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Abstract 

The aim of the research reported in this thesis was to design and construct several Fault-

Tolerant Controllers for a simulated multi-joint planar robotic arm system.  Analysis 

and comparisons of the convergence rates of the controllers developed will assist in 

determining and understanding the effectiveness of the controller to adapt itself as the 

number of faults in the system increases. 

This research designed four Fault-Tolerant Controllers by combing two well-known 

Optimisation Algorithms: Genetic Algorithm (GA) and Particle-Swarm Optimisation 

(PSO) with two well understood robotic controllers: Artificial Neural Network (ANN) 

and Lookup Table (LUT). The effectiveness of the controller is measured by how fast it 

can recover when different numbers of faults are applied to it.  A Fault-Tolerant 

Controller can be constructed using either active or passive Fault-Tolerant Control.  

Passive Fault-Tolerant Control is typically achieved via redundancy, such as having 

backup components integrated into the system.  When faults occur, the system can 

remain operational by quickly switching to the backup component.  Active Fault-

Tolerant Control actively updates its parameter and/or architecture to adapt itself to 

compensate the effects of faults.   

Results have shown that the Fault-Tolerant Controller PSO-LUT has the fastest 

convergence rate over all faults combinations applied to it, followed by PSO-ANN, GA-

LUT and GA-ANN.  Results from all the controllers have shown that the overall 

performance of the controllers is acceptable. However, in some instances the controllers 

can become stuck near a local optimal for a significant period before converging to a 

solution. 
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Chapter 1  

Introduction 

1.1 Background 

From the dawn of human civilization, it was always one of mankind’s greatest 

ambitions to create an automaton artefact and/or sentient being from our own image [1; 

Chapter 1].  From Talus the bronze giant in ancient Greek mythology, to the Clepsydra 

water clock the first automated mechanical artefact described in ancient Babylonians 

texts [1; Chapter 1].  As human ingenuity and creativity continued to flourish, systems 

such as the automaton theatre of Heron of Alexandria, and Leonardo da Vinci’s 

multitudinous brilliant devices have been designed and constructed [1; Chapter 1].  In 

addition, such enthusiasm was widespread across the world, with creations such as 

Jacquet-Droz’s family of android and the Karakuri-Ninguo mechanical dolls [1; Chapter 

1].  Since the Industrial Revolution, automation has transformed many industries, 

especially in manufacturing and agriculture [1; Chapter 1, 2].  It was that period which 

gave birth to the conceptualisation and realisation of the necessity to advance in 

machinery and automation.  Nevertheless, the emergence of modern robotics did not 

surface until the twentieth century, when the underlying technologies such as the 

transistors and the integrated circuit (IC) were invented. 

The term robot was derived from the Czech and the Slovak word robota meaning forced 

labour, which were conceived by the Czech writer Karel Čapek in his play Rossum’s 

Universal Robots (R.U.R) in 1920 [1; Chapter 1].  Ever since the term came into being, 

it was quickly popularised and accepted by the general public to the extent that it 

became more commonly used than automaton.  Since its popularisation, the study of 

robots has attracted a tremendous amount of research and contribution from different 

fields and professions, for example the famous ‘Three Laws of Robotics’ envisioned by 

Russian science-fiction author Isaac Asimov in his work [1; Chapter 1], which explores 

ethics of the interaction between human and robots.  With Julius Lilienfelds [3] 

invention of transistor in the 1920’s which give rise to modern electronics, a new area 

of research in the field of Artificial Intelligence (AI) which explores the connection 

between human intelligence and the machine had emerged [1; Chapter 1].  The 

emergence of the field of AI benefited from the dawn of the information age, which saw 

an advancement in different related fields of studies such as machine-learning 
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algorithms, mechanics, control systems, as well as the invention of modern computers 

and continuous advancement in electronics[1; Chapter 1]. This gave birth to early 

design and development of robots and the research field of robotics was introduced.  

With advancements in all the related fields of research which drive researchers into new 

areas of research and discovery, this in turn prompted novel concepts and solutions.  For 

example in 2016 Google DeepMind utilised a deep neural network to encode AlphaGo 

to defeated the world’s number 1 player in Go, an ancient chess like game originated 

from China [4].  That feat outshines all earlier processor such as IBM’s Deep Blue and 

Watson, because in a game of Go on a 19 19	Go chess board it has 2.08	 10  

legal positions, making it impossible to use older machine-learning algorithms, for 

example the brute-force calculation used in Deep Blue to make enough predictions 

ahead of each opponent’s move to secure a win.  Thus, since its inception the field of AI 

has achieved some unparalleled accomplishments, but failed to formalise the problem 

space it is concerned with, namely solving the strong AI problem as noted by 

Yampolskiy [5].  During the second half of the twentieth century, with the development 

of essential components such as computers, electronics and Internet of Things, enabled 

more advanced robots and robotic controllers to be designed and programmed.  With 

the advancement in robotics and its related area, robots have become increasingly more 

intelligent and able to perform more complex tasks, which leads to robotics being 

integrated into a wider range of applications.  For example, industrial robots in a factory 

and the new type of intelligent robotic described by Taylor et al. [6] that assist surgeons 

to perform certain tasks, were proven to be more efficient and have less chances of 

making errors compared to its human counterparts when performing the same repetitive 

and tedious tasks. 

From the 1980s a new paradigm in robotic research had surfaced, which studied the 

intelligent connection between how robots dynamically perceive and interact with the 

real world [1; Chapter 1].  Therefore, robots were equipped with sensors to observe and 

extract information by itself relative to its surrounding environment.  In addition, robots 

are equipped with locomotion equipment to enhance its manoeuvrability in its 

environment and/or manipulation apparatus to interact with objects present in the 

environment [1; Chapter 1].  By the 1990s came the realisation of the need to design 

robots with a higher degree of autonomy, to replace humans in performing tasks in 

hazardous environment, to enhance its human operator’s performance and reduce 

fatigue, or to develop products aimed at improving quality of life [1; Chapter 1].  With 
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the ambition to increase human-to-machine and machine-to-environment interaction, at 

the end of the second millennium robotics underwent a major transformation.  Robotics 

shifted away from a dominantly industrial focus, and rapidly expanded into human-

centred and life-like robotics which provide unlimited benefits and limitless possibilities 

to humans, while they are expected to safely and dependably integrate into and co-

habitat with human society [1; Chapter 1, 2].  For example, in search and rescue, 

disaster response, health care, transportation, entertainment, education, manufacturing 

and assistance.  In addition, modern robotics proved to be an invaluable tool to venture 

into and explore areas which are deemed inaccessible and/or hazardous for human 

expeditions, from nuclear exclusion zones to distant planets and deep oceans. 

In today’s world, there is an increasing need for and availability of personal service 

robots being integrated into human life and society; for example Honda’s ASIMO1 [7].  

In addition, with the advancements in software and machine learning algorithms that are 

able to assist in scientific exploration, for example fast machine learning algorithm are 

able to self-learn and recreate the Nobel prize winning experiment by Wigley et al. [8],.  

The classical definition of autonomous systems which had defined generations of 

systems that simply apply pre-programed reactions in response to the system’s inputs is 

becoming obsolete.  By contrast, true autonomous systems that seek to carry out goal-

oriented tasks whose implementation details are not predefined, either by necessity or as 

a design strategy developed by Lussier et al. [9] are emerging to the centre stage.  Yet a 

major setback to their wider adoption into more complex environments and dynamic 

situations outside the factory and laboratory environment is their fragility against faults 

[2].  Most contemporary robots and robotic controllers lack or have limited ability to 

compensate for or self-generate a novel solution for situations that are not anticipated 

during the design phase.  In addition, it is impractical to anticipate every possible 

situation that the robot may encounter during its deployment and an engineer or 

technician is not always available to provide the support the system needed to continue 

with its task [2], especially when there are an increasing number of robots deployed in 

harsher and more complex environments [10].  A robot may be rendered useless or 

become a burden, if it is unable to adapt to unanticipated situations or when its 

objectives are updated but service and repair are not immediately available, for example 

1 ASIMO (Advanced Step in Innovative Mobility) 
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space-exploration or surveying the nuclear exclusion zones of the exploded Fukushima 

nuclear plant.  Therefore, this research is set to investigate and compare optimisation 

algorithms controllers to generate a novel solution for a robotic controller that enhances 

its adaptability in unknown environment, and its fault tolerability. 

1.2 Research Objectives 

The research question is to investigate and compare the effectiveness of two 

Optimisation Algorithms, which are: Genetic Algorithm and Particle Swarm 

Optimisation, in combination with two robotic controllers to create an active Fault 

Tolerant Control (FTC) to control a simulated robotic arm system.  The eight joint 

robotic arm used in this research is tasked to move from a set starting point to a location 

set by the user within its workspace, with or without occurrence of fault in the system.  

For this research, a fault is defined as when one or more of its joints is no longer able to 

rotate and is permanently set to 0°.  The effectiveness of the optimisation algorithm and 

the controller itself are assessed and compared with the following aspects: 

(i) The performance of the controllers.

(ii) The effects on the performance of the controller when the parameters of the

optimisation algorithm are changed.

(iii) The effects on the controller when a fault(s) is introduced at the start or

during the time a solution is being generated.

The Optimisation Algorithms investigated in this research are Genetic Algorithm (GA) 

and Particle-Swam Optimisation (PSO).  The controllers to be optimised are Artificial 

Neural Network (ANN) and Lookup Table (LUT).  GA, PSO and ANN are algorithms 

inspired from observed events in nature, of which they belong to a larger group known 

as Evolutionary Algorithm. 

Evolutionary Algorithms are metaheuristic2 algorithms that have been widely 

researched and popularly used for autonomous robots due to their adaptability in 

unknown environments and fault tolerance.  In robotic controller design and 

2 Definition of Metaheuristic: Solution methods that orchestrate an interaction between local 
improvement procedures and higher-level strategies to create a process capable of escaping from local 
optima and performing a robust search of solution space. 
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implementation, a common and extensively studied practice is to implement an 

Evolutionary Algorithm with an ANN, where the weights and/or the structure of the 

network are evolved by the Optimisation Algorithm.  Another practice that has gained 

popularity in recent years is to update the weights and/or structure of an ANN, using 

posterior knowledge calculated by Bayesian Inference.   

An ANN is a relatively well-established concept, its origin can be traced back to shortly 

after the Second World War [11].  Since then it has been extensively studied and it is 

highly popular in fields such robotics, machine learning, and problems that involves 

classification, regression and prediction of the data. An ANN can give relatively 

accurate approximated output from its input data. The ANN design used in this research 

is a standard feed-forward two-layer Neural Network.  Other less-studied evolvable 

robotic controllers are LUT where the parameters of the table are evolved using a GA or 

PSO. 

LUT are commonly used in low-powered embedded systems, because it utilises an 

index-based system which reduces computational runtime and generally puts less 

computational load on the Microcontroller unit.  There are various ways to configure a 

LUT, depending on the complexity and the nature of the computational task that it is 

trying to solve, but when used as a robotic controller it is generally restricted by the 

quantisation of the inputs, outputs and the nature of the problem it is trying to compute. 

However, once its parameters are properly set up a LUT controller generally requires far 

fewer computational resources from the Microcontroller Unit than other controller 

system examined in this thesis. 

The following aspects of the Evolutionary Computation are evaluated and compared: 

(i) Overall efficiency of each type of Evolutionary Computation, both

numerically and visually.

(ii) Efficiency of the Evolutionary Computation had on the controller are

determined by the number of iterations required to converge to a solution

with the desired fitness level.

(iii) Investigate the effects of varying parameters within the Evolutionary

Computation has on the convergence rate to a desired fitness level.

(iv) Effects on the Evolutionary Computation convergence rate when certain

physical properties of the robotic arm system are changed.
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1.3 Thesis Structure 

The following chapters are structured in the following manner.  Chapter 2 provides a 

detailed literature review in the theory of fault-tolerant control and fault-tolerant 

controller.  Chapter 3 provides a comprehensive description of the system developed for 

this research to test the developed fault-tolerant controllers.  Chapter 4 contains the 

design, architecture and description of the fault-tolerant controller developed in this 

research.  Chapter 5 presents the results generated by the developed fault-tolerant 

controllers, and a comprehensive analysis of the results.  Finally, chapter 6 gives the 

conclusion and recommendation of future work related to the research presented in this 

thesis. 

