@% Transactions on Information and Communications Technologies vol 8, © 19@S3\WimRv.witpressom, ISSN 1743-3517

The kinematic synthesis of path generating

mechanisms using genetic algorithms

AM. Connor, S.S. Douglas, M.J. Gilmartin
Mechanisms & Machines Research Group, Liverpool John Moores
University, Byrom Street, Liverpool L3 3AF, UK

Abstract

This paper presents a methodology for the synthesis of path generating
mechanisms using Genetic Algorithms (GAs). GAs are a novel search and
optimisation technique inspired by the principles of natural evolution and
‘survival of the fittest’. The problem used to illustrate the use of GAs in this
way is the synthesis of a four bar mechanism to provide a desired output path.

1.0 Introduction

A mechanism is a device which transforms a given input motion to provide a
desirable output motion. The study of mechanisms is used to understand the
relationships between geometry, motions and the forces that provide those
motions and provides the theoretical foundation for machine design.
Mechanisms can be divided into distinct groups depending upon the
purpose for which they have been designed. Fuiction generating mechanisms
are designed so that a given output member rotates, oscillates or reciprocates
according to a specified function of time. Path generating mechanisms are
designed so that a given coupler point traces out the path of a desired
trajectory. Motion generating, or body guidance, mechanisms are designed to
transfer a rigid object from place to place whilst maintaining a given orientation.
The design of mechanisms, of all types, involves two distinct phases.
Kinematic synthesis is concerned with the action of the mechanism without
consideration of the forces involved. Forces, torques and other kinetostatic
properties are calculated in the dynamic analysis of the mechanism. Kinematic
synthesis is the process of designing a mechanism of the correct configuration
and geometry to provide the desired output motion. In general, synthesis can be
divided into two stages. 7ype synthesis is the selection of the mechanism
configuration, which is usually based on the experience of the machine designer.
A selection is made by considering the input motion and the desired output



@% Transactions on Information and Communications Technologies vol 8, © 19@S3\WimRv.witpressom, ISSN 1743-3517
238 Artificial Intelligence in Engineering

motion and how it is best to transform one into the other.

Dimensional synthesis is essentially the process of choosing the geometry
and link lengths of the mechanism so that the output motion exactly matches
the specified motion. Traditionally, dimensional synthesis was carried out using
graphical techniques where the motion could be specified at up to five precision
points. However, dimensional synthesis can be achieved using numerical
optimisation methods, which have no limit on the number of precision points.
Despite this, machine designers are reluctant to use these methods as they often
require complex definitions of synthesis requirements and lack the robustness
needed for an efficient synthesis technique.

The method [1] presented in this paper utilises a GA to synthesise a
mechanism to generate a desired trajectory specified by twelve precision points.
GAs have several advantages over gradient based or ‘point to point’ search
methods. Gradient methods are very effective on smooth, uni-modal functions,
but on multi-modal or noisy functions they become trapped in local sub-optimal
solutions. GAs avoid this by using a population of solutions. For each iteration,
individuals from the population reproduce with each other to ensure that
desirable characteristics are passed on to the child solutions. By modelling real
genetic operators, and using a ‘survival of the fittest’ approach, the method will
tend to converge towards globally optimum solutions without the use of penalty
functions, or other techniques, required to ensure that ‘point to point” methods
remain in the desired solution space.

2.0 Genetic Algorithms

GAs differ from most other search methods in many ways, and these differences
are what make them as robust and as widely applicable as they are. Several
differences may be identified;

e GAs work with a coding of the parameter set, not the parameters themselves.

¢ GAs search from a population of points, not a single point.

e GAs use objective function information directly, not secondary information
such as gradients.

e GAs utilise probabilistic transition rules, not deterministic rules.

The aim of this section is to give a brief introduction to GAs and try to
answer the questions ‘how’ and ‘why’ they work. In a GA the parameter set of
the problem is represented as a binary string, called chromosomes, where sub-
sections of the string represent each parameter. These subsections are known as
genes. Each gene may take a variety of values or alleles.

