image 
sensor-based face detector and 
a low-power CNN processor 
for face verification. 

System consumes 
very low power level 
to evaluate images. 

Image sensor end 
still has many 
challenges on its 
robustness, 
scalability, and 
applicability for 
more advanced 
detection algorithms. 

LFW13 97% [51, 52] 

  

 

12 CMOS Complementary Metal–Oxide–Semiconductor 
13 Labelled Faces in the Wild face database 
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Table 2.1 (continued) 

Method Explanation Advantages Limitations Database Accuracy References 

Principal 
Component 
Analysis 
/Eigenfaces 

Seek a low-dimensional 
representation that maximise 
the global scatter of the 
training samples. 

Raw intensity data 
are used directly and 
recognition without 
any significant low-
level or mid-level 
processing. 

No knowledge of 
geometry and 
reflectance of faces 
is required. 

Serious limitations 
of Eigenface 
representation 
method for face 
recognition under 
different conditions 
such as (varying 
illumination 
conditions and head 
orientations). 

Affected by image 
size changes. 

Yale Not stated [44, 53-56] 
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Table 2.1 (continued) 

Method Explanation Advantages Limitations Database Accuracy References 

Scale Invariant 
Feature 
Transform with 
Multi-Directional 
Multi-Level Dual 
Cross Patterns 

The partial face recognition 
using Scale Invariant Feature 
Transform technique is 
combined with multi-
directional multi-level dual 
cross patterns technique.  The 
robust point set matching is 
used to probe face image.  
PNN14 and K-NN15 are used 
for classification. 

Operates well with 
presence of 
occlusion, random 
partial crop, 
illumination, pose 
and exaggerated 
facial expression. 

Very time 
consuming when 
there are large 
number of subjects 
and number of image 
samples for each 
subject. 

AR16, Yale, 
LFW, 
Pubfig17, 
EURECOM 
Kinect Face 
Database 
and ORL 

98.33% [57, 58] 

 

 

14 PNN Probabilistic Neural Network 
15 K-NN K-Nearest Neighbor 
16 AR Face Database computer vision centre Ohio State University  
17 Public Figures Face Database 
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2.7 Computer Vision for Animal Detection  

Image processing-based technology is improving due to development of new cameras and 

smartphone-based video applications.  The OpenCV source image processing toolbox 

[59] has played a major part in this advance, which started in the mid-1990s and it now 

contains more than 2500 image processing algorithms.  This image processing toolbox 

has been widely adopted by major global companies like Google, Yahoo, Microsoft, Intel, 

IBM, Sony, Honda and Toyota, and is compatible with all major operating systems [59]. 

There are few systems available for animal identification, such as camera taps [60-64], 

image based livestock health monitoring systems [65-67] and motor vehicle manufactures 

to improve the driver assistance systems [68].  Mainstream vehicle manufacturers, such 

as Audi, BMW and Daimler are developing animal detection for driver assistance and 

warning systems [68], which use far infrared (FIR) cameras to detect animals, shown in 

Figure 2.7.  They have been trained using thousands of hours of FIR videos of animals 

worldwide and mostly concentrates on detecting large animals like deer, horses and 

moose. 

 

Figure 2.7: Examples of FIR images of deer in various poses and angles [68] 

Identification of individual livestock has become a problem in recent years as farming 

technologies continue to be improved to find a precise objective measurement are 

required e.g.  weight.  Currently use of RFID tags are common method of identifying each 

individual animal, which is time-consuming for the farmer and distressing for the animal.  

To tackle this problem, non-invasive biometrics techniques are used to identify each 

individual animal by their face [69].  Image based animal health monitoring, such as 

lameness detection based on posture is becoming another popular area of research [65-

67]. 
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Animal identification based on based on camera-traps is becoming more desirable as the 

camera technology and image processing techniques continue to improve.  This type of 

animal monitoring technique is proven to be useful in ecological, conservation and 

behavioural research [5, 63, 70] and has proven to be non-invasive to behaviour of the 

animal in their natural habitat [71] and provides a way to collect large amount of data [5, 

61, 63, 64].  The main drawback of this technology is pre-processing task of selecting 

useful images from large number of recordings, various research studies [5, 61, 63, 64] 

found this process is challenging and unacceptably time-consuming, and also it was 

difficult to get a sufficient number of images, of targeted species [63]. 

Ramanan, Forsyth and Barnard [4] used pictorial structures to identify larger animals 

from video footage, where they divided the animal into number of pictorial 

representations such as rectangle structures.  The configuration and orientation of these 

rectangle members of the animal can be used to identify it, shown in Figure 2.8.  They 

then expanded their research to animal texture detection and developed a library of animal 

textures.  By incorporating texture detection with pictorial representation, the accuracy of 

the system was improved [4, 72]. 

 

Figure 2.8: Pictorial representation of a giraffe 

Burghardt and Calic performed animal face detection and animal tracking using similar 

techniques as those used for human face detection [60, 62].  They used a combination of 

several techniques to identify lion faces.  Their detection strategy is based on the Viola-

Jones detector technique [73].  Haar-like features [74] and AdaBoost are integrated into 

their system for smooth and accurate tracking [60, 62].  These human face detection 

techniques can be used in the animal recognition domain reasonably accurately.  
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According to their research, the detection rate for larger animals is high, shown in Figure 

2.9. 

 

Figure 2.9: Feature point stipulated in the centre of the detected region [62] 

Loos et al.  compared Eigenfaces, Fisherfaces, Laplacianfaces and Randomfaces 

approaches to identify individual great apes [75].  According to their finding with nearest 

neighbour classifier Laplacianface and Fisherface techniques had best accuracy 90% and 

85% respectively.  With SVM classifier Laplacianface, Eigenface and Randomface 

techniques had about 90% accuracy. 

Liu and Fu used an image of a pig for weight measurement [76].  To identify the pig 

dimensions (measurement points), Scale-invariant Feature Transform (SIFT) [76, 77] 

image processing technique was used, shown in Figure 2.10.  Using these measurements, 

a weight prediction algorithm [78] calculates the weight.  For a species recognition 

project, animal weight could be a good indicator to differentiate animals like possums, 

rats or kiwis.  By introducing these techniques, overall accuracy can be improved. 

 

Figure 2.10: Measurement point for pigs [76] 

Zhang, Sun and Tang used both texture and bodily features to detect larger animals like 

tigers, pandas, foxes, cats and cheetahs [2].  Their system uses the Histogram of Oriented 

Gradients (HOG) [79] to capture the shape and texture features on the animal’s head.  

Once fur texture and features are captured, brute force detection and deformable detection 

algorithms are used to effectively exploit the shape and texture features concurrently [2], 

shown in Figure 2.11.  The above research [2] shows promising results for animal 
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identification systems.  The combined approach of fur texture and face detection achieves 

the best animal identification rate. 

 

Figure 2.11: Shape (left) and texture detection (right) [2] 

Deep Learning is currently one of the fastest-expanding areas in machine learning and 

signifies a key part of innovation in image processing.  It is achieving extraordinary levels 

of accuracy, to the level where deep learning algorithms can beat humans at classifying 

images and can beat the world’s best GO player [80, 81].  Deep convolutional neural 

networks are commonly used to classify the camera trap animal images [5, 61, 71, 82].  

Tibor et al.  [83] experimental results show that the convolutional neural networks have 

a positive effect on overall animal recognition performance and outperforms PCA, LDA, 

LBPH and SVM techniques. 

2.8 Principal Component Analysis Technique 

Principal Component Analysis (PCA) is widely used and applied in different research 

areas and can be used effectively in image recognition and feature extraction [56].  The 

main reason for its popularity is the balance it offers between simplicity, speed of the 

algorithm, and usefulness of its results. 

If there are n spatially registered images each with n pixels for any given pair of 

coordinates (i, j), then these pixels can be arranged into a column vector, shown in Figure 

2.12. 
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Figure 2.12:  Stack of the same size images  

If the images are M × N, there will be M by N dimensional vectors representing all the 

pixels in the n images.  The mean vector (or mean face) mx given by equation (2.1) can 

be calculated. 

 
𝑚𝑚𝑥𝑥 =  

1
𝐾𝐾
�𝑋𝑋𝐾𝐾

𝐾𝐾

𝐾𝐾=1

 (2.1) 

where K = M × N  

The vectors covariance matrix Cx (n × n) can be calculated using equation (2.2). 

 
𝐶𝐶𝑥𝑥 =  

1
𝐾𝐾 − 1

�(𝑋𝑋𝐾𝐾 −𝑚𝑚𝑥𝑥)
𝐾𝐾

𝐾𝐾=1

(𝑋𝑋𝐾𝐾 −𝑚𝑚𝑥𝑥)𝑇𝑇 (2.2) 

where K − 1 is then used to obtain an unbiased estimation of Cx from the samples. 

Let A be a matrix whose rows are the eigenvectors of 𝐶𝐶𝑥𝑥, ordered so that the first row is 

the eigenvector corresponding to the largest eigenvalue, and the last row is the 

eigenvector corresponding to the smallest eigenvalue.  The principal components analysis 

can be expressed as: 

 𝑦𝑦 =  𝐴𝐴(𝑋𝑋 −𝑚𝑚𝑥𝑥) (2.3) 
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The rows of matrix A are the eigenvectors of Cx normalized to unit length.  Hence Cx is 

real and symmetric, and these vectors form an orthonormal set [84; Chapter 12]), it can 

be shown that: 

 𝑚𝑚𝑦𝑦 = 0 (2.4) 

therefore:  

 𝐶𝐶𝑦𝑦 = 𝐴𝐴𝐶𝐶𝑥𝑥𝐴𝐴𝑇𝑇 (2.5) 

Matrix Cy is diagonal, and it follows that the elements along its main diagonal are the 

eigenvectors of Cx.  The main diagonal element in the ith row of Cy is the variance of 

vector element yi, and its off-diagonal element (j, k) is the covariance between element yi 

and yK.  The off diagonals of Cy are zeros, showing that the elements of the transformed 

vector y are uncorrelated [84]. 

Since the rows of A are orthonormal, its inverse equals its transpose.  Therefore, X can be 

recovered by performing the inverse transpose, given by equation (2.6). 

 𝑋𝑋 = 𝐴𝐴𝑇𝑇𝑦𝑦 + 𝑚𝑚𝑥𝑥 (2.6) 

Instead of using all eigenvectors of 𝐶𝐶𝑥𝑥, matrix Ak from the k eigenvectors corresponding 

to the k largest eigenvalues, yielding a transformation matrix of order k × n.  Then y vector 

would then be k dimensional, and the reconstruction given in equation (2.6) no longer be 

exact but is an approximation [84, 85].  This method can be used for data reduction. 

2.9 Singular Value Decomposition 

Singular Value Decomposition (SVD) is another method used for data reduction and is a 

way of breaking down (decomposing) matrices into meaningful and manageable pieces.  

In other words, SVD takes a high-dimensional, highly-variable data set and reduces it to 

a lower-dimensional space that shows the main structure of the original data clearly, from 

most variation to least variation [86; Chapter 15, 87]. 
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The matrix A can be factorised as in equation (2.7). 

  𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 (2.7) 

where U and V are orthogonal matrixes and matrix D is diagonal with positive real values.  

The main diagonal of D holds what are called the singular values.  The m rows of U are 

called left-singular vectors and d rows of V are called right-singular vectors. 

SVD is defined for all matrices, whereas the most commonly-used eigenvector 

decomposition requires the matrix A to be square and certain other conditions to be met 

to ensure orthogonality of the eigenvector [86; Chapter 15], shown in Figure 2.13. 

1. The left-singular vectors of A are eigenvectors of AAT
. 

2. The right-singular vectors of A are eigenvectors of ATA. 

3. The non-zero singular values of A (can be found in diagonal entries of D) are the 

square roots of the non-zero eigenvalues of both AAT and ATA. 

A
n × d

U
n ×  r=

D
r ×  r

VT

r ×  d

 

Figure 2.13: SVD of matrix A 

2.10 Eigenface Technique 

The Eigenface technique is commonly used in human face recognition.  In a typical 

application, a training set is created with different human faces that need to be identified 

by the system.  The mean of the input face image is calculated, and the mean is subtracted 

from the training set images to obtain a mean-shifted training set.  This is known as 

normalising the training set.  For the mean-shifted training set, the eigenvectors with the 

largest eigenvalues are calculated.  These are known as the principal components and 

keep most of the facial features.  Finally, the Eigenface technique projects the mean-

shifted images into the eigenspace using the principal eigenvectors [45, 54, 55, 88]. 
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In this research eigenvectors are used to distinguish between cats and possums.  The 

Eigenface algorithm can be broken down into 6 steps [44, 54, 55, 88]. 

Step 1. Obtain an animal face training set I1, I2, ......., IM 

Step 2. Convert each image Ii into a vector Γi (convert the N × N image into an  

N2 × 1 vector) 

Step 3. Calculate the average animal face vector m: 

 
𝑚𝑚 =  

1
𝑀𝑀
�𝛤𝛤𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (2.8) 

Step 4. Subtract the average face from Γi to get Φi: 

  𝛷𝛷𝑖𝑖 = 𝛤𝛤𝑖𝑖 − 𝑚𝑚 (2.9) 

Step 5. Calculate the covariance matrix C: 

 
𝐶𝐶 =

1
𝑀𝑀
�𝛷𝛷𝑛𝑛𝑇𝑇𝛷𝛷𝑛𝑛 = A𝑇𝑇A
𝑀𝑀

𝑛𝑛=1

 (2.10) 

Step 6. Calculate the eigenvectors ei of 𝐴𝐴𝑇𝑇𝐴𝐴 [54] 

These are the same as M best eigenvectors from largest eigenvalues. 

Once the eigenvectors with large eigenvalues are selected, unknown images can be fed 

through the system for face recognition.  Before this, however, the input image needs to 

be normalised and demeaned18.  This process can be split into four steps for a given 

unknown image Γ [45, 55, 88]. 

  

 

18 Demeaning data is finding the mean and removing it from each value of the data, so the mean of the data will then have a zero 
value. 
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Step 1. Calculate  

  𝛷𝛷 = 𝛤𝛤 −𝑚𝑚 (2.11) 

Step 2. Calculate 

 𝛷𝛷� =  �wi

K

i=1

ui  �wi = uiT𝛷𝛷� (2.12) 

Step 3. Calculate Euclidean distance [54] 

  𝑒𝑒𝑑𝑑 = �𝛷𝛷 − 𝛷𝛷�� (2.13) 

Step 4. If 𝑒𝑒𝑑𝑑 < 𝑇𝑇𝑑𝑑 then Γ is a face 

l2 −norm19 is used to calculate the distance from mean image.  This distance is then 

compared against a known threshold 𝑇𝑇𝑑𝑑 value.  If the distance value is less than the 

threshold, the unknown input image is belonging to one of the training. 

2.11 New Developments on Principal Component Analysis/Eigenface 

Techniques 

Principal Component Analysis technique was used originally by L.  Sirovich and M.  

Kirby in 1987 [89] for face recognition and M.  Turk and A.  Pentland further develop 

this using the Eigenface for face classification [54, 55].  After an extensive research 

through the journal databases available at the Auckland University of Technology library 

for a 5-year period from 2013 to 2018, over 6,900 articles were found to be related to the 

topic of Eigenface.  Table 2.2 shows some of the most recently published papers related 

to PCA/Eigenface techniques.

 

19 The l2 −norm |𝑿𝑿| is a vector norm defined for a complex vector 

  𝑿𝑿 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

�   by    |𝑿𝑿| = �∑ |𝑥𝑥𝑘𝑘|2𝑛𝑛
𝑘𝑘=1   

 

http://mathworld.wolfram.com/VectorNorm.html
http://mathworld.wolfram.com/ComplexVector.html
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Table 2.2: PCA/Eigenface Based Face Recognition Literature 

Method Explanation Reference 

Joint Sparse Principal Component 
Analysis 

This method relaxes the orthogonal constraint of transformation matrix, by introducing 
another transformation matrix and imposing joint ℓ2,1 –norms on both loss term and 
regularisation term.  This method provides more freedom to jointly select useful 
features for low-dimensional representation and it is robust to outliers.  Feasibility and 
effectiveness are benchmarked on eight different datasets. 

[90] 

ℓ2,p  −Norm Based PCA for Image 
Recognition 

Wang et al.  used ℓ2,p −norm as the distance metric to measure reconstruction error.  
This method is robust for outlier and keeps PCA’s properties such as rotational 
invariance.  This technique is benchmarked with three different data bases and 
compared performance with PCA in papers [91-93] techniques. 

[94] 

Two-Dimensional Whitening of Face 
Images for Improved PCA 
Performance 

This method whitens the distribution of rows and columns of an image matrix.  
Proposed method two-dimensional whitening transform does not enforce any alteration 
covariance matrix.  Seghouane et al.  showed that rows and columns of front-pose face 
images are approximately normally distributed.  The performance is compared with 
paper [95] and had superior performance. 

[96] 
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Table 2.2 (continued) 

Method Explanation Reference 

Fractional Eigenfaces  Fractional Eigenfaces is method of feature-extraction technique for high-dimensional 
data.  This technique is an extension of paper [97], fractional PCA.  The performance is 
compared against fractional PCA and Eigenface technique with three different data 
sets.  It was found fractional Eigenface performs marginally better than the other two 
techniques. 

[98] 

Face recognition using Eigenface with 
Naive Bayes 

This describe the use of Naive Bayes [99; Chapter 2] for classifying to predict the face 
in conjunction with Eigenface features.  Proposed method improved the classification 
up to 70%.  By introducing normalised z-score the classification rate is further 
improved up to 89.5%.  Test and training images obtained from a digital camera and 
resized to 150 × 150 pixels. 

[100] 

Combined weighted Eigenface and BP-
based networks for face recognition 

In this paper test face image was divided into 9 sub blocks to reduce dimensions and 
computational complexity.  Different weights were allocated to different parts 
according to the sub blocks importance at the recognition stage.  As an example, on a 
human face key parts were enhanced.  With this method recognition rate was increased 
to 95.62% with ORL dataset and 93.33% with Yale data set. 

[101] 
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Table 2.2 (continued) 

Method Explanation Reference 

Sparse Approximation to the 
Eigensubspace for Discrimination 

Lai et al.  proposed as novel framework called sparse 2-D projections.  This method 
interactively learns the sparse projection matrix by using elastic net regression and 
singular-value decomposition.  Compared with existing-vector based sparse projection 
learning methods, proposed method saves both computation and memory costs.  
Proposed method achieved 97.33% recognition rate on Yale dataset. 

[102] 
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2.12 Fisherface Technique 

Similar to the Eigenface technique, the Fisherface technique is mostly used for facial 

recognition systems [44, 103-106], as well as fingerprint or eye iris recognition systems 

[107].  In recent times this technique has also become popular for commercial 

identification and marketing tools [108]. 

The Fisherface technique was developed in 1997 by Belhumeur [44] and is based on 

Fisher’s Linear Discriminant Analysis (LDA) [109].  This technique has a much lower 

error rate compared to the Eigenface technique [44, 45, 110] and operates well in 

situations where there are different illumination conditions and different facial 

expressions [44, 111]. 

LDA seeks directions that are efficient for discrimination between the data points.  It then 

maximises the between-class scatter matrix and minimises the within-class scatter matrix.  

This results in maximum separation in main direction high-dimensional space [109]. 