In summary, this chapter introduces the research question, which is to  compare the 

effectiveness of two Optimisation Algorithms for active Fault Tolerant Control (FTC) 

as well as the overview and layout of this thesis.  The next chapter provides an in-depth 

discussion literature review on existing work and system developed for this research. 
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Chapter 2  

Literature Review 

Humanity has become more dependent on the availability and stability of complex 

industrial processes, that are required to meet the ever-increasing demands of high 

production and product quality.  As well as improving efficiency in economic and 

ecological operation, there is a need to design systems with increased complexity and 

automation integrated into it [12-15].  Modern industrial process systems consist of 

many different components; such as human operators, robots, material distribution, 

transportation, power distribution, tools and many more.  So, to ensure efficient and 

high-quality operation of the system, each component is required to correctly perform 

its assigned tasks.  As the level of complexity increases along with the number of 

components, subsystems and their interactions, the probability for faults to occur within 

the system increases.  When a fault occurs, it may lead to wide-spread consequences 

and affect the performance of the process or system as a whole [12].  Additionally, for 

safety-critical systems such as nuclear power plants, safety, availability, dependability 

and reliability concerns are of utmost importance [16-18].  If left unattended, any 

unresolved faults and failures in the system may result in catastrophic consequences.  In 

recent decades definitions and classifications of faults have been extensively studied, 

and so a fault can be classified into two forms [17, 18]: 

1. The first is a revertible malfunction in the system’s structure or parameters 

that cause the system to behave in a manner which leads to degraded system 

performance or the loss of functionality. 

2. The second is where the system has a permanent loss in functionality. 

Many researchers [12, 14, 16, 17, 19, 20] have classified the cause of faults into five 

main categories, which are:  

1. Internal faults: faults from within the system itself, which may result in one 

of many consequences, for example power loss, a break in communication 

or a physical breakage (for example a malfunction in the actuator). 

2. Sensory faults: faults caused by faulty sensors and incorrect sensory signals, 

which may cause a false alarm to occur when the system is operating 

normally, or a false negative where there is an actual fault occurring in the 

system which was undetected by the sensors. 
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3. Operational fault: faults caused by the controller performing an incorrect 

control action.  This may be caused by a sudden change in the system’s 

environment that leads to the system operating outside its intended regions.   

4. Design fault: faults that were undetected during the design phase of system 

but reduce the performance of the system when the system is deployed.   

5. Combinational faults: a combination of two or more of the faults described 

above.  These may be one of the hardest types of faults to diagnose. 

Further, faults can be broken down into the following classifications [18]:  

(i) Abrupt faults, are malfunctions that occur suddenly.  

(ii) Incipient faults, occur at a more gradual rate.   

(iii) Permanent faults, which cause permanent failure to the system. 

(iv) Transient faults, causing temporary malfunctions that disappear after a 

period.   

(v) Intermittent faults, are repeated occurrences of transient faults.  

(vi) Hidden faults, are faults that occur when a certain component or subsystem 

is activated, otherwise they are undetectable. 

Faults are bound to occur for any physical system because it is practically impossible to 

build a perfect system, and there are countless conditions that can trigger a fault to 

occur.  In addition to this, faults may also occur due to impurities and fatigue of 

materials used to construct the system, physical wear and tear of components and 

damage [20].  It is impossible for an engineer to anticipate every possible fault and take 

preventative steps when designing the system.  In the event of a fault occurring, a 

system with a conventional feedback control design may result in deterioration in 

performance, which may lead to instability in the system, loss in functionality and 

ultimately may lead to a total system failure, where maintenance or repair are not 

immediately available[12, 15].  

A fault-tolerant controller is a controller that under nominal operations, acts like any 

other controller available, but its true features only appear when a fault or faults occurs 

in the system being used.  Controllers are usually designed for the system to operate in a 

faultless situation, such that the closed loop meets the assigned performance 

specifications [12]. 
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2.1 Fault-Tolerant Controller 

A well-designed fault-tolerant controller should be able to modify itself to adapt to 

uncharacteristic behaviours in the system due to a fault(s).  The architecture of a fault-

tolerant controller, as shown in Figure 2.1, typically consists of two parts; (i) Fault 

Diagnosis (FD) and (ii) Fault-Tolerant Control (FTC), and it can be either passive or 

active [18]. 

Figure 2.1. Architecture of Fault-Tolerant Controller 

The function of FD is to provide critical information about the fault, i.e.  detects, 

analyses and isolation the faults and passes this information to the FTC to the controller 

[16, 17, 21].  The FTC enables the system to continue performing its intended functions 

in the presence of faults at a relatively normal operation or to fail gracefully rather than 

an abrupt system failure [16, 17, 21].  FTC deals with the interaction between the 

system and its controller, by either: (a) passively compensating or (b) actively 

redesigning the controller to adapt to the fault when it occurs. 

FD and FTC are not governed by the conventional feedback mechanism of the 

controller [12], but rather by a supervision system that governs the control structure, 

algorithm and parameters of the feedback controller. 

2.1.1 Fault Diagnosis 

Sensor and actuator failure, equipment fouling, feedback variation, product changes and 

seasonal influences make up to 60% of industrial controller problems [15].  When faults 

occur, they may significantly cause the system’s operation to deviate outside its nominal 

operating range and may lead to failure.  Therefore, diagnosis provides the opportunity 

for early detection, isolation and analysis of faults, enabling the system to adapt and/or 
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correct the faults before substantial damage is dealt to the system, or system failure 

occurs [12, 18, 20, 21].  In addition, a good fault diagnosis system should be robust 

against noise, incorrect signals and their propagation through the system, and should 

have a high sensitivity and ability to detect faults [18].  Techniques used in fault 

diagnosis can be generalized into the following: 

(a) Hardware redundancy diagnosis: can be achieved by reconstruction of the 

system components using multiple redundant hardware components [13, 

16].  Faults become detectable by continuously comparing the output of the 

components against one of its identical redundant components.  Hardware 

redundancy diagnosis can simultaneously achieve fault detection and 

isolation, which is found to be highly reliable, but it is expensive to 

implement, and therefore its application is usually restricted to several 

safety-critical components. 

(b) Analytical model-based diagnosis: utilizes mathematical models to achieve 

fault detection and isolation in the system [13, 22].  Mathematical modelling 

is used to represent the dynamics and features of the system.  Fault 

diagnostic are performed by first generating the residual signal, which 

calculates the difference between the measured output of the system and the 

estimated output calculated from the model.  The residual signal is then 

evaluated and analysed to determine the fault or faults.  With the distinctive 

analytical process and the way that the system is represented in terms of 

mathematical models, many researchers believe that this type of fault 

diagnosis is the most effective in fault detection for dynamic processes.   

(c) Signal processing-based diagnosis: detects faults based on the assumption 

that certain signals contain information about the faults.  The form of 

symptoms and associated fault diagnosis can be attained by analysing such 

signals [13].  These symptoms are typically found in the form of time-

domain functions such as magnitudes or frequency-domain functions such 

as frequency spectral lines.  This approach is predominately used for a 

steady state system, as it has a limited efficiency in fault detection for 

dynamic systems. 

(d) Statistical data-based diagnosis: uses the availability of data collected using 

historical data from previous operation cycles and online measurement data 

of the system to diagnose the fault.  In order for a statistical-data based 
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diagnostic to work properly it needs to follow the procedures suggested by 

Ding [13].  First the system needs to be trained using historical data sets that 

are presented as independent knowledge of the system under monitoring and 

transformed to a diagnostic system or algorithm.  Then the trained 

diagnostic system is set online, in which live inputs are processed by the 

trained system for reliable fault detection and identification.   

(e) Knowledge-based fault diagnosis: utilises a qualitative model which

represents the prior knowledge of the system’s functionality and output

obtained when monitored [13].  Faults are then detected by running a well-

developed search algorithm through the model.  Examples of the

knowledge-based fault diagnosis are the Bayesian Inference engine and the

Expert System, both of which draw their conclusions based on combining

their inbuilt knowledge base, data base, inference engine and explanation

component.

Overall the role of fault diagnosis is to monitor the behaviour of the system and provide 

all essential information when component faults are observed [17].  Theoretically, fault 

diagnosis can be subdivided into three subtasks which are: (a) Fault detection, (b) Fault 

identification, and (c) Fault Isolation. 

2.1.2 Fault-Tolerant Control 

FTC is a method that enables the system to adapt and adjust its structure, parameters 

and behaviour to accommodate the faults [12, 21].  By doing so the system is said to 

become fault-tolerant, which enables the system to maintain a certain degree of nominal 

operation or fail gracefully when faults occur, rather than abrupt system failure when 

maintenance and repair is not immediately available [20].  Typically, controllers are 

designed to meet assigned tasks under faultless situations, whereas a fault-tolerant 

controller handles the assigned task even though the system is subject to faults allowing 

the overall system to satisfy its goal [15].  FTC enables the controller to react to the 

existence of the fault by reconfiguring its process and behaviour to the faulty behaviour 

of the system, such that the system appears to the external observer as operating 

normally and is able to continue with its tasks, despite the presence of the fault [12].  

Furthermore Blanke et al., Noura et al. and Zolghadri et al. [12, 15, 18] point out that 

there are two types fault-tolerant control: 
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1. Passive fault-tolerant control uses robustness and redundancy of the system 

design, to negate the effects of the fault on the system.  Passive FTC is 

typically achieved by increasing the system’s redundancy [12, 16, 21, 23], 

for example by having two sets of components so that if one set becomes 

faulty, the FTC can quickly switch to the backup set while shutting down 

the faulty set to be repaired and prevent further damage to the system.  

However passive FTC is not as popular and widely implemented as active 

FTC due to the significant increase in cost for having abundant sets of spare 

components.  They are most widely adopted in critical-safe systems such as 

nuclear power plant, chemical plants and airplanes [16, 18]. 

2. Active fault-tolerant control uses a controller that actively attempts to adapt 

and adjust its operation to compensate for the fault identified by the 

supervision system, by changing the structure and parameter of the control 

loop.  The architecture of an active fault- tolerant control can be generalized 

into two blocks: diagnostic and adaption.  The diagnostic block measures 

the input and output signals and compares the difference with the system 

model, resulting in a characterization of the fault which is passed to the 

adaption block.  The adaption block utilises this information to adjust the 

controller and system’s behaviour to compensate for the fault.  The 

redesigned block is considered successful if it can generate a solution for the 

controller to compensate for the faulty situation and the fault is said to be 

recoverable, otherwise it is considered to be non-recoverable.  Recoverable 

faults allows the controller to revert the system operation back to a nominal 

or degraded performance.  For non-recoverable faults, the controller needs 

to make a supervision-level decision, adjusting the system objective from 

the current objectives which the system can no longer perform, to a safer 

objective (for example a safe shutdown), to prevent further deterioration that 

may cause imminent danger to the system and its surroundings. 
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In recent years there has been an increase in the number of fault-tolerant automation 

systems built with inbuilt Fault Diagnosis and Fault-Tolerant Control.  When the 

system has both components it is commonly refer to as fault-tolerant system [12, 13, 15-

18, 21, 23].  This research did not create a Fault Diagnostic system, however it will be 

required in a real life situation to update the simulation.  Active FTC actively redesigns 

the controller to adapt to the fault [17, 21].  In recent years active FTC has gained 

significant popularity and a significant amount of effort has been invested into its 

development.  Thus, this research will only focus on developing a fault-tolerant 

controller using active FTC. 

FTC has become an important field of research in contemporary automation control 

[17].  Fault diagnosis enables the controllers to detect and localize the origin of faults, 

and it provides meaningful diagnostic information about the fault.  FTC enables a 

system to compensate and maintain a relatively nominal operation or adapt its 

operations to a  new operating strategy at a reduced level, instead of an immediate 

system failure when one or more components experience faults in situations where 

service and repair is not immediately available [17, 24, 25].  Therefore, a well-designed 

Fault-Tolerant controller should be able to: (a) compensate for foreseeable faults, (b) 

adapt to most faults that were not anticipated during design phase, and (c) enable the 

system to remain operational with minimal or no support from a human operator. 

As the demands on system performance continue to increase, the complexity and the 

size of the systems also increases drastically.  As the complexity increases it becomes 

practically impossible for engineers to design a perfect system and anticipate every 

possible situation the system may encounter, and hence the reliability of the system may 

decrease unless preventative and compensatory (i.e.  fault-tolerant) measures are taken 

[23].   

Active Fault-Tolerant Controls enable the controller to adapt to a fault within the system 

autonomously and allow the system to remain operational.  This is essentially important 

for systems deployed in an environment where assistance and repair are not 

immediately available.  For example, systems deployed in deep-space exploration or in 

nuclear disaster exclusion zones.  With the help of optimisation technique such as 

Evolutionary Computation or machine learning, FTC should be able to autonomously 

redesign the controller to compensate for the fault when it occurs. 
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2.1.3 Existing Work on Fault-Tolerant Controller 

Software controllers are algorithms used to drive the system to perform its tasks without 

it the system would just be a network of interconnected hardware.  Throughout the years 

many controllers have been developed for various reasons.  This chapter discusses some 

of the most popular software controllers developed to date which can be used in Fault-

Tolerant Control (FTC), and the Fault-Tolerant Controllers developed for this research.  

This section provides brief descriptions of some published research and their proposed 

FTC for various systems. 

Mora et al. [26, 27] research used Evolutionary Algorithm to convert FPGA into 

Evolvable Hardware, which was used in image processing as an FTC to remove noise 

(which was considered to be a fault) in an image.  The research carried out by Dobai 

and Sekanina [28], implements an optimisation algorithms into a pre-existing Evolvable 

Hardware system, showed that the evolution time for a solution to converge had been 

significantly reduced from 8 minutes to less than 2 seconds.  This work provides 

important insights that, by combining various optimisation techniques and/or machine 

learning algorithms, FPGA can be an effective fault-tolerant controller for hardware or 

software application. 

