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Abstract— This paper presents a new algorithm of dynamic
feature selection by extending the algorithm of Incremental
Principal Component Analysis (IPCA), which has been origi-
nally proposed by Hall and Martin. In the proposed IPCA, a
chunk of training samples can be processed at a time to update
the eigenspace of a classification model without keeping all the
training samples given so far. Under the assumption that L
of training samples are given in a chunk, first we derive a
new eigenproblem whose solution gives us a rotation matrix of
eigen-axes, then we introduce a new algorithm of augmenting
eigen-axes based on the accumulation ratio. We also derive
the one-pass incremental update formula for the accumulation
ratio. The experiments are carried out to verify if the proposed
IPCA works well. Our experimental results demonstrate that
it works well independent of the size of data chunk, and that
the eigenvectors for major components are obtained without
serious approximation errors at the final learning stage. In
addition, it is shown that the proposed IPCA can maintain the
designated accumulation ratio by augmenting new eigen-axes
properly. This property enables a learning system to construct
an informative eigenspace with minimum dimensionality.

I. INTRODUCTION

Recently, the learning under dynamic environments, where
the property of data source is being changed over time, has
received a great attention in the computational intelligence
community [1]-[4]. In realistic situations, it is not always
assumed that a complete set of training samples are given
in a batch to learn a system [5], [6]. Therefore, a system is
required to test and improve the performance automatically
on a on-going basis. This type of learning is often called on-
line learning or incremental learning, and there have been
proposed numerous works on this topic so far [7]-[11].

In pattern recognition and data mining, input data are
often composed of many attributes. Hence, the informative
input variables are first selected before the classification is
carried out. This means that when constructing an adap-
tive classification system, we should consider not only the
incremental learning of classifiers but also that of feature
spaces. For this purpose, several incremental algorithms have
been independently developed for the feature selection and
the classifier learning. As for the feature selection, Principal
Component Analysis (PCA) and Linear Discriminant Anal-
ysis (LDA) have been extended to an incremental version
[12]-[17]. Hall and Martin have developed a smart method
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to update eigenvectors and eigenvalues incrementally (i.e.,
the update of an eigenspace) called Incremental Principal
Component Analysis (IPCA) [15]. And Ozawa et al. have
extended this IPCA algorithm such that an eigen-axis is
augmented based on the accumulation ratio in order to
control the dimensionality of an eigenspace easily [18].

Recently, we have proposed a new scheme of incremental
learning in which feature selection and classifier learning are
simultaneously carried out on-line [17]-[20]. In our previous
works, IPCA or ILDA are adopted as feature selection
methods, and Evolving Clustering Method [21] or Resource
Allocating Network with Long-Term Memory [20], [22] are
adopted as classifiers. A distinctive feature of the proposed
scheme is that the learning is conducted incrementally one-
pass; here, one-pass means that training samples are passed
through a system only once for learning purposes [21], [23].
It was verified that the classification accuracy was improved
constantly even if only an insufficient number of training
samples are provided initially [19], [20]. However, several
problems still remain for this approach. The biggest problem
is scalability. In our previous approach, a training sample
must be learned one by one even if a chunk of training
sample is provided at a time. This causes inefficiency in
computations because eigenvalue decomposition in IPCA
must be applied to each training sample.

In this paper, the IPCA algorithm is extended such that
a chunk of training samples is trained at a time, then we
propose an effective way to determine a set of new eigen-
axes to be augmented for a chunk of training samples. In
addition, we introduce the accumulation ratio as a criterion
of the eigen-axis augmentation and derive its incremental
update equation.

This paper is organized as follows. Section II gives a
quick review on IPCA and its extended method. In Section
III, we propose an extension of IPCA in which a chunk
of training samples is learned at a time and new eigen-
axes are efficiently selected based on the accumulation ratio.
In Section IV, the proposed IPCA is evaluated with three
standard datasets from the UCI Machine Learning Repository
[24]. Finally, Section V summarizes this paper and addresses
our future works.

II. INCREMENTAL PRINCIPAL COMPONENT ANALYSIS

FOR A SINGLE TRAINING SAMPLE

A. Original Algorithm

Let us review the IPCA algorithm proposed by Hall and
Martin [15] briefly.
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Assume that N training samples xi ∈ Rn (i = 1, · · · , N)
have been presented so far, and an eigenspace model Ω =
(x̄,Uk,Λk, N) is constructed by calculating the eigenvec-
tors and eigenvalues from the covariance matrix of xi, where
x̄ is a mean vector of xi (i = 1, · · · , N), Uk is an n × k
matrix whose column vectors correspond to the eigenvectors,
and Λk is a k×k matrix whose diagonal elements correspond
to the eigenvalues. Here, k is the number of eigen-axes
spanning the eigenspace (i.e., eigenspace dimensionality).

