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Abstract

Digitalization of a 3D scene has been a fundamental yet highly active topic in the

field of computer science. The acquisition of detailed 3D information on street sides

is essential to many applications such as driver assistance, autonomous driving, or

urban planning. Over decades, many techniques including active scanning and passive

reconstruction have been developed and applied to achieve this goal. One of the state-

of-the-art solutions of passive techniques uses a moving stereo camera to record a video

sequence on a street which is later analysed for recovering the scene structure and the

sensor’s egomotion that together contribute to a 3D scene reconstruction in a consistent

coordinate system.

As a single reconstruction may be incomplete, the scene needs to be scanned

multiple times, possibly with different types of sensors to fill in the missing data. This

thesis studies the egomotion estimation problem in a wider perspective and proposes

a framework that unifies multiple alignment models which are generally considered

individually by existing methods. Integrated models lead to an energy minimisation-

based egomotion estimation algorithm which is applicable to a wider range of sensor

configurations including monocular cameras, stereo cameras, or LiDAR-engaged vision

systems.

This thesis also studies the integration of 3D street-side models reconstructed

from multiple video sequences based on the proposed framework. A keyframe-based

sequence bag-of-words matching pipeline is proposed. For integrating depth data
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from difference sequences, an alignment is initially found from established cross-

sequence landmark-feature observations, based on the aforementioned outlier-aware

pose estimation algorithm. The solution is then optimised using an improved bundle

adjustment technique. Aligned point clouds are then integrated into a 3D mesh of the

scanned street scene.
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x̊ = (x̊, ẙ,1)⊺ Normalised pixel coordinates in canonical image plane

y = (X,Y,Z)⊺ World coordinates in R3

t Translation vector in R3, as a column vector

ξ Twist in Lie-algebra se(3), minimally representing a Euc-

lidean transformation

i Index of a tracked landmark

j Index of a frame

k Index of a camera; iteration number

I,Ω Image and its domain

χ Image feature

F Set of image features

M Mapping of features

Φ, ϕ Objective and error residual functions



Chapter 1

Introduction

The reconstruction of 3-dimensional (3D) environments has been actively studied since

the early development of modern computer science. In the last two decades, a number

of breakthroughs have been made in a variety of fields including computer vision,

photogrammetry, robotics, and optics. Moreover, the computational capability of ma-

chines nowadays is being rapidly boosted at an exponential scale. These achievements,

altogether, bring into the reality the creation of high-definition digital models of 3D

scenes at a large scale.

This chapter first introduces in Section 1.1 existing methods for street scene re-

construction, among which the computer vision-based approach is selected for further

investigation. In Section 1.2, the background of related academic fields is briefed.

We then identify in Section 1.3 gaps existing in the fields, and discuss in Section 1.4

how they can be filled-in by contributions made by this research. Section 1.5 defines

mathematical notions used throughout the thesis. Section 1.6 outlines the structure of

this thesis.
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1.1 Street scene reconstruction

Accurate recovery of depth information of real-world scenes has been a fundamental, yet

highly active research topic in the field of computer vision. The acquisition of reliable

3D information on street sides plays an important role in many advanced technologies

such as driver-assistance systems (Morris et al., 2009), collision avoidance (Nedevschi,

Bota & Tomiuc, 2009), autonomous vehicles (Thrun, 2010), urban planning (Hu, You &

Neumann, 2003), or geosciences (Westoby, Brasington, Glasser, Hambrey & Reynolds,

2012).

A common technique to build 3D models of an urban scene is based on light

detection and ranging (LiDAR) technology. To collect scans of a scene, a laser scanner

is set up, either at a stationary point or a moving vehicle on the ground [i.e. terrestrial

laser scanning (TLS)], or mounted on an flying aircraft [i.e. airborne laser scanning

(ALS)]. The former setup provides highly accurate reconstruction of building facades

and street objects within a few blocks, while the latter one builds urban digital elevation

models (DEM) in a wider region.