In natural genetics, genes from the chromosomes of two parents are
recombined through a variety of genetic operators to form the chromosomes of
the children. These operators are crossover and mutation. However, there is
also an implicit operator of selection, or choice of mate. The simple GA used in
this study models all three of these operators.



@% Transactions on Information and Communicﬂ%ﬁfgfg\rotoﬂaﬁoglgn%elgi%sﬂgﬁvg rreisr?gm I§§I§ 1743-3517

2.1 Reproduction (Selection)

Reproduction is the selection of parents from a generation for the creation of
children for the next generation of solutions. In the GA used in this work,
selection was carried out using a ‘roulette wheel’ method [2]. This is a
randomised approach, where the probability of selection is weighted by the
objective function value of each solution. The effect of this is that the most fit
solutions are more likely to propagated into the successive generation. This
embodies the ‘survival of the fittest’ concept.

2.2 Crossover

Crossover occurs between two parental chromosomes to form two children. In
accordance with the randomised nature of GAs, there is a probability of
crossover occurring between two parents. If crossover does not occur, the two
parent strings are resubstituted into the new population. If crossover does
occur, a random crossing site is chosen and data is transferred between strings
around this point. As an example, consider the two parent strings below;

12345678 Position
11111111 Parent 1
00000000 Parent 2

If crossover occurs between positions 4 & 5, the two child strings produced are;

12345678 Position
11110000 Child 1
00001111 Child 2

2.3 Mutation

Crossover is the main process by which data is transferred between successive
generations. However, mutation also plays an important role in the convergence
of a population to a globally optimum solution. A GA utilising crossover alone
can only converge to a solution represented by the schemata (see section 2.4) of
the initial population. The effect of mutation is to broaden the search space by
creating new schemata, thus forcing the search to explore new hyperplanes. The
mutation operator is very simple. Each bit of a child string is tested against the
probability of mutation. In a binary alphabet, if mutation occurs, the bit
undergoes Boolean inversion. That is, a one becomes a zero and vice-versa.
Because the effect of mutation in natural systems is less than that of crossover,
the probability of mutation occurring is normally quite low.

2.4 The Schema Theorem
The previous sections have outlined the mechanics of how a GA works, but do
not answer the question of ‘why’ a GA works. The answer to this is found in
Holland’s schema theorem [2,3] and the principle of implicit parallelism.

One of the major reasons for using a binary representation for the GA
coding of the parameter set is that similarities between highly fit solutions



@% Transactions on Information and Communications Technologies vol 8, © 19@S&Wikv.witpressom, ISSN 1743-3517
240 Artificial Intelligence in Engineering

become more apparent. A schema (pl.schemata) or similarity template describes
a subset of solutions at certain positions. For example, in five bit binary coding
a typical schema could be;

1O###

where the # symbol represents an irrelevant value. The order of a schema,
denoted by o(H) is simply the number of fixed positions. The defining length,
denoted by 6(H) is the distance between the first and last fixed positions. The
schema theorem is often described in terms of a growth equation;

(ta)) [ [o(H)\l 1
Ht+D2mH. x| _ |x|1-P x - P, (1
my( m( XL - J [ ( ) o(H) J €))

where P. and P,, are the crossover and mutation probabilities, f(H) is the
‘fitness’ of schema H and fis the average schema fitness. The term m(H.,t)
represents the number of examples of schema H at time t.

The growth equation shows that highly fit, low order schema with short
defining lengths are rapidly propagated through the population. In real terms,
this implies that the population will tend to progress or ‘evolve’ towards highly
fit solutions.

Whilst the schema theorem explains why a GA works, the principle of
implicit parallelism explains why they work so effectively. This effectiveness
derives from the simultaneous allocation of search effort to different regions of
the solution space. Essentially, a schema may be viewed as a representation of a
hyperplane of the solution space. By testing a single schema the GA is
effectively testing all solutions on that hyperplane.

