

Goal-Oriented Dynamic Test

Generation

A thesis submitted to

Auckland University of Technology (AUT)

in fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

TheAnh Do

2013

School of Computing and Mathematical Sciences

Primary Supervisor: Prof. Alvis Fong

i

Table of Contents

List of Figures .. iv

List of Tables ... vi

Attestation of Authorship ... vii

Acknowledgements .. viii

Abstract ... x

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Scope ... 3

1.2.1 Test Input Generation.. 4
1.2.2 Structural Coverage Testing.. 4
1.2.3 Security Vulnerability Testing .. 5

1.3 Thesis Details .. 5

1.3.1 Thesis Statement ... 6
1.3.2 Thesis Contribution ... 6
1.3.3 Thesis Organization .. 7
1.3.4 Publications ... 9

Chapter 2 Software Testing .. 10

2.1 Software Testing – The Whole Context ... 12

2.1.1 Software Testing Activities ... 14
2.1.2 Testing throughout the Software Life Cycle ... 16
2.1.3 Automation of Software Testing ... 18

2.2 Automated Test Input Generation Techniques ... 19

2.2.1 Random Testing .. 20
2.2.2 Symbolic Execution .. 21
2.2.3 Dynamic Symbolic Execution .. 23
2.2.4 Search-Based Testing .. 26
2.2.5 The Chaining Approach .. 27

2.3 Objectives of the Study .. 28

2.4 Summary ... 30

Chapter 3 Dynamic Symbolic Execution ... 32

3.1 Overview ... 33

3.2 Programming Model .. 34

3.3 Execution Model ... 35

3.3.1 Concrete Execution ... 36
3.3.2 Symbolic Execution .. 37
3.3.3 Test Input Generation.. 38
3.3.4 Generic Search Algorithm .. 39

3.4 Depth-First Search ... 40

ii

3.4.1 Example 1 ... 41
3.4.2 Example 2 ... 43
3.4.3 Example 3 ... 45
3.4.5 Interplay of Concrete and Symbolic Execution .. 46

3.5 The Path Space Explosion Problem ... 47

3.6 Summary ... 49

Chapter 4 Goal-Oriented Dynamic Test Generation .. 51

4.1 Background .. 52

4.2 Motivation ... 54

4.3 The Chaining Approach .. 58

4.3.1 Background ... 59
4.3.2 The Search Mechanism ... 61
4.3.3 Event Sequence Generation .. 64

4.4 The Extended Chaining Approach ... 65

4.4.1 Limitations of the Chaining Approach.. 66
4.4.2 Extended Event Sequence Generation .. 68

4.5 Goal-Oriented Dynamic Test Generation .. 73

4.6 Summary ... 78

Chapter 5 Structural Program Coverage .. 81

5.1 Overview ... 82

5.1.1 Structural Coverage Criteria ... 84
5.1.2 Structural Coverage Testing.. 85

5.2 Literature Review .. 88

5.3 Approach .. 92

5.3.1 The Proposed Testing Framework .. 94
5.3.2 Implementation ... 96

5.4 Evaluation ... 97

5.4.1 Test Subjects ... 98
5.4.2 Methodology ... 99
5.4.3 Experimental Results .. 100
5.4.4 Discussion ... 104

5.5 Summary ... 105

Chapter 6 Security Vulnerability Detection .. 107

6.1 Overview ... 108

6.2 Literature Review .. 113

6.3 Approach .. 116

6.3.1 Buffer Overflow Checking.. 118
6.3.2 Dynamic Symbolic Execution-Based Test Generation 119
6.3.3 Goal-Oriented Testing... 120

6.4 Evaluation ... 122

6.4.1 Test Subjects ... 123
6.4.2 Methodology ... 124
6.4.3 Experimental Results .. 125

iii

6.4.4 Discussion ... 129
6.5 Summary ... 130

Chapter 7 Conclusion .. 132

7.1 Summary ... 133

7.2 Limitations of Our Work .. 136

7.3 Future Work ... 138

7.4 Final Thoughts ... 139

References ... 141

iv

List of Figures

Figure 2.1: Activities of test engineers in software testing [3] 15

Figure 2.2: Software testing strategy [108] .. 16

Figure 3.1: Execution model of dynamic symbolic execution 35

Figure 3.2: Generic search algorithm to perform dynamic symbolic execution 39

Figure 3.3: Depth-first search for performing dynamic symbolic execution 40

Figure 3.4: Example illustrating the execution model of dynamic symbolic execution 41

Figure 3.5: Example illustrating how dynamic symbolic execution deals with complex

computational expressions .. 43

Figure 3.6: Example illustrating how dynamic symbolic execution deals with function

calls without the availability of source code ... 45

Figure 3.7: Example illustrating the combinatorial explosion of the path space in

dynamic symbolic execution ... 48

Figure 4.1: A C program and its control flow graph to illustrate basic concepts and

notations in goal-oriented dynamic test generation .. 53

Figure 4.2: Example to illustrate difficulties of dynamic symbolic execution-based path

exploration in goal-oriented approach .. 56

Figure 4.3: A graphical representation of event sequence E = <(s, Ø), (1, {success}),

(7, Ø), (8, Ø)> ... 60

Figure 4.4: A search tree generated by the chaining approach 63

Figure 4.5: A search tree generated in exploring node 8 in the example02 program in

Figure 4.2 .. 64

Figure 4.6: Example to illustrate limitations in the event sequence generation process of

the chaining approach ... 65

Figure 4.7: Example to illustrate limitations in the event sequence generation process of

the chaining approach ... 67

Figure 4.8: Recursive procedure for generating event sequences using influencing sets

in the extended chaining approach .. 69

Figure 4.9: A goal-oriented dynamic test generation algorithm guided by the chaining

approach and based on dynamic symbolic execution ... 73

Figure 4.10: Procedure ExploreEventSequence in the goal-oriented dynamic test

generation algorithm ... 74

v

Figure 4.11: Procedure AdjustWhenViolated in the goal-oriented dynamic test generation

algorithm ... 76

Figure 4.12: Procedure RefineEventSequence in the goal-oriented dynamic test

generation algorithm ... 77

Figure 4.13: Procedure SolveAtBranch in the goal-oriented dynamic test generation

algorithm ... 78

Figure 5.1: A C program and its control flow graph to illustrate structural coverage

criteria ... 87

Figure 5.2: A structural coverage testing algorithm using the goal-oriented dynamic test

generation approach .. 93

Figure 5.3: The proposed structural coverage testing framework 94

Figure 6.1: A C program to illustrate the stack-based buffer overflow attack............. 110

Figure 6.2: The stack layout of the program when calling the overflow function .. 110

Figure 6.3: Basic stack-based buffer overflow attack .. 111

Figure 6.4: Stack-based buffer overflow through overwriting saved frame pointer 112

Figure 6.5: A C program that enables active property checking 115

Figure 6.6: Buffer overflow vulnerability example ... 119

Figure 6.7: The proposed buffer overflow vulnerability testing framework 121

vi

List of Tables

Table 3.1: A summary of strengths and weaknesses of random testing and symbolic

execution ... 33

Table 5.1: Examples of converting code snippets into simplified constructs in the SCT

framework ... 97

Table 5.2: An example of creating a test driver for the program under test in SCT 97

Table 5.3: An overview of the test subjects selected in the evaluation of the SCT

framework for structural coverage testing .. 99

Table 5.4: Percentage of branch coverage achieved by search strategies on 15 test

subjects .. 101

Table 5.5: Measurements of numbers of program explorations performed by search

strategies .. 101

Table 6.1: An overview of the test subjects selected in the evaluation of the SEBO

framework for buffer overflow testing .. 123

Table 6.2: Testing results of DFS, CFGDIRECTED, and SEBO when performed on 23

subjects in 1 minute ... 126

Table 6.3: Numbers of explored paths by DFS on 10 subjects after 5 minutes, 10

minutes and 30 minutes of testing ... 128

Table 6.4: Numbers of explored paths by CFGDIRECTED on 16 subjects after 5 minutes,

10 minutes and 30 minutes of testing .. 128

Table 6.5: Numbers of explored paths by SEBO on 1 subject after 5 minutes, 10 minutes

and 30 minutes of testing .. 129

vii

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best

of my knowledge and belief, it contains no material previously published or

written by another author (expect where explicitly defined in the

acknowledgements), nor material which to a substantial extension has been

submitted to the award of any other degree or diploma of a university or

other institute of higher learning.”

Signed:

viii

Acknowledgements

I would never have accomplished this dissertation without the love and support of many

people.

First and foremost, I am deeply grateful to my supervisors, Professor Alvis Cheuk Ming

Fong and Dr Russel Pears. Professor Alvis has been with me on every step of my PhD

journey. He knew me when I was in Viet Nam, helped me form the research proposal,

and patiently supported me to find a scholarship to pursue a PhD degree in New

Zealand. From Professor Alvis I received his insightful suggestions, hearty support, and

invaluable encouragement during the course of my studies. His research methods and

the wisdom he shared with me in our meetings were important contributions toward the

completion of my PhD. From Dr Russel I received careful guidance and motivation to

conduct my research. I am indebted to you both.

I am thankful to numerous staff at the AUT School of Computing and Mathematical

Sciences (SCMS), as well as colleagues in the PhD Lab and the Software Engineering

Research Lab (SERL) for their friendship and advice, their moral and social support,

and for teaching and sharing their knowledge and research topics. Anne Philpott and Dr

Stefan Marks suggested I become a teaching assistant in SCMS where I had the chance

to socialize and interact with students. The PhD Lab has been my second home during

the last three years and I found fabulous friends whose incredible hard work,

determination, and perseverance helped to keep me motivated. SERL has been an

amazing research group for me to familiarize myself with others’ research, and to learn

more about industrial practices.

I am also indebted to SCMS for offering me the three-year full-time scholarship so that

I could concentrate on my research.

I am grateful to Professor Thoai Nam, Professor Quan Thanh Tho, and Dr Bui Hoai

Thang for their constant support and guidance when I was working at Ho Chi Minh City

University of Technology, Viet Nam. Thanks to these lovely people, I could prepare

myself well before I commenced my PhD study in New Zealand. In New Zealand, I am

particularly thankful to Hoang Thi Dung for her enduring friendship and support during

the course of my study.

ix

And finally, I am heartily grateful to my family, Mom, Dad, and my younger brother,

who were always there to support me at all times, no matter what I did. I love you all!

x

Abstract

Automated software testing is increasingly being seen as an important means of

improving the quality and reliability of software in industry. It mitigates the hardship of

manual testing, which is labour-intensive and error-prone, and alleviates the expensive

cost of software testing, which often accounts for around half of total software

development costs. One way of enhancing automated software testing is to automate the

process of test input generation. Over the last three decades, a considerable research

effort has attempted to achieve this goal. This thesis concentrates on the scalability

problem of the test input generation process, which lies at the heart of the automation of

the software testing process. It develops techniques to perform test input generation in a

goal-oriented mechanism in order to achieve high structural coverage criteria and

maximize security vulnerability detection. The techniques developed in this thesis are

based on well-established theoretical foundations of program analysis and software

testing. They distinguish themselves from existing techniques through their capability to

precisely identify a root cause leading to the execution of a specific test goal and to

perform test input generation in a directed automated manner toward effectively and

efficiently exploring the test goal.

A comparative evaluation was conducted via two sets of experiments in which our

proposed techniques significantly outperformed existing techniques. Specifically, on a

benchmark of 15 simulated and real world test subjects, our structural coverage testing

technique significantly optimized the test input generation effort to achieve the highest

structural coverage when compared to state-of-the-art techniques. Additionally, on a

benchmark of 23 buffer overflow vulnerabilities, our security testing technique

discovered security vulnerability defects within a matter of a few seconds, while

existing techniques failed even after 30 minutes of testing on a number of test subjects.

This thesis contributes to scientific knowledge by enriching the application of computer

science theory, and proposes techniques to improve the efficiency of automated

software testing.

1

Chapter 1

Introduction

1.1 Motivation ... 1

1.2 Scope ... 3

1.2.1 Test Input Generation.. 4
1.2.2 Structural Coverage Testing.. 4
1.2.3 Security Vulnerability Testing .. 5

1.3 Thesis Details .. 5

1.3.1 Thesis Statement ... 6
1.3.2 Thesis Contribution ... 6
1.3.3 Thesis Organization .. 7
1.3.4 Publications ... 9

1.1 Motivation

Human reliance on the functioning of software systems is growing rapidly. Software

systems are constantly becoming larger, more complex, and are continuously evolving.

Ensuring the high quality and reliability of these systems is therefore an ongoing

challenge. In fact, the United States’ National Institute of Standards and Technology

(NIST) estimated in 2002 that software failures cost the US economy alone about $59.5

billion (0.6% of GDP) every year, and that improvements in software testing

infrastructure might save one-third of this cost [98]. Research reports and the media

continuously highlight the impact of software disasters that cause economic losses and

social problems, and can even cost human lives [41], [57], [96]. These realities drive the

demand for developing effective and efficient techniques to assure software to be

reliable, robust, safe, and secure.

Among the various kinds of techniques proposed and used, peer reviewing [74], [134]

and software testing [4], [108] are the major software verification techniques adopted

widely in the industrial practice of software development. While a peer review amounts

to a software inspection performed by a team of software engineers to analyse and catch

defects completely statically on the uncompiled code, software testing is the process of

2

actually executing the compiled code under consideration with test cases to compare the

actual output to the desired output inferred from the software specification. Peer review

involves a range of dedicated types of peer review procedures for specific error-

detection goals. This technique is generally able to catch between 31% and 93% of the

defects with a median of around 60% in practice [10]. However, the almost completely

manual nature of peer review prevents it from exposing subtle errors such as algorithm

defects and security breaches.

In software development, testing constitutes a significant part of any software

engineering project. Up to 50% of the total software development costs are devoted to

testing [108]. The major advantage of testing is that it is applicable to all kinds of

software, ranging from application software to compilers and operating systems.

Unfortunately, the process of testing software is labour-intensive and error-prone. The

limitations of software testing, which apply throughout the entire process, can be

usefully categorized as follows [4], [7], [133]:

• First, test inputs are hand-constructed. Manually constructing test inputs is

tiresome, expensive, and unreliable. Automated test input generation techniques

such as random testing and symbolic execution are limited in many aspects of real

world software systems.

• Second, software testing is ad hoc. This is due to a lack of sufficient formal

foundations to specify software requirements and to formulate specifications in

the code. In practice, the translation of the specification to program assertions is

mostly done manually.

• Third, the state space of the program can be huge, often infinite. Exhaustively

checking all the possible program states is impractical. Hence, often software

testing ends up with small portions of the state space tested, leaving unknowns

about the untested space. This phenomenon is emphasized in the most often cited

aphorism of Edsger W. Dijkstra about testing: “Program testing can be used to

show the presence of bugs, but never their absence” [43].

• Finally, software testing has a fixed budget. The testing budget is bounded by the

three corners of the Project Management Triangle: Project Cost, Project Scope,

and Time to Market. In fact, testing is often poorly performed or skipped all

together because of its high cost and the pressure of time to market.

3

Over the last three decades, a considerable amount of research has attempted to mitigate

the enormous cost of inadequate software testing infrastructures and the intrinsic labour-

intensiveness of the testing process [9], [70]. The primary goal has been to improve

testing automation by focusing on the following two objectives:

• Develop advanced techniques to automate the test input generation process.

• Find innovative support procedures to automate the software testing process.

Nevertheless, all such efforts have had only limited impact on the software industry,

where testing activities remain largely reliant on human intervention [8].

In response to this context, this thesis proposes scalable automated techniques,

supported by a solid theoretical foundation of computer science, to implement the first

objective of the goal of automating the entire testing process. In particular, we explore

innovative techniques to improve automated test input generation approaches [29],

[121] to strengthen structural coverage testing, which has long been advocated by the

software industry to assess test adequacy [20], [56], [117], [132] but is still limited,

even with the recent development of advanced techniques [105], [128], [138], [142]. We

then enhance security vulnerability detection techniques [64], [93] by integrating static

and dynamic program analysis techniques to actively search for security vulnerability

defects. The techniques developed in this thesis furnish current approaches with the

ability to exploit program dependencies (e.g. control and data dependencies), and utilize

static analysis techniques together with effective search mechanisms to handle

scalability issues, which are a key limiting factor facing current dynamic testing

approaches [29], [35], [65].

1.2 Scope

Software testing is a quality control function of quality assurance which is combined

with software engineering to improve the quality and reliability of software. Software

testing incorporates several testing activities together with a number of testing types. A

specific testing type is designed to find specific types of errors and is performed

distinctly at distinct testing levels. Methodologies, techniques, tools, and the humans

involved in a particular testing type can vary significantly. This thesis mainly covers the

following topics in the software testing field, namely automated generation of test

inputs, structural coverage testing, and security vulnerability testing.

4

1.2.1 Test Input Generation

Test input generation is a fundamental activity of software testing. It involves the design

of test inputs to execute the piece of software under consideration. With a given test

input, the execution of the software will exercise some software behaviour and provide

feedback to software engineers to evaluate the software validity against desired test

requirements. At the same time, the design of test inputs must attempt to achieve the

highest likelihood of finding the most errors with the minimal amount of time and

effort. Automation of test input generation has become an active research field in the

software testing research community, especially over the last decade. A number of

automated test input generation techniques have been extensively explored, developed,

and applied in academia, research labs, and industry. These techniques include random

testing [3], symbolic execution [112], dynamic symbolic execution [29], search-based

testing [87], and the chaining approach [52]. Noticeably, recent years have the

development of techniques that have been applied to test industrial-scale software

systems and which have uncovered many serious subtle bugs and security vulnerability

defects in the Windows [66] and Linux [93] operating systems, saving millions of

dollars [15].

Regardless of the many challenges remaining, the recent achievements in the

automation of test input generation motivated us to intensively study the limitations of

current approaches, and to extensively explore and develop effective techniques in order

to significantly improve the efficiency of software testing, particularly in the field of test

input generation.

1.2.2 Structural Coverage Testing

Achieving high structural coverage criteria such as statement and branch coverage is an

important goal of software testing [4], [145]. A structural coverage criterion gives

quantitative measures of the degree to which the source code of the program under test

is exercised during software testing. Structural coverage provides mechanisms to drive

software testing, specifically to determine what test inputs need to be designed for

improving the adequacy of software testing so that it completely covers the structure of

the program under test. Intuitively, a high structural coverage degree obtained implies

that the program is more thoroughly tested and has a lower chance of containing

software defects than a program with low structural coverage. Therefore, structural

5

coverage offers another layer of assurance to gain high confidence about software

quality and reliability. In practice, structural coverage suggests stopping rules for

determining whether sufficient testing has been performed so that it can be terminated.

This thesis looks closely at structural coverage criteria such as statement and branch

coverage. In particular, we will explore and develop effective techniques to perform test

input generation in an automated directed mechanism to significantly improve structural

coverage results for the program under test. An important implication from this study is

that since an error can be encoded as a code element in the program, achieving high

structural coverage indirectly strengthens error-revealing capabilities.

1.2.3 Security Vulnerability Testing

A noticeable drawback of adopting structural coverage criteria in performing software

testing is that although complete structural coverage might have been achieved, the

correctness of the software is not directly addressed. The interesting fact is that a set of

test cases is considered to be adequate with respect to a structural coverage criterion,

when it simply exercises a fragment that is astronomically small over the entire state

space of the program. Not surprisingly, it has been reported that when test engineers run

millions of test cases and completely achieve all structural coverage criteria, faults still

persist in the final software product [38], [39].

Therefore, apart from structural coverage testing, this thesis develops augmented

techniques that favour fault detection. In particular, we focus on improving the

capability of uncovering security vulnerabilities defects, one of the most serious classes

of security threats. We integrate static runtime verification and dynamic test generation

techniques to strengthen security vulnerability detection for C programs.

1.3 Thesis Details

The proposal of this thesis is aligned to the exploratory research effort to enhance the

efficiency of software testing through exploring and developing techniques to improve

the attainable automation of test input generation. The proposed techniques are

evaluated as to their capability to effectively perform structural coverage testing and

security vulnerability testing. The following subsections discuss the statement and the

contribution of this thesis and outline the organization of the remainder of the thesis.

6

1.3.1 Thesis Statement

Developed based on the automated test input generation technique of dynamic symbolic

execution, the thesis looks closely at improving the efficiency of path exploration to

effectively and efficiently achieve test objectives. The driving force is yet simple. When

testing sizable and complex real world programs, the path space of the program under

test can be exceedingly huge to be systematically and exhaustively explored. Whenever

test objectives can be reduced to a reachability problem, which simply requires

generating test inputs to execute specific code elements, search techniques can be

developed to break down the path space and guide path exploration to propagate

selected aspects of semantics in order to influence the executability of code elements.

The search techniques to be developed incorporate ideas from symbolic analysis,

constraint solving, dynamic program analysis, control and data dependence analysis,

and static runtime verification. We will show that our proposed directed search methods

are more effective than recently developed search techniques in both the capability to

optimize the expensive cost of performing dynamic test input generation as well as the

capability to significantly enhance structural coverage testing results and security

vulnerability detection.

1.3.2 Thesis Contribution

The contribution of this thesis to existing knowledge can be summarized as follows:

• An extensive literature review of existing automated test input generation

techniques is presented in chapters 2–4. Strengths and drawbacks of these

techniques are compared and contrasted to establish the context that led to the

undertaking of this thesis.

• A goal-oriented dynamic test generation approach is proposed in chapter 4, based

on the latest advances in dynamic test generation and constraint solving

technology. The proposed approach distinguishes itself from existing approaches

by its ability to exploit control and data dependencies of the program to improve

significantly the efficiency of path exploration toward exploring test goals.

• A structural coverage testing framework is proposed in chapter 5 based on the

goal-oriented dynamic test generation approach presented in chapter 4. In this

framework, the testing approach is reduced to the problem of finding test inputs to

explore specific code elements in the program under test. Experiments on

7

simulated and real world test subjects proved that the proposed framework is

efficient at improving structural coverage results when compared to existing

approaches.

• A security vulnerability testing framework is proposed in chapter 6, again based

on the goal-oriented dynamic test generation approach presented in chapter 4. In

this framework, a test goal is a potential safety violation and the testing approach

is to generate test inputs to discover the violation. We utilize static runtime

verification to diagnose potential safety violations and dynamic test generation to

perform test input generation. Experiments conducted against 23 buffer overflow

vulnerabilities demonstrate the significant superiority of our testing framework

over existing approaches.

• Two sets of experiments carried out in chapters 5 and 6 provide valuable

observations in the context of developing techniques to perform dynamic test

generation for testing objectives such as structural coverage criteria and security

vulnerability detection.

1.3.3 Thesis Organization

The rest of the thesis is organized into the following six chapters:

Chapter 2: An introduction to software testing is provided in this chapter. Software

testing is a very broad area and we therefore only discuss the basic activities, important

roles, and motivating forces leading to the wide adoption of testing in practice. The

demand for the automation of software testing is highlighted. The chapter continues

with an extensive literature review of automated test input techniques, with a special

focus on dynamic symbolic execution and its impact on academia, research labs, and

industry. Finally, the fundamental scalability issue of dynamic symbolic execution is

underlined and the main objectives of this thesis are presented.

Chapter 3: Based on the literature review performed in chapter 2, dynamic symbolic

execution is chosen as an enabling technology in the development of this thesis. This

chapter describes this technique with its programming model, execution model, and the

interplay between concrete and symbolic execution. It also illustrates the inherently

complex path-based analysis, a key limiting factor of dynamic symbolic execution. This

limitation is the primary motivation that led to the proposal of this thesis.

8

Chapter 4: After looking closely at the execution mechanism of dynamic symbolic

execution, a goal-oriented dynamic test generation approach is proposed in this chapter,

in which the goal is a code element in the program and the testing approach is to

generate test inputs to explore the goal. The key element underlying this approach is a

search algorithm named GUIDER. It is driven by the chaining mechanism and based on

dynamic symbolic execution to perform path exploration for uncovering specific test

goals. GUIDER distinguishes itself from existing search algorithms in three major

aspects: (1) it mitigates the path explosion problem by centralizing on data dependences

which truly affect the executability of the test goal; (2) it is able to refine path

exploration when the local search space is saturated; and (3) it determines control

dependences on the fly and exploits the static program structure to optimize path

exploration. This search algorithm is an underlying component for the two testing

frameworks proposed in chapters 5 and 6.

Chapter 5: Based on the goal-oriented dynamic test generation approach presented in

the chapter 4, a structural coverage testing framework, named SCT, is proposed in this

chapter. SCT reduces the testing problem to a search problem, where the search task is to

perform dynamic symbolic execution-based path exploration of given code elements.

The performance of SCT is evaluated on simulated and real world test subjects and

compared to popular search algorithms for structural coverage testing.

Chapter 6: Similarly, a security vulnerability framework, named SEBO, is proposed in

chapter 6. The primary focus of SEBO is to test buffer overflow vulnerability defects in

C programs. SEBO uses DEPUTY [31]—a novel type system for pointers—to identify

potential runtime violations and dynamic test generation to find test inputs to uncover

actual violations. SEBO has considerable ability to detect errors caused by erroneous

pointer arithmetic operations on buffers. An experimental evaluation conducted against

23 buffer overflow vulnerabilities demonstrates a significant improvement of SEBO over

popular approaches.

Chapter 7: The conclusion is presented in this chapter, followed by a summary of the

work conducted in this thesis. Finally, ideas for future work are presented.

9

1.3.4 Publications

The following research papers have been written during the course of this research

thesis.

1. “Goal-Oriented Dynamic Test Generation”, under submission

2. TheAnh Do, A.C.M. Fong, Russel Pears, “Dynamic Symbolic Execution Guided

by Data Dependency Analysis for High Structural Coverage”, L.A. Maciaszek

and J. Filipe (Eds.): Communications in Computer and Information Science

410, Springer, Heidelberg, 2013, pp. 1–13.

3. TheAnh Do, A.C.M. Fong, Russel Pears, “Precise Guidance to Dynamic Test

Generation”, Proceedings of the 7th International Conference on Evaluation of

Novel Approaches to Software Engineering, Wroclaw, Poland, 29–30 June 2012.

4. TheAnh Do, A.C.M Fong, Russel Pears, “Scalable Automated Test Generation

Using Coverage Guidance and Random Search”, Proceedings of the 34th

International Conference on Software Engineering, the 7th IEEE/ACM

International Workshop on Automation of Software Test, Zurich, Switzerland,

2–3 June, 2012.

5. TheAnh Do, A.C.M. Fong, Russel Pears, “How Effective is Model Checking in

Practice?”, Proceedings of the 6th International Conference on Evaluation of

Novel Approaches to Software Engineering, Beijing, China, 8–11 June 2011, pp.

239–244.

10

Chapter 2

Software Testing

2.1 Software Testing – The Whole Context ... 12

2.1.1 Software Testing Activities ... 14
2.1.2 Testing throughout the Software Life Cycle ... 16
2.1.3 Automation of Software Testing ... 18

2.2 Automated Test Input Generation Techniques ... 19

2.2.1 Random Testing .. 20
2.2.2 Symbolic Execution .. 21
2.2.3 Dynamic Symbolic Execution .. 23
2.2.4 Search-Based Testing .. 26
2.2.5 The Chaining Approach .. 27

2.3 Objectives of the Study .. 28

2.4 Summary ... 30

We begin by quoting the opening of the Preface to Roger S. Pressman’s Software

Engineering – A Practitioner’s Approach [108]

When computer software succeeds—when it meets the needs of the people who use it,

when it performs flawlessly over a long period of time, when it is easy to modify and

even easier to use—it can and does change things for the better. But when software

fails—when its users are dissatisfied, when it is error prone, when it is difficult to

change and even harder to use—bad things can and do happen. We all want to build

software that makes things better, avoiding the bad things that lurk in the shadow of

failed efforts. To succeed, we need discipline when software is designed and built. We

need an engineering approach.

An engineering approach to software is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software [75].

The foundation underlying such an approach is a quality focus that supports software

engineering. In the attempt to support the development of high quality software,

software testing is an indispensable element of any software engineering approach.

Software testing includes activities in the software development life cycle that aim to

measure and improve quality of software.

11

A very commonly asked question is “Why does software fail?” Obviously, the

engineering of software is a human-originated activity where opportunities for the

inclusion of human fallibilities are numerous. In order words, software is fallible

because of human fallibilities. There are risks associated with software failure. Software

development is therefore accompanied by a quality assurance activity to assess such

risks. Testing is a critical element of software quality assurance intended to reduce risks

of software failures. Unfortunately, the cost required to perform software testing is

great, and can be up to half of the total software development costs. Huge efforts are

therefore being directed at exploring and developing innovative techniques to enhance

the efficiency of software testing and to improve the quality of software throughout the

whole development process.

This chapter provides a basic overview of software testing and presents the “big

picture” of which this research project is a part. We carry out a critical literature review

to evaluate the existing research in software testing. From there we establish the whole

context underlying the development of this thesis.

Section 2.1 describes software testing; it covers activities in software testing as well as

testing levels to be performed throughout the software development life cycle. The

demand for automation of software testing is also illustrated in this section. In section

2.2, the literature review focuses on automated test input generation techniques, and the

capability of these techniques is compared and contrasted from practical perspectives.

These techniques include random testing [3], symbolic execution [112], dynamic

symbolic execution [26], [62], [124], search-based testing [87], and the chaining

approach [52]. The theoretical foundation of dynamic symbolic execution and the

chaining approach is separately presented in chapters 3 and 4, respectively.

Section 2.3 presents our study objectives in the development of this thesis. The first

objective is to develop a goal-oriented dynamic test generation approach; the second

objective focuses on structural coverage testing; and the last objective attempts to

enhance buffer overflow vulnerability detection, one of the most serious classes of

security threats [41]. Finally, a summary of the chapter is given in section 2.4.

12

2.1 Software Testing – The Whole Context

Since software is written by humans, software products have defects due to fallibilities

introduced by humans. In addition, pressures such as deadlines, the complexity of

systems, and technology changes all bear down on software engineers and increase the

likelihood of errors, which spread throughout specification, design, and implementation

phases in the software development process. These errors are the root cause from which

system failures begin. Specifically, if a software specification harbouring an error is

used to specify a component, then the component will be faulty. If the faulty component

is implemented into a system, the system may cause failures. Unfortunately, software

failures have the potential to be catastrophic.

Software failures may seriously affect businesses and customers. While businesses may

encounter substantial financial consequences and suffer reputational damage, customers,

in almost every case, may confront stress and inconvenience. Examples of software

failures are depressingly common. A software error in the baggage handling system

postponed the opening of Denver’s airport for a full 16 months, at a loss of US$1.1

million per day throughout the postponement [21]. A software glitch in the trading firm

Knight Capital’s newly installed software system resulted in a US$440 million loss in

just 45 minutes [125]. The glitch was triggered by a flawed software algorithm that

bought the shares at market price then sold them at the bid price. The loss was greater

than the firm’s revenue in the second quarter of 2012 and threatened the stability of the

firm.

On 4 June 1996, the Ariane 5 rocket crashed just 37 seconds after launch [143]. The

crash was due to an integer overflow occurring when converting a 64-bit floating point

into a 16-bit integer value in the control software of the rocket. Further notorious

examples include the Mars Climate Orbiter disintegration [33] and the FBI Virtual Case

File project abandonment [59].

More seriously, a software flaw in the control part of the radiation therapy machine

Therac-25 caused the death of six cancer patients between 1985 and 1987 after they

were exposed to an overdose of radiation [22].

With the increasing reliance on information processing in the functioning of software

systems, the magnitude and complexity of these systems are growing rapidly. Software

13

systems no longer exist independently, but are typically embedded in a larger context,

connecting and interacting with several other components and systems. They therefore

become much more vulnerable to errors. The delivery of software systems with low

defects is an enormously challenging and complex activity due to the ever-growing

complexity, the limit on project budget, and the pressure to drastically reduce system

development time or time to market. The reliability of software systems is a key issue in

the software development process.

In attempting to develop high quality software, software engineers need to bring a

systematic, disciplined, and quantifiable approach with discipline, adaptability, and

agility to the design and building of software systems. Software engineering

encompasses processes, methods, and tools grounded on a quality focus to enable

complex computer-based systems to be developed in a timely manner. The software

development process incorporates five activities — communication, planning,

modelling, construction, and deployment. These define a framework for the effective

delivery of software engineering technology. This framework forms the basis for

management control of software projects and grounds the context in which technical

methods are applied, work products are produced, milestones are established, change is

properly managed, and importantly quality is ensured.

In order to ensure software quality, the software development process is accompanied

by a quality assurance activity. Quality assurance establishes an infrastructure that

supports solid software engineering methods, rational project management, and quality

control actions, all crucial for building high quality software. Software quality assurance

explicitly defines software quality, creates a set of activities to exhibit high quality,

performs quality control and assurance activities on software projects, and uses metrics

to develop strategies for measuring and improving the software development process

and thereby the quality of software upon deployment.

In software quality assurance, testing is a quality control function with the primary goal

of finding software errors. Motivating forces for software testing to enter the quality

assurance picture are the costly consequences associated with software failures. The

intent of software testing is therefore to find the highest possible number of errors

where reviews and other software quality assurance activities are not sufficient. The

following subsection provides a full overview of the software testing process.

14

2.1.1 Software Testing Activities

Software testing is an important component in all software engineering approaches. In

early stages of software engineering, engineers attempt to design and build software

from an abstract concept to a working product. In the software testing stage, engineers

create a set of test cases that are intended to deconstruct the software that has been built.

In fact, software testing is a constructive process with the aim of improving software

quality that attacks the software product in order to reveal its flaws and weaknesses.

Since testing is a quality control function of software quality assurance that aims to

reduce risks associated with software failures, the process of carrying out software

testing is grounded by the following primary objectives [86]:

• Testing is the process of executing a program with the intent of finding errors.

• A good test case is one that has a high probability of detecting an as yet

undiscovered error.

• A successful test case is one that detects an as yet undiscovered error.

The overriding motivation for software testing is to design test cases that rigorously and

systematically uncover various classes of errors with a minimal amount of time and

effort. Additionally, testing examines software functionality with respect to

specifications, and evaluates behavioural and performance requirements. Consequently,

the reliability and quality of software can be measured through data collected during the

process of software testing.

Software testing constitutes a significant part of any software engineering project. It is

not unusual for software development companies to spend between 30% and 50% of the

total software project costs on testing. In safety-critical systems such as chemical plants,

nuclear power plants, and flight control systems, software testing can cost three to five

times as much as all other software engineering stages combined. This enormous cost

stems chiefly from the fact that human intervention features in almost every testing

activity.

