
Bridging the Research-Practice Gap in Requirements
Engineering
Sarita Pais
Auckland University of Technology, New Zealand
grk0058@aut.ac.nz

Alison Talbot
Auckland University of Technology, New Zealand
alital66@aut.ac.nz

Andy Connor
Auckland University of Technology, New Zealand
andrew.connor@aut.ac.nz

ABSTRACT

This paper examines the perceived research-practice gap in software requirements
engineering, with a particular focus on requirement specification and modelling. Various
contributions by researchers to write requirements specifications in the literature are
reviewed and in addition practitioners view points are also taken into consideration. On
comparing the research and practice in this field, possible causes for the gap are
identified. The barriers to adopt research contributions in practice are also reviewed.
Finally recommendations to overcome this gap are made, which are the basis for an on-
going study that aims to produce empirical results related to assessing requirements
engineering capability in New Zealand.

Keywords

Software requirements engineering, Requirements specification.

1. Introduction

According to Zave (1997), Requirements Engineering (RE) is a process of translating
the real world’s informal state into a more formal specification. In essence, it is a
process of creating and maintaining a system-requirement document to support the
development of a given product. This view is expanded on by Nuseibeh & Easterbrook
(2000) who assert;

“The primary measure of success of a software system is the degree to
which it meets the purpose for which it was intended. Broadly speaking,
software systems requirements engineering (RE) is the process of
discovering that purpose, by identifying stakeholders and their needs,
and documenting these in a form that is amenable to analysis,
communication, and subsequent implementation.”

Although there are different activities in this process, the requirement specification sub-
process is one in which system requirements are documented in a structured way. It
captures users and other stakeholders’ requirements in building a system. However,
capturing these requirements is not an easy task. According to Brooks (1987) the most
difficult task in building a system is what to build, and if this is not done properly it results
in a poor system which is difficult to rectify later and will cost more. Moreover, users
often do not know what they want and their needs keep changing (Hsia et al., 1994). In
order to produce good user requirement there has been tremendous efforts from
researchers to produce frameworks, models or tools to automate this process. However,
these contributions from researchers have not been adopted completely by practitioners
(Berry & Lawrence, 1998). Could it be that researchers have no input from practitioners
and the software industry for appropriate research framework? Even if researchers are
aware of the practitioners need, why are they not able to provide efficient tools or
appropriate processes? Are there other issues that prevent the adoption of new tools or
processes? Thus there is a gap between research and practice in Requirements
Engineering.

This paper attempts to understand the issues underlying this gap and what can be done
best to minimise this gap. In order to undertake this task, firstly the literature is searched
where researchers have highlighted and stressed the gap, and then the sub-topic area
of requirement specification is looked into. Here, the research directions are seen from
the researchers’ and practitioners’ point of view, whether there is any input from
practitioners to researchers. What are the different issues? Can these issues be solved
and if not, why? Are there any recommendations to bridge this gap?

2. The Research-Practice Gap

Stating user requirements has been a thorny issue since before the time of Brooks
(1987). The difficulty of this was again stressed in 1990’s by Hsia et al. (1994), and it still
remains a challenge today. Although the techniques to write requirements have been a
research subject for some time, the results of such research has not been followed by
the practitioners. The state of practice is requirements are often still written in natural
language, despite the drawbacks of such a representation. Requirements are also
seldom read, resulting in systems which do not satisfy the user. Lamsweerde (2000)
briefed the on-going problems of RE which contribute to large scale project failure for
US and European companies. It is true to this day that RE is still a complex task (Cheng
& Atlee, 2007). Unlike other parts in software engineering, it has to cover both technical
and human aspects (Faulk, 1997). Developers do not have the domain knowledge of the
system to be built. Although there are significant CASE tools, Commercial off the Shelf
(COTS) products, conceptual models, and Requirement Management tools produced
through the insights of researchers to aid in practice. Not all are used by the
practitioners for various reasons. It has been observed that “without more technology
transfer, RE practice is unlikely to improve and much RE research will remain irrelevant”
(Kaindl et al., 2002).