For human recognition, the Fisherface technique can be expressed mathematically as 

below, assuming: 

1. All the training images are square images with Width = Height = N 

2. M is the number of images in the database  

3. P is the number of different persons in the database  

For example, there are have two different classes with two images in each class:  

 

𝑃𝑃1,1 =  �

𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎𝑁𝑁2

�  𝑃𝑃1,2 =  �

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑁𝑁2

�  𝑃𝑃2,1 =  �

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁2

�  𝑃𝑃2,2 =  �

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁2

� (2.14) 

Then compute the average of all training faces: 

 
𝑚𝑚=

1
𝑀𝑀

 �

𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎𝑁𝑁2

+
+
⋮

+

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑁𝑁2

+
+
⋮
+

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁2

+
+
⋮

+

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁2

� (2.15) 
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Compute the average face of each class (person): 

 
𝑥𝑥 = 1

2
 �

𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎𝑁𝑁2

+
+
⋮

+

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑁𝑁2

�  𝑦𝑦 = 1
2

 �

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁2

+
+
⋮

+

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁2

� (2.16) 

Each class is normalised by subtracting class mean from the training images: 

 

𝑎𝑎𝑚𝑚= �

𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎𝑁𝑁2

−−
⋮
−

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁2

� 𝑏𝑏𝑚𝑚= �

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑁𝑁2

−−
⋮
−

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁2

� 

𝑐𝑐𝑚𝑚= �

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁2

−−
⋮
−

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑁𝑁2

� 𝑑𝑑𝑚𝑚 = �

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁2

−−
⋮
−

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑁𝑁2

� 

(2.17) 

By using equation (2.17) within class scatter matrix SW can be calculated: 

  𝑆𝑆𝑊𝑊 = �𝑎𝑎𝑚𝑚 ∙ 𝑎𝑎𝑚𝑚𝑇𝑇 + 𝑏𝑏𝑚𝑚 ∙ 𝑏𝑏𝑚𝑚
𝑇𝑇� + (𝑐𝑐𝑚𝑚 ∙ 𝑐𝑐𝑚𝑚𝑇𝑇 + 𝑐𝑐𝑚𝑚 ∙ 𝑐𝑐𝑚𝑚𝑇𝑇) (2.18) 

The between class scatter matrix SB can be calculated using training population mean: 

  𝑆𝑆𝐵𝐵 = 2(𝑥𝑥 − 𝑚𝑚)(𝑥𝑥 − 𝑚𝑚)𝑇𝑇 + 2(𝑦𝑦 −𝑚𝑚)(𝑦𝑦 −𝑚𝑚)𝑇𝑇 (2.19) 

In order to maximise the separation, the matrix, W needs to be maximised:  

 
 𝐽𝐽(𝑊𝑊) =

|𝑊𝑊𝑇𝑇𝑆𝑆𝐵𝐵𝑊𝑊|
|𝑊𝑊𝑇𝑇𝑆𝑆𝑊𝑊𝑊𝑊| 

(2.20) 

If SW is non-singular (M ≥ N2), the columns of W are eigenvectors of 𝑆𝑆𝑊𝑊−1𝑆𝑆𝐵𝐵. 

 𝑆𝑆𝐵𝐵𝑊𝑊𝑖𝑖 =  𝜆𝜆𝑖𝑖𝑆𝑆𝑊𝑊𝑊𝑊𝑖𝑖 (2.21) 
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The eigenvalues are roots of: 

 |𝑆𝑆𝐵𝐵 − 𝜆𝜆𝑖𝑖𝑆𝑆𝑊𝑊| = 0 (2.22) 

The eigenvectors are: 

 (𝑆𝑆𝐵𝐵 − 𝜆𝜆𝑖𝑖𝑆𝑆𝑊𝑊)𝑊𝑊𝑖𝑖 = 0 (2.23) 

If SW is singular (M < N2), a data reduction method such as PCA or SVD [112] needs to 

be used to reduce the N2 × M matrix to M × M.  Then LDA is applied as described in 

equations (2.15) to (2.23). 

Once W is calculated, faces can be projected onto the LDA-space (Fisherface): 

  𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿= 𝑊𝑊𝑇𝑇𝑥𝑥 (2.24) 

 𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿= 𝑊𝑊𝑇𝑇𝑦𝑦 (2.25) 

In order to classify the test images, the unknown image needs to be projected onto the 

LDA-space.  The k-nearest neighbour classifier [113, 114] can be used for identification. 

2.13 Support Vector Machines (SVMs) 

This technique was invented by Vapnik and Chervonenkis in 1963.  In 1992 Boser, Guyon 

and Vapnik developed a non-linear classifier by applying the kernel trick to maximise the 

margin hyperplanes [115].  Further to this, a soft margin [116] was developed by Cortes 

and Vapnik in 1993. 

A SVM is a discriminative classifier defined by a separating hyperplane, which is also 

known as decision plane.  A decision plane separates a set of objects with different class 

memberships [115, 117]. 

Typically support vectors are the data points that scatter closest to the hyperplane.  

Normally membership of these data points is difficult to classify.  These data points have 

direct contribution on the optimum location of the hyperplane, shown in Figure 2.14 

[115]. 

https://en.wikipedia.org/w/index.php?title=Bernhard_E._Boser&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Isabelle_M._Guyon&action=edit&redlink=1
https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Corinna_Cortes
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Support Vectors

Maximise margin  

Figure 2.14: 2D support vector points 

The SVM technique maximises the margin (street) around separating hyperplanes.  The 

decision function is entirely specified by a small set of training samples, which are support 

vectors, shown in Figure 2.15.  In a typical 2D case training data can be separated by a 

single line, but in higher dimensional cases data are separated by a hyperplane. 

Typically, in a set of training samples, input sample features are called x1, x2 ,…xn and the 

resulting output is called y.  In higher dimensional cases, there are normally lots of input 

features.  The output vectors of the SVM technique are called weights (feature vectors) w 

(or wi).  There is one weight for each feature, where a linear combination of w predicts 

the value of y.  The main difference of the SVM technique is that it maximises the margin 

(street) width to reduce the number of weights that are non-zeros.  These are the weights 

that correspond to important features, which helps to decide the optimal hyperplane.  

These non-zero weights correspond to the support vectors [115].  The problem of finding 

the support vector is an optimisation problem.  Therefore, the problem can be solved 

analytically, using optimisation techniques such as Lagrange multipliers. 
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w · x + b = +1

w · x + b = 0

w · x + b = -1

H

 

Figure 2.15: 2D SVM training data separation 

The hyperplane H can be defined the equation: 

 𝑤𝑤� . 𝑥̅𝑥 + 𝑏𝑏 =  0 (2.26) 

where w is a weight vector, x is input vector and b is bias. 

Geometrically, vector w is orthogonal to H.  The class 𝑦𝑦𝑖𝑖of data 𝑥𝑥𝑖𝑖 is defined by 

 𝑦𝑦𝑖𝑖 = �−1, 𝑖𝑖𝑖𝑖   𝑤𝑤� . 𝑥̅𝑥 + 𝑏𝑏 < 0
1, 𝑖𝑖𝑖𝑖   𝑤𝑤� . 𝑥̅𝑥 + 𝑏𝑏 ≥ 0 (2.27) 

 

  



40 

In order to maximise the margin, the distance between H1 and H2 can be formulated as 

follows: 

The distance from a given point (x0, y0) to a line (A+By+c = 0) is: 

 |Ax0 + By0 + c|/�A2 + B2 (2.28) 

so distance between H0 and H1 is: 

 |𝑤𝑤� ∙ 𝑥̅𝑥 + 𝑏𝑏| /‖𝑤𝑤�‖ = 1 /‖𝑤𝑤�‖ (2.29) 

therefore, the total distance between H1 and H2 is: 

 2 /‖𝑤𝑤�‖ (2.30) 

In order to maximize the margin, ‖𝑤𝑤�‖  needs to be minimise.  The main condition is that 

there are no training data points between H1 and H2.  To minimise f(x) so that g(x) = 0.  

The equation (2.30) can be rewritten as: 

 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥) = 1 2⁄ ‖𝑤𝑤�‖2 (2.31) 

Since equation (2.31) is a quadratic function, this constrained optimisation problem can 

be solved by the Lagrangian multiplier method.  The paraboloid surface will have a single 

global minimum.  The generalised Lagrangian multiplier can be written as: 

 𝐿𝐿(𝑥𝑥,𝑎𝑎) = 𝑓𝑓(𝑥𝑥) + �𝑎𝑎𝑖𝑖𝑔𝑔𝑖𝑖(𝑥𝑥)
𝑖𝑖

 (2.32) 

where in this case: 

𝑓𝑓(𝑥𝑥) is gradient minimum of 𝑓𝑓  

𝑔𝑔(𝑥𝑥) is constrained condition g 

So in this case equations (2.31) and (2.27) can be substituted into the Lagrangian 

multiplier equation (2.32): 

 
𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝑃𝑃 = 1 2⁄ ‖𝑤𝑤�‖2 + �𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖(𝑥𝑥𝚤𝚤� ∙ 𝑤𝑤� + 𝑏𝑏) + �𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑙𝑙

𝑖𝑖=1

 (2.33) 
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When the derivatives at the minimum at 0  

 𝜕𝜕𝐿𝐿𝑃𝑃
𝜕𝜕𝑤𝑤�

= 𝑤𝑤� −�𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑥𝑥𝚤𝚤� = 0 (2.34) 

 𝜕𝜕𝐿𝐿𝑃𝑃
𝜕𝜕𝜕𝜕

= �𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑖𝑖 = 0 (2.35) 

 
𝑤𝑤� = �𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑥𝑥𝚤𝚤�  𝑎𝑎𝑎𝑎𝑎𝑎 �𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑖𝑖 = 0 (2.36) 

Now the answer for weight 𝑤𝑤� .  It is a linear combination of the training input and outputs, 

xi and yi, and the values of a.  Now a can be solved by differentiating the dual problem 

with respect to a and setting its value to zero. 

In order to remove the dependence of 𝑤𝑤�  and b, equation (2.36) can be substituted into 

equation (2.33): 

 
𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝐷𝐷(𝑎𝑎𝑖𝑖) =�𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

−
1
2
�𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗𝑦𝑦𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑗𝑗�𝑥̅𝑥𝑖𝑖 ∙ 𝑥̅𝑥𝑗𝑗� (2.37) 

so that 

 
�𝑎𝑎𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖 ≥ 0 (2.38) 

After training and calculating 𝑤𝑤�  by the above method, for a given unknown point 

𝑢𝑢 �measured on feature 𝑥̅𝑥𝑖𝑖, its membership can be determined by observing the sign of: 

 
𝑓𝑓(𝑥𝑥) = 𝑤𝑤� ∙ 𝑢𝑢� + 𝑏𝑏 = ��𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝑥̅𝑥𝑖𝑖 ∙ 𝑢𝑢�

𝑙𝑙

𝑖𝑖=1

� + 𝑏𝑏 (2.39) 
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Most of the weights 𝑤𝑤� i will be zeros for the a’s.  Only the support vectors will have non-

zero weights or a’s, and this will help to reduce the dimensionality of the solution.  The 

𝑙𝑙2 −norm is used to measure the distance from hyperplane to unknown image. 

2.14 Receiver Operating Characteristic 

Receiver Operating Characteristic (ROC) technique was developed by electrical 

engineers and radar engineers during World War II for detecting enemy objects in 

battlefields [118-120].  It was soon adopted for medical decision-making.  This method 

is commonly used in signal detection domain such as radar operators or radiologist, where 

observer must decide whether or not a target is present or absent; or must classify given 

target as belonging to one category or another [119].  One of the most important property 

of ROC analysis is that the accuracy indices derived from this technique are not distorted 

by fluctuations caused by the use of arbitrarily chosen decision criteria [118]. 

A decision can be categorised into four outcomes [119]: 

1. True negative (TN) 

2. False negative (FN) 

3. True positive (TP) 

4. False positive (FP) 

The two most commonly used are TP (sensitivity) and TN (specificity).  Sensitivity 

relates to the ability of the observer to correctly classify the target present stimuli and 

specificity reflects the ability of the observer to correctly classify the target absent stimuli 

[119].  Sensitivity and specificity can be calculated using equations (2.40) and (2.41). 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (2.40) 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2.41) 
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ROC is performed by changing the decision threshold and measuring the sensitivity and 

false specificity, shown in Figure 2.16.  These two vectors can then be plotted on a graph.  

From this graph two hypotheses can be obtained.  The shortest distance to the curve from 

the maximum sensitivity value, which is (0,1) gives the best decision point (separation 

point) for two classes.  This also indicates how good the class separation is.  The shorter 

the distance the better the separation and the longer the distance the worse the separation.  

The area under the curve will indicate how well the given technique performs.  The larger 

the area, the better the performance of the algorithm [119, 121]. 

 

 

Figure 2.16: Effect on TN, FN, TP and FP fractions under changing the criterion 

value 

 

 

 

  

https://en.wikipedia.org/wiki/Specificity_(tests)
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Chapter 3  
Face Feature Extraction and Image Correction 

Image correction is an important part of creating an adequate database of different 

species.  With different face-orientation variations, the detection rate for techniques such 

as Eigenface and Fisherface is somewhat hampered [55].  Without animal ethical 

approval, which is prohibitively expensive, it was not possible to obtain the different 

species images with the appropriate conditions for this research.  Therefore, all the 

training images were obtained from the Internet.  All the original images obtained had 

different face-orientations.  In order to correct the orientation of the face, the animal’s 

eyes need to be detected.  Once the eyes are detected, the face rotation angle can be 

calculated and then whole face can be corrected on polar coordinate rotation.  According 

to Shan et al. [122], tightly-controlled pose position improves the detection rate 

dramatically with one sample database. 

This chapter outlines an image-processing method developed to detect animal eyes, it 

consists of two parts: (a) an edge-detection technique and (b) an eye-detection technique.  

The edge-detection technique used standard-deviation and image slicing-based; and for 

eye-detection technique the Hough transform-based was used.  These two techniques are 

by-products of the species feature-detection process.  De Souza et al. [123] suggested a 

similar edge-detection approach by fitting curves to the left and right regions of every 

adjacent pair of samples, and applying a statistical test to parameters of the fitted curves. 
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3.1 Eye-detection 

The first step in eye-detection is to generate a standard-deviation-based image from the 

original image.  The second step is, standard-deviation image is sliced 12 times according 

to threshold values for edge-detection.  Hough transform-based circle detection is then 

used to identify circles in the sliced images.  The circles’ information is further processed 

to extract the actual pair of circles that represent the eyes. 

3.1.1 Standard-Deviation-based Image-Processing 

Standard-deviation is a way of quantifying how the data is spread out from the mean, and 

this information can be used to identify edges on an image [124].  Compared to most 

common edge-detection techniques, using the following Prewitt operator [85; Chapter 

11], Canny edge detector [85; Chapter 11] and Sobel operator [85; Chapter 11], standard-

deviation-based edge-detection is easy to implement and less mathematically-intensive 

[124], and hence it was used to remove uniform areas such as fur patterns. 

To minimize the effect of the fur, the standard-deviation-based technique (or standard-

deviation face) was developed, to bring out features like eyes and nose due to extreme 

pixel intensity change in these regions.  Unique colour patterns such as fur will have 

smaller standard-deviation due to uniform distribution of numbers, shown in Figure 3.1 

and Figure 3.2.  This approach supresses the importance of uniform areas like 

background, skin colour and (particularly in this application) fur patterns. 
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Figure 3.1: Three-dimensional surface plot of a possum face 

 

Figure 3.2: Three-dimensional surface plot of a standard-deviation image of a 

possum face 

The standard-deviation face algorithm uses a similar principle to de Souza [123], which 

looked for large changes in pixels compared to its immediate neighbourhood.  But in this 

set-up, change in standard-deviation is used to suppress the effect of changing local fur 

details.  This process can be expressed in a few steps as follows.  Initially the outer pixel 
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border is ignored i.e. rows 1 and 170 and columns 1 and 170.  The image is divided into 

3 × 3 blocks, shown in Figure 3.3.  Since outer borders are removed the image is now 168 

× 168, hence there are 28,244 of possible 3 × 3 blocks, shown in Figure 3.4. 

Ignored

Ignored

Ignored

Ignored

3x3 Block
(1,1)

3x3 Block
(1,2)

3x3 Block
(1,3)

3x3 Block 
(1,n)

3x3 Block
(2,1)

3x3 Block
(2,2)

3x3 Block
(3,3)

3x3 Block
(3,n)

3x3 Block
(3,1)

3x3 Block
(3,2)

3x3 Block
(3,3)

3x3 Block
(3,n)

3x3 Block
(n,1)

3x3 Block
(n,2)

3x3 Block
(n,3)

3x3 Block
(n,n)

 

Figure 3.3: Image split into 3 × 3 block form 

 

p(0,0)

p(-1,-1) p(0,-1) p(1,-1)

p(-1,0) p(0,1)

p(-1,1) p(0,1) p(1,1)

 

Figure 3.4: A one 3 × 3 block from the image 
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Once an image has been arranged according to the above format, the process can be 

described, shown in Table 3.1. 

Table 3.1: Standard-deviation-based edge-detection process 

Description Process 

First split the image into  
3 × 3 blocks and then 
calculate the mean 𝑚𝑚𝑥𝑥 for 
each block, shown in Figure 
3.4. 

 

𝑚𝑚𝑥𝑥 =
1
𝑁𝑁
� � 𝑝𝑝(𝑖𝑖, 𝑗𝑗)

1

𝑗𝑗=−1

1

𝑖𝑖=−1

 (3.1) 

Calculate the standard-
deviation σ for the 3 × 3 
block. 

 
𝜎𝜎 =  �

∑ ∑ (𝑝𝑝(𝑖𝑖, 𝑗𝑗)1
𝑗𝑗=−1

1
𝑖𝑖=−1 − 𝑚𝑚𝑥𝑥)2

𝑁𝑁 − 1
 (3.2) 

Replace the 𝑝𝑝(𝑖𝑖, 𝑗𝑗) with σ 
value. 

 𝑝𝑝(𝑖𝑖, 𝑗𝑗) = 𝜎𝜎 (3.3) 

Repeat the process across the whole image I (for pixel p(2,2) to p(n-1,n-1)). 

 

Once the process is completed, the standard-deviation image can be plotted as a three-

dimensional surface (or surf) plot, shown in Figure 3.2, using the original image which is 

an 8-bit greyscale range.  Once the conversion process has been performed the maximum 

intensity value is changed to 100.  The edge of the face has the highest standard-deviation 

value, which is due to the sudden colour change from background colour to fur colour.  

Ignoring the edge of the face and other details tends to produce a maximum standard-

deviation value of 60. 

3.1.2 Image Slicing 

Once a standard-deviation image has been generated, the second step is to divide the 

image into 12 image slices.  This technique of image slicing is normally used in 

applications such as Magnetic Resonance Image (MRI) and Computed Tomography (CT) 

scan technologies [125, 126].  These technologies allow users to take images at different 

depth level for analysis.  In this research the same principle is used, but the image is sliced 

at 12 different depth levels. 
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Each step has a pixel intensity value of 5 and so the final step number 12 has an intensity 

value of 60.  At each step, image pixel intensity Ii,j is less or greater than the fixed constant 

threshold T.  When Ii,j < T, pixel values are set to 0 (black) and when Ii,j > T pixel values 

are set to 255 (white).  Each slice ends up with black and white image, and all the edges 

are shown in white and the remainder of the image in black, shown in Figure 3.5. 

 

Figure 3.5: Shows (a) the Original image; (b) the Three-dimensional surface plot of 

the original image; (c) the Three-dimensional surface plot of the standard-deviation 

image; (d) Image slice 1 of (c); (e) Image slice 7 of (c); (f) Image slice10 of (c);  

(g) Image slice 12 of (c). 