Despite the accuracy and effectiveness of laser scanning technology, LiDAR still

comes with a high cost, is not recording surface colour, and provides limited information

for tracking visible information from frame to frame. Image-based 3D reconstruction

offers an affordable alternative to approach these problems. The stereo-vision technique,

for example, recovers a dense scene structure using a conjugate image pair captured

by two calibrated cameras, also possibly at a high frequency (e.g. 30 Hz). To extend

the scanning range, well-calibrated image sensors are mounted on a vehicle and rigidly

moved, allowing a continuous collection of depth data in the scene. As the ego-vehicle

(i.e. the vehicle where the system is installed) moves, the sensor’s motion has to be

recovered, such that the 3D points, measured in different time frames, can be converted

into a consistent coordinate system.



Chapter 1. Introduction 20

Occlusion of objects is a major problem in 3D reconstruction. Objects partially

occluded in a single run lead to incomplete reconstructions with missing depth in-

formation. To address this problem, the scene must be scanned from multiple viewing

directions, and a sophisticated algorithm is required to merge multi-run scans such that

a complete 3D reconstruction can be built (Rusu, Blodow, Marton & Beetz, 2008; Zeng

& Klette, 2013).

The adopted egomotion1 estimation strategy is crucial to the process of merging 3D

data collected in different runs. In a single run, an inaccurate egomotion estimator may

cause significant drifts between frames, making the alignment of points far from being

consistent. As a result, the transformed point cloud is distorted, and, in turn, imposes a

difficulty in registering multiple-run point clouds.

To ensure the validity of recovered egomotion, the estimator must track and use

temporally consistent feature points. In a typical urban traffic scene, however, this can

be challenging due to the complexity and dynamics of the street sides. Identifying

moving objects (i.e. vehicles, pedestrians, and so forth) is a necessary step in such a

scenario. Also, the complexity of a street-side scene may result in a large number of

image feature points. An efficient and robust temporal feature-tracking mechanism is

therefore desired.

Furthermore, to improve the coverage and accuracy of the reconstructed scene, it

may also be scanned using different types of sensors. For example, results obtained

from ground-level scans with a vehicle-mounted stereo vision system can be merged

with a top-view reconstruction of the street from a monocular camera that is attached to

a flying drone.

The reported research aims at achieving comprehensive street-side reconstruction

through developing a multi-sensor multi-scan merging methodology, and an improved

1 Egomotion refers to the motion of a moving sensor. Latin ego, first person singular personal
pronoun, is chosen by the translator of Sigmund Freud’s writings to translate the use of German Ich as a
noun to English. Literally, egomotion therefore means self motion.
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egomotion estimation strategy for achieving the required accuracy in camera-motion

recovery.

1.2 Background

This section walks through three topics that are closely related to this research, from a

historical and a technical perspective.

1.2.1 Structure from motion

Structure recovery from images, taken at different poses2 is known as structure from

motion (SfM). It has been well-studied in the field of photogrammetry, since its wide

application in remote sensing and geosciences in the early 1990s (Westoby et al., 2012).

Thanks to the advances in the theories of algebraic factorisation and auto-calibration

(Longuet-Higgins, 1981; Luong & Faugeras, 1997; Kanade & Morris, 1998), the

application of SfM has been extended from computer scientists to general users.

Nowadays, the SfM technology is available to the public; one can easily reconstruct

3D structure of a scene in a few clicks, using either a commercial or an open source

implementation (Snavely, 2008; C. Wu, 2011). Remarkably, it has recently shown the

possibility for automatic 3D model reconstruction from photos on the internet (Snavely,

Seitz & Szeliski, 2008).