Even if tools or methods are used, the guidelines for their use are not efficiently nor
completely followed. This leads to the Research-Practice gap in RE in general. On the
other hand, it is also noticed that practice has led to form theory in IS (Fitzgerald, 2003)
like prototyping and defining the stages of system development life cycle. Is this trend
also visible in RE and in particular requirement specification? Or do researchers have
enough inputs? Is this gap significant even in the requirement specification? This shall
be covered in the next paragraph.

Wieringa & Heerkens (2006) question whether the research community is responding
well to this challenge. They hypothesize that, of the papers presented at conferences,
what are called research papers are often design papers. And while that in itself is not a
problem, they see that there are very few other papers in RE conferences. Davis &
Hickey (2002) argue that many requirements engineering researchers fail to understand
current practices. They conclude, citing Redwine & Riddle (1985), that “When we as
requirements researchers lament that technology transfer takes a whopping 15 years,
perhaps we should look no farther than ourselves.”

2.1 New Zealand Perspective

Whilst the research practice gap is of concern in the global arena, it is important to
consider the New Zealand perspective. While there is potentially 20 years worth of data,
it is apparent that there has been little exploration by researchers as to what current
practice is in the local software development industry, let alone that which focuses on
Requirements Engineering. Only a limited number of articles that have investigated New
Zealand companies’ requirements analysis processes have been found in the literature
(Groves et al. 2000a; Groves et al. 2000b; Kemp et al. 2003). In part this may be a
reflection of Fitzgerald’s (Fitzgerald 2003) assertion that less academic research value is
placed on research that is published in practitioner oriented journals hence this is not
considered a “worthwhile” area of analysis.

The first of the New Zealand studies (Groves et al. 2000a, Groves et al. 2000b) was
carried out in 1999 and analyses data gathered from 24 telephone interviews and four
in-depth interviews. The information recorded included items such as size of company,
kind of developments undertaken, formality of the process and/or notation, proportion of
project spent in requirement specification, standards in place within the organisation that
the process is subject to, types of testing undertaken and tools and languages used. In
the analysis of the results, no attempt was made to measure the effectiveness of the
processes, or estimate the overall capability (as in measuring against the capability
maturity matrix) of each company. The survey did provide some useful basic information
relevant to the local industry and as such provides an excellent snapshot of practice at
that time.

The second study (Kemp et al. 2003; Phillips et al., 2005) investigated the broader topic
of software engineering and tool support. It took the form of structured interviews with
five New Zealand software developers and in addition to questions about tools, covered
project lifecycle, and management. As with the previous survey, no attempt was made
to measure practice against any form of capability model. However the authors did note

that all of their respondents had some form of formal project management in place, but
that the degree of structure varied markedly. Unfortunately the information gathered
referred to analysis/design activities rather than separating out requirements
analysis/engineering tasks. In this respect the article is confined in its usefulness to
providing evidence about the overall project process.

There still exists a pressing need to review and assess current software development
practices in New Zealand, particularly in the area of requirements engineering. Similarly,
there is scope to investigate whether international practices are appropriate for New
Zealand companies to adopt. The outcomes of research related to companies similar to
those typical in New Zealand, such as the work of Nikula et al. (2000) which addressed
RE practices in Small to Medium Sized Enterprises need to be analysed for applicability
in the cultural, social and technological environment of New Zealand. Other work, such
as that of Damian & Zowghi (2003), which details requirements engineering challenges
in multi-site projects (which included Australasian projects) may also be off use in
informing future work.

To address this need, the authors will be undertaking a requirements engineering
capability assessment of New Zealand software development companies as a means to
identify shortcomings in current industry practice and identify how the gap between
research and practice may be closed as a means to improve software development in
New Zealand.