This slicing and thresholding technique removed the fur details and brings out useful 

information such as eyes and nose, shown in Figure 3.5.  This technique was found to be 

a robust edge-detection tool.  Figure 3.6 shows the developed edge-detection technique 

compared to other techniques such as Prewitt operator, Canny edge detector and Sobel 

operator. 
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Figure 3.6: Columns from left to right.  Column 1: Original images, Column 2: 

Prewitt (Threshold 0.1), Column 3: Canny (Threshold 0.1),  

Column 4: Sobel (Threshold 0.1),  

Column 5: Developed edge-detection technique Slice 6, and  

Column 6: Developed edge-detection technique Slice 7 

3.1.3 Eye-Detection with Hough Transform-based Circle Detection 

The next step of the process is to detect the eyes.  This was achieved by using Hough 

transform-based circle detection [127-130].  In order to do this the MATLAB image-

processing toolbox-based ‘imfindcircles’ function was used.  After image slicing was 

used to find the sharp edges on the face, the second purpose of this process is to detect 

symmetrical objects that have similar pixel intensity.  For an example, both eyes tend to 

have the same pixel intensity, therefore they appear clearly on one or a few slices, shown 

in Figure 3.5.  In order to run the Hough transform-based circle detection on each slice, 

shown in Figure 3.7.  A radius range for the detection is 5–30 pixels (1.3 mm–7.8 mm) 

was used for the eyes. 
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Figure 3.7: Hough transform-based circle detection on image slices 3, 5, 7, 8 and 9 

(from left to right) 

After completing the circle detection for the eyes, a suitable pair of circles were 

calculated.  The first part of the selection process is to search for the best pair of the eyes 

by their radii referred to as facial candidates [131].  In this process, closely-matched pairs 

of circles are grouped by the radius.  Then all the facial candidates locations (the x and y 

coordinates) are analysed.  The system first looks for how well these circles are lined up 

along the y and x coordinates.  If the parameters are offset by a threshold value, then those 

facial candidates are eliminated from the next test round.  Next, the selected circle pairs 

are tested by how close they are to the centre of the image.  The closest pair is selected as 

the final facial candidate for that slice and the process is repeated across all 12 slices.  The 

most suitable circle-pair coordinates reoccur across more than one slice, shown in Figure 

3.7 and the facial candidate pair with most occurrences is selected as the final pair of 

circles that represent the pair of eyes.  These detected eyes or facial candidates can be 

plotted on the final image, shown in Figure 3.8 and the process is expressed as a flow 

chart, shown in Figure 3.9. 

 

Figure 3.8: Eye-detection of cat and possum images (i) left-eye is indicated by the 

red circle, (ii) the right-eye is indicated by the blue circle, and (iii) the yellow dot 

indicates the centre of the face.  
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Figure 3.9: Flowchart for eye-detection process using Hough Transform-based.  
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In this research the eye-detection technique is based on standard-deviation, image slicing 

and Hough transform-based circle detection.  With a visual comparison developed 

technique detected both eyes, when one eye was slightly covered, but MATLAB vision 

toolbox did not, shown in Figure 3.10.  The only imperfection is that it is hard to detect 

the centre of the iris.  The MATLAB vision toolbox uses the Haar features to detect the 

eyes [132, 133].  After conducting some tests, it was found that, out of 7 images, shown 

in Figure 3.10, MATLAB toolbox mis-identified one face.  This is because, one eye was 

slightly covered with hair, shown in the bottom right image of Figure 3.10. 

Even though the object detector was developed for species such as possums and cats, it 

also works well in the human eye-detection domain.  A limitation of this technique is the 

parameter space of a Circle Hough Transform, which is a three-dimensional technique 

that requires a considerable amount of storage and computational power. 

Toennies et al. [134] used the Hough transform to detect the irises, and this investigation, 

used close-up enlarged pictures of eyes.  But for animal eye-detection technique, the 

whole face is used for the standard-deviation and image slicing processes, which 

improved the detection rate.  Hough transform-based facial feature extraction studies by 

Iwasa et al. [135] and Ito et al. [136] analysed the whole face with traditional edge-

detection techniques.  As they used the whole image, the Hough transform produced many 

different candidates (greater than 50), so finding the most suitable pair of candidates was 

more complex.  The developed process in this research reduces the number of suitable 

candidates to the minimum number due to standard-deviation face and image slicing. 
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Figure 3.10: Columns from left to right.  Column 1: Original images,  

Column 2:  Developed sliced and circle detected image, 

Column 3: Developed eye-detected image, and  

Column 4: MATLAB vision toolbox eye-detection (using Haar-like features)  
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3.2 Image Correction 

Once the eyes have been detected on the image, the central point of the face needs to be 

determined, which is done by calculating the horizontal distance between the eyes.  The 

centre is the midpoint point of the horizontal distance d.  Before attempting any 

amendments, the centre point of the animal’s face needs to be centred at the centre of the 

image.  If there is any angular correction, then the animal’s face will be rotated about the 

central point C. 

When an image is centred, the orientation of the animal’s face can be calculated using the 

angle between the eyes.  If the whole face of the animal is sitting on a two-dimensional 

plot; the left-eye is sitting on one quadrant and the right-eye is sitting on the diagonally 

opposite quadrant.  Depending on the face rotation, the two eyes could be on either of the 

diagonally adjacent quadrants.  In order to calculate the angle θ between eyes to the centre 

point (midpoint point of the face of animal), the vertical height h between two eyes and 

the horizontal distance d need to be calculated, shown in below Figure 3.11. 

 

Figure 3.11: Eye location measurements. 
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After h and d have been derived, the angle θ in Figure 3.11 can be calculated using 

equations (3.4) and (3.5).  Depending on the orientation of the face image, θ can have a 

positive or negative value. 

 
𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃) =

ℎ
𝑑𝑑

 (3.4) 

therefore: 

 
𝜃𝜃 =  tan−1 �

ℎ
𝑑𝑑
� (3.5) 

Taking the centre of rotation to C to be x = X and y = Y, both coordinates are measured 

from the top left-hand corner of the image to be the origin of the image, shown in Figure 

3.11. 

The image is rotated by the angle θ, giving new coordinates of the left-eye referred to the 

origin position O are given by equations (3.6) and (3.7): 

 𝑥𝑥(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  𝑋𝑋 + (𝑥𝑥1 − 𝑋𝑋)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − (𝑦𝑦1 − 𝑌𝑌)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3.6) 

and 

 𝑦𝑦(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  𝑌𝑌 + (𝑥𝑥1 − 𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑦𝑦1 − 𝑌𝑌)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3.7) 
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The new coordinates of the right-eye reference to the origin position O are given by 

equations (3.8) and (3.9): 

 𝑥𝑥(𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡−𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  𝑋𝑋 + (𝑥𝑥2 − 𝑋𝑋)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − (𝑦𝑦2 − 𝑌𝑌)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3.8) 

and 

 𝑦𝑦(𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡−𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  𝑌𝑌 + (𝑥𝑥2 − 𝑋𝑋)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑦𝑦2 − 𝑌𝑌)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3.9) 

 

For the image to be fully rotated about the central point C of the image, every pixel must 

be rotated using equations (3.10) and (3.11):  

 𝑥𝑥𝑝𝑝(𝑖𝑖,𝑗𝑗) =  𝑋𝑋 + �𝑥𝑥𝑝𝑝(𝑖𝑖,𝑗𝑗) − 𝑋𝑋�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − �𝑦𝑦𝑝𝑝(𝑖𝑖,𝑗𝑗) − 𝑌𝑌�𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 (3.10) 

and 

 𝑦𝑦𝑝𝑝(𝑖𝑖,𝑗𝑗) =  𝑋𝑋 + �𝑥𝑥𝑝𝑝(𝑖𝑖,𝑗𝑗) − 𝑋𝑋�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + �𝑦𝑦𝑝𝑝(𝑖𝑖,𝑗𝑗) − 𝑌𝑌�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3.11) 

where 𝑝𝑝(𝑖𝑖, 𝑗𝑗), is the pixel location of the image. 

There are some pixels around the edges that will not have a new location within the image 

canvas.  In this case any pixels outside the boundary are ignored.  Similarly, there will be 

new locations that will not have any pixel values to transfer to.  In this case these values 

are set to zero (black).  The pixels around the edges do not have any useful information 

apart from a black background.  Therefore, these pixels can be removed and create new 

ones.  After the image been rotated about the Y and X axis it can be used as part of the 

training set, shown in Figure 3.12. 
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Figure 3.12: Original image (left) and Corrected image (right) 
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Chapter 4  
Eigenface for Cat and Possum Face Identification 

Eigenface-based recognition is widely used in the human face-recognition domain, but 

less commonly applied to the animal face-recognition domain [88, 137].  The application 

developed in this research, is targeted at cats and possums as the species of interest.  The 

reason for targeting cats and possums in New Zealand is to implement a vision-based 

trapping system.  This chapter presents two image-classifiers developed for use with 

Eigenface techniques to separate the two different species in question. 

When original images of cats and possums were used with the Eigenface technique, the 

recognition rate was found to be extremely poor.  This was mainly due to face orientation 

and background information issues of the images.  This chapter will describe the 

improvements, such as background removal, species grouping and background colour 

optimisation, developed to solve these problems, along with the following points: 

1. The development of a new method for separation of Eigenface outputs.  This 

technique involves transformation of multidimensionally-scattered data clusters 

onto a 2D graph, which allows the user to see the separation of different class 

clusters. 

2. The inclusion of multivariate normal probability theory [138, 139] as a classifier 

for Eigenface technique, to find the probability of a given image belonging to each 

species. 

3. One of the main problems in existing Eigenface technique is, the length of the 

eigenvectors seems to be arbitrary and they are not normalised [44, 45, 54, 55, 

140].  Therefore, all the training weights have incorrect lengths in 

multidimensional space [141].  This causes poor separation of classes in 

eigenspace. 

4. The improvement of the Eigenface technique by a new eigenvalue-based distance 

algorithm.  This algorithm provides weighted distance to each training image.  

This technique is further improved by introduction of an error weight-based 

Eigenface classifier, which enables further separation of the targeted animal 

classes. 
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4.1 Image Refinements 

Image refinement is a crucial part of the Eigenface technique, as previously mentioned.  

Without any refinements, the detection rate of this technique is unacceptable.  It was 

found that background of the image details tends to have dominant eigenvectors with 

larger eigenvalues [54]. 

4.1.1 Image Background Modification 

During the initial stages of this research animal images with different backgrounds were 

used.  The images with random backgrounds produce strong eigenvectors primarily 

related to the background information, which reduced the detection rate [88]. 

To solve this problem, all the training set images were pre-processed by replacing the 

backgrounds with uniform colour, shown in Figure 4.1.  After pre-processing, all the 

eigenvalues had very strong correlation with the actual animal face rather than the 

background. 

 

Figure 4.1: Possum image before (left) and after (right) pre-processing. 

In real-world implementation pre-processing of the image would not be necessary, as the 

background colour can be set as a desired colour inside the trap wall and be uniform.  The 

configuration of the trap system, would eliminate the animal’s body, shown in Figure 4.2.  

The animal would go head first into the trap entrance and the infrared sensor detects the 

movement and a linear solenoid-based jaw locks the head in place against the bottom 

plate.  The face and the background wall would be exposed to the camera, a light-emitting 

diode (LED) lighting turns on and the camera captures the face image.  For this research 

no trap was implemented, so the background removal of the available images was 

performed manually, using a Kalman filter-based background identification [142, 143]. 
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Figure 4.2: Proposed trap and camera setup 

4.1.2 Species Grouping Using Sub-Training Set-Based Approach   

The sub-training set-based approach uses different training sets for the same animal.  

These training sets are optimised according to the animal’s colour and camera pose angle 

[88]. 

In the animal detection domain, an underlying problem for the Eigenface technique is that 

animals within the same species have different texture patterns, colour variation and face 

features.  As mentioned in chapter 1, New Zealand possums have two different colours, 

namely grey and dark brown, shown in Figure 4.3.  It was found that when using  

differently-coloured possum images accuracy of the Eigenface technique deteriorates 

[88]. 

 

Figure 4.3: Different-coloured possums 
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As most animals tend to have different poses another problem is related to finding images 

of the animal face at the correct orientation.  In order to use the Eigenface application all 

the faces should to be oriented correctly i.e.  looking forward.  Training sets with 

incorrectly oriented images produce poor detection rates [44, 55, 88]. 

Due to the two reasons mentioned, the detection rate of the Eigenface technique for 

animal species is not acceptable.  To overcome this problem, the sub-training set-based 

Eigenface technique was developed.  In this technique all the likely subjects are grouped 

into one category.  For example, all dark-coloured possums are put in one category and 

all light-coloured possums in another category.  In order to improve the system accuracy 

further, these categories are broken down into further sub-groups such as light-coloured 

possum looking left and light-coloured possum looking right etc., shown in Figure 4.4, 

from which each of these categories is used as a separate training set. 

 

Figure 4.4: Sub-categorizing images of New Zealand possums 

Animals such as cats were harder to group into colour-based groups as they have different 

colours and patterns on their fur.  Hence for this research they were categorised by their 

pose.  If cats were grouped by similar colour or their breed, there would be too many sub 

groups and hence there will not be enough training images for each sub-group for 

Eigenface technique to work.  Cats were therefore categorised as either looking left, 

looking forward or looking right, shown in Figure 4.5. 
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Figure 4.5: Images of Cats facing in different directions i.e.  left, straight ahead and 

right 

When the images are grouped with the background removed, the sub-training set-based 

approach can be applied.  The computational steps mostly follow those of the Eigenface 

detection technique, with the difference that there are multiple sets of training data sets to 

be formatted.  The data sets are then used to generate the Eigenfaces for a given image.  

The process can be expressed as follows to obtain training sets ‘Ii’ for: 

(a) Dark coloured possums: 

(i) Posing Left (PDL) 

(ii) Posing Forward (PDF) 

(iii) Posing Right (PDR)  

and 

(b) Light-coloured possum: 

(i) Posing Left (PLL)  

(ii) Posing Forward (PLF) 

(iii) Posing Right (PLR) 

For each sub-group the Eigenface technique was carried out and covered in section 2.10 

of chapter 2.  Table 4.1 shows the group represented after each iteration. 
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Table 4.1: Sub-Training Set-Based Eigenface steps and symbols 

Explanation Symbols 

Each sub group 𝑰𝑰𝒊𝒊 𝐼𝐼𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝐼𝐼𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝐼𝐼𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝐼𝐼𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝐼𝐼𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝐼𝐼𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃) 

Vectorised training 
images 𝜞𝜞𝒊𝒊 

𝛤𝛤𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛤𝛤𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛤𝛤𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛤𝛤𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛤𝛤𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛤𝛤𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃) 

Average face each 
sub group 𝒎𝒎 

𝑚𝑚(𝑃𝑃𝑃𝑃𝑃𝑃),𝑚𝑚(𝑃𝑃𝑃𝑃𝑃𝑃),𝑚𝑚(𝑃𝑃𝑃𝑃𝑃𝑃),𝑚𝑚(𝑃𝑃𝑃𝑃𝑃𝑃),𝑚𝑚(𝑃𝑃𝑃𝑃𝑃𝑃),𝑚𝑚(𝑃𝑃𝑃𝑃𝑃𝑃) 

Normalised face 
from each training 
set 𝜱𝜱𝒊𝒊 

𝛷𝛷𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛷𝛷𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛷𝛷𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛷𝛷𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛷𝛷𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃),𝛷𝛷𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃) 

Covariance matrices 
𝑪𝑪 for each training 
set 

𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃),𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃),𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃),𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃),𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃),𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃) 

Eigenvectors 𝒆𝒆𝒊𝒊 for 
each training set 

𝑒𝑒𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑖𝑖(𝑃𝑃𝑃𝑃𝑃𝑃) 

Eigenvectors with 
largest eigenvalues 𝝀𝝀 
from covariance 
matrices 𝑪𝑪 of each 
training set 

𝜆𝜆(𝑃𝑃𝑃𝑃𝑃𝑃), 𝜆𝜆(𝑃𝑃𝑃𝑃𝑃𝑃), 𝜆𝜆(𝑃𝑃𝑃𝑃𝑃𝑃),𝜆𝜆(𝑃𝑃𝑃𝑃𝑃𝑃),𝜆𝜆(𝑃𝑃𝑃𝑃𝑃𝑃),𝜆𝜆(𝑃𝑃𝑃𝑃𝑃𝑃) 

For each unknown 
image l2-norm, 𝒆𝒆𝒅𝒅 is 
calculated for each 
sub-group  

𝑒𝑒𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃), 𝑒𝑒𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃) 
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The training set with lowest l2-norm distance is selected as the best match and it was 

found that this selection process is more accurate than the Eigenface technique with a 

large database containing all the animal images. 

4.1.3 Detection Rates for Refined Images 

The initial set of 4 trials was conducted using one large training set, containing possum 

and cat images with different poses, which were: 

1. All the original images with existing background for both animals, were analysed 

using the Eigenface algorithm. 

2. All the original images with existing original background for both animals, were 

analysed using the Sub-Training Set-Based Eigenface algorithm. 

3. All the original images with a black ground for both animals, were analysed using 

the Eigenface algorithm. 

4. All the original images with a black ground for both animals, were analysed using 

the Sub-Training Set-Based Eigenface algorithm. 

The results for each trial are shown in Figure 4.6. 

 

Figure 4.6: Recognition rates of possum and cat images 
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Using all the images with their original background, the results for both techniques used 

show that the possum detection has a higher detection rate than for cats.  That is due to 

there being smaller variations between different possum images compared to the cat 

images. 

Changing the background of the original images to black resulted in a significant 

improvement in detection rate for both techniques.  This is because all the eigenvalues 

have a significant representation of the animal face rather than the background 

information.  For with possums, the detection rate is again higher than that for the cat 

detection. 

The overall result also shows that the Sub-Training Set-Based Eigenface technique offers 

a significant improvement in detection rates compared to the Eigenface technique. 

4.2 Improving the Accuracy with Normalised Eigenfaces 

The Eigenface technique consists of the 6 steps covered in section 2.10 of chapter 2.  First 

the training images (𝐼𝐼𝑖𝑖) are converted into column vectors (𝛤𝛤𝑖𝑖), then from these column 

vectors the average face was calculated (𝑚𝑚).  All the training images are normalised by 

subtracting the average face, which is then used to calculate the covariance matrix (𝐶𝐶).  

The covariance matrix C = ATA is used, to reduce the size and the computation time.  

Even though this step results in the loss of data, there is still enough data to recreate the 

original image [54, 55].  The eigenvalues and eigenvectors are then calculated from the 

covariance matrix.  Since the mean is subtracted from the training images the first 

eigenvector (the eigenvector with smallest eigenvalue) does not contain any meaningful 

magnitude and the eigenvalue is extremely low in the order of > 10-6, so the first 

eigenvector and eigenvalue are removed from the matrix.  This step is not a part of the 

standard Eigenface technique, but if these vectors are not removed one of the Eigenfaces 

is not a meaningful representation in face space [144]. 

Next the eigenvectors are multiplied with the normalised training image column vectors, 

and after the multiplication each column vector represents an Eigenface 𝑢𝑢𝑖𝑖 In this step all 

the training images are transformed from high-dimensional space to lower-dimensional 

space or face space.  In the standard Eigenface technique, these column vectors or 

Eigenface column vectors are not normalised [44, 45, 54, 55, 140].  If Eigenface vectors 

are not normalised, the calculated weights 𝑤𝑤 using these un-normalised vectors will have 
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arbitrary magnitudes in weight space.  These weights are calculated by multiplying 

Eigenfaces with normalised training images given by equation (4.1): 

 
𝛷𝛷�  =  �𝑤𝑤𝑖𝑖

𝐾𝐾

𝑖𝑖=1

𝑢𝑢𝑖𝑖 (4.1) 

where   𝑤𝑤𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑇𝑇𝛷𝛷 

In order to correct the weighting of each training image in weight space, all the Eigenface 

vectors need to be the normalised 𝑢𝑢�𝑖𝑖, given in equation (4.2).  This step is critical for 

separating different animal species classes in weight space. 

  𝑢𝑢�𝑖𝑖 =
𝑢𝑢𝑖𝑖
‖𝑢𝑢𝑖𝑖‖

 (4.2) 

where ‖𝑢𝑢𝑖𝑖‖ the norm of 𝑢𝑢𝑖𝑖.  Thus, 𝑢𝑢�𝑖𝑖 a unit vector. 