Sedrine et al.  [29] examined using GA optimisation as FTC for a five-phase flux-

switching machine.  Their experimental results showed that when a short-circuit 

occurred, the GA alone was sufficient to reconfigure the reference current to minimize 

torque ripple and copper loss, thus improving the operation of the machine in the 

presence of faults.    

Merheb et al. [30] proposed combining passive FTC (using sliding-mode theory) and 

active FTC using a model reference adaptive approach to formulate a new FTC 

algorithm for unmanned aerial vehicles.  Results from their simulations show that when 

faults occur during operation, small faults were tolerated by the passive FTC while large 

faults were adapted and compensated by the active FTC. 

Li and Chen [31] investigated using a second-order sliding-mode control as a FTC to 

deal with external disturbance and internal faults, which are commonly found in digital 

computation and continuous-time systems.   
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Zhang and Gong [32] implemented an exponential-stability tolerant controller into 

Networked Control System as its fault-tolerant control, and showed consistent results to 

prove its effectiveness.    

Dong et al. [24] introduced an adaptive FTC strategy based on a dual-quaternion 

description model introduced by Clifford [33] and finite-time control method theorised 

by Man et al. [34].  The proposed strategy is used for finite-time stability closed-loop 

spacecraft formation system.  Dong et al. [24] suggested that the proposed adaptive FTC 

strategy can maintain high-precision formation control of the spacecraft, and adjust 

itself in minimal possible time while its operation remains online, without any need to 

completely redesign the controller every time a new situation is encountered.  

Shen et al. [21] proposed a Takagi-Sugeno (T-S) fuzzy system-based FTC for gain bias 

faults in Near Space Hypersonic vehicle.  T-S fuzzy system enabled the system to 

greatly simplify the analysis and synthesis of complex nonlinear systems, by combining 

several local linear models together to become a universal approximation for any 

smooth nonlinear function.  In addition to building an FTC using T-S fuzzy system-

based FTC, they proposed a neural network-based adaptive FTC for faults that cannot 

be modelled, and therefore the effect of the fault remains unknown.    According to 

simulation results provided by the neural network-based adaptive FTC was able to 

handle un-modelled actuators faults; giving an advantage over passive FTC and 

traditional active Fault-Tolerant property; and minimizes the adverse effect of time 

delay due to fault diagnosis by not requiring a FD model, which is needed in typical 

active FTC to work.   

Witczak [17] proposed using a multi-layered neural network for FD to significantly 

reduce uncertainty in fault diagnosis for nonlinear, discrete-time Multiple-Input-

Multiple-Output systems.  In addition, he proposed two FTC designs which are: 

multiple-model T-S fuzzy system approach similar to Shen et.al. [21] and  approach 

similar to [35, 36].  Aghababa et al. [35] considered using a multiple-input-multiple-

output linearization technique to develop FTC for nonlinear multiple-machine power 

systems that can handle scenarios such as multiple actuator failures.  Where Jiantao el 

al. [36] applies the  methodology to reconfigure the collective formation and 

coordinators of multi-vehicle systems such as Unmanned Aerial Vehicles (UAVs) and 

satellites, where information transferred between adjacent vehicles is disturbed and 
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individuals are subjected to faults caused by stochastic disturbance, measurement noise 

and actuator fault.  

Mallavalli and Fekih [37] proposed using a Super-Twisting control algorithm and 

Higher Order Sliding Mode Observer design as real-time continuous FTC for UAV, to 

battle with faults such as disturbance and actuator failures.   

Wafa et al. [38] designed a Proportional–Integral–Derivative and Fuzzy Logic 

Controller hybrid FTC for Electronic Throttle Valve described by a switched discrete-

time system with external input disturbance and internal actuator faults, that is observed 

by unknown input observers.  In addition, they used a genetic algorithm to optimise the 

output of the controller.  

Yang et al. [39] proposed implementing an adaptive Proportional–Integral controller as 

passive FTC instead of the traditional passive FTC (i.e. by redundancy), for nonlinear 

satellite attitude systems with unknown external disturbance and actuator fault.  

Simulation results showed that the Proportional–Integral controllers are capable of 

rapidly converging to a working solution, and are considered as an effective passive 

FTC.   

Machmudah et al. [40] compared results generated using GA and PSO, it focuses on 

comparing the efficiency of the algorithms to generate optimal trajectories for a 6th-

degree polynomial joint angle path and total travelling time under kinodynamic 

constraints for a 3 degree of freedom planar robotic arm.  It provides meaningful 

insights to design FTC for planar systems, and the algorithm described in the paper can 

be transfer from optimal trajectories planning to FTC. 

2.2 Machine Learning 

Professor Tom Mitchell defines the discipline of machine learning as a natural 

outgrowth of the intersection of Computer Science and Statistics [11, 41].  Machine 

learning is a branch of artificial intelligence that aims at enabling machines to perform 

their jobs skilfully by using intelligential software [42].  Machine learning focuses on 

what computational architectures and algorithms can be used to most effectively 

capture, store, index, retrieve and merge data, how multiple learning subtasks can be 

orchestrated in a larger system, and computational tractability [42].  The goal of 

machine learning is to construct a model that takes the input and produces the desired 
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results, the resultant model can sometimes be easily understood and explained by its 

human counterpart, whereas, at other times it’s like a black box and could not be 

intuitively explained.  The model is an approximation of the human intelligent process 

the machines needs to mimic [42],  hence an error function from the approximated 

result can be obtained to determine the performance of the model.  Current machine 

learning algorithms belong to one of four techniques, which are: 

1. Supervised Learning:  where machine learning is tasked to learn and infer a 

function that maps an input to an output based on labelled training data 

consisted of a set of training examples.  The label from the output data is the 

explanation of its respective input example and it is provided by an external 

(normally human) supervisor.  Regression and Classification are two of the 

most classic supervised learning algorithms. 

2. Unsupervised Learning: this type of machine learning works without 

supervisors or training data, and unlabelled data.  Therefore, unsupervised 

learning is commonly used to find hidden structures in the data.  An 

example of unsupervised learning algorithm is clustering, where items that 

are like each other are clustered together. 

3. Semi-supervised Learning: this type of machine learning utilizes a mixture 

of classified and unclassified data, which allows it to learn and generate an 

appropriate model for the classification of data.  The model then can be used 

to predict classes of future test data better than the model generated by using 

supervised learning alone. 

4. Reinforcement Learning:  this type of machine learning uses observations 

gathered from the interaction with the environment to maximize rewards 

and minimise risk. 

Of the four machine learning techniques described, reinforcement learning is a 

promising technique to be used in developing FTC, as it generates its model via 

interaction with its environment and does not require labelled data to function.   

2.2.1 Evolutionary Computation 

Evolutionary Computation has been developed from when researchers took Nature’s 

solution as an inspiration to develop automated problem solvers and AI algorithms [11, 

43-45].  Two powerful problem solvers found in nature are the human brain and 

evolution.  Evolutionary computation is the study of non-deterministic search 
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algorithms that are based on and inspired by Darwin’s: ‘On the Origin of Soecies’ [11, 

43, 46].  Early pioneers such as John Holland, Ingo Rechenberg, Hans-Paul Schwefel 

and Lawrence Fogel have laid important groundwork in evolutionary computation [11, 

43-45, 47], allowing it to become an effective search and optimization technique:   

1. Holland strongly emphasized in his work the importance of the crossover 

operator. 

2. Rechenbery and Schwefel discovered in their work that for optimization 

problems, small random mutations of the model’s variables are proven to be 

an effective optimization technique, and so they gave rise to evolutionary 

strategy. 

3. Fogel studied the possibility of evolving finite-state machines to predict 

symbol strings of symbols termed as chromosomes, generated by Markov 

processes and non-stationary time series. 

The computerisation age during the second half of the twentieth century has witnessed 

exponential growth in demand for automated problem-solving algorithms and the 

complexity of the problem it is trying to solve.  Research and development cannot keep 

up with these demands, while development time and resources available are constantly 

decreasing [43].  This calls for a robust algorithm that is applicable to a wide range of 

problems, which does not require much modification for a specific problem and has a 

satisfactory performance to deliver a working solution within an acceptable timeframe 

[43].  The performance of these algorithms such as the expert system is no longer able 

to meet current demands, as classic algorithms typically require a significant time and 

resources to develop and/or require a significant lengthy period to solve a complex 

problem.  Whereas, Evolutionary Computation demonstrates promising signs of being 

able to solve ever-increasing sets of problems (in size and complexity) in a shorter 

amount of time.  One of the reasons why Evolutionary Computation can solve complex 

problems at a much faster rate than classic automation systems, lies within its structure 

and architecture.  Evolutionary Computation is capable of quickly producing a ‘good 

enough’ solution (also known as approximated solution) that is not necessarily 

optimized.  Whereas the classic approach typically requires precise modelling of the 

problem and constraints ridden approaches, to ensure the optimization of its solution.  

When faults cause a deviation significant enough, traditional methods are often unable 

to comprehend and correct the system.  By contrast, Evolutionary Computation can 

simply generate a new set of approximated solutions adjusting to the deviation.  Several 
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examples of complex problems that Evolutionary Computation is capable of solving are 

optimization problems such as the well-known ‘Travelling Salesman Problem’ [11, 43-

46, 48], where the model and desired output is known and it is the Evolutionary 

Computation’s task to configure the required path to produce the desired output.  

Classification or system identification problems can also be evolved where, 

corresponding inputs and outputs are known and it’s up to Evolutionary Computation to 

compute the required model to link the correct output for each known input.  An 

example of such problems is objections identification within a picture.  The simulation 

problem, in which the inputs and the system model are known and it is used to calculate 

the output corresponding to the provided input, for example calculating the forward 

and/or inverse kinematics of a robotic system for it to perform a certain task. 

2.2.2 Genetic Algorithm 

GA is a metaheuristic optimization technique which has its roots in biological evolution 

and reproduction, and it is one of the most widely-known types of evolutionary 

computation [47, 49, 50].   Biological evolution uses the concepts of survival of the 

fittest to transfer its DNA to the next generation via reproduction, when a new 

generation of offspring is created each gene in the child chromosomes, has a chance for 

random mutation to occur.  GA was first introduced by John Holland [46, 51], it was 

well received and since been extensively researched and widely adapted into many 

fields such as engineering, computer science and mathematics, both in literature and 

commercially GA is applied by first generating a population of random possible 

solutions known as chromosomes, the initial population chromosomes can be computed 

in forms of: 

 Weightings and network connections approach using ANN. 

 Parameters and size of a LUT. 

 Membership functions, fuzzy rules and logic of a FLC. 

 Configuration bit-stream of evolvable hardware. 

Each chromosome is evaluated to determine its fitness to solve the problem, i.e.  how 

well the solution can solve or perform a specific task if this chromosome is used.  

Chromosomes are selected and paired together with the chromosomes with the better 

fitness kept, this method is known as tournament selection.  At each generation pairs of 

parent chromosomes are used to reproduce pairs of children chromosomes, and each 
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gene within the child chromosomes there is a chance for random mutation to occur.  

There are numerous literature reports [43, 49, 50, 52, 53] which discuss different 

reproduction methods used on a GA to improve its performance.  The most common 

reproduction methods currently being used are mutation and crossover.  Crossover has 

several methods such as: single-point crossover, two-/multi- point crossover and array 

uniform crossover [54].  Finally, the process of evaluating the fitness, selection and 

reproduction are repeated until the chromosome’s fitness reaches predefined optimize 

level, or a predefined generation level is reached.  Then, the chromosome with the best 

fitness level is the optimized solution and adapted into the system [49, 50, 53-57].  

2.2.3 Particle-Swarm Optimisation  

Particle Swarm Optimisation is a type of Swarm Intelligence, which itself is a subclass 

of Evolutionary Computation [58] that has gained popularity and interest from 

researchers across many disciplines.  Swarm Intelligence is the collective intelligence 

behaviour of self-organized and decentralized systems borrowed from behaviours of 

social insects, bird flocking, ant colonies, animal herding, bacterial growth and fish 

schooling [58, 59].  Flocks in Swarm Intelligence follow very simple rules [58], as there 

is no centralised control structure dictating how an individual flock should behave.  