3. Requirements Specification

In the Requirements Engineering process, the development of a requirement
specification commences after the initial elicitation of requirements. User requirements
need to be documented well to ensure that proper instructions are available to
developers to enable them to design and code an appropriate solution. This
documentation could be in natural language. However developers prefer more formal
specifications which can be directly useful to build the system. Researchers have
contributed towards using conceptual models as used in System Analysis and Design
and Object Oriented Analysis and Design. These models define a scope for RE to detect
any oversight and inconsistencies. However the downside of this is, it reduce creativity
in the RE process (Pohl & Peters, 1996). Moreover such models, like the Unified
Modelling Language (UML), are not well understood by users (Kaindl et al., 2002).
Hence practitioners really do not follow a structured method in capturing requirements
from users which is often reflected in poor performance of the developed system. In a
survey conducted in over 3800 organisations in 17 European countries, it claimed that
50% of problems in software projects lie in the requirement specification (Lamsweerde,
2000). This is a grave situation and it is important to learn more about the research and
practice in requirement specification. It is essential to understand what contributions
have come from researchers and practitioners in this area, what differences and
similarities there are between them.

Gorschek & Svahnberg (2005) looked at the requirements practices of 6 companies and
found the following defects to be common in the current processes or documentation:

• Lack of standard templates or minimum set of attributes for specifying
requirements;

• Quality requirements expressed in a form that is not testable;
• Lack of requirements review;
• Poor or no recording requirement and decision history.

These problems have already been addressed by both research and practitioner authors
so this may indicate poor training or a reluctance within organizations for structured
methods. It may also be that these companies are not truly “requirements ready”, and
the defects in the requirements process are in fact a reflection of some other lack of
capability in the company, particularly the ability to accommodate and adapt to change.
Sommerville (2005) points out that, with experience, “the initial assumptions that
underpinned much RE research and practice were unrealistic”. It is now understood that
change is inevitable; no one can understand the whole problem before starting system
development and new insights as development progresses lead to changes in
requirements.

3.1. Research Perspective

Researchers differentiate RE as a process of what the system should do (Berry &
Lawrence, 1998) while others stress for more formal specification as they have the
qualities of good RE (Faulk, 1997). However, Nuseibeh and Easterbrook (2000) said
that it is important to know when to formalise it, considering users favour natural
language. The concept of modelling and specification is sometimes misunderstood
(Machado et al. 2005). A conceptual model has to be converted with standard language
to represent the system model to be called specification.

3.1.1 Unified Modelling Language (UML)

When structured programming was used in the past, structured analysis and design
methods were employed to document the formal specification. Now with object oriented
programming more in vogue, object oriented analysis and design methods are used
(Faulk, 1997). With object oriented analysis, data and related process are kept together
which was not the case in structured analysis. Then there are models for various
purposes. Activity oriented specification can be depicted as DFD or using UML notations
as use case and activity diagram. Data oriented specification can be ERD and class
diagram (UML). The other good point here is that same models are used in RE which is
easy for developers to understand and proceed with the system development. There is
no rewriting at each step in the software development process. However the models at
RE level may not contain all the merits to represent the user’s needs. Moreover the user
is not familiar with these models.

3.1.2 Prototyping

Prototypes help in capturing the elicitation requirement leading to proper specifications
(Pohl & Peters, 1996). This was also supported by Faulk (1997), as it takes less time
and there is no need to write requirement specification. Hence prototype can serve the
purpose, saving time and cost for quick development process. Moreover, users can
understand and review the proposed system.

3.1.3 Commercial off the Shelf (COTS)

The integration of COTS products as a means to achieve a given functionality is again a
useful model which reduces the overhead of the RE process (Nuseibeh & Easterbrook,
2000). They can be used as a checklist to cover all possible constraints. However, they
may not be able to locate the root cause of any investigation in RE. Hence a qualitative
approach is not possible.