The Eigenface classifier is based on distance 𝑒𝑒𝑑𝑑 from face space.  In order to calculate 

this distance for an unknown image 𝛤𝛤, the image needs to be normalised by subtracting 

the average face 𝑚𝑚 given by: 

 
 𝛷𝛷 = 𝛤𝛤 −𝑚𝑚 (4.3) 

Then the image is reconstructed with calculated weights from equation (4.1).  Finally, the 

normalised unknown image is subtracted from reconstructed image to calculate the 

distance 𝑒𝑒𝑑𝑑 from face space, given by: 

 
 𝑒𝑒𝑑𝑑 = �𝛷𝛷 − 𝛷𝛷�� (4.4) 

If 𝑒𝑒𝑑𝑑 is less than a preset threshold value, then 𝛤𝛤 is belongs to one of the training species 

in the database, otherwise it is not. 
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4.3 Eigenface Technique for Cats and Possums Detection with 

Individual Minimum-Distance Classifier 

This section presents an Eigenface technique for detecting specific species with a new 

modified classifier.  In this approach one large training set was used, with 7 possum 

images and 7 cat images, where each training image resolution was 170 × 170 pixels, 

shown in Figure 4.7.  The backgrounds of the all images in this database were changed to 

grey scale20 with an intensity of 131, this value is the average value of the backgrounds 

of all the original training images.  In this another manipulation technique such as face 

rotation was performed. 

 

Figure 4.7: Training images of possums (top two rows) and cats (bottom two rows) 

  

 

20 A range of grey shades from white to black, as used in a monochrome display, image or printout. 
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The Eigenfaces are calculated, the weights for the training images as shown in Figure 4.8. 

 

Figure 4.8: Eigenfaces of the training images 

In order to calculate weights, the Eigenfaces need to be multiplied by the normalised 

training image values given in equation (4.1).  In this case there will be 14 weight vectors 

representing each training image and each vector contains 13 weights.  Since the average 

face is subtracted from the training images, one weight is lost, so there are 13 weights in 

each weight vector.  So, for an unknown animal image 𝛤𝛤 is normalised by subtracting the 

average face, and weights calculated by multiplying the normalised test image with the 

Eigenfaces.  Since there is only one test image, it will be one weight vector with 13 

individual weights, and this is the feature vector or weight which represents the unknown 

test image. 

The distance from each training image to test image is then calculated, and the shortest 

distance out of all 14 different training images is selected as the closest match.  If the 

calculated minimum distance is greater than a set threshold, the unknown image does not 

belong to any of the targeted species.  
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In order to calculate the distances 𝑒𝑒𝑟𝑟 between the test image and training images, each 

training weight column vector is subtracted from the test weight vector, and take the sum 

of squared values of the resulting vector, which is given by: 

 
 𝑒𝑒𝑟𝑟𝑖𝑖 = �� 𝑤𝑤𝑖𝑖�

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

− 𝑤𝑤⏞
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�
2

𝑖𝑖

 (4.5) 

The minimum distance is selected, which represents the closest image to the test image 

in the training set, which is given by: 

 𝑒𝑒𝑟𝑟 = min (𝑒𝑒𝑟𝑟𝑖𝑖) (4.6) 

This classifier searches for the training image closest to the test image in low-dimensional 

weight space.  The developed classifier was tested with 16 possum images and 7 cat 

images.  All the test images had the same background of a grey scale with an intensity 

value of 131, shown in Figure 4.9.  The detection rate was 87% for possums and 71% for 

cats.  Again, possums had a higher detection rate due to their fur colour being uniform 

across all the training and test images.  Cats have more varied fur colours i.e.  many cats 

have unique colour pattern, and therefore the algorithm mostly matches the head outline 

information for detection. 
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Figure 4.9: Unknown test images 

Even though the detection rate is significantly higher than the standard Eigenface 

classifier, it is still not at an acceptable level.  The main limitation of this classifier is that 

performance is compromised by the different fur patterns of the cat’s images.  Therefore, 

further investigation was required to detect both animals by face shape rather than by fur 

details.  
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4.4 Eigenface Technique with Developed Distance Algorithm  

The Eigenface technique with the addition of a new distance algorithm can be described 

as follows.  The size of the training image 𝐼𝐼𝑛𝑛 is an M×1 vector and the training set Γ is 

given by: 

 𝛤𝛤 =  [𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, … … , 𝐼𝐼𝑛𝑛] (4.7) 

The average face 𝑚𝑚 calculated by training set Γ is: 

 
𝑚𝑚 =

1
𝑀𝑀
�𝛤𝛤𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (4.8) 

Then the training set is normalised by subtracting the average face: 

 𝛷𝛷𝑖𝑖 = 𝛤𝛤𝑖𝑖 − 𝑚𝑚  (4.9) 

and the covariance matrix C for image A is calculated using: 

 
𝐶𝐶 =  

𝐴𝐴𝑇𝑇𝐴𝐴
𝑁𝑁 − 1

 (4.10) 

where 𝐴𝐴 = [𝛷𝛷1𝛷𝛷2 …𝛷𝛷𝑀𝑀] and   𝐴𝐴𝑇𝑇𝐴𝐴  was used instead of  𝐴𝐴𝐴𝐴𝑇𝑇. 

The eigenvalues 𝜆𝜆𝑖𝑖 and eigenvectors 𝑒𝑒𝑖𝑖 are calculated, where: 

 
𝐴𝐴𝑇𝑇𝐴𝐴𝑒𝑒𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖 (4.11) 

then: 

 
𝐴𝐴𝐴𝐴𝑇𝑇(𝐴𝐴𝑒𝑒𝑖𝑖) = 𝐴𝐴𝐴𝐴𝑖𝑖𝑒𝑒𝑖𝑖 = 𝜆𝜆𝑖𝑖(𝐴𝐴𝑒𝑒𝑖𝑖) (4.12) 
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Therefore, the normalised Eigenfaces are equal to: 

 
𝑓𝑓𝑖𝑖 =

(𝐴𝐴𝑒𝑒𝑖𝑖)
⌈(𝐴𝐴𝑒𝑒𝑖𝑖)⌉

 (4.13) 

Hence for the full covariance matrix C, the eigenvectors are 𝑓𝑓𝑖𝑖, and the variance is: 

 
𝜎𝜎2 =

𝜆𝜆𝑖𝑖
𝑁𝑁 − 1

 (4.14) 

Then for image J, the weights are given by: 

 
𝑤𝑤𝑖𝑖 = (𝐽𝐽 − 𝑚𝑚) × 𝑓𝑓𝑖𝑖  (4.15) 

and distance 𝑑𝑑 can be calculated using: 

 
𝑑𝑑 = ��

𝑤𝑤𝑖𝑖
2

𝜎𝜎𝑖𝑖2𝑖𝑖

= ��
𝑤𝑤𝑖𝑖
2

𝜆𝜆𝑖𝑖𝑖𝑖

(𝑁𝑁 − 1) (4.16) 

The distance formula given by equation (4.16) is a measurement of the distance of each 

image from the mean.  This algorithm compensates for the effect of the larger weights by 

dividing them by their eigenvalue, effectively the variance.  Significant eigenvectors have 

larger eigenvalues.  Significant eigenvectors also produce significant weights.  For 

example, if there are 5 images in a database, the covariance matrix size is 5 × 5.  Once it 

is converted to eigenvectors and eigenvalues, it can be observed that significant 

eigenvectors have larger eigenvalues.  Similarly, eigenvectors with large eigenvalues 

produce large weights, shown in Figure 4.10.  As described in section 4.2 of this chapter, 

the first vector of the eigenvector matrix is not meaningful, due to the normalisation of 

the training images.  This is shown in the eigenvalue diagonal matrix, where the first 

eigenvalue’s magnitude is insignificant compared to other eigenvalues, shown in Figure 

4.10. 
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⎣
⎢
⎢
⎢
⎡

31006935 −5599040 −10630866 −13034741 −1742287
−5599040 21913885 −10561813 −7322344 1569313
−10630866 −10561813 42335477 −12297499 −8845298
−13034741 −7322344 −12297499 57234979 −24580394
−1742286 1569312 −8845298 −24580394 33598667 ⎦

⎥
⎥
⎥
⎤
 

Covariance Matrix 

 

⎣
⎢
⎢
⎢
⎡
0.4472 0.0458 −0.8255 −0.2806 0.1943
0.4472 0.7657 0.3865 −0.2372 0.0896
0.4472 0.0202 −0.0353 0.8881 0.0985
0.4472 −0.2352 0.0706 −0.1227 −0.8513
0.4472 −0.5965 0.4037 −0.2475 0.4689 ⎦

⎥
⎥
⎥
⎤
 

Eigenvector Matrix 

 

⎣
⎢
⎢
⎢
⎡
1.49𝐸𝐸 − 08 0 0 0 0

0 22326534 0 0 0
0 0 35140068 0 0
0 0 0 52680399 0
0 0 0 0 75942942⎦

⎥
⎥
⎥
⎤
 

Eigenvalue Matrix – where the main diagonal of the matrix represents the Eigenvalues 

Figure 4.10: Covariance matrix into Eigenvectors and Eigenvalues  

Belhumeur et al.  [44] found that the three eigenvectors with the largest eigenvalues 

mostly contain the information about background lighting and removing these improved 

the accuracy of the classifier.  The new distance algorithm given in equation (4.16) 

reduces the effect of the significant eigenvectors, by dividing the significant weights by 

their eigenvalues effectively from its variance. 

Removal of the significant eigenvectors may eliminate some useful information from the 

training set.  This variance-based technique retains all the information but at the same 

time reduces its effect on the overall results. 
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4.5 Species Class Separation with New Distance Algorithm  

Using equation (4.16), the distance between the mean image and a given image can be 

calculated.  In possum and cat detection, there will be two different distances for any 

given test image.  In order to develop a classifier to discover on which side of the decision 

boundary the unknown image lies, the shortest distance to the class mean could be used.  

But this is not an acceptable technique because when a species outside of a known class 

enters the trap setup, then it will not be distinguished.  The solution to this problem is to 

set up a threshold boundary larger than a certain value, but this is not a reliable method 

of detecting targeted species used in this research. 

It is hard to define the decision boundary between the two animal classes in 

multidimensional space.  Therefore, it is necessary to implement a new technique which 

converts distance data from multidimensional space to 2D space, so that a meaningful 

decision boundary can be defined. 

In order to transform multidimensional space data into 3D space, trigonometrical space 

is used.  Since there are two l2-norm distances (i) cat distance and (ii) possum distance in 

multidimensional space, these two distances can be plotted in trigonometrical space.  It 

can be assumed that the cat and possum mean images are separated by a certain distance 

in trigonometrical space.  In trigonometrical space, the minimum of the sum of both 

distance vectors of the cat and possum distances is used for possum and cat mean class 

separation.  Then the calculated distances can be plotted from its mean.  The angle of both 

distance vectors can be calculated according to the cat and possum distances where the 

two vectors meet in trigonometrical space, shown in Figure 4.11. 
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µc µp
Dp = Possum DistanceDc = Cat Distance

Dc + Dp  = Minimum Distance

Dc 

Dc 

Dp 

Dp 

 

Figure 4.11: Image distances are on trigonometrical space 

In order to plot these points, three scenarios needed to be taken into consideration, they 

are: 

Case 1. The cat training set distance and the possum training set distance are similar, 

so all the points will scatter between the cat and possum mean values, shown 

in Figure 4.12. 

Case 2. One of the distances is considerably larger than the other.  Therefore, the 

point will pass one of the mean values, shown in Figure 4.13. 

Case 3. One distance is much larger than the other and hence the two magnitudes 

will not be able to yield a point.  But this application did not have case three 

among calculated data.  The other two cases can be calculated using the 

developed algorithms below. 
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Case 1: 

µc µp

𝑙𝑙 2 𝑙𝑙 1 

L

h
a b

θ 

 

Figure 4.12: Case one 

Using the cosine law 𝑎𝑎2 can be expressed as: 

 
𝑎𝑎2 = 𝑏𝑏2 + 𝐿𝐿2 − 2𝑏𝑏𝑏𝑏 cos(𝜃𝜃)  (4.17) 

and so 

 
cos(𝜃𝜃) =

𝑏𝑏2 + 𝐿𝐿2 − 𝑎𝑎2

2𝑏𝑏𝑏𝑏
 (4.18) 

and 

 
𝐿𝐿 = 𝑙𝑙1 + 𝑙𝑙2 (4.19) 

where 

 
𝑙𝑙1 = 𝑏𝑏 cos(𝜃𝜃) =

𝑏𝑏2 + 𝐿𝐿2 − 𝑎𝑎2

2𝐿𝐿
 (4.20) 

 
𝑙𝑙2 = L − 𝑙𝑙1 =

𝑎𝑎2 + 𝐿𝐿2 − 𝑏𝑏2

2𝐿𝐿
 (4.21) 

and 

 
ℎ = �𝑎𝑎2 − 𝑙𝑙22 =  �𝑏𝑏2 − 𝑙𝑙12 (4.22) 
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Case 2: 

µc µp

𝑙𝑙 
L

h
a

b

  

Figure 4.13: Case two 

From the Pythagorean theorem, 𝑎𝑎2 can be expressed as: 

 
𝑎𝑎2 = ℎ2 + (𝐿𝐿 + 𝑙𝑙)2 (4.23) 

where 

 
𝑏𝑏2 = ℎ2 + 𝑙𝑙2, (4.24) 

and so 

 
𝑎𝑎2 = 𝐿𝐿2 + 2𝑙𝑙𝑙𝑙 + 𝑙𝑙2 + ℎ2 (4.25) 

 
𝑎𝑎2 = 𝐿𝐿2 + 2𝑙𝑙𝑙𝑙 + 𝑏𝑏2 (4.26) 

and 

 
𝑙𝑙 =  

𝑎𝑎2 − 𝐿𝐿2 − 𝑏𝑏2

2𝐿𝐿
 (4.27) 

 
ℎ = �𝑏𝑏2 − 𝑙𝑙2  (4.28) 
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Equations (4.21), (4.22), (4.27) and (4.28) can be used to calculate the point on the graph.  

If any point belongs to case three, then it will not be able to be plotted on the graph.  

Figure 4.14 shows an example of class separation by the new classifier.  Once classes are 

separated, the decision boundary can be defined between two clusters. 

 

Figure 4.14: Example of the new classifier’s data separation 
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4.6 Optimising Eigenface Technique for Detecting Cats and Possums 

Images by Face Outline and Features 

This section describes a new approach that enhance the Eigenface technique’s ability to 

detect the cats and possums images.  The main objective was to separate the cat class and 

possum class as much as possible. 

4.6.1 Improving Detection Rate by Optimising the Image Colour 
Scheme 

One of the trialled approaches involved optimising the image colour scheme.  During the 

initial investigations a few colour schemes were trialled. 

The initial trialled colour scheme shown in Figure 4.15 was: 

(a) The images background colour was set as grey intensity value of 131, the 

average value of all the backgrounds. 

(b) Face colour as white intensity value of 255 and the nose and eye information 

were kept in the original colours. 

The main issue with this colour scheme was that the area of nose and eyes was small 

compared to the rest of the image.  The difference between grey and white was not 

significant enough to produce strong eigenvectors to extract the face outline information 

and the separation of the species classes was not significant. 

 

Figure 4.15: First trialled colour scheme 
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The second colour scheme trialled shown in Figure 4.16 was as follows: 

(a) The colour of the background was set as black with an intensity value of 0. 

(b) Face colour as grey with an intensity value of 160. 

(c) Eye and nose colour as white with an intensity value of 255. 

The main concept behind this scheme was to produce a large intensity change between 

the background and the face.  When eyes and nose are white (255) they stand out more 

on the image and represent a significant intensity step change between face and features.  

This scheme produced much better separation between facial outline and background 

compared to the first scheme.  Even though the eyes and nose have much higher intensity 

value compared to the face, they are still small in area. 

 

Figure 4.16: Second trialled colour scheme 

Since the eyes and nose were small regions, it was decided to analyse species separation 

without eyes and nose. 

In the third scheme trialled the image was simplified further by changing the face colour 

to white with an intensity value of 255 and background colour to black with an intensity 

value of 0, shown in Figure 4.17.  It was found that this configuration produced the best 

results due to maximum step change between background and face shape. 
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Figure 4.17: Third trialled colour scheme 

4.6.2 Improving Detection Rate by Optimising Image Resolution  

Image size is an important parameter that can be used to optimise the separation of the 

species classes.  Image size is directly proportional to the size of the full covariance 

matrix, and the operation time of the algorithm can be improved with lower resolution 

images. 

The main issue with taking a reduced-size covariance matrix, is that a large amount of 

useful data will be lost.  For example, if there is a training set of 20 images and each 

image is 170 × 170 pixels, the actual covariance matrix will produce a matrix of 28,900 

× 28,900.  Since this matrix is computationally demanding, a reduced size covariance 

matrix of 20 × 20 is used.  Even though the most useful eigenvectors are kept, a large 

portion of data is lost. 

In order to improve this situation, one of the techniques developed involved reducing the 

image resolution.  Since this technique is trying to detect animals by facial shape, their 

fur, nose and eye information is not vital.  Therefore, the image size can be reduced to 

minimise the data lost.  For example, consider the same training set of 20 images but this 

time all the images are 10 × 10 resolution.  The actual covariance matrix will be 100 × 

100.  If the reduced size covariance matrix is used, its size will still be the same 20 × 20.  

But the overall data lost is a lot less than in the first example. 

In order to find the optimal image resolution, three different image resolutions were 

investigated: 34 × 34, 17 × 17 and 10 × 10.  In order to reduce the resolution, the image 

was divided into different size blocks.  For example, to obtain 17 × 17 image, the original 

image (170 × 170) was divided into 17 × 17 blocks.  Each block was 10 × 10 pixels.  Then 

the sum of the pixels in each block was found.  Finally, each sum was divided by pixel 
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count in each block and replaced the whole block with the calculated block average value, 

shown in Figure 4.18. 

 

Figure 4.18: Image resolution (from left to right) 170 × 170, 34 × 34, 17 × 17 

and 10 × 10 

After this process all the images had black backgrounds and the facial edge contour colour 

was changed to different shades of grey, shown in Figure 4.19.  During these trials it was 

discovered that a soft transitional edge produces better separation of the two classes, and 

it highlights different outline features with different shades. 

 

Figure 4.19: 34 × 34 image with grey facial contour 

It was found that 40 × 40 was the resolution that gave the best separation between cat and 

possum classes. 
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4.6.3 Improving Detection Rate by Introducing Error Weight Vectors  

The rationale behind this technique was to introduce a new weight vector to compensate 

for information omitted from the reduced covariance matrix C.  As described in section 

4.1.2, the cat and possum images were separated into two different training sets.  Then 

the Eigenface technique is applied to both training sets.  For this application equation 

(4.13) is used.  At the end of the process, it ended up with two different training weights: 

one for the possums and one for the cats �𝑤𝑤⏞
𝐶𝐶

 𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤⏞
𝑃𝑃

 �. 

For each image, weights 𝑤𝑤𝑖𝑖 can be calculated using: 

 
𝑤𝑤𝑖𝑖 = 𝛤𝛤𝑛𝑛𝑓𝑓𝑛𝑛 (4.29) 

where 𝛤𝛤𝑛𝑛 is the image and  𝑓𝑓𝑛𝑛 is its eigenface matrices. 

Ideally: 

 𝑖𝑖𝑚𝑚 = � 𝑤𝑤𝑘𝑘
𝑘𝑘

𝑓𝑓𝑘𝑘  (4.30) 

 
𝑖𝑖𝑚𝑚𝑓𝑓𝑛𝑛 = � 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘𝑓𝑓𝑛𝑛

𝑘𝑘
     (4.31) 

if 𝑘𝑘 = 𝑛𝑛 then 𝑓𝑓𝑘𝑘𝑓𝑓𝑛𝑛 = 1 nd if 𝑘𝑘 ≠ 𝑛𝑛 then 𝑓𝑓𝑘𝑘𝑓𝑓𝑛𝑛 = 0, so: 

 
𝑖𝑖𝑚𝑚𝑓𝑓𝑛𝑛 =  𝑤𝑤𝑛𝑛 (4.32) 

In practice: 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑚𝑚 = 𝑖𝑖𝑚𝑚 −� 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘
𝑘𝑘

 (4.33) 

Then |𝑒𝑒𝑚𝑚| can be used as an extra weight vector. 