Individual flock behaviour is local to itself, while social interaction between flocks 

leads to the convergence of a global behaviour that is unknown to the individual flock 

[49].  Self-organization relies on the feedback, fluctuations and multiple interactions 

between an individual and its neighbours [59].  Feedback (either positive or negative) 

provides amplifications and stabilizations to the algorithm, fluctuations introduce 

heuristic and randomness to the algorithm, to prevent the solution converging to a local 

optimum instead of global optimum.  The decentralisation of system allows the Swarm 

Intelligence to divide the problem into smaller individual tasks, while each individual is 

set to solve its own task, they also collectively work together to converge into a global 

solution [59].  Since its conception, many different types of Swarm Intelligence 

algorithms are being developed: the majority of them are collectively known as 

Artificial Life, PSO was introduced by Kennedy and Eberhart [58-60], Artificial Ant 

Colony proposed by Marco Dorigo [59, 61] and Artificial Bee Colony  proposed by 

Dervis Karaboga [59, 62] are some of the most popular SI algorithms. 
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PSO is an optimisation technique that mimics swarm behaviour to guide the particles to 

search for a global optimal solution, and it is made up of three major mechanisms: 

1. Separation: the behaviour of avoiding crowded local flocks.  That is done

by randomly assigning the initial position and velocity of each local flock.

This is done to reduce the chance of converging to a local optimum as the

result.

2. Alignment: the behaviour of moving towards the average direction of local

flock, as local flock moves in the direction towards the global optimal.

3. Cohesion: the behaviour of moving towards the average position of local

flock, with the average position and velocity of movement updated at every

iteration.

PSO are said to be an efficient optimisation algorithm by searching an entire high-

dimensional problem space, due to its stochastic optimisation technique based on the 

movement and intelligence of the swarms collectively.  By applying the concept of 

social interaction to the problem space, global optimum is updated by choosing the local 

flock with the best optimum while all other flocks move towards that direction. Further, 

unlike other classical optimisation techniques, it does not require the gradient of the 

problem being optimised.  The main points of PSO are that it is: 

 Simple to implement.

 Only has a few parameters to be set.

 Effective in global search.

 Insensitive to scaling of design variables

 Easily parallelised to concurrent processing.

PSO has the tendency to result in a fast and premature convergence to some mid-

optimum point and having slow convergences in a refined search area.  These issues 

need to be further addressed and adjusted for the problem it is trying to solve, for it to 

become more efficient. 
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2.2.4 Cartesian Genetic Programming 

Cartesian Genetic Programming (CGP) was invented by Julian Miller [46] to evolve 

digital circuits, which is a subclass of another member of evolutionary computing 

algorithm known as Genetic Programming [63-65].  The two most prominent 

differences between CGP and EC are:  

1. CGP uses directed acyclic graphs known as ‘trees’ (a two-dimensional grid

of computational nodes) in replacement of chromosomes.

2. EC typically is used to find inputs to achieve maximum payoff, whereas

CGP is used to seek models with maximum fit.

However, for modelling problems that seek maximum fit it can be considered as a 

special case of optimization. Therefore these models are treated as individuals and its 

fitness is the model quality to be optimized via evolution.  Since typical CGP utilize 

trees as chromosomes to represent the models it tries to optimize, the two important 

differences in model representation between other evolutionary computation such as 

CGP and GA are:  

1. Chromosomes in CGP are nonlinear structures, whereas GA are typically

linear vectors.

2. CGP chromosomes can be different size measured by the number of nodes

of the tree, whereas chromosome sizes in GA are typically fixed.

Strictly speaking CGP shares identical operation procedures compare to GA, with some 

minute alteration in crossover and mutation to accompany the tree of chromosomes [65-

68].  For CGP, mutation and crossover both occur at random junctions of the tree. 

In summary, this chapter provides a detailed literature review on existing work related 

to FTC, FD and Fault-Tolerant controller.  In addition, a review of several popular 

machine learning algorithms is also included in this chapter. 
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Chapter 3  

Simulation and Kinematics of the Robotic Arm 

3.1 Simulation of the Robotic Arm 

This research is based on a simulation of a serial chain planar robotic arm developed 

using C# language in Microsoft Visual Studio.  Figure 3.1 is the schematic of the 

simulated robotic arm system developed for this research.     

Base of the Robotic Arm 
System

Actuator

End‐Effector

Joint Link

Figure 3.1.  Schematic of the Simulated Robotic Arm 

The simulation developed for this research is presented in the form of a Graphical User 

Interface (GUI) as shown in Figure 3.2 in which the user can: 

 Manually drive each individual joint of the system.

 Select the combination of fault(s) presented in the system.

 Select the type of Fault-Tolerant controller to use to generate a new set of

solutions for the given fault(s) combination.
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 Visually and numerically observe the convergence of the new solution of

the controller.

Figure 3.2. GUI of Multi-joint Planar Robotic Arm System Simulator 

3.2 Kinematics of the Robotic Arm 

A serial chain planar manipulator is a system in which all its moving links move 

perpendicular to the X-Y plane.  The system developed for this research uses an 8- joint 

configuration, each link has equal length and a gripper at the end of the manipulator.  

Each revolute joint is driven by an actuator that can rotate between 45°~	45° on the Z-

axis and has a single DOF.    For an open-loop serial-chain planar robotic arm system, 

the mobility of a chain is the number of DOF and can be calculated using equation (3.1) 

[69, 70]. 

	
	

 (3.1) 

where, 

M = mobility 

n = number of joints  

 = connectivity of joint 
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For the multi-joint planar robotic arm: 8, 1, thus: 

		 1 8 

For the closed-loop serial chain planar robotic arm system, the number of DOF can be 

calculated using equation (3.2) [69; Chapter 1, 70; Chapter 1]: 

	  (3.2) 

where, 

	number of Degrees of Freedom. 

λ = number of independent kinematics constraint 

n = number of joints. 

	connectivity of joint. 

k = number of links. 

For the multi-joint planar robotic arm: 8, λ 6, 1, 8, thus: 

	6 8 8 1 0 8 8	

Kinematics studies the motion of bodies, without consideration of the forces or 

moments that causes the motion.  Formulating the suitable kinematics models for the 

mechanism of the system is very crucial for analysing the behaviour of the system. 

Kinematics of the system can typically be modelled using Cartesian or Quaternion 

space [71; Chapter 5].  The study of kinematics can be broken down into forward 

kinematics and inverse kinematics.  Forward kinematics is the study of position and 

orientations of the end-effector in Cartesian space, from the known joint variables in the 

Joint space.  Inverse kinematics is the study of calculating the required joint variables in 

the Joint space, for the system to reach the desired coordinates and orientation in the 

Cartesian space.  Inverse kinematics problems typically are solved by using analytical 

or numerical methods.  Analytical methods typically utilise either geometric or 

algebraic approach to analytically find the required joint variables of a given 

configuration.  Inverse kinematics is much harder to solve, computationally more 
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expensive and takes longer to solve when compared to forward kinematics.  Therefore 

only a very small class of  simple systems have complete analytical solutions to an 

inverse kinematics problem [71; Chapter 5].  The inverse kinematics problem is 

considered hard to solve because [71; Chapter 5]: 

 Kinematics equations are coupled, which increases the difficulties significantly. 

 Multiple solutions and singularities exist. 

 Mathematical solutions for inverse kinematics problems may not be physically 

suitable, and a suitable method for its solution depends on the structure of the 

system. 

3.2.1 Forward Kinematics 

To analyse the forward kinematics of the system, it is required to attach a coordinate 

frame to each link and then use it to represent relationships between the links [71; 

Chapter 5, 72, 73].  Thus, each link has its own set of coordinate frame 	 	 	 , 

where, 

, the orientation of link i 

, the x coordinate of link i 

, the y coordinate of link i 

, the z coordinate of link i 

When 	 	is actuated, 	 	and its coordinate frame 	 experience a resulting 

motion.  Otherwise, the coordinates of each point on 	 	remain constant when it is 

expressed in the 	coordinates frame. 

In addition, the following assumption of the joints of a serial chain system can only be 

either revolute or prismatic such that, 

 For revolute joints, rotation ( ) is its variable of movement  
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For prismatic joints, translation (d) is the variable of movement.   

A homogeneous transformation, , which can be used to expresses the position and 

orientation of  	with respect to 	is known as transformation matrix, 	 , 

[71; Chapter 5] where, 

 

	 	 … 	, 	  

	 	, 	  

	 	 	, 	  

Note Ai is the transformation of joint I with respect to joint i-1 

	  expresses the position of joint j wrt to joint i 

(3.3) 

The transformation matrix described in equation (3.3) enables the attachment of various 

frames to the corresponding links and follows the position of any point on the end-

effector.  When it is expressed in coordinate frame, it’s constant is independent to the 

configuration of the system.  The position and orientation of the end-effector with 

respect to the base frame can be calculated using the homogeneous transformation 

matrix given in equation (3.4). 

 	
0 1

 (3.4) 

where, 

,	 is a 3×1 vector holding the x, y, z coordinates of the origin of the end-effector 

frame with respect to the base frame. 

,	is a 3×3 rotation matrix from the homogeneous transformation matrix given in 

equation (3.4), the position and orientation of the end-effector in the base frame can be 

derived as given in equation (3.5). 

 	 	 …  (3.5) 
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where, 

, joint	i	revolute	displacement
, joint	i	prismatic	displacement 

Thus, the homogeneous transformation 	can be rewritten as equation (3.6). 

0 1
 (3.6) 

And the transformation matrix can be updated to equation (3.7). 

…
0 1

 (3.7) 

The rotational matrix, ,	is used to express the orientation of 	relative 

to	 ,	and it is calculated using equation (3.8). 

… (3.8) 

The coordinate vector, ,	of each join can be calculated recursively using equation 

(3.9). 

(3.9) 

By calculating the function 	of each link and finding its product whenever it is 

required, the forward kinematics of the system and the position and orientation of the 

end-effector can be determined.   In short, forward kinematics can be seen as 

recalculating the set of coordinate points between two interconnected joints by using a 

series of matrix operations when motion had occurred.  However, the before mentioned 

technique for finding forward kinematics can be cumbersome and tedious to calculate.  

Therefore, conventions such as the Denavit-Hartenberg (D-H) representations of a joint, 

are introduced, as it provides a significant improvement in streamlining and 

simplification in calculation. 
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3.2.1.1 Denavit-Hartenberg Convention 

The D-H representation is a convention for assigning and manipulating the coordinate 

frames.  The D-H parameters uses four variables to define the reference coordinate 

frame for each link in a serial chain manipulator  [71; Chapter 5, 72, 73].  It defines a 

homogeneous transformation matrix, which can used to analyse kinematics (both 

forward and backward) of the manipulator, numerically and analytically.  Forward 

kinematics is used to describe the relationship between the individual joints of the 

manipulator and the position and orientation of the end-effector, such that it determines 

the position and orientation of the end-effector given the values for the joint variable of 

the robot.  Inverse kinematics is used to determine values for the joint variables to 

achieve a desired position and orientation for the end-effector. 

The homogeneous transformation matrix, ,	 itself is a product of four simple 

transformation, as given in equation (3.10) [71; Chapter 5, 72, 73].  

 

	 	 	 	

0

0 0 0 1

 (3.10) 

where, 

cos	 θ 	
sin	 θ 		

 rotation of revolute joint i 
 rotation of link i 
	offset of prismatic joint i 
 length of link i 

The rotation matrix that rotates about the Z axis for joint i is given by equation (3.11): 

 
	

0 0
0 0

0 0 1 0

0 0 0 1

 (3.11) 
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The	 translation matrix that translates along the Z axis for joint i is given by equation 

(3.12): 

 
	

1 0 0 0
0 1 0 0
0 0 1

0 0 0 1

 (3.12) 

 

The translation matrix, that translates along the X axis for link i is given by equation 

(3.13): 

 
	 		

1 0 0
0 1 0 0
0 0 1 0

0 0 0 1

 (3.13) 

The rotation matrix, that rotates about the X axis for link i is given by equation (3.14): 

 
	

1 0 0 0
0 0
0 0

0 0 0 1

 (3.14) 

The homogeneous transformation matrix is described in equation (3.6), which requires 6 

variables to be fully defined, whereas the homogeneous transformation matrix under D-

H convention as given in equation (3.3) requires only 4 parameters ( ).  Using 

D-H representation gives the user a considerable freedom to choose the origin and the 

coordinate axes of the reference frame, as long as it is rigidly attached to link  and 

remain consistent when applied across all the link’s reference frame.  Then the frame 

can be placed anywhere within the physical link or in free space [71; Chapter 5].   
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In addition to the 4 parameters described in equation (3.10), for the D-H convention to 

be fully defined, two additional conditions a need to be satisfied when assigning of the 

coordinate frames, which are: 

 The X-axis of the current frame must be perpendicular to the Z-axis of the 

previous frame. 

 The X-axis of the current frame must intersect the Z-axis of the previous 

frame. 

For any given robot manipulator, there are multiple ways to choose the frames that 

satisfy the two conditions above, in which some are more intuitive than others.  Thus, it 

is entirely possible for different people to derive differing, but equally correct, 

coordinate frame assignments for the same system.  However, regardless of the 

assignment of the intermediate link frames, the same end-results matrix ( ) will 

always converge.   

Calculating the forward kinematics for any manipulator using the D-H convention, can 

be done using the following procedure: 

1. Set and label the joint axes … ,  

2. Establish the base frame and set the origin anywhere on the -axis.  Using 

the origin, the 	and 	axes can be established using the right-hand rule. 