Specifically, software testing is a dynamic technique that takes the piece of software

under consideration and provides its compiled code with inputs, or test cases.

Correctness is determined by forcing the software to traverse a set of execution paths or

sequences of code statements representing a run of the software. Based on the

15

observations during test execution, the actual output is compared to the output as

documented in the system specifications. Exhaustive testing of all execution paths is

practically impossible; in practice only a small subset of these paths is exercised. Hence,

testing can never be complete.

Figure 2.1: Activities of test engineers in software testing [4]

Figure 2.1 describes the three fundamental activities carried out by engineers in the

software testing process: test design, test execution, and output evaluation. In test

design, test engineers design test cases based on the test requirements and the source

code. A test case must give a full description about testing requirements, environments,

instructions and conditions, input values, and expected outputs. This description is

completed with the execution details and test results from the next two activities. In test

execution, test engineers execute the test cases against the software under test P and

capture the execution details. In output evaluation, test engineers evaluate the outputs to

determine if the test cases reveal any faults in the software.

In all three of the above activities, test engineers play a central role in driving the testing

process. As software systems are growing rapidly in scale and complexity, such a

human-centric process is very time consuming, expensive, and unreliable [133]. The

automation of these activities is thus required to improve software quality and

reliability. The next subsection provides more information about how testing is

conducted throughout the software development life cycle.

16

2.1.2 Testing throughout the Software Life Cycle

Software testing helps all Information Technology professionals to develop higher

quality software [4]. To effectively and efficiently carry out software testing, it is

crucial to establish a rigorous and systematic strategy for testing software thoroughly. If

testing is conducted haphazardly, time is wasted, unnecessary effort is expended, and,

even worse, undetected errors remain. The strategy should provide a road map that

describes the steps to be conducted in software testing, when these steps are planned

and then undertaken, and how much effort, time and resources will be required [108]. A

testing strategy must accommodate low level tests that are necessary to verify that a

small piece of software has been correctly implemented as well as high level tests that

validate major system functions against customer requirements.

In fact, a strategy for software testing is largely determined by the software

development process that is applied to design and build the software. This process will

define how testing is organized during software development.

Figure 2.2 illustrates a typical scenario of a software development process and how

testing fits into software development activities. The software development process is

depicted as a spiral. Initially, system engineering determines the role of software and

leads to software requirements analysis, where the information domain, function,

behaviour, performance, constraints, and validation criteria for software are established.

Moving inward along the spiral, we come to design and finally to coding. To develop

computer software, we spiral further inward along streamlines that decrease the level of

abstraction on each turn.

Figure 2.2: Software testing strategy [108]

17

Figure 2.2 also depicts the strategy for software testing in the form of a spiral. There are

four test levels associated with four activities of the software development process.

Each level has its own objectives and as we spiral out along streamlines the scope of

testing broadens with each turn.

Unit Testing. Unit testing begins at the heart of the spiral and concentrates on each unit

of the software as implemented in source code. It searches for defects and verifies the

functioning of software units such as modules, programs, objects, and classes that are

separately testable.

Integration Testing. Testing progresses to integration testing by moving outward along

the spiral, where the focus is on design and the construction of the software architecture.

Integration testing is a systematic technique for constructing the program structure

while at the same time designing tests to uncover errors associated with interfacing.

Validation Testing. In validation testing, requirements established as part of software

requirements analysis are validated against the software that has been constructed.

Specifically, validation testing tests the software system with respect to customer needs,

requirements, and business processes to determine whether or not to accept the system.

System Testing. Finally, system testing is reached by taking the final turn outward on

the spiral. As software is only one element of the larger computer-based system, system

testing verifies and validates the software in connecting and interacting with other

system elements such as hardware, people, and databases.

Throughout the software development process, software is tested from two different

perspectives: white-box testing and black-box testing. In white-box testing, test

engineers know the internal workings of the software system and testing is conducted to

ensure that internal operations are performed according to specifications and that all

internal components have been adequately exercised. In black-box testing, the specified

function that the software system has been designed to perform is known and testing is

conducted to check each function is fully operational while at the same time searching

for errors in each function. In both cases, the purpose is to find the maximal number of

errors with the minimal amount of effort and time.

Each individual level of testing utilizes white-box and black-box testing differently. In

unit testing, heavy use is made of white-box testing to exercise specific execution paths

18

in a component’s control structure in order to improve structural coverage and error

detection capability. In integration testing, since components are assembled to form the

complete software package, testing addresses interfaces and interactions between

components. Although white-box testing can be used to ensure coverage of major

control paths, black-box testing is the most prevalent during integration. After the

software has been integrated, black-box testing is used extensively during validation to

validate functional, behavioural and performance requirements. Finally, system testing

is conducted to verify that the software properly operates in the entire computer-based

system upon deployment.

In addition, software testing is accompanied by various test types that clearly define the

objective of test levels. A particular test type aims to address a specific type of errors

and therefore to assess a specific software quality characteristic. A test type is

associated with a test objective, for example testing of a function to be performed by the

software system; of a non-functional quality factor such as reliability or usability; of the

structure of the software; of software changes to confirm that defects have been fixed

(confirmation testing); of unintended changes (regression testing); or of the security of

the software system (security testing). Depending on the stated objectives, software

testing is organized differently. By focusing software testing on a certain test type, test

engineers have a clear idea of how to perform testing and what testing techniques and

tools to use. This can significantly reduce the effort and time required to conduct

testing. In the next subsection, we discuss the need for automation in software testing

and define our research scope in the entire context of software testing.

2.1.3 Automation of Software Testing

Software failures can be very costly. Software testing is one component in the overall

quality assurance activity that seeks to ensure that software systems enter service

without defects that can lead to serious failures. It is one of the primary techniques

adopted widely in industry to improve quality and reliability of software. As noted

above, the intensive intervention of humans in software testing however makes it a

laborious, unreliable, and expensive activity to carry out. In the software development

process, one must balance competing demands for resources. For instance, if we need to

deliver a software system faster (or in less time), it will usually cost more. In practice,

software testing is bounded by the three corners of the triangle of resources, namely

19

time, money, and quality. These three affect one another, and also influence all the

activities, including testing, to be performed in the entire process of software

development. This is where automation of software testing enters the picture.

Automated software testing has gradually become as an important process that can

improve the efficiency of testing in the software industry [29]. The benefit of testing

automation is obvious. It relieves the testing bottleneck and achieves faster time-to-

market, reduces the money spent on software testing, increases test coverage and

reduces risks, configures and repeats test cases, reduces human resources, finds more

and deeper defects earlier, ensures corporate compliance, ensures the scalability of

system testing, and establishes consistent and thorough testing. Not surprisingly,

automated testing techniques have discovered serious bugs in commonly used and well-

tested software that lay hidden for years despite massive human testing efforts [66].

In the process of software testing, the design of tests can be a very challenging activity.

The challenges stem chiefly from the potentially endless number of test cases from the

input domain and therefore the potentially infinite number of behaviours that the

software system can display. Exhaustive testing is infeasible. The test design activity

must be targeted at finding the most errors with minimal amount of time and effort. In

the development of the research process in this thesis, we primarily focused on

generation of test inputs, the first activity of the software testing process as presented in

section 2.1.1. The primary purpose has been to explore and develop effective techniques

for automation of test input generation for improvements of test objectives such as

structural coverage testing and security testing. The next section provides an extensive

literature review of the automated test input generation techniques that have been

developed over the last three decades.

2.2 Automated Test Input Generation Techniques

Given the software system under consideration, test engineers provide its compiled code

with inputs, execute the software, and observe the software behaviour as well as its

output to determine whether or not the software behaves properly and expectedly.

Motivating forces for automation of software testing are mainly the human-intensive

intervention and therefore the expensive cost of software testing. Automated techniques

for generation of test inputs are one of the most important steps toward automating the

20

entire software testing process. More importantly, automated test input generation can

significantly enhance the efficiency of software testing many magnitudes over manual

testing. It can achieve higher software coverage and discover more and deeper software

errors that are not easily found by humans. This section carries out a broad literature

review on automated test input generation techniques in order to establish the whole

context underlying the development of this thesis. The strengths and shortcomings of

individual techniques are evaluated in practical perspectives in order to assess the

current state of research and to draw out research questions.

2.2.1 Random Testing

Random testing is a simple but effective technique for automated test input generation

[3]. In random testing, the process of generating test inputs is performed randomly,

based on sampling the interface of the software program under test. The most

distinguishing features of random testing are its high precision and cost-effectiveness.

This is because random testing is based on dynamic analysis, using as input values

actual values to truly execute the program, and the test input generation process is often

independent of the complexity and size of the program.

In random testing, researchers have mainly focused on improving the capability of the

technique for error detection [17], [68]. Miller, Fredriksen, and So [91] introduced fuzz

testing to generate random ASCII character streams and used them as inputs to test

Unix utilities for abnormal terminations and non-terminating behaviours. They were

able to crash 24% of the utility programs tested. In subsequent work, they extended fuzz

testing to generate sequences of keyboard and mouse events, and found errors in

applications running in X Windows, Windows NT and Mac OS X [54], [90]. Today,

fuzz testing is used routinely in the industry to detect security vulnerabilities. The work

of Kropp, Koopman, and Siewiorek [82] applies random test generation to test low level

system calls while Groce, Holzmann, and Joshi [61] found dozens of errors when

testing a file system used in space missions at NASA.

The success of random testing relies chiefly on its ability to explore a huge number of

program behaviours without being greatly affected by the size and complexity of the

program under test. However, in random testing, since test inputs are generated by

randomly sampling the input space, this leads to two key problems. One is that many

test inputs may exercise the same program paths and hence are redundant. The other is

21

that the probability of generating particular test inputs to trigger buggy behaviours or to

explore corner case branches may be astronomically small. In practice, random testing

often results in low code coverage [104]. This shortcoming means that potential

software errors can be missed if the code containing the errors is not exercised. To

illustrate, consider the probability of executing the then branch of the conditional

statement if (x == 10) { ... }. In random testing, this branch has only one

chance out of 2ଷଶ to be exercised if x is a randomly chosen 32-bit input value.

2.2.2 Symbolic Execution

Research in symbolic execution dates back to the 1970s and the work of Boyer, Elspas,

and Levitt [14], Clarke [24], Howden [71], King [78], and Ramamoorthy, Ho, and Chen

[116]. In contrast to random testing, which truly executes the compiled code of the

program under test, symbolic execution is a static program analysis-based technique

that analyses code statically without executing it. The key idea behind symbolic

execution is to use as input values symbolic values instead of actual data, and to

represent values of program variables as symbolic expressions. As a result, the test

program is executed symbolically; symbolic constraints are gathered and then solved by

an off-the-shelf constraint solver to obtain actual input values. The following provides a

brief explanation of the execution mechanism in symbolic execution.

In the simulation of the program execution, symbolic execution maintains a symbolic

memory S, which maps memory addresses to symbolic expressions, and a symbolic

path constraint PC, a first-order quantifier-free formula over symbolic expressions. In

this way, when an expression is evaluated, it is evaluated symbolically using symbolic

expressions in S, and S is updated accordingly. Similarly, when a conditional statement

if (e) then S1 else S2 is executed, PC is updated according to the then or else branch

taken. If the then branch is taken, PC is updated to PC ר σሺeሻ; otherwise, it is

PC ר ൓σሺeሻ, where σሺeሻ denotes the symbolic predicate obtained by evaluating e in

symbolic memory. Note that unlike concrete execution, in symbolic execution, both

branches can be taken, resulting in two execution paths. PC is checked for satisfiability

every time it is updated by using the underlying constraint solver. If PC becomes

unsatisfiable, symbolic execution terminates along the corresponding path. After the

execution of a program path, the symbolic path constraint PC symbolically simulating

the execution of that path is as follows:

22

 PC ൌ σ1 ר … ר σi‐1 ר σi ר σi൅1 ר … ר σn (1)

Then, PC is solved by the underlying constraint solver to obtain actual input values for

the simulated execution path. The simulation of symbolic execution can be organized in

a form of a tree referred to as a symbolic execution tree. Search techniques such as

depth-first and breadth-first search can be employed to perform symbolic execution in a

systematic manner in order to exhaustively explore all feasible paths of the program.

Symbolic execution has a variety number of applications in program testing and

analysis, for example automated test input generation [25], [112], test sequence

generation [130], [140], proving program properties [13], [46], [53], [111], and static

detection of runtime errors [18], [30], [36], [50], [127]. A well-known symbolic

execution tool is Symbolic Java PathFinder (SPF) [6], [109], which is part of the JPF

project [77] (open-sourced since 2003). SPF has been applied at NASA in various

projects, such as test input generation for the Orion control software where it helped

uncover subtle bugs [109], fault tolerant protocols, NextGen (TSAFE) aviation software

or robot executives. SPF has been extended with a symbolic string analysis at Fujitsu,

where it is being used for testing web applications [51].

Symbolic execution, while offering an effectively automated mechanism to exhaustively

and systematically explore all feasible paths of the program, suffers from significant

limitations in practice. First, symbolic execution works under the support of constraint

solvers and hence is not able to reason about complicated pieces of the code that are not

supported by the constraint theory of the underlying constraint solvers. Second, when

reasoning about loops or recursion, symbolic execution has to put a limit on the search

depth since it is not able to detect the number of iterations of such programming

structures. This results in incomplete reasoning and thus may reduce its capability in

detecting potential errors and/or achieving high structural coverage. Third, symbolic

execution is not able to deal with native libraries. Finally, symbolic execution is limited

due to the combinatorial explosion problem of the program path space. These inherent

limitations significantly limit the applicability of symbolic execution when dealing with

real world software systems which are often complex and large-scale.

In the context of using symbolic execution to automate the test input generation process,

symbolic execution lends itself particularly well to this task, since a symbolic path

23

constraint to reach a branch or statement in the code, when solved, provides exactly the

test input to exercise the statement or branch. In addition, symbolic execution is used in

regression testing, generating test inputs to expose the changes in evolved software [1],

[107]. All these applications of symbolic execution to real world software, however, are

bounded because of its inherent limitations.

2.2.3 Dynamic Symbolic Execution

Dynamic symbolic execution is receiving a considerable amount of attention in current

industrial practice [19], [28], [30], [62], [64], [76], [93], [95], [109], [119], [120], [124],

[128]. It intertwines the strengths of random testing and symbolic execution to achieve

the scalability and high precision of dynamic analysis, and the power of the underlying

constraint solver. In dynamic symbolic execution, the program under test is executed

simultaneously both concretely and symbolically in a directed automated mechanism.

One of the most important insights of dynamic symbolic execution is the ability to

reduce the execution into a mix of concrete and symbolic execution when facing

complicated pieces of code, which are the critical obstacle to classical symbolic

execution.

The key idea underlying the development of dynamic symbolic execution is to perform

concrete execution simultaneously with symbolic execution [62]. Specifically, the

program under test is initially executed on a given or randomly generated test input, and

symbolic predicates are collected to form a symbolic path constraint PC along the being

executed path. After an execution, one can pick up a symbolic predicate, negate it, and

then form a constraint system to be solved by the underlying constraint solver. The

satisfiability of the constraint system results in a new test input. The next execution of

the test program with this input will follow the previously executed path up to the

corresponding conditional statement of the negated symbolic predicate, but afterward

will change the flow of control to the other branch. As a result, for every symbolic path

constraint, the number of program paths to be executed can be 2௡, or be exponential in

the number of symbolic predicates. In practice, the number of symbolic predicates in the

program can be extremely large (often infinite), especially in the presence of loops

and/or recursions, causing dynamic symbolic execution to encounter combinatorial

explosion of the path space. This is the fundamental scalability issue of dynamic

symbolic execution-based approaches [29], [35], [65].

24

Dynamic symbolic execution, since proposed by Godefroid, Klarlund, and Sen in 2005

[62], has inspired the development of new research directions and many techniques,

tools, and applications [29], [121]. It has been applied to test many industrial software

systems and has detected serious bugs. In the following, we provide a brief review of a

few dynamic symbolic execution-based tools, and their impact in academia, research

labs, and industry.

CUTE and jCUTE. CUTE (A Concolic Unit Testing Engine for C) [124] extends

Godefroid et al.’s Directed Automated Random Testing (DART) [62] to handle input

recursive data structures and represent several optimizations for constraint solving. In

CUTE, pointer constraints are separated from numeric (integer) constraints, and are

represented and solved approximately. jCUTE (CUTE for Java) [120] combines dynamic

symbolic execution with dynamic partial order reduction to systematically generate both

test inputs and thread schedules for multi-threaded programs. Both tools have been

applied to test several open-source software, including java.util library of Sun JDK 1.4

and have detected several previously undocumented bugs. CUTE and jCUTE have also

been used to study dynamic symbolic execution in different courses at several

universities.

CREST. CREST [19] is an automated test input generation tool for C, based on dynamic

symbolic execution. It is an extensible platform for building and experimenting with

search heuristics for achieving high code coverage. Since being released as open–source

software in May 2008 [23], CREST has been used by several research groups. For

instance, CREST has been used to build tools for regression testing [139], for detecting

SQL injection vulnerabilities [118], and for identifying infeasible code to achieve high

structural coverage [12], and has been modified to run distributed on a cluster for testing

a flash storage platform [81]. In the development of this research project, we also used

CREST for structural coverage testing and security testing.

SAGE. SAGE [64] is an automated white-box fuzz testing tool for finding security

vulnerabilities in software. It incorporates fuzz testing with recent advances in symbolic

execution and dynamic test generation to scale to large-file parsers embedded in

applications with millions of lines of code and execution traces with billions of machine

instructions, such as Microsoft Excel. SAGE was developed at Microsoft Research and

has detected many new security vulnerabilities in hundreds of applications. Notably,

25

SAGE found roughly one third of all the known bugs discovered by file fuzzing during

the development of Microsoft’s Windows 7 [15], [66], saving millions of dollars by

avoiding expensive security patches for nearly a billion PCs worldwide. The approach

has since been adopted in several tools and has been applied to test Linux applications

[93], including codecs, image reviewers and media players.

PEX. PEX [128] is a dynamic symbolic execution-based tool for automated test input

generation for .NET code, supporting languages such as C#, VisualBasic and F#. PEX

has implemented a rich set of basic search strategies and offers a fair choice among

them in order to avoid any bias toward particular control flows for maximal code

coverage. PEX introduces Parameterized Unit Testing [73] to allow software unit testing

in two aspects: the specification of the behaviour of the system and the test inputs to

cover a particular implementation. PEX is a Visual Studio 2010 Power Tool which is

used inside Microsoft. PEX is also available for academic purposes.

Dynamic symbolic execution has been shown to be an effective technique for

automation of test input generation. When applied to practice, however, the technique

has a number of limitations. Firstly, dynamic symbolic execution is limited because of

the difficulty of programming language features. Complex constraints, data structures,

and native calls of real world software systems all result in imperfect symbolic

execution. It is very difficult to capture the semantics of object-oriented programming

features such as abstraction, inheritance, polymorphism, and encapsulation with

symbolic modelling. Even though dynamic symbolic execution is language-

independent, it is usually implemented in low level programming languages such as C,

x86 assembly, Java bytecode, and Common Intermediate Code in .NET.

Secondly, like symbolic execution, dynamic symbolic execution is bounded by the

theory supported by the underlying constraint solver. For example, the technique cannot

precisely deal with arithmetic operations with floating numbers since most constraint

solvers do not support floating point theory. Thirdly, the unavailability of source code

limits dynamic symbolic execution from fully executing symbolic execution in order to

construct complete path constraints on individual program executions. Consequently,

dynamic symbolic execution is only able to explore part of the entire symbolic

execution tree of the test program.

26

With these three limitations, dynamic symbolic execution reduces to a partial form of

symbolic execution and random testing. The power of the underlying constraint solver

is not fully exploited, which compromises the technique’s success. In the most extreme

cases, dynamic symbolic execution reduces to a complete form of random testing. Its

final limitation is the fundamental scalability problem. In fact, the combinatorial

explosion of the path space is one of the biggest challenges facing dynamic symbolic

execution. In practice, the technique simply exercises a limited number of program

paths. This phenomenon will limit the efficiency of software testing in both structural

coverage testing and error detection capabilities. Exploring and developing effective

techniques to improve the efficiency of path exploration over the program path space is

critical to applying dynamic symbolic execution in practice, and this was one of the

primary motivations for the proposal of this research project.

2.2.4 Search-Based Testing

Search-based testing [87] formulates the process of generating test inputs as a search

problem [27], [69]. It uses fitness functions to measure the improvement of the search

process, and meta-heuristic search techniques such as Hill Climbing, Simulated

Annealing, and Evolutionary Algorithms to find test inputs. The search space is the

space of possible inputs of the program under test. Most research on search-based

testing focuses on automating the test input generation process in software testing [87].

The most distinguishing feature of search-based testing is, unlike symbolic execution

and dynamic symbolic execution which depend mostly on the capability of constraint

solvers to generate test inputs, the process of finding test inputs itself. Therefore,

search-based testing can handle a wide range of primitive input types such as integral

and floating-point numbers. Furthermore, the use of fitness functions provides suitable

measurement for targeting particular code elements of testing. These features of search-

based testing have been exploited to improve dynamic symbolic execution toward

achieving high structural coverage by guiding path exploration [141] and by solving

floating point computations [84].

The applicability of search-based testing in automation of test input generation is

limited in several aspects, however. Firstly, the process of finding test inputs involves

using meta-heuristic search strategies, which are performed largely randomly. Secondly,

if search-based testing is applied to test complex and sizeable software where the cost of

27

running programs is expensive, the process of finding test inputs implemented in this

technique may require considerable resources to explore structural coverage elements.

Finally, the use of fitness functions suffers significantly from the flag problem [16],

where fitness functions cause a flat fitness landscape, giving no guidance to the search

process. Flags, however, appear very often in real world software [16].

2.2.5 The Chaining Approach

The chaining approach proposed by Ferguson and Korel [52] is another approach for

automation of test input generation. This technique relies on a local search method

called the alternating-variable method to find test inputs for maximal code coverage. A

noticeable feature of the chaining approach is that it introduces a chaining mechanism

for exploring code elements in a systematic manner. Specifically, to explore a given

code element, the chaining mechanism identifies statements leading up to the target

structure, which may influence the outcome of the code element. Those statements are

sequences of events that the search process must proceed along to target the code

element.

The chaining mechanism can therefore be considered as a slicing technique [131] which

simplifies programs by focusing on selected aspects of semantics. As a result, the

chaining approach can provide precise guidance for the search process since it forces

the consideration of data flow analysis, and it is effective since it slices away irrelevant

code segments to the execution of the code element. These two strengths can guide the

search process into potentially unexplored but promising areas of the path space to

unclose hard-to-reach code elements.

The chaining mechanism is more suitable for goal-oriented test input generation

approaches. In practice, however, this approach faces two main limitations. One is that

the chaining mechanism makes use of data dependency analysis to guide the search

process; the data dependency analysis, however, is done statically and therefore may not

be precise. The other limitation is that the process of finding test inputs using the

alternating-variable method is performed largely randomly.

28

2.3 Objectives of the Study

Automation of software testing is an important requirement for improving the quality

and reliability of software in industry. It mitigates the hardship of manual testing, which

is labour-intensive and error-prone, and alleviates the expense of testing, which often

accounts for around 50% of the total software development costs. Testing automation

can be enhanced by automating the process of generating test inputs. Over the last three

decades, techniques have been proposed to achieve this goal, ranging from random

testing [3], symbolic execution [112], dynamic symbolic execution [26], [62], [124],

search-based testing [87], and the chaining approach [52].

Among these proposed techniques, dynamic symbolic execution has been demonstrated

to be an effective technique for automation of test input generation. The technique has

been applied to test many industrial software systems and uncover “million-dollar” bugs

[66]. However, the fundamental scalability issue limiting the capability of dynamic

symbolic execution is its combinatorial explosion of the path space, which is extremely

huge (often infinite) in sizeable and complex software. This phenomenon has been

significantly highlighted in several research studies:

… path explosion represents one of the biggest challenges facing symbolic execution,

and given a fixed time budget, it is critical to explore the most relevant paths first. [35]

A significant scalability challenge for symbolic execution is how to handle the

exponential number of paths in the code. [29]

In theory, systematic dynamic test generation can lead to full program path coverage,

i.e., program verification. In practice, however, the search is typically incomplete both

because the number of execution paths in the program under test is huge … [65]

The impact of this particular limitation of dynamic symbolic execution on the efficiency

of software testing is significant. If dynamic symbolic execution is carried out in a way

that exhaustively and systematically explores all feasible paths of the program under

test, then it often ends up with only small regions of the code explored. Consequently,

in practice the objective of achieving high structural coverage of software testing is hard

to realize using dynamic symbolic execution. More importantly, the capability of

detecting errors can be limited since the unexercised code may harbour errors. An

29

important observation in relation to this is that structural coverage testing, such as

statement or branch coverage, requires each code element (e.g. statement or branch) to

be executed only once, i.e. dynamic symbolic execution can be performed so as to cover

every selected code element rather than attempting to explore the entire path space of

the program under test. This may lead to a significant reduction in the number of

program paths that need to be explored.

In order to improve the applicability of dynamic symbolic execution in industrial

software development practice, the development of effective techniques to strengthen

the efficiency of path exploration over the entire program path space has become one of

the most important driving forces in the research community [29], and was actually the

primary motivation behind the proposal of this research project. Specifically, the

development of this research project is aligned to the following three main objectives.

The first objective of this study is to develop a goal-oriented dynamic test generation

approach, where a goal is a specific code element and the testing approach is to find test

inputs to exercise the goal. This is referred to as the reachability problem in computer

science. In general, reachability is an undecidable problem, but it has a number of

important applications in program analysis. At its core, our approach proposes a search

algorithm that significantly improves the efficiency of path exploration toward

effectively and efficiently exploring test goals. Specifically, it exploits program

dependencies (e.g. control and data dependencies) to precisely identify the root cause

leading to the execution of test goals and then effectively guide path exploration to

uncover them with minimal exploration effort. This is an attempt to address the path

explosion limitation facing dynamic symbolic execution. A detailed explanation of our

approach is presented in chapter 4.

The second objective of this study is to develop a framework for structural coverage

testing. Structural coverage testing is an important element of software testing in

software engineering approaches. As exhaustive testing is potentially endless, structural

coverage provides stopping rules for determining whether sufficient testing has been

carried out and whether it can be terminated. Structural coverage testing gives

measurements of test quality where a degree of adequacy associated with a test set can

give a level of confidence about the correctness of the software under test. A high

coverage degree implies that the program is more thoroughly tested and has a lower

30

chance of containing software defects than a program with low structural coverage. In

this framework, the goal-oriented approach proposed above is used to perform dynamic

symbolic execution-based path exploration for effectively improving structural coverage

results. A detailed description of this framework is given in chapter 5.

The third and final objective of this study is to develop a security vulnerability testing

framework. With the development of the Internet, the application of software systems

has suffered seriously from security problems. Security vulnerabilities are reported

every day in commonly used software [37], [101]. Such vulnerabilities can be exploited

by attackers to demolish data and the functionality of computer systems, causing

significant financial losses and potentially endangering lives. The development of

effective techniques to identify and eliminate security bugs is vital to protect the

software product before it can be deployed for use on the Internet. In this framework,

we propose combining static runtime verification and dynamic symbolic execution to

improve security vulnerability detection capabilities. The development of the

framework is centred on the use of the goal-oriented approach proposed above to

significantly strengthen the ability of dynamic symbolic execution for quickly

uncovering security defects such as buffer overflow vulnerabilities. A full description of

the framework is given in chapter 6.

2.4 Summary

Software is designed and constructed by humans where opportunities for the inclusion

of errors are numerous. An error in software leads to a defect, which can cause an

observed failure. Software failures may have catastrophic consequences such as

financial losses and even cause the loss of lives. Software testing is a quality control

function of quality assurance, indispensable to software engineering approaches. The

primary objective of software testing is to find the maximal number of errors with a

minimal amount of time and effort. Testing is a human-intensive activity, however, and

manual testing is laborious, unreliable, and expensive to perform. Therefore, automation

of software testing has been developed as one of the key means of improving the quality

and reliability of software.

The development of this research project focused on the process of test input generation,

which lies at the heart of the software testing process. Specifically, this research project

31

studies the automated test input generation technique of dynamic symbolic execution,

and explores and develops effective techniques to perform dynamic symbolic execution

so that the efficiency of software testing is maximized. The research project will aim to

improve the degree of the attainable testing automation for effectively and efficiently

performing structural coverage testing as well as security vulnerability testing.

This chapter began by providing a basic understanding of software testing, covering

testing activities and testing levels throughout the software development life cycle

(section 2.1). The pressing need for the automation of software testing was also

discussed. Section 2.2 presented an extensive literature review of the automated test

input generation techniques developed over the last three decades. It compared and

contrasted the various techniques as to their strengths and shortcomings. Through this

critical review, we solidly established the context underlying the development of this

research project, as described in section 2.3, and formulated three research objectives.

The first objective is to develop a goal-oriented dynamic test generation approach for

effectively and efficiently finding test inputs to cover specific elements in the program’s

source code. The second objective is to develop a framework for structural coverage

testing. The final objective is to strengthen security vulnerability detection capabilities.

These three objectives are satisfied in chapters 4, 5, and 6, respectively. The core

technique forming the development of this thesis is dynamic symbolic execution. The

next chapter therefore describes the theoretical concepts behind dynamic symbolic

execution to establish the background for this study.

32

Chapter 3

Dynamic Symbolic Execution

3.1 Overview ... 33

3.2 Programming Model .. 34

3.3 Execution Model ... 35

3.3.1 Concrete Execution ... 36
3.3.2 Symbolic Execution .. 37
3.3.3 Test Input Generation.. 38
3.3.4 Generic Search Algorithm .. 39

3.4 Depth-First Search ... 40

3.4.1 Example 1 ... 41
3.4.2 Example 2 ... 43
3.4.3 Example 3 ... 45
3.4.5 Interplay of Concrete and Symbolic Execution .. 46

3.5 The Path Space Explosion Problem ... 47

3.6 Summary ... 49

This chapter describes dynamic symbolic execution, a powerful program analysis

technique introduced by in work of Godefroid, Klarlund, and Sen [62], and of Cadar,

Ganesh, Pawlowski, Dill, and Engler [30] in 2005.

The power of dynamic symbolic execution lies in the novel intertwinement of dynamic

and static program analyses, the increased availability of computational power, and the

constraint solving technology. Dynamic symbolic execution is now the underlying

technique of several popular testing tools [29]. It has been applied to challenging

application domains and has uncovered subtle bugs in commonly used software [66].

The chapter is divided into the following sections. Section 3.1 gives an overview of

dynamic symbolic execution. Section 3.2 introduces an imperative programming

language on which the execution model of dynamic symbolic execution is formally

established. In section 3.3, we describe the four important components in dynamic

symbolic execution, these being concrete execution, symbolic execution, test input

generation, and search algorithm. This is followed by a formalization of depth-first

search in section 3.4 to illustrate the execution model of dynamic symbolic execution

33

and demonstrate its improvements over classical symbolic execution. The fundamental

scalability limitation of dynamic symbolic execution is presented in section 3.5 and a

summary of the chapter is given in section 3.6.

3.1 Overview

Dynamic symbolic execution is adopted in this research to offer a practical trade-off

between dynamic analysis and static analysis [62]. In essence, the novelty of the

technique is the back-and-forth interaction between random testing and symbolic

execution, meaning that the weaknesses of one technique can be mitigated greatly by

the strengths of the other, and vice versa. This is obvious when observing the two

techniques with respect to the following points: precision and test input generation

capability, as shown in Table 3.1.

Table 3.1: A summary of strengths and weaknesses of random testing and symbolic execution

 Precision Test Input Generation

Random Testing High Not effective

Redundant

Symbolic Execution Low Effective

Not redundant

Therefore, in the execution of dynamic symbolic execution, the purpose is to intertwine

the high precision of dynamic analysis and the capability of test input generation of

static analysis, and this is precisely reflected in the following execution model. An

execution in dynamic symbolic execution involves executing the program under test

with concrete values while capturing the semantics of executed instructions along the

execution using symbolic values. So, while the former drives the execution, the latter is

to model the execution in forms of a function of symbolic input values. The result is a

path condition, a conjunction of symbolic predicates, determining the executed program

path. By negating one predicate and solving the corresponding path constraint with an

off-the-shelf constraint solver, one can obtain a new test input to steer the execution

along an alternative path. This procedure is often performed under the guidance of a

search algorithm to explore the path space of the program under test in a desired

exploration order.

34

3.2 Programming Model

To formalize dynamic symbolic execution, its execution model and algorithms, we

introduce an imperative programming language. The programming model of the

proposed language is simple yet expressive enough to cover the basic operations of real

programming languages in order to convey important notations when illustrating

dynamic symbolic execution.

For simplicity, we limit primitive data types to integral numbers only. A program P in

this programming language is represented as a tuple (V, V0, L, l0, ߦ, E) where:

• V is a set of variables,

• V0 ك V is a set of input variables,

• L is a set of control locations,

• l0 א L is the start location,

 L with one of the א is a labelling function which labels each location l ߦ •

following basic operations: (1) a termination operation halt, (2) an assignment

operation v ؔ e, where v א V and e is an arithmetic expression free of side

effects over V, and (3) a conditional operation if (e) then lԢ else lԢԢ, where e is a

Boolean expression over V, and lԢ and lԢԢ are locations in L,

• E ك L ൈ L is a set of edges such that (1) every location l where ߦሺ݈ሻ is an

assignment operation has only one location lԢ with (l, lԢ) א E, and every location

l where ߦሺ݈ሻ is a conditional operation if (e) then lԢ else lԢԢ has two edges (l, lԢ)

and (l, lԢԢ) in E. For an assignment operation ߦሺ݈ሻ of location l א L, we use ߟሺ݈ሻ

to denote l’s unique sink location.

In this representation of the program P, control locations correspond to program

instructions while edges correspond to control flows indicating the execution flow from

one instruction to another. For simplicity, we assume that there is only one location lhalt

in program P where ߦሺ݈࢚࢒ࢇࢎሻ = halt. An execution of program P on input I proceeds

through a sequence of labelled control locations l1, l2, l3, …, ln where l1 = l0 is the start

location and ln = lhalt is the termination location. This location sequence is referred to as

an executed program path, or simply a path. For convention, the two control locations of

a condition operation if (e) then lԢ else lԢԢ are called branches in which lԢ represents the

true branch and lԢԢ represents the false branch.

35

3.3 Execution Model

Given a program under test P, in dynamic symbolic execution, P is executed

simultaneously both concretely and symbolically. Concrete execution carries out the

execution on concrete input values and defines a uniquely executed program path.