Now, assume that the (N + 1)th training sample y ∈ Rn

is given. The addition of this new sample will lead to
the changes in both mean vector and covariance matrix;
therefore, the eigenvectors and eigenvalues should also be
updated. The new mean input vector x̄′ is easily obtained as
follows:

x̄′ =
1

N + 1
(N x̄ + y) ∈ Rn. (1)

The problem is how to update the eigenvectors and eigen-
values.

When updating the eigenspace model Ω, we need to
check if the eigenspace should be enlarged in term of
dimensionality. If the new sample includes almost all energy
in the current eigenspace, the dimensionality does not need
to be changed. However, if the eigenspace includes certain
energy in the complementary eigenspace, the dimensional
augmentation is needed, or crucial information on the new
sample might be lost. In the original IPCA, the judgment of
the eigenspace augmentation is made based on the norm of
the following residue vector h ∈ Rn:

h = (y − x̄) − Ukg (2)

where

g = UT
k (y − x̄). (3)

Here, T means the transposition of vectors and matrices.
When the norm of the residue vector h is larger than a thresh-
old value η, the dimensionality of the current eigenspace is
increased from k to k + 1, and a new eigen-axis is added
in the direction of h. Otherwise, the dimensionality of the
eigenspace remains the same.

It has been shown that the eigenvectors and eigenvalues are
updated by solving the following intermediate eigenproblem
[15]:( N

N + 1

[
Λk 0
0T 0

]
+

N

(N + 1)2

[
ggT γg
γgT γ2

] )
R

= RΛ′
k+1 (4)

where γ = h̃
T

(y− x̄), R is a (k+1)×(k+1) matrix whose
column vectors correspond to the eigenvectors obtained from
the above intermediate eigenproblem, Λ′

k+1 is the new
eigenvalue matrix, and 0 is a k-dimensional zero vector.
Using the solution R, the new n×(k+1) eigenvector matrix
U ′

k+1 is calculated as follows:

U ′
k+1 = [Uk, ĥ]R (5)

where

ĥ =
{

h/‖h‖ if ‖h‖ > η
0 otherwise. (6)

Here, η is a small threshold value which is set to zero in the
original IPCA [15]. From Eq. (5), intuitively we can consider
that R gives a rotation from old eigen-axes to new ones;
hence, let us call R rotation matrix here. Note that if ĥ = 0
(i.e., the case that the dimensional augmentation was not
needed), R degenerates into an n×k matrix, and U ′

k+1 and
Λ′

k+1 also degenerate to the n × k matrix and the k × k
matrix, respectively.

B. A Criterion for Eigen-axes Augmentation

As seen from Eq. (6), a new eigen-axis is augmented
whenever the norm of a residue vector is larger than a
threshold value η in the original IPCA. However, this is not
a good criterion in practice because a suitable threshold can
be varied depending on the magnitude of input values. If
the threshold is too small, the dimensionality of a feature
space could be excessively large and an efficient feature
space with small dimensions is hard to be constructed;
this may deteriorate both generalization performance and
computational efficiency. On the other hand, if the threshold
is too large, essential information on training samples is lost
unexpectedly.

To reduce the dependency of the threshold on input values,
the following accumulation ratio is often used as a criterion:

A(Uk) =
∑k

i=1 λi∑n
i=1 λi

(7)

where Uk = {u1, · · · ,uk} is the eigenvector matrix whose
column vectors span the k-dimensional feature space, λi (i =
1, · · · , k) is the eigenvalue of ui, and n is the dimensionality
of the input space, respectively. By specifying an appropriate
threshold value θ, the feature space dimensions are automat-
ically determined by searching for a minimum k such that
A(Uk) > θ holds. In general, the update of Eq. (7) cannot
be done without the training samples given previously. This
is a serious problem when a one-pass incremental learning
algorithm is developed. To overcome this problem, we need
an incremental update algorithm of A(Uk) without keeping
all the past training samples.