3. Set the origin 	that is normal to 	and 	intersects .   If 	intersects 

,	set 	at this intersection.  If 	and 	are parallel, 	can be set 

anywhere along . 

4. Set 	along the common normal between 	and 	through 	or in the 

direction normal to the 	plane if 	and 	intersect. 

5. Establish 	using the right-hand rule to complete the frame 

6. Repeat Steps 3 to 5 to establish the coordinates for the remaining joints ,	for 

1,… , 1. 

7. Establish the end-effector frame, which consists of the 4 D-H parameters 

.  where, 

i. Assuming the end-effector joint is revolute, then set 	along the 

direction . 

ii. Set the origin 	along  

iii. 	and 	of the end-effector can be calculated using: 
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a) Set  the direction of the end-effector closure and 

set , if end-effector is a gripper 

b) The right-hand frame rule, for non-gripper end effector 

8. Calculate the link parameters , , ,  where, 

  distance along  from  to the intersection of the  and  axes 

  distance along  from  to the intersection of the  and  

axes.   is variable if joint i, is prismatic. 

 	the angle between  and 	measured about 	  

 	the angle between 	and 	measured about .  	is 

variable if joint i is revolute. 

9. Substitute the parameters in step 8 into the homogeneous transformation 

matrices described in equation (3.10). 

10. Use the transformation matrix 	 	described in equation (3.7), to calculate 

the position and orientation of the end-effector relative to the base 

coordinates. 

An example of establishing the frames for a 3-joints system using the D-H convention 

procedure above is provided by Wittenburg [71; Chapter 5], as shown in Figure 3.3.  

The joint axes 	and 	in Figure 3.3 are normal to the page and the base frame 

 is located at the first joint.  After the base frame is established, the frame 

	can be established by using the D-H convention, and the origin 	is located 

at the intersection of 	and the page.  The final frame 	is established after 

locating the origin 	at the end of link 2. 
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Figure 3.3. Example of Establishing the Reference Frame for a 3-joints System 

Using D-H Convention  

3.2.1.2 Forward Kinematics of the System Using D-H Convention 

Using the D-H convention, the kinematics of the 8-link planar manipulator system 

developed for this research can be established in Table 3-1. 

Table 3-1. Link Parameters for 8-link Planar System 

Link     

1  0 0  

2  0 0  

3  0 0  

4  0 0  

5  0 0  

6  0 0  

7  0 0  

8  0 0  

The homogeneous transformation matrix of the links, which is given in equation (3.15) 

to equation (3.22), can be determined by using equation (3.10), 
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0
0

0 0 1 0

0 0 0 1

(3.15) 

0
0

0 0 1 0

0 0 0 1

(3.16) 

0
0

0 0 1 0

0 0 0 1

(3.17) 

0
0

0 0 1 0

0 0 0 1

(3.18) 

0
0

0 0 1 0

0 0 0 1

(3.19) 

0
0

0 0 1 0

0 0 0 1

(3.20) 

0
0

0 0 1 0

0 0 0 1

(3.21) 
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0
0

0 0 1 0

0 0 0 1

(3.22) 

where, 

cos∅ ,	for 1,2, … ,8 

sin∅ , for 1,2, … ,8	
	length of link i, for 1,2, … ,8	

By substituting the homogeneous transformation matrices (described in equation (3.15) 

to equation (3.22)) into equation (3.6), the transformation matrix,	 ,	 of the system is 

derived as given in equation (3.23) and the forward kinematics of the system can be 

calculated. 

∑ ∑ 0

∑ ∑ 0

0 0 1 0

0 0 0 1

 (3.23) 

where, 

∑ cos ⋯ 	

∑ sin ⋯ 	

cos cos cos ⋯

cos ⋯ 	

sin sin sin ⋯

sin ⋯ 	

In summary, this chapter described in detail the kinematics of the robotic arm system.  

This chapter also described in detail the GUI of Fault-Tolerant Controller and the 

simulation of the robotic arm system were developed for this research.  
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Chapter 4  

Design of the Fault-Tolerant Controllers and Associated 

Systems 

This chapter presents a detailed description of the Fault-Tolerant Controllers developed 

and used for this research. 

4.1 Genetic Algorithm 

Genetic Algorithm (GA) is a metaheuristic optimisation technique for solving both 

constrained and unconstrained problems that was introduced by John Holland, which 

was based on Darwin’s theory of evolution and natural selection [51].  At each 

generation, GA utilises three basic operations, which are: (i) Selection, (ii) 

Reproduction, and (iii) Fitness Evaluation, for evolving a population of individual 

solutions, known as chromosomes, until the termination criteria are achieved either, by 

an individual chromosome’s fitness function meeting the optimal solution criteria, or 

other termination criteria such as maximum generations met [74].  The architecture of a 

GA algorithm is shown in Figure 4.1. 
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Population 
Initialisation

Fitness 
Calculation

Selection

Reproduction

Termination Criteria Met

Termination Criteria Not Met

 

Figure 4.1. Architecture of a Genetic Algorithm 

GA is based on a population of candidate solutions that represents a solution to the 

optimisation problem that it is trying to solve [49].  The population of solution 

candidates, commonly referred to as genotype or chromosome, are either initialised 

randomly or manually entered [49, 75].  After the population is initialised, at every 

generation the GA applies its three operators (Selection, Reproduction, and Fitness 

Evaluation) to the population of candidate solutions to reproduce a new set of offspring 

population. The parent chromosomes are updated and replaced by the offspring 

chromosome, if an offspring chromosome outperformed a parent chromosome.  This 

process of continuously using the operators to generate new sets of offspring 

chromosomes is repeated until a termination criterion is met.  Examples of termination 

criteria can be that an optimal solution is found or when the algorithm exceeds a certain 

number of generations. 
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4.1.1 Fitness Function 

The fitness function used for this research is the distance from the gripper to the desired 

set point, calculated using the Euclidean error distance given in equation (4.1). 

 	 	 	 	 	y  (4.1) 

where, 

 is the x coordinate the system needs to reach 

	 is the x coordinate where the chromosome produces the best fitness 

	is the y coordinate the system needs to reach 

	is the y coordinate where the chromosome produce the best fitness 

The fitness used in GA is calculated from evaluating each individual chromosome on a 

fitness function [49].  The fitness function measures the quality of each candidate 

solution in the population.  The fitness function differs according to its application, and 

it could have either single or multiple objectives that it needs to achieve.  The purpose 

of implementing a fitness function is to determine whether an offspring should be kept, 

or did a solution converge to a global optimal and thus the algorithm had met the 

termination criteria.   

4.1.2 Selection 

This research only considered using Elitist based Tournament, as the selection method 

for all the GA-based Fault-Tolerant Controller developed.  The selection method 

determines how to select individuals from the parent chromosome population to 

reproduce a new generation of offspring chromosome  [49, 74, 75].  There are several 

selection methods available to choose from, the most common selection methods are: 

(a) Tournament, (b) Roulette Wheel, (c) Deterministic Sampling and (d) Stochastic 

Remainder Sampling [49, 74, 75].  Each selection method has its own unique 

characteristics, despite it drawing its results from the fitness level of each individual 

chromosome. Reed and Minsker [74] points out that Tournament is more efficient and 

less prone to premature convergence relative to other selection methods.  While Oliver 

[49] suggested that Roulette wheel enables the parent solutions to be randomly selected 
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in a uniform distribution, and it has the advantage that each individual from the parent 

chromosome has a positive probability of being selected to reproduce.  Elitist 

Tournament selects random groups of parent chromosomes from the population, with 

the best individual of that group being selected [49, 74, 75].  There are multiple ways 

for how individuals within the children population are selected to compare against each 

other, to become the parent chromosome in the next generation.  One common method 

is to select randomly a number of individuals from the children population, and only the 

one with the best fitness is selected to become a parent in the next generation.  If the 

child has a better fitness value than the parent, the parent is replaced by the child, the 

updated parent population will be used to reproduce a new set of children population in 

the next generation, the child that did not successfully replace a parent is discarded. 

4.1.3 Crossover and Mutation 

This research uses two-point crossover and 5% mutation rate on the four Fault-Tolerant 

controllers developed.  Crossover is the operator used to combine two parents’ 

chromosomes in order to generate two new children chromosomes.  After the selection 

operator has selected and sorted the parent population to be used to reproduce a new 

children population, the crossover operator couples chromosomes of the parent 

population to mate with a specified crossover probability [49, 51, 74-76].  There are 

multiple methods as to how crossover occurs, some of the most common methods used 

are one-cut, two- or multi- cut points, and uniform crossover as researched by 

Vasconcelos et al. [75] and Reed et al. [74], Srinivas and Patnaik [76] recommended an 

adaptive probabilities approach 

One-cut point crossover is the method in which a random crossover point is selected, 

and the parent chromosomes are swapped at the cut point to reproduce two children 

chromosomes.  A visual representation of single cut-point crossover, shown in Figure 

4.2. 



40 

Parent 1

Parent 2

Children 1

Children 2

Figure 4.2. Single Cut Point Crossover 

Multiple or two cut point crossover is a generalisation of the one cut-point crossover 

where multiple cut points are randomly chosen, and alternating segments are swapped 

to reproduce the two new children offspring.  A visual representation of two cut-point 

crossover, shown in Figure 4.3. 

Parent 1

Parent 2

Children 1

Children 2

Figure 4.3. Multiple- / Two- Cut Point Crossover 

For uniform crossover, instead of randomly segmenting the parent chromosomes, they 

are segmented and crossover in a uniform manner.   A visual representation of a 

uniform crossover is shown in Figure 4.4.   
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Parent 1

Parent 2

Children 1

Children 2

Figure 4.4. Uniform Distributed Crossover 

When crossover occurs, it randomly picks two individuals from the parent populations 

and combines their chromosomes to reproduce two or more children.  This process is 

repeated until the children population has the same size as the parent population, then 

the children population will become the parent population in the next generation [49, 

51, 74-76].   

The mutation operator typically occurs directly after the crossover operation.  The main 

reason of having the mutation operator, is because by depending on the crossover 

operator alone, the GA may only generate children that are very similar to its parents. 

This may cause the new generation to have a low diversity and may lead to the 

algorithm being stuck at a local optimum.  Therefore, the mutation operator solves the 

problem by introducing randomness to the children population.  This is achieved by 

randomly changing one or more gene in the children chromosomes.  How many genes 

will be mutated is governed by the GA’s mutation rate [49, 51, 74-76].   

4.2 Particle-Swarm Optimisation 

The term Swarm Intelligent (SI) was first introduced to describe the collective 

behaviour of decentralised and self-organised natural or artificial systems [77], with the 

current adaptation more commonly referred to as a class of metaheuristics.  A typical SI 

system consists of a population of agents interacting locally with another and its 

environment [60, 77].  Each individual agent shows no intelligence but follow simple 

rules without a centralised control structure governing its behaviour.  Agents interact 

with each other locally with a certain degree of randomness, and although unknown to 

individual agents an intelligent global behaviour emerges from such local interactions 

[77]. 
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Particle Swarm Optimisation (PSO) is a type of SI algorithm, which is a population-

based metaheuristic optimisation technique developed by Kennedy and Everhart [78].  

They got the inspiration from social behaviour of social animals such as bird flocks and 

fish schools, which shared many similarities with Evolutionary Computation algorithms 

such as GA.  PSO works by first spawning an initial population of random solutions 

known as particles and searches for optima by updating the properties of individual 

particles in each generation.  Unlike GA, particles in PSO do not converge to a global 

optimum using evolution operators such as crossover and mutation.  Rather, at each 

generation, the trajectory of each individual particle in the solution space is updated by 

using a set of two simple equations.  The equations determine the particle’s velocity and 

position, which are heavily influenced by the particle’s own experience and the current 

best particles [77].  The velocity and position calculation equations are provided in 

equation (4.2) and equation (4.3) respectively [60, 77].  