Symbolic execution captures the semantics of every executed operation along the

executed path using symbolic input values. This side-by-side execution model is

sketched in the ExecuteProgram algorithm in Figure 3.1.

Algorithm 1 ExecuteProgram
Input : Program P = (V, V0, L, l0, ߦ, E), Input input
Output : Path condition φ

1: for each v א V do
2: M(v) ؔ input(v)
3: if v א V0 then S(v) ؔ ߙ௩ end if
4: end for
5: φ ؔ true ; l ؔ l0
6: while ߦሺ݈ሻ ് halt do
7: switch ߦሺ݈ሻ do
8: case v ؔ e :
9: M ؔ Mሾ v հ Mሺeሻ ሿ
10: S ؔ Sሾ v հ Sሺeሻ ሿ
11: l ؔ ߟሺ݈ሻ
12: end case
13: case if (e) then lԢ else lԢԢ :
14: if Mሺeሻ then
15: φ ؔ φ ר Sሺeሻ ; l ؔ lԢ
16: else
17: φ ؔ φ ר ൓Sሺeሻ ; l ؔ lԢԢ
18: end if
19: end case
20: end switch
21: end while
22: return φ

Figure 3.1: Execution model of dynamic symbolic execution

The algorithm takes as input a program P and a test input input, and outputs a path

condition φ. A detailed explanation of the algorithm is provided in the following

sections where we proceed to formalize the four basic components composing dynamic

symbolic execution, starting from concrete execution, symbolic execution, test input

generation, to search algorithm. And finally, a summary on the interaction between

concrete execution and symbolic execution is presented.

36

3.3.1 Concrete Execution

The semantics for the concrete execution of the program is captured using a concrete

memory map M, which is a mapping of variables in V to actual values. We denote a

memory mapping using MԢ ؔ M[m հ v], where MԢ is the same memory map as M,

except that Mᇱሺmሻ ൌ v. For an expression e, we use M(e) to denote the value obtained

by evaluating e in M where every variable v appearing in e is substituted by M(v).

As shown in the ExecuteProgram algorithm, the execution model for concrete execution

proceeds in the following way. Initially, it creates a concrete memory map M0 where

input variables in V0 are set to initial actual values in input and variables in V ך V0 to

default constant values. The control location is set to the start location l = l0. As the

execution goes forward, each operation is executed, and the concrete memory map and

the control location are updated correspondingly. Suppose the current memory map is

M and the current control location is l, then under the programming language

introduced, we consider the following situations:

• If ߦሺ݈ሻ is an assignment operation v ؔ e, l is updated to ߟሺ݈ሻ and M is updated

to M[v հ M(e)].

• If ߦሺ݈ሻ is a conditional operation if (e) then lԢ else lԢԢ, there are two possibilities

that the execution can branch. If M(e) is evaluated to true, then l is updated to lԢ;

otherwise, M(e) is false and l is updated to lԢԢ. In the two cases, the concrete

memory map M is not changed.

• If ߦሺ݈ሻ is the termination operation halt, the execution terminates.

Naturally, the execution model of the program under concrete execution traverses a

unique sequence of labelled control locations, e.g. l1, l2, l3, …, ln, or a path. The path is

the only one instance over the many program paths and is defined only if the program

input is given. In fact, a concrete execution is not intended to capture or synthesize any

semantic information of executed operations. However, it is fully automated as long as

the program under consideration is compiled.

To explore the path space of the program, a test input generation mechanism is needed

to carry out concrete execution. Obviously, the mechanism should take advantage of the

currently executed path to improve path exploration. In the following section, we

describe how symbolic execution can enable such a test input generation mechanism.

37

3.3.2 Symbolic Execution

The semantics for the symbolic execution of the program is captured using a symbolic

memory map S and a path condition φ. The symbolic memory S is a mapping from

variables in V to symbolic expressions over symbolic input values. Operations on S are

basically similar to those on concrete memory M. The path condition φ is a conjunction

of symbolic predicates over symbolic input values, where symbolic predicates are

collected along an execution.

The execution model for symbolic execution proceeds in the following way. Initially, it

creates a symbolic memory map S where input variables in V0 are set to initial symbolic

values and variables in V ך V0 to default constant values. The path condition φ is set to

true and the control location is set to the start location l = l0. As the execution goes

forward, each operation is executed, and the symbolic memory map and the control

location are updated correspondingly. Suppose the current memory map is S and the

current control location is l, then under the programming language introduced, we

consider the following situations:

• If ߦሺ݈ሻ is an assignment operation v ؔ e, l is updated to ߟሺ݈ሻ and S is updated to

S[v հ S(e)].

• If ߦሺ݈ሻ is a conditional operation if (e) then lԢ else lԢԢ, there are two possibilities

that the execution can branch. If M(e) is evaluated to true, then l is updated to lԢ

and φ is updated to φ ר Sሺeሻ; otherwise, M(e) is false, and l is updated to lԢԢ and

φ is updated to φ ר ൓Sሺeሻ. In the two cases, the symbolic memory map S is not

changed.

• If ߦሺ݈ሻ is the termination operation halt, the execution terminates.

Obviously, the execution model of the program under symbolic execution is basically to

simulate a concrete execution using symbolic input values. This is obvious when

considering the execution of a condition operation if (e) then lԢ else lԢԢ. Here, the value

of e is evaluated in the concrete memory mapping and is used to decide the execution

flow, whether jumping to lԢ or lԢԢ.

The result of symbolic execution is a path condition φ; it is constructed by taking a

conjunction of symbolic predicates whenever a conditional operation is executed. The

path condition synthesizes the executed path and will be used for test input generation.

38

3.3.3 Test Input Generation

An execution of the program in dynamic symbolic execution results in a path condition

with the following form:

 φ ൌ σ1 ר … ר σi‐1 ר σi ר σi൅1 ר … ר σn (1)

It is a conjunction of symbolic predicates σi (1 ≤ i ≤ n) and characterizes the executed

program path. An important property of the path condition is that every single symbolic

predicate of φ can provide an opportunity to execute the program along an alternative

path. Therefore, the test input generation procedure in dynamic symbolic execution is

performed based upon this property. Specifically, this procedure performs the following

mechanism. Given a path condition φ, it selects a symbolic predicate, e.g. σi, negates it,

and forms the constraint system φԢ ൌ ሺσ1 ר … ר σi‐1 ר ൓σiሻ. Then, the procedure

interacts with an underlying constraint solver to check the satisfiability of φԢ. If φԢ is

satisfiable, then a solution, an input, is returned back to the procedure. The most

important characterization of the input obtained by this mechanism is that the execution

of the program with this input will follow the previous path up to the corresponding

conditional operation of the negated predicate σi, but afterward change the flow of

control to execute the alternative control location. This mechanism is often performed

under the guidance of search strategies to direct dynamic symbolic execution for

exploring the path space in the desired exploration order.

The interaction of the underlying constraint solver in test input generation is crucial. In

fact, the effectiveness and efficiency of dynamic symbolic execution is based heavily on

the following aspects of the constraint solver:

• The theory supported—a powerful theory supported by the constraint solver will

enable dynamic symbolic execution to deal with a wide range of application

domains with high complexity.

• The constraint solving capability—given a constraint system to be solved, the

capability of the constraint solver to quickly find a satisfying solution is a key

factor in performing dynamic symbolic execution.

A perfect constraint solver does not exist in practice. The presence of concrete

execution is critical in dealing with the high complexity of real world software.

39

3.3.4 Generic Search Algorithm

So far, we have seen that in dynamic symbolic execution the program under test is

executed concretely and symbolically. The result of one execution is a path condition

characterizing the executed program path. Based on the path condition, the test input

generation procedure is invoked to select a symbolic predicate and form a constraint

system to be solved by the underlying constraint solver for test inputs. However, we

have not yet discussed in what way a particular symbolic predicate is to be selected to

continue dynamic symbolic execution. Or more precisely, how is the path space of the

program under test to be explored?

We now introduce a generic search algorithm to perform path exploration, which is

shown in Figure 3.2. This algorithm can be instantiated to explore the program path

space in any desired exploration manner.

Algorithm 2 GenericSearch
Input : Program P = (V, V0, L, l0, ߦ, E), Path condition φ
Output : Set of inputs T

1: while termination conditions are not reached do
2: σi ؔ SelectPredicate(φ)
3: if there exists input t satisfying constraint ሺσ1 ר … ר σi‐1 ר ൓σiሻ then
4: T ؔ T ׫ { t }
5: φԢ ؔ ExecuteProgram(P, t)
6: ProceedSearch(P, φԢ)
7: end if
8: end while
9: return T

Figure 3.2: Generic search algorithm to perform dynamic symbolic execution

The input to the GenericSearch algorithm is the program under test P and the current

path condition φ; however, it is parameterized by the following three components:

• A termination criterion determining when to terminate the search (line 1).

• A selection process determining how a specific symbolic predicate is selected to

continue the search (line 2).

• A procedure determining how the newly constructed path condition φԢ is to be

processed to continue the search (line 6).

40

In practice, we typically activate a search algorithm on an input with either randomly

generated input values or zeros. The search terminates when either the termination

criterion is reached or the path space of the program is exhaustively explored. The

output can be a set of test inputs generated during the search together with information

captured during dynamic symbolic execution, e.g. program crashes, assertion violations,

and non-termination.

The design of the SelectPredicate procedure is undeniably the key to the successful

implementation of dynamic symbolic execution. It determines the effectiveness of the

technique in coping with the large size and high complexity of real world software. In

the next section, we introduce depth-first search and use it to illustrate the execution

model of dynamic symbolic execution.

3.4 Depth-First Search

In the implementation of dynamic symbolic execution, depth-first search (DFS) is a

standard search algorithm used to carry out path exploration. DFS has been implemented

in testing tools to explore the path space of the program under test and has been shown

to be effective through exposing previously unknown serious software defects in

commonly used software. The algorithm skeleton is given in Figure 3.3; it is similar to

the GenericSearch algorithm given in the previous section.

Algorithm 3 DepthFirstSearch
Input : Program P = (V, V0, L, l0, ߦ, E), Path condition φ,
 Last negated predicate last
Output : Set of inputs T

1: index ؔ Length(φ)
2: while index ≥ last do
3: σi ؔ SelectPredicate(φ, index)
4: if there exists input t satisfying constraint ሺσ1 ר … ר σi‐1 ר ൓σiሻ then
5: T ؔ T ׫ { t }
6: φԢ ؔ ExecuteProgram(P, t)
7: DepthFirstSearch(P, φԢ, index + 1)
8: end if
9: index ؔ index – 1
10: end while
11: return T

Figure 3.3: Depth-first search for performing dynamic symbolic execution

41

DFS explores the path space of the program in a depth-first order in which the last and

not-yet-negated symbolic predicate is always chosen to be negated. Theoretically, DFS

offers a systematic search mechanism to explore all feasible program paths. The input to

the DepthFirstSearch algorithm is the program under test P, the current path condition φ,

and the last predicate last. last is actually an index indicating the lower bound of the

counter index to iterate over the path condition φ for exploring the path space, i.e. last ≤

index ≤ Length(φ). A call triggering DFS has the form DepthFirstSearch(P, φ0, 1), where

P is the program under test, φ0 is the initial path condition obtained by executing P

concretely and symbolically on a randomly generated test input, for example, and the

last predicate is set to 1.

DFS explores the path space starting from the last predicate of φ to last (lines 1–2). For

each predicate σi chosen in this depth-first order, σi is negated to form a constraint

system to be solved for a test input t (lines 3–4). With this test input t, P is executed to

obtain another path condition φԢ. Then, DFS recursively calls itself with (index + 1) to

explore the path space further generated by the newly executed path φԢ. This procedure

is repeated until the whole path space of the program is exhaustively explored or the

termination criterion is reached. For simplicity, the latter case is not explicitly specified

in the algorithm.

DFS is straightforward to implement and has been adopted widely to illustrate the

execution model of dynamic symbolic execution. In the following sections, we employ

DFS to illustrate dynamic symbolic execution through three examples to demonstrate its

significant improvements over classical symbolic execution.

3.4.1 Example 1

void example01 (int x, int y) {
 int z;
 z = 100;
 if (x == z + z) {
 if (y == z * z) {
 ERROR();
 }
 }
 return;
}

Figure 3.4: Example illustrating the execution model of dynamic symbolic execution

42

Consider the C program example01 in Figure 3.4, which takes as inputs two integer

variables x and y. The input parameter vector is MሬሬሬԦ0 = <x, y>. To start dynamic

symbolic execution, let us assume that the randomly generated concrete value for x is

111222 and that of y is 222111, i.e., IԦ = <111222, 222111>. Then, the concrete memory

mapping is M = [x հ 111222, y հ 222111]. And the symbolic memory mapping is S =

[x հ X0, y հ Y0] where X0 and Y0 are initial symbolic values for x and y. With this

configuration, the program execution executes the else control location of the outer if

operation and terminates at the halt operation. We obtain the path condition φ = <൓(X0

= 200)>, and memory mappings M = [x հ 111222, y հ 222111, z հ 100] and S = [x

հ X0, y հ Y0, z հ 100]. An attempt to negate the only last symbolic predicate of the

path condition results in a constraint system <(X0 = 200)>, which forces the underlying

constraint solver to return the solution IԦԢ = <X0 = 200>. Then, we update the input

vector IԦ by replacing the value of every variable v appearing in IԦ with S(v) where S(v) is

evaluated based on both the current input vector IԦ and the solution IԦԢ. In this case, we

obtain x = 200 and y = 222111, that is, IԦ = <200, 222111>.

With the attained input vector, we form the configuration M = [x հ 200, y հ 222111]

and S = [x հ X0, y հ Y0] to continue dynamic symbolic execution. The program

execution with this configuration executes the then control location of the outer if

operation instead and then the else control location of the inner if operation. We obtain

φ = <(X0 = 200) ר ൓(Y0 = 10000)>, M = [x հ 200, y հ 222111, z հ 100], and S = [x

հ X0, y հ Y0, z հ 100]. By negating the last symbolic predicate and forming the

constraint system <(X0 = 200) ר (Y0 = 10000)>, we obtain the solution IԦԢ = <X0 = 200,

Y0 = 10000>. This leads to the input vector IԦ = <200, 10000>.

Finally, the program execution with the configuration constructed based on the input

vector IԦ = <200, 10000> results in the path condition φ = <(X0 = 200) ר (Y0 = 10000)>.

The execution executes the then control location of the two if operations and hits the

halt operation ERROR(). At this point, the program path space has been exhaustively

explored and DFS terminates.

This example shows that, like symbolic execution, the notation of path condition plays a

central role in driving dynamic symbolic execution to explore the program path space.

43

3.4.2 Example 2

void example02 (int x, int y) {
 int z;
 z = x*x*x + 1;
 if (y == z) {
 ERROR();
 }
 return;
}

Figure 3.5: Example illustrating how dynamic symbolic execution deals with

complex computational expressions

Consider the C program example02 in Figure 3.5, which takes as inputs two integer

variables x and y. The input parameter vector is MሬሬሬԦ0 = <x, y>. Let us assume that the

initial program input to start dynamic symbolic execution is IԦ = <100, 200> where x =

100 and y = 200. The configuration to execute the program is M = [x հ 100, y հ 200]

and S = [x հ X0, y հ Y0]. Now, as the execution goes forward, each operation is

executed concretely and symbolically. For the assignment operation z = x*x*x + 1,

in concrete execution, it adds the mapping M(z) = 1000001 to the concrete memory

map M, that is, M = [x հ 100, y հ 200, z հ 1000001]. In symbolic execution, it

evaluates the right-hand side of the assignment and forms the mapping S(z) = X0
3 + 1.

Now, we suppose that the underlying constraint solver does only support the linear

arithmetic theory. That is, the computation of the cube expression X0
3 + 1 goes beyond

the theory that can be handled by the underlying constraint solver. We consider below

how classical symbolic execution and dynamic symbolic execution behave to deal with

this situation.

In classical symbolic execution, whenever the expression to be evaluated is outside the

scope of the theory supported by the underlying constraint solver, the technique skips

executing not only the currently executed operation but also any further operations

followed from this operation. That is, only part of the code is considered in classical

symbolic execution. In this particular example, the presence of the cube expression

leads to bypassing the execution of the assignment operation and consequently

bypassing the whole program.

44

In dynamic symbolic execution, if an expression in symbolic execution cannot be

modelled by the theory of the underlying constraint solver, then the concrete memory

map M is used to simplify the expression so that it can be reasoned by the constraint

solver. This simplification feature works to symbolically and concretely evaluate the

cube expression x*x*x + 1. The expression has left-to-right associativity and is

evaluated in the following order:

 (((x כଵ x) כଶ x) ൅ଷ 1)

where the number associated with each operator determines the operator’s precedence

to be evaluated. For the multiplication operator כଵ, its left-hand operand in the symbolic

memory map has the value x = S(x) = X0, and, similarly, its right-hand operand has the

value x = S(x) = X0. The evaluation of (x ଵכ x) yields X0
2, X0

2 is not a linear arithmetic

expression, however. The simplification involves one of the operator’s operands, e.g.

the right-hand operand, being replaced with the value in the concrete memory map

instead. As a result, the right-hand operand has the value x = M(x) = 100, and

(x ଵכ x)= X0*100.

The multiplication operator כଶ evaluates the expression ((X0*100) ଶכ x). Like כଵ,

here the simplification replaces the right-hand operation of כଶ with its value in the

concrete memory map, i.e. x = M(x) = 100 and

(((x ଵכ x) ଶכ x)ൌ((X0*100) ଶכ x)= X0*100*100. And finally, for the addition

operator ൅ଷ, the result is (((x ଵכ x) ଶכ x)൅ଷ1)= X0*100*100+1. The symbolic

memory map S becomes S = [x հ X0, y հ Y0, z հ 10000*X0+1].

The execution goes forward to execute the else control location of the if operation and

terminates at the halt operation. We obtain φ = <൓(Y0 = 10000*X0+1)>. An attempt to

negate the only last symbolic predicate of the path condition forms the constraint system

<(Y0 = 10000*X0+1)> to be solved by the underlying constraint solver. One possible

solution could be IԦԢ = <X0 = 0, Y0 = 1>. The update to the input vector yields IԦ = <0, 1>,

or x = 0 and y = 1. Finally, the program execution with the configuration constructed

based on the obtained input executes the then control location of the if operation and

hits the halt operation ERROR(). Here, DFS terminates since the path space of the

program has been exhaustively explored.

45

This example illustrates one of the most important aspects of dynamic symbolic

execution. Concrete execution simplifies symbolic execution whenever the evaluation

of expression in symbolic execution goes beyond the theory that can be reasoned by the

underlying constraint solver. This feature is a significant improvement of dynamic

symbolic execution over symbolic execution for dealing with great complexity of real

world software applications.

3.4.3 Example 3

void example03 (int x, int y) {
 int z;
 z = hash(x) + 1;
 if (y == z) {
 ERROR();
 }
 return;
}

Figure 3.6: Example illustrating how dynamic symbolic execution deals with

function calls without the availability of source code

Consider the C program example03 in Figure 3.6, which is similar to the example02

program in the previous example except that the execution of the assignment operation

in this example involves calling the function hash(). Here, the source code of the

function is not available but its binary is provided to perform the linking process when

compiling the program. The presence of the function hash() is an instance of a library

function—vendors’ code, or code that is not provided because of security reasons. This

appears very often in programming practices, where developers make use of many

function calls through knowing their API (Application Programming Interface) but not

their source code.

Classical symbolic execution gets stuck executing the assignment operation as symbolic

execution is not able to reason the hash() function without touching its source code.

Consequently, it bypasses this operation as well as the code followed from this

operation, or completely ignores the whole program.

In dynamic symbolic execution, however, since the function’s binary is available,

concrete execution is able to execute the function call hash(x) and to form a mapping

for variable z in the concrete memory map. Now, like the previous example, in

46

symbolic execution, the concrete value of hash(x) is used to evaluate the right-hand

side of the assignment and form a mapping for variable z in the symbolic memory map.

This allows dynamic symbolic execution to execute the assignment operation and

finally completely explore the path space of the program.

This example illustrates the capability of dynamic symbolic execution in dealing with

the unavailability of source code. In the context of real world software applications,

where library functions are often used extensively, this capability allows dynamic

symbolic execution to improve the precision of the analysis as compared to symbolic

execution alone.

3.4.5 Interplay of Concrete and Symbolic Execution

In summary, dynamic symbolic execution intertwines the strengths of random testing

and symbolic execution to achieve the scalability and high precision of dynamic

analysis, and the power of constraint solving technology. The intertwinement is

expressed in the interaction between concrete execution and symbolic execution during

side-by-side concrete and symbolic evaluation. On the one hand, the presence of

concrete execution is essential in simplifying symbolic evaluations when encountering

high complexity code. On the other hand, the presence of symbolic execution allows

test input generation to be performed in an automated directed mechanism to explore

the path space of the program in a desired exploration order, which is far powerful than

the randomness nature of traditional random testing.

We now summarize the interplay between concrete execution and symbolic execution

with the following points:

• Given a test input, concrete execution executes the program under test by

traversing only one path over the program path space.

• With the executed path in concrete execution, symbolic execution executes each

program operation symbolically to form a path condition. The path condition is a

conjunction of symbolic predicates, characterizing the executed program path

and allowing path exploration to be performed in a directed manner. That is, test

inputs are generated by systematically exploring program paths at the symbolic

level and these test inputs are guaranteed to traverse along the pre-determined

paths.

47

• Concrete execution simplifies symbolic execution whenever symbolic execution

goes beyond the theory that can be handled by the underlying constraint solver.

In this case, the concrete values of variables in the concrete memory map are

used to evaluate symbolic expressions. This results in a partial form of symbolic

execution, allowing dynamic symbolic execution to deal with high complexity

code in real world software applications.

• Based on constructed path condition in symbolic execution, dynamic symbolic

execution interacts with the underlying constraint solver under the guidance of

search algorithms to obtain new test inputs. These test inputs trigger executing

many different program paths over the path space.

3.5 The Path Space Explosion Problem

Dynamic symbolic execution displays remarkable improvements over existing

automated test input generation techniques such as random testing and symbolic

execution. The technique does, however, reveal considerable limitations when being

applied to real world software applications. Most challengingly, the fundamental

scalability limitation of dynamic symbolic execution is how to handle the combinatorial

explosion of the path space, which is extremely large or infinite in sizeable and complex

programs. This issue has been repeatedly highlighted in the literature, as noted in the

previous chapter [29], [35], [65].

From the theoretical perspective, this limitation is easy to understand. The result of an

execution in dynamic symbolic execution is a path condition, a conjunction of symbolic

predicates φ ൌ σ1 ר … ר σi‐1 ר σi ר σi൅1 ר … ר σn. Every single symbolic predicate of φ

represents one possibility to execute the program along an alternative path (section

3.3.3). That is, for every path condition of length n, the number of program paths can be

2௡ or be exponential in the number of symbolic predicates. Moreover, the negation of a

symbolic predicate, e.g. σi, may yield another path condition of the form

φᇱ ൌ σ1 ר … ר σi‐1 ר ൓σi ר σi൅1
ᇱ σm ר … ר

ᇱ where the newly collected symbolic predicate

conjunction σi൅1
ᇱ σm ר … ר

ᇱ may give rise to another 2௠ି௜ program paths, as does any of

the predicates σi൅1
ᇱ , …, σm

ᇱ of the path condition φᇱ. That is, there is a combinatorial

exponential growth in the number of program paths to exhaustively explore all feasible

48

paths of the program. This is referred to as the path space explosion problem in dynamic

symbolic execution.

From the practical perspective, this limitation arises chiefly because of the presence of

loops and recursion in the program under test. These programming features, however,

are used extensively to implement algorithms for conveying software requirements in

practice. Unfortunately, with the current computational power, even a single small

fragment of code can yield a number of program paths that is too huge to be explored

exhaustively. The example04 function in Figure 3.7 illustrates this phenomenon well.

typedef enum {false, true} bool;
#define N 20
bool example04 (int A[N]) {
 bool success = true;
 for (i = 0; i < N; i ++) {
 if (A[i] != 25)
 success = false;
 }
 if (success) {
 // target
 }
 return success;
}

Figure 3.7: Example illustrating the combinatorial explosion of the path space in

dynamic symbolic execution

The function takes as input an array of 20 elements and checks if all elements equal 25.

This yields 2ଶ଴ (= 1,048,576) paths with just 20 symbolic predicates. In practice, this

problem becomes worse because the input of the program can be a stream of data with a

too large (or unknown) size. In cases of check_ISBN and check_ISSN in the set of test

subjects in our first evaluation on structural program coverage (section 5.4), for

instance, both functions take as input an array with (4093 + 3) tokens, which gives rise

to approximately 2ሺସ଴ଽଷାଷሻ paths, making dynamic symbolic execution ill-suited for the

goal of exploring all feasible paths of the program within the limited resources

available, e.g. CPU, memory and time.

This scalability limitation in dynamic symbolic execution has been extensively

researched in three main directions — (1) path space reduction, (2) parallel symbolic

execution, and (3) path exploration prioritization. In the first direction, researchers aim

49

to prune the path space that needs to be explored [5], [58]. This can be accomplished by

encoding the already explored symbolic states and preventing them from being re-

explored later. In the second direction, researchers seek to exploit the increased

availability of computational power to enlarge the path exploration process [126]. A

theoretically desired property these two research directions have in common is striving

for completeness of analysis. In practice, however, the symbolic execution-based path-

based analysis is typically incomplete. This stems chiefly from the following reasons:

• The path space is exploded exponentially.

• Symbolic execution and constraint solving are imprecise.

• Testing has a time limit.

In this context, research in the last direction thus looks for techniques to de facto

maximize the confidence in the testing process instead. In particular, most proposed

techniques within a given testing limit attempt to prioritize path exploration in order to

improve structural program coverage and enhance error detection capability.

However, the most challenging task in developing a path exploration prioritization

strategy is how to mine appropriate paths to guide dynamic symbolic execution. A key

objective of this research project is therefore to develop algorithms to perform path

exploration toward effectively and efficiently executing dynamic symbolic execution.

To achieve this, we focused on the following two attributes in the testing process:

structural coverage improvements and error revealing improvements.

3.6 Summary

This chapter has covered the automated test input generation technique of dynamic

symbolic execution in depth. It started by illustrating the motivation of intertwining

random testing and symbolic execution in section 3.1. In section 3.2, an imperative

programming language was introduced to formalize the execution model for dynamic

symbolic execution. Based on this programming language, a formal representation of

the four basic components composing dynamic symbolic execution was provided in

section 3.3, these being concrete execution, symbolic execution, test input generation,

and search algorithm. In section 3.4, depth-first search, a standard search algorithm in

performing dynamic symbolic execution, was described. This was followed by three

examples demonstrating improvements of the technique over classical symbolic

50

execution. The interaction of concrete execution and symbolic execution is the most

important characteristic of dynamic symbolic execution. It is the key that allows the

technique to deal with high complexity code in real world software applications in a

way that goes beyond the capability of traditional symbolic execution approaches. In

section 3.5, the fundamental scalability limitation, the biggest challenge facing dynamic

symbolic execution, was detailed. The practical impact of this limitation on the

applicability of dynamic symbolic execution is tremendous. Microsoft Research, for

example, has 100+ machines running the SAGE system performing dynamic symbolic

execution [66]. Coping with this fundamental scalability problem therefore emerged as

a primary objective during the course of this research project.

51

Chapter 4

Goal-Oriented Dynamic Test

Generation

4.1 Background .. 52

4.2 Motivation ... 54

4.3 The Chaining Approach .. 58

4.3.1 Background ... 59
4.3.2 The Search Mechanism ... 61
4.3.3 Event Sequence Generation .. 64

4.4 The Extended Chaining Approach ... 65

4.4.1 Limitations of the Chaining Approach.. 66
4.4.2 Extended Event Sequence Generation .. 68

4.5 Goal-Oriented Dynamic Test Generation .. 73

4.6 Summary ... 78

In the previous chapter, we introduced dynamic symbolic execution, a powerful

program analysis technique to automate the test input generation process of software

testing. However, as chapter 3 identified, one of the biggest challenges facing dynamic

symbolic execution is the combinatorial explosion of the path space. Much research

therefore has extensively investigated techniques to improve the efficiency of path

exploration in performing dynamic symbolic execution [29], [35], [66]. This is also the

primary objective of this research project.

In this chapter, the intertwinement of the chaining approach [52], [92] with dynamic

symbolic execution is proposed to effectively and efficiently perform the test input

generation process in the context of goal-oriented testing. A goal-oriented test input

generation approach has a number of practical applications in software development.

The employment of the chaining approach is to direct path exploration toward better

exploring a code element (or a test goal) given in the program. One of the most

important features of the chaining approach is the ability to identify data dependences

affecting the execution of the test goal and to carry these data dependences up to the

goal structure to influence the test goal. Based on the chaining approach and the

52

directed search feature of path exploration in dynamic symbolic execution, we develop

a goal-oriented dynamic test generation approach to significantly strengthen the

efficiency of path exploration for exploring test goals. The effectiveness of the proposed

approach will be assessed through coverage improvements and security vulnerability

detection capability in chapters 5 and 6, respectively.

This chapter is structured as follows. Section 4.1 introduces basic concepts to formally

present algorithms and formalizations presented in this chapter. Section 4.2 explains the

motivation for the development of a goal-oriented test input generation approach. We

also present the rationale for employing the chaining approach to carry out the dynamic

symbolic execution-based path exploration process for better exploring a given test

goal. Section 4.3 describes in depth theoretical aspects of the chaining approach,

specifically the search mechanism and the event sequence generation process. An

extended chaining approach is then presented in section 4.4 to further improve the event

sequence generation process by taking into account transitive data dependences. In

section 4.5, a goal-oriented dynamic test generation approach is formally presented. The

approach exploits both control and data dependences to optimize path exploration in

dynamic symbolic execution. And finally, a summary of the chapter is provided in

section 4.6.

4.1 Background

A program structure is represented by a graph model. A control flow graph (CFG) of a

program is a directed graph G = (N, E, s, e) where:

• N is a set of nodes where each node n א N corresponds to a statement in the

program, e.g. an assignment statement, an input or output statement, or the

predicate of a conditional or loop statement, in which case it is referred to as a

branching node. In the C program example01 in Figure 4.1, nodes 2, 3, and 5

are branching nodes.

• E ك N × N is a set of edges where each edge e = (ni, nj) א E corresponds to a

possible transfer of control from node ni to nj. An edge e = (ni, nj) is referred to

as a branch if its source node ni is a branching node. The branch executed when

the condition at the branching node is true is referred to as the true branch.

Conversely, the branch executed when the condition is false is referred to as the

false branch. The predicate determining whether a branch is taken is referred to

53

as a branch predicate. The branch predicate of the true branch (2, 3) in the

program in Figure 4.1 is (r1 == 0). The false branch predicate is (r1 != 0).

• s א N and e א N are unique entry and unique exit nodes, respectively.

Node typedef enum {false, true} bool;
(s) void example01 (int r1, int r2) {
(1) bool invalid = false;

(2) if (r1 == 0) {
(3) if (r2 == 0) {
(4) invalid = true;
 }
 }

(5) if (invalid) {
(6) ERROR();
 }

(7) return;
(e) }

Figure 4.1: A C program and its control flow graph to illustrate basic concepts and notations in

goal-oriented dynamic test generation

An input vector I is a vector I = (x1, x2, …, xn) of input variables of the program. The

domain ܦ௫೔ of input variable xi, 1 ≤ i ≤ n, is the set of all values which xi can hold. The

domain of the program is the cross product ܦ = ܦ௫భ × ܦ௫మ × … × ܦ௫೙, where each ܦ௫೔ is

the domain of the input variable xi. A program input x is a single point in the

n-dimensional input space ܦ, x ܦ א.

A path through a CFG is a sequence P = <n1, n2, …, nk> such that for every i, 1 ≤ i < k,

(ni, ni+1) א E. P = <1, 2, 3, 4, 5, 6, 7> is a path in the CFG of the program in Figure 4.1.

A path is feasible if there exists a program input on which the path is traversed during

the program execution; otherwise, the path is infeasible.

A definition of a variable v is a node which assigns a value to variable v. In particular, a

definition of variable v can be: (1) an assignment statement, or (2) an input statement. A

use of a variable v is a node in which v is referenced. In particular, a use of can be: (1)

an assignment statement, (2) an output statement, or (3) the predicate of a conditional or

loop statement. In the program in Figure 4.1, nodes 1 and 4 are definitions of variable

invalid, and node 5 is a use of invalid.

54

A definition-clear path with respect to a variable v is a path in which v is not modified

along the path. For example, in the program in Figure 4.1, the path <2, 5> is definition-

clear with respect to the variable invalid, but <2, 3, 4, 5> is not, since invalid is

defined at node 4. Similarly, a definition-clear path with respect to a set of variables S

is a path in which none of the variables from S are modified along the path.

Control dependence captures the dependence between branching nodes and nodes being

chosen to be executed by these branching nodes. The control dependency definition is

given in the work of Ferrante, Ottenstein, and Warren [55]. Let X, Y, and Z be three

nodes and (X, Y) be a branch of X. Node Z postdominates node X if and only if Z is on

every path from X to the exit node e. Node Z postdominates branch (X, Y) if and only if

Z is on every path from X going through branch (X, Y) to the exit node e. Z is control

dependent on X if and only if Z postdominates one of the branches of X and Z does not

postdominates X. In the program of Figure 4.1, node 6 is control dependent on node 5

because node 6 postdominates branch (5, 6) and node 6 does not postdominate node 5.

4.2 Motivation

Throughout the course of this research project, our main objective was to develop

techniques to effectively and efficiently perform the test input generation process for

automating software testing. The research problem we have aimed to solve is in the

context of goal-oriented testing. Stated formally:

— Given a test goal ݃ (e.g. statement or branch) in the program ܲ, the goal is to find a

test input ݐ on which ݃ is executed.

This is known as the reachability problem and is an undecidable problem in computer

theory. Since a test goal can be guarded by conditions that express specific properties of

the current program state, this reachability problem is similar to finding a feasible path

to trigger the program execution to enter particular program states. It has a wide range

of applications in several aspects of the software development life cycle, including

debugging, software testing, software measurement, software comprehension, and

software maintenance.

An application scenario of the reachability problem is to assess test adequacy in

software testing. Structural coverage is a useful testing metric adopted to ensure that

55

every single statement in the program is executed at least once. This task can be reduced

to finding test inputs to execute a specific statement in the code. Another application

scenario is in using static analysis-based bug finding tools. One needs to triage the bug

reports, i.e. determine if the bugs correspond to actual errors or not. This task often

involves finding a test input to witness the bugs reported. Finally, in software

comprehension, it is often useful for uncovering under what conditions code is executed

to understand complex code bases.