A general SfM problem aims to estimate the structure of a stationary scene from

many of its projective measurements - images, taken by one or many uncalibrated

cameras in arbitrary many poses. Solving such an inverse problem is challenging, as

the solutions lie in a high-dimensional space. An instance of a 10-view reconstruction

problem can, for example, lead to a non-linear solution space above one thousand

dimensions.
2 A pose is defined by position and direction.
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Historically, the SfM techniques follow a multi-stage pipeline including feature

extraction, correspondence establishment, camera parameter recovery and finally struc-

ture recovery. In general, parameters are locally estimated using a fast linear solver,

followed by a global non-linear optimisation stage known as bundle adjustment (BA).

Due to computational complexity, an SfM problem is usually solved offline.

1.2.2 Simultaneous localisation and mapping

In robotics it is often required to locate an agent and the 3D structure of its surrounding

environment. A technique, jointly estimating the location and the scene structure,

is known as simultaneous localisation and mapping (SLAM) (Cadena et al., 2016).

The SLAM problem can be approached using different types of sensors, such as laser

range-finders (i.e. LiDAR), radar, sonar, and optical sensors.

In the case that the estimation is based on image data, it is known as visual SLAM (V-

SLAM) (Karlsson et al., 2005), which can be understood as a specialised SfM problem.

Unlike a general SfM solver, a SLAM 3 system performs pose estimation and structure

computation on-line, from a temporal continuous image sequence in an incremental

manner. The sensors are also assumed to be well-calibrated. As the estimation has to be

done on-line, critically in real-time, a SLAM algorithm needs to take trade-offs between

accuracy and computation efficiency.

When a global positioning sensor is not available, the localisation has to be actualised

by integrating differential pose measurements over time. The technique is called dead

reckoning [also known as deduced reckoning (DR)], in navigation (Gehrig & Stein,

1999).

The differential pose can be derived from, for example, an inertial measure unit

(IMU) or from images. The latter case is known as visual odometry.

3 By “SLAM” it specifically refers to “V-SLAM” through this thesis, unless explicitly specified
otherwise.
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A typical SLAM system has the ability to recognise a visited place. Such an

ability allows the system the removal of an accumulated positioning error by enforcing

consistency among multiple measurements on repeatedly observed scene structures,

using bundle adjustment. Such a drift-suppression strategy is known as loop closure. In

addition to loop closure, a modern SLAM system also performs incremental frame-by-

frame integrations on the estimated parameters by means of a recursive filter, such as

the extended Kalman filter (EKF) (Durrant-Whyte & Bailey, 2006).

1.2.3 Visual odometry

The term visual odometry (VO) was coined in 2004, as an analogue to wheel odo-

metry (Nistér, Naroditsky & Bergen, 2004). It provides a way to estimate the trajectory

of a moving camera from an image sequence. VO techniques are often adopted to com-

plement a global positioning system (GPS) under circumstances that satellite signals

are blocked (e.g. when a vehicle is driving in a tunnel). Following VO successes with

Mars exploration rovers (Maimone, Cheng & Matthies, 2007), VO has been widely

adopted by many applications such as SLAM, intelligent vehicles, indoor navigation, or

augmented reality (AR) (Klein & Murray, 2007; Scaramuzza & Fraundorfer, 2011).

The core of VO is to solve a 2-view camera-pose recovery problem in a special

form, known as egomotion estimation, where the first and second views are taken by

the same camera (and the relative pose is therefore the camera’s egomotion). The

solution is dependent on the type of sensors. Early works focused on the use of stereo

cameras, leading to solving a 3D-to-3D or 3D-to-2D registration problem. In recent

years, much effort has been done in monocular VO, which is often considered to be a

more challenging case as an accurate estimate of scene structure is not directly available

from monocular data.

The development of VO has led to a separation into two different paths, namely
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appearance-based or feature-based techniques. Feature-based approaches follow

feature-matching and tracking pipelines developed in the area of SfM. These approaches

dominated the development of VO for decades. Appearance-based VO, on the other

hand, makes direct use of image intensities, thus also known as direct methods. Early

direct methods are influenced by optical-flow estimation and SfM techniques as de-

veloped in the photogrammetry community (Irani & Anandan, 1999). After decades of

oblivion, the direct methods have quickly become popular in the last few years, thanks

to the advance of GPU computing (Engel, Sturm & Cremers, 2013). In 2007, the first

symbolic implementation of sparse direct VO is presented in the context of augmented

reality (Klein & Murray, 2007).