3.1.4 Goals

Lamsweerde (2000) gave his contributions on identifying goals in RE and then
converting them to more formal methods. Goals could cover both the functional and
non-functional requirements. A goal can start from the elicitation stage from the
business perspective and end up in a more formal and structured specification as in
object oriented (Lamsweerde, 2003).

3.1.7 Scenario Based Models

Scenario based models are gaining importance in recent times (Cheng & Atlee, 2007). It
is easy for practitioners and users with non technical background to put together their
ideas and brainstorm on it, to refine requirements of the proposed system. SCRAM
(Scenario-based Requirement Analysis Method) is one such method which also
incorporates prototyping (Sutcliffe, 2003) within it. Moreover, Scenarios can be
expressed informally using natural language and more formally in modelling languages
(Rolland & Prakash, 2000).

3.1.8 Capability Maturity

Hall, Beecham & Rainer (2002) conducted an empirical analysis of 12 software
development companies, with a view to identifying patterns in occurrences of problems
related to requirements engineering. One of the conclusions of their work is that the
number of problems generally tended to decrease as the maturity of the company
increased. The Capability Maturity Model (Sawyer et al. 1999) appears to have been
adopted as the de facto industry standard to measure the effectiveness of an
organisations requirements engineering practice. This is evidenced by its use in such
studies as that undertaken by Gorschek and Svahnberg (2005). Recently a newer
model, the Requirements Engineering Maturity Measurement Framework (Niazi et al.
2007), was proposed. However it is still based on the Capability Maturity Matrix.

Sommerville & Ransom (2005) conducted an empirical study in industry of requirements
engineering process maturity assessment and improvement that concluded that the RE
process maturity model was useful in supporting maturity assessment and identifying
potential process improvements. They also indicated that there was evidence to suggest
that requirements engineering process improvement would lead to business benefits,
though these benefits could be a consequence of the changes to the RE process or
from side-effects such as greater self-awareness of business processes.

3.2 Practice Perspective

Practitioners generally do not differentiate much between the “what and how”, or
between the end product and the actual process of building the system (Berry &
Lawrence, 1998). They also do not waste much time in writing formal requirement
specification (Faulk, 1997) as they are not practical. They are considered to be difficult
to use, as users do not understand them. It costs them more of their tightly budgeted
project time. Most tools developed by researchers are in prototype stage and have
scalability issues when applied to real life systems. Hence practitioners have no trust in
them. This view point as not changed much in recent times and is evidence from a
survey listed below.

3.2.1 Mixed Results

According to a survey (Neill & Laplante, 2003) 35% of companies still use waterfall
methodologies in RE. Although prototyping is not part of waterfall, 60% did it. 50% used
scenarios and use cases. 51% used informal methods like natural language. 33% did
not use any methodologies. The percentage of agile methodologies was negligible. It is
very clear from these statistics that there is a mix of practices in industry. UML is still not
a prominent methodology. As the statistics are from 2003, there might be a slight
increase in the adoption of UML in RE. Again, this is the viewpoint of researchers and
there are not many journals to support the viewpoint of practitioners. Normally
practitioners know the good and bad points of the method they use and are not aware of
other methods. It is researchers who make comparative studies of different methods and
publish their work, but perhaps do not disseminate the results to practitioners.

3.2.2 Formal Methods

It is well known that RE is not time effective. However, this approach is changing as RE
play a significant role in the success of finished product (Nuseibeh & Easterbrook,
2000). However there is no good reputation among stakeholders of using formal
methods (Kaindl et al., 2002). In that case, it is not clear if formal methods are approved
in the current practice. A lack of understanding of formal methods themselves may be a
contributing factor to the lack of adoption.

3.2.3 Unified Modelling Language

UML is fast becoming as an emerging leader in analysis and design of software
systems. These same models are widely accepted in RE too. Business use case is
initially used to draw up the requirements from the users (Leffingwell & Widrig, 2000).
They are kept simple for non-technical stakeholders. Many of the user’s requirements
may not be feasible. With the help of these formal methods users are now able to get a
better insight into the proposed system. These specifications are also approved by
developers as it is easy to convert these formal models into other stages in software
development (Machado et al. 2005).