In the development of a goal-oriented approach of test input generation, there are three

main questions to be asked, the answers to which determine the effectiveness of the

approach:

• What is a test goal?

• What is a test input generation technique?

• How to perform the test input generation technique to find a test input in order to

trigger the execution of the goal?

A test goal is simply a statement or a branch in the code where its complexity depends

on the conditions under which a test input can be found to execute the goal. A goal can

be unreachable, i.e. there is no feasible path traversing the goal. In this case, a formal

proof is required to verify the unreachability of the goal. This is beyond the scope of

this thesis, however, and the approach carried out in this research project is that if no

test input can be found to execute the test goal within a given testing time limit, the

approach terminates and reports failure. The overall purpose is to improve the solving

of the reachability problem, but the scenario can canaries where the test goal is actually

reachable but the goal-oriented approach being implemented is not able to trigger its

execution.

Another factor to be considered is the test input generation technique. Among the

techniques surveyed in chapter 2, dynamic symbolic execution has been shown to be an

effective approach to automate test input generation. A noticeable feature of this

technique is that it is directed, i.e. one can manipulate symbolic predicates of the path

condition to direct path exploration in a desired order. Therefore, it is obvious in the

goal-oriented approach that the dynamic symbolic execution-based path exploration

process must be guided toward exploring the test goal. Consider the example01

program in Figure 4.1, for example. Let us assume that the currently executed path is

56

<1, 2, 3, 5, 7> and the corresponding path condition is φ = <(R1 == 0) ר ൓(R2 == 0)>,

where R1 and R2 are the two symbolic values of r1 and r2, respectively, and the test

goal is node 4. Intuitively, at the branching node 3, the change of control flow from

branch (3, 5) to (3, 4) can trigger the execution of the test goal. This can be easily

achieved by negating the corresponding predicate, ൓(R2 == 0), of branch (3, 5) and

solving the constraint system <(R1 == 0) ר (R2 == 0)> with the underlying constraint

solver. This results in an input IԦ = <0, 0>, where r1 = 0 and r2 = 0, leading to the

execution of node 4.

The last factor influencing the effectiveness of a goal-oriented approach is the guiding

procedure to carry out the test input generation technique toward finding a test input to

trigger the execution of the test goal. In dynamic symbolic execution, the path space of

the program is explored for a particular path that traverses the test goal. A major

challenge arising from path exploration in dynamic symbolic execution is the

combinatorial explosion of the path space as explained in the previous chapter.

When developing techniques to effectively and efficiently conduct path exploration, the

execution of test goals may require very specific guidance. Consider the example02

Node typedef enum {false, true} bool;
 #define N 20
(s) bool example02 (int A[N]) {
(1) bool success = true;

(2) int i = 0;
(3) while (i < N) {
(4) if (A[i] != 25) {
(5) success = false;
 }
(6) i ++;
 }

(7) if (success) {
(8) // target
 }

(9) return success;
(e) }

Figure 4.2: Example to illustrate difficulties of dynamic symbolic execution-based

path exploration in goal-oriented approach

57

program in Figure 4.2, in which the test goal is to explore branch (7, 8), for example.

Basically, this function is similar to the example04 function in Figure 3.7, which takes

as input an array of 20 elements and yields 2ଶ଴ (= 1,048,576) paths with just 20

symbolic predicates. Now consider the executability of branch (7, 8). The first

observation is that this branch does not constitute any symbolic predicate because its

conditional expression depends on the locally declared variable success; any attempt

to change its alternative branch to trigger its execution will fail. The second observation

is that among the 1,048,576 paths, there is only one path that executes all false branches

at the conditional statement of node 4 to propagate the desired true value of success

down from node 1 to node 7 to execute branch (7, 8). These observations demonstrate

difficulties in developing path exploration algorithms where the execution of code does

not depend directly on the symbolic input. This is widely adopted in programming

practices, however. For instance, Cadar et al. [30], when testing a number of medium-

sized applications, found that less than 42% of the executed statements depended on the

symbolic input. Independently, Binkley et al. [16] studied the testability transformation

problem in search-based testing and observed that the use of Boolean-typed variables

complicated test input generation and degraded program testability. Of the 23 buffer

overflow vulnerabilities in our second evaluation on security vulnerability detection in

chapter 6, none depends directly on the symbolic input.

To cope with such challenges, we now introduce the chaining approach [52] in an

attempt to establish a search mechanism to direct dynamic symbolic execution toward

effectively and efficiently exploring test goals. Given a test goal to explore, the chaining

approach first performs data dependence analysis to identify statements that affect the

execution of the test goal, and then uses these statements to create sequences of events

that are to be executed prior to the execution of the test goal. The advantage of doing

this is three-fold:

• It precisely focuses on the cause of getting the test goal to be executed.

• It forms a search mechanism to effectively perform the path exploration process.

• It slices away code segments that are irrelevant to the execution of the test goal.

These three strengths together enable a search mechanism to guide the path exploration

process into potentially unexplored but promising areas of the program path space to

explore high complexity code.

58

Based on the chaining approach, a search algorithm is proposed that is guided by the

chaining mechanism and is based on dynamic symbolic execution to conduct the test

input generation process, in order to establish the goal-oriented testing approach for this

research project. The application of the proposed approach is focused on the following

two aspects of software testing: structural coverage testing and security vulnerability

detection.

In fact, dynamic symbolic execution can effectively automate test input generation of

software testing in a wide range of real world software applications. What is crucial

however is the path space explosion in relation to the testing time limit. The

development of search techniques to optimize path exploration therefore is critical when

applying dynamic symbolic execution. The presence of locally declared variables,

however, makes the path exploration process tremendously difficult since dynamic

symbolic execution is not able to directly manipulate predicates not relating to the

program input. Operations involving these local variables encode program properties

that need to be validated before being able to continue the path exploration process. In

the following section, we describe the chaining approach and illustrate how this

approach helps to address this problem.

4.3 The Chaining Approach

The chaining approach proposed in the work of Ferguson and Korel [52] in 1996 is an

alternative test input generation technique. It makes use of data dependency information

to guide the search process. The basic idea is to identify statements leading up to the

goal structure which may influence the outcome of the test goal. These statements are

sequences of events that the search process should proceed along to trigger the

execution of the test goal. An event sequence can be thought of as an abstract path. An

event simply refers to the execution of a program node. By directing the search process

to traverse event sequences, it can potentially propagate data dependences necessitated

to uncover the test goal. The chaining approach hence can be considered as a program

slicing technique [131] which simplifies the program by focusing on selected aspects of

semantics. What distinguishes the chaining approach from program slicing is the way it

projects the execution of a test goal. Slicing takes into account both data and control

dependences, which often yields a slice too large to explore. The chaining approach

focuses only on data dependences and addresses control dependences on the fly.

59

In general, the chaining approach starts by executing the program under consideration

on an arbitrary test input. It relies on a local search method called the alternative

variable method to find test inputs. During a program execution, the execution of each

branch (ni, nj) is monitored by a search process to determine whether the execution

should continue through this branch or whether an alternative branch should be taken.

The latter circumstance can happen, for instance, when the current branch does not lead

to the test goal. If an undesirable execution flow at the current branch (ni, nj) is

observed, the alternative variable method modifies the input vector until a new test

input can be found to change the execution flow at this branch. Or else, the search

declares failure.

A key characteristic of the chaining approach is that failure in finding a test input to

alter the execution flow at branch (ni, nj) will activate the consideration of data

dependencies. Specifically, the chaining approach performs data flow analysis to

identify statements that have to be executed prior to the execution of node ni. These

statements are used to create event sequences that direct the search process target to the

test goal. Event sequences encode data dependencies that need to be propagated down to

the goal structure. This noticeable feature of the chaining approach provides an

attractive search mechanism to break down the large path space of the program and

discover a particular path leading to the execution of the test goal.

4.3.1 Background

In this subsection, we cover basic concepts that are used to formally present the

chaining approach.

An event sequence E is a sequence of events, <e1, e2, …, en>, where each event is a

tuple ei = (ni, Ci), where ni is a program node and Ci is a set of variables referred to as a

constraint set. For every two adjacent events in an event sequence, ei = (ni, Ci) and ei+1

= (ni+1, Ci+1), there must exist a definition-clear path with respect to Ci from ni to ni+1.

The concept of event sequences is central to the chaining approach. An event sequence

basically specifies an ordered sequence of program nodes to direct the search process.

Associated with each event ei = (ni, Ci) is a constraint set Ci that specifies the constraints

imposed on the execution from the current node ni to node ni+1 of the next event ei+1 in

the event sequence. Specifically, it ensures that all variables in the constraint set Ci must

not be modified during program execution between node ni and node ni+1. Such an

60

execution allows the effect of definition statements to be transferred up to the target

structure. The following event sequence E = <(s, Ø), (1, {success}), (7, Ø), (8, Ø)> is

an event sequence referring to the example02 program in Figure 4.2. It consists of four

events: e1 = (s, Ø), e2 = (1, {success}), e3 = (7, Ø), and e4 = (8, Ø). The execution

order required by this event sequence is that the start node s is first executed, followed

by the execution of node 1, followed by the execution of node 7, and finally the

execution of node 8. During the execution of nodes 1 and 7, a constraint is imposed by

requiring that the value of success is not modified. For the execution between nodes s

and 1, and between nodes 7 and 8, there is no constraint imposed, however. A graphical

representation of the event sequence E = <(s, Ø), (1, {success}), (7, Ø), (8, Ø)> is

given in Figure 4.3.

Figure 4.3: A graphical representation of event sequence E = <(s, Ø), (1, {success}), (7, Ø), (8, Ø)>

An event sequence is feasible if there exists a test input on which the event sequence is

successfully traversed; otherwise, it is said to be infeasible. The event sequence given

above <(s, Ø), (1, {success}), (7, Ø), (8, Ø)> is feasible; however, the event sequence

<(s, Ø), (5, {success}), (7, Ø), (8, Ø)> is infeasible.

A problem node refers to a branching node for which the search process cannot find test

inputs to execute an intended branch from this node.

A last definition ni is a program node that assigns a value to a variable v, and this value

may potentially be used by a node nj. For the node to qualify as a last definition, a

definition-clear path must exist between node ni and node nj with respect to v. For

example, node 1 is a last definition of variable success at node 7 in the example02

program of Figure 4.2. A definition-clear path with respect to success exists from

node 1 to node 7 via the false branches of the branching node 4 through the while loop.

A set of all last definitions of node n is a set of all last definitions of all variables used in

n. For example, the set of all last definitions of node 7 is {1, 5}.

61

4.3.2 The Search Mechanism

We now describe the search mechanism in the chaining approach by using the program

example02 in Figure 4.2. The test goal is to explore node 8. For this, the chaining

approach first generates the following initial event sequence:

E0 = <(s, Ø), (8, Ø)>

This event sequence consists of the start node s and the test goal, node 8. The constraint

sets associated with these events are empty. Now suppose the search process fails to

find an input array with all elements equal 25 to execute the test goal, thus failing to

move from node 7 to node 8. Note that the execution of node 8 can be triggered by

altering the execution flow at branching node 7 from branch (7, 9) to branch (7, 8).

However, no guidance is available to help the search process do so because branching

node 7 involves the locally declared variable success. Consequently, the search

process declares failure and node 7 is hence identified to be a problem node. This node

is inserted before node 8 into the event sequence:

E0
ᇱ = <(s, Ø), (7, Ø), (8, Ø)>

The chaining approach now performs data dependence analysis in respect of the

problem node to identify last definitions that define data for variables used in the

conditional expression. In this case, the conditional expression consists of only variable

success, which is defined at nodes 1 and 5. Two event sequences are constructed

accordingly, E1 and E2, based on the temporary event sequence E0
ᇱ .

E1 = <(s, Ø), (1, {success}), (7, Ø), (8, Ø)>

E2 = <(s, Ø), (5, {success}), (7, Ø), (8, Ø)>

An inserted event is formed using a last definition node and its associated constraint set

is formed from the variable defined at the node. The reason for adding the last definition

variable into the constraint set is to guide the search process to not modify this variable

again until the problem node is encountered. By doing so, the effect of the last

definition can be brought up to the problem node and hence influence the outcome of its

execution flow.

Obviously, sequence E2 cannot help to explore the test goal as the value of success

variable is false, which leads to the execution of the else branch instead. Sequence E1,

on the other hand, guides the search process to first reach node 1 from the function

62

entry, which sets the value of success variable to the desired true value to explore

branch (7, 8), and then continues from node 1 to node 7. When moving to node 7, the

value of success variable may be killed at node 5 if branch (4, 5) is executed. If so, the

search process is guided to change the flow of control at node 4 to execute the else

branch, which prevents success variable from being set to the unwanted false value.

This guidance is continuously refined throughout the while loop to preserve the

constraint set {success} of event (1,{success}) while reaching to event (7, Ø). By

doing so, the value of all elements in the input array is altered to 25, providing the

desired input to expose the test goal, node 8.

Next, we generalize the process of generating event sequences during the search

process. Given a test goal g to explore, the chaining approach begins with an initial

event sequence E0, which contains only the start node s and the test goal g, or E0 = <(s,

Ø), (g, Ø)>. Suppose that the search process fails to find test input to execute the event

sequence due to the presence of some branching node p1 that diverges the execution

flow down an unintended branch rather than the branch that can target the test goal.

Node p1 is declared as a problem node and is inserted into event sequence E0 to form a

temporary event sequence E0
ᇱ = <(s, Ø), (p1, Ø), (g, Ø)>. Then, the chaining approach

performs data dependence analysis to find the set of all last definitions lastdef(p1) with

respect to all variables used at node p1. For each last definition di א lastdef(p1), a new

event sequence is generated containing an event associated with that last definition:

 E1 = <(s, Ø), (d1, { def(d1) }), (p1, Ø), (g, Ø)>

 E2 = <(s, Ø), (d2, { def(d2) }), (p1, Ø), (g, Ø)>

 …

 EN = <(s, Ø), (dN, { def(dN) }), (p1, Ø), (g, Ø)>

For simplicity, we assume that each definition defines the value for only one variable.

Therefore, the constraint set associated with each last definition di in Ei is one element

set def(di) that requires the value of the variable defined by di is to be preserved during

program execution between di and p1.

To proceed, the chaining approach selects one of the event sequences, e.g. E1, and

attempts to find test inputs for which it is successfully traversed. If such a test input is

found, the chaining approach terminates since the test goal has been explored. If not,

63

during the traversal of event sequence E1, a new problem node pଵభ may be encountered,

e.g. between the start node s and d1. If so, pଵభ is inserted into the event sequence:

E1
ᇱ = <(s, Ø), (pଵభ, Ø), (d1, { def(d1) }), (p1, Ø), (g, Ø)>

The chaining approach again performs data dependence analysis to find the set of all

last definitions for node pଵభ. New event sequences are generated by inserting these

definitions into the temporary event sequence E1
ᇱ :

 Eଵభ= <(s, Ø), (dଵభ, { def(dଵభ) }), (pଵభ, Ø), (d1, { def(d1) }), (p1, Ø), (g, Ø)>

 Eଵమ= <(s, Ø), (dଵమ, { def(dଵమ) }), (pଵభ, Ø), (d1, { def(d1) }), (p1, Ø), (g, Ø)>

 …

 Eଵಾ= <(s, Ø), (dଵಾ, { def(dଵಾ) }), (pଵభ, Ø), (d1, { def(d1) }), (p1, Ø), (g, Ø)>

Created event sequences may be organized in the form of a tree referred to as a search

tree. The initial event sequence E0 represents the root of the tree. Other levels of the tree

are formed by event sequences created when problem nodes are encountered. Each tree

node represents a possibility to unclose the test goal. Figure 4.4 shows the structure of

the search tree generated during the search process.

Figure 4.4: A search tree generated by the chaining approach

Figure 4.5 shows the search tree generated during exploring node 8 in the example02

program in Figure 4.2.

64

Figure 4.5: A search tree generated in exploring node 8 in the example02 program in Figure 4.2

4.3.3 Event Sequence Generation

We now formalize the process of creating a new event sequence from an existing

sequence E. Let E = <e1, e2, …, ei-1, ei, ei+1, …, em> be an event sequence. Suppose the

search process driven by this event sequence guides the program execution up to event

ei and a problem node p is encountered between events ei and ei+1. Let d be a last

definition node of problem node p. Two events are generated, ep = (p, Ø) and ed = (d,

def(d)), corresponding to the problem node and the definition. A new event sequence is

now created by inserting these two events into event sequence E. Event ep is always

inserted between ei and ei+1. However, event ed in general, may be inserted in any

position between e1 and ep. Suppose the insertion of event ed is between events ek and

ek+1. The following sequence is then created:

EԢ = <e1, e2, …, ek-1, ek, ed, ek+1, …, ei-1, ei, ep, ei+1, …, em>

Since new events are added to the sequence, the implication of data propagation may be

violated. This requires modifications of the associated constraint sets of involved

events. The update is done in the following three steps:

(1) Cd = Ck ׫ def(d)

(2) Cp = Ci

 def(d) ׫ j, k + 1 ≤ j ≤ i, Cj = Cj׊ (3)

In the first step, the constraint set Cd of event ed is initialized to the union of def(d) and

the constraint set of the preceding event ek. This modification ensures that the constraint

set Ck of event ek is preserved up to event ek+1 while going through the newly inserted

event ed. The second step also imposes the same requirement on event ep by assigning

Ci to its constraint set. In the final step, all constraint sets of events between ek+1 and ei

are modified by including a variable defined at d. By doing this, the chaining approach

guarantees to propagate the effect of the definition at node d up to the problem node p.

65

Given this formalization, the search process when following an event sequence attempts

to adjust the program execution to move from one event to another without violating the

constraint set in the preceding event. This implies a systematic mechanism to propagate

the effect of “all possible” data flows up to the goal structure. Unfortunately, this

implication is not correct. We investigate in depth this phenomenon by assessing the

sequence generation process employed in the chaining approach in the next section.

4.4 The Extended Chaining Approach

The chaining approach was utilized in this research after we observed that the control

dependence information of the program may not be sufficient to guide the search

process in finding test inputs to explore high complexity code [52]. By recognizing

search failure may be due to data dependences, the chaining approach employs a backup

strategy through the construction of event sequences which may guide the search

process to propagate desired data flows to trigger the execution of test goals. The

construction of event sequences is done by inserting new events which navigate the

search process to take into account last definitions of variables used at problem nodes.

However, last definitions alone might not be able to provide precise guidance toward

influencing the outcome at problem nodes.

Node #define THRESHOLD 10
 #define N 20
(s) void example03 (int A[N]) {
(1) int counter = 0;

(2) int i = 0;
(3) while (i < N) {
(4) if (A[i] == 25) {
(5) counter ++;
 }
(6) i ++;
 }

(7) if (counter == THRESHOLD) {
(8) // target
 }

(9) return;
(e) }

Figure 4.6: Example to illustrate limitations in the event sequence generation process of

the chaining approach

66

4.4.1 Limitations of the Chaining Approach

Consider the example03 program in Figure 4.6 as an example. The input to this

function is an array of 20 elements. Suppose the test goal is to explore node 8, which is

only executed when half of the input array elements equal 25. And now suppose that the

search process fails to find such a test input to explore the test goal. Node 7 is a problem

node. By performing data dependence analysis with respect to the only variable

counter used in the conditional expression of the problem node, the chaining approach

creates the following two event sequences:

E1 = <(s, Ø), (1, {counter}), (7, Ø), (8, Ø)>

E2 = <(s, Ø), (5, {counter}), (7, Ø), (8, Ø)>

Obviously, event sequence E1 is infeasible since the value of counter variable being

carried by E1 is zero while the desired value to execute true branch (7, 8) is 10. Event

sequence E2 is not feasible, but requires that the counter variable is incremented only

once. Rarely this is sufficient to ensure that a test input can be found with 9 among the

remaining 19 elements equal 10 to execute the test goal. Consequently, node 7 is again a

problem node. The original chaining approach is not designed to deal with this situation

however; it terminates and reports node 8 could not be explored.

Furthermore, consider the example04 program in Figure 4.7 where the test goal is to

explore node 16. The execution of this node can only be triggered when all elements of

both the input arrays A and B equal 25. When the search process fails to find such a test

input, the chaining approach declares node 15 to be a problem node and creates the

following event sequence:

E1 = <(s, Ø), (14, {success}), (15, Ø), (16, Ø)>

Intuitively, when following event sequence E1, the search process can always propagate

the only last definition at node 14 of variable success down to the problem node 15.

However, by doing so, rarely can branch (15, 16) be executed since both succ01 and

succ02 variables can carry false values. This is because there is no guidance encoded

in the event sequence E1 specifying what values succ01 and succ02 variables must

carry to compute the value for variable success. As a consequence, the search process

after following event sequence E1 encounters the same problem node 3. The chaining

approach terminates and reports that node 16 could not be explored.

67

Node typedef enum {false, true} bool;
 #define N 20
(s) bool example04 (int A[N], int B[N]) {
(1) bool succ01 = true;
(2) bool succ02 = true;
(3) bool success = false;

(4) int i = 0;
(5) while (i < N) {
(6) if (A[i] != 25) {
(7) succ01 = false;
 }
(8) i ++;
 }

(9) int j = 0;
(10) while (j < N) {
(11) if (B[j] != 25) {
(12) succ02 = false;
 }
(13) j ++;
 }

(14) success = succ01 && succ02;

(15) if (success) {
(16) // target
 }

(17) return success;
(e) }

Figure 4.7: Example to illustrate limitations in the event sequence generation process of

the chaining approach

The failure of the chaining approach in the two examples above originates from the

following two main reasons:

• The chaining approach resolves only one level of data dependences. Obviously,

if following an event sequence results in failure, the sequence should be

extended to include further transitive data dependences to the problem node to

continue exploring the test goal.

• The chaining approach takes data dependences results in isolation. It is obvious

in the second example that event sequence E1 can carry true value of variable

68

succ01 to node 14 but the value of succ02 can be false; and vice versa. To

address this issue, the sequence generation process should consider all possible

combinations of data dependences when creating new event sequences.

These limitations of the chaining approach have been addressed in the work of McMinn

and Holcombe [92], who developed the extended chaining approach, which is detailed

in the following section.

4.4.2 Extended Event Sequence Generation

The key idea behind the extended chaining approach is to take into account the effect of

not only direct data dependences but also indirect data dependences in guiding the

search process toward exploring a given problem node [92]. Specifically, an extension

is made to the event sequence generation process to consider definitions for all variables

that can potentially affect the outcome at the problem node. The extended chaining

approach enables this through using the concept of influencing sets, which capture all

variables whose definitions can either directly or indirectly influence the problem node.

The extended event sequence generation process is sketched in Figure 4.8 through the

GenerateEventSequences procedure. The input to GenerateEventSequences includes event

sequence E, two events e1 and e2, and problem node pb, or GenerateEventSequences(E,

e1, e2, pb). The context for calling this procedure is that the search process while

attempting to traverse event sequence E from event e1 to event e2 encountered problem

node pb. The procedure performs the event sequence generation process in the

following manner. Initially, for the given input problem node, the influencing set is

simply the set of variables used in the conditional expression of the problem node. Paths

are traversed backward from the problem node. The influencing set is adapted according

to the path taken. So, starting from the current problem node pb, its initial influencing

set Ipb, and the event e1 = (n1, C1) prior to the problem node event inserted into the event

sequence E, the procedure invokes the CreateEventSequences procedure to traverse the

control flow graph of the program under test in a backward manner. For procedure

CreateEventSequences, it visits each node pn in prev_nodes, which is simply the set of

program nodes connected to the current node by an outgoing edge. For each visited

node pn, there are the following four possible scenarios.

69

Algorithm 4 GenerateEventSequences
let E be the original event sequence from which new event sequences are required

let S be a global set of search points, where a search point is a tuple sp = (sn, I, e),
where sn is a program node, I is an influencing set of variables, and e = (n, C) is an
event in the original event sequence E

procedure CreateEventSequences(In: a search point, sp = (sn, I, e = (n, C)))
1: let prev_nodes be the set of control flow graph nodes connected to sn by an
 outgoing edge
2: if sp ב S then
3: S ؔ S ׫ { sp }
4: for each pn א prev_nodes do
5: if pn = n then
6: if def(pn) א I then
7: I ؔ I ך { def(pn) }
8: I ؔ I ׫ uses(pn)
9: end if
10: CreateEventSequences((pn, I, GetPreviousEvent(E, e)))
11: else if ׊v א C and v ≠ def(pn) then
12: if ׌v א I and v = def(pn) then
13: if Reachable(e, pn) then
14: CreateNewEventSequences(E, e, pn)
15: end if
16: CreateEventSequences((pn, I ך { def(pn) }, e))
17: else
18: CreateEventSequences((pn, I, e))
19: end if
20: end if
21: end for
22: end if
end procedure

def(n) returns the variable defined at program node n, or none if n is not a definition

uses(n) returns the set of variables used by program node n

Reachable(e, pn) checks if there exists a path along which node n of event e = (n, C) can
reach to node pn without violation of the constraint set C

CreateNewEventSequences(E, e, pn) creates a new event sequence using the original
event sequence generation process by which definition node pn is inserted into the
original event sequence E after event e

GetPreviousEvent(E, e) returns the event prior to the event e in an event sequence E

Figure 4.8: Recursive procedure for generating event sequences using influencing sets in

the extended chaining approach

70

Scenario 1 — The currently visited node pn is the same as the node n of the prior event

e = (n, C) (line 5). If so, the procedure checks if pn is a definition node defining a

variable in the influencing set, or def(pn) א I. If this is the case, the influencing set is

modified by removing the variable defined at pn (def(pn)) and by adding variables used

at pn (uses(pn)). This is because the effect of def(pn) can no longer affect the problem

node as the traversal passes over node pn. However, the variables used at pn can affect

the problem node since they are used to compute the value assigned to def(pn). By

doing this, the extended chaining approach enables the event sequence generation

process to incorporate the effect of transitive data dependences when creating new event

sequences. CreateEventSequences then recurses using the visited node pn, the updated

influencing set, and the event prior to the input event e.

Scenario 2 — The currently visited node pn is a definition node that defines a variable

in the constraint set C of the preceding event e. In this case, any path passing through

node pn to the next event is not definition-clear and therefore the procedure stops going

backward further from this node.

Scenario 3 — The currently visited node pn does not define any variable in the

constraint set, but instead defines a variable in the current influencing set (lines 11–12).

In this case, node pn presents whether a direct data dependence or whether an indirect

data dependence that should be propagated up to the problem node. The procedure then

checks if there exists a definition-clear path with respect to the constraint set C from

event e to node pn. If so, a new event sequence is generated using the original event

sequence generation process as described in section 4.3.3 for the definition node pn. The

procedure then recurses using the new influencing set IԢ = I ך { def(pn) }.

Scenario 4 — In this scenario, the procedure simply recurses using the currently visited

node pn along with the current influencing set I and event e (line 18).

Note that during the traversal of program nodes in the extended event sequence

generation process, a global data structure of search points is used to ensure that the

traversal terminates when traversing cyclic paths in the program.

Intuitively, the recursive algorithm to perform the event sequence generation process

presented above is basically similar to the program slicing algorithm proposed in the

work of Weiser [131] in 1981. The key difference between the two techniques is that the

71

event sequence generation process does only consider data dependence information

while Weiser’s slicing algorithm takes into account both data and control dependences.

We now demonstrate how the use of influencing sets and the extended chaining

approach can tackle limitations encountered with the original chaining approach.

Consider again the example04 program in Figure 4.7 where the search process

traversing event sequence E1 failed to explore the test goal node 16 and encountered

again the problem node 15:

E1 = <(s, Ø), (14, {success}), (15, Ø), (16, Ø)>

For now, in the extended event sequence generation process, the influencing set is

I = {success}. In traversing the control flow graph backward from the current problem

node, node 14 is encountered. This corresponds to the first scenario in the algorithm

since an event of node 14 appears in event sequence E1. The influencing set is adapted

by removing the definition variable success:

I ← I ך { def(14) }

← {success} ך {success}

← Ø

resulting in an empty set, and by adding used variables succ01 and succ02:

I ← I ׫ uses(14)

← Ø ׫ {succ01, succ02}

← {succ01, succ02}

With the presence of variables succ01 and succ02 in the influencing set, the event

sequence generation process is forced to take into account their last definitions at nodes

1, 2, 7, and 12 as specified in scenario 3. As a result, the following four event sequences

are created accordingly:

 Eଵభ = <(s, Ø), (1, {succ01}), (14, {success}), (15, Ø), (16, Ø)>

 Eଵమ = <(s, Ø), (2, {succ02}), (14, {success}), (15, Ø), (16, Ø)>

 Eଵయ = <(s, Ø), (7, {succ01}), (14, {success}), (15, Ø), (16, Ø)>

 Eଵర = <(s, Ø), (12, {succ02}), (14, {success}), (15, Ø), (16, Ø)>

72

Event sequences Eଵయ and Eଵర are infeasible. Event sequences Eଵభ and Eଵమ are unlikely to

provide sufficient guidance toward exploring node 16. This is because when traversing,

for example, event sequence Eଵభ, the value of succ01 variable is true but variable

succ02 can be false, resulting in an unintended false branch (15, 17). That is, node

15 remains problematic and the following event sequence will be generated when

calling the extended event sequence generation process on event sequence Eଵభ with the

problem node 15:

<(s, Ø), (1, {succ01}), (2, {succ01, succ02}), (14, {success}), (15, Ø), (16, Ø)>

This event sequence guides the search process to propagate the desired true value of

both variables succ01 and succ02 defined at nodes 1 and 2 up to node 14 for

evaluating the value for success variable. The value of success is evaluated to true

providing the intended value to trigger the execution of the true branch (15, 16).

Consider again the example03 program in Figure 4.6 in which we evaluated how the

extended event sequence generation process can help to unroll the loop for uncovering

the test goal node 8. The search process when traversing event sequence E2 failed to

explore the test goal and the problem node 7 was encountered again:

E2 = <(s, Ø), (5, {counter}), (7, Ø), (8, Ø)>

The influencing set is I = {counter}. In traversing the control flow graph backward

from the problem node 7, node 5 of event (5, {counter}) is encountered. An update to

the influencing set occurs by removing the variables defined at node 5 and adding the

variables used. This results in the same influencing set {counter}. The presence of

variable counter after traversing node 5 forces the consideration of its last definitions

at nodes 1 and 5. The following event sequences are generated to continue guiding the

search process:

Eଶభ = <(s, Ø), (1, {counter}), (5, {counter}), (7, Ø), (8, Ø)>

Eଶమ = <(s, Ø), (5, {counter}), (5, {counter}), (7, Ø), (8, Ø)>

Event sequence Eଶమ directs the search process to unroll the loop two times, giving a

better value of counter variable to satisfy the condition counter == THRESHOLD.

This process is repeated until there are THRESHOLD (or 10) times the presence of event

(5, {counter}) in an event sequence to execute node 8.

73

4.5 Goal-Oriented Dynamic Test Generation

In this section, we present our proposed search algorithm to carry out goal-oriented test

input generation. The proposed algorithm, which we call GUIDER, employs dynamic

symbolic execution to perform test input generation and makes use of the chaining

approach to guide the path exploration process toward effectively and efficiently

exploring a given test goal.

The entry point of the algorithm is given in Figure 4.9. It takes as input a program under

test P, a test goal g, and a testing limit limit. The output is a test input t such that the

execution of P with t executes g, or null implying such t was not found, or limit was

expired.

Algorithm 5 The Chaining Guided Search Algorithm (GUIDER)
Input : Program P, Test goal g, Testing limit limit
Output : Test input t (or null)

1: E0 ؔ CreateInitialSequence(g)
2: t0 ؔ GenerateRandomInput(P)
3: p0 ؔ ExecuteProgram(P, t0)
4: worklist ؔ { (E0, p0) }
5: while worklist is not empty and limit is not expired do
6: (s, p) ؔ SelectEventSequence(worklist)
7: (explored, t) ؔ ExploreEventSequence(s, p)
8: if explored then
9: return t
10: end if
11: RemoveEventSequence((s, p), worklist)
12: end while
13: return null

Figure 4.9: A goal-oriented dynamic test generation algorithm guided by the chaining approach and

based on dynamic symbolic execution

The search algorithm uses worklist to keep all generated event sequences during the

search process. Associated with each event sequence is a program execution, which is

used to perform path exploration toward traversing the event sequence. Note that

traversing an event sequence completely implies that the test goal g was executed since

the last event of all event sequences always refers to g (see sections 4.3 and 4.4). The

event sequence traversal is done in each iteration of the while loop by calling procedure

ExploreEventSequence (Figure 4.10). This process is repeated until either an input was

found to explore the test goal g or the testing limit limit was expired.

74

procedure ExploreEventSequence(E, p)
14: e1 ؔ E[1]
15: e2 ؔ E[2]
16: PP ؔ GetProgramPath(p)
17: s ؔ PP[1]
18: while true do
19: s ؔ PP[IndexOf(s) + 1]
20: if s = e2→n then
31: if e2 = E[end] then
32: return (true, π(p))
33: end if
34: e1 ؔ e2
35: e2 ؔ E[IndexOf(e2) + 1]
36: else if s violated e1→C then
37: (adjusted, pᇱ, sᇱ) ؔ AdjustWhenViolated(e1, e2, E, s, p)
38: if adjusted then
39: p ؔ pᇱ
40: s ؔ sᇱ
41: else
42: return (false, null)
43: end if
44: else if s is a branch statement then
45: b ؔ GetAlternativeBranch(s)
46: if b has minimal distance to e2→n and s is a symbolic predicate then
47: (adjusted, pᇱ) ؔ SolveAtBranch(s, p)
48: if adjusted then
49: p ؔ pᇱ
50: s ؔ GetConditionalStmt(b)
51: continue
52: end if
53: end if
54: if s cannot reach e2→n then
55: RefineEventSequence(e1, e2, E, s, p)
56: return (false, null)
57: end if
58: end if
59: end while
end procedure

Figure 4.10: Procedure ExploreEventSequence in the goal-oriented dynamic test generation algorithm

The core functionality of the algorithm lies in the ExploreEventSequence procedure. Put

simply, this procedure performs a pattern concretization algorithm, where the input

event sequence E can be considered to be a target pattern and the input execution p is to

be adjusted in order to concretize E. Stated formally:

— Given an event sequence E = <e1, e2, e3, …, em> and a program execution p, the goal

is to find a program execution pԢ on which E is concretized.