In [18], we derived the incremental update equation for
the accumulation ratio A′(Uk) in Eq. (7), and it is given by

A′(Uk) =
N(N + 1)

∑k
i=1 λi +N‖UT

k (y − x̄)‖2

N(N + 1)
∑n

i=1 λi +N‖y − x̄‖2
(8)

where Uk = {u1, · · · ,uk}. Note that no past samples are
necessary for the incremental update of A′(Uk).

The eigen-axis augmentation is judged by using A′(Uk)
as a criterion. Instead of Eq. (5), the update of U ′ is carried
out based on the following equation.

U ′
k+1 = [Uk, ĥ]R (9)
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where

ĥ =
{

h/‖h‖ if A(Uk) < θ
0 otherwise. (10)

Here, θ is a threshold value.

III. INCREMENTAL PRINCIPAL COMPONENT ANALYSIS

FOR A CHUNK OF TRAINING SAMPLES

As stated in Section I, the original IPCA is applied on one
training sample at a time, and the intermediate eigenproblem
must be solved repeatedly for every training sample. There-
fore, the learning may get stuck in a deadlock if a large
chunk of training samples is given to learn in a short term.
To overcome this problem, we extend the original IPCA, so
that the eigenspace model Ω can be updated with a chunk
of training samples in a single operation. Let us call this
extended algorithm Chunk IPCA.

A. Update of Mean and Covariance Matrix

Let us assume that N training samples X =
{x1, · · · ,xN} ∈ Rn×N have been given so far and they
were already discarded. Instead of keeping actual training
samples, we have an eigenspace model Ω = (x̄,Uk,Λk, N)
where x̄, Uk, and Λk are a mean input vector, an n × k
eigenvector matrix, and a k × k eigenvalue matrix, respec-
tively. Now, assume that a chunk of L training samples
Y = {y1, · · · ,yL} ∈ Rn×L is presented.

Without the previous training samples X , the updated
mean vector x̄′ is easily obtained as follows:

x̄′ =
1

N + L
(

N∑
i=1

xi +
L∑

j=1

yj) =
1

N + L
(N x̄ + Lȳ).

(11)

On the other hand, the updated covariance matrix is defined
as follows:

C ′ =
1

N + L

[ N∑
i=1

(xi − x̄′)(xi − x̄′)T

+
L∑

i=1

(yi − x̄′)(yi − x̄′)T
]
. (12)

However, this definition is not suitable for incremental learn-
ing because the previous training samples X are included.
Considering that the following relation holds:

xi − x̄′ = xi − 1
N + L

(N x̄ + Lȳ)

= (xi − x̄) − L

N + L
(ȳ − x̄) (13)

yi − x̄′ = yi −
1

N + L
(N x̄ + Lȳ)

=
1

N + L
{N(yi − x̄) + L(yi − ȳ)} , (14)

the new covariance matrix C′ in Eq. (12) can be calculated
without the previous training samples X as shown below.

C′ =
1

N + L

[
NC +

NL2

(N + L)2
(ȳ − x̄)(ȳ − x̄)T

+
N2

(N + L)2

L∑
i=1

(yi − x̄)(yi − x̄)T

+
L(L+ 2N )
(N + L)2

L∑
i=1

(yi − ȳ)(yi − ȳ)T
]
. (15)

B. New Eigenproblem

Suppose that l eigen-axes must be augmented to avoid the
serious loss of essential input information when a chunk of
L training samples Y is provided; that is, the eigenspace
dimensions are increased by l. Let us denote the augmented
eigen-axes as follows:

H = [h1, · · · ,hl] ∈ Rn×l. (16)

Then the updated eigenvector matrix U ′
k+l is represented

by using the rotation matrix R and the current eigenvector
matrix Uk.

U ′
k+l = [Uk,H ]R. (17)

Hence a new eigenvalue problem to be solved is given by

C ′U ′
k+l = U ′

k+lΛ
′
k+l ⇒

[Uk,H]T C′[Uk,H ]R = RΛ′
k+l (18)

where Λ′
k+l is a new eigenvalue matrix. Substituting Eqs.