1.3 Motivations

Both SfM and SLAM techniques provide the possibility to achieve 3D street scene

reconstruction. However, we4 found gaps among these techniques when it comes

to multiple-run integration. The SfM pipeline considers unordered images taken in

arbitrary positions and offers a many-to-many cross-matching functionality to sort

out the informational correlation between view points, which is also useful to align

sequences taken in multiple runs. It is, however, very computational expensive as a

sequence of a street, considered in this research, may contain thousands of images.

Furthermore, the images are assumed to be collected by some well-calibrated sensors

in temporal order. Taking these constraints into account saves, indeed, unnecessary

computational requirements by avoiding cross-frame all-to-all matching as well as

optimising well-calibrated sensor parameters.

On the other hand, methods from the SLAM family usually deploy efficient strategies

4 The use of “we” throughout this thesis is purposeful. It is used to involve the reader with the thesis
as recommended by Knuth (Knuth, Larrabee & Roberts, 1989).
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to recognise a visited place and allow data, collected at different times, to be fused.

However, most of the SLAM techniques are designed to perform on-line map integra-

tion only, which might sacrifice accuracy in 3D reconstruction in order to maintain a

moderate frame rate. Also, most of the techniques found in the literature consider only

specific sensor models. Difficulties arise when one is trying to apply a stereo-based

SLAM algorithm to an airborne monocular vision system.

It is hard to find a versatile framework that comes with a good flexibility to support

the extension into a combination of different optical or range sensors such as mon-

ocular camera, stereo vision, multi-ocular vision, and LiDAR (Moosmann & Stiller,

2011). Such drawbacks motivated our research to develop an appropriate framework

for multiple-sequence mapping.

1.4 Contributions

The objective of this research is to design, implement, and evaluate a novel reconstruc-

tion framework that can be applied to build 3D representation of a sequence and merge

reconstructions built from multiple sequences, following a versatile design that should

be applicable to monocular, stereo, and multi-ocular optical sensors, optionally also

equipped with a LiDAR.

To this goal, we propose a unifying visual odometry framework which is based on

a universal pipeline, to achieve accurate egomotion estimation for a variety of sensor

combinations. The framework treats the egomotion estimation problem as an abstract

nonlinear energy minimisation process, and integrates multiple criteria commonly

adopted in the literature to build a robust objective function. The fusion of components

from different mathematical models is formulated in a Bayesian framework, based on

recursive filtering techniques commonly adopted by a real-time SLAM implementation.

The work also fills in the gap between SfM and SLAM techniques by transforming
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an incremental on-line pose estimation process in the SLAM category into offline

frame-registration and multiple-view structure refinement processes. The registration

is initiated by using a bag-of-visual-word technique to discover the correspondences

between key frames. Structures and poses of two matched sequences are then rigidly

aligned using large-scale offline bundle adjustment.

1.5 Notation

Throughout this thesis, we use fonts to differentiate mathematical entities of different

types. A scalar is written in italic font, a vector is in bold lowercase, and a matrix in

bold uppercase. For example, in Ax = λx, A is a matrix, x is one of its eigenvectors,

and λ is the corresponding eigenvalue. The dimensionality of an entity is written in

uppercase, such as NROW ×NCOL.

We use subscript to denote a subelement of an entity; ai refers to the i-th row

of A, and aij is an entry of A. By default, vectors are in column-vector form, a

matrix is applied to a vector by right multiplication, and matrices are concatenated

in pre-multiplication order. For example, applying a sequence (A1,A2,A3) of linear

transformations to a vector x yields y = A3 (A2 (A1x)) = A3A2A1x.