75

This problem can be further reduced to the problem of concretizing every two adjacent

events of event sequence E. To do this, we use e1 and e2 to capture every two adjacent

events on E (lines 14–15) and s to iterate over every executed statement on the executed

program path PP to inspect a concretization of e1 and e2. An invariant maintained during

the concretization inspection is that event e1 has already been concretized (or node

e1→n was found), and the goal is to reach event e2 (or to find node e2→n) without

modifying any variable in the constraint set e1→C. Note that this invariant is satisfied in

the beginning as e1 points to the first event of E, which is actually the program entry

(section 4.3), and the path iteration is started at the statement right after the program

entry (lines 17 and 19). The preservation of the constraint set C of event e1 is to

propagate data definitions up to the target structure. Now, going down along the

executed path, we inspect every executed statement s and consider the following four

possible scenarios.

Scenario 1 — The target event e2 is discovered (line 20). This is found by checking if

the currently inspecting statement s is the program node of e2. If so, we update e1 and e2

to the next two events of E to continue the concretization process (lines 34–35). In case

e2 is the last event of E, the concretization of E has been accomplished on the executed

path PP. The algorithm terminates by returning the input executing p, i.e. π(p) (line 32).

Scenario 2 — The currently inspecting statement s violates the constraint set C of event

e1 (line 36). This is found by checking if s is a definition statement that redefines any

variable in C. If so, the implication of data propagation encoded in constraint C of event

e1 is no longer valid. In this case, we attempt to adjust the current program execution p

to avoid the execution of this violating statement s through calling AdjustWhenViolated

procedure (Figure 4.11).

The AdjustWhenViolated procedure takes as input two events e1 and e2, sequence E,

violating statement vs, and program execution p. It goes backward along the executed

path PP, starting from the violating statement vs to the statement where event e1 was

discovered, and examines at each statement encountered to perform an execution

adjustment. Specifically, for each statement b, it checks the following four conditions:

1. if b is a branch statement and

2. if b is a symbolic predicate and

3. if the violating statement vs is transitively control dependent on branch b and

4. if the alternative branch of b can reach event e2.

76

procedure AdjustWhenViolated(e1, e2, E, vs, p)
60: // Phase 1: Adjust the execution to avoid the violation
61: PP ؔ GetProgramPath(p)
62: for each b in range (vs, e1→n) on PP do
63: if b is a branch statement and
64: b is a symbolic predicate and
65: vs is transitively control dependent on b and
66: alternative branch of b can reach e2→n then
67: (satisfied, pᇱ) ؔ SolveAtBranch(b, p)
68: if satisfied then
69: c ؔ GetConditionalStmt(b)
70: return (true, pᇱ, c)
71: end if
72: end if
73: end for
74: // Phase 2: Refine event sequence as the adjustment failed
75: RefineEventSequence(e1, e2, E, vs, p)
76: return (false, null, null)
end procedure

Figure 4.11: Procedure AdjustWhenViolated in the goal-oriented dynamic test generation algorithm

The first two conditions, (1) and (2), are to ensure that b can be flipped, and the last two

conditions, (3) and (4), are to ensure that flipping of b to its alternative branch avoids

the execution of vs and reaches event e2. If these four conditions together are satisfied,

then the flipping is computed by invoking the SolveAtBranch procedure (Figure 4.13).

The satisfiability of the flipping yields a new program execution pԢ on which the

sequence concretization can safely proceed downward from the conditional statement c

of branch b. The soundness of doing so is guaranteed by two properties:

1. the executed paths PPԢ of pԢ and PP of p match identically from the program

entry up to statement c and

2. the flipping is restricted to (branch) statements down below the statement where

event e1 was discovered.

These two properties ensure that the sequence concretization result up to c is preserved.

In case the path adjustment failed, the RefineEventSequence procedure (Figure 4.12) is

invoked to refine the current event sequence E (line 75). We describe the sequence

refinement procedure below.

Scenario 3 — The currently inspecting statement s is a branch statement and its

alternative branch b has a minimal distance to reach event e2 (lines 44–46). This

scenario results from the observation that if the current execution p can change the

77

control flow to execute this minimal distance branch b, it may potentially reach event e2

quickly. For this, the algorithm checks if s is also a symbolic predicate and hence can be

flipped. If so, the flipping is performed by invoking the SolveAtBranch procedure to

change the execution of p from s to b (lines 47–53). This scenario represents our

algorithm’s attempt to optimize path exploration.

Scenario 4 — The currently inspecting statement s is a branch statement and s cannot

reach event e2 (line 54). This is determined by confirming that there does not exist a

program path from s to node n of event e2 in the static control flow graph. In this case,

procedure RefineEventSequence is invoked to refine the current event sequence E.

procedure RefineEventSequence(e1, e2, E, s, p)
77: PP ؔ GetProgramPath(p)
78: for each b in range (e1→n, s] on PP do
79: if b is a branch statement then
80: bԢ ؔ GetAlternativeBranch(b)
81: if e2→n is transitively control dependent on bԢ and
82: bԢ has minimal distance to e2→n then
83: c ؔ GetConditionalStmt(bԢ)
84: S ؔ CreateEventSequences(E, e1, e2, c)
85: worklist ← worklist ׫ { (Eᇱ, p) | Eᇱ א S }
86: end if
87: end if
88: end for
end procedure

Figure 4.12: Procedure RefineEventSequence in the goal-oriented dynamic test generation algorithm

Next, we illustrate how the sequence refinement procedure RefineEventSequence works

to refine a given event sequence. The input to RefineEventSequence includes two events

e1 and e2, event sequence E, statement s, and program execution p. The context of

calling this procedure is that the sequence concretization process while attempting to

reach event e2 encountered statement s where:

• s violated the constraint C of event e1 and the algorithm failed to adjust the

program execution p in order to avoid the execution of s (scenario 2), or

• the program execution p if following s can no longer reach event e2 (scenario 4).

The main functionality of the RefineEventSequence procedure is to identify problem

nodes causing the failure of concretizing sequence E on the executed path PP of

execution p. To do this, it inspects all branch statements from node n of event e1 down

78

to statement s, and at each branch b checks its alternative branch bԢ the following

conditions:

1. if event e2 is transitively control dependent on bԢ and

2. if event bԢ has a minimal distance to event e2.

The first condition is to ensure that changing the execution of p from b to bԢ can

eventually reach e2. The second condition takes into consideration that the execution of

bԢ can potentially reach event e2 quickly. If these two conditions together are satisfied,

then the conditional statement c of bԢ is considered to be a problem node used to refine

sequence E. The GenerateEventSequences procedure (Figure 4.8) is then invoked to

incorporate direct (and indirect) data dependences of c into sequence E to create more

refined event sequences. These created sequences are associated with the current

execution p before being added into worklist.

Finally, the SolveAtBranch procedure is given in Figure 4.13. This procedure attempts to

change the input program execution p from branch b to its alternative branch bԢ.

procedure SolveAtBranch(b, p)
89: φ ؔ GetPathConditionUpTo(p, b)
90: suppose φ = σଵ ר σଶ ר … ר σ୧ିଵ ר σ୧
91: φԢ ؔ σଵ ר σଶ ר … ר σ୧ିଵ ר ൓σ୧
92: (satisfied, t) ؔ SolveConstraintSystem(φԢ)
93: if satisfied then
94: pᇱ ؔ ExecuteProgram(P, t)
95: return (true, pᇱ)
96: end if
97: return (false, null)
end procedure

Figure 4.13: Procedure SolveAtBranch in the goal-oriented dynamic test generation algorithm

4.6 Summary

In this chapter, the problem of generating test inputs to target a specific code element in

a program was presented. Formally, this problem is referred to as the reachability

problem. In general, it is undecidable problem. A number of useful applications of the

reachability problem in several stages of the software development life cycle have

attracted much attention in research community. A primary objective of this research

project is to explore techniques to effectively and efficiently improve the solving the

reachability problem. Dynamic symbolic execution has been shown to be an effective

79

technique to automate test input generation of software testing. However, this technique

suffers greatly from the combinatorial explosion of the path space. Because testing

resources are almost always limited, much research has extensively investigated search

algorithms to optimize path exploration in dynamic symbolic execution. In the context

of exploring search algorithms to improve the efficiency of path exploration, control

and data flow information can potentially guide the search process. While control flow

information can navigate the search process to quickly reach the test goal, it cannot

resolve data dependences, which is necessary to trigger the execution of the test goal.

The employment of data flow information to guide the search process was suggested by

the chaining approach [52] and was later enhanced in the extended chaining approach

[92]. The intertwinement of dynamic symbolic execution with the chaining approach is

proposed in this research project to improve solving the reachability problem.

This chapter focused on the development of a goal-oriented test input generation

approach. Section 4.1 provided background to formally present the chaining approach.

The significance of developing a goal-oriented approach of test input generation was

justified in section 4.2. For this, we emphasized the need to deal with the combinatorial

explosion of the path space faced by dynamic symbolic execution. We noted that the

efficiency of performing dynamic symbolic execution can be affected by a number of

factors [114]; in this project, we concentrate only on the path space explosion problem.

To address the insufficiency of control flow guidance, the employment of data flow

information was utilized.

Section 4.3 described the chaining approach and the need for a search mechanism that

can direct the search process to effectively and efficiently target a test goal was

emphasized. The key idea behind the chaining approach is the encoding of data

dependences in forms of event sequences and guiding the search process to influence

the execution of the test goal. In section 4.4, the extended chaining approach was

presented, which takes into account transitive data dependences when creating event

sequences.

A goal-oriented test input generation approach was described in section 4.5. The

approach intertwined dynamic symbolic execution to automate test input generation and

the chaining approach to identify and solve data dependences for exploring test goals.

The chaining approach’s ability to precisely focus on executing the test goal can

positively impact the path space explosion problem facing dynamic symbolic execution.

80

It is important to notice that the goal-oriented test input generation approach proposed

in this thesis differentiates itself from the work of McMinn and Holcombe [92] in

several aspects. Specifically, McMinn and Holcombe extended the chaining approach

and then combined with search-based testing for structural coverage testing. In our

proposal, we employed the extended chaining approach to form a search mechanism for

carrying out path exploration of dynamic symbolic execution. Practically, generating

test inputs using meta-heuristic search techniques of search-based testing is far from

being capable of testing real world software. Dynamic symbolic execution has been

used to test practical software with millions of lines of code [66]. Additionally, while

the work of McMinn and Holcombe is limited to structural coverage testing, our

proposed approach is to be applied to security vulnerability testing which is one of the

most important issues challenging today’s software testing.

In the next two chapters, we describe the two applications of our proposed goal-oriented

test input generation approach for structural coverage testing and security vulnerability

testing.

81

Chapter 5

Structural Program Coverage

5.1 Overview ... 82

5.1.1 Structural Coverage Criteria ... 84
5.1.2 Structural Coverage Testing.. 85

5.2 Literature Review .. 88

5.3 Approach .. 92

5.3.1 The Proposed Testing Framework .. 94
5.3.2 Implementation ... 96

5.4 Evaluation ... 97

5.4.1 Test Subjects ... 98
5.4.2 Methodology ... 99
5.4.3 Experimental Results .. 100
5.4.4 Discussion ... 104

5.5 Summary ... 105

High structural coverage achievements have been long advocated as a convenient way

to measure the adequacy of software testing [20], [56], [117], [132]. Over the last three

decades, researchers have defined several testing criteria based on structural coverage of

the program under test to improve confidence in software quality and reliability upon

deployment [4]. Meanwhile, considerable research effort has also attempted to develop

techniques to improve the efficiency of software testing via structural coverage

enhancements. A focus of this effort has been to develop effective and efficient

techniques to automate the process of generating test inputs for covering many coverage

elements of the program under test [29], [52], [87], [104], [112].

With the recognition that a structural coverage element is actually a code element of the

program’s source code, the testing approach can be reduced to the task of generating

test inputs to cover a specific code element. In this context, our goal-oriented testing

approach proposed in the previous chapter can be utilized to carry out structural

coverage testing. A distinguishing feature of our proposed approach is the ability to

guide path exploration of dynamic symbolic execution to propagate data flows down to

the goal structural to trigger the execution of high complexity code. This is a significant

82

improvement over existing techniques to deal with the combinatorial explosion of the

path space for high structural coverage achievements.

This chapter is organized as follows. Section 5.1 covers theoretical concepts of

structural coverage criteria. Section 5.2 provides a literature review of automated test

input generation techniques for structural coverage testing. We mainly focus on

assessing the strengths and shortcomings of techniques based on dynamic symbolic

execution to clarify the context of our research proposal. In section 5.3, our proposed

structural coverage testing framework SCT is presented. We explain how GUIDER, the

chaining guided search algorithm proposed in the previous chapter, can be used to form

the SCT framework and also cover its implementation details. In section 5.4, we present

an evaluation of the effectiveness of SCT in relation to structural coverage

improvements. We describe the test subjects selected, the evaluation methodology, the

experimental results, and provide a discussion. The capability of SCT is assessed in

comparison with popular test input generation approaches, and its ability to achieve

high structural coverage results and optimize path exploration within the constraint of

testing limits is highlighted. Finally, a summary of the chapter is given in section 5.5.

5.1 Overview

Software testing is potentially endless. To ensure the correctness of the software under

test, one has to test and verify the software against all the possible input values.

Unfortunately, complete testing is infeasible. Consider testing a program of adding two

integer input values of 32-bits, for example. It yields a set of 2ଷଶ כ 2ଷଶ ൌ 2଺ସ distinct

test cases. Now if test cases were performed at a rate of thousands of test cases per

second, it would take hundreds of years to accomplish exhaustive testing for this

program, and for real world software applications the input space goes far beyond this

simple program.

In the practice of software development, software testing is a profit-driven model. It is a

practical trade-off between project budget, time, and quality. Realistically, at some

point, the software testing process has to be terminated and the software application can

then be delivered to customers. In the understanding of the incompleteness of software

testing, measurement must be developed in accordance with software quality factors to

perform the testing process and to access the efficiency of software testing. This project

83

has attracted considerable research effort to investigate and propose sufficient measures

for the termination of the software testing process. A major research focus is the

definition of criteria determining what constitutes an adequate test. Over the last three

decades, a great number of such criteria have been proposed and developed by the

research community [4]. Much effort has also been directed at providing support for the

use of one criterion over another [4]. In fact, the benefit of including a test adequacy

criterion in the software testing process is two-fold:

• An adequacy criterion can be considered to be a stopping rule for determining

whether sufficient testing has been carried out that it can be terminated.

• Test adequacy criteria provide measurements of test quality where a degree of

adequacy associated with a test set can give a level of confidence about the

correctness of the software under test.

These two important benefits have led to empirical studies advocating the adoption of

test adequacy criteria into industrial software development practice [56], [132].

Internationally accepted testing standards such as the British Standards Institute [20]

and the Radio Technical Commission for Aeronautics [117] have adopted standardized

test adequacy measurements for software quality and reliability. In the software testing

research community, test adequacy criteria continue to be an attractive research topic.

Attempts have been made to provide a comprehensive understanding of the important

usages of adequacy criteria with respect to various software quality assessments

indispensable to the software testing discipline [4], [145].

This research project primarily concentrates on structural coverage criteria, a simple but

commonly adopted set of adequacy criteria among the many test adequacy criteria

proposed in the practice of software testing [20], [56], [117], [132]. Structural coverage

is a quantitative measure of the degree to which the source code of the program under

test is exercised during the software testing process. A high coverage degree implies the

program is thoroughly tested and has a lower chance of containing software defects than

a program with low structural coverage. An important objective of this research project

is therefore to explore automated techniques to improve structural coverage

achievements for the program under test.

84

5.1.1 Structural Coverage Criteria

A number of metrics have been proposed in the software testing literature to calculate

structural coverage with varying complexities [4]. Each coverage metric imposes a

specific assessment of the adequacy of testing for the program under test. Often, the

complexity associated with a particular coverage metric dictates which coverage metrics

are used by the software industry. With sizeable and complex software applications,

simple coverage metrics are preferred since the adequacy of the testing process can be

measured in relation to the project budget, scope, and time constraints [20], [117]. The

remainder of this section covers some of the test adequacy criteria based on structural

coverage.

Statement coverage. In the practice of software testing, test engineers are required to

design test cases to execute and check the program under test against given testing

requirements. It is often desirable to develop a set of test cases with which every

statement in the program is executed at least once. The requirement of executing all

statements in the program under test is an adequacy criterion. A test set satisfying this

requirement is considered to be adequate according to the statement coverage criterion.

In reality, only a fragment of the source code can be covered during testing due to the

complexity of the program under test. Therefore, the percentage of executed statements

is calculated to indicate how adequately the software testing process has been

performed. The percentage of the statements exercised by testing is a measurement of

the adequacy. Statement coverage is one of the most widely adopted test adequacy

measurements in the practice of software testing due mainly to its simplicity and

affordability. Adopting the statement coverage criterion into the software testing

process can be justified by the observation that the higher the number of statements that

are not executed and checked, the lower the quality and reliability of software is. This is

because unexercised statements can harbour serious software defects.

Branch coverage. The branch coverage criterion requires that all true and false

branches in the program under test must be exercised during the software testing

process. The percentage of the branches exercised during software testing is a

measurement of test adequacy. The branch coverage is much stronger than the statement

coverage criterion because having achieved the latter does imply the former has been

satisfied.

85

Path coverage. The path coverage criterion is the strongest test adequacy criterion and

subsumes all the other criteria. It requires that all the execution paths from the

program’s entry to its exit are executed during the software testing process.

The adoption of a structural coverage criterion in the software testing process specifies a

particular software testing requirement, and thus determines test cases to satisfy the

requirement. It also designates information to measure and estimate the process of

software testing. These features are essential in guiding the underlying testing method

toward determining the adequacy of software testing.

5.1.2 Structural Coverage Testing

When attempting to achieve a structural coverage criterion, the structure of the program

under test is modelled to direct the underlying testing method. Normally, the program is

presented in the form of a control flow graph (section 4.1). Based on this graph, the

testing method is able to observe the coverage result being achieved and then to

navigate testing toward accomplishing the structural coverage criterion being attempted.

A testing method should be designed to perform software testing for a given structural

coverage criterion with the following basic steps:

1. Given a test case, execute the program under test on this test case. Then capture

newly executed code elements and update the structural coverage result.

2. Identify unexercised code elements by using the currently updated coverage

result and the control flow graph of the program.

3. Design test cases to execute some of the unexercised code elements as identified

in the second step and then return to the first step.

This testing procedure can be repeated until one of the following two conditions is

reached. The first stopping condition is if the structural coverage criterion is satisfied.

This implies that the testing procedure has been able to explore all the structural

elements required by the specified test adequacy criterion. This is the desired case since

the testing method can ensure the adequacy of testing for the program under test. The

second stopping condition is if the testing time limit is no longer valid. In this case, the

structural coverage criterion has not been reached but the testing method is to be

terminated. The currently achieved structural coverage result is returned to indicate how

adequately the testing method has been performed.

86

The notion of control flow graph is fundamental to the quantitative measuring of the

adequacy of software testing with respect to structural coverage criteria. It precisely

captures the structure of the source code and importantly provides an abstract view by

abstracting away the detail of the program under consideration. In the software testing

literature, the control flow graph is used to formally define test adequacy criteria as well

as to effectively estimate the adequacy of a set of test cases against the structural

coverage criterion that the testing method is attempting to achieve. The execution of the

program can be modelled as a traversal in the control flow graph. Every execution is a

path in the control flow graph starting from the start node to the exit node. Such a path

is used to determine which nodes and edges in the control flow graph have been

traversed and thence to determine which statements and branches in the program under

test have been executed. This is easy to justify because in the control flow graph model

nodes correspond to statements while edges correspond to branches. Now, formal

definitions of structural coverage criteria can be characterized in terms of graph models

and test cases.

Definition 5.1. Statement Coverage Criterion. A set ܵ of test cases satisfies the

statement coverage criterion if and only if, for all nodes ݊ in the control flow graph,

there is at least one test case ݏ in ܵ such that the corresponding execution path of ݏ

traverses ݊.

The statement coverage criterion is a basic requirement of test adequacy; it simply

requires that all the statements in the program under test are executed by test executions.

The adequacy of a specific set of test cases with respect to the statement coverage

criterion is determined by the percentage of the graph nodes traversed during testing.

Consider the C program example01 in Figure 5.1, for example. It consists of seven

statements of which two are conditional. Correspondingly, in the control flow graph of

this program there are seven nodes and four edges. Now consider the test sets S1 = { (0,

0) } and S2 = { (10, 10) }. The execution of S1 can cover nodes 1, 2, 3, 4, 5, 6 and 7; or

it can cover all the nodes in the control flow graph. In other words, test set S1 achieves

100% of the statement coverage criterion for the example01 program.

The execution of S2 can cover nodes 1, 2, 3, 5 and 7; it misses nodes 4 and 6. The

adequacy of S2 with respect to the statement coverage criterion of the program is

therefore about 71%.

87

Node typedef enum {false, true} bool;
(s) bool example01 (int r1, int r2) {

(1) bool error1 = false;
(2) bool error2 = false;

(3) if (r1 == 0)
(4) error1 = true;

(5) if (r2 == 0)
(6) error2 = true;

(7) return (error1 && error2);

(e) }

Figure 5.1: A C program and its control flow graph to illustrate structural coverage criteria

Definition 5.2. Branch Coverage Criterion. A set ܵ of test cases satisfies the branch

coverage criterion if and only if, for all edges ݁ in the control flow graph, there is at

least one test case ݏ in ܵ such that the corresponding execution path of ݏ traverses ݁.

According to definition 5.2, the adequacy of a set of test cases with respect to the branch

coverage criterion is measured in terms of the percentage of the graph edges traversed

during testing. It is obvious that the branch coverage criterion is stronger than the

statement coverage because if all edges in the control flow graph are covered, all nodes

are necessarily covered. Therefore, a test set satisfying the branch coverage criterion

must also satisfy the statement coverage criterion. Now consider again the example01

program in Figure 5.1 with test sets S1 = { (0, 0) } and S2 = { (0, 0), (10, 10) }. For S1, it

satisfies the statement coverage criterion because it covers all the nodes in the control

flow graph. However, of the four edges, S1 only covers two edges (3, 4) and (5, 6) and

therefore achieves 50% of the branch coverage criterion for the example01 program.

The adequacy of branch coverage cannot be guaranteed by the test set S1 since it misses

edges (3, 5) and (5, 7). The presence of test case (10, 10) in test set S2 makes sure that

these missing edges are covered, so that the test set S2 achieves 100% of branch

coverage for the example01 program.

Definition 5.3. Path Coverage Criterion. A set ܵ of test cases satisfies the path

coverage criterion if and only if ܵ traverses all execution paths from the start node to

the end node in the control flow graph.

88

The path coverage criterion is the strongest criterion among test adequacy criteria,

including structural coverage criteria. A test set satisfies the path coverage criterion if it

traverses all the feasible execution paths in the program under test. The satisfiability of

path coverage implies those of both statement and branch coverage. For example,

consider test set S1 = { (0, 0), (10, 10) } for the example01 program in Figure 5.1. It

traverses two paths, P1 = <1, 2, 3, 4, 5, 6, 7> and P2 = <1, 2, 3, 5, 7>. Obviously, S1

satisfies both the statement coverage criterion and the branch coverage. However, it

does not satisfy the path coverage criterion. In fact, it misses the following two paths, P3

= <1, 2, 3, 4, 5, 7> and P4 = <1, 2, 3, 5, 6, 7> out of the four feasible program paths.

These missing paths can be covered by test cases (0, 10) and (10, 0). As a result, the test

set S2 = { (0, 0), (10, 10), (0, 10), (10, 0) } can ensure the path coverage criterion for the

example01 program.

In the context of testing real world software applications, the path coverage criterion is

too strong to be practically useful. This is because there can be an infinite number of

feasible paths in a program. According to the second stopping condition of the

underlying testing method as outlined above, testing must be terminated after a finite

period of time. Therefore, the testing method is able to explore only part of the program

path space. For the statement and branch coverage criteria, completely achieving any of

these coverage criteria is unfortunately infeasible. This is due to the presence of

unreachable code elements in the program under test. More precisely, for these

unreachable code elements there does not exist any test input to execute them. The

overall objective of software testing is therefore to achieve high structural coverage

within the given testing time limit. In software testing practice, the testing methods

adopted usually only focus on simple structural coverage criteria such as statement or

branch coverage [20], [56], [117], [132]. Developing effective and efficient methods to

automate structural coverage testing is thus essential to avoid the expense and

unreliability of manual testing. In the next section, we survey the automated techniques

proposed in the literature for improving structural coverage to fully develop the context

of this research project.

5.2 Literature Review

Test adequacy criteria are one of the most powerful testing tools for test engineers as

they specifies specific testing requirements and hence enable engineers to determine

89

what test inputs need to be designed during software testing. They therefore help ensure

high quality and reliability. Test adequacy criteria also provide an indication of when

software testing should be terminated.

In the context of structural coverage testing, the software testing requirement is simply

to achieve a desired structural coverage criterion and the underlying testing method

generates test inputs to satisfy this requirement. The result of testing is quantitatively

indicated through the percentage of the structural coverage achieved. Obviously, test

engineers can manually design test inputs to accomplish this task. However, a human-

centric approach to test input generation is tiresome, expensive, and unreliable.

Completely automating the process of generating test inputs for structural coverage

testing has therefore become a focal point for researchers. An automated testing

approach could significantly reduce the expensive cost of manual software testing and

also alleviate the unreliability of human intervention.

Over the last three decades, considerable research effort has developed techniques to

support the process of software testing. A number of techniques have been proposed,

including random testing [3], symbolic execution [112], search-based testing [87], the

chaining approach [52], and dynamic symbolic execution [29]. In the context of

automatically generating test inputs to achieve the adequacy of structural coverage

criteria, random testing may not be effective because its capability of generating test

inputs to uncover corner case branches can be extremely small [104]. Symbolic

execution offers an effectively automated test input generation mechanism to

systematically explore all feasible program paths but the scalability of this technique is

limited due to complex constraints, data structures, and native calls of real world

software systems [112]. In search-based testing [87] and the chaining approach [52], the

process of generating test inputs incorporates meta-heuristic search algorithms.

However, these algorithms are performed largely randomly.

Dynamic symbolic execution has been shown to be an effective technique for automated

test input generation. The fundamental scalability issue facing dynamic symbolic

execution however is the combinatorial explosion of the path space. Since it was

proposed in the work of Godefroid et al. [62] and Cadar et al. [30] in 2005, the

technique has attracted a large amount of attention, with researchers attempting to

expand its applicability to testing real world software applications. The research focus

90

has been primarily to explore techniques to improve the efficiency of path exploration

in dynamic symbolic execution. In the remainder of this section, we provide an in-depth

literature review of dynamic symbolic execution-based techniques and evaluate their

strengths and shortcomings in dealing with the path space explosion problem for

structural coverage testing.

As noted above, a significant scalability challenge when applying dynamic symbolic

execution is how to handle the combinatorial explosion of the path space. Approaches

in favour of depth-first explorations such as DART [62] and CUTE [124] deeply widen

the program path space but lack the ability to forward the execution to further

unexplored control flow points. These approaches when executed against large

programs in finite time often end up with only small regions of the code explored and

fail to uncover errors in the unexplored code.

Various novel techniques have been proposed to deal with the path explosion problem,

including abstraction [5], compositional [58], and parallel [126] techniques. The aim is

to prune the path space to be systematically explored [5], [58] or to enlarge path

exploration by exploiting the increased availability of computational power [126]. Other

research explores practical trade-offs by developing search algorithms to improve the

efficiency of path exploration over the path space. Most proposed algorithms focus on

achieving high statement and branch coverage. PEX [128] is an automated structural

testing tool developed at Microsoft Research that integrates a rich set of basic search

strategies and gives a fair choice among them. While the integration does help improve

code coverage by attempting different program control flows, exploring code elements

may require specific guidance of control and data dependencies. FITNEX [141] makes

PEX more guided by using fitness functions to measure the improvement of path

exploration. The main obstacle of this approach is the flag problem [16] — when fitness

functions face a flat fitness landscape they can give no guidance to the search process.

Flags, unfortunately, are widely used in real world programs [16], [30], [35].

KLEE [26] is open-source and has been used by a variety of researchers in academia and

industry. Like PEX, KLEE also implements a number of search heuristics and activates

each heuristic in a round robin fashion for high coverage. Baluda et al. [12] showed

however that when the executability of code elements requires data dependences

computed inside loop or nested loop structures, KLEE achieves very poor coverage.

91

CREST [19] is an extensible platform for building and experimenting with search

heuristics for achieving high structural coverage. Among the heuristics implemented in

CREST, control-flow graph directed search (or CFGDIRECTED) is shown to be more

effective than the others by experimental data. This search strategy leverages the static

control flow of the program to guide the search down short static paths to unexplored

code. Theoretically, the control flow guidance may be imprecise since the execution of

code elements may require data dependences going beyond static short paths and/or

being calculated in dynamic paths. Practically, CFGDIRECTED goes k steps backward on

the currently explored path to continue path exploration.

SAGE [64] implements a generational search for multiple path exploration with a

coverage-optimized heuristic to improve coverage. Thummalapenta et al. [129] and Ma

et al. [94] both confirmed that approaches such as PEX, KLEE, and SAGE without the

ability to precisely focus on a particular code element may not be sufficient to improve

coverage and to enhance error detection capabilities. Baluda et al. [12] proposed ARC-B

by combining dynamic symbolic execution and abstraction refinement for structural

coverage improvements and infeasible code identification. The integration of

abstraction refinement can be beneficial by helping to get rid of unreachable code and

then forwarding dynamic symbolic execution to explore uncovered but reachable code

to discover more structural coverage. On the test subjects experimented, the authors

showed that ARC-B outperforms both CREST and KLEE.

The work of Xiao et al. [142] introduced cooperative developer testing where software

engineers provide guidance to help structural coverage testing tools achieve high

structural coverage and the testing tools provide feedbacks to software engineers on the

problems identified. This work emphasizes the facts that the reachability problem of

code elements is, in general, undecidable and that while tools can help to increase the

degree of automation, human intervention is necessary.

Program slicing has been also utilized to perform path exploration for exposing changes

in different versions of a program for test suite augmentation in regression testing [113],

[123]. However, since both control and data dependencies are taken into account, the

resulting slice may be too large to explore. Note that a single small piece of code can

yield a number of paths too huge to exhaustively be explored.

92

The approach developed during the course of this research project therefore employs

data dependency analysis to carry out path exploration of dynamic symbolic execution

toward effectively and efficiently achieving high structural coverage. When compared

to the approaches surveyed above, our proposed approach differs by directing path

exploration to focus on data dependencies in order to influence the execution of given

code elements. This feature is important as dynamic symbolic execution faces the path

explosion problem and the execution of considerable portions of code does not depend

directly on the symbolic input. Our proposed approach is presented in detail in the

following section.

5.3 Approach

In the context of structural coverage testing, completely achieving the path coverage

criterion is practically infeasible. Besides, testing large and complex software programs

and referring to sophisticated test adequacy criteria is often beyond the scope of a

typical testing budget. In the practice of software development, the requirement of high

structural coverage achievements such as statement and branch coverage has been long

advocated as a convenient way to measure the adequacy of software testing [20], [56],

[117], [132]. Accordingly, the second objective of this research project is to enhance

statement and branch coverage adequacy for the program under test. The automated test

input generation technique being utilized is dynamic symbolic execution and the

ultimate goal is to improve the solving of the reachability problem, which improving

statement and branch coverage criteria can essentially be reduced to.

As noted above, the use of dynamic symbolic execution for automation of test input

generation suffers from the combinatorial explosion problem of the path space. To cope

with this challenging scalability issue, we have developed a goal-oriented testing

approach to significantly improve the efficiency of path exploration in dynamic

symbolic execution. A test goal is actually a statement or a branch of the program under

test. The testing approach makes use of data and control dependencies to carry out path

exploration to quickly explore the test goal. The application of this testing approach to

obtaining the statement coverage criterion and the branch coverage criterion is

straightforward. Figure 5.2 sketches the structural coverage testing algorithm

implemented in this study.

93

Algorithm 6 Structural Coverage Testing
Input : Program P, Testing limit limit
Output : Set of test inputs T, Structural coverage result C

1: CFG ؔ ComputeCFG(P)
2: while termination conditions are not reached do
3: g ؔ SelectUncoveredElement(CFG)
4: l ؔ CalculateTestingLimit(limit)
5: t ؔ Guider(P, g, l)
6: if t is not null then
7: T ؔ T ׫ { t }
8: C ؔ UpdateCoverage(CFG, C, g)
9: end if
10: end while
11: return (T, C)

Figure 5.2: A structural coverage testing algorithm using the goal-oriented

dynamic test generation approach

The algorithm takes as input a program under test P and a testing limit limit. The output

is a set of test inputs T together with the desired structural coverage percentage achieved

C. The algorithm is terminated when one of the following termination conditions is

satisfied (line 2). The first condition is if the structural coverage criterion being

attempted has been completely achieved. The second condition is if the testing limit has

been no longer valid.

For each iteration of the while loop, the algorithm carries out the following steps. First,

it selects an uncovered coverage element ݃ and also calculates a testing limit ݈ for

exploring ݃ (lines 3–4). Now, given the program under test P, the coverage element ݃,

and the testing limit ݈, the algorithm invokes GUIDER to find a test input ݐ so that the

execution of the program P on test input ݐ executes ݃ (line 5). GUIDER uses dynamic

symbolic execution to perform test input generation, and exploits control and data

dependencies to improve the efficiency of path exploration (the detailed description of

GUIDER was given in section 4.5). Once GUIDER is invoked, a test input ݐ is returned,

and the test set T and the structural coverage result C are updated accordingly (lines 6–

9).

To this point, we have presented all the necessarily theoretical elements underlying the

structural coverage testing approach developed during the course of this research

project. We now proceed to describe the proposed structural coverage testing

framework, the implementation, and also the preliminary experiments conducted to

94

evaluate the effectiveness of our testing approach in comparison with popular state-of-

the-art testing approaches.

5.3.1 The Proposed Testing Framework

In this subsection, we describe the architecture of the structural coverage testing

framework implementing the testing approach proposed in Figure 5.2. It is named

Structural Coverage Testing (SCT). SCT is designed for branch coverage testing and

works on programs written in C. The SCT framework is built on top of CREST [19], an

automatic test input generator for C based on dynamic symbolic execution. CREST relies

on CIL [99] for the instrumentation and static analysis of C code, and on the YICES SMT

solver [47] for constraint solving.