(15) and (16) into Eq. (18), the following intermediate
eigenproblem for Chunk IPCA is obtained.( N

N + L

[
Λk 0
0T 0

]
+

NL2

(N + L)3

[
ḡḡT ḡγ̄T

γ̄ḡT γ̄γ̄T

]

+
N2

(N + L)3

L∑
i=1

[
g′

ig
′T
i g′

iγ
′T
i

γ ′
ig

′T
i γ′

iγ
′T
i

]

+
L(L+ 2N )
(N + L)3

L∑
i=1

[
g′′

i g′′T
i g′′

i γ ′′T
i

γ′′
i g′′T

i γ′′
i γ ′′T

i

])
R = RΛ′

k+l

(19)

where

ḡ = UT
k (ȳ − x̄), g′

i = UT
k (yi − x̄), g′′

i = UT
k (yi − ȳ),

γ̄ = HT (ȳ − x̄), γ′
i = HT (yi − x̄), γ ′′

i = HT (yi − ȳ).

Note that the following approximation is introduced in the
above derivation because we can assume that the previously
given training samples do not have essential information in
the new augmented subspace spanned by H

[Uk,H]T C[Uk,H] ≈
[

Λk 0
0T 0

]
. (20)

Solving this intermediate eigenproblem, a new rotation
matrix R and the eigenvalue matrix Λ′

k+l are obtained. Then,
the corresponding new eigenvector matrix U ′

k+l is given by
Eq. (17).
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C. A New Criterion for Eigen-axes Augmentation

In the proposed Chunk IPCA, the number of eigen-axes to
be augmented is determined by finding a minimum k such
that the accumulation ratio A(Uk) in Eq. (7) satisfies the
following condition: A(Uk) > θ. However, the number of
augmented eigen-axes is not restricted to one when a chunk
of training samples is learned at a time. Therefore, the update
equation of A(Uk) in Eq. (8) must be modified such that it
can be updated with a chunk of training samples in one-pass.

First, let us consider how to update the numerator of Eq.
(7). Considering the fact that the total amount of eigenvalues
is equivalent to the summation of variances σ2

i , the numerator
is reduced to

k∑
i=1

λ′i =
k∑

i=1

σ′2
i

=
k∑

i=1

1
N + L

[ N∑
j=1

{uT
i (xj − x̄′)}2

+
L∑

j=1

{uT
i (yj − x̄′)}2

]
. (21)

In the derivation of Eq. (21), we use the fact that the total
energy of the training samples in the eigenspace spanned
by the eigenvectors ui (i = 1, · · · , k) is equivalent to that
in the eigenspace spanned by the updated eigenvectors u′

i

(i = 1, · · · , k); that is, only the axis-rotation does not change
the energy.

In Eq. (21), the new mean uT
i x̄′ in the feature space is

obtained from Eq. (11).

uT
i x̄′ =

1
N + L

uT
i (N x̄ + Lȳ). (22)

Using Eq. (22), the first term in the square brackets of Eq.
(21) is calculated as follows:

N∑
j=1

{uT
i (xj − x̄′)}2

=
N∑

j=1

[
uT

i

{
xj − 1

N + L
(N x̄ + Lȳ)

}]2

=
N∑

j=1

[
uT

i

{
(xj − x̄) +

L

N + L
(x̄ − ȳ)

}]2

=
N∑

j=1

{
uT

i (xj − x̄)
}2

+
NL2

(N + L)2
{
uT

i (x̄ − ȳ)
}2

= Nλi +
NL2

(N + L)2
{
uT

i (x̄ − ȳ)
}2
. (23)

In the same way, the second term in the square brackets of
Eq. (21) is reduced to

L∑
j=1

{uT
i (yj − x̄′)}2

=
L∑

j=1

[
uT

i

{
(yj − ȳ) − N

N + L
(x̄ − ȳ)

}]2

=
L∑

j=1

{
uT

i (yj − ȳ)
}2

+
N2L

(N + L)2
{
uT

i (x̄ − ȳ)
}2
. (24)

Substituting Eqs. (23) and (24) into Eq. (21), the numerator
of Eq. (7) is given by

k∑
i=1

λ′i =
N

N + L

[ k∑
i=1

λi +
L

N + L
‖UT

k (x̄ − ȳ)‖2

+
1
N

L∑
j=1

‖UT
k (yj − ȳ)‖2

]
(25)

where Uk = {u1, · · · ,uk}. In the similar manner, the
denominator in Eq. (7) is calculated as follows:

n∑
i=1

λ′i =
N

N + L

[ n∑
i=1

λi +
L

N + L
‖x̄ − ȳ‖2

+
1
N

L∑
j=1

‖yj − ȳ‖2
]
. (26)

Then, the update equation for the accumulation ratio A′(Uk)
is given by

A′(Uk) =
∑k

i=1 λ
′
i∑n

i=1 λ
′
i

=

�k
i=1 λi + L

N+L
‖�T

k (�̄− �̄)‖2 + 1
N

�L
j=1 ‖�T

k (�j − �̄)‖2

�n
i=1 λi + L

N+L
‖�̄− �̄‖2 + 1

N

�L
j=1 ‖�j − �̄‖2

.