1.6 Thesis organisation

The thesis is organised as follows. Chapter 2 provides a walk-through for state-of-the-art

approaches. Chapter 3 describes the theoretical foundation of this research that exist in

the area; based on this a novel visual odometry framework is formulated in Chapter 4.

This framework is then used to build 3D street-side reconstructions from multiple

sequences, as detailed in Chapter 5. Cahpters 4 and 5 define the author’s contribution to

the field. Chapter 6 discusses possibilities to further extend this research.



Chapter 2

Literature Review

In this chapter four representative implementations in the context of egomotion estima-

tion and 3D mapping are reviewed. These seminal work have demonstrated remarkable

solutions to the SLAM/VO problems in terms of novelty and effectiveness, hence

considered influential milestones in the field.

The VO and SLAM problems have been studied for decades. In the literature these

two loosely related topics are often approached together. A clear boundary divides the

existing works into two categories, namely the feature-based methods and the direct

methods. The former solves the egomotion estimation by matching a sparse set of

feature points, while the latter relies on the patch-based search directly using dense

image intensities. In the following sections two of highly cited researches are reported

for each category.

2.1 Parallel tracking and mapping

Klein el. al. formulated the SLAM problem as two separate parts, namely tracking

and mapping (Klein & Murray, 2007), in their work on Parallel Tracking and Mapping

27
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(PTAM). The modularized design allows tasks in a monocular SLAM system to be effi-

ciently parallelised. The incremental mapping methods by the time solve the egomotion

estimation and structure update together at every frame, while Klein et. al.’s work is

one of the early attempts that decouples the process for real-time applications such as

AR with a monocular mobile camera.

Following a coarse-to-fine scheme, the tracking starts with the search of sparse

correspondences for a small set of features from accelerated segment test (FAST)

(Rosten & Drummond, 2005) in the down-sampled images. An egomotion hypothesis

is estimated based on the coarse correspondences and used in turn to establish the

image correspondences for a larger feature set in the images at higher resolution. All

the tracked image features are then utilised to yield the final pose estimation. A pose

hypothesis driven affine warping is applied to increase the accuracy of patch matching

and the range is bounded to avoid an exhaustive search in the whole image.

In the mapping module the 3D structure of sparse scene points is continuously

maintained based on the selected keyframes. The map is initialised from a dense

depth map, which is obtained from a user-guided left-right temporal stereo image pair,

followed by an essential matrix decomposition and a two-view triangulation that will

be introduced in Chapter 3. As more keyframes are inserted, the map is augmented

by finding new observations of the existing features along epipolar lines. PTAM also

deploys bundle adjustment (BA) in both local and global scales in each module.

2.2 Large-scale dense SLAM

A recent monocular SLAM approach known as LSD-SLAM has attracted significant

attention (Engel, Schöps & Cremers, 2014). The proposed direct SLAM follows the

keyframe-based separation of tracking and mapping tasks as suggested by PTAM. The

tracking is, however, done on a dense subset of pixels (hence semi-dense) instead of
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sparse image features. The pose of the camera with respect to the active keyframe and

point correspondences are solved simultaneously by photoconsistency maximisation

(explained in Section 3.3.1).

In the mapping part a dense depth map is continuously updated as a new frame

arrives. The update also takes a dense error map into account to actualise a recursive

filtering. When a key frame is detected, the updated depth map is locked and used

together with the last keyframe’s depth map to estimate the egomotion of the camera, by

means of a nonlinear minimisation of a variance-normalised energy model. The work

also proposes a data-driven normalisation technique to suppress the scale drift problem

that encountered in monocular mapping.

Due to the random initialisation at the beginning of LSD-SLAM, the tracking is

not guaranteed to converge to a valid configuration. However, such issue can be easily

solved using a more robust bootstrapping technique (for example, the left-right temporal

stereo as used by PTAM).

2.3 SLAM for versatile cameras

In the feature matching-based SLAM category, the ORB-SLAM based on the oriented

FAST and rotated binary robust independent elementary (ORB) features, represents

one of the state-of-the-art implementations (Mur-Artal, Montiel & Juan Tardós, 2015).