 

1

 (4.2) 

where, 

	 is the local acceleration coefficient 

 is the global acceleration coefficient 

1  is the update velocity  

	is the velocity of particle i at time t 

	is the particle i’s individual best solution at time t 

	is the particle i’s solution at time t 

	is the swarm’s best solution at time t 

 is a random value for the cognitive component and  is a random value for 

the social component, both of which have the range between 0 and 1.  These value are 

used to introduce stochastic influence on the velocity update. 

	is the inertia coefficient, which typically set between 0.8 and 1.2. Lowering the 

inertia, will increase the convergence rate, while increasing the inertia enables the 

algorithm to explore the search space.  For this research, the inertia is set to 0.9. 
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1 	 1  (4.3) 

where, 

1  is the updated solution of the particle i at time t+1 

 is the current solution of the particle i at time t 

1  is the updated speed of particle i at time t 

The part  is collectively known as the cognitive component, 

which guides the solution spaces towards finding the best solution for each particle 

individually.  The part  is commonly known as the social 

component, which guides the solutions spaces of every particle towards a global best 

solution.  Hence these parameters settings have: 

 A higher social component than cognitive component, i.e. by setting the

acceleration coefficient of 1 local acceleration and 2 global acceleration, at

each iteration, the swarm’s collective known optimum has a stronger

influence towards the convergence of a global optimum of the solution

space

 A higher cognitive component than social component, i.e. by setting the

acceleration coefficient of 2 local acceleration and 1 global acceleration, at

each iteration, individual particle’s optimum has a stronger influence

towards the convergence of a global optimum of the solution space

 An equal social and cognitive component, i.e. by setting the acceleration

coefficient of 2 local acceleration and 2 global acceleration, at each

iteration, both individual particle’s optimum and the swarm’s collective

known optimum has the same influence towards the convergence of a global

optimum of the solution space

According to Sun et al. [77], PSO is easier to implement, more effective in performing 

difficult optimisation tasks, and is able to generate better results in a faster and cheaper 

way compared to several other algorithms with fewer parameters to adjust.  Thus in 

recent years PSO has been frequently used as the favouriate optimisation algorithm, 

despite that it is well-known that PSO may have the tendency of converging to a local 

optimum, instead of global optima if the problem space is not well-understood or the 

algorithm has not been designed correctly [58-60, 77].  
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4.3 Artificial Neural Network 

This research focusses on using a 3-layer (1 input, 1 hidden, 1 output) feedforward 

neural network with no bias [79, 80] as one of the base controllers to be converted into a 

Fault-Tolerant Controller, as shown in Figure 4.5.  It consists of 2 neurons in the input 

layer, 8 neurons in the hidden layer, and 8 neurons in the output layer.  Each output 

neuron in the output layer, are then translated to a corresponding output angle each joint 

needs to rotate.    For the ANN used in this research, the inputs are the desired X and Y 

coordinates which the end-effector wants to reach, and the output is the output angles 

for each joint to rotate to.  The outputs from the ANN are then used to calculate its 

fitness.  The activation function used for the hidden layer and output layer is a linear 

activation function.   

 

Figure 4.5. The 3-Layer Feed forward ANN for this research 

ANN are multi-layered networks with multiple-input-single-output structure that has its 

roots inspired by neuroscience and the human brain.  Since its conception it has become 

highly popular and has been extensively researched and developed in automated 

problem solving, output prediction, pattern recognition and classification [1; Chapter 1, 

79, 81, 82].  The neural networks found in living organisms consist of a network of 

interconnected neurons, each neuron receives signals from its dendrites and sends 

output signals via its axon synapse.  When electrical signals entering the dendrites reach 

a certain threshold, the neuron would fire and transmit electrical signals to the next 

neuron via the axon.  Biological neural networks can be easily translated into software, 

with most of the ANN developed only differing in the number of layers and type of 

activation function used.  Each artificial neuron receives its input value as a numerical 
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value, which is multiplied by a weighting factor.  When the sum of the input signals 

exceeds the firing threshold, the output value of the neuron will change and will transfer 

to the next neuron via a transfer function.  The output value can be any convenient 

mathematical function, and the neuron can have a different decay rate for its 

accumulated input signal.  The structure of the network and the neuron transfer 

functions are predetermined during the design phase, while the interconnection 

weightings are adjusted during the training phase [79]. 

Each layer of an ANN consists of one or more processing elements known as neurons. 

Each neuron has weighted inputs known as synapses, an activation function that defines 

the output given an input, a bias function and an output.  A weighted input is the 

product of an input signal and its associated weight.  The sum of all the weight inputs 

produces the activation signal of the neuron in a process known as propagation.  A 

mathematical formula of how the activation signal is calculated is given in equation 

(4.4). 

 	 	 (4.4) 

Equation (4.4) is the propagation value of a neuron where,  is the input to the 

neuron 	, which is the summation of the products of the outputs  and its weights, 

plus its associated bias value of predecessor neurons connected to neuron	 . 

The value from 	in equation (4.4) is then passed into its associated activation 

function to calculate an output value from the neuron	 , which is connected to the 

neurons in the next layer as inputs [11, 41, 42, 79, 80].  Some of the most commonly 

used activation functions are linear, step, sigmoid, tanh and rectified linear unit 

functions.  Most of these activation functions have their own subcategories and 

variation, but comprehensive investigation and discussion of activation functions used 

for ANN is not within the scope of this research, thus it will not be further examined.  A 

graphical representation of the propagation of a typical neuron in ANN is shown in 

Figure 4.6. 
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Figure 4.6. Graphical representation of a typical ANN neuron 

Due to the highly-connected nature of the neural network and the innate interactions 

characteristics of neurons between different layers, it can be seen as a non-linear, multi-

layered, parallel regression technique that can be used for machine learning, pattern 

recognition, signal processing, prediction, clustering of data and many more, after it has 

been properly trained [79].  Training is the process of optimising the weights of the 

ANN, such that the performance error is minimised, and the network reaches a specified 

level of accuracy.  There are many methods used to train the weights. One of the 

earliest-developed and most-common training method used to determine the error 

contribution of each neuron is called known as backpropagation, which calculates the 

gradient of the loss function [11, 41, 42, 79, 80].  Backpropagation utilises output from 

the neurons in the output layer and feeds it back to the network as part of the new 

inputs.  Thus, at each iteration the weights are updated, and overall accuracy gets 

improved over time.  There are many methods developed for backpropagation to use in 

training the weights, for example training via steepest descent, quasi-Newton, conjugate 

gradient described in books by Mitchell [11], Negnevitsky [44] and Shanmuganathan 

and Samarasinghe [79];  and a stochastic gradient descent method described by 

Mohammed and Kostanic [84].   

Training methods used for backpropagation can be easy to understand but complex to 

implement.  For example, the stochastic gradient descent method can be summarised 

into equation (4.5)  [11, 41, 42, 79, 80, 84]: 

 1 	 	 	 	 (4.5) 
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where,  is the learning rate, 	is the loss function and  is a stochastic term.   

The lost function C depends on multiple factors, such as the learning rate and activation 

function used for the ANN.  Therefore, backpropagation requires a significant amount 

of data, lengthy training period and expert knowledge on both the problem space and 

the solution space in order to achieve a high accuracy rate.  Hence, this research 

proposed using GA to evolve the weights of the ANN instead of using backpropagation 

to train the weights.  Further description of the proposed method will be provided later 

in this section.  

Since its original development, many different types of activation functions were 

developed and implemented for various ANN application, with the activation functions 

typically classified into the following categories [11, 41, 42, 79, 80, 84]: 

 Unit Step

 Linear

 Sigmoid

 Hyperbolic Sigmoid

 Sinusoid

 Exponential

ANN as traditionally used to predict future events.  However, due to its popularity, it 

has widely been used across various topics to test its capabilities.  ANN was used in 

[85] to generate solutions for path navigation and maze solving in a robotic system.

Faelden et al. [86] showed that by using ANN’s they can balance a Quadrotor-

Unmanned Aerial Vehicles (QUAV) while it is in operation. Their results, along with

findings in Subramanyam et al. [87], suggested that ANN is a highly flexible and

adaptable controller, which is likely to work well with many available machine learning

techniques to enable allow the controller to achieve autonomous FTC capability.  Lang

et al. [88] demonstrated that an ANN can be used to perform object recognition of

words, in addition Knerr et al. [89] use a single layer ANN for handwriting recognition.

Yadav et al. [90] apply ANN to solve various differential equations.  Im and Nguyen

[81] used ANN to resolve the berthing schedule of ships issue, which is a real-life

version of the traveling salesmen problem.

In summary, after training an ANN can learn identify relationships that may exist 

between the inputs and outputs [79, 80].  Since its origin it has increasingly been used 
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across a variety of application areas where imprecise data or there are non-linear 

relationships which are difficult to quantify by using traditional analytical methods.  

Many learning algorithms are developed and used to train an ANN, which can generally 

by classified into the following categories: (i) supervised learning, (ii) unsupervised 

learning, (iii) reinforcement learning and (iv) semi-supervised learning [11, 41, 44, 79].   

Many researchers were intrigued to utilise ANN on machines to solve a wide range of 

problem.  A literature review on some of these researches was provided in previous 

chapters.  Over the years, many types of ANN have been developed for various 

applications and needs.  Feedforward, feedback, deep neural network, convolutional, 

recurrent, dynamic, long/short term memory, auto encoder and residual are several 

highly popular categories of Neural Network developed, with some of them have its 

own sub-categories [1, 5, 11, 41, 42, 44, 79, 80].   

4.4 Lookup Table 

The type of Lookup Table (LUT) used for this research is an 1 8	 index mapping, 

where each element stores the angle that a joint need to rotate to.  LUT is a well-known 

technique, which was used even before the invention of computers to help speed-up 

hand calculations of complex functions.  The LUT is often used in low processing-

power devices to help the device when floating-point calculations and trigonometrical 

functions are required [91, 92].  The LUT can be applied to an evolutionary controller 

by connecting the sensory inputs to the table axes and the parameters within the table to 

the actuators [57, 93].  The disadvantages of the LUT include its quantization of the 

input-outputs and the difficulties in scalability.  But when it is adapted into evolutionary 

computation, the LUT parameters and size can be encoded into a chromosome and 

modified by the genetic algorithm.  

In programming, LUT can be an array or matrix that replaces runtime computation with 

an array-indexing operation.  By using LUT the system can save a significant amount of 

processing time and utilise the extra resources on other essential operations and /or 

speed up convergence rate to the desired results.   

Examples of LUT used as evolvable controllers include, Currie et al. [94] who evolved 

the walking gait of a hexapod robot using a two-dimensional LUT with nine distinct leg 

positions and eighteen motor angles.  The utilisation of a LUT based controller can 

quickly converge to a workable solution when a fault occurs in the system, especially if 

the controller uses a multi-dimensional LUT that links the state of the system obtained 
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from its input sensors to the required output for the system to function correctly [50, 91, 

92]. 

4.5 Design and Architecture for ANN Based Fault-Tolerant 

Controller 

This research uses GA or PSO to evolve the weightings of the ANN.  The population 

consists of 100 individuals, known as particles for PSO and chromosomes for GA.  

Each particle or chromosome has the length of 80, and each element represents a 

weighting of the ANN which are randomly initialised initially. 

The activation function chosen for this ANN-based Fault-Tolerant Controller are: 

 linear function for the input layer.

 linear function for the hidden layer.

The fitness function chosen for this controller is the Euclidean Error function, given in 

equation (4.6): 

	  (4.6) 

where, 

	is the x coordinate that produce the swarm’s best known fitness output. 

	is the y coordinate that produce the swarm’s best known fitness output. 

	is the x coordinate for individuals particle best known fitness output. 

	is the y coordinate for individuals particle best known fitness output. 

The fitness function of each individual particle/ chromosome is calculated by dividing 

the calculation of the forward kinematics for the robotic arm and updating of the ANN’s 

weightings into 10 steps, with each step allowing each individual joint to revolve no 

more than 9°	~	9°	 and no more than 90°	~	90°	in total.  The comparison and 

update of the swarm’s collective best fitness is made at the final step, while the 

comparison and update of the individual’s local fitness are made independently at each 

step. The termination criteria for this algorithm is either the controller had found a 

global fitness that is equal or smaller than the desire fitness function inputted by the user 
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and/ or iterations of the algorithm had exceeded 100,000 iterations.    The termination 

criteria is considered to be met, if the a fitness function is smaller or equal to the value 

chosen by the user.  For the experiments of this thesis, the termination criteria is 

considered to be met, if the fitness function scored less than 0.1, i.e. the Euclidean error 

between the ideal location and the calculated location of the arm of the arm is less than 

0.1mm apart.    

4.5.1 Design and Architecture of PSO – ANN Fault-Tolerant 

Controller 

Figure 4.7 shows the design and architecture of PSO-ANN as a Fault-Tolerant 

controller.  The particles population for the PSO were initially initialised at random, 

then it is passed into the ANN to calculate the fitness for each individual particle and 

the swarm’s collective best fitness.  Each individual fitness is then used to compare 

against the swarm’s collective best fitness.  If an individual particle’s fitness is better 

than the swarm’s collective fitness, that particle becomes the latest swarm’s collective 

best solution and its fitness becomes the swarm’s collective best fitness. If the swarm’s 

collective best fitness has met the termination criteria or the computation cycle has 

reached 100,000 iterations, the solution that is the current swarm’s collective best 

fitness solution becomes the solution for the Fault-Tolerant Controller uses; otherwise 

the particle’s velocity and position are updated using its associated equation discussed 

in previous chapter.  The computation cycle repeats itself until either the desired fitness 

is met, or 100,000 computation cycles are reached.  The termination criteria is 

considered to be met, if the fitness function of the best particle is smaller or equal to the 

value chosen by the user.  For the experiments of this thesis, the termination criteria is 

considered to be met, if the fitness function scored less than 0.1, i.e. the Euclidean error 

between the ideal location and the calculated location of the arm of the arm is less than 

0.1mm apart.  At each iteration the swarm’s collective best fitness is plotted, when the 

computation cycles complete the numerical results are exported to a CSV file and 

graphical results of the fitness function are saved as a PNG3 file.  