Figure 5.3: The proposed structural coverage testing framework

Figure 5.3 shows the logical components and the basic workflow of the SCT framework,

and also illustrates how it extends the functionality of the CREST platform to automate

test input generation for structural coverage testing. The straight-lined rectangles

indicate the logical components in SCT while the curved rectangles indicate input/output

95

relationships between these components. The interaction between the logical

components is captured by arrows indicating the execution flow as well as both the

control and data dependencies.

Given a C program under test ܲ, the SCT framework first uses CIL to parse, type check,

and transform ܲ into a simplified C program ܲԢ, or a subset of C. The main advantage of

using CIL is that it simplifies the source code of the program under test ܲ into a few

core constructs with a clean semantics to facilitate static program analysis, runtime

annotations, and code instrumentation. The CIL front-end enables SCT to easily analyse

and manipulate C programs transparently through a syntax-directed type system. In this

transformation phase, SCT particularly normalizes the structure of the transformed

program ܲԢ and then computes its control flow graph model to begin structural coverage

testing. A detailed description of the normalization is provided in the following

subsection.

In the development of the SCT framework, one of the most important components is the

program analysis engine. Since SCT implements the goal-oriented testing approach

presented in the previous chapter, it computes control dependencies, data dependencies,

and shortest paths between statements in the static structure of the program. Control

dependencies indicate the relationship of the execution flow between statements while

data dependencies indicate data flows affecting the execution of statements. The

identification of the shortest paths between statements potentially helps to navigate path

exploration to quickly discover a specific path among the large path space of the

program, leading to the execution of a desired code element. In this logical component,

SCT therefore extends CIL to implement control dependency analysis, data dependency

analysis, and also compute minimal branch distances. The result of these analyses is

used by the search engine to effectively and efficiently perform path exploration in

dynamic symbolic execution for structural coverage testing.

To be able to carry out dynamic symbolic execution, the source code of the transformed

program is instrumented through the code instrumentation engine. The instrumentation

phase captures and simulates the semantics of every statement being executed at

runtime. For this, it inserts additional code before each statement to enable tracking

memory addresses and runtime values of the variables involved in the statement, and

also to allow operators to be executed concretely and symbolically. Therefore, this

96

phase enables the program under test to be simultaneously executed both concretely and

symbolically.

In the SCT framework, the structural coverage testing process is operated through the

communication between the following three logical components, Search Engine,

Dynamic Symbolic Execution Engine, and SMT Solver. The Search Engine component

determines how the path space of the program is to be explored for structural coverage

testing. It relies on the current coverage achievement as well as the result of dynamic

symbolic execution to drive path exploration. The core part of Search Engine is the

GUIDER search algorithm proposed in chapter 4. Dynamic Symbolic Execution Engine

performs dynamic symbolic execution through the guidance from Search Engine and

the interaction with the underlying SMT Solver (YICES) for test input generation. It also

tracks the execution of statements and branches in the program for coverage

measurements.

5.3.2 Implementation

As noted above, we implemented the SCT structural coverage testing framework on top

of the CREST platform. SCT extends CIL with approximately 8000 lines of OCaml code

to implement the logical component Program Analysis Engine. For Search Engine, SCT

implements this logical component as a search heuristic in CREST with about 4000 lines

of C/C++ code.

The structural coverage criterion that SCT attempts to address is branch coverage. To

best achieve this structural coverage criterion, SCT, based on CREST, unrolls decisions

with multiple conditions as an equivalent cascade of single condition decisions and

converts every single conditional statement into the form of if (e) then S1 else S2. The

branch coverage criterion achieved by SCT is therefore comparable to condition

coverage in the original program. For any specification clothed in forms of assertion

calls, i.e. assert (e), SCT transforms it into a conditional statement if (!e) error() to check

for violations. Table 5.1 provides examples to illustrate these transformation details in

SCT.

The SCT framework does not automatically identify the input interface of the program;

rather users must determine and annotate input variables to form the test driver for the

program under test. An example of this activity is given in Table 5.2. This is the only

step where human intervention is required when using the SCT framework.

97

Table 5.1: Examples of converting code snippets into simplified constructs in the SCT framework

Original Code Transformed Code
if (r == 0) {
 error = true;
}

if (r == 0) {
 error = true;
} else {
 // Empty block
}

if (r1 == 0 && r2 == 0) {
 error = true;
}

if (r1 == 0) {
 if (r2 == 0) {
 error = true;
 } else {
 // Empty block
 }
} else {
 // Empty block
}

if (r1 == 0 || r2 == 0) {
 error = true;
}

if (r1 == 0) {
 error = true;
} else {
 if (r2 == 0) {
 error = true;
 } else {
 // Empty block
 }
}

assert(e); if (e == 0) {
 error();
}

Table 5.2: An example of creating a test driver for the program under test in SCT

Original Code Test Driver
bool func (int r1, int r2) {
 // Function body
}

bool func (int r1, int r2) {
 CREST_int(r1);
 CREST_int(r2);
 // Function body
}

5.4 Evaluation

The primary objective of this research project is to explore automated techniques to

improve the efficiency of software testing. In this chapter, we have presented the SCT

framework, our proposed approach for automated structural coverage testing for C

programs. The development of SCT is based on dynamic symbolic execution to perform

98

test input generation and utilizes the chaining guided search algorithm GUIDER to carry

out path exploration toward effectively and efficiently exploring coverage elements in

the program under test. The structural coverage criterion to be addressed by the SCT

framework is branch coverage. In this section, we present an evaluation of how

effective the proposed approach is in supporting branch coverage testing. In particular,

we evaluate the effectiveness of the SCT by considering the following two research

questions:

• How does SCT perform in comparison with popular testing approaches in

relation to branch coverage improvements?

• How does SCT optimize testing effort in comparison with popular testing

approaches in relation to branch coverage improvements?

The first research question focuses on assessing the capability of the SCT framework in

improving branch coverage testing. The second question measures how effectively SCT

can cope with the path space explosion suffered by dynamic symbolic execution to

accomplish testing with high branch coverage achievements. In the following subsec-

tions, we present (1) the set of selected test subjects, (2) our evaluation methodology,

(3) the experimental results, and (4) the discussions.

5.4.1 Test Subjects

An overview of the test subjects selected to carry out the experiments in this evaluation

is given in Table 5.3. They include the sample, testloop, and hello_world functions. The

first function was adopted from the work of Ferguson and Korel [52] while the last two

functions were adopted from the work of Xie et al. [141]. The next six test subjects,

valves_nest<i> with i = {2, 5, 10, 20, 50, 100}, are from the work of Baluda et al. [12].

These test subjects are employed in the literature to illustrate the essence of individual

exploration problems of dynamic symbolic execution. Thus we wanted to check if SCT,

by exploiting control and data dependencies, was able to tackle these exploration

problems. In particular, for the valves_nest<i> programs where, as reported in [12],

depth-first search such as DART [62] and CUTE [124], control-flow graph directed

search in CREST [19], and KLEE [26] all exhibited their worst performance and scored

very low structural coverage, we expected that SCT, with the ability to precisely identify

the root cause of the execution of hard-to-reach code elements, could potentially guide

path exploration to achieve maximal branch coverage within minimal exploration effort.

99

Notice that the hello_world function in this evaluation was modified to check an input

array which must start with “Hello”, end with “World!” and contain only spaces. This

modification makes the function more difficult for search strategies to cover all its

branch coverage.

The rest of the test subjects were mentioned in the work of Binkley et al. [16]. These

functions come from open-source programs and we hence wanted to evaluate the

capability of SCT in dealing with the high complexity of real world programs. For the

sake of these experiments, for some functions we just extracted part of their code.

All the test subjects were in C code and to enable comparison with tools such as PEX

[128] and FITNEX [141], we converted them to C# code.

Table 5.3: An overview of the test subjects selected in the evaluation of the SCT framework for

structural coverage testing

Subject # Loc # Statements # Branches

sample 31 48 12

testloop 17 27 8

hello_world 37 92 32

valves_nest2 32 60 12

valves_nest5 62 132 30

valves_nest10 112 252 60

valves_nest20 212 492 120

valves_nest50 512 1212 300

valves_nest100 1012 2412 600

netflow 28 28 6

moveBiggestInFront 37 32 6

handle_new_jobs 37 25 6

update_shps 52 47 10

check_ISBN 78 218 52

check_ISSN 78 210 52

Total 2337 5287 1306

5.4.2 Methodology

To evaluate the effectiveness of our proposed approach, we conducted experiments on

the selected test subjects, and compared SCT with two widely adopted search strategies,

random input search (or RANDOM) and depth-first search (or DFS), and with three

100

automated test input generation tools: CREST [19], PEX [128], and FITNEX [141]. For

CREST, we chose the control-flow graph directed search strategy (or CFGDIRECTED),

which was confirmed as the “best” search algorithm by the experimental data. PEX

implements dynamic symbolic execution to generate test inputs for .NET code,

supporting languages C#, VisualBasic, and F#; FITNEX is an extension of PEX.

All experiments in the evaluation were run on 3GHz CoreTM2 Duo CPU with 4GB of

RAM, running Ubuntu GNU/Linux with a 32-bit kernel version 3.2.0–38 for RANDOM,

DFS, CFGDIRECTED, and SCT, and running Windows 7 for PEX and FITNEX.

As our primary purpose was to evaluate the capability of each tool (or search strategy)

in achieving high branch coverage, it was fair to set up a fixed testing budget for all. For

this, time can be an option. An alternative option can be the number of explorations, or

runs, to explore the path space of the program under test. In the context of applying

dynamic symbolic execution where the underlying search strategy must optimize the

path space explosion to maximize the achievement of the testing goals, the second

option is preferable and is commonly adopted in testing tools such as CREST, PEX and

FITNEX. In this particular evaluation, we therefore adopted the second option.

Considering the relatively small-sized test subjects, we specifically chose 1000 runs as

the testing limit to run every test subject on each tool. We measured the percentage of

branch coverage obtained and the results are shown in Table 5.4.

Our secondary purpose was to evaluate the capability of each tool in optimizing path

exploration for branch coverage improvements. This is an important criterion for

evaluating the effectiveness of any test input generation tool based on dynamic

symbolic execution because the cost of performing dynamic symbolic execution is

expensive, and minimizing the number of path explorations is necessary to improve the

applicability of the technique. For this, besides the first stop condition (1000 runs), we

also stopped the tools when the branch coverage criterion of the experimenting test

subject had been completely achieved. The results are given in Table 5.5.

5.4.3 Experimental Results

Table 5.4 and Table 5.5 summarize the statistics obtained from the experiments. It is

clear from the statistics that RANDOM is the worst approach to test input generation,

with the lowest average coverage (40%) obtained but the highest average number of

runs (891 runs) exploited. Remarkably, on the test subjects valves_nest<i>, RANDOM

101

Table 5.4: Percentage of branch coverage achieved by search strategies on 15 test subjects

Subject RANDOM DFS CFGDIRECTED PEX FITNEX SCT

sample 42 92 92 92 92 100

testloop 13 88 88 100 100 100

hello_world 34 56 91 91 91 100

valves_nest2 17 42 42 100 100 100

valves_nest5 7 17 17 100 100 100

valves_nest10 3 8 8 100 100 100

valves_nest20 2 4 4 80 100 100

valves_nest50 1 2 2 39 58 100

valves_nest100 0 1 1 20 25 100

netflow 83 83 83 100 100 100

moveBiggestInFront 100 83 83 100 100 100

handle_new_jobs 67 100 100 83 100 100

update_shps 60 90 90 100 100 100

check_ISBN 83 83 83 96 83 98

check_ISSN 83 83 94 96 83 98

Average 40 56 59 87 89 100≈

Table 5.5: Measurements of numbers of program explorations performed by search strategies

Subject RANDOM DFS CFGDIRECTED PEX FITNEX SCT

sample 1000 1000 1000 1000 1000 13

testloop 1000 1000 1000 26 27 22

hello_world 1000 1000 1000 1000 1000 55

valves_nest2 _ 1000 1000 92 71 11

valves_nest5 _ 1000 1000 236 125 26

valves_nest10 _ 1000 1000 338 741 51

valves_nest20 _ 1000 1000 1000 689 101

valves_nest50 _ 1000 1000 1000 1000 251

valves_nest100 _ 1000 1000 1000 1000 501

netflow 1000 2 1000 5 5 2

moveBiggestInFront 15 1000 1000 4 4 2

handle_new_jobs 1000 2 2 1000 99 34

update_shps 1000 1000 1000 5 7 4

check_ISBN 1000 1000 1000 234 313 51

check_ISSN 1000 1000 1000 234 313 45

Average 891 867 934 478 426 78

102

with its careless input generation mechanism ran out of memory due to becoming

trapped in too-long loop iterations requesting large amounts of memory. We stopped

RANDOM after 25 runs for these test subjects and recorded the coverage achievement.

We did not accumulate these numbers of runs into its average run number since it does

not make sense to make the comparison. These test subjects appear to be the biggest

hurdles for current test input generation tools. For instance, RANDOM could not reach

beyond 2 branches on any of these test subjects.

DFS is an instance of using dynamic symbolic execution to systematically explore all

feasible paths of a program. It lacks the ability to forward the execution to further

unexplored control flow points and hence achieved very low branch coverage within the

fixed testing limit. However, since DFS relies on the power of the underlying constraint

solver, it obtains higher coverage (56% on average) than RANDOM.

With CFGDIRECTED, 14 out of 15 cases failed to achieve full coverage. For these cases,

the test subjects contained branches that required precise guidance of data flow analysis

to be covered. CFGDIRECTED only utilizes the static control flow graph and thus is not

effective. CFGDIRECTED achieved coverage only slightly higher than DFS (59% on

average). However, on the test subjects valves_nest<i>, DFS and CFGDIRECTED both

exhibited their worst capability in coping with the combinatorial explosion of the path

space to achieve high coverage.

PEX and FITNEX achieved quite similar average coverage results: 87% and 89%,

respectively. While PEX failed in 8 cases to achieve full coverage, FITNEX failed in 6. In

cases of check_ISBN and check_ISSN, both PEX and FITNEX automatically terminated

after 234 and 313 runs, respectively, although total coverage was not achieved. The

comparison thus favours these tools with respect to path explorations. The results

obtained by both PEX and FITNEX are better than RANDOM, DFS, and CFGDIRECTED in

terms of coverage achievements and exploration optimizations. This highlights the

power of bringing several search strategies together as well as the power of fitness

functions in test input generation. However, on the test subjects valves_nest50 and

valves_nest100, both the approaches failed to expose high complexity code.

SCT failed to achieve 100% coverage in 2 cases, check_ISBN and check_ISSN. We

manually investigated these test subjects and realized that the two functions contained

one unreachable branch that resulted from the instrumentation step where our tool

103

normalizes every if statement to have the form if (e) then S1 else S2. Currently, SCT is

not able to deal with infeasible code. But an interesting observation when we conducted

experiments on these test subjects was that even though we set the testing limit to 1000

runs, SCT stopped the exploration process after 51 runs for check_ISBN and 45 runs for

check_ISSN. This means the search process considered all possible combinations of data

flows but none could help to explore the test goal. This suggests that this code element

was infeasible. We refer this situation to saturated data propagation and are working on

a formal proof for identifying infeasible code by exploring data flows.

Noticeably, with the six test subjects valves_nest<i>, while Random ran out of

memory, DFS and CFGDIRECTED both revealed problematic issues in their search

mechanism, PEX failed to reach even 50% for valves_nest50 and valves_nest100, and

FITNEX also succumbed to these two test subjects due to overly long execution traces.

SCT not only scored 100% coverage but also efficiently minimized the exploration

process, using less than one run to explore one branch on average.

It is significant that on average SCT achieved the highest coverage (100% if infeasible

code is not counted) and maintained a significantly small number of program

explorations (78 runs compared to 426 and 478 for FITNEX and PEX, respectively, and

934 for CFGDIRECTED) on the selected test subjects. This shows the capability of

utilizing data flow analysis to guide dynamic symbolic execution in the test input

generation process.

In this evaluation, we did not conduct experiments to compare our proposed approach

SCT with the well-known dynamic symbolic execution KLEE tool [26] or with the ARC-

B tool [12]. The latter was proposed to combine dynamic symbolic execution and

abstraction refinement to mitigate the combinatorial explosion of the path space for

coverage improvements and infeasible code identification. However, the experimental

data reported in Baluda et al. [12], specifically on the sequence of test subjects

valves_nest<i>, reveals that the KLEE tool, like DFS and CFGDIRECTED, obtained very

low coverage, covering only 5 branches in spite of the increasing size of the test

subjects. In case of valves_nest100, DFS, CFGDIRECTED and KLEE did not go beyond

1% coverage.

The ARC-B tool, when compared to SCT again on the test subjects valves_nest<i>,

demanded considerable numbers of program explorations to acquire the same coverage

104

as SCT did, almost 6 times as many. Apart from that, on the test subject valves_nest100,

ARC-B reached 71% coverage after 10,000 runs. SCT not only scored 100% coverage

but also successfully accomplished the search process after 501 runs, or approximately

20 times fewer.

5.4.4 Discussion

A preliminary evaluation to evaluate the effectiveness of the SCT framework for

structural coverage testing was carried out on 15 selected test subjects selected. The

primary purpose was to evaluate the ability of SCT to improve branch coverage

achievements. The secondary purpose was to assess the ability of SCT to optimize path

exploration to maximize coverage testing results within the constraint of testing limits.

The evaluation measured these two aspects by comparing the testing results achieved by

SCT with those achieved by state-of-the-art structural coverage testing tools such as

RANDOM, DFS, CREST, PEX and FITNEX. The experimental results highlight the

efficiency of exploiting program dependencies such as control and especially data

dependencies to perform dynamic symbolic execution toward effectively and efficiently

exploring code elements of the program under test.

In the application of SCT to structural coverage testing, the cost of running SCT comes

mostly from two areas. One is the cost of computing control and data dependencies, and

a distance graph. These computation costs are minor compared to the very expensive

cost of carrying out the dynamic analysis technique dynamic symbolic execution. Take

the case of computing data dependencies to identify definition statements, for example.

It involves a maximal fixed-point algorithm operated statically on the source code of the

program under test prior to dynamic symbolic execution. The algorithm complexity is

the product of the height of the lattice and the number of nodes in the control flow

graph. The cost of performing dynamic symbolic execution with the guidance of event

sequences depends on the number of runs that SCT requires to execute the program

under test, which was found to be significantly smaller than other search algorithms and

tools. In fact, we observed from the experiments that CFGDIRECTED and SCT both

executed the test subjects within a matter of a few seconds. PEX and FITNEX, however,

consumed a considerable amount of time on all the test subjects.

In this evaluation, we conducted the experiments on a collection of relatively small test

subjects. These test subjects, however, have been already used in the software testing

105

literature to demonstrate problematic exploration issues of recently proposed techniques

using dynamic symbolic execution. The following chapter sets out to verify the validity

of this evaluation and we discuss there the limitations of the current implementation of

our proposed goal-oriented approach for both structural coverage testing and security

vulnerability detection. Nevertheless, we believe that when testing sizeable and complex

programs, where the path space of the program under test is exceedingly huge to be

systematically and exhaustively explored, the ability of our proposed approach to break

down the path space and to precisely guide the path exploration process by focusing on

selected aspects of semantics is essential for optimizing the expensive cost of

performing dynamic symbolic execution to maximize structural coverage achievements

and to enhance error-detection capabilities.

5.5 Summary

The state space of software programs is generally infinite; exhaustively exploring and

checking it is beyond current computational power. In the practice of software

development, software testing is a widely adopted method for improving software

quality and reliability. It executes the program under test and allows software engineers

to observe actual behaviours during the program execution. Testing and checking all

possible combinations of the input values is potentially endless. In the face of this

reality, researchers have developed test adequacy criteria to give powerful

measurements of how adequately software testing is carried out in accordance with

software quality factors.

In this chapter, we focused on structural coverage testing, a relatively simple set of test

adequacy criteria that has been widely adopted in software development practice to

support software quality and reliability [20], [56], [117], [132]. We proposed the SCT

framework to automate structural coverage testing for achieving the branch coverage

criterion. The development of SCT utilized the chaining guided search algorithm

GUIDER proposed in chapter 4 to effectively and efficiently improve the efficiency of

path exploration under dynamic symbolic execution for high branch coverage

achievements. The experimental results show that SCT is effective in maximizing

structural coverage, optimizing path exploration, and providing useful evidence to

identify infeasible code elements. In most of the experiments, SCT was able to achieve

106

higher branch coverage with significantly fewer path explorations than popular state-of-

the-art test input generation approaches.

This chapter addressed the second objective of the research project during this course:

exploring automated techniques to effectively and efficiently improve structural

coverage testing. Section 5.1 provided the basic background for structural coverage

criteria. Section 5.2 surveyed automated test input generation techniques for structural

coverage testing. Section 5.3 described the development of the SCT framework and its

implementation details. In section 5.4, preliminary experiments were conducted to

evaluate the effectiveness of SCT by measuring its ability to improve branch coverage

results as well as its ability to optimize path exploration in comparison with existing

approaches. The experimental results show the efficiency of SCT in utilizing data

dependency analysis to deal with the path explosion problem facing dynamic symbolic

execution for solving the reachability problem.

107

Chapter 6

Security Vulnerability Detection

6.1 Overview ... 108

6.2 Literature Review .. 113

6.3 Approach .. 116

6.3.1 Buffer Overflow Checking.. 118
6.3.2 Dynamic Symbolic Execution-Based Test Generation 119
6.3.3 Goal-Oriented Testing... 120

6.4 Evaluation ... 122

6.4.1 Test Subjects ... 123
6.4.2 Methodology ... 124
6.4.3 Experimental Results .. 125
6.4.4 Discussion ... 129

6.5 Summary ... 130

In the previous chapter, we presented SCT, our proposed framework for structural

coverage testing. SCT employs the chaining guided search algorithm GUIDER to perform

dynamic symbolic execution for improving branch coverage results. The observation

was that having achieved high structural coverage of the program under test may give

confidence that the program has been thoroughly tested and less likely to harbour errors.

For example, in the adoption of the statement coverage criterion, every statement must

be exercised and checked at least once. But the state space of a program is potentially

endless and one statement at runtime can encode an infinite number of states. As such,

only one state is verified for desired software quality factors and the adoption of the

statement coverage criterion is not sufficient for ensuring software quality and

reliability. Furthermore, among the many states not being exercised and verified, there

can be buggy or even unsafe states that can be exploited to cause serious software

failures such as security breaches, damaging the data and functionality of the host

system. In this chapter, we focus on software security.

With the development of the Internet, the application of software systems has suffered

seriously from security problems. Security vulnerabilities are discovered daily in

commonly used software [37], [101]. Approximately half of all security vulnerabilities

108

are detected at the source code level [102]. Such vulnerabilities can be exploited to

devastate the data and functionality of the host system, leading to significant financial

losses [63], [122]. Testing to identify and remove security vulnerabilities, therefore, has

been becoming essential in the current software development practice.

There are various types of security vulnerabilities [48] and in this research we

particularly focus on buffer overflow vulnerabilities, which represent one of the most

serious classes that security threats [41]. A buffer overflow is an anomaly where a

program, while assessing a buffer, overruns the buffer boundary. This can be exploited

to open security breaches, causing erratic program behaviours. In this chapter, we

present an approach to detect such buffer overflow defects by combining static runtime

verification and dynamic symbolic execution. The chapter is structured as follows. In

section 6.1, we describe buffer overflow vulnerabilities and how they can be exploited

to open security breaches. Section 6.2 conducts a literature review to survey techniques

proposed to detect and eliminate buffer overflow detects. Section 6.3 presents our

proposed approach for buffer overflow detection. The approach works in two phases. In

the first phase, it uses DEPUTY [31] — a novel type system for pointers — to diagnose

potential runtime violations on buffer operations in the program under consideration. In

the second phase, it uses dynamic symbolic execution to generate test inputs to uncover

violations. In order to effectively and efficiently perform dynamic symbolic execution,

we employ the chaining guided search algorithm GUIDER proposed in chapter 4 to guide

path exploration for test input generation. Section 6.4 elaborates an evaluation

conducted to assess the effectiveness of our proposed approach against 23 buffer

overflow vulnerabilities compared with popular state-of-the-art search algorithms.

Finally, a summary of the chapter is given in section 6.5.

6.1 Overview

A security vulnerability is a weakness allowing an attacker to compromise the

availability, confidentiality or integrity of a computer system. Security vulnerabilities

may be the result of a programming error that yields security holes such as information

leakage, modification, and destruction. An attack is a successful exploitation of security

vulnerabilities. There are various types of security vulnerabilities occurring at the source

code level, such as buffer overflows, format string bugs, SQL injections, cross site

scripting, and cross site request forgery [40]. We mainly focus here on buffer overflow

109

vulnerabilities in C programs, which have been widespread in both legacy and modern

systems and account for nearly half of all known security vulnerabilities [135]. Buffer

overflows are one of the top 25 most dangerous programming errors [41]. They affect

the security of programs written in languages that are neither type- nor memory-safe

such as C/C++, enabling an attacker to gain control of the host computer and execute

injected code with elevated privileges. In this section, we illustrate the attack

mechanism through exploiting buffer overflow vulnerabilities.

A buffer overflow vulnerability occurs when data can be written outside the memory

allocated for a buffer, overwriting the content of the neighbouring memory segments

[103]. The presence of buffer overflows might be due to library function calls, pointers,

aliases, logic errors, and a lack of bound checks when accessing buffers in low level

programming languages such as C, C++, and x86 assembly. One of the most common

buffer overflows is due to erroneous pointer arithmetic operations on buffers. For

instance, p = q + index results in a pointer p pointing to a location index bytes

away from the current location of pointer q. Now, if a write operation is performed

through dereferencing pointer p, i.e. *p = ‘0’, and the location of p is outside the

allocated memory for the buffer, then this write operation can overwrite the data being

stored at q + index.

In a buffer overflow attack, the goal is to spoil the functionality and then take control of

a privileged program. If the program being attacked is sufficiently privileged, the

attacker gains control of the host system to execute the injected code. To successfully

accomplish this goal, the attacker must achieve the following steps:

• Exploit weaknesses of a software program to trigger a buffer overflow attack.

• Arrange suitable code into the address space of the program under attack.

• Navigate the execution flow to jump to the injected code with suitable privileges

and parameters loaded into registers and memory.

The ability to explore buffer overflows depends on the memory regions allocated to

buffers such as stack, heap, data segments, and bss segments. In the remainder of this

section, we mainly discuss stack-based buffer overflow attacks.

110

(s) void overflow (char * str) {
(1) int i;
(2) char buf[32];

(3) for (i = 0; i < strlen(str); i++) {
(4) buf[i] = str[i];
(5) }

(6) return;
(e) }

Figure 6.1: A C program to illustrate the stack-based buffer overflow attack

In a stack-based buffer overflow attack, the memory allocation of the buffer resides in

the stack memory region. Consider the C program overflow in Figure 6.1 for example.

A buffer buf is declared at line 2 and is allocated 32 bytes in the stack memory region.

The valid location of this buffer is between buf[0] and buf[31]. The for loop in lines

3–5 copies the content of the input buffer str into buf. A buffer overflow can happen

at line 4 if the length of the input buffer str is over 32. If so, the loop does allow

copying more than the capability that the buffer buf can store. To understand the effect

of a buffer overflow, consider the stack layout of the program when invoking the

function overflow given in Figure 6.2. Here, we suppose that overflow is invoked

from the main function and the growth direction of the stack is downward, meaning the

memory region allocated when a function is called is in the lower part of the stack.

Figure 6.2: The stack layout of the program when calling the overflow function

111

The stack is partitioned into stack frames. Each stack frame stores information about a

function being executed, including registers, the return address, the saved frame pointer,

and locally declared variables. The return address points to the address of the statement

to continue the program execution right after the function called has finished the

execution. Any array declared locally is located in the section of local variables of the

function stack frame. Since in languages like C there is no information about the array

size available at runtime, most C compilers allow copying data going beyond the end of

an array. In this case, the management information of the function such as the return

address and the saved frame pointer is subverted.

In this example, we assume that the return address and the saved frame pointer of the

overflow function occupy 4 bytes, whereas i variable occupies 2 bytes. The total

memory region allocated to execute overflow is 42 bytes. The gray coloured part in

Figure 6.2 indicates what can be written to by the function if the buffer buf is used

correctly. Now consider what can happen if an attacker is able to trigger a buffer

overflow attack to the overflow function. The attack target is to corrupt the return

address and execute the injected code through buffer (see Figure 6.3). By manipulating

the program to invoke the overflow function with 42 bytes as the size of the str input

parameter, the attacker is able to copy 32 bytes into the buf buffer, overwrite variable i

(2 bytes), the saved frame pointer (4 bytes), and the return address (4 bytes). In order to

take control of the program, the attacker changes the return address to point to the

Figure 6.3: Basic stack-based buffer overflow attack

112

injected code that he already copied into the buffer. Now, when the overflow function

returns, the return address is usually used to resume the program execution after the

function call has finished. However, since the return address has been changed to point

to the injected code, the execution flow will continue to execute the attacker’s code. The

injected code can be a shell code, e.g. “/bin/sh”, to launch a remote shell with the

root privilege. This is referred to as a “return address clobbering” or “direct code

injection” attack [49].

In some situations, the attacker might not be able to modify the return address of the

called function since the program has enforced some mechanism to protect the return

address by some countermeasure. The attacker may still discover an alternative way to

execute the injected code by modifying the saved frame pointer [79]. As shown in

Figure 6.4, the attacker can modify the saved frame pointer of the overflow function

to point to a desired location of the buffer. As a result, the first 4 bytes of the buffer are

regarded as the saved frame pointer of and the next 4 bytes the return address of the

main function, the calling function of overflow. The content of the modified return

address of main is changed to point the injected code of the attacker. Consequently, the

overflow function returns to its calling function as usual but when the main returns,

Figure 6.4: Stack-based buffer overflow through overwriting saved frame pointer

113

the injected code being stored in the stack is activated.

It might be the situation that the attacker is not able to overwrite the saved frame pointer

due to the presence of countermeasures that prevent code injections of buffer overflow

attacks by converting stack segments from executable to non-executable [106]. The

attacker can still bypass such defences, however. This is carried out by exploiting

weaknesses in system library functions, for example in “return-to-libc” or “jump-to-

libc” attacks [49].

Attacks via buffer overflows happen in programs written in low level programming

languages such as C, C++, and x86 assembly, which are not type- and memory-safe.

The severity of buffer overflow attacks has been ranked high among software security

vulnerabilities since an attack may let the attacker to gain control of the host system and

then execute the injected code. Unsurprisingly, buffer overflow vulnerabilities dominate

in the area of remote network penetration vulnerabilities [42]. The reality is that there

are millions of lines of code invested in existing operating systems and security-

sensitive applications, and the vast majority of that code is written in C. For instance,

the Java Virtual Machine (JVM) is also a C program, and one of the ways to attack a

JVM is to conduct buffer overflow attacks to the JVM itself [44]. Therefore, much

research effort has attempted to investigate and develop techniques to mitigate buffer

overflow vulnerabilities. In the next section, we provide a brief survey of these buffer

overflow vulnerability mitigation techniques to clarify the context of our study.

6.2 Literature Review

Security is an essential concern in the practice of software development, especially as

software applications increasingly shift to the Internet. As the accessibility of the

software is expanded, the probability that the software is vulnerable to security attacks

significantly increases. In the attempt to validate the software against security

vulnerabilities, security testing is one of the most proactive techniques being adopted in

software industry. The intent is to locate and identify conditions under which the

software might open security breaches to attackers [137]. Note that the focus of security

testing is not as the same as that of traditional functional testing. In functional testing,

testing is performed on behalf of a legitimate user of the software application who is

attempting to use it in the way it was intended to be used and for its intended purpose.

114

Testing from this point of view can cause testers to bypass a large percentage of security

tests. This distinction is clarified in the work of Whittaker and Thompson [137], where

19 specific security attacks are presented and many traditional testing techniques used to

test software functionality are shown to be unable to discover the security

vulnerabilities. In fact, in security testing, testers must behave like attackers, attempting

to develop misuse cases, identify assumptions and develop test cases to violate them,

identify configuration issues and design test cases to check them, and develop invalid

test inputs [4]. In testing to uncover buffer overflow vulnerabilities, for example, every

time a software system receives data from its environment, testers must validate if the

data violate assumptions of its size.

Security testing based on human intervention such as code review and manual testing is

labour-intensive and error-prone. Many security vulnerabilities are subtle and almost

invisible to testers [137]. Not surprisingly, commonly used and even well-tested

software is exposed to security breaches daily [37], [101]. One attempt to mitigate the

hardship of human intervention in security testing utilizes static analysis to automate

security vulnerability checking. Over time, several static analysis techniques have been

proposed and developed to achieve this goal, including symbolic execution, abstraction

interpretation, model checking, integer range analysis, interprocedural analysis, and

type inference analysis [32]. Static analysis techniques leverage the fact that

programming rules often map clearly to the source code level, thus static inspection can

find many of their violations [11]. Considerable research effort has attempted to develop

static analysis tools and check security vulnerabilities in real world software

applications [31], [32], [42], [80], [135]. Empirical studies have been also carried out to

evaluate proposed static analysis techniques and tools [42], [80].

Scalability is perhaps one of the most important advantages of using static analysis

techniques. For instance, mature static analysis tools can check millions of lines of code

within a matter of a few days and uncover many hidden security defects [11]. Low

precision is, however, one of the most challenging issues facing static analysis

techniques. It results in false positives, or negative decisions in the presence of software

defects, causing users to have low trust in the capability of the tool or even ignore it

[11]. Buffer overflow vulnerabilities appear to be even harder for static analysis tools to

detect since they often involve complex pointer arithmetic operations on buffers passing

through various function calls.

115

In the attempt to alleviate the low precision of static analysis techniques, and therefore

to be able to uncover even more and deeper security vulnerabilities, dynamic analysis

has been long advocated in the practice of software testing to carry out security testing

[17], [68]. Fuzz testing is a dynamic analysis technique, also referred to as black-box

random testing, which randomly mutates well-formed inputs, executes the program

under test, and verifies it on the resulting data [91]. Fuzz testing is a preferred security

testing technique in software industry, thanks to the ability to effectively and efficiently

find serious security vulnerabilities [54], [61], [82], [90]. An important limitation of

fuzz testing, however, is that the probability of generating particular test inputs to

trigger buggy behaviours or to explore corner case branches can be astronomically

small. It is well understood that random testing usually provides low code coverage

[104]. This drawback implies that potential security vulnerabilities such as buffer

overflows can be missed since the code containing the vulnerabilities is not even

exercised.