The equations (4.29) to (4.33) are used to calculate the weight vectors for the training 

images using the modified Eigenface technique described in section 4.4.  The weights can 

be calculated using the Eigenface.  Then these new weights are used to reconstruct the 

image 𝑖𝑖𝑚𝑚.  Finally, the reconstructed image is subtracted from the actual image to find 
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the difference between the two images.  The resulting difference is the extra error weight 

vector |𝑒𝑒𝑚𝑚| and this can be added to the existing weights. 

Once the error weight is calculated from the image, a corresponding eigenvalue is 

required for the calculated vector.  In order to find the next eigenvalue, existing 

eigenvalues can be used.  By plotting an existing eigenvalue, it has an exponential decay, 

shown in Figure 4.20.  The graph shows an exponential decay in existing eigenvalues.  So 

this decaying phenomenon can be used to calculate the next eigenvalue. 

 

Figure 4.20: Graph of eigenvalues vs magnitude  

The exponential decay formula can be used to find the next eigenvalue, given by: 

 
𝑁𝑁(𝑥𝑥) = 𝑁𝑁0 𝑒𝑒−𝜆𝜆𝜆𝜆 (4.34) 

where x is an independent value and constant λ decay constant, where ex is the exponential 

function and N0 = N(0) is the initial value.   
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The decay constant can be expressed as: 

 

𝜆𝜆 =
−𝑙𝑙𝑙𝑙 �𝑁𝑁𝑁𝑁0

�

𝑥𝑥
 

(4.35) 

The equations given in (4.33) and (4.34)(4.35) can be used to calculate the extra 

eigenvalues for the cat and possum �𝑤𝑤⏞
𝐶𝐶

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤⏞
𝑃𝑃

 � species classes.  Adding the error weight 

and estimated eigenvalue makes the data classes to separate further and members within 

classes cluster together. 

4.6.4 The Effect of Optimised Images (Colour and Resolution) and 
Introduced Error Weights  

This section presents the results from the above colour scheme optimisation and the trials 

with different image resolutions.  It also demonstrates the class separation improvements 

from the introduction of error weights and a new distance algorithm. 

For these trials there were 66 training images in total: 33 possums and 33 cats.  Forty test 

images were used.  These were randomly selected and did not have any relationship to 

the training images.  Out of 40 test images there were 18 cats and 22 possum images, 

shown in Figure 4.26 and Figure 4.27. 

Figure 4.21 shows the effect of the various colour schemes on class.  The poorest 

separation is produced by the original image with a grey background.  The best separation 

is produced by a grey face, black background and white nose and mouth colour scheme.  

The second-best separation was produced by a black and white colour scheme.  Similarly, 

as the resolution of the image increases, the class separation improves.  But it was evident 

that the optimum resolution lay between 20 × 20 and 40 × 40.  In order to simplify the 

image pre-processing tasks, it is best to use 40 × 40 resolution with black and white 

images.  To implement this in an embedded platform, the pre-processing stage will be 

faster with a black and white image scheme and will result in an overall reduction in 

operation time for species identification. 

Figure 4.23 shows the effect of the introduction of the new error weight algorithm into 

the Eigenface technique.  The error weight separates the data classes further.  When using 

original images to train and test, the class data separation was poor, shown in Figure 4.21, 
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but when using the same sets of trial with error weights, the class data begins to separate 

out. 

When analysed the class data set with error weights, it is evident from Figure 4.21 that 

the best separation is with a grey face, black background and white eyes and nose colour 

scheme.  The black and white colour scheme produced similar separation to the grey face, 

black background and white eyes and nose colour scheme. 

With error weights both colour schemes have adequate data separation between cat class 

and possum class.  As discussed previously, the best practical resolution is 40 × 40.  These 

trials have determined the best colour scheme with maximum separation for cat and 

possum identification and established the optimal resolution for the training and test data.  

With a smaller resolution such as 40 × 40 the computation time of the algorithm is reduced 

dramatically. 

When both data sets were analysed, it was evident that as the resolution of the training 

images increases the data tend to cluster in a vertical pattern.  This is due to there being 

limited training images for the high dimensionality of the problem.  As the resolution 

increases, the number of principal components stays the same.  This is evident from the 

class separation not being much improved despite higher resolution.  With lower 

resolutions data sets tend to spread out more.  This is because there are enough training 

images for the dimensionality.  Since there are 66 training images, 33 cats and 33 possums 

in total, the selection of 40 × 40 resolution gives a 1600-dimensional space.  This seems 

to be the optimal point in terms of number of training images versus the dimensionality 

of the problem. 
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Original face and 
grey background 

White face, Grey 
background  and 
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White face, black 
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Resolution 10x10 Resolution 20x20 Resolution 40x40 Resolution 80x80 Resolution 160x160

 

Figure 4.21: Eigenface species separation for improved colour schemes and different image resolutions using the Developed Distance Algorithm 
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b

 

Figure 4.22: Eigenface species separation for improved colour schemes and different resolutions with introduced Error Weights and Developed Distance Algorithm
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4.7 Multivariate Bayesian Decision Theory-based Classifier 

Bayesian decision theory is an important statistical tool used to solve problems in pattern 

classification.  It is considered the ideal case in which the probability structure underlying 

the categories is known perfectly.  While this sort of situation rarely occurs in practice, it 

permits the Bayes optimal classifier which can be used to compare other classifiers. 

The multivariate normal density [139] in terms d dimensions is given as: 

 
𝑝𝑝(𝑥𝑥) =

1
(2𝜋𝜋)𝑑𝑑 2⁄ |𝐶𝐶|1 2⁄ 𝑒𝑒

�−(𝑥𝑥−𝑚𝑚)𝑇𝑇𝐶𝐶−1(𝑥𝑥−𝑚𝑚)
2 �

 (4.36) 

where 𝑝𝑝(𝑥𝑥) is the probability mass, 𝑥𝑥 is a d-component column vector, 𝑚𝑚 is the mean 

vector, 𝐶𝐶 is d × d covariance matrix, |𝐶𝐶| is its determinant and 𝐶𝐶−1 is its inverse. 

In this application, for example, if there are 30 training images, 𝑑𝑑 will become 30, this is 

a 30-dimensional problem.  The covariance matrix from eigenvector equation (4.10) will 

become 𝐶𝐶, 𝑥𝑥 is the weight from the test images and 𝑚𝑚 is the average face image. 

In this application there are two separate training images (cats and possums).  Hence there 

are two sets of covariance matrices and two average face images from training sets.  Then 

for an unknown image the probability mass formula given in equation (4.36) is applied 

twice, once for the cat data and once for the possum data.  Then there will be two separate 

probability mass values.  To detect the test image, the value with the highest probability 

mass is selected.  The highest value has the highest probability of being close to the mean 

value of that class.  The graph below shows the probability mass for 40 unknown images.  

Out of those 40 images, the first 22 belong to possums and numbers 23–40 belong to cats, 

shown in Figure 4.23.  
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Figure 4.23: Multivariate normal density for test images 

Figure 4.24 shows the separation between these two classes using the technique presented 

in section 4.5. 

 

Figure 4.24: Multivariate normal density-based class separation with developed 

classifier 
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Even though possum identification rate is 95% and cat identification rate is 100%, the 

class separation is not satisfactory, and it is hard to define the boundary for these two 

classes, shown in Figure 4.24. 

4.7.1 Error Function for Multivariate Normal Probability Density 

Once the multivariate normal probability density is calculated, it is important to 

investigate the error value for the probability mass.  A simple 1D case error function can 

be expressed as follows [145]: 

 
erf(𝑥𝑥) ≡

2
√𝜋𝜋

 �𝑒𝑒−𝑡𝑡2
𝑥𝑥

0

𝑑𝑑𝑑𝑑 (4.37) 

In the multidimensional case, the error function can be expressed as in equations (4.36).  

The full proof for these formulae can be found in [146]. 

Equation (4.38) shows that all erf (𝑥𝑥) for even-dimensional error functions are 

expressible in closed form, although for sufficiently large m the closed form expressions 

become increasingly complicated.  With 𝑥𝑥 as the calculated probability mass: 

 
𝑒𝑒𝑒𝑒𝑒𝑒2𝑚𝑚(𝑥𝑥) = 1 − 𝑒𝑒−𝑥𝑥2 �1 +

𝑥𝑥2

1!
+
𝑥𝑥4

2!
+ ⋯+

𝑥𝑥2(𝑚𝑚−1)

(𝑚𝑚− 1)!
� (4.38) 

where 𝑚𝑚 = 0, 1, 2, … 

From equation (4.38) it can be seen that: 

 
1 − 𝑒𝑒−𝑥𝑥2 ≡ erf2(𝑥𝑥) ≥ erf4(𝑥𝑥) ≥ erf6(𝑥𝑥) ≥ ⋯ (4.39) 
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Similarly, equation (4.40) shows that all erf (𝑥𝑥) for odd-dimensional error functions are 

expressible in closed form. 

 erf2𝑚𝑚+1(𝑥𝑥) = erf(𝑥𝑥)

−
𝑒𝑒−𝑥𝑥2

√𝜋𝜋
�

(2𝑥𝑥)0!
1!

+
(2𝑥𝑥)31!

3!
+ ⋯

+
(2𝑥𝑥)2𝑚𝑚−1(𝑚𝑚− 1)!

(2𝑚𝑚 − 1)!
�  

(4.40) 

where 𝑚𝑚 = 0, 1, 2, … 

It can be clearly seen from equation (4.40) that: 

 
erf(𝑥𝑥) ≡ erf1(𝑥𝑥) ≥ erf3(𝑥𝑥) ≥ erf5(𝑥𝑥) ≥ ⋯ (4.41) 

The equations (4.38) and (4.40) were used to calculate the error and the plot is shown in 

Figure 4.25, the user can input the probability mass (𝑥𝑥) and standard deviation value for 

training images. 

 

Figure 4.25: Implemented multidimensional error function 

This application then calculates the error values for up to 34 dimensions.  The main issue 

with this application is that as the dimensions get larger, the probability values get 
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smaller.  As the number of training images increases, it is difficult to obtain a reliable 

error value.  This technique therefore performs best with lower numbers of dimensions. 

4.8 Classifier Evaluation 

The main aim of this section is to evaluate the new distance algorithm (equation (4.12) 

with respect to the existing distance algorithm 𝑑𝑑 = �∑ 𝑤𝑤𝑛𝑛2𝑛𝑛 .  In this section, four different 

combinations were compared, shown in Table 4.2:  

Option 1. The existing Eigenface technique 

Option 2. The improved Eigenface technique 

Option 3. The existing Eigenface technique with the new distance algorithm 

Option 4. The improved Eigenface technique with the existing distance formula 

Table 4.2: Equations used for Options 1 - 4 

Option 1 𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑒𝑒𝑛𝑛 𝑑𝑑 = ��𝑤𝑤𝑛𝑛2
𝑛𝑛

 

Option 2 𝑓𝑓𝑛𝑛 =
𝐴𝐴𝑒𝑒𝑛𝑛

|𝐴𝐴𝑒𝑒𝑛𝑛| 𝑑𝑑 =  ��
𝑤𝑤𝑛𝑛2

𝜆𝜆𝑛𝑛𝑛𝑛
(𝑁𝑁 − 1) 

Option 3 𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑒𝑒𝑛𝑛 𝑑𝑑 =  ��
𝑤𝑤𝑛𝑛2

𝜆𝜆𝑛𝑛𝑛𝑛
(𝑁𝑁 − 1) 

Option 4 𝑓𝑓𝑛𝑛 =
𝐴𝐴𝑒𝑒𝑛𝑛

|𝐴𝐴𝑒𝑒𝑛𝑛| 
𝑑𝑑 = ��𝑤𝑤𝑛𝑛2

𝑛𝑛

 

Where 𝑓𝑓𝑛𝑛 is Eigenfaces, 𝐴𝐴 is normalised images, 𝑒𝑒𝑛𝑛 is eigenvectors, 𝑤𝑤 is 

weights and 𝑑𝑑 is distance. 

 

In order to test these algorithms, two training sets with 33 images (of cats and possums), 

were selected, shown in Figure 4.26.  Then 40 unknown images were selected to test the 

system.  Of the unknown images 22 were possums and 18 were cats, shown in Figure 

4.27.  These training sets and test images were padded as discussed in section 4.6.2.  All 
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the training images and test images were 170 × 170 in resolution.  In this set of trials error 

weights given in equation (4.33) was not used. 

 

Figure 4.26: Training images (cats and possums) 

 

Figure 4.27: Unknown test images 

The new classifier was then used to plot the distance information and analyse the 

separation of the species classes.  If the classes are close together, it is hard to define a 

decision boundary between classes.  Figure 4.28 to Figure 4.31 respectively show the 

performance of all four options. 
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Figure 4.28: Plot for Option 1 – Distance with Standard Eigenface and Standard 

distance formula 

 

Figure 4.29: Plot for Option 2 – Distances with normalised Eigenfaces and altered 

distance formula 
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Figure 4.30: Plot for Option3 – Distance with standard Eigenfaces and altered 

distance formula 

 

Figure 4.31: Plot for Option 4 – Distance with Normalised Eigenfaces and Standard 

distance formula 
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By analysing the results shown in Figure 4.28 to Figure 4.31 it can be clearly seen that 

the best separation is achieved by the improved Eigenface technique option 2, the next 

best are options 3 and 4.  Even though these two techniques have different scales on the 

x and y axes, both graphs have the same separation.  So, it can be concluded that the effect 

on the weights by normalising the Eigenface and dividing the normalised weights by their 

eigenvalue, which is the variance.  When combined these two factors together achieve 

the best separation of the classes.  The standard Eigenface technique had the worst 

performance out of all four options.  It showed poor separation between the two species.  

This was to be expected, due to the vectors having arbitrary magnitudes in face space or 

low-dimensional space.  Perhaps this is one of the reasons the original Eigenface 

technique used the threshold-based detection technique. 

The work presented in this chapter therefore represents a significant addition to the 

existing knowledge of Eigenface techniques available. 
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Chapter 5  
Fisherface Technique for Cat and Possum Detection 

This chapter describes the use of the Fisherface technique for animal (cat and possum) 

image identification.  That is a new application in the animal-identification domain.  The 

Fisherface technique is widely used in the human recognition domain [147, 148].  The 

results for a new version are better than the standard Eigenface technique [44].  This linear 

discriminant technique performs well in different illumination conditions and different 

facial expressions.  It minimises the within-class scatter matrix and maximises the 

between-class scatter matrix, to optimise class separation in high dimensional space.  The 

technique seeks directions which are efficient for discrimination within the data [44, 45, 

109, 111, 148]. 

Despite its improved performance in the human-identification domain, when unedited 

animal training images were used with the Fisherface technique the classes were 

inseparable.  Therefore, at first this technique seems unsuitable to application of animal 

identification. 

During investigation of the Fisherface technique, it was discovered that class separation 

can be improved by padding the training images.  Two class separation optimisation 

approaches were used: 

1. The first approach was to optimise the greyscale colour scheme. 

2. The second approach was to find the optimum image resolution to optimise the 

class separation and computational time. 

After applying the optimisation techniques, the Fisherface technique’s class separation 

dramatically improved, and the best colour schemes and resolutions were selected for 

optimum processing time and class separation.  Since the class separation is calculated 

from class mean, the probability of belonging to a certain membership can be calculated.  

Since there was a limited number of training images, the training data set was singular 

i.e.  the number of images M is less than the number of column pixels times the number 

of row pixels N2, as the column and row values are of equal size N.  Therefore, SVD was 

used to reduce the dimensions of faces from M × N2 to M × M dimensional vectors. 
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5.1 Fisherface for Classifying Cats and Possums  

This research shows that there is a further need for dimensionality-reduction methods 

when performing image detection, even though Principal Component Analysis (PCA) and 

the Eigenface technique perform well. 

PCA finds a linear combination of features that maximises the total variance in data.  Even 

though this is undoubtedly a good way to represent data, it doesn’t consider classes.  

Therefore, most of the discriminative information may be lost when throwing less useful 

components away. 

When considering a situation where the variance is generated by an external source, such 

as light, the principal components identified by a PCA do not necessarily contain any 

discriminative information at all, so the projected samples are smeared together, and 

classification becomes difficult. 

To find the combination of features that best separates classes, Linear Discriminant 

Analysis (LDA) maximizes the ratio of between-class scatter to within-class scatter.  The 

main idea is that the same classes should cluster tightly together, and at the same time 

different classes separate as much as possible from each other.  Therefore, in theory the 

Fisherface technique should perform better than the Eigenface technique for multiclass 

problems [44], shown in Figure 5.1.  According to Martinez and Kak [149], this is not 

true for all cases; in some cases PCA outperforms LDA. 
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Figure 5.1: Three-class problem: Scatter matrix SB and SW, µ is the mean of three 

classes and 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3 are the class means 

To compute the Fisherfaces it has been assumed that all the images in cats and possum 

training classes are normally distributed.  This can be denoted by using the multivariate 

distribution: 

 𝑁𝑁𝑖𝑖(𝑚𝑚𝑖𝑖,𝐶𝐶𝑖𝑖) (5.1) 

where 𝑚𝑚𝑖𝑖 is mean and 𝐶𝐶𝑖𝑖 is covariance matrix, and the probability function of this can be 

expressed as: 

 𝑓𝑓𝑖𝑖(𝑋𝑋|𝑚𝑚𝑖𝑖,𝐶𝐶𝑖𝑖) (5.2) 

For the cat and possum cases, the Cat Class is C (N2× Z) and Possum Class is P (N2× Z), 

where Z is number of training images in each class, N is the height and width of images 

and M is the total number of images in both training sets (2 × Z).  X is the full training set 

[C, P] (N2× M). 
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Calculate the average for full training set of both cat and possum classes, using: 

 𝑚𝑚 =  
1
𝑀𝑀

 �Γ𝑖𝑖
𝑖𝑖

 (5.3) 

Centre the data (Φ is centred data) 

 𝛷𝛷𝑖𝑖 =  Γ𝑖𝑖 − 𝑚𝑚 (5.4) 

Since A sample vectors are larger than the total number of samples (M < N2), the within-

class scatter matrix SW is singular in this case.  Therefore, SVD is performed on the 

centred data set A in order to reduce the dimensionality.  For further details on SVD see 

section 2.8 of chapter 2. 

SVD of A can be written as: 

 𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 (5.5) 

Where:  

U is left singular vectors of A  are set of orthonormal eigenvectors of AAT 

 S is square roots of the non-zero eigenvalues of both ATA and AAT  

V is right singular vectors of A are eigenvectors of ATA 

The left singular vectors can be used as dimensionally reduced-vectors of A.  So, U can 

be used to calculate the weights (Y) for normalised training images:  

 𝑌𝑌 =  𝑈𝑈𝑇𝑇𝐴𝐴   (5.6) 

The eigenvectors of U are associated to non-zero eigenvalues, which are the useful 

vectors with the most information.  Typically, in the Fisherface technique M – number of 

classes vectors have the most of information.  The main reason for this is that when the 

original data was centred some of the information was lost.  Since there are two classes 

in this application, there will be M − 2 = V vectors from Y.  The Fisher Linear 

Discriminant Analysis (FLDA) can now be applied to the dimensionality-reduced training 

set Y. 
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For the FLDA the mean 𝑚𝑚𝑌𝑌 of the training set Y needs to be calculated: 

 𝑚𝑚𝑌𝑌 =  
1
𝑀𝑀

 �𝑌𝑌𝑖𝑖
𝑖𝑖

 (5.7) 

 

Then the mean for the cat and possum classes need to be computed.  For the cat class, the 

mean mc is given by: 

 𝑚𝑚𝑐𝑐 =  1
𝑍𝑍

 ∑ 𝑌𝑌𝑖𝑖𝑍𝑍
𝑖𝑖=1  , (5.8) 

and for the possum class the mean mp is given by: 

 𝑚𝑚𝑝𝑝 =  1
𝑍𝑍

 ∑ 𝑌𝑌𝑖𝑖𝑀𝑀
𝑖𝑖=𝑍𝑍  , (5.9) 

Once the cat class mean and possum class mean are calculated, each class data can be 

centred (normalised), CN for the cat-centred training class and PN for the possum-centred 

training class. 