 

3 PNG stands for Portable Network Graphics 



51 

Start

End

Initialise PSO 
Population

Update ANN

Calculate Fitness 
Function

 Termination 
Criteria 
Reached?

 Update  Weightings

Update and Export 
Results

Plot Results

No

Yes

Individual’s 
Best Fitness Better Than 
Swarm’s Best Fitness?

Yes
Update Swarm’s 
Best Fitness

No

 

Figure 4.7. Architecture of PSO-ANN Fault-Tolerant Controller 

4.5.2 Design and Architecture of GA – ANN Fault-Tolerant Controller 

Figure 4.8 shows the design and architecture of GA-ANN as Fault-Tolerant controller.  

The chromosome population for the GA was initially initialised at random, then it is 

passed into the ANN to calculate the fitness of each chromosome, the average fitness 

for the entire population and best global fitness.  Each chromosome fitness is then used 

to compare against the best fitness, if a chromosome’s fitness is better than the best 

fitness, that chromosome becomes the latest best solution and its fitness becomes the 

best fitness.  If the best fitness has met the termination criteria or the computation cycle 

has reached 100,000 iterations, the best fitness solution becomes the solution for the 
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Fault-Tolerant Controller; otherwise selection and reproduction will occur to produce a 

new set of children chromosomes, and the parent chromosome solutions are updated 

accordingly.  The computation cycle repeats itself until either the desired fitness is met, 

or 100,000 generations is reached.  The termination criteria is considered to be met, if 

the fitness function of a chromosome is smaller or equal to the value chosen by the user.  

For the experiments of this thesis, the termination criteria is considered to be met, if the 

fitness function scored less than 0.1, i.e. the Euclidean error between the ideal location 

and the calculated location of the arm of the arm is less than 0.1 mm apart.   At each 

iteration the average and best fitness are plotted, when the computation cycles complete 

the numerical results are exported to a CSV 4 file and graphical results of the fitness 

function are saved as a PNG file.  

4 CSV stands for Comma Separated Value 
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Figure 4.8. Architecture of GA-ANN Fault-Tolerant Controller 

4.6 Design and Architecture for LUT based Fault-Tolerant 

Controller 

This research uses GA or PSO to evolve the element in the LUT, where each element 

represents the angle for each joint needs to revolve.  The population consists of 100 

swarms of eight individual particles/chromosomes that were first randomly initialised, 

with each individual particle/chromosome representing a joint angle for the simulated 

robotic arm.  
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For the simulation to more accurately represent the physical system, for each output 

joint angle stored the LUT is bounded by the piecewise function given in equation (4.7): 

	 	
45, 	 	 45°

	 , 45° 	 	 	 45°

45, 	 45°
 (4.7) 

The fitness function chosen for this controller is the Euclidean error function, given in 

the equation (4.8): 

	  (4.8) 

where, 

	is the x coordinate that produce the swarm’s best known fitness output. 

	is the y coordinate that produce the swarm’s best known fitness output. 

	is the current x coordinate for individual’s particle.  

	is the current y coordinate for individual’s particle. 

The fitness function of each individual particle is calculated by dividing the calculation 

of the forward kinematics for the robotic arm and updating of the output angles into 10 

steps, with each step allowing each individual joint to revolve no more than 9°	~	9°	 

and no more than 90°	~	90°	in total.  The termination criterion for this algorithm is 

either the controller had found a global fitness that is equal or smaller than the desire 

fitness function inputted by the user and/ or iterations of the algorithm had exceed 

100,000 iteration.  The termination criteria is considered to be met, if a fitness function 

is smaller or equal to the value chosen by the user.  For the experiments of this thesis, 

the termination criteria is considered to be met, if the fitness function scored less than 

0.1, i.e. the Euclidean error between the ideal location and the calculated location of the 

arm of the arm is less than 0.1mm apart.    
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4.6.1 Design and Architecture of PSO – LUT Fault-Tolerant 

Controller 

Figure 4.9 shows the design and architecture of PSO-LUT as Fault-Tolerant controller.  

The particles population for the PSO were initially initialised at random, then it is used 

to update elements in the LUT and calculate the fitness for each individual particle and 

the swarm’s collective best fitness.  Each individual fitness is then used to compare 

against the swarm’s collective best fitness, if an individual particle’s fitness is better 

than the swarm’s collective fitness, that particle becomes the latest swarm’s collective 

best solution and its fitness becomes the swarm’s collective best fitness.  If the swarm’s 

collective best fitness has met the termination criteria or the computation cycle has 

reached 100,000 iteration, the solution that is the current swarm’s collective best fitness 

solution becomes the solution for the Fault-Tolerant Controller uses.  Otherwise, the 

particle’s velocity and position are updated using its associated equation discussed in 

previous chapter.  The computation cycle repeats itself until either the desired fitness is 

met, or 100,000 computation cycle is reached.    The termination criteria is considered 

to be met, if the fitness function of the best particle is smaller or equal to the value 

chosen by the user.  For the experiments of this thesis, the termination criteria is 

considered to be met, if the fitness function scored less than 0.1, i.e. the Euclidean error 

between the ideal location and the calculated location of the arm of the arm is less than 

0.1mm apart.   At each iteration the swarm’s collective best fitness are plotted, when the 

computation cycles complete the numerical results are exported to an CSV file and 

graphical results are saved as a PNG file. 
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Figure 4.9. Architecture of PSO-LUT Fault-Tolerant Controller 
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4.6.2 Design and Architecture of GA – LUT Fault-Tolerant Controller 

Figure 4.10 shows the design and architecture of GA-LUT as Fault-Tolerant controller.  

The chromosome population for the GA was initially initialised at random, then it is 

passed into the LUT to calculate the fitness of each chromosome, the average fitness for 

the entire population and best global fitness.  Each chromosome fitness is then used to 

compare against the best global fitness.  If a chromosome’s fitness is better than the 

global best fitness, then that chromosome becomes the latest best global solution and its 

fitness becomes the best global fitness.  If the global best fitness has met the termination 

criteria or the computation cycle have reach 100,000 iteration, the global best fitness 

solution becomes the solution for the Fault-Tolerant Controller uses.  Otherwise, 

selection and reproduction will occur to produce a new set of children chromosomes, 

and the parent chromosome solutions are updated accordingly.  The computation cycle 

repeats itself until either the desired fitness is met, or 100,000 computation cycle is 

reach.    The termination criteria is considered to be met, if the fitness function of a 

chromosome is smaller or equal to the value chosen by the user.  For the experiments of 

this thesis, the termination criteria is considered to be met, if the fitness function scored 

less than 0.1, i.e. the Euclidean error between the ideal location and the calculated 

location of the arm of the arm is less than 0.1mm apart.   At each iteration the average 

and global best fitness are plotted, when the computation cycles complete the numerical 

results are exported to an CSV file and graphical results of the fitness function are saved 

as a PNG file.  
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Figure 4.10. Architecture of GA-LUT Fault-Tolerant Controller 

In summary, this chapter provides detail descriptions of the optimisation algorithm and 

controllers used to construct the Fault-Tolerant Controller developed for this research.  

In addition, this chapter provides the flowchart and detail description of the architecture 

for the four Fault-Tolerant controllers developed for this research.   The next chapter 

provides a summary and comparisons of results generated by the Fault-Tolerant 

Controllers. 
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Chapter 5  

Results 

This chapter presents the graphical and numerical results for all four Fault-Tolerant 

Controllers developed for this research, and each controller is evaluated with five 

different fault combinations, ranging from zero to four faults.  The test was repeated 100 

times for each fault. 

The first half of this chapter will compare and analyse the performance of each 

controller and the effects that different parameters and fault combinations had on the 

controller’s convergence rate.  The second half of this chapter provides a comparison 

and analysis of the performance between the four controllers.  Results are plotted using 

the box-and-whisker diagram for each feature to show the data in terms of quartiles.  

The box represents the data that lies between the lower and upper quartile, which is the 

interquartile range of the data.  The horizontal line in the middle of the box represents 

the median of the data.  The whiskers on the plot mark the full range of the data and are 

drawn on either side of the box, representing the minimum and maximum values. 

5.1 Effects of Using Different Parameter Settings on the Controllers 

In order to determine whether different parameter settings have a significant effect on 

the convergence rate of the controllers, each of the four controllers is experimented on 

with different parameters settings and results of hundred trials are gathered and 

analysed. 

5.1.1 Results for Different Acceleration Coefficient Combinations on 

PSO 

For PSO the different combinations of acceleration coefficient has the following effects: 

 Two Local Acceleration and One Global Acceleration, the swarm emphasis 

more on finding and converging the individual particle’s optimum more 

than converging towards the swarm’s collective optimum. 

 One Local Acceleration and Two Global Acceleration, the swarm emphasis 

more on converging towards the swarm’s collective optimum more than 

individual particle’s optimum. 
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 Two Local Acceleration and Two Global Acceleration, the swarm emphasis 

equally on converging towards the swarm’s collective optimum and 

individual particle’s optimum. 

The maximum acceleration coefficient value of two is chosen since the reviewed 

articles [58-61, 87, 95], all suggested that neither the local nor the global acceleration 

coefficient should not exceed a value of two.  The remainder of this section presents the 

effects that different acceleration coefficient combinations had on the convergence rate 

on a system with no faults, the acceleration coefficients combinations chosen to be 

investigated in this research are: (i) 1 Local and 2 Global Acceleration, (ii) 2 Local and 

2 Global Acceleration, and (iii) 1 Local and 2 Global Acceleration.   

Figure 5.1 shows that for PSO-ANN, a global acceleration coefficient of two and local 

acceleration coefficient of one produces the fastest median convergence rate. 

 

Figure 5.1 Results for Different Acceleration Coefficient Combination for PSO-

ANN 

For PSO-ANN, the acceleration coefficient combination Two Local and Two Global, 

and Two Local and One Global have similar mean, lower quartile and lower extreme 

results; but have worst performance when compared to One Local and Two Global.  

The acceleration coefficient combination Two Local and Two Global has a poorer 
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median, upper quartile and upper extreme convergence rate comparing to the other Two 

acceleration coefficient combination.  In addition, results for Two Local and Two 

Global appears to be left skewed, where the other two acceleration coefficient 

combinations appear to be right skewed.  If the results are left skewed, it meant that the 

results has a lower mean than the median, on the contrary if the results is right skewed it 

meant that the results has a lower median than the mean.  A left skewness in the results 

suggests that majority of the time the controller is able to coverage to an acceptable 

result with iterations around the median, with some outliers that converge to a result 

significantly faster than others and thus it lowers the mean of the convergence rate.  

Whereas a right skewness of the results, indicates that majority of the of the time the 

controller is able to converge to an acceptable results with iterations indicated by the 

median with some outliers that took significantly longer to converges to a results and 

thus increase the mean of the convergence rate. However, if the upper and lower 

extremes were taken out of considerations, results from Two Local and Two Global 

tends to appear to be more uniformly distributed than the other two, whereas right 

skewedness within the results is still observable for the other two acceleration 

coefficient combinations. 

Figure 5.2 shows that for PSO-LUT: (i) local acceleration coefficient of one and global 

acceleration coefficient of two and (ii) local acceleration coefficient of two and global 

acceleration coefficient of two both  have the same mean convergence rate, however 

local acceleration coefficient of two and global acceleration coefficient of two has a 

better median convergence rate, thus it is considered to be a better configuration to be 

use. 

While, the means for all three combinations have similar values, the combination that 

has a stronger emphasis on converging the results towards the swarm’s collective best 

solution has the least variation between upper quartile and lower quartile, while the 

combination that has a stronger emphasis on converging the results towards the 

individual’s best solution has the largest variation. 
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Figure 5.2 Effects on PSO-LUT Using Different Acceleration Coefficient 

Combination 

For PSO-LUT, results have shown that the acceleration coefficient combination One 

Local and Two Global and, Two Local and Two Global are similar to each other and 

outperforms the acceleration coefficient combination Two Local and One Global.  The 

acceleration coefficient combination One Local and Two Global have a slightly better 

lower quartile and median convergence rate than Two Local and Two Global, however 

it has a worst upper extreme and no difference in upper quartile convergence rate.  

Despite for PSO-LUT all three-acceleration coefficient combination showed right 

skewedness in its results, the acceleration coefficient combination Two Local and Two 

Global has a significant lower variation between upper and lower quartile, and between 

upper and lower extreme.  Thus, it can be considered that have a more predictable 

convergence rate than the other two acceleration coefficient. 