To intertwine the strengths of static analysis and dynamic analysis, dynamic symbolic

execution has been proposed with the intent of offering a directed automated search

mechanism for test input generation [62]. The technique is then further developed in the

form of active property checking to significantly strengthen automated security testing

[65]. It incorporates random testing, symbolic execution, constraint solving, and

runtime property checking to actively search for property violations such as buffer

overflows. In active property checking, it injects at runtime additional symbolic

constraints that, when solvable by the underlying constraint solver, will generate new

test inputs leading to property violations. To understand active property checking,

consider the divide example given in Figure 6.5. It takes as input two integer

variables, n and d, and computes their division. A division-by-zero error will occur at

line 2 if the value of the denominator d is equal zero. To catch this error, traditional

runtime checking tools such as Purify [72] and Valgrind [100] would simply check if

the value of d satisfies (d == 0) before the execution of the division operation. The

(s) void divide (int n, int d) {
(1) // division-by-zero error if d is equal zero
(2) return (n / d);
(e) }

Figure 6.5: A C program that enables active property checking

116

check is performed given a specific program execution. In other words, this particular

approach is not able to infer which values of d can cause the division-by-zero error, or

violate given program properties. Testing this program using random testing is unlikely

to detect the error since d has only one chance out of 2ଷଶ to be zero if d is a 32-bit

integer. Dynamic symbolic execution with the attempt to explore all the feasible paths

of the program is also likely to miss the error, because the program has only a single

path which can be covered no matter what inputs are used. However, if the division-by-

zero check if (d == 0) error(); is inserted into the divide program right before

the division operation, dynamic symbolic execution can generate an input with d equal

zero to reveal the error. This observation is the main idea behind active property

checking.

Active property checking received a lot of attention from the research community

recently. It has been implemented in several tools and used to uncover a number of

serious security vulnerabilities of real world software systems [29]. For example, SAGE

is a white-box fuzz testing tool developed at Microsoft Research [66]. It implements

active property checking to detect a wide range of security errors. A particular focus of

SAGE, however, is integer bugs, such as overflow / underflow, width conversions, and

signed / unsigned conversions errors. In this research project, we implemented active

property checking to check buffer overflow vulnerabilities. One of our research

objectives is to improve the efficiency of path exploration in dynamic symbolic

execution to effectively and efficiently uncover buffer overflow errors. This is an

important requirement when adopting dynamic symbolic execution to test real world

software systems [29], [35], [65]. In the next section, we elaborate our approach and

emphasize its significance for improving active property checking for buffer overflow

detection capabilities.

6.3 Approach

When attempting to mitigate buffer overflow vulnerabilities through automated

techniques, the capability of static analysis approaches is limited when dealing with

complex programming language constructs and concepts such as pointers, pointers

arithmetic, and object-oriented polymorphic functions. In fact, the problem of statically

verifying buffer overflows is, in general, undecidable. Furthermore, static heuristic

solutions may not by applicable in practice. It has been recognized that despite the

117

considerable effort to statically and automatically tackle buffer overflow defects, in

many cases concretely executing the program under test is the only way to address this

problem [60], [115]. In our proposed approach, we use static analysis, particularly static

runtime verification approaches such as DEPUTY [31] and CCURED [97], to pinpoint

potential overflow vulnerabilities on buffer operations. The determination of whether a

buffer overflow is truly vulnerable is done by dynamic analysis.

Dynamic analysis techniques for buffer overflow detection suffer from the following

two main limitations: (1) the need for suitable test suites, i.e. test inputs capable of

uncovering buffer overflows, and (2) the potential endlessness of the state space of the

program under test. Dynamic symbolic execution is an effective test input generation

technique. It offers a directed automated search mechanism to direct path exploration

over the path space of the program in a desired manner. This feature can be used, in

collaboration with static analysis, to actively search for specific paths leading to buffer

overflows. This observation was crucial to the development of our approach.

To this end, we propose a goal-oriented testing approach, where a goal is a potential

safety violation and the testing approach is to generate test inputs to uncover the

violation. We used static runtime verification to diagnose potential safety violations and

dynamic symbolic execution to perform test input generation. A major challenge in such

an application of dynamic symbolic execution is the combinatorial explosion problem

of the path space. To address this fundamental scalability issue, we take advantage of

data dependence analysis to identify a root cause leading to the execution of the goal

and use the chaining guided search algorithm GUIDER to effectively perform dynamic

symbolic execution for exploring the test goal.

In the remainder of this section, we propose SEBO — a dynamic Symbolic Execution-

based Buffer Overflow testing framework. The main focus of SEBO is to explore buffer

overflow vulnerabilities in C programs by combining static runtime verification and

dynamic symbolic execution techniques. The challenging problems motivating the

development of SEBO can be summarized as follows:

• Static runtime verification can ensure memory safety by inserting runtime

checks to verify potential overflow vulnerabilities on buffer operations.

However, it lacks the ability to uncover circumstances under which buffer

operations are vulnerable.

118

• Dynamic symbolic execution is an effective technique to automate test input

generation. However, dynamic symbolic execution itself is not sufficient to

trigger program bugs. Moreover, the path space explosion is problematic to

apply this technique.

The execution mechanism of SEBO is therefore designed to first diagnose potential

buffer overflow vulnerabilities using DEPUTY [31]—a novel type system for pointers—

and then to explore actual vulnerabilities using CREST [19]—an extensible symbolic

execution engine—to perform dynamic symbolic execution for test input generation. To

enable this mechanism, SEBO consists of the following design components: buffer

overflow checking, dynamic symbolic execution-based test input generation, and goal-

oriented testing. In the following subsections, we describe these design components that

comprise our proposed framework SEBO for buffer overflow vulnerability detection.

6.3.1 Buffer Overflow Checking

Given a C program under test, SEBO uses DEPUTY [31]—a novel type system for

pointers, to enforce type and memory safety in the program. Type safety means that the

runtime values of all memory locations correspond to their compile-time type, and

memory safety means that all memory accesses are within the bounds of an allocated

memory region. Enforcing these safety properties is an important step toward improving

C programs as this eliminates many common security vulnerabilities, such as buffer

overflows. In DEPUTY, all buffer operations are verified by a hybrid type-checking

approach. In the first place, DEPUTY verifies buffer operations by statically reasoning

about runtime values of expressions in the program. For buffer operations where static

verification is not sufficient, DEPUTY enforces safety policies by inserting runtime

checks. Any violations to runtime checks reveal errors in the program. Programmers can

use runtime checks to check under which circumstances violations occur.

SEBO translates runtime checks into test goals, each test goal expresses the opposed

semantic of a runtime check, e.g. by negating runtime check conditions. A test goal

encodes conditions under which buffer operations are vulnerable. As a result, the goal

of exploring buffer overflow errors can now be reduced to finding test inputs to explore

test goals. To illustrate, consider the piece of code given in Figure 6.6(a), which assigns

‘?’ symbol to buf array of size SZ (= 1000) at the index index. DEPUTY verifies this

memory write operation may not be safe and inserts a runtime check right before this

119

if (index < 0 || index > SZ)
 return;

 if (index < 0 || index > SZ)
 return;

 if (index < 0 || index > SZ)
 return;

//BAD: overflow if index == SZ
buf [index] = ‘?’; CLeq((buf+index)+1, buf+1000,

 “pointer access check”,
 “(buf+index)+1 <= buf+1000”,
 __LOCATION__);

if (index >= 1000)
 __SEBO_ERROR();

 buf [index] = ‘?’; buf [index] = ‘?’;

(a) SOURCE CODE (b) DEPUTY OUTPUT (c) SEBO OUTPUT

Figure 6.6: Buffer overflow vulnerability example

write operation Figure 6.6(b). This check CLeq is a pointer access check with the

condition (buf + index) + 1 <= buf + 1000, implying that the index to buf

array must be less than its size. SEBO expresses this check in the meaning that if the

index index to buf array is equal or greater than its size (index >= 1000), then

there is a memory access error __SEBO_ERROR(). Figure 6.6(c) shows SEBO’s output.

Note, however, that runtime checks inserted by DEPUTY can be false positives, or be

redundant with respect to checking memory safety failures. In DEPUTY, to eliminate

redundant checks, type checking is followed by a flow-sensitive optimization phase.

Specifically, it implements a global dataflow analysis for copy propagation and linear

machine arithmetic to reason statically checks that are unnecessary. The quality of the

optimizer, however, is limited due to complex constraints, data structures, and native

calls of real world software. This is the intrinsic nature of static analysis techniques.

SEBO does not attempt to prove redundant runtime checks; instead, it actively

automatically finds test inputs to falsify runtime checks for buffer overflow detection.

6.3.2 Dynamic Symbolic Execution-Based Test Generation

SEBO uses CREST [19] — an extensible symbolic execution engine — to perform test

input generation. After the buffer overflow checking phase, the output program

(together with a set of test goals) is instrumented for concrete and symbolic execution.

In CREST, one can configure search algorithms to carry out path exploration. The output

is explored test goals and corresponding test inputs. We now illustrate our statement

above that dynamic symbolic execution itself is not sufficient to trigger program bugs.

In Figure 6.6(a), the given code adds three more paths into the path space, these being:

path 1: index < 0

path 2: index >= 0 ר index > 1000

path 3: index >= 0 ר index <= 1000

120

Obviously the execution of paths 1 and 2 is safe concerning the memory write operation

through the buf array since the control flow of these two paths never can reach this

memory access. The execution of path 3 necessitates the satisfiability of the constraint

system: index >= 0 ר index <= 1000. For this, the underlying constraint solver

yields one out of 1001 possible solutions to explore this path. That is, there is less than a

0.1% chance that the solution: index = 1000 can be obtained to trigger the one-off-

bound array access error in the code. Unsafe programming languages like C permit

vulnerable memory operations to execute and dynamic symbolic execution alone is

therefore not sufficient to expose memory defects.

In SEBO, as shown in Figure 6.6(c), the buffer overflow error can obviously be exposed

by exploring __SEBO_ERROR() with condition index >= 1000. This condition,

when associated with the path constraint of path 3, enforces the constraint solver to

return the solution: index = 1000 to uncover the overflow vulnerability. The use of

DEPUTY is hence essential in detecting buffer overflow vulnerabilities in low level C

programming.

6.3.3 Goal-Oriented Testing

The overall objective of SEBO is to strengthen the buffer overflow detection capability

by combining static runtime verification and dynamic symbolic execution techniques. In

SEBO, any search algorithm can be employed to perform path exploration for exploring

buffer overflow errors. Recognizing the combinatorial explosion problem of path space

experienced by dynamic symbolic execution, the SEBO design reduces the testing task to

exploring given test goals in the code rather than exhaustively exploring all feasible

program paths. This may lead to a significant reduction in the number of program paths

that need to be explored. Our search algorithm GUIDER, proposed in this chapter 4,

attempts to achieve this goal.

Figure 6.7 presents the logical components and the basic workflow of the SEBO

framework. It also illustrates how SEBO extends the functionality of the DEPUTY

framework to identify potential memory violations and the functionality of the CREST

platform to automate test input generation for buffer overflow vulnerability testing.

Basically, the architecture of SEBO is similar to that of the SCT structural coverage

testing framework presented in chapter 5 (Figure 5.3). The two frameworks differ as to

their purpose. SEBO aims to test security vulnerabilities while SCT seeks to improve

121

Figure 6.7: The proposed buffer overflow vulnerability testing framework

structural coverage results. The logical component Search Engine in SEBO performs

path exploration for exposing overflow defects, not coverage elements.

As shown in Figure 6.7, the input to the SEBO framework is a C program under test ܲ;

and the framework first uses DEPUTY to enforce memory safety in the program. The

output after this phase is another ܲԢ but type- and memory-safe C program, with a set of

runtime checks inserted into ܲԢ. These runtime checks then are interpreted in forms of

test goals, where the testing task is to active search algorithms to perform dynamic

symbolic execution to expose test goals. This procedure is similar to that of the SCT

structural coverage testing framework, where the Search Engine component interacts

with Symbolic Execution Engine (CREST) and SMT Solver (YICES) components to

122

automatically perform test input generation. In order to effectively and efficiently carry

out dynamic symbolic execution, SEBO employs GUIDER to guide path exploration. The

output is a set of detected buffer overflow vulnerabilities detected, together with test

inputs to witness the presence of these vulnerabilities.

In the implementation, SEBO extends DEPUTY [31] with approximately 500 lines of

OCaml code to transform runtime checks generated by DEPUTY into test goals. We have

also modified the logical component Search Engine to perform GUIDER for the purpose

of exploring buffer overflows. In the next section, we present experiments conducted to

evaluate the effectiveness of SEBO in testing buffer overflow defects for C programs.

6.4 Evaluation

The overall objective of this research project is to explore automated techniques in order

to improve the efficiency of software testing. In this chapter, we have presented SEBO,

our proposed approach for buffer overflow testing for C programs. SEBO has two

objectives: (1) to mitigate the low precision of static analysis, particularly of static

runtime verification for memory safety checking; (2) to optimize path exploration in

dynamic symbolic execution for effectively and efficiently discovering buffer

overflows. We now describe the evaluation conducted to assess how effective our

proposed approach is in supporting buffer overflow testing. Specifically, we assess the

effectiveness of SEBO by considering the following four research questions:

• In buffer overflow detection, how does SEBO perform in comparison with

systematic depth-first search?

• In buffer overflow detection, how does SEBO perform in comparison with

coverage-optimized search?

• How does the time setting influence the capability of search algorithms in buffer

overflow detection?

• How does the number of paths explored influence the capability of search

algorithms in buffer overflow detection?

In the following subsections, we present (1) the set of selected test subjects; (2) our

evaluation methodology; (3) the experimental results; and (4) our discussion of the

results. The purpose of having the above research questions in the evaluation is

explained in section 6.4.2.

123

Table 6.1: An overview of the test subjects selected in the evaluation of the SEBO framework for

buffer overflow testing

Program Subject Vulnerability # Loc # Statements # Branches

apache 1 CVE-2004-0940 167 292 94

 2 CVE-2006-3747 184 270 48

edbrowse 3 CVE-2006-6909 161 179 38

gxine 4 CVE-2007-0406 58 47 6

libgd 5 CVE-2007-0455 318 386 96

MADWiFi 6 CVE-2006-6332 134 108 20

NetBSD-libc 7 CVE-2006-6652 166 200 42

OpenSER 8 CVE-2006-6749 160 266 62

 9 CVE-2006-6876 111 119 20

samba 10 CVE-2007-0453 102 68 8

SpamAssassin 11 BID-6679 57 91 16

bind 12 CA-1999-14 166 119 18

 13 CVE-2001-0011 362 299 66

wu-ftpd 14 CVE-1999-0368 278 383 66

 15 CVE-1999-0878 89 86 10

 16 CVE-2003-0466 257 351 62

sendmail 17 CVE-1999-0047 481 544 148

 18 CVE-1999-0206 108 97 22

 19 CVE-2001-0653 269 200 52

 20 CVE-2002-0906 66 71 10

 21 CVE-2002-1337 611 749 246

 22 CVE-2003-0161 115 104 30

 23 CVE-2003-0681 92 104 22

Total — — 4512 5133 1202

6.4.1 Test Subjects

We used the buffer overflow benchmark developed by Ku et al. [80] to conduct the

evaluation. The benchmark consists of 23 buffer overflow vulnerabilities extracted from

historic vulnerabilities in 12 widely used applications written in C programming

language. Most of the vulnerabilities come from the Common Vulnerabilities and

Exposures (CVE) database [37]. They cover a wide variety of overflow errors with

sufficient complexity to make analysis challenging. Each vulnerability comes with a set

of different types of programs, representing different levels of difficulties of

124

vulnerability exploration. We selected the most difficult programs of sizes from 50 to

650 lines of C code to perform the experiments. Table 6.1 gives an overview of these

selected test subjects. Note that a program may have several test subjects, and each test

subject represents a particular buffer overflow vulnerability. For example, the FTP

server daemon wu-ftpd has three test subjects, these being 14, 15 and 16; and these test

subjects corresponds to vulnerabilities CVE-1999-0368, CVE-1999-0878 and CVE-

2003-0466, respectively.

6.4.2 Methodology

Using the same set of test subjects, we compared the buffer overflow detection of our

proposed testing framework SEBO with that of two widely adopted search algorithms:

depth-first search (or DFS) and control-flow graph directed search (or CFGDIRECTED).

DFS [62] offers a systematic search mechanism to exhaustively explore all feasible

program paths and much research has confirmed its ineffectiveness in practical

situations due to the combinatorial explosion of the path space. We therefore evaluated

to what extent SEBO can mitigate this path explosion problem as suffered by DFS to

explore overflow errors. In contrast to DFS, CFGDIRECTED [19] is an example of a

coverage-optimized approach. This search algorithm makes use of the static control

flow graph of the program to guide the search down short static paths to unexplored

code. Burnim and Sen [19] showed that CFGDIRECTED was the best search algorithm to

maximize structural coverage. We therefore evaluated SEBO against CFGDIRECTED since

recent approaches tend to strengthen error detection capabilities by improving structural

coverage, for instance KLEE [26] and SAGE [64].

It is important to notice that in the context of the SEBO framework, a potential buffer

overflow error is encoded as a statement in the program. As a result, the task of testing

for buffer overflow detects is actually reduced to exploring specific code elements of

the program. Any path exploration algorithm can therefore be employed to perform

dynamic symbolic execution for discovering buffer overflow vulnerabilities. We limited

our evaluation to DFS and CFGDIRECTED, but we could have also compared SEBO with

testing tools such as PEX [128] and FITNEX [141], which were used in the previous

chapter for the evaluation of structural coverage testing. For this experimental

benchmark, most test subjects involve intensive pointer usages that are not easy to

convert into C# code. We also did not consider random input search (or RANDOM) in

125

this evaluation, due to its poor performance in test input generation as presented in the

previous chapter.

For the time setting, we used 4 time limits (1 minute, 5 minutes, 10 minutes, and 30

minutes) and conducted the experiments using the following strategy. With a given

search algorithm, we started with the first time limit (1 minute) and ran it on all test

subjects, 1 minute for each subject. For each test subject, we captured: (1) if the buffer

overflow vulnerability was uncovered; (2) the number of test goals explored; (3) the

time amount spent; and (4) the number of paths explored. For all the test subjects that

the search algorithm could not uncover vulnerabilities, we conducted the experiments

again but on the next time limit (5 minutes). This procedure was repeated for the 10 and

30 minute time limits. By doing this, we could study the impact of time on the

capability of search algorithms in exploring buffer overflow errors. Note that we

stopped a search algorithm when it could explore all test goals of the current test subject

and recorded the time used. If at least one test goal was explored, we considered the

vulnerability to have been uncovered and did not move to larger time limits. This was

done with the understanding that (1) if an error was detected, fixing it may prevent other

errors to happen; and (2) due to the limitation of static runtime verification, not all test

goals in SEBO represent real buffer overflow errors.

All experiments were run on 3GHz CoreTM2 Duo CPU with 4GB of RAM, running

Ubuntu GNU/Linux with a 32-bit kernel version 3.2.0–38. In the SEBO approach, a test

subject is first analysed to enforce memory safety by means of runtime checks. These

runtime checks then were interpreted in the form of test goals, where the testing task

was to activate search algorithms to perform dynamic symbolic execution to expose test

goals.

6.4.3 Experimental Results

Table 6.2 summarizes the experimental results we obtained after the first testing time

limit (1 minute). DFS was able to successfully uncover buffer overflow vulnerabilities

for 13 of the 23 test subjects. Remarkably, for 10 of these uncovered vulnerabilities,

DFS accomplished the path exploration process within 1 or 2 seconds. A manual

investigation of the 10 subjects showed that all the test subjects had only one test goal

and the structure of the program leading to the execution of the test goal was amenable

to depth-first orders. This enabled DFS to uncover the test goal within a small number of

126

Table 6.2: Testing results of DFS, CFGDIRECTED, and SEBO when performed on 23 subjects in 1 minute

Program Subject DFS CFGDIRECTED SEBO

apache 1 N / (0/3) / 60 / 2741 Y / (3/3) / 5 / 1587 Y / (3/3) / 1 / 51

 2 N / (0/1) / 60 / 997 N / (0/1) / 60 / 22041 Y / (1/1) / 0 / 29

edbrowse 3 N / (0/1) / 60 / 668 N / (0/1) / 60 / 5874 Y / (1/1) / 1 / 36

gxine 4 Y / (1/1) / 0 / 17 N / (0/1) / 60 / 21747 Y / (1/1) / 0 / 17

libgd 5 N / (0/1) / 60 / 15843 Y / (1/1) / 5 / 1661 Y / (1/1) / 6 / 1050

MADWiFi 6 Y / (1/2) / 0 / 1 Y / (1/2) / 60 / 18057 Y / (1/2) / 0 / 1

NetBSD-libc 7 N / (0/1) / 60 / 1477 N / (0/1) / 60 / 19186 Y / (1/1) / 1 / 37

OpenSER 8 N / (0/1) / 60 / 13240 N / (0/1) / 60 / 19810 Y / (1/1) / 0 / 53

 9 N / (0/1) / 60 / 17792 N / (0/1) / 60 / 21221 Y / (1/1) / 0 / 23

samba 10 Y / (1/1) / 0 / 17 N / (0/1) / 60 / 21515 Y / (1/1) / 0 / 18

SpamAssassin 11 Y / (1/1) / 0 / 199 Y / (1/1) / 0 / 22 Y / (1/1) / 0 / 15

bind 12 Y / (1/1) / 0 / 2 Y / (1/1) / 0 / 6 Y / (1/1) / 0 / 4

 13 Y / (1/1) / 0 / 30 N / (0/1) / 60 / 20820 Y / (1/1) / 0 / 33

wu-ftpd 14 Y / (1/1) / 0 / 40 N / (0/1) / 60 / 19780 Y / (1/1) / 1 / 50

 15 Y / (1/1) / 1 / 28 N / (0/1) / 60 / 21688 Y / (1/1) / 0 / 28

 16 Y / (1/1) / 1 / 56 N / (0/1) / 60 / 20683 Y / (1/1) / 3 / 661

sendmail 17 Y / (2/7) / 60 / 8693 Y / (4/7) / 60 / 12855 Y / (4/7) / 60 / 5254

 18 Y / (2/3) / 60 / 3270 N / (0/3) / 60 / 21700 Y / (2/3) / 60 / 7003

 19 N / (0/1) / 60 / 11860 N / (0/1) / 60 / 18239 N / (0/1) / 60 / 3360

 20 Y / (1/1) / 0 / 4 Y / (1/1) / 0 / 4 Y / (1/1) / 0 / 5

 21 N / (0/28)/ 60 / 647 N / (0/28)/ 60 / 2841 Y / (1/28)/ 60 / 1483

 22 N / (0/3) / 60 / 1908 N / (0/3) / 60 / 11417 Y / (2/3) / 60 / 2620

 23 Y / (1/2) / 60 / 10685 N / (0/2) / 60 / 20342 Y / (2/2) / 0 / 42

Note: The testing result has the format: [Y | N] / (X/Y) / T / P, where Y means the vulnerability was

uncovered and N otherwise, X is the number of test goals explored, Y is the total number of test goals of

the test subject, T is the time amount spent (measured in seconds), and P is the number of paths explored.

path explorations. For the other 3 cases, DFS timed out while attempting to uncover all

the test goals of each test subject.

CFGDIRECTED uncovered 7 of 23 buffer overflow vulnerabilities, demonstrating a less

effective performance than DFS for the first testing time limit. Amongst these 7 cases,

CFGDIRECTED was able to terminate the path exploration process within 5 seconds for 5

cases; for the other 2 cases, it timed out. Noticeably, for several test subjects where DFS

could discover overflow errors within a matter of a few seconds, CFGDIRECTED could

127

not even though it explored a considerable number of paths. CFGDIRECTED algorithm

failed to uncover 16 cases within 1 minute of testing.

SEBO demonstrated a significantly improved performance over both DFS and

CFGDIRECTED. It discovered in total 22 buffer overflow vulnerabilities. The only case

that SEBO failed to uncover after one minute of testing was sendmail/CVE-2001-0653.

Amongst the 22 cases uncovered, SEBO timed out in 4 cases while attempting to explore

all test goals. For the other 18 cases, SEBO optimized path exploration to uncover

vulnerabilities within relatively small numbers of paths explored. In the case of wu-

ftpd/CVE-2003-0466, DFS took 1 second and explored 56 paths to discover the

vulnerability, while SEBO spent 3 seconds and explored 661 paths to achieve the same

result.

In summary, after the first testing time limit, DFS failed in 10 cases, CFGDIRECTED 16

cases, and SEBO just 1 case to uncover buffer overflow vulnerabilities. We continued

the experiments on these failing cases with extended testing time limits. The purpose

this was to determine if the capability of search algorithms in detecting buffer overflow

vulnerabilities is improved when the testing time is expanded through the ability to

explore many more program paths. We started with 5 minutes, moved to 10 minutes,

and finally 30 minutes. In the consideration of the relatively small size of the selected

test subjects, we decided to stop after 30 minutes. The experimental results are given in

Tables 6.3–6.5. Note that subjects in “Subject” columns refer to the corresponding

vulnerabilities in Table 6.1 and the figures are the numbers of paths explored by search

algorithms within given testing time limits.

After 5 minutes of testing, DFS (Table 6.3) timed out in all 10 cases. On sendmail/ CVE-

2003-0161 subject, it was able to uncover the buffer overflow vulnerability, however.

When the 9 remaining failing cases were tested on the extended time limit (10 minutes),

none could be explored by this search algorithm. When the time limit was set to 30

minutes, DFS discovered the buffer overflow error of libgd/CVE-2007-0455 only after

606 seconds ,with 146,631 paths explored.

For CFGDIRECTED (Table 6.4), of the 16 failing cases, only one, sendmail / CVE-2002-

1337, was uncovered after 5 minutes. For the remaining 15 cases, on both the 10 minute

and 30 minute time limits, CFGDIRECTED was not able to uncover any cases.

Remarkably, with increases in the testing time we witnessed a massive increase in the

128

Table 6.3: Numbers of explored paths by DFS on 10 subjects

after 5 minutes, 10 minutes and 30 minutes of testing

Program Subject
DFS

5 minutes 10 minutes 30 minutes

apache 1 8229 16348 47779

 2 1805 2568 5705

edbrowse 3 3159 6114 18299

libgd 5 74053 144913 146631

NetBSD-libc 7 4985 9354 25168

OpenSER 8 63037 123228 357298

 9 82795 162538 466363

sendmail 19 56872 108805 313130

 21 2497 4522 25496

 22 2999 — —

Table 6.4: Numbers of explored paths by CFGDIRECTED on 16 subjects

after 5 minutes, 10 minutes and 30 minutes of testing

Program Subject
CFGDIRECTED

5 minutes 10 minutes 30 minutes

apache 2 105970 209983 621714

edbrowse 3 9793 19561 108802

gxine 4 105717 208689 621818

NetBSD-libc 7 91535 179648 549749

OpenSER 8 93380 185361 587953

 9 98522 200057 598077

samba 10 105025 211813 623439

bind 13 96970 198744 574827

wu-ftpd 14 92692 186849 563949

 15 101617 205735 614851

 16 94752 196361 561692

sendmail 18 99612 204932 607686

 19 85548 172897 545163

 21 19227 — —

 22 56374 114811 350075

 23 97270 194751 597552

129

Table 6.5: Numbers of explored paths by SEBO on 1 subject

after 5 minutes, 10 minutes and 30 minutes of testing

Program Subject
SEBO

5 minutes 10 minutes 30 minutes

sendmail 19 8424 10244 10348

number of program paths explored by both DFS and CFGDIRECTED. However, looking

for a path to trigger the execution of buffer overflow errors is problematic for these

search algorithms even though we were testing programs with a few hundreds of lines

of code.

SEBO (Table 6.5) failed to uncover the buffer overflow vulnerability of its only failed

case in all time limits. Note however that on this test subject both DFS and

CFGDIRECTED also failed. This is because on this test subject, sendmail/CVE-2001-

0653, DEPUTY is able to trigger the buffer overflow error but it is not able to trigger the

integer underflow error, which is the root cause leading to the buffer overflow. Dynamic

symbolic execution that only focuses on path exploration is not sufficient to uncover

this buffer overflow vulnerability.

6.4.4 Discussion

We conclude the experiments with the following observations. First, our proposed

buffer overflow testing framework SEBO, in combination with our proposed chaining

guided search algorithm GUIDER, demonstrated a significant improvement over both

DFS and CFGDIRECTED in both the capability to uncover buffer overflow errors and the

capability to optimize the path exploration. For several test subjects, SEBO could explore

the buffer overflow errors within a matter of a few seconds, while DFS and

CFGDIRECTED both failed even after 30 minutes of testing. This illustrates the efficiency

of using data dependence analysis in guiding dynamic analysis. Second, while the time

setting does influence the capability of search algorithms in buffer overflow detection,

its impact is relatively small. Finally, exploring more paths has very little impact on

improving the buffer overflow detection capability.

We evaluated our testing framework using only one benchmark of 23 relatively small-

sized programs. The evaluation setting used two baseline search algorithms and four

testing time limits. It is possible that other programs and other evaluation settings would

130

exhibit different results, and in the future we intend to extend our proposed approach

and conduct experiments on large programs to properly assess the validity of our

proposal and observations. We believe that when testing sizeable and complex

programs where the path space is too large to exhaustively explore, our proposed

approach’s ability to break down the path space and to precisely guide the path

exploration by focusing on selected aspects of semantics is essential for optimizing the

very expensive cost of performing dynamic symbolic execution to strengthen security

vulnerability detection.

6.5 Summary

Structural coverage criteria offer useful software measures to assess the adequacy of

software testing. Enforcing test adequacy is an attempt to improve the quality and

reliability of software upon deployment and the confidence that users can have in it. In

the context of the potential infiniteness of the state space, the use of structural coverage

criteria is not adequate for detecting software defects. Furthermore, it is not possible to

prove the correctness of software. In practice, proposed testing techniques tend to

maximize the capability of detecting software defects by evaluating the software against

various quality factors such as functionality, performance, reliability, and security.

Security has recently become a very serious issue in the practice of software

development [63], [122]. Approximately 50% of security vulnerabilities are introduced

at the source code level [102] and buffer overflows account for nearly half of all known

security vulnerabilities in real world software [135]. Our proposed buffer overflow

testing framework SEBO has been developed to improve the capability of automated

software testing for security vulnerability detection. Perhaps, the most distinguishing

feature of SEBO is the use of our proposed chaining guided search algorithm GUIDER,

which is guided by data dependency analysis and is based on dynamic symbolic

execution to significantly enhance the efficiency of path exploration for automatically

exploring memory safety violations in C programs. GUIDER has been shown to be more

effective and efficient than standard search algorithms such as DFS and coverage-

optimized such as CFGDIRECTED in dealing with the path space explosion problem of

dynamic symbolic execution.

131

In order to perform buffer overflow checking, dynamic symbolic execution-based

techniques such as EXE [30] and SAGE [64] systematically inject assertions into the

program during test input generation. This may lead to a performance burden on the

entire testing system, which is already slow because of the expense of performing

dynamic symbolic execution and the unpredictable effectiveness of constraint solvers.

PEX [128] and KLEE [26] work on .NET Framework and LLVM [83], respectively,

where memory safety is verified by the underlying compiler. In our SEBO testing

framework, DEPUTY [31] was utilized to provide a goal-oriented testing approach, such

that dynamic symbolic execution was used for uncovering buffer overflow

vulnerabilities instead of systematically exploring all possible program paths.

Finally, the preliminary evaluation conducted against 23 buffer overflow vulnerabilities

showed a significant improvement of our search algorithm over two popular state-of-

the-art search algorithms in both the capability to uncover vulnerabilities and the

capability to optimize path exploration. The evaluation also provides valuable

observations in the context of developing techniques to perform dynamic symbolic

execution for uncovering buffer overflow vulnerabilities.

132

Chapter 7

Conclusion

7.1 Summary ... 133

7.2 Limitations of Our Work .. 136

7.3 Future Work ... 138

7.4 Final Thoughts ... 139

Software pervades every aspect of our life: businesses, financial services, medical

services, communication systems, entertainment, and education are largely dependent

on software. With this increasing dependency on software, we expect software to be

reliable, robust, safe and secure. Unfortunately, the reliability of everyday software is

questionable. Software failures are reported daily together with substantial financial

consequences and reputational damage to businesses, as well as stress and

inconvenience to customers. In the practice of software development, although much

progress has been made in software verification and validation, software testing remains

one of the primary ways widely adopted to improve the reliability of software. Often

half of the total software development costs are devoted to testing. Even after such a

huge investment, serious defects and security breaches are common in widely used and

well-tested software. This is partly because testing software is mostly manually

performed, and thus expensive and unreliable.

In this thesis, we explored and developed effective methods to improve the degree of

the attainable software testing automation. In particular, this thesis looked closely at

methods to effectively automate test input generation, a fundamental activity of

software testing. These methods use ideas from symbolic analysis, constraint solving,

dynamic program analysis, control and data dependence analysis, and static runtime

verification, and apply them to build effective testing frameworks to strengthen testing

objectives such as structural coverage testing and security testing. This final chapter

summarizes the development of this thesis, discusses the issues encountered, and

suggests possible future directions for research in light of this study’s findings.

133

7.1 Summary

Chapter 1 of the thesis introduced the motivations for undertaking this research, defined

the study scope, and finally outlined the thesis structure. This research was primarily

focused on improving the efficiency of software testing by exploring and developing

techniques to effectively and efficiently automate the test input generation process. The

testing objectives explored in this study were structural coverage testing and security

vulnerability testing. We also highlighted the contribution of our study to the existing

body of scientific knowledge as well as the research publications that have been

generated by this research.

In chapter 2, after illustrating the function of testing in software quality assurance,

testing activities, and testing throughout the life cycle of software development, we

emphasized the need for automated software testing to improving the quality and

reliability of software. The motivating force for the development of automated testing is

the intensive intervention of humans in every part of the software testing process which

makes testing laborious, expensive, and unreliable.

The chapter continued with an extensive literature review of automated test input

generation techniques. Specifically, we reviewed random testing, symbolic execution,

dynamic symbolic execution, search-based testing, and the chaining approach—the five

main automated test input generation techniques proposed over the last three decades.

We evaluated these techniques by comparing and contrasting their strengths and

shortcomings in handling large size and high complexity of real world software

systems.