 𝛷𝛷𝐶𝐶 =  𝑌𝑌(1:𝑍𝑍) −𝑚𝑚𝑐𝑐   (5.10) 

and 

 𝛷𝛷𝑃𝑃 =  𝑌𝑌(𝑍𝑍:𝑀𝑀) −𝑚𝑚𝑝𝑝   (5.11) 

After centring the training classes, the within-class scatter matrix SW can be calculated, 

using: 

 𝑆𝑆𝑊𝑊 = 𝛷𝛷𝑝𝑝𝛷𝛷𝑝𝑝𝑇𝑇 + 𝛷𝛷𝑐𝑐𝛷𝛷𝑐𝑐𝑇𝑇     (5.12) 

Then the between-class scatter matrix SB can be calculated, using: 

 𝑆𝑆𝐵𝐵 =  𝑍𝑍(𝛷𝛷𝐶𝐶 −𝑚𝑚𝑌𝑌)(𝛷𝛷𝐶𝐶 −𝑚𝑚𝑌𝑌)𝑇𝑇 + 𝑍𝑍(𝛷𝛷𝑃𝑃 −𝑚𝑚𝑌𝑌)(𝛷𝛷𝑃𝑃 −𝑚𝑚𝑌𝑌)𝑇𝑇     (5.13) 
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The next step is to find the projection W which maximises the class separation criterion: 

 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊
�𝑊𝑊𝑇𝑇𝑆𝑆𝐵𝐵𝑊𝑊�
�𝑊𝑊𝑇𝑇𝑆𝑆𝑊𝑊𝑊𝑊�

  . (5.14) 

The solution for the above optimisation problem, equation (5.14) is found by solving the 

general eigenvalue problem: 

 𝑆𝑆𝑊𝑊𝐵𝐵 = 𝜆𝜆𝑖𝑖𝑆𝑆𝑊𝑊𝑊𝑊𝑖𝑖 (5.15) 

where W is the eigenvectors of 𝑆𝑆𝑊𝑊−1𝑆𝑆𝐵𝐵 and λ is the eigenvalues, so that: 

 𝑆𝑆𝑊𝑊−1𝑆𝑆𝐵𝐵𝑊𝑊𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑊𝑊𝑖𝑖  (5.16) 

Using the W eigenvectors, the Fisherfaces (F) can be calculated: 

 𝐹𝐹 = 𝑈𝑈𝑈𝑈 (5.17) 

In order to project the cat class and the possum class into Fisherspace, the class means 

need to be calculated.  Here C_m is the training cat class mean: 

 𝐶𝐶_𝑚𝑚 =  
1
𝑍𝑍

 �𝐶𝐶𝑖𝑖
𝑖𝑖

  (𝑁𝑁2 × 1) (5.18) 

and P_m is the training possum class mean: 

 𝑃𝑃_𝑚𝑚 =  1
𝑍𝑍

 ∑ 𝑃𝑃𝑖𝑖𝑖𝑖   (𝑁𝑁2 × 1) . (5.19) 

 

  



105 

Now the average faces can be projected into Fisherspace, and sets of weights can be 

obtained for the cat class and the possum class using: 

 𝑤𝑤𝐶𝐶 = 𝐹𝐹𝑇𝑇𝐶𝐶_𝑚𝑚   (5.20) 

where 𝑤𝑤𝐶𝐶 are the cat class weights. 

 𝑤𝑤𝑃𝑃 = 𝐹𝐹𝑇𝑇𝑃𝑃_𝑚𝑚   (5.21) 

where 𝑤𝑤𝑃𝑃 are the possum class weights. 

To classify an unknown image τ (N2 × 1), the weight vector wτ needs to be calculated by 

projecting into Fisherspace: 

 𝑤𝑤𝜏𝜏 = 𝐹𝐹𝑇𝑇𝜏𝜏 (5.22) 

Since these weights are obtained from eigenvectors, their individual values are 

perpendicular to each other.  So, the first weight from these weight vectors has the main 

separation between the two class means.  The second weight will be perpendicular to the 

first one, shown in Figure 5.2. 

 

Figure 5.2: Direction of Fisher weights  
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Therefore, in order to calculate the distance of the cat mean and the possum mean on the 

main linear axis, the first largest weight vector is used, where C_Dis is the cat distance 

from the mean given by: 

 𝐶𝐶_𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑊𝑊𝜏𝜏 −𝑊𝑊𝐶𝐶  , (5.23) 

and P_Dis is the possum distance from the mean given by: 

 𝑃𝑃_𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑊𝑊𝜏𝜏 −𝑊𝑊𝑃𝑃 . (5.24) 

This calculated distance can be used to classify membership of the class.  The l2 -norm is 

used to calculate the distance between these two memberships.  The distance with lowest 

value is the likely membership.  If the test data overlaps on the linear axis the membership, 

the data is unclassifiable. 

5.2 Training Images and Their Properties  

In order to improve the detection rate, it is important to enhance the main face features of 

the training images.  As discussed previously, by enhancing the main features the 

detection rate can be improved.  If the original images are used, the Fisherface technique 

gives extremely poor performance in the animal recognition domain. 

The training images were selected randomly and therefore had different head orientations 

and head sizes, as discussed in section 3.2 of chapter 3.  With the Fisherface technique it 

is important to analyse the distribution of the training images.  To do this training images 

were projected into Fisherspace and the sums of the weights were plotted.  To perform 

this trial, equations (5.1) to (5.9) were used and the plotted weights are shown in Figure 

5.3 and Figure 5.4. 

In this trial 160 × 160 black and white possum and cat images were used.  The 

identification was performed on face outline, so all the face features were turned into 

white pixels. 
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Figure 5.3: Fisherface training weights for enhanced images 

As expected, all the training images in the same class had similar weight values and 

shown in Figure 5.3, the cat class and possum classes have good separation.  There is a 

small fluctuation in cat weights due to different cat species having different head sizes.  

There is hardly any fluctuation in possum weights.  This is due to both possum species 

have very similar head sizes.  This phenomenon can be clearly seen in the above training 

data. 

When the original images were used to calculate the weights, the above setup showed 

much larger variation across individual class weights.  Moreover, the class separation 

distance was about 1.7 times less than that achieved with the face outline training images, 

shown in Figure 5.4. 
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Figure 5.4: Fisherface training weights for original images 

Unlike face outline detection, in this scenario the original images were used as training 

images.  All the images had similar backgrounds and the animals’ fur had similar colour 

spectra.  Therefore, all the images in the same class looked very similar to each other, 

with very little variation in training weights.  Similarly, there was less variation between 

the two separate classes.  This was due to most of the animals’ colours being similar to 

each other.  This can be clearly seen in the smaller separation of cats and possums with 

the original images, shown in Figure 5.4. 

From this trial it can be clearly seen that the Fisherface technique achieves better 

separation on the face outlines of animals.  One of the main advantages of this new 

method is that, when applying SVD to training images, most of the lost data is background 

information and middle part of the facial information.  Since the majority of pixels from 

these areas have the same value, most of the lost dimensions will be these values.  This 

results in greater separation of the training data in high-dimensional space. 
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5.3 Class Separation Optimised by Greyscale Colour Scheme  

Colour scheme optimisation was performed using a two-stage process.  At the first stage, 

four different colour schemes were tried out.  The first scheme was grey background and 

original face; the second was white face, grey background and original nose and mouth; 

the third was grey face, white nose and mouth and black background; and the fourth black 

background and white face.  In this trial all the test images were 160 × 160 pixels, shown 

in Figure 5.5. 

 

Figure 5.5: Grayscale Colour schemes 

From these four schemes the best performing one was then selected.  Performance was 

compared on class separation and computational time.  The class separation is measured 

using equations (5.20) and (5.21).  The computational time is measured using MATLAB 

‘tic’ and ‘toc’ functions to run equations (5.18) to (5.22).  In order to benchmark the time, 

the same algorithm was looped 1000 times and the average computational time for one 

loop was calculated.  It is difficult to measure loop time with a single computational loop.  

Depending on operating system task allocation, this processing time could vary 

considerably.  The looping technique is one of the MATLAB recommended techniques 

to measure time, when the program execution time is very short (less than a half a second). 

After the initial trial it was found the original images produced negative separation.  This 

means that the main axis test data from the two training groups overlapped and therefore 

there was no clear separation.  This is mainly due to the original images having similar 

colour details across the two classes.  Hence most of the original images contained lots 

of data and the processing time was long.  With white faces and original nose and mouth 

information, better separation was achieved compared to the first option.  But separation 

was not significant enough to be useful in a real-life application.  The third option showed 

better separation compared to previous two options and the processing time was also 

faster.  The last option produced the best separation, but the processing time was slower 

than the second and third options, shown in Table 5.1.  Since the third and fourth options 
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showed better separation and acceptable execution times, it was decided to investigate a 

combined colour scheme. 

Table 5.1: Fisherface data separation and executing time for initial colour scheme 

 
Separation Time (secs) 

Grey background, original face -816.6 0.341 

White face, grey background, original nose and mouth 275.7 0.324 

Black background, grey face, white nose and mouth 1663.7 0.318 

Black background and white face 2275.1 0.337 

 

In order to combine the third and fourth schemes, the background colour was changed to 

black, face colour was changed to white, and nose and mouth colour was changed to 

varying greyscale.  In this trial the nose and mouth colour were changed from 0 to 200 

greyscale, with an intensity change step of 50 and all the images size were 160 × 160 

pixels, shown in Figure 5.6. 

 

Figure 5.6: Nose and mouth with varying greyscale from 0 to 200 

Table 5.2 shows the class separation and execution time for each colour scheme.  The 

first column shows each colour scheme with ascending greyscale value.  The second 

column shows the possum and cat class separation for each colour scheme.  Third column 

shows the execution time. 

 

 

Table 5.2: Separation and execution time and of optimised colour scheme  
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Separation Time (secs) 

Black background and white face 0 nose and mouth 1636.8 0.159 

Black background and white face 50 nose and mouth 2097.1 0.176 

Black background and white face 100 nose and mouth 2369.6 0.173 

Black background and white face 150 nose and mouth 2314.6 0.165 

Black background and white face 200 nose and mouth 2318.4 0.178 

 

It can be clearly seen that the new application has improved separation results, with best 

scheme being the black background and white face with 200 greyscale nose and mouth.  

But the actual separation difference between the black background and the white face is 

not considerable.  In order to simplify the whole process, the black background and white 

face is the most optimal scheme.  When the system is implemented on an embedded 

platform it will be important to have a trivial colour scheme, which will mean the pre-

processing tasks will be more efficient. 

5.4 Class Separation and Processing Time Optimised by Changing 

Image Resolution  

As described in chapter 4, image resolution improves Fisherface class separation and 

processing time.  After the optimum colour scheme is developed, seven different image 

resolutions were trialled: 10 × 10, 16 × 16, 20 × 20, 32 × 32, 40 × 40, 80 × 80 and 160 × 

160 pixels , shown in Figure 5.7.  In order to reduce the resolution, same technique used 

in section 4.6.2 of chapter 2 was applied. 
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Figure 5.7: Trialled resolutions: (left to right) 10 × 10; 16 × 16; 20 × 20; 32 × 32; 40 

× 40; 80 × 80; and 160 × 160 

SVD is a similar data reduction technique to PCA.  Therefore, as discussed previously, 

when the dimensionality of the training images is reduced, less data is lost at low 

resolution.  This is one of the main advantages of using lower resolution images.  By 

reducing the resolution, however, some finer details still get lost.  So, it is important to 

find the optimal resolution for optimal separation. 

Reducing resolution will have direct effect on the execution time of the program.  

Therefore, it is important to optimise the execution time with class separation.  As 

discussed above, execution time was the average of 1000 loops of same program. 

The main aim of this test was to find a useable resolution with reasonable execution time.  

Therefore, in this trial all the colour schemes shown in Table 5.3 were trialled with all 

seven different resolutions. 
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Table 5.3: Resolution, separation and execution time data for tables (a) to (f) with 

varying greyscale colour from 0 to 200 and a step of 50 for animal noses and mouths 

(a) Black background and white 
face 

 

(b) Black background and white 
face, 0 nose and mouth 

Resolution Separation Time 
(secs) 

 Resolution Separation Time 
(secs) 

10 × 10 -13.4 0.003 
 

10 × 10 -30.2 0.003 

16 × 16 -13.5 0.004 
 

16 × 16 13.2 0.003 

20 × 20 84.4 0.004 
 

20 × 20 22.5 0.003 

32 × 32 239.4 0.006 
 

32 × 32 204.2 0.005 

40 × 40 352.4 0.008 
 

40 × 40 259.1 0.007 

80 × 80 955.7 0.031 
 

80 × 80 679.5 0.025 

160 × 160 2275.1 0.156 
 

160 × 160 1636.8 0.160 

(c) Black background and white 
face, 50 nose and mouth 

 

(d) Black background and white 
face, 100 nose and mouth 

Resolution Separation Time 
(secs) 

 Resolution Separation Time 
(secs) 

10 × 10 -27.2 0.003 
 

10 × 10 -14.4 0.004 

16 × 16 15.2 0.003 
 

16 × 16 7.7 0.004 

20 × 20 39.1 0.004 
 

20 × 20 56.4 0.004 

32 × 32 253.3 0.005 
 

32 × 32 251.8 0.006 

40 × 40 363.7 0.006 
 

40 × 40 259.1 0.008 

80 × 80 913.9 0.025 
 

80 × 80 960.9 0.042 

160 × 160 2097.1 0.176 
 

160 × 160 2369.6 0.173 
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Table 5.3 (continued) 

(e) Black background and white 
face, 150 nose and mouth  (f) Black background and white 

face, 200 nose and mouth 

Resolution Separation Time 
(secs) 

 Resolution Separation Time 
(secs) 

10 × 10 -26.1 0.004  10 × 10 -27.4 0.003 

16 × 16 5.5 0.004  16 × 16 1.8 0.003 

20 × 20 73.4 0.005  20 × 20 82.8 0.004 

32 × 32 248.8 0.006  32 × 32 262.1 0.005 

40 × 40 363.0 0.008  40 × 40 363.3 0.006 

80 × 80 992.5 0.027  80 × 80 1003.5 0.031 

160 × 160 2314.6 0.165  160 × 160 2318.4 0.178 

 

Figure 5.8 shows the class separation and execution time for each colour scheme.  Every 

data point in the graph represents the image resolution, so that each coloured line has 7 

different points representing resolution. 

The best separation value of 2369 can be seen on the black background, white face, 100 

nose and mouth graph, but the runtime of 0.173 seconds is one of the longest.  The worst 

separation value of 1636 can be seen on the black background, white face and black eyes 

and nose graph.  The optimal solution with one of the shortest runtimes is the black 

background and white face line.  This line shows one of the best separations with the 

second-shortest runtime, shown in  

Figure 5.8.  The main reason for this is most of the identification information for the 

animal is on the face outline, hence it produces best separation in Fisherface.  Once other 

information such as face and nose are added, the percentage of information compared to 

the face outline is less, but this makes the covariance matrix more complicated to solve.  

Also, when applying PCA or SVD most of the lost dimensions on black background and 

white face will be similar across the whole training set.  This lost information would be 

background border and internal face colour.  Therefore, this colour scheme is least 

affected by data-reduction techniques. 
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Figure 5.8: Fisherface test image separation vs time for optimised colour schemes and resolutions 
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From the research work presented in this chapter, it can be concluded that the best scheme 

to use for animal identification is facial outline with the Fisherface technique.  In the 

animal identification domain, raw images cannot be used to obtain optimal results with 

the Fisherface technique.  One of the advantages of this technique is that it can be 

extended into multiclass problems without any further modification.  Therefore, the 

Fisherface technique is much more attractive for use in a real-world animal detection 

device.  Unlike the Eigenface technique, it is designed for multiclass problems and it has 

better separation between classes when optimised training images are used. 
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Chapter 6  
Support Vector Machine for Cat and Possum Identification 

Support Vector Machines (SVMs) are used in many different research areas in order to 

separate two different data groups.  This chapter describes the use of this technique to 

benchmark the performance of the techniques presented in the previous chapters.  For 

this MATLAB’s Statistics and Machine Learning Toolbox was used to implement the 

SVM technique for cat and possum identification. 

During initial investigations it was found that SVM produced poor results with feature 

combination contained in original higher-resolution images.  With higher-resolution 

images, the dimensionality of the problem increases and with a small number of training 

images it was difficult to produce accurate support vectors in high-dimensional space to 

define the decision boundary.  To reduce this problem, two new techniques were 

developed, (a) the first technique was to improve the image by introducing custom scales. 

and (b) the second was a PCA-based data-reduction technique to reduce the 

dimensionality of the training data. 

The performance of the SVMs was improved by the addition of these two developed 

techniques.  But compared to the other two techniques Eigenface and Fisherface, SVM 

data separation for cat and possum detection was poor in higher resolution images.  The 

separation was better at lower resolutions, but the error rate was similar to the Fisherface 

and Eigenface techniques. 

6.1 Performance of SVM 

MATLAB’s Statistics and Machine Learning Toolbox’s ‘fitcsvm’ function was used to 

implement the SVM technique based on [150].  This function returns a SVM model for a 

given training data table with its data membership.  The returned model class contained 

all the parameters of the SVM [151; Chapter 12].  Scale, bias and orthogonal vector values 

are the most important parameters for calculating the orthogonal distance from the 

optimal hyperplane that separates the data into two classes.  The orthogonal distance can 

be obtained using the linear SVM score function. 
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The orthogonal distance can be obtained using following equation: 

 𝑓𝑓(𝑥𝑥) = (𝑥̅𝑥/𝑠𝑠)′𝑤𝑤� + 𝑏𝑏 (6.1) 

where 𝑥̅𝑥 is an observation the unknown image.  The orthogonal vector 𝑤𝑤�  contains the 

coefficients that define an orthogonal vector to the hyperplane.  For separable data, the 

optimal margin length is 2/‖𝑤𝑤�‖.  The bias term is b is the and s is the scale parameter 

value. 

This score value can be used to classify the membership of the unknown image.  In order 

to test the data and investigate the best separation, 8 different image resolutions were 

trialled: 5 × 5, 10 × 10, 16 × 16, 20 × 20, 32 × 32, 40 × 40, 80 × 80 and 160 × 160.  In 

these cases, all the different resolutions were black background and white face, shown in 

Figure 5.7 of chapter 5.  For the training 66 images were used, of which 33 were of cats 

and 33 were of possums and there was a total of 40 unknown test images, of which 22 

were possums and 18 were cats. 

To use MATLAB’s Statistics and Machine Learning Toolbox all the training images need 

to be categorised.  For this research possums and cats are separated into two classes.   

Then these two classes are passed to ‘fitcsvm’ function.  The function returns a model, 

which contains values for 𝑤𝑤� , b and 𝑠𝑠.  To classify an unknown image, the equation (6.1) 

can be used to calculate the training scores S.  The score indicates the membership of the 

class of the unknown image, given in Table 6.1. 
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Table 6.1: SVM scores for test images 

IMAGE 
SIZE POSSUM SCORES CAT SCORES 

 
correct  wrong correct  wrong 

 
S ≥ 1 1 > S > 0 S = 0 0 > S > -1 -1 ≥ S -1 ≥ S 0 > S > -1 S==0 1 > S > 0 S ≥ 1 

5×5 15 0 0 0 7 11 0 0 0 7 

10×10 13 2 0 0 7 11 0 0 1 6 

16×16 14 1 0 0 7 10 1 0 1 6 

20×20 13 2 0 0 7 10 1 0 1 6 

32×32 12 3 0 0 7 10 1 0 1 6 

40×40 12 3 0 0 7 10 1 0 1 6 

80×80 9 6 0 0 7 10 1 0 3 4 

160×160 0 15 0 7 0 0 11 0 7 0 

 

Table 6.1 has five columns for each data class membership (in this case cat and possum 

classes). 