(27)

As we can see from Eq. (27), no past samples xj are needed
to update A′(Uk).

D. Selection of Eigen-axes

In IPCA, a new eigen-axis is selected so as to be per-
pendicular to the existing eigenvectors which are given by
the column vectors of Uk. A straightforward way to get
new eigen-axes is to apply Gram-Schmidt orthogonalization
technique to the given chunk of training samples [25]. If
the chunk samples are represented by L̃ linearly independent
vectors, the maximum number of eigen-axes to be augmented
is also L̃. However, the feature space spanned by all of the
augmented eigen-axes is redundant in general; in addition, if
the chunk size is large, the computation costs to solve the
intermediate eigenproblem in Eq. (19) would be considerably
expensive. Therefore, we need to select informative eigen-
axes from the L̃ eigen-axes efficiently.

Since the number of eigen-axes to be augmented is varied
from 0 to L̃, the number of possible combinations of eigen-
axes are represented by

∑L̃
i=0 LCi. If the chunk size is large,

the computation costs would be large to find the optimal set
of augmented eigen-axes. To avoid such an exhaustive search,
we adopt a kind of greedy search based on the accumulation
ratio in Eq. (27).
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To construct a compact feature space, we should find
a smallest set of augmented eigen-axes such that the
eigenspace includes as much the energy of the given
chunk data as possible. A straightforward way to find the
set is to select an eigen-axis one by one, each of which
gives a maximum accumulation ratio. Let us explain more
concretely. First, the residue vectors for given L training
samples are calculated based on Eq. (2) and they are
put into a set L = {h1, · · · ,hL}. Next, a residue vector
h1 is temporally added to the set of eigen-axes Uk, and
the accumulation ratio A′([Uk,h1]) is calculated. This
operation is carried out for every hl (l = 1, · · · , L). Then,
the residue vector hl∗ with the maximum A′([Uk,hl∗ ]) is
selected as the first eigen-axis, and hl∗ is removed from
L. If A′([Uk,hl∗ ]) is larger than a threshold value θ, the
selection of eigen-axes is terminated. Otherwise, the same
procedure is applied to the new set L to acquire a next
eigen-axis. The algorithm of the eigen-axis selection is
summarized below.

[Algorithm of Eigen-axis Selection]

i) Set H = { } and calculate the accumulation
ratio A′(Uk) in Eq. (27). If A′(Uk) > θ (const.),
terminate this algorithm. Otherwise, go to Step ii).

ii) Obtain a set L of the following residue vectors hl

for the given training samples yl (l = 1, · · · , L).

hl =
rl

‖rl‖ (28)

where

rl = (yl − x̄) − [Uk,H][Uk,H]T (yl − x̄).

iii) Find the following residue vectors hl∗ which gives
the maximum accumulation ratio A′([Uk,H ,hl]):

l∗ = arg max
l
A′([Uk,H,hl]).

iv) Update H ′ = [H ,hl∗ ] and remove hl∗ from L.
v) If A′([Uk,H

′]) > θ (const.), terminate this algo-
rithm. Otherwise, go to Step iii).

IV. EXPERIMENTS

A. Experimental Setup

We select three datasets from the UCI Machine Learn-
ing Repository [24] (see Table I). To construct an initial
eigenspace, 5% of training samples are applied to the con-
ventional PCA. The remaining 95% of training samples
are sequentially provided as shown in Fig. 1. Although the
proposed chunk IPCA algorithm can work even if the chunk

TABLE I

EVALUATED UCI DATASETS.

Database Name #Attr. #Class #Train Data

Spambase 57 2 2301
Image Segmentation 19 7 210

Vowel 10 11 528

0 1 2 3

initial

training

set

1st

chunk

2nd

chunk

3rd

chunk

Learning Stages

SS-1S-2S-3

Sth

chunk

(S-1)th

chunk

Fig. 1. The presentation of training samples.

TABLE II

AVERAGE CPU TIME (SEC.) TO CALCULATE AN EIGENSPACE.