Among the above techniques, dynamic symbolic execution has been shown to be an

effective technique to automate test input generation. It intertwines the strengths of

random testing and symbolic execution to achieve the scalability and high precision of

dynamic analysis and the power of the underlying constraint solver. We thus chose

dynamic symbolic execution as an enabling technology for the development of this

thesis. The fundamental scalability challenge facing dynamic symbolic execution is the

combinatorial explosion of the path space. The development of this thesis involved

exploring and developing methods to address the path explosion problem in dynamic

symbolic execution to improve testing objectives such as structural coverage testing and

134

security testing. Chapter 2 concluded by presenting the three main objectives of this

research.

We presented the theoretical background of dynamic symbolic execution in chapter 3.

This technique couples concrete and symbolic execution to explore the path space of a

program. Concrete execution enables symbolic execution to alleviate the effects of the

incompleteness of the underlying reasoning engines. For instance, concrete execution

helps simplify the constraints that theorem provers cannot handle, resolves aliases for

pointers, and handles the unavailability of source code. On the other hand, symbolic

execution helps establish an automated directed exploration mechanism to explore the

program path space. It generates test inputs that lead the program to different concrete

executions. The biggest scalability challenge facing dynamic symbolic execution was

also highlighted in this chapter. An attempt to mitigate this challenge is to develop

effective techniques to prioritize path exploration in order to achieve the best results of

specific testing objectives.

A goal-oriented dynamic test generation approach was proposed in chapter 4, where a

goal is a code element, e.g. statement or branch, in the program and the testing approach

attempts to find test inputs to uncover the goal. This is referred to as the reachability

problem in computer science. We proposed using the chaining approach to guide path

exploration in dynamic symbolic execution. Given a test goal to explore, the chaining

approach first performs data dependence analysis to identify statements that affect the

execution of the test goal and then uses these statements to create sequences of events

that are to be executed prior to the execution of the test goal. The advantage of doing

this is three-fold: (1) it precisely focuses on getting the test goal to be executed; (2) it

forms a search mechanism to effectively perform the path exploration process; and (3) it

slices away code segments that are irrelevant to the execution of the test goal. These

three strengths together form a search mechanism to guide the path exploration process

into potentially unexplored but promising areas of the program path space to unclose

high-complexity code.

Based on the chaining approach, we proposed the search algorithm GUIDER. GUIDER is

driven by the chaining mechanism and is based on dynamic symbolic execution to

perform path exploration for exploring the test goal. GUIDER distinguishes itself from

existing search algorithms in three major aspects: (1) it mitigates the path explosion

135

problem by centralizing on data dependences which truly affect the executability of the

test goal; (2) it is able to refine path exploration when the local search space is

saturated; and (3) it determines control dependences on the fly and exploits the static

program structure to optimize path exploration.

Based on the goal-oriented dynamic test generation approach proposed in chapter 4, we

proposed the structural coverage testing framework SCT in chapter 5. In SCT, a goal is a

coverage element of the program under test and the testing approach is to find test

inputs to uncover the test goal. SCT attempts to obtain the branch coverage criterion for

the program under test. SCT was implemented based on the CREST platform, an

extensible symbolic execution engine. We then evaluated SCT against 15 test subjects,

both simulated and real world ones, and compared it with 5 different search algorithms

widely adopted in research community. The experimental results demonstrated the

capability of SCT to both effectively improve branch coverage results and efficiently

optimize path exploration to uncover code elements that the other search strategies

could not.

Structural coverage criteria have long been advocated in the software industry to assess

the adequacy of software testing [20], [56], [117], [132]. Because exhaustively testing

software is infeasible, an adequacy criterion can be considered as a stopping rule for

determining whether sufficient testing has been carried out for it to be terminated. Test

adequacy criteria can also provide measurements of test quality where a degree of

adequacy associated with a test set acts as a level of confidence about the correctness of

the software under test. A high coverage degree obtained implies that the program is

more thoroughly tested and has a lower chance of containing software defects than a

program with low structural coverage. Therefore, ensuring high structural coverage

results is an important goal of software testing and our proposed framework SCT

represents an attempt to achieve this goal.

In chapter 6, the security vulnerability testing framework SEBO was proposed to test

buffer overflow vulnerabilities. In SEBO, a goal is a potential safety violation and the

testing approach attempts to find test inputs to uncover violations. We used static

runtime verification (or DEPUTY [31]) to diagnose potential safety violations and

dynamic symbolic execution to perform test input generation. We evaluated SEBO

against 23 buffer overflow vulnerabilities and compared it to two widely adopted search

136

strategies, namely depth-first search (DFS) and control flow graph-directed search

(CFGDIRECTED). We observed a significant improvement of our search algorithm over

both DFS and CFGDIRECTED in both the capability to uncover buffer overflow errors and

the capability to optimize path exploration. For several test subjects, SEBO could explore

the buffer overflow errors within a matter of a few seconds, while DFS and

CFGDIRECTED both failed even after 30 minutes of testing.

The development of our security vulnerability testing framework SEBO represents an

attempt to improve several aspects in software testing. Firstly, software testing is

primarily focused on finding defects and about 55% of all defects are introduced during

programming [67], the phase in which actual coding takes place. Secondly, structural

coverage criteria provide useful measures to guide software testing; however, they do

not provide a direct mechanism to discover software defects. Thirdly, testing security

vulnerabilities such as buffer overflow often goes beyond the capability of traditional

functional testing [137]. And last but not least, while researchers have explored and

developed techniques to perform dynamic symbolic execution for error detection,

improving structural coverage results does not directly imply an improvement in the

capability to detect errors, especially subtle deep errors such as buffer overflow

vulnerability defects. In our experiments, we showed that extending testing time limits

and even exploring more program paths had little impact on uncovering overflow

defects. The experiments provided valuable findings in which SEBO demonstrated its

capability in improving the efficiency of testing security vulnerability defects.

7.2 Limitations of Our Work

This thesis has explored and developed techniques to improve the solving of the

reachability problem. The problem statement was simple: given a test goal (e.g.

statement or branch) in the program, find test inputs to uncover the test goal. The

starting point was a test input generation technique — dynamic symbolic execution —

and the primary objective was to explore methods to handle the path explosion problem

for effectively and efficiently exploring specific test goals.

From the viewpoint of program comprehension, the execution of a test goal may be

affected by only specific code segments in the program and so we can slice away code

segments that are irrelevant to the execution of the test goal. This is referred to as a

137

program slicing technique [131] and can be used to perform path exploration for

exploring test goals [113], [123]. Program slicing takes into account both control and

data dependencies, and thus the resulting slice may be too large. It is important to note

that even a single small piece of code can yield a number of paths that is too huge to be

exhaustively explored. The approach proposed in this thesis was to consider only data

dependencies and to adapt control dependencies on the fly. This was implemented in the

GUIDER search algorithm to perform path exploration in dynamic symbolic execution.

However, this approach does exhibit limitations inherent in both static and dynamic

program analysis.

In the path exploration strategy implemented in GUIDER, when the search algorithm is

given a test goal to explore, it first performs data dependence analysis to identify

statements that affect the execution of the test goal, and then guides path exploration to

propagate the effect of these statements up to the goal structure in order to trigger the

execution of the test goal. The efficiency of this path exploration strategy heavily

depends on the results of data dependence analysis, where pointers and calling contexts

are the main sources leading to low precision analysis. In the implementation, we used a

worklist-based dataflow algorithm, which is similar to the worklist algorithm presented

in the work of Atkinson and Griswold [2], to compute data dependencies. This

algorithm employs the Generalized One Level Flow (GOLF) approach [45] to perform

pointer analysis. GOLF is, in general, a flow-insensitive context-insensitive algorithm,

which means the control-flow structure of the program is not considered and calling

contexts are not distinguished. As a result, GOLF can maintain scalability but results in

low precision pointer analysis. The dataflow algorithm to compute data dependencies,

however, is flow-sensitive but context-insensitive. In other words, the data dependence

analysis implemented in GUIDER is not precise. Currently, GUIDER can perform well at

unit testing level, or testing individual procedures without invocations. Extending it to

test whole programs would require significant improvements in pointer analysis as well

as dataflow analysis to accurately compute data dependencies. This is a significant

limitation in the development of the GUIDER algorithm which limits the applicability of

the testing frameworks SCT and SEBO.

GUIDER uses dynamic symbolic execution to perform test input generation and in both

the testing frameworks SCT and SEBO we extended the CREST platform [19] to perform

dynamic symbolic execution. Dynamic symbolic execution has its inherent limitations

138

due to the fact that symbolic execution, constraint generation, and constraint solving

engines are necessarily imprecise. Specifically, dynamic symbolic execution cannot

precisely handle floating point data type variables and non-linear arithmetic operations

such as multiplication, division, modular, and bitwise operations. The unavailability of

source code due to the presence of library calls or third-party components deteriorates

symbolic execution into concrete execution. Pointers, function pointers, and symbolic

offsets do complicate dynamic symbolic execution. Furthermore, CREST is bounded due

to its own implementation limitations. For instance, CREST does not handle pointer

inputs whereas CUTE [124] does; and CREST by using YICES SMT [47] solver does not

deal with non-linear arithmetic theory while PEX [128] by using Z3 [89] does support

specific non-linear arithmetic constraints. In order to tackle these limitations, dynamic

symbolic execution downgrades to a partial form of symbolic execution and random

testing. In the worst case, dynamic symbolic execution becomes a complete form of

random testing, where dynamic symbolic execution is no longer able to utilize the

strengths of symbolic analysis and constraint reasoning engines. Both SCT and SEBO,

which extend CREST to implement dynamic symbolic execution, therefore suffer

significantly from these limitations.

7.3 Future Work

The primary objective of this research was to explore and develop effective techniques

to improve the efficiency of software testing. The starting point was the automated test

input generation technique dynamic symbolic execution. We exploited program

dependencies (e.g. control and data dependencies) to strengthen path exploration over

the potentially infinite program path space for structural coverage testing as well as

security vulnerability testing. However, currently our proposed approach is limited due

to a number of factors, some of which result from the adoption of dynamic symbolic

execution as discussed above. This section suggests future research work that could

improve our current approach.

First of all, improving the precision of pointer analysis is an important step toward

improving the effectiveness of our approach; high precision pointer analysis improves

the accuracy of data dependence computation. A flow-sensitive context-sensitive

pointer analysis such as that proposed by Landi and Ryder [85], Wilson and Lam [136],

or Chatterjee, Ryder, and Landi [34] could be adopted to replace the current flow-

139

insensitive context-insensitive GOLF approach [45]. In addition, researchers could

explore how systematic dynamic test generation can be intertwined with dynamic

points-to analysis [88] to mitigate over-approximations caused by static pointer

analysis. Precisely computing data dependences would greatly support our proposed

search algorithm.

Dynamic symbolic execution is limited due to the effects of the incompleteness of the

underlying reasoning engines. Alleviation of these effects could be achieved by

employing more powerful SMT solvers to support more theories. For instance,

replacing the YICES solver [47] with Z3 [89] would allow CREST to handle non-linear

multiplication, division, and modular operations [144]. Other research might involve

using search-based testing approaches to deal with floating point data type variables

[84]. And for pointers and function pointers, we could even implement pointer solvers

to analyze programs where input can be pointers [124], which go beyond the capability

of current SMT solvers.

Additionally, while the development of path exploration strategies is crucial to

improving the effectiveness of dynamic symbolic execution, dealing with sizable and

complex real world software can require considerable computational power. Parallelism

has been exploited to capacitate dynamic symbolic execution to testing industrial

applications [66]. In the context of goal-oriented testing, parallelism can positively

potentially enhance the efficiency of software testing by employing distinct parallel

tasks to explore distinct test goals.

At this stage, the development of the testing frameworks SCT and SEBO is limited to

structural coverage testing and security vulnerability testing. In security testing, we

mainly concentrated on buffer overflow detection. Future work could explore further

applications of our goal-oriented approach to test other types of errors and application

domains [41], and other research directions such as regression testing [1], [107] and

automated debugging [110].

7.4 Final Thoughts

I commenced my PhD studies in November 2010. In the first six months, I mainly

focused on model checking techniques. I identified that model checking is mostly

applicable to verify hardware and protocol designs, and the result of these initial

140

investigations was a survey paper accepted for the 6th International Conference on

Evaluation of Novel Approaches to Software Engineering.

I then researched automated software testing and conducted an extensive literature

review to assess the current state of research with a special focus on automated test

input generation techniques. Amongst the techniques reviewed, dynamic symbolic

execution, with its ability to intertwine the strengths of random testing, symbolic

execution, and constraint solving engines, appeared to hold much promise for

automating software testing. The fundamental scalability challenge limiting dynamic

symbolic execution is the combinatorial explosion of the path space. To deal with this

scalability issue, techniques such as compositional analysis [58] and abstraction [5]

offer theoretical models to achieve completeness of path-based analysis. An alternative

approach is to develop search heuristics to improve the efficiency of path exploration

instead [35] and our approach proposed in this thesis fits into this research context.

I observed that the execution of a code element can be triggered by propagating

appropriate data flows down to the target structure. I extended the chaining approach

[52] and developed the search algorithm GUIDER to perform dynamic symbolic

execution. The two testing frameworks SCT (for structural coverage testing) and SEBO

(for buffer overflow vulnerability testing) were proposed based on GUIDER. During the

conducting of the experiments, I realized that without an effective path exploration

strategy, dynamic symbolic execution is not sufficient for testing real world software

systems. For instance, in the experiments to evaluate SEBO against 23 buffer overflow

vulnerabilities, dynamic symbolic execution with depth-first search and coverage-

optimized search both failed to discover several vulnerabilities even after 30 minutes of

testing on several test subjects.

The search algorithm GUIDER utilizes control and data dependencies to guide path

exploration. Data dependence computation however is limited due to the flow-

insensitive context-insensitive pointer analysis. In fact, context-sensitivity is the most

challenging research problem for the program analysis community. I strongly believe

that with sufficient research effort to improve pointer analysis, we can improve the

effectiveness of the approaches proposed in this thesis, which are currently limited to

unit testing.

141

References

[1] T. Apiwattanapong, “Identifying Testing Requirements for Modified Software,” Ph.D.
dissertation, Georgia Institute of Technology, Jul. 2007.

[2] D. C. Atkinson and W. G. Griswold, “Implementation Techniques for Efficient Data-
Flow Analysis of Large Programs,” in ICSM, 2001, pp.52.

[3] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random Testing: Theoretical Results and
Practical Implications,” IEEE Transactions on Software Engineering, vol. 38, no. 2,
Mar. 2012, pp. 258–277.

[4] P. Ammann and J. Offutt, “Introduction to Software Testing,” 1st Edition, Cambridge
University Press, Jan. 2008.

[5] S. Anand, C. S. Păsăreanu, and W. Visser, “Symbolic execution with abstract
subsumption checking,” in SPIN, 2006, pp. 163–181.

[6] S. Anand, C. S. Păsăreanu, and W. Visser, “JPF-SE: a symbolic execution extension to
Java PathFinder,” in TACAS, 2007, pp. 134-138.

[7] B. Beizer, “Software Testing Techniques,” 2nd Edition, Itp – Media, Jun. 1990.
[8] A. Bertolino, “ISSTA 2002 panel: is ISSTA research relevant to industrial users?” in

ISSTA, 2002, pp. 201–202.
[9] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams,” in

Future of Software Engineering, 2007, pp. 85–103.
[10] B. Boehm and V. R. Basili, “Software Defect Reduction Top 10 List”, Computer

Journal, IEEE Computer Society Press, vol. 34, no. 1, Jan. 2001, pp. 135–137.
[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A.

Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World,” Communications of the ACM, vol. 53, no. 2,
2010, pp.66-75.

[12] M. Baluda, P. Braione, G. Denaro, and M. Pezzè, “Enhancing structural software
coverage by incrementally computing branch executability,” Software Quality Journal,
vol. 19, pp. 725–751, Dec. 2011.

[13] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with separation
logic,” in APLAS, 2005, pp. 52-68.

[14] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—a formal system for testing and
debugging programs by symbolic execution,” in Proceedings of the international
conference on Reliable software, 1975, pp. 234-245.

[15] E. Bounimova, P. Godefroid, and D. A. Molnar, “Billions and billions of constraints:
whitebox fuzz testing in production,” in ICSE, 2013, pp. 122–131.

[16] D. Binkley, M. Harman, and K. Lakhotia, “FlagRemover: a testability transformation
for transforming loop-assigned flags,” ACM Transactions on Software Engineering and
Methodology, vol. 20, no. 12, Aug. 2011.

[17] D. L. Bird and C. U. Munoz, “Automatic generation of random self-checking test
cases,” IBM Systems Journal, vol. 22, no. 3, 1983, pp. 229-245.

[18] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static analyzer for finding dynamic
programming errors,” Software—Practice & Experience, vol. 30, no. 7, Jun. 2000, pp.
775-802.

[19] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in ASE, 2008,
pp. 443–446.

[20] British Standards Institute, “BS 7925-1 Vocabulary of Terms in Software Testing,”
1998

142

[21] Calleam Consulting Ltd, “Denver Airport Baggage System Case Study,” Retrieved
from: http://calleam.com/WTPF/wp-content/uploads/articles/DIABaggage.pdf.

[22] ComputingCases.org, “A History of the Introduction and Shut Down of Therac-25,”
Retrieved from:
http://computingcases.org/case_materials/therac/case_history/Case%20History.html.

[23] CREST, “Automatic Test Generation Tool for C,” Retrieved from:
http://code.google.com/p/crest/.

[24] L. A. Clarke, “A system to generate test data and symbolically execute programs,”
IEEE Transactions on Software Engineering, vol. 2, pp. 215–222, May 1976.

[25] P. D. Coward, “Symbolic Execution Systems - A Review,” Software Engineering
Journal, vol. 3, no. 6, Nov. 1988, pp. 229-239.

[26] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs,” in OSDI, 2008, pp. 209–224.

[27] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S.
Mancoridis, K. Rees, M. Roper, and M. Shepperd, “Reformulating software engineering
as a search problem,” IEE Proceedings - Software, vol. 150, no. 3, Jun. 2003, pp. 161-
175.

[28] C. Cadar and D. Engler, “Execution generated test cases: how to make systems code
crash itself,” in SPIN, 2005, pp. 2-23.

[29] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and W.
Visser, “Symbolic execution for software testing in practice: preliminary assessment,”
in ICSE, 2011, pp. 1066–1071.

[30] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE:
automatically generating inputs of death,” ACM Transactions on Information and
System Security, vol. 12, no. 10, Dec. 2008.

[31] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C. Necula, “Dependent types for
low-level programming,” in ESOP, 2007, pp. 520–535.

[32] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE Security and Privacy,
vol. 2, no. 6, Nov. 2004, pp. 76-79.

[33] CNN, “NASA's metric confusion caused Mars orbiter loss,” Sep. 1999, Retrieved from:
http://edition.cnn.com/TECH/space/9909/30/mars.metric/.

[34] R. Chatterjee, B. G. Ryder, and W. A. Landi, “Relevant context inference,” in POPL,
1999, pp. 133-146.

[35] C. Cadar and K. Sen, “Symbolic execution for software testing: three decades later,”
Communications of the ACM, vol. 56, pp. 82–90, Feb. 2013.

[36] C. Csallner and Y. Smaragdakis, “Check ‘n’ crash: combining static checking and
testing,” in ICSE, 2005, pp. 422-431.

[37] Common Vulnerabilities and Exposures, http://cve.mitre.org/.
[38] Common Vulnerabilities and Exposures, “CVE-2006-5994,” Retrieved from:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0466.
[39] Common Vulnerabilities and Exposures, “CVE-2006-5994,” Retrieved from:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5994.
[40] Common Weakness Enumeration, http://cwe.mitre.org/.
[41] Common Weakness Enumeration, “The 2011 CWE/SANS Top 25 Most Dangerous

Software Errors,” Retrieved from: http://cwe.mitre.org/top25/.
[42] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows: attacks and

defenses for the vulnerability of the decade,” in Proceedings of DARPA Information
Survivability Conference and Exposition, 2000, pp. 119-129.

[43] E. W. Dijkstra, “Chapter I: Notes on structured programming”, in Structured
Programming, Academic Press Ltd. London, 1972, pp. 1–82.

143

[44] D. Dean, E. W. Felten, and D. S. Wallach, “Java Security: From HotJava to Netscape
and Beyond,” in Proceedings of the 1996 IEEE Symposium on Security and Privacy,
1996, pp. 190.

[45] M. Das, B. Liblit, M. Fähndrich, and J. Rehof, “Estimating the Impact of Scalable
Pointer Analysis on Optimization,” in SAS, 2001, pp. 260-278.

[46] X. Deng, J. Lee, and Robby, “Bogor/Kiasan: A k-bounded Symbolic Execution for
Checking Strong Heap Properties of Open Systems,” in ASE, 2006, pp. 157-166.

[47] B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for DPLL(T),” in CAV,
2006, pp. 81-94.

[48] M. Dowd, J. McDonald, and J. Schuh, “The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities,” 1st Edition, Addison-Wesley
Professional, Nov. 2006.

[49] Ú. Erlingsson, “Low-level software security: attacks and defenses,” Foundations of
security analysis and design IV, 2007, pp. 92-134.

[50] D. Engler and D. Dunbar, “Under-constrained execution: making automatic code
destruction easy and scalable,” in ISSTA, 2007, pp. 1-4.

[51] Fujitsu Limited, “Fujitsu Develops Technology to Enhance Comprehensive Testing of
Java Programs,” Jan. 2010, Retrieved from:
http://www.fujitsu.com/global/news/pr/archives/month/2010/20100112-02.html.

[52] R. Ferguson and B. Korel, “The chaining approach for software test data generation,”
ACM Transactions on Software Engineering and Methodology, vol. 5, Jan. 1996, pp.
63–86.

[53] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata,
“Extended static checking for Java,” in PLDI, 2002, pp. 234-245.

[54] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of Windows NT
applications using random testing,” in WSS, 2000, pp. 6–6.

[55] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its
use in optimization,” ACM Transactions on Programming Languages and Systems, vol.
9, no. 3, Jul. 1987, pp. 319-349.

[56] P. G. Frankl and E. J. Weyuker, “An Applicable Family of Data Flow Testing Criteria,”
IEEE Transactions on Software Engineering, vol. 14, no. 10, Oct. 1988, pp. 1483-1498.

[57] S. Garfinkel, “History's Worst Software Bugs,” in Wired Magazine, Oct. 2005,
Retrieved from: http://www.wired.com/news/technology/bugs/0,2924,69355,00.html

[58] P. Godefroid, “Compositional dynamic test generation,” in POPL, 2007, pp. 47–54.
[59] H. Goldstein, “Who Killed the Virtual Case File?” in IEEE Spectrum, Sep. 2005,

Retrieved from: http://spectrum.ieee.org/computing/software/who-killed-the-virtual-
case-file.

[60] C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier, “Detecting buffer overflow via
automatic test input data generation,” Computers and Operations Research, vol. 35, no.
10, Oct. 2008, pp. 3125-3143.

[61] A. Groce, G. Holzmann, and R. Joshi, “Randomized Differential Testing as a Prelude to
Formal Verification,” in ICSE, 2007, pp. 621-631.

[62] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated random testing,” in
PLDI, 2005, pp. 213–223.

[63] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson, “2006 CSI/FBI Computer
Crime and Security Survey,” Computer Security Institute, 2006, Retrieved from:
http://gocsi.com/sites/default/files/uploads/FBI2006.pdf.

[64] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in
NDSS, 2008.

[65] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Active property checking,” in EMSOFT,
2008, pp.207–216.

144

[66] P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: whitebox fuzzing for security
testing,” Communications of the ACM, vol. 55, no. 3, Mar. 2012, pp. 40–44.

[67] D. Graham, E. V. Veenendaal, I. Evans, and R. Black, “Foundations of Software
Testing: ISTQB Certification,” Revised Edition, Cengage Learning EMEA, Jan. 2008.

[68] K. V. Hanford, “Automatic Generation of Test Cases,” IBM Systems Journal, vol. 9, no.
4, 1970, pp. 242-257.

[69] M. Harman, “The Current State and Future of Search Based Software Engineering,” in
FOSE, 2007, pp. 342-357.

[70] M. J. Harrold, “Testing: A Roadmap”, in ICSE’00 Proceedings of the Conference on
The Future of Software Engineering, 2000, pp. 61–72.

[71] W. E. Howden, “Symbolic Testing and the DISSECT Symbolic Evaluation System,”
IEEE Transactions on Software Engineering, vol. SE-3, no. 4, Jul. 1977, pp. 266-278.

[72] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and access errors,” in
Proceedings of the Winter 1992 USENIX Conference, 1992, pp. 125-138.

[73] J. de Halleux and N. Tillmann, “Parameterized Unit Testing with Pex,” in TAP, 2008,
pp. 171-181.

[74] IEEE Standard, “1028–2008 –— IEEE Standard for Software Reviews and Audits,”
IEEE Computer Society, Aug. 2008.

[75] IEEE Standards Collection: Software Engineering, “IEEE Standard 610.12-1990,” IEEE
Computer Society, 1993.

[76] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, “jFuzz: A Concolic Whitebox
Fuzzer for Java,” in NASA Formal Methods, 2009, pp. 121-125.

[77] The Java PathFinder project, http://babelfish.arc.nasa.gov/trac/jpf.
[78] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,

vol. 19, pp. 385–394, Jul. 1976.
[79] Klog, “The Frame Pointer Overwrite,” Phrack Magazine, vol. 9, no. 55, Sep. 1999,

Retrieved from: http://www.phrack.org/issues.html?issue=55&id=8#article.
[80] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A buffer overflow benchmark for software

model checkers,” in ASE, 2007, pp. 389–392.
[81] Y. Kim, M. Kim, and N. Dang, “Scalable distributed concolic testing: a case study on a

flash storage platform,” in ICTAC, 2010, pp. 199-213.
[82] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated Robustness Testing of

Off-the-Shelf Software Components,” in FTCS, 1998, pp. 230.
[83] C. Lattner and V. S. Adve, “LLVM: a compilation framework for lifelong program

analysis & transformation,” in CGO, 2004, pp. 75–88.
[84] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux, “FloPSy: search-based

floating point constraint solving for symbolic execution,” in ICTSS, 2010, pp. 142-157.
[85] W. Landi and B. G. Ryder, “A safe approximate algorithm for interprocedural aliasing,”

in PLDI, 1992, pp. 235-248.
[86] G. J. Myers, “The Art of Software Testing,” 3rd Edition, Wiley, Nov. 2011.
[87] P. McMinn, “Search-based software test data generation: a survey,” Software Testing,

Verification & Reliability, vol. 14, pp. 105–156, Jun. 2004.
[88] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers, “Improving program slicing

with dynamic points-to data,” ACM SIGSOFT Software Engineering Notes, vol. 27, no.
6, Nov. 2002, pp. 71-80.

[89] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS/ETAPS, 2008,
pp. 337-340.

[90] B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of the robustness of
MacOS applications using random testing,” ACM SIGOPS Operating Systems Review,
vol. 41, no. 1, 2007, pp. 46-54.

145

[91] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX
utilities,” Communications of the ACM, vol. 33, no. 12, Dec. 1990, pp. 32-44.

[92] P. McMinn and M. Holcombe, “Evolutionary testing using an extended chaining
approach,” Evolutionary Computation, vol. 14, no. 1, Apr. 2006.

[93] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation to find integer bugs
in x86 binary Linux programs,” in Proceedings of the 18th conference on USENIX
security symposium, 2009, pp. 67–82.

[94] K. K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed symbolic execution,” in
SAS, 2011, pp. 95–111.

[95] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in ICSE, 2007, pp. 416-426.
[96] P. G. Neumann, “Forum On Risks To The Public In Computers And Related Systems,”

Retrieved from http://catless.ncl.ac.uk/Risks.
[97] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, “CCured: type-safe

retrofitting of legacy software,” ACM Transactions on Programming Languages and
Systems, vol. 27, no. 3, May 2005, pp. 477-526.

[98] National Institute of Standards & Technology, U.S Department of Commerce, “The
Economic Impacts of Inadequate Infrastructure for Software Testing,” in Planning
Report 02-3, May 2002.

[99] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs,” in Proceedings of the 11th
International Conference on Compiler Construction, 2002, pp. 213-228.

[100] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary
instrumentation,” in PLDI, 2007, pp. 89-100.

[101] National Vulnerability Database, http://nvd.nist.gov/.
[102] V. Okun, W. F. Guthrie, R. Gaucher, and P. E. Black, “Effect of static analysis tools on

software security: preliminary investigation,” in Proceedings of the 2007 ACM
workshop on Quality of protection, 2007, pp. 1-5.

[103] A. One, “Smashing the stack for fun and profit,” Retrieved from:
http://insecure.org/stf/smashstack.html.

[104] J. Offutt and H. Hayes, “A semantic model of program faults,” in ISSTA, 1996, pp. 195–
200.

[105] C. Pacheco, “Directed Random Testing,” Ph.D. dissertation, MIT Department of
Electrical Engineering and Computer Science, (Cambridge, Massachusetts), Jun. 2009.

[106] The PaX Team, “Documentation for the PaX project,” Retrieved from:
http://pax.grsecurity.net/docs/pax.txt.

[107] S. Person, “Differential Symbolic Execution,” Ph.D. dissertation, University of
Nebraska - Lincoln, Lincoln, NE, USA, 2009.

[108] R. S. Pressman, “Software Engineering: A Practitioner's Approach”, 7th Edition,
McGraw-Hill Science/Engineering/Math, Jan. 2009.

[109] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person,
and M. Pape, “Combining unit-level symbolic execution and system-level concrete
execution for testing NASA software,” in ISSTA, 2008, pp. 15-26.

[110] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?” in ISSTA, 2011, pp. 199-209.

[111] C. S. Păsăreanu and W. Visser, “Verification of Java Programs Using Symbolic
Execution and Invariant Generation,” in SPIN, 2004, pp. 164-181.

[112] C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic execution for
software testing and analysis,” STTT, vol. 11, pp. 339–353, Oct. 2009.

[113] D. Qi, H. D. T. Nguyen, A. Roychoudhury, “Path exploration based on symbolic
output,” in SIGSOFT FSE, 2011, pp. 278–288.

146

[114] X. Qu and B. Robinson, “A Case Study of Concolic Testing Tools and their
Limitations,” in ESEM, 2011, pp. 117-126.

[115] O. Ruwase and M. S. Lam, “A Practical Dynamic Buffer Overflow Detector,” in NDSS,
2004.

[116] C. V. Ramamoorthy, Siu-Bun F Ho, and W. T. Chen, “On the Automated Generation of
Program Test Data,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4,
Dec. 1976, pp. 293-300.

[117] RTCA, Inc., “Document RTCA/DO-178B,” U.S. Department of Transportation,
Federal Aviation Administration, Washington, D.C, 1993.

[118] M. Ruse, T. Sarkar, and S. Basu, “Analysis & Detection of SQL Injection
Vulnerabilities via Automatic Test Case Generation of Programs,” in SAINT, 2010, pp.
31-37.

[119] K. Sen, “Scalable Automated Methods for Dynamic Program Analysis,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 2006.

[120] K. Sen and G. Agha, “CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools,” in CAV, 2006, pp. 419-423.

[121] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been
Afraid to Ask),” in Proceedings of the 2010 IEEE Symposium on Security and Privacy,
2010, pp. 317–331.

[122] Symantec Corporation, “Internet Security Threat Report 2013 Volume 18,” Retrieved
from: http://www.symantec.com/content/en/us/enterprise/other_resources/b-
istr_main_report_v18_2012_21291018.en-us.pdf.

[123] R. A. Santelices and M. J. Harrold, “Exploiting program dependencies for scalable
multiple-path symbolic execution,” in ISSTA, 2010, pp. 195–206.

[124] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine for C,” in
ESEC/SIGSOFT FSE, 2005, pp. 263–272.

[125] The Telegraph, “Knight Capital ‘has 48 hours’ to save itself after IT glitch causes
$440m loss,” Aug. 2012, Retrieved from:
http://www.telegraph.co.uk/finance/markets/9448893/Knight-Capital-has-48-hours-to-
save-itself-after-IT-glitch-causes-440m-loss.html

[126] M. Staats and C. S. Păsăreanu, “Parallel symbolic execution for structural test
generation,” in ISSTA, 2010, pp. 183–194.

[127] A. Tomb, G. Brat, and W. Visser, “Variably interprocedural program analysis for
runtime error detection,” in ISSTA, 2007, pp. 97-107.

[128] N. Tillmann and J. de Halleux, “Pex – white box test generation for .NET,” in TAP,
2008, pp. 134–153.

[129] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su, “Synthesizing
method sequences for high-coverage testing,” in OOPSLA, 2011, pp. 189–206.

[130] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek, “Test input generation for java containers
using state matching,” in ISSTA, 2006, pp. 37-48.

[131] M. Weiser, “Program slicing,” in ICSE, 1981, pp. 439–449.
[132] E. J. Weyuker, “The evaluation of program-based software test data adequacy criteria,”

Communications of the ACM, vol. 31, no. 6, Jun. 1988, pp. 668-675.
[133] J. A. Whittaker, “What Is Software Testing? And Why Is It So Hard?” IEEE Software

Journal, vol. 17, no. 1, pp. 70–79, Jan. 2000.
[134] K. E. Wiegers, “Peer Reviews in Software: A Practical Guide,” 1st Edition, Addison-

Wesley, Nov. 2001
[135] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards automated

detection of buffer overrun vulnerabilities,” in NDSS, 2000.

147

[136] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis for C
programs,” in PLDI, 1995, pp. 1-12.

[137] J. A. Whittaker and H. Thompson, “How to Break Software Security,” Addison Wesley,
May 2003.

[138] R. G. Xu, “Symbolic Execution Algorithms for Test Generation”, Ph.D. dissertation,
University of California at Los Angeles Los Angeles, CA, USA, 2009.

[139] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test suite
augmentation: techniques and tradeoffs,” in FSE, 2010, pp. 257-266.

[140] T. Xie, D. Marinov, W. Schulte, and David Notkin, “Symstra: a framework for
generating object-oriented unit tests using symbolic execution,” in TACAS, 2005, pp.
365-381.

[141] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness–guided path exploration in
dynamic symbolic execution,” in DSN, 2009, pp. 359–368.

[142] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux, “Precise identification of problems for
structural test generation”, in ICSE, 2011, pp. 611–620.

[143] YouTube, “Ariane 5 Explosion,” Retrieved from:
http://www.youtube.com/watch?v=gp_D8r-2hwk.

[144] H. Yun, “Non-linear Arithmetic Support for CREST,” Technical Report, 2012.
[145] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and adequacy,”

ACM Computing Surveys, vol. 29, no. 4, Dec. 1997, pp. 366-427.