Column 1. The condition S ≥ 1 indicates that the unknown data is outside the gutter 

of the separating hyperplane. 

Column 2. The condition 1 > S > 0 indicates when the data point is located between 

the gutter and the hyperplane, shown in Figure 2.15 of chapter 2.  When 

the data point is in this region it is difficult to classify its membership, 

but there is high probability of this data point belonging to the S >= 1 

class membership.   

Column 3. The condition S = 0 indicates the unknown data is located on the 

separating hyperplane.  In this situation it is impossible to classify the 

membership of the unknown data point.   

Column 4. The condition 0 > S > -1 indicates that the data point is between the 

separating hyperplane and the other side (wrong side) of the gutter, 

shown in Figure 2.15 of chapter 2.  In this situation it is still difficult to 

classify the membership of the data, but there is a high probability of it 

belonging to the other membership class.   
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Column 5. The condition -1 > S indicates an unknown data that belongs to the 

second-class membership.  If this data belongs to the first-class 

membership, then it is mis-classified.   

The above conditions are applied to the second-class columns but are mirrored.  Instead 

of being on one side of the hyperplane, they are now on the opposite of the hyperplane. 

As can be seen in Table 6.1, the performance of the SVM technique is poor compared 

with the Fisherface technique.  Then the image resolution reduces the classification of the 

unknown data improves.  The 5 × 5 images showed the best classifications of 15/22 for 

possums and 11/18 for cats, but there are still many misclassified images. 

Since all the training images were black and white in a high dimensional plane, there is 

little change in data points in most of the axis.  The main variance comes from the outline 

of the face.  Therefore, it was decided to distort the training animal faces to a fixed size 

and to leave a fixed black boundary around the faces, shown in Figure 6.1.  While the 

redundant pixels (same pixels) such as background and internal face pixels do not 

contribute towards the support vectors, the pixels with the most variance (face outline) 

have the main bearing of the support vectors. 

 

Figure 6.1: Original black and white image (left) and Distorted and centred image 

(right) 

Table 6.2 shows the results for the distorted test images.  It can be clearly seen that there 

is very little improvement on, higher resolution images.  At lower resolutions the cat 

identification rate was reduced.  Therefore, this method of distorting and centring images 

was not satisfactory.  A superior technique is required to reduce the dimensionality in 

higher-dimensional space. 
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Table 6.2: SVM scores for distorted test images 

IMAGE 
SIZE POSSUM SCORES CAT SCORES 

 
correct  wrong correct  wrong 

 
S ≥ 1 1 > S > 0 S = 0 0 > S > -1 -1 ≥ S -1 ≥ S 0 > S > -1 S==0 1 > S > 0 S ≥ 1 

5×5 14 1 0 2 5 10 1 0 0 7 

10×10 13 2 0 3 4 8 3 0 2 5 

16×16 12 3 0 3 4 7 4 0 2 5 

20×20 12 3 0 3 4 7 4 0 2 5 

32×32 12 3 0 3 4 7 4 0 2 5 

40×40 11 4 0 3 4 7 4 0 2 5 

80×80 10 5 0 3 4 2 9 0 3 4 

160×160 0 13 0 9 0 0 13 0 5 0 

 

6.2 PCA + SVM for Possum and Cat Identification  

As discussed in the previous section, the main problem with SVM in this research is that 

there are not enough training images to train the system to produce an effective separating 

hyperplane to divide the data into two different groups.  Since there are N2 variables as 

the number of rows and columns are both equal to N, the training data matrix becomes 

N2 × M, where M is number of training images.  PCA can be used to reduce the 

dimensionality of this matrix. 

When PCA is applied to N2×M matrix the pixels with the most variations are retained 

while all similar pixels, such as those in the internal face area and background, will not 

be kept.  The covariance matrix extracts the pixels with most variance across the whole 

data set and these pixels will have a larger effect on support vectors. 

Once the covariance matrix is calculated, the eigenvectors and eigenvalues are used to 

find the weights for the cat class and the possum class in eigenspace.  For the unknown 

test images, set of weights can be calculated by projecting into eigenspace.  Then these 

feature vectors can be used to train and test the system.  
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The mathematical steps can be expressed as follows: 

Step 1. Calculate the average face for each group: 

 𝑚𝑚 =
1
𝑀𝑀
�Γ𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (6.2) 

where 𝑚𝑚 is the average face, 𝛤𝛤 is the training images (cats and possums) and M is the 

total number of training images. 

Step 2. Once the average face is calculated, the data can be centred by subtracting 

the average face: 

 𝛷𝛷𝑖𝑖 = 𝛤𝛤𝑖𝑖 − 𝑚𝑚 (6.3) 

where 𝛷𝛷𝑖𝑖 is the centred training data for the training images. 

Step 3. Then the covariance matrix 𝐶𝐶 is calculated for centred data:  

 𝐶𝐶 = 1
𝑀𝑀
∑ 𝛷𝛷𝑛𝑛𝑇𝑇𝛷𝛷𝑛𝑛𝑀𝑀
𝑛𝑛=1  . (6.4) 

Step 4. Now the eigenvectors and eigenvalues can be calculated from the 

covariance matrix class.  The centred training data is projected into the 

eigenspace using the calculated eigenvectors. 

 λ𝐶𝐶 = 𝜆𝜆𝜆𝜆 (6.5) 

where 𝜆𝜆 is an eigenvalue of the covariance matrix, and 𝑒𝑒 is an eigenvector of the 

covariance matrix.   

 𝑓𝑓 = 𝛷𝛷𝛷𝛷 (6.6) 

where 𝑓𝑓 is Eigenfaces for training data.   
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These Eigenfaces can be used to calculate the set of weights for each training class, given 

in equations (6.7) to (6.9). 

 𝑤𝑤 = 𝛷𝛷𝑇𝑇𝑓𝑓 (6.7) 

 𝑤𝑤𝐶𝐶 = 𝑤𝑤[1:𝑁𝑁] (6.8) 

 𝑤𝑤𝑃𝑃 = 𝑤𝑤[(𝑁𝑁 + 1):𝑀𝑀] (6.9) 

where 𝑤𝑤 is all the weights for the training images, 𝑤𝑤𝐶𝐶 is the cat training weights and 𝑤𝑤𝑃𝑃 

is the possum training weights.  N is number of training images in each group. Then these 

weights can be used to train the SVM. 

In order to compute weights for the test image 𝛤𝛤, it needs to be centred and projected into 

the eigenspace.   

 𝛷𝛷 = 𝛤𝛤 −𝑚𝑚 (6.10) 

 𝑤𝑤𝑇𝑇 = 𝛷𝛷′𝑓𝑓 (6.11) 

where 𝛤𝛤 is the unknown test image, 𝛷𝛷 is the centred test image and 𝑤𝑤𝑇𝑇 is the weights for 

the test image. 

These calculated weights from equations (6.8), (6.9) and (6.11) can be fed into the SVM 

as test and training data.  Using this technique, the high dimensionality of the original 

images is reduced.  The calculated full training weights are (M × M) dimensions.  

Similarly, the test image is (1 × M) dimensions. 
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Table 6.3 shows the separation results from SVM with PCA weights.  There is significant 

improvement of identification at higher resolutions.  The larger separation occurs at 160 

× 160 resolution compared to SVM with black and white and SVM with distorted training 

images given in Table 6.1 and Table 6.2.  This indicates that training images with higher 

resolution and similar features produce better separation with PCA and linear SVM.  PCA 

with SVM is therefore an effective approach for animal detection. 

Table 6.3: PCA + SVM scores for distorted test images 

IMAGE 
SIZE POSSUM SCORES CAT SCORES 

 
correct  wrong correct  wrong 

 
S ≥ 1 1 > S > 0 S = 0 0 > S > -1 -1 ≥ S -1 ≥ S 0 > S > -1 S==0 1 > S > 0 S ≥ 1 

5×5 14 1 0 2 5 10 1 0 0 7 

10×10 13 2 0 3 4 8 3 0 2 5 

16×16 12 3 0 3 4 7 4 0 2 5 

20×20 12 3 0 3 4 7 4 0 2 5 

32×32 12 3 0 3 4 7 4 0 2 5 

40×40 10 5 0 3 4 7 4 0 2 5 

80×80 10 5 0 3 4 7 4 0 2 5 

160×160 8 6 0 4 4 5 7 0 3 3 
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Chapter 7  
Comparison of Identification Techniques 

This chapter compares the performances of the new species-identification techniques.  

The main techniques were the new Eigenface technique, Eigenface and Fisherface.  The 

Support Vector Machine (SVM) was used to compare the performance of these 

techniques.  Finally, all three techniques were compared, to find which one produced the 

best result for cat and possum identification. 

7.1 Different Techniques for Black and White Images with Changing 

Resolutions  

In this section an investigation of the main techniques (a) Eigenface, (b) Fisherface and 

(c) SVM were compared against (d) the new Eigenface technique with distance algorithm 

and (e) the new Eigenface technique with error weights.  All five options were applied 

on black background and white face training and test images.  The class separation was 

investigated using the following image resolutions: 10 × 10, 20 × 20, 40 × 40,  

80 × 80 and 160 × 160, shown in Figure 7.1. 
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Figure 7.1:  Comparison of all five techniques with varying image resolution
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When comparing the results from Figure 7.1 for all five techniques, it can be clearly seen 

that the proposed Eigenface distance technique with error weights gave the best 

performance under different resolutions with black background and white face images.  

The second-best separation was achieved by Fisherface technique.  At the lowest 

resolution, it could not separate two species completely.  There was an overlap between 

two species of -13.  The worst separation was obtained from the standard Eigenface 

technique and SVM. 

As the resolution increases, the Fisherface technique’s class separation improves 

considerably.  Similarly, the separation of the new Eigenface with error weights technique 

improved with resolution, but the maximum separation plateaus at 40 × 40 resolution.  

The developed Eigenface technique with distance algorithm performed much better at 

higher resolutions, but there were still some overlaps and misclassifications.  On the other 

hand, SVM’s classification rate decreases as the resolution increases.  This is mainly since 

in high dimensional space there is always a possible solution plane to separate the small 

training data set.  When trying to classify the test data, some will be located on the wrong 

side of the decision plane 

7.2 Receiver Operating Characteristic Identification for Black 

Background and White Face Images  

Figure 7.1 shows that it is possible do a visual representation of the performance of each 

technique, but it is difficult to analyse the separation of each technique using these 

different sets of plots with different sets of axes scales.  So Receiver Operating 

Characteristic (ROC) technique was used for this research, as a tool to analyse the 

different techniques and compare their performance, as discussed in section 2.13 of 

chapter 2.   

In this application ROC was used to compare the performance of the five techniques.  In 

order to measure the sensitivity and specificity of the plot shown in Figure 7.1, the 

decision boundary gradient was increased in 1° increments.  At each increment the 

specificity and sensitivity were measured, shown in Figure 7.2.  Then the ROC curves 

were plotted for each plot, shown Figure 7.3. 

 

 



128 

 

 

 

Figure 7.2: ROC measurements for (a) Eigenface (top plot); (b) Fisherface (middle 

plot); and (c) SVM (bottom plot)
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Figure 7.3:  ROC curves of the different techniques for black and white images with changing resolution
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Once all the ROC curves were plotted, the performance of each technique was analysed 

and then, comparing the areas under the ROC curves, the best performance is achieved 

by the Fisherface technique having the largest area under the ROC curve of 1 for the 160 

× 160 resolution.  At the same resolution, the second-best performer was the Eigenface 

technique with error weights.  The SVM and the standard Eigenface performance was the 

worst with values 0.69 and 0.40 respectively, shown in Figure 7.3. 

The 10 × 10 resolution for the standard Eigenface technique had the worst performance, 

with an area under the ROC curve of 0.35.  The best performance was by the new 

Eigenface technique with error weights, with an area under the ROC curve of 1 with full 

separation.  The second-best performer was the new Eigenface technique the distance 

algorithm, with an area of 0.99.  The Fisherface technique had a smaller overlap and 

hence an area of 0.97.  The SVM technique showed somewhat similar performance to the 

standard Eigenface technique at lower resolutions, shown in Figure 7.3. 

The shortest length to the ROC curve from the top left-hand side of the sensitivity axis 

will give the optimal separation point for the two classes.  Also, the shorter the length, 

the better the separation between classes.  At lower resolutions the best separation was 

obtained by the new Eigenface technique with error weights.  The second-best separation 

was by the new Eigenface technique with distance algorithm, and the worst separation 

from the standard Eigenface technique, shown in Figure 7.3. 

At higher resolutions, the best separation was obtained by the Fisherface technique and 

the second-best by the new Eigenface technique with error weights.  The worst 

separations were shown by the standard Eigenface technique and SVM, shown in Figure 

7.3. 

When analysing the performance of the data it is evident that the Fisherface technique 

shows the best performance at higher resolutions, but the new Eigenface technique with 

error weights at lower resolutions has the best performance.  The new Eigenface 

technique with error weights managed to separate the cat and possum classes completely 

at all resolutions. 
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7.3 Performance of Each Technique with Varying Number of Training 

Images 

An important feature is to compare the execution time for each identification technique 

with different image resolutions.  Table 7.1 shows the execution time for each technique 

for varying image resolutions, where the last two columns of the table gives the ROC 

distance and area under the ROC curves. 

In order to measure the execution time, a laptop computer was used with a 64-bit, Intel 

quad core, i7-2820QM CPU at 2.30GHz with 8.00 GB of system memory with Windows 

10 operating system.  To benchmark the time, every technique was looped for 1000 times 

to obtain an accurate average time.  The MATLAB ‘tic’ and ‘toc’ functions were used to 

measure the time. 
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Table 7.1: Execution time and ROC properties for different image resolutions  

Technique Resolution  Execution 
time (sec) 

ROC 
distance 

ROC 
area 

Eigenface 

10×10 0.048 0.75 0.35 

20×20 0.051 0.74 0.38 

40×40 0.058 0.74 0.39 

80×80 0.071 0.71 0.40 

160×160 0.090 0.71 0.40 

Proposed 
Eigenface 
algorithm 

10×10 0.064 0.08 0.99 

20×20 0.065 0.00 1.00 

40×40 0.066 0.04 0.99 

80×80 0.072 0.00 1.00 

160×160 0.094 0.00 1.00 

Proposed 
Eigenface 
with Error 

Weights 

10×10 0.063 0.00 1.00 

20×20 0.065 0.00 1.00 

40×40 0.066 0.00 1.00 

80×80 0.072 0.00 1.00 

160×160 0.095 0.00 1.00 

Fisherface 

10×10 0.019 0.16 0.97 

20×20 0.021 0.00 1.00 

40×40 0.028 0.00 1.00 

80×80 0.041 0.00 1.00 

160×160 0.161 0.00 1.00 

SVM 

10×10 0.118 0.47 0.67 

20×20 0.121 0.47 0.68 

40×40 1.348 0.51 0.67 

80×80 1.764 0.47 0.68 

160×160 1.842 0.55 0.69 
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Figure 7.4 shows a combined bar-chart plot of all three properties from Table 7.1 for each 

technique.  It is clear from the plot that the Fisherface technique has the best performance 

at higher resolutions; as the resolution increases, however, the execution time increases 

by 60% to 75%.  At lower resolutions the Fisherface technique’s performance is poorer 

than that of the new Eigenface technique with error weights. 

 

Figure 7.4:  Image resolution vs runtime and ROC properties  

The new Eigenface technique with error weights showed a small time-variance of 

0.000172 across the whole range of resolutions but gave the best separation for all 

resolutions.  When compared to the standard Eigenface technique and SVM, it has better 

separation overall with acceptable execution time, and at lower resolutions, this technique 

outperformed the Fisherface technique.  Since these developed algorithms are to be 

deployed on an embedded platform, the lower-resolution training images are attractive 

where there are limited amounts of processing memory available. 

The SVM had the longest execution time of the five techniques, and is also one of the 

worst-performing techniques for this limited number of training images application.  To 

improve the performance of this technique, it will need to have a larger number of training 

images i.e. > 5000 for the hyperplane to be a meaningful separation between the two 
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classes.  With lower-resolution images SVM still has a lower separation result than other 

techniques. The longer execution time is one of the drawbacks of this technique. 

The standard Eigenface technique and the new Eigenface technique with distance 

algorithm showed slightly increasing execution times across the different resolutions, 

with the standard Eigenface technique having the worst overall performance.  Therefore, 

it is evident that the two new Eigenface techniques are superior to the standard Eigenface 

technique. 

7.4 Performance in Optimised Conditions 

To investigate the effect of the number of training images, it was decided to plot ROC 

curves for varying numbers of training images.  In this trial the number of training images 

used the following five sets of (i) 5 cats and 5 possums images, (ii) 10 cats and 10 possums 

images, (iii) 15 cats and 15 possums images, (iv) 20 cats and 20 possums images and  

(v) 33 cats and 33 possums images.  All five techniques were tested with black and white 

images for a fixed image resolution of 40 × 40. The results for these trials are shown in 

Figure 7.5. 

The values for the ROC distance and area for all five techniques are plotted as a combined 

bar chart, shown in Figure 7.6. 
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Figure 7.5: ROC properties for 40 × 40 black and white images with changing numbers of training images  
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Figure 7.6: ROC properties for varying number of training images 

The results in Figure 7.6 show that the Fisherface technique outperforms all the other 

techniques with a black background and white face and 40 × 40 resolution images.  The 

standard Eigenface technique had the worst performance, with the largest ROC distances 

and ROC areas under the curve. 

The proposed Eigenface with error weight technique achieved full separation for all the 

scenarios except the 10 training images scenario.  As the training image count increased, 

the performance of the technique increased, i.e. the best separation is with 33 cat and 33 

possum training images.  This technique separates species efficiently, when the training 

images are similar to the test image.  More similar images produce better results with this 

technique, hence there are lower separation values with lower numbers of training images. 

As mentioned in this section the SVM tends to perform better with larger numbers of 

training images than with a low number of training images, but the SVM hyperplane does 

not produce the optimal class separation.  This is seen in the plot in Figure 7.6; as the 

training image number increases, the class separation improves. 
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7.5 Comparison of recent Eigenface developments with developed 

Eigenface technique  

After comparing the results of all five techniques used in this research, it can be concluded 

that the most useful techniques for application are the new Eigenface technique with error 

weights and the Fisherface technique. 

When comparing all the characteristics, the best performance was by the Fisherface 

technique, with higher resolution images greater than 10 × 10 resolution.  The developed 

Eigenface technique with error weights performs better with lower resolutions images.  

When comparing both techniques, shown in Figure 7.4, both produce usable results ROC 

areas under the curve for different resolution training and test images.  The separation of 

targeted species classes (ROC distance) in both cases was satisfactory for this smaller 

training sample-based identification system. 

To achieve satisfactory separation, the image colour scheme is critical.  As previously 

discussed in chapters 4 and 5, it is important to optimise the colour scheme of both 

training and test images to maximise the class separation.  Of all the trialled colour 

schemes, the most effective was a black background and white face without any fur or 

colour details.   Identification was made by the face shape of the animal. 

It was found that as the resolution increased, the runtime of Fisherface technique 

increased.  However, the corresponding increase was lower for the new Eigenface 

technique with error weights. 

It can be concluded from this chapter that the optimum technique for this application is 

Fisherface, given the fact that training and test image resolutions need to be larger than 

20 × 20 pixels.  If the training and test image resolution is lower than 20 × 20, the new 

Eigenface technique with error weights would perform better.  If this research moves into 

implementation, both techniques can be trialled to investigate the best resolution versus 

power consumption and processing time. 
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7.6 Black and White Image Detection Rate with Different Resolutions  

This section compares the performance of  developed error weights based Eigenface 

technique with sparse Eigenface approach [152], Fractional Eigenfaces [98] and 

Eigenface with Naïve Bayes approach [100]21.   