3.2.4 Agile methodologes

Agile methodologies are becoming more prevalent today, and in many implementations
of the agile principles there is no requirement specification documents maintained (Cao
& Ramesh, 2008). A practical prototype is built after face-to-face communication with the
user. The prototype is reviewed and evolved. Users are part of the development process
and need their continuous feedback for further progress. This could cripple development
work sometimes as it is needs the continuous involvement of users.

Thus practitioners have their own various view points of requirement engineering. The
next paragraph is an attempt to analyse research activities and industry practises. The
reasons for the gap between research-practice in requirement specifications are
identified and some recommendations to overcome this gap are suggested at the end.

4. Discussion

Thus far, various viewpoints of researchers and practitioners were put forward. It is now
important to collate them together. Putting researchers work on one side and
practitioners needs on the other side, a working solution has to be put forward. Before
any solution is planned by researchers, it is important to know what works in practical
world for the practitioners and what method is efficient to put together requirement
specifications.

4.1 Needs of the Practitioners

Practitioners need a well managed RE tool. It should be ease to use. The whole process
of RE should be cost effective to balance overheads, time and training (Cheng & Atlee,
2007). In other words it is a practical tool. Empirical studies from software companies
should be used in RE Research to build tools that conform to these needs.

As complexity in software development has increased, it is important to involve users in
its development (Faulk, 1997), especially requirement specification. As formal methods
are not easy for users to understand, a tool which will capture natural language
requirements into formal methods is desirable.

Requirement specification is not standardized (Faulk, 1997). Today UML is getting
recognition as the de facto standard (Kaindl et al., 2002). However, it not clear if UML is
able to completely cover all aspects of RE.

Most of the practitioners work is published as white papers which has little credit as
compared to research papers. Most of their work is not accepted by research publication
and is biased against them (Fitzgerald, 2003).

4.2 Current Research Contributions

Researchers are aware of practitioners’ needs. Attempts are made to automate RE by
converting natural language specifications into formal methods, considering both the
functional and non-functional specifications, building repositories of requirements to
reduce time and cost. More details of these contributions are given below.

4.2.1 Repository of Natural Language Requirements

Natural Language is found to be the most convenient way to extract user’s
requirements. Although requirement engineers would prefer formal methods, they have
to deal with users in natural language. Moreover formal methods can check internal
consistencies. However, they fail to check external factors as they are user dependent.
Therefore natural language is an appropriate solution. Hence it is important to keep a
repository of such natural language requirements (och Dag & Gervasi, 2005). A
matching requirement technique is searched same as in information retrieval.
Challenges of matching the appropriate requirement in the repository is still in its
infancy. Although linguistic engineering technique is used, there is a need for lexical
match too. Hence there is a growing concern among researchers to develop a tool to
convert natural language specification into formal methods.

4.2.2 Functional and Non-functional Requirements

Hsia et al (1994) put the importance of a unified framework dealing with both functional
and non-functional requirements. However, most conceptual models can capture
functional requirements but not non-functional requirements (Nuseibeh & Easterbrook,
2000). The Research community is currently focusing on this. Machado et al. (2005)
came up with a solution for non-functional requirement like performance considering
time factor which can be measured in sequence diagrams of UML. As these constraints
are equally important to build good system, it has to be covered early on in the RE.
Other examples are web based interfaces with poor security. This has to be an
important concern too. Then there are other issues like usability and reliability of
systems. Hence non-functional requirements need to be given equal importance as
functional ones.

Although researchers have contributed to the needs of the practitioners, there is
something still missing. Hence, it is still not accepted completely. The next section will
illustrate the reasons for it.