In conclusion, the acceleration coefficient combination One Local and Two Global is 

considered to have the best performance comparing to the other two acceleration 

coefficient combination.  Therefore, for the remainder of this research it is chosen to be 

the default acceleration coefficient combinations to be used. 
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5.1.2 Results for Different Mutation Rates on GA 

Figure 5.3 shows the results for GA-ANN using different mutation rates on the system 

with no fault in the system.  Although the median convergence rate is similar between 

various mutation rates, the 3% mutation rate has produced the fastest median 

convergence rate. 
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Figure 5.4 shows the effects of different mutation rates had on the GA-LUT with zero 

fault.  Similar to the results observed from GA-ANN, the mean and median between the 

mutation rates are close to each other, except for the median for 7% mutation rate where 

it is observably higher than the other mutation rates.  An obvious difference between the 

results in GA-LUT and GA-ANN is, for each mutation rates in GA-LUT produces a 

larger variation between the upper quartile and lower quartile.  The overall performance 

on convergence rate for each mutation rate in GA-LUT is observably better than GA-

ANN.  Since GA-LUT has lower mean, median, upper quartile and lower quartile 

values than GA-ANN across all mutation rate.  Another difference between GA-ANN 

and GA-LUT, is that for GA-LUT 5% and 8% mutation rate tends to have the best 

performance, whereas GA-ANN 2% and 3% mutation rate appears to have the best 

performance rate. 
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In conclusion, from the experimentation results discussed above for both ANN and 

LUT, for GA it is ideal to choose a mutation rate between 1% and 5%.  For GA-ANN 

Fault-Tolerant Controller with zero fault using the mutation rate between 1% and 3%, 

tends to produce the fastest convergence rate.  While for GA-LUT Fault-Tolerant 

Controller the mutation rate 2%, 5% and 8% tends to converges the quickest.  When the 

results of effects of mutation rate had on both ANN and LUT are compared side by side, 

it is observable that the mutation rates between 1% and 3% has similar median and 

lower quartile convergence rate.  However, for LUT the effects have a larger variation 

for upper quartile and upper extreme when compared to ANN.  In addition, despite 5% 

mutation rate has a slightly worst median convergence rate for both ANN and LUT, 

however it also produces a more stable result.  That is, it has a more stable and 

observably lower variations between the results, i.e. lower variation between upper and 

lower quartile, and between upper and lower extremes.  Therefore, for the remainder of 

this research 5% mutation rate are chosen to be used as the default mutation rate.  

5.2 PSO – ANN Fault-Tolerant Controller Results 

Figure 5.5 shows the performance of PSO-ANN as a Fault-Tolerant Controller, when it 

is tested across all five fault combinations, ranging from no fault to four faults.  The 

mean and median shown in Figure 5.5 suggested that as the number of faults within the 

system increases, the amount of iterations the controller required to converge to a 

solution decrease.  Moreover, as the number of faults increases, variation (i.e. difference 

between the upper and lower quartile, and upper and lower extreme) of convergence 

rate amongst the hundred trials decreases as well.   

In summary, the PSO-ANN as a Fault-Tolerant controller has the following 

characteristic: 

 For zero fault, it has slowest convergence rate. 

 For one fault, it has a faster convergence rate compared to zero fault, yield a 

similar convergence rate to two faults, and has slower convergence rate 

compared to three and four faults. 

 For two faults, it is statistically faster convergence rate compared to zero 

fault, yield a similar on convergence rate to one and three faults and has 

slower convergence rate compared to four faults. 
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 For three faults, it has a faster convergence rate compared to zero and one

fault and are yield a similar in convergence rate to two and four faults.

 For four faults, it has a faster convergence rate compared to zero to two

faults and yield a similar in convergence rate compared to three faults.

Figure 5.5 Results for PSO-ANN Across All Faults Combination 

5.3 PSO – LUT Fault-Tolerant Controller Results 

Figure 5.6 shows the performance of PSO-LUT as a Fault-Tolerant Controller, when it 

is tested across all five fault combinations ranging from no fault to four faults.  Results 

shown in Figure 5.6 resemble results from PSO-ANN, where the mean and median 

suggested that as the number of faults within the system increases, the amount of 

iterations the controller required to converge to a solution decreases.  As the number of 

faults increases, variation (i.e. difference between the upper and lower quartile, and 

upper and lower extreme) of convergence rate amongst the hundred trials decreases as 

well. However, the overall performance of the PSO-LUT is comparatively better than 

PSO-ANN as the median, mean, upper extremes and the quartile ranges across all five 

fault combinations are numerically better.  
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In summary, the PSO-LUT as a Fault-Tolerant controller has the following 

characteristics: 

 For zero fault, it has slowest convergence rate. 

 For one fault, it has statistically faster convergence rate compared to zero 

fault, but has slower average convergence rate compared to two, three and 

four faults. 

 For two faults, it has statistically faster convergence rate compared to zero 

and one fault, statistically indifferent on convergence rate compared to three 

faults, and has slower convergence rate compared to four faults. 

 For three faults, it has statistically faster convergence rate compared to zero 

to two faults and is statistically indifferent in convergence rate four faults. 

 For four faults, it has statistically faster convergence rate compared to zero 

to two faults and is statistically indifferent in convergence rate compared to 

three faults. 

 

Figure 5.6 Results for PSO-LUT Across All Faults Combinations 
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5.4 GA – ANN Fault-Tolerant Controller 

Figure 5.7 shows the performance of GA-ANN as Fault-Tolerant Controller, when it is 

tested across all 5 fault combinations ranging from zero fault to four faults.  Results 

from Figure 5.7 show that for 0 to 3 faults the mean, median, extremes and quartile 

range are highly similar, whereas for 4 faults it is observably better than the other four 

fault combinations.   

In summary, the GA-ANN as a Fault-Tolerant controller has the following 

characteristics: 

 Convergence rate between zero to three faults are not statistically different 

on a significant level. 

 Convergence rate for four faults are statistically faster on a significant level, 

compared to the other four fault combinations. 

 

Figure 5.7 Results for GA-ANN Across All Faults Combinations 
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5.5 GA – LUT Fault Tolerant-Controllers 

 

Figure 5.8 shows the performance of GA-LUT as a Fault-Tolerant Controller, when it is 

tested across all five fault combinations ranging from no fault to four faults.  The results 

show a trend from that in PSO-ANN and PSO-LUT, whereas the number of faults 

within the system increases, the iterations the controller required to converge to a 

solution decrease.  As the number of faults increases, the variation (i.e. difference 

between the upper and lower quartile, and upper and lower extreme) of convergence 

rate amongst the hundred trials decreases as well.  However, the overall performance of 

the GA-LUT is comparatively worse than PSO-ANN and PSO-LUT as the median, 

mean, upper extremes and the quartile ranges across all five fault combinations are 

numerically larger.  

In summary, the GA-LUT as a Fault-Tolerant controller has the following 

characteristics: 

 It has the similar trend as PSO-ANN and PSO-LUT, that is as the number of 

faults increases, convergence rate improves. 
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 For zero fault, convergence rate is slower compared to two to four faults,

while it yield a similar convergence rate is compared to the convergence

rate with 1 fault.

 For one fault, convergence rate is slower compared to two to four faults,

while it yields a similar convergence rate compared to the convergence rate

with 0 fault.

Figure 5.8 Results for GA-LUT Across All Faults Combination 

5.6 Comparison of All Four Fault-Tolerant Controllers 

Figure 5.9 to Figure 5.13, shows a side-by-side comparison of the convergence rate of 

the five fault combination used to test the four Fault-Tolerant Controllers developed for 

this work.  The results show that PSO-LUT has the fastest convergence rate for all five 

fault combinations, followed by PSO-ANN then GA-LUT and finally GA-ANN.  In 

addition, all four controllers appear to have improved convergence rate and reduce the 

variations between upper and lower quartile and variation between upper and lower 

extremes as the number of faults in the system increase. 
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Figure 5.9. Side-by-side Comparison of Controllers on 0 Fault 

 

Figure 5.10. Side-by-side Comparison of Controllers on 1 Fault 
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Figure 5.11. Side-by-side Comparison of Controllers on 2 Faults 

 

Figure 5.12. Side-by-side Comparison of Controllers on 3 Faults 
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Figure 5.13. Side-by-side Comparison of Controllers on 4 Faults 
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Chapter 6  

Conclusion and Discussion 

The overall aim of the research reported in this thesis was to investigate, design, 

develop and compare four Fault-Tolerant Controllers for a multi-joint planar robotic 

arm as FTC, by combining well-studied optimisation algorithms and robotic controllers.  

Analysis of convergence rate of multiple trials for different fault combinations will 

assist in determining the effectiveness of the developed controllers. 

The literature reviewed categorised faults into five major categories, which are: Internal, 

Sensory, Operational, Design, and Combinational.  In addition, a fault could occur: 

Abruptly, Incipiently, Permanently, Transiently, Intermittently, and Hiddenly.  Thus, it 

is impossible for an engineer to anticipate every possible fault and take preventative 

steps when designing the system, as a result it gave rise to Fault-Tolerant Controller.  A 

Fault-Tolerant Controller allows the system to adapt the fault and enables it to fail 

gracefully. instead of immediate system failure.  The literature reviewed in chapter 2 

describes the architecture of Fault-Tolerant Controller typically consisting of two parts, 

which are (i) Fault Diagnosis and (ii) Fault-Tolerant Control and can be either passive 

or active. 

This research primarily focuses on investigating and development of active FTC, after a 

thorough review of existing literature, four Fault-Tolerant Controllers were designed 

and built for this research, which are: (1) PSO-ANN, (2) PSO-LUT, (3) GA-ANN, and 

(4) GA-LUT.

This research developed and compared the effectiveness of four Fault-Tolerant 

Controllers, which were designed and implemented only using active FTC, by 

combining PSO and GA with ANN and LUT to control a simulated robotic arm system. 

The robotic arm is tasked to move from a set starting point to a location set by the user 

within its workspace, with or without occurrence of fault in the system.  The controllers 

observed to find how fast it can adopt itself to changes in the number of faults (ranging 

from no fault to four faults) presented in the system. 

Results in Chapter 5 have shown that the Fault-Tolerant Controller using PSO-LUT has 

the fastest overall convergence rate across all the fault combinations tested, followed by 

PSO-ANN, GA-ANN and finally GA-LUT.  In addition to having the fastest overall 



77 

convergence rate, PSO-LUT also has the lowest variation between the upper and lower 

quartiles from the results of each trial it was experimented on.  For the controller GA-

ANN the overall convergence rate remains consistent between zero to three faults, and it 

performs better at a statistically significant level for four faults.  However, for the 

controllers PSO-ANN, PSO-LUT and GA-LUT a common feature was observed, that is 

with the increasing number of faults presented in the system, up to four faults, there is 

an observable increase of convergence rate.  The reason for this is because, as the 

number of faults increases the number of solutions and ideal solution in the solution 

space decreases.  A solution in the solution space, is a location where the robotic arm 

can reach within its workspace, whereas ideal solutions in the solution space, are 

solutions that can drive the robotic arm system to the desired destination.  However, the 

number of solutions in the solution space decreases faster than the number of ideal 

solutions in the solution space.  Therefore, the controller is more likely to find a solution 

it needs to drive the robotic arm to its desired destination as the number of faults 

increase.   Yet, the convergence rate only increases up to four faults in the system and 

will decrease or no solution could be found from five faults onwards.  This is because 

from five faults onwards it becomes physically impossible for the robotic arm system to 

reach the desired destination. 

Experiment with no fault in the system, suggested that by using different parameters for 

PSO (different combinations of local and global acceleration coefficient) and GA 

(different mutation rate) appears to affect the performance of the Fault-Tolerant 

Controller.   

For PSO based Fault-Tolerant Controllers: PSO-ANN and PSO-LUT, three 

combinations of acceleration coefficient combination were tested, which are: a) One 

local acceleration and Two global acceleration, b) Two local acceleration and Two 

global acceleration, and c) Two local acceleration and One global acceleration.  Results 

from both PSO-ANN and PSO-LUT had shown that the acceleration coefficient 

combination One local and Two global has the fastest median convergence rate, while 

Two local and Two global has the slowest median convergence rate.  However, the 

mean convergence rates for all three acceleration coefficient combinations are very 

similar.  In addition, the acceleration coefficient combination One local and Two global, 

has the smallest variation between the upper and lower quartile, the lowest upper 

extreme and the highest lower extreme.  This suggests that different acceleration 

combination has effects on the convergence rate of the PSO based Fault-Tolerant 
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Controller.  In addition, it suggest future work on finding the combination of 

acceleration coefficients that optimised the convergence rate for the controllers for 

various faults situations. 

For GA based Fault-Tolerant Controllers (a)GA-ANN and (b)GA-LUT, the results for 

no fault identifies mutation rate had an effect on the convergence rate of the Fault-

Tolerant Controller.  Results from GA-ANN shows that the 1% to 3% mutation rate 

appears to have similar mean, median and upper quartile values that are lower than the 

other mutation rates.  In addition, these three mutation rates appear to yield a better 

convergence rate, than other mutation rate.  However, for GA-LUT results have shown 

that 5% and 8% mutation rate yield the fastest convergence rate and has the least 

variation between upper and lower quartile.  In addition, 8% mutation rate has 

observably smaller upper extreme value than other mutation rate.  This suggest future 

work could be carried out to investigate the optimal mutation rate for each of the 

developed GA based controller to be used across various fault situations. 
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