It is important to compare the developed technique against recent approaches to contrast 

the benefits.  To perform this trial black and white image are used with varying resolutions 

(10 × 10, 20 × 20, 40 × 40, 80 × 80 and 160 × 160).  33 possum images and 33 cat images 

are used to train each technique.  As shown in Figure 7.1 developed Eigenface technique 

and Fisherface technique had full separation on cats and possum test images with the 

above colour scheme and resolutions.  The Figure 7.7 below shows the accuracy of each 

technique.  Accuracy was calculated with 40 test images (22 possums and 18 cats).  For 

each technique correctly classified images were calculated as a percentage.   

   

Figure 7.7: Comparison of recent Eigenface developments 

 

21 This is to acknowledge authors of papers [97, 99 and 151] for providing identification results with possum’s and cat’s datasets 
for this research. 
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When comparing the three techniques above, the Fractional Eigenface technique has a 

better performance across all the different image resolutions.  The best separation is 

achieved at 160×160 with 97.5% accuracy.   As the resolution increases the accuracy of 

the techniques improve.  This can be observed with developed Eigenface technique as 

well (the separation margin increased with the resolution).  The other two techniques (i) 

Sparse Eigenface and (ii) Eigenface with Naïve Bayes have a similar performance with 

best accuracy of 82.5% and 87.5% respectively with 160×160 resolution.  The developed 

Eigenface technique with error weights has a better performance across different 

resolutions. 

7.7 Performance of the developed Eigenface technique with dogs 

The main aim of this trial was to investigate the performance of the developed Eigenface 

with error-weights technique for detection of different facial images of other animals.  For 

this trial a different animal group was introduced, in this case images of dogs. There are 

three reasons for selecting dogs. Firstly, many dog images are available on internet. 

Secondly dogs’ main facial features (ear and nose shape) are like possums and cats. Lastly 

dogs are curious animals, therefore they have probability of entering a trap setup.  To 

train the system 33 dog images were used, shown in Figure 7.8.  From the results shown 

in Figure 7.1, the 40 × 40 image resolution produced acceptable separation between 

possums’ and cats’ classes.  Therefore, to conduct this trial using dog images the same 

resolution was used. 

 



140 

 

Figure 7.8: Dog training data set 

To test the system 22 possums’, 18 cats’ and 18 dogs’ images were used, these test images 

were not related to training images.  All the test images had the same resolution as training 

images.  The ℓ2 norm was used measure the distance for each test image from each class 

average face, shown in Figure 7.9. 
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Figure 7.9: Three class (possums, cats and dog) separation with Eigenfaces with 

error weights 

Figure 7.9 shows an acceptable separation between three all classes.  To measure the 

separation multicategory receiver operating characteristic analysis [153] was used.  Just 

like area under the ROC curve, the Hypervolume Under the Manifold (HUM) 3D ROC 

surface is used to analyse the separation of the three animal classes.  The total HUM is 

one (1×1×1).  As the separation increases HUM value gets closer to one, otherwise value 

gets closer to zero. 

To plot the 3D ROC surface HUM calculator package22 is used.  This package plots the 

3D ROC surface and calculates HUM value for a given dataset.  In 3D ROC plot each 

axis represent Probability of Correctly Classifying (POCC) for each animal group, shown 

in Figure 7.10. 

 

22 HUM calculator package used for this research was accessed via https://public.ostfalia.de/~klawonn/HUM.htm 



142 

 

Figure 7.10:  Three class (Class I: possums, Class II: cats and Class II: dog) ROC 

analysis  

For above three classes the HUM value was calculated to have a value of 0.99 and since 

this value is very close to one all three classes has a full separation.  Also, with multiclass 

problem, once distances are calculated from class average face, this data can be used with 

SVM for further classification. 
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Chapter 8  
Receiver Operating Characteristic-based Feature Selection 

Method for the Principal Component Analysis, Fisherface and 

Support Vector Machine Techniques 

This chapter presents a new face feature-based detection approach for the Principal 

Component Analysis (PCA), Fisherface and Support Vector Machine (SVM) techniques.  

The main aim of this approach is to reduce the dimensionality of the training data. By 

doing this the accuracy of the detection techniques can be improved with lower numbers 

of training images.   

To reduce the density of the training images, the main features from each animal face 

were measured.  These main features give meaningful representations for each training 

image.  So, after these measurements, each training image produces a feature vector, 

which is used to train each discrimination technique.  For each test image the same 

features are measured, hence each test image is represented by a feature vector. 

By introducing this technique the dimensionality of training data was reduced 

dramatically, and the Eigenface technique is no longer required to reduce the 

dimensionality by scrambled covariance matrix [154; Chapter 3].  Therefore, PCA was 

used with the full covariance matrix, to discriminate between cats and possums in this 

application.  Similarly, with the Fisherface technique SVD is not required, as the training 

data vector is smaller than the number of training images.  Hence the training data set is 

much smaller than when using the original images, and the computational time is faster. 

Finally, this approach was further improved by the Receiver Operating Characteristic 

(ROC)-based critical feature vector selection technique.  By identifying critical features 

from training data sets, the separation of each technique can be improved further.  

Moreover, by using this method the number of features required for training the above 

technique is a much less, and so the computational time can be improved further by 

introducing this method. 

8.1 Feature Extraction 

In this trial the main features of the animal’s face were manually measured.  There were 

12 main features.  The first measurement is the centre point between the eyes to the 0° 
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point of the outer edge of the animal’s face i.e.  top of the head.  Then other measurements 

are measured at every 45° interval up to 315°.  Then the following measurements were 

taken: the distance between eyes, from the left eye to the centre of the nose, from the top 

of the left ear to the centre of the nose, and between ear tips, shown in Figure 8.1.   

 

Figure 8.1: Extracted face features 

Once all 12 features had been extracted, they can be plotted as shown in Figure 8.2.  A 

few features have complete overlap between the two animal species, such as distance 

between ear tips and distance between left ear tip to the centre of nose.  A few other data 

sets have smaller overlaps.  So, it was important to choose the most effective data sets for 

species separation. 
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Figure 8.2:  Extracted face features plot 

8.2 ROC-based Critical Feature Extraction 

To identify the critical datasets, ROC-based feature extraction was developed.  For each 

measured feature a ROC curve was plotted.  For each individual feature the specificity 

and sensitivity were measured according to Figure 7.2 (c) in chapter 7.  Once all the 

measurements were obtained, ROC curves for each feature could be plotted, as in Figure 

8.3. 
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Figure 8.3: ROC curves for each individual feature 

Feature vectors with higher weighting or larger eigenvalues can be selected by analysing 

the area under each ROC curve.  The curves with the greatest areas produce feature 

vectors with higher weightings.  All the curves that located under curves with larger areas 

under the ROC curves, can be ignored, this is because most of the separation data is 

contained by the curves with larger areas. 

According to Figure 8.3, the most meaningful data can be extracted from graph 1, 3 and 

9. Once these vectors are identified they can be used with the PCA, Fisherface and SVM 

techniques to investigate species separation.  By identifying the main feature vectors, the 

execution time of the final system can be improved by only extracting identified vectors.   

Pre-processing time can therefore be reduced in the final embedded system. 
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8.3 Results and Comparison 

To investigate the performance of ROC-based feature extraction, three selected feature 

vectors were used with the three main identification techniques.  The trials were separated 

into three groups: 

1. The first set of trials was conducted with original animal images, 160 × 160, 8-bit 

greyscale.  The results from this trial are shown in Figure 8.4. 

2. Second set of trials was conducted with measured 12 different features, shown in 

Figure 8.1.  The results from this trial are shown in Figure 8.5. 

3. The last trials were conducted with selected features using proposed technique 

above.  In each scenario, performance of each technique was analysed using a 

ROC curve.  The results from this trial are shown in Figure 8.6. 

For each trial, 33 cats and 33 possums training images were used.  For testing 22 possum 

images and 18 cat images were used.  Training and test images are not related to each 

other; they are totally independent of each other. 
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Figure 8.4: Results for the PCA, Fisherface and SVM techniques for Class Separation with Original Images  
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Figure 8.5: Results for the PCA, Fisherface and SVM techniques for Class Separation with Face Features  



150 

 

Figure 8.6: Results for the PCA, Fisherface and SVM techniques for three different trials for Class Separation with Selected Features 
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For this set of trials, the original cat and possum images were used with three trialled 

techniques.  From Figure 8.4 it follows that none of the three techniques was able to 

separate the two species fully.  The main axis test data from the two training groups 

overlapped, making it hard to find a clear separation.  This was mainly due to the fact that 

images had similar colour details between two classes.  Also, most of the original images 

contained many data points, and therefore processing time was high.   

The best result was achieved by the Fisherface technique, where the other two techniques 

did not manage to separate the cats and possums at all.  There were big overlaps between 

the two species groups.  When the areas under the ROC curves were analysed, the PCA 

and SVM techniques had very small areas, but the Fisherface had an acceptable area.  

Since there was poor separation with the original images, a second set of trials was 

conducted with selected face features.   

In this application from each training image, those selected features have been measured.  

Therefore, for each training group there were 33 × 12 feature vectors.  These feature 

vectors were used to train the above techniques. 

This developed feature-based technique produced full separation between cat and possum 

classes with PCA and Fisherface techniques, shown in Figure 8.5.  This represents a large 

improvement compared to first set of trials.  With the SVM technique, there is still some 

overlap between the two classes.  But there is improved separation, compared to the 

original images, shown in Figure 8.5. 

The ROC curves produced a maximum area of one for both the Fisherface and PCA 

techniques.  Due to the overlap around the decision boundary, SVM’s ROC curve 

produced a smaller area than the other two techniques. 

In the last set of trials, three main ROC graph-based feature vectors, features 1, 3 and 9 

were used, shown in Figure 8.6.  Since there were three main features, there were  

3 × 33 feature vectors for each class.   

With these selected features, full separation between cat and possum classes can be 

achieved.  All three discrimination techniques managed to separate the two species 

successfully.  The new ROC-based feature selection method therefore helps to identify 

the most important feature vectors within the training data set. 
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With the feature-based technique the performance time is much less than when using the 

original images.  The Fisherface technique alone with the original images had an 

execution time of 0.175 seconds, with the selected feature-based technique the execution 

time was reduced to 0.017 seconds, an 82.3% decrease, and as the number of feature 

vectors get less, execution time reduces dramatically. 

Moreover, this new technique allows users to apply mature discrimination techniques 

such as PCA, Fisherface and SVM with a small amount of training data, and still produce 

good discrimination in high-dimensional space. 

When analysing the three discrimination techniques, the Fisherface technique 

outperformed the others in all three scenarios.  This is due to its class separation and 

boundary maximisation, with within-class scatter and between-class scatter matrices23.  

The new optimisation removes all the local variation within each class and at the same 

time maximises the class separation. 

 
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊

|𝑊𝑊𝑇𝑇𝑆𝑆𝐵𝐵𝑊𝑊|
|𝑊𝑊𝑇𝑇𝑆𝑆𝑊𝑊𝑊𝑊| 

(8.1) 

The solution for the equation (8.1) is given by solving the general eigenvalue problem, 

where W is eigenvectors of 𝑆𝑆𝑊𝑊−1𝑆𝑆𝐵𝐵; 𝑆𝑆𝑊𝑊 is the within-class scatter matrix; and 𝑆𝑆𝐵𝐵 is the 

between-class scatter matrix. 

The SVM technique projects data into high-dimensional space and uses Lagrangian 

multipliers to maximise the margin within the support vectors for a maximised 

hyperplane.  As the training data gets scatter into the high-dimensional space as they are, 

there is very small variation between two species and therefore this technique produces 

less accurate data.  With the selected feature vectors, the spread between the species is 

increased; hence the better separation results.  When the original images were used there 

were not enough training images to produce a suitable decision plane.  Since there is 

higher dimensionality with a larger number of pixel values there is poor separation with 

the original images. 

 

23 A scatter matrix is a pair-wise scatter plot of several variables presented in a matrix format. 
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With lower numbers of training images and higher resolutions, PCA could not create 

enough eigenvectors with large enough eigenvalues to recreate the original information.  

Therefore, a large amount of useful information will be lost in high-dimensional 

Eigenspace.  Every time a test image is projected into eigenspace, it is hard to regenerate 

the species’ face with a reduced number of eigenvectors.  Therefore, a poor result was 

produced with the original images.  With the new feature-based method there are fewer 

feature vectors than actual images, therefore this problem can be solved within 

Eigenspace. 
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Chapter 9  
Conclusion and Future Work 

9.1 Conclusions 

The main aim of the research presented in this thesis was to develop a new cat and possum 

identification system for smart trapping.  Very little research has been conducted on small 

animal detection using a camera system.  Most of the animal detection research has been 

carried out on large animals.  Most existing small animal detection systems are based on 

animal footprints, and therefore this research represents a new approach to small animal 

management systems. 

Initially, human identification systems were investigated in general before three main 

techniques were explored further was the (i) Eigenface technique, (ii) Fisherface 

technique and (iii) Support Vector Machine (SVM) technique.  All three techniques have 

rarely been used for detecting small animals such as cat and possum. 

During the research, Eigenface technique performance was enhanced by development of 

weight-based classification algorithm and was improved further by introducing test image 

error weights.  This is a major improvement for the existing Eigenface technique.  The 

combined approach of both improvements proven to be much better classifier for small 

animal detection. 

The Fisherface technique showed improved performance compared to the standard 

Eigenface technique.  However, when the new enhancements described in this thesis were 

applied, the new Eigenface technique with error weights proved to give improved results, 

compared to the Fisherface technique with lower resolution training and test images.  The 

Fisherface technique still outperformed the new Eigenface technique with high-resolution 

images and lower numbers of training images.  From the results, it is clear that both 

techniques are practical solutions for implementation in smart trap applications. 

The SVM technique proved to be less usable with the feature set which contains in the 

training images.  To form a useable decision surface, a larger number of training images 

would be required (> 5000).  With smaller training sets and larger numbers of dimensions 

there are always a few decision surfaces, which is not optimal.  To overcome this situation 

lower resolution training and test images were used.  Even though it improved the 
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classification, the species separation was still not acceptable, compared to the other two 

techniques. 

To optimise the species separation, the head orientation in the training and test images 

was corrected.  To achieve this a new standard deviation-based edge-detection technique 

was developed.  The eyes of the animal were detected using Hough transform-based circle 

detection.  With respect to orientation of the eyes, the whole face was corrected on the 

yaw axis.  The main aim of this approach was to optimise the face orientation of the 

animals so that when training and classifying all animals in the same class have similar 

appearance.  From the trials it was evident that this approach improved the class 

separation further. 

The colour scheme was also optimised to improve the separation.  During the test stage it 

was found that the image colour scheme had a great effect on species separation.  

Different colour schemes were investigated, and it was found that a black background 

and white face with no features performed best.  With this scheme, the techniques were 

trained and classified on face shape.  A black and white image provides the maximum 

contrast between face shape and background. 

Receiver Operating Characteristic (ROC) curves were used to compare the performance 

the ROC area and class separation the ROC distance of each technique.  From the analysis 

of the results, Fisherface technique emerged as the most suitable for this application, 

given the image resolution is greater than 10 × 10.  When the resolution is low, the 

Eigenface with error weights technique is the most suitable and proved to be much more 

effective than the existing Eigenface technique. 

Finally, a newly developed ROC-based feature selection method was able to produce 

greater separation for Principal Component Analysis (PCA), Fisherface and SVM 

techniques.  Additionally, this technique assisted the other techniques with selecting 

critical features.  Because of the low dimensionality of the training data, the training time 

was much less than using traditional image-based approaches. 
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9.2 Suggestions for Future Work 

The next step for this research would be to implement these identification applications 

onto an embedded system such as Raspberry PI.  The latest Raspberry PI Zero, which is 

a single-board computer module, provides a low-cost powerful embedded module with 

minimal hardware options.  Since there is minimal hardware overhead, the total system 

power consumption is less than a Raspberry PI 3 model.  This module can be intergraded 

with Raspberry PI camera module V2.  This camera can be used to take high-definition 

video, as well as stills photographs.  Since Raspberry PI Zero is a minimal board, there 

are few I/O pins, which can be configured to control the main trap’s sensors, lighting and 

actuators as shown in Figure 4.2 of chapter 4.  The only limiting factor for this approach 

is the idle power consumption of the Raspberry PI module, which would have an idle 

power consumption around 2 Watts. 

Raspberry PI is a Linux based system, so OpenCV libraries can be used to implement the 

developed algorithms.  Then the system could be deployed to collect more training images 

and determine the optimum number of training images for best separation between the 

targeted animal species. 

The main goal for this research project was to implement the developed algorithms in a 

low cost 32-bit microcontroller such as Microchip Atmel SAM series microcontrollers.  

The idle power consumption is around 25uA [155] with floating-point capabilities.  This 

is an option that could be implemented as a commercial product. 

Even though this research and development is to solve a specific New Zealand problem, 

the developed system could be used to detect other similar species.  Such future projects 

could be to install a similar system to detect squirrels, where Defence infrastructures in 

remote areas are damaged by squirrels chewing power cables etc.  So, this developed 

application may have international use with different animal species to solve similar pest 

control problems. 

Future work could be to determine the optimum resolution from a set of low-resolution 

greyscale cameras, as lower resolution and a low number of training images help to reduce 

the operation time.  The faster the operation time, the less stress experienced by the 

trapped animal and so it is very important factor to optimise this identification time. 
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The proposed system could be easily used to control pest populations in different 

geographical areas by smart trapping, or to study the wild animal population.  Another 

factor of the system it is that it will remove the requirement of a specialised trained expert 

to detect animals either by their footprint pattern or fur samples. 

A similar approach could be implemented in smart animal door systems such as cat doors 

and farm gates, to let animal species into certain areas.  Since Radio Frequency 

IDentification (RFID) based animal entry methods are heavily patented [156, 157], the 

vision-based system will become more popular among product developers. 

With further work and research this type of system could also be introduced to a vehicular 

vision system to detect small animal species and reduce the number of endangered species 

killed on roads.  Currently there are numerous studies being carried out to detect larger 

animals with built-in vision systems; the algorithms developed by this research could be 

a useful addition to vehicular detection systems. 
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Appendix A 

Test and Training Images 

Attached CD contains all the images used for the trials. Under each folder there are two 

subfolders separating the test and training images. Inside those folders cats and possums 

are separated into two groups. Inside the cat and possum groups there are seven folders 

with seven different resolutions.  

1. The original 170x170 images:  

\Images\170x170 

2. The black back ground and white face images:  

\Images\BlackandWhite 

3. The black back ground, grey face and white nose and mouse:  

\Images\BlkBG_GryFC_WhtNM 

4. Grey background and original face:  

\Images\GryBG_OrgFC 

5. Optimised black background and white face images by changing eyes and nose 

colour with different grey scales:   

\Images\Poti 

6. Black background and white face images, with the size of the face is scaled to 

same size:  

\Images\Scaled 

7. Images with white face grey background and original nose and mouth: 

\Images\WhtFC_GryBG_OrgNM 
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Appendix B 

MATLAB Programs CD 

The attached CD contains all the MATLAB scripts and Microsoft Excel files used for 

these trials. 

The files are: 

• Eigenface technique  
• Eigenface with proposed distance formula 
• Eigenface with proposed distance formula and error weights 
• Error function for Eigenfaces 
• Feature Points detection  
• Fisherface technique 
• Possum nose detection 
• Standard deviation-based edge detection and Hough transformed based eye 

detection 
• SVM + PCA identification  
• SVM technique 

For the Face Feature-based method (Face Feature Folder): 

• PCA _FD 
• FisherFaces_FD 
• SVM_FD 
• Feature_Selection 
• PCA_Selected_FD 
• FisherFaces_Selected_FD 
• SVM_Selected_FD 
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