4.3 Barriers

There are several reasons cited for the research-practice gap. Although researchers are
aware of needs of the practitioners, there are other issues, some of which are not easy
to implement. These issues were brought to light in the last two decades and yet a
complete workable solution is not evident in literature.

4.3.1 No Collaboration

There is little or no collaboration between researchers and practitioners (Cheng & Atlee,
2007; Pohl & Peters, 1996). This view point has not changed to this day. The inputs to
research do not reflect the issues of RE in practice. Even if researchers come up with a
solution, the scalability of such research outputs is not covered (Pohl & Peters, 1996)
due to non availability of industrial data or collaboration. Hence data with industrial
strength should be employed in research (Cheng & Atlee, 2007).

4.3.2 No training

RE is not taught in-depth in many universities. Students have only some vague
knowledge through software engineering. Hence there is a lack of well trained
requirement engineers (Pohl & Peters, 1996). Lack of formal education has also been
identified by do Prado Leite (2000) as a major obstacle for closing the research-practice
gap in RE. Further training or technical support is not provided (Hsia et al. 1994) from
the researcher once their work is published, and indeed many researchers will move on
to the next big problem once they have reached a proof of concept stage in their current
work. Hence, most practical outputs from their work is still in prototype. No further
support given is by researchers to practitioners in choosing the correct tool (Pohl &
Peters, 1996). Developers find the methods unsuitable and do not trust them (Hsia et al.
1994). Hence cannot be easily adopted on a commercial scale.

5. Recommendations

After realising the issues for the gap between research and practice in requirement
specifications, a few recommendations are made to bridge this gap.

5.1 Empirical studies

The survey study (Neill & Laplante, 2003) mentioned earlier only gave the different
choice of capturing requirement specifications as it was a survey study. There were no
details of any issues in the current practice of the practitioners or any suggestions.
Hence research should be conducted to get the essence of a qualitative study, involving
case studies (Jiang et al. 2005) on several organisations. This will provide evidence to
the state of practice on RE (Zave, 1997). This gives direct evidence of what is required
by the industry to capture requirement specifications. However, it is difficult to generalise
and apply to all projects. Kaindl et al. (2002) make a strong recommendation for more

research on the economics of RE to gain concrete knowledge of what organizations can
gain from applying state of the art requirements approaches.

5.2 Automation tool

There is a need to find a tool which can automatically translate natural language
specifications into formal ones (Zave, 1997). Even a partial translation could help (Hsia
et al.1994) as most of the practitioners still prefer natural language for RE. Somé (2006)
came up with a specification model collating all use cases, such that the specifications
could be generated on the fly.

5.3 Repository

A database collection of all frameworks used to capture RE knowledge, especially
dealing with specifications should be made available (Cheng & Atlee, 2007). There
should be recommendations made to suit different projects. This will reduce the time
factor in writing requirement specifications and an easy adoption of formal methods.

5.4 Collaboration

Most researchers are from an academic background, some do have some past
experience in industry. However, the trend in the software industry is very dynamic as
the industry is still not mature. Past experience in industry may provide little help for
researchers to envision the current industry problems in RE. The development of tool
and practice should go hand in hand (Lamsweerde, 2004). Hence, more continuous
collaboration between researchers and practitioners will help to bridge this gap.

6. Conclusions

This report was an effort to highlight the gap between researchers and practitioners in
RE especially in requirement specification area. Researchers have given formal
methods while practitioners still prefer natural language to write the requirement
specifications. After studying the needs of the practitioners and issues using formal
methods, a few recommendations are made to narrow this gap.

References

Berry, D. M., & Lawrence, B. (1998). Requirement engineering. IEEE Software, 15(2),
26-29.

Brooks, F. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE computer, 10-19.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An Empirical
Study. IEEE Software, 25(1), 60-67.

Cheng, B. H. C. & Atlee, J. M. (2007). Research directions in requirement engineering.
International Conference on Software Engineering, Future of Software Engineering,
IEEE Computer Society Washington, DC, USA, 285-303.