3.0 Mechanism Synthesis and Four-Bar Mechanisms

Figure 1 is a schematic diagram of a four bar mechanism. Each ‘stick’
represents a link between revolute joints. This study was limited to an important
class of mechanism where the input link rotates with constant velocity, and
throughout the cycle the path generating point traces out a closed curve and the
output link oscillates through a fixed angle. This type of mechanism is known as
a crank-rocker, and occurs when the shortest link is the crank and lies adjacent
to the fixed frame. This is known as the Grashof mobility criterion and is
expressed by the inequality | + s < p + q, where | & s are the longest and
shortest lengths and p & q are the intermediate lengths.

The four bar mechanism is a single degree of freedom mechanism and as
such requires only a single input to completely specify the motion of the
mechanism. It is a very useful mechanism as the constant velocity input provides
desirable motion transmission characteristics.

The coupler curve is the locus of point P as the input link rotates through
one complete revolution. In mechanism design, the shaping of the coupler curve



Transactions on Information and Communications Technologies vol 8, © 19@S3\WimRv.witpressom, ISSN 1743-3517

Artificial Intelligence in Engineering 241

to satisfy design needs is regularly enountered and therefore an automatic
method which deterimines the mechanism proportions for a specified coupler
curve is of great use.

Grashof: I+s - prq

Input

Figure 1 : Four Bar Mechanism

3.1 The Objective Function

The objective function is evaluated by calculating the error at the path
generating point between the actual position and the desired position, for a
given input angle. This is illustrated in Figure 2, where (Xq4,Yy) are the co-
ordinates of the desired position and (X,,Y,) are the co-ordinates of the actual
position.

(Xd,Yd)

Error

(Xa,Ya)

Origin
Figure 2 : Calculation of Error

The total error around the cycle of the mechanism is calculated and used as
the “fitness’ score for the mechanism. The objective function includes a heuristic
filter as a penalty function for solutions that fail the Grashof mobility criterion.
Any solutions which fail this criterion are automatically assigned the worst
possible objective function value. The GA is used to find a mechanism which
has the smallest possible error between the actual curve it generates and the
desired design curve.



@% Transactions on Information and Communications Technologies vol 8, © 19@S3\WimRv.witpressom, ISSN 1743-3517

242 Artificial Intelligence in Engineering

4.0 Results

The GA was tested on two coupler curve problems which were generated by
known mechanisms. Figure 3 and Figure 4 are graphs which show typical
performances of the GA on each problem. The graphs plot best of generation
fitness against generation number. The GA was run for a total of one hundred

generations.

900 T
800
700
600
500
400 1
300 7
200 1
100

Curve 1

Figure 3 : Graph of Convergence for Test Curve |

800 1
700 1
600 1
500 1
400 1
300 1
200 1
100 1

0

Curve 2

Figure 4 : Graph of Convergence for Test Curve 2

For the first test coupler curve the error between the curve generated by the
final trial mechanism and the desired curve is 15.96 units. When the parameters
of this mechanism were passed into a simple hill climbing search, the error
dropped to a value of 0.40 units, indicating that the GA had located the optimal
peak on the objective function surface and the coupler curve generated by the
trial mechanism is identical to the desired curve.

The second coupler curve is more complex as it contains a ‘double point’.
The shape of the curve resembled a “tigure of eight’. After 100 generations the
error of the trial mechanisms is 113.79 units. After the hill climbing search was
performed, the error is still 109.79 units. The GA has located a sub-optimal
peak. The coupler curve generated by this trial mechanism is shown in Figure 5
along with a diagram of the mechanism. It can be seen that this curve does not
resemble the desired curve as it does not contain a ‘double point’.