Spam Image Vowel

Original IPCA 27.4 0.073 0.109
Chunk IPCA 0.9 0.023 0.058

size is varied at every learning stage, we assume that the size
is fixed with L during the learning.

A chunk of training samples are randomly selected and
it has no overlap with other chunks; hence all the train-
ing samples are presented only once. Thus, the number
of learning stages S is given by S = �0.95N/L� where
N is the total number of training samples. Note that the
number of training samples in the last chunk can be less
than L, and it is given by N − L�0.95N/L�. Since the
performance of incremental learning generally depends on
the sequence of training samples, ten trials with different
sequences of training samples are conducted to evaluate the
average performance.

B. Computational Efficiency

The computation costs of the eigenspace update are es-
timated by measuring the CPU time using a Matlab func-
tion. Table II shows the average CPU time to calculate an
eigenspace for the original IPCA and the proposed Chunk
IPCA. Here, the chunk size L is set to 10. As you can
see from Table II, the computation costs of Chunk IPCA
is significantly reduced against Original IPCA especially for
large datasets. The experimental results here suggest that the
proposed method possesses excellent scalability.

Since the eigen-axes to be augmented are selected based on
a greedy method (see III-D), the optimality of the selected
eigen-axes is not ensured. Considering that more axes are
generally added if the chunk size is larger, it is considered
that the error of eigen-axes obtained by Chunk IPCA could
increase when a large chunk of training samples are given.
On the contrary, however, it is expected that the learning time
can be shorten when the chunk size is large. Therefore, the
evaluation of Chunk IPCA should be made for various chunk
sizes in terms of both approximation accuracy and learning
time.

Figure 2 shows the learning time when training samples
are provided in various sizes of chunk. The relative CPU time
is defined as the ratio of the CPU time to that for L=1. As
seen from Fig. 2, the computation time is greatly reduced
as the chunk size becomes large. It is considered that the
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Fig. 2. Relative CPU time of Chunk IPCA when the chunk size L is set
to 1, 2 5, 10, 20, 50, and 100.

reduction in computation time is mainly attained by reducing
the repeated times of solving the intermediate eigenproblem.

C. Accuracy of Updated Eigenvectors

To see whether an appropriate feature space is constructed
by Chunk IPCA, the similarity of eigenvectors obtained by
Batch PCA and Chunk IPCA is examined. In Batch PCA,
an eigen-feature space is updated at every learning stage by
applying PCA to all the training samples given so far. Since
Batch PCA always gives an accurate eigenspace, we adopt
the eigenvectors obtained by Batch PCA as target eigenvec-
tors of Chunk IPCA. Thus, the similarity is measured by the
following directional cosine di:

di =
1
M

M∑
j=1

u
(b)T
ji u

(c)
ji

‖u(b)
ji ‖‖u(c)

ji ‖
(29)

where u
(b)
ji and u

(c)
ji are respectively the ith eigenvector

obtained by Batch PCA and Chunk IPCA in the jth trial,
and M is the number of trials to average the similarity.
Obviously, if the similarity is one, it means two eigenvectors
are identical.

Figure 3 shows the average similarity between the eigen-
vectors obtained by Batch PCA and Chunk IPCA for the
three UCI datasets in Table I. The horizontal axis corresponds
to the number of eigenvectors with the largest 25 eigenvalues.
Since the number of attributes for Image Segmentation and
Vowel datasets is less than 25, the lines for these two datasets
terminate at the number of their attributes. Figures 3 (a) and
(b) show the similarity when the chunk size L is 10 and 50,
respectively.

As seen from Fig. 3, in almost all cases, the similarity
is kept above 0.9 for the major eigenvectors. From the
results in Fig. 3, we can say that the proposed Chunk IPCA
gives a good approximation to major eigenvectors with large
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Fig. 3. Average similarity between eigenvectors obtained by Batch PCA
and Chunk IPCA for the three UCI datasets.

eigenvalues even if the eigen-axes are selected based on a
greedy method.