Damian, D. & Zowghi, D. (2003) Requirements engineering challenges in multi-site
software development organizations. Requirements Engineering Journal 8, 149-160.

Davis, A. M., & Hickey, A. M. (2002). Requirements researchers: Do we practice what
we preach? Requirements Engineering, 7(2), 107-111.

do Prado Leite, J. C. S. (2000). Is there a Gap between RE research and RE practice?
Proceedings of the Fourth International Conference on Requirement Engineering (ICRE
2000). IEEE Computer Society, 73-74

Faulk, S. R. (1997). Software requirements: A tutorial. Software Requirements
Engineering, IEEE Computer Society Press, 1-22.

Fitzgerald, B. (2003). Informing each other: Bridging the gap between researcher and
practitioners. Informing Science, 6, 13-19.

Gorschek, T., & Svahnberg, M. (2005). Requirements experience in practice: Studies of
six companies. In A. Aurum & C. Wohlin (Eds.), Engineering and Managing Software
Requirements. Berlin: Springer.

Groves, L., R. Nickson, et al. (2000a). "A survey of software development practices in
the New Zealand Software industry." Proceedings of the International Australian
Software Engineering Conference 2000.

Groves, L., R. Nickson, et al. (2000b). "A survey of software requirements specification
practices in the New Zealand software industry." Proceedings ASWEC: 189-201.

Hall, T., Beecham, S., & Rainer, A. (2002). Requirements problems in twelve software
companies: an empirical analysis. IEE Proceedings on Software, 149(5), 153-160.

Hsia, P., Davis, A. M., & Kung, D. C. (1994). Status report: Requirement engineering.
IEEE Software, 10(6), 75-79.

Jiang, L., Eberlein, A., & Far, B. H. (2005). Combining requirements engineering
techniques - Theory and case study. Proceedings of the 12th IEEE International
Conference and workshops on the Engineering of Computer-Based Systems,
ISBN:0769523080.

Kaindl, H., Brinkkemper, S., Bubenko, J. A., Farbey, B., Greenspan, S. J., Heitmeyer, C.
L., et al. (2002). Requirement engineering and technology transfer: Obstacles,
incentives and improvement agenda. Springer-Verlag, London, 7(3), 113-123.

Kemp, C., Phillips, E. A. & Alam, J. (2003). Software engineering practices and tool
support: An exploratory study in New Zealand, Australian Journal of Information
Systems, 11(1), 37-54.

Lamsweerde, A. (2000). Requirement engineering in the Year 00: A research
perspective. Proceedings of 22nd International Conference on Software
Engineering,(ICSE’2000): Limerick, Ireland, Invited Paper, ACM Press, 5-19.

Lamsweerde, A. (2003). Goal oriented requirement engineering: From system objectives
to UML models to precise software specifications. Proceedings of the 25th International
Conference on Software Engineering, Portland, Oregon, 744-745.

Lamsweerde, A. (2004). Goal oriented requirement engineering - A Round trip from
research to practice. Proceedings of the 12th IEEE International Requirement
Engineering Conference, Kyoto, Japan.

Leffingwell, D., & Widrig, D. (2000). Managing software requirements: A unified
approach: Addison-Wesley.

Machado, R. J., Ramos, I., & Fernandes, J. M. (2005). Specification of requirement
models. A. Aurum & C. Wohlin (Eds). engineering and Managing Software
Requirements. Springer: Berlin.

Neill, C. J., & Laplante, P. A. (2003). Requirement engineering: The state of the practice.
IEEE Software, 20(6), 40-45.

Niazi, M., K. Cox, et al. (2007). "A measurement framework for assessing the maturity of
requirements engineering process." Software Quality Journal Volume 16, (Number 2 /
June, 2007).

Nikula, U., Sajaniemi, J., & Kälviäinen, H. (2000). A State-of-the-Practice Survey on
Requirements Engineering in Small-and Medium-Sized Enterprises. TBRC Research
Report, 1.