) . L . i 33
@% Transactions on Information and Communic; tl?{‘ﬁ;@fﬂ%%éﬁgéﬂ%&ﬁ%ﬁvgg}%sﬁgm' Iiils] 1743-3517

Figure 5 : Trial Mechanism and Generated Coupler Curve
5.0 Discussion

For all of the synthesis problems the controlling parameters of the GA were set
at the following values;

Probability of crossover = 0.75
Probability of mutation = 0.04
Population size = 80

Whilst Goldberg [2] and DeJong [4] have suggested a crossover rate of 0.6
and a mutation rate that is inversely proportional to the population size,
Grefenstette [5] has shown that a higher crossover rate is beneficial for
improved performance. The relatively high mutation rate was chosen to offset
any biases brought into the GA by the rejection of solutions that fail to meet the
Grashof mobility criterion.

The simple GA has performed quite well on the first coupler curve and has
located the global optimum solution. An examination of the population
distribution at the end of the run showed that the entire population of valid
solutions had started to converge to a solution in the region of the global
optimum. However, for the more complex second curve the GA could only
locate a sub-optimal solution. This difference in performance may be attributed
to the fact that the objective function is actually defined by the specification of
the desired coupler curve. Each of the problems, therefore, has a different
objective function. By examining the curve shown in Figure 5, it is possible to
see that the use of only twelve precision points is making it difficult for the GA
to differentiate between curves with double points and normal closed curves.

For the second curve, the GA is experiencing premature convergence. This
may be due to the poor definition of the coupler curve or may be due to biases
in the GA. To ensure that the GA performs well on a variety of synthesis
problems, the nature of the GA must be changed to prevent this. There are a
variety of methods which can be introduced to this end. This include sharing
[2], crowding [4] and a variety of other breeding schemes.

There are several other methods which can also be used. These include
deflation and identical string elimination [6] and incest prevention [7]. Further
work will investigate the use of these methods and illustrate any improvements



@% Transactions on Information and Communications Technologies vol 8, © 19@S3\WimRv.witpressom, ISSN 1743-3517

244 Artificial Intelligence in Engineering

in effectiveness. It is also important to investigate the possibility of biases in the
GA from either the selection method or the ‘heuristic filter’. One alternative to
this filter is to use a mobility penalty function, which penalises the objective
function by a varying amount depending on how far ‘away’ the trial mechanism
is from the Grashof criterion.

6.0 Conclusions

The results of this study have shown that GAs may be successfully applied to
the problem of mechanism synthesis, but further work is required to ensure that
the GA is effective across a wide range of synthesis problems. The results have
also shown that the GA is not a particularly quick optimisation method and that
difficulties where encountered due to poor problem definition and constraint
violations. However, adequate performance can be achieved by combining the
GA with a local search method. It may be possible to use the GA, in
conjunction with local search methods, to develop a robust ‘double pass’
synthesis technique.

Once an effective GA 1s developed for use in the synthesis of four bar
mechanisms, it can also be applied to a variety of other mechanism synthesis
problems. These include the synthesis of multi-degree of freedom mechanisms
with both constant velocity inputs and programmable servo motor inputs.

Future papers will deal with the refinement of the GA, the synthesis of
multi-degree of freedom mechanisms using an objective function based on
structural error only and the development of more complex ‘multiple objective’
functions.

7.0 References

1. Connor, A.M., The Use of Genetic Algorithms in Optimisation, M.Sc.
Dissertation, Liverpool John Moores University, 1994

2. Goldberg, D.E., Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley, 1989.

3. Holland, J.H., Adaptation in Natural and Artificial Systems, The University
of Michigan Press, Ann Arbor, 1975.

4. DeJong, K A., An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems, Ph.D. Thesis, University of Michigan, 1975,

5. Grefenstette, J.J., Optimisation of Control Parameters for Genetic
Algorithms, IEEE Transactions on Systems, Man and Cybernetics, 1988,
SMC-16/1, pp122-128.

6. Pham, D.T. & Yang,Y., Optimisation of Multi-Modal Discrete Functions
Using Genetic Algorithms, Proceedings of the Institution of Mechanical
Engineers (Part D), 1993, vol 207, pp 53-59.

7. Eshelman, L.J. & Schafter, J.D., Preventing Premature Convergence by
Preventing Incest, pp 115-122, Proceedings of the Fourth International
Conference on Genetic Algorithms, 1991.