On the other hand, the approximation to minor eigenvec-
tors, whose normalized eigenvalues are almost zero, has a
large error. The primary reasons for this is originated from
the approximation error introduced in the derivation of the
intermediate eigenproblem in Eq. (19). This approximation
error could be small if the threshold for accumulation ratio
θ is set properly. However, it is not easy to know a proper
value of θ in advance because it depends on the sequence of
training samples. In the one-pass learning situation assumed
here, a chunk of training samples given sequentially is threw
away after the learning is done at every stage. Therefore, if
the sample distributions at latter learning stages are largely
varied from those at early stages, some crucial information
would be lost during learning, and the loss would prevent
from constructing an effective eigenspace. To overcome this
problem, we should introduce an adaptive mechanism for θ,
but this is left as a further work.
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Fig. 4. Time course of average accumulation ratios for different threshold
θ when Vowel dataset is used.

D. Controllability of Eigenspace Dimensions

Although proper selection of a threshold value θ is not
easily done due to the reason mentioned above, we have
to at least ensure that the accumulation ratio is always
sustained above θ during the incremental learning so as not
to lose crucial information unexpectedly. To check this out,
we examine the average time course of accumulation ratio
for different θ.

Figure 4 illustrates the transitions of average accumulation
ratios over the entire learning stages for Vowel dataset.
The time courses of the accumulation ratio are obtained by
averaging over the ten trials. In this experiment, the chunk
size L is set to 50, and the threshold θ is changed from 0.85
to 0.95. The accumulation ratio in Fig. 4 is calculated after
the update of feature space; that is, it is calculated after the
rotation and/or the augmentation of eigen-axes are done. On
the other hand, the check of the accumulation ratio is carried
out before the update of feature space. Hence, the time course
in Fig. 4 should always be above a given threshold θ. As seen
from Fig. 4, the proposed Chunk IPCA succeeds in sustaining
the accumulation ratio above the threshold θ.

V. CONCLUSIONS

In our previous works [18], [19], we have proposed an
adaptive evolving connectionist model in which Incremental
Principal Component Analysis (IPCA) and Evolving Cluster-
ing Method (ECM) are effectively combined. This learning
scheme gives a new concept for pattern recognition systems:
feature selection and classifier learning are simultaneously
carried out on-line. One drawback of this approach was
scalability in terms of the number of data samples and the
number of their attributes. This drawback comes from the
limitation of the previous approach where a training sample
must be applied one by one even if a chunk of training sample
is given at a time.

To overcome this problem, we proposed a new algorithm
of dynamic feature selection called Chunk IPCA, in which a
chunk of training samples can be applied at a time to update

an eigenspace model incrementally. The novelty of this paper
lies in the derivation of Chunk IPCA, the algorithm of eigen-
axis selection, the introduction of accumulation ratio as a
criterion of eigen-axis augmentation. In this paper, we did not
mention about how to combine Chunk IPCA and classifier
models (e.g., ECM and neural networks). However, it is not
difficult to combine them by introducing the update method
of prototype vectors, which has already been presented in
our previous works [18], [20]. Therefore, it is expected that
the proposed Chunk IPCA enables a classification system to
learn more efficiently.

To verify if the proposed Chunk IPCA can work properly
for any size of chunk data, we tested it on three standard
datasets. The experimental results suggested that the pro-
posed learning scheme worked quite well even when training
samples were provided in various sizes of data chunks.
Furthermore, we examined the approximation error of the
eigenvectors obtained by Chunk IPCA and the controllability
of eigenspace dimensionality. As a result, Chunk IPCA
learned major eigenvectors without serious errors and could
maintain the designated accumulation ratio by adding new
eigen-axes properly.

There still remains several open questions. First, since
the features are selected without considering the class sep-
arability in IPCA, optimal features are not always ensured.
To alleviate this problem, recently we have proposed Incre-
mental Linear Discriminant Analysis (ILDA) [17] in which
only the axis rotation is carried out in an incremental
way. Incorporating this ILDA algorithm into the proposed
learning scheme is very promising. Hence, we need to extend
it such that the feature space is automatically expanded
in dimensions. Second, when constructing a classification
system, the proposed Chunk IPCA must be combined with
a classifier model. We have presented several attempts to
combine with the k-nearest neighbor method and a variant
model of Radial Basis Function network [17], [18], [20].
However, there are some other promising classifiers we can
choose such as Dynamic Evolving Neuro-fuzzy Inference
System (DENFIS) [26] and SVM Classification Tree [27],
which were developed by some of the authors. In addition,
the kernel method has received a great attention in pattern
classification. There have been proposed several kernel-
based feature selection methods such as Kernel PCA [28]
and Kernel Discriminant Analysis [29]. Hence, pursuing the
optimal combination of the feature space learning and the
classifier learning must also be an interesting issue.
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