Nuseibeh, B., & Easterbrook, S. (2000). Requirement engineering: A roadmap. ACM
Computing Surveys, 35-46.

och Dag, J. N., & Gervasi, V. (2005). Managing large repositories of natural Language
requirements. A. Aurum & C. Wohlin (Eds). Engineering and Managing Software
Requirements. Springer: Berlin.

Phillips, E. A., Kemp, C. & Hedderley, D. (2005). Software development methods and
tools: A New Zealand study, Australian Journal of Information Systems, 12(2), 21-49.

Pohl, K., & Peters, P. (1996). Workshop summary second international workshop on
requirement engineering: Foundation of software Quality. ACM SIGSOFT Software
Engineering Notes, 21(1), 31-34.

Redwine S, Riddle W. Software technology maturity. In IEEE eighth international
conference on software engineering, 1985, pp 189–200

Rolland, C., & Prakash, N. (2000). From conceptual modelling to requirement
engineering. Annals of Software Engineering, 10(1/4), 151-176.

Sawyer, P., Sommerville, I. & Villier, S. (1999). Capturing the benefits of requirements
engineering. IEEE Software, 16(2), 78-85.

Some, S. S. (2006). Supporting use case based requirement engineering. Information
and Software Technology, 48(1), 43-58.

Sommerville, I. (2005). Integrated requirements engineering: A tutorial. IEEE Software
(Jan/Feb 2005), 16-23.

Sommerville, I., & Ransom, J. (2005). An empirical study of industrial requirements
engineering process assessment and improvement. ACM Transactions on Software
Engineering and Methodology (TOSEM), 14(1), 85-117.

Sutcliffe, A. (2003). Scenario-based requirements engineering. Proceedings of the 11th
IEEE International Conference on Requirements Engineering, IEEE Computer Society,
320-330.

Wieringa, R. J., & Heerkens, J. M. G. (2006). The methodological soundness of
requirements engineering papers: a conceptual framework and two case studies.
Requirements Engineering, 2006(11), 295-307.

Zave, P. (1997). Classification of research efforts in requirements engineering. ACM
Computing Surveys, 29(4), 315-321.

Copyright

You must insert the following Copyright notice at the end of your paper:

Copyright  [2008] Sarita Pais, Alison Talbot & Andy Connor
The author(s) assign to NACCQ and educational non-profit institutions a non-exclusive licence to use this document for personal use
and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The author(s) also
grant a non-exclusive licence to NACCQ to publish this document in full on the World Wide Web (prime sites and mirrors) and in
printed form within the Bulletin of Applied Computing and Information Technology. Any other usage is prohibited without the express
permission of the author(s).

	Bridging the Research-Practice Gap in Requirements Engineering
	ABSTRACT
	Keywords
	1. Introduction
	2. The Research-Practice Gap
	2.1 New Zealand Perspective

	3. Requirements Specification
	3.1. Research Perspective
	3.1.1 Unified Modelling Language (UML)
	3.1.2 Prototyping
	3.1.3 Commercial off the Shelf (COTS)
	3.1.4 Goals
	3.1.7 Scenario Based Models
	3.1.8 Capability Maturity
	3.2 Practice Perspective
	3.2.1 Mixed Results
	3.2.2 Formal Methods
	3.2.3 Unified Modelling Language
	3.2.4 Agile methodologes

	4. Discussion
	4.1 Needs of the Practitioners
	4.2 Current Research Contributions
	4.2.1 Repository of Natural Language Requirements
	4.2.2 Functional and Non-functional Requirements
	4.3 Barriers
	4.3.1 No Collaboration
	4.3.2 No training

	5. Recommendations
	5.1 Empirical studies
	5.2 Automation tool
	5.3 Repository
	5.4 Collaboration

	6. Conclusions
	References
	Copyright