The revised design of ORB-SLAM is composed of three parallel threads respectively

working on tracking, mapping and loop closing. The SLAM system finds, extracts

and matches ORB features (see Appendix B.1.3 for details) and utilises either a stereo

camera pair or a RGB-D sensor to solve for the camera’s egomotion. In particular, the

egomotion estimation is done by conducting a local bundle adjustment that minimises

reprojection error (RPE) defined by the projective alignment criterion. The details of

the process will be discussed later in Chapter 4.
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Once the egomotion is solved, the landmarks in a local map that consists of last

few keyframes are projected into the current frame and searched for missing corres-

pondences. The search range is bounded to a small region and based on descriptor

matching.

The ORB-SLAM also classifies the tracked keypoints according to their depths to

further improve numerical stability in triangulation. The far points are only triangulated

when being observed in multiple views. The number of close points is constantly

tracked as an indicator for new keyframe insertion.

The descriptors of the extracted ORB features are also used for place recognition.

When a previously visited scene is detected, loop closure is enforced by performing a

full BA.

2.4 Library for visual odometry

A state-of-the-art software library for stereo VO known as LIBVISO was published by

Geiger et. al. in 2011. Similar to ORB-SLAM, the implementation also follows a

descriptor-based feature tracking pipeline. The blob and corner features are identified

from the images, and the matching of features is based on similarity in the responses of

the feature-centred patches to a Sobel filter. The tracking of features is done in a robust

manner that covers the stereo images in two consecutive frames, forming a four-camera

circular matching topology. A feature is tracked starting from left image of current

frame to the right image, then through to the right image of last frame back to the left

image of last frame, and finally back to the left image of current frame. If a feature is

not mapped to its originating location, the tracking is considered invalid and will be

excluded from the egomotion estimation stage.

The speed of matching has been improved by using a small subset of image features
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to provide statistics hints that are useful to bound the search space. From the estab-

lished image correspondences, the egomotion is solved by the minimisation of RPE

with respect to the left and right cameras. The process is slightly different from the

ORB-SLAM’s local bundle adjustment by an additional random sampling consensus

(RANSAC) technique that selects only a subset of image correspondences to participate

the adjustment, which is later verified by the full set. The egomotion refined by all the

inliers will be eventually given to a Kalman filter to yield the final estimate assuming a

constant acceleration motion model.

Despite the library focuses on the VO algorithms, it also comes with a limited

mapping ability to integrate multiple depth maps into a filtered reconstruction. The

fusion is done by projecting all the 3D points to a selected reference frame and average

the depths mapped to the same pixel. Although the naive approach is prone to occlusion,

it provides a fast approximation of multi-view reconstruction of scene structure.

2.5 Summary

The reviewed work are limited to a specific sensor configurations. For example, LIBVISO

is originally designed for a stereo vision and LSD-SLAM is for monocular sequence.

Furthermore, these work solve the egomotion estimation based on a single model

(photoconsistency, reprojection error, etc).



Chapter 3

Scene Structure, Image

Correspondence, and Camera Motion

This chapter covers the underlying mathematical models among three related concepts

in multi-view geometry, based on which the SLAM and VO problems are formulated.

3.1 The triality

Fundamentals of many problems in computer vision and photogrammetry relate to

studies between three interconnected entities, namely 3D structure, camera pose and

image correspondence. Camera calibration, for example, uses structure-image corres-

pondences to estimate projection parameters and camera poses (see Appendix A for

details). A calibrated multi-view vision system, on the other hand, reconstructs 3D

structure from established image correspondences.

In the context of SLAM, a vision system (the agent) is moving around a scene,

makes observations about the scene’s structure, and uses correspondences of tracked

scene points to deduce the agent’s location.

The scene structure refers to the 3D geometry of static, rigid, and salient objects in

32
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the scene (i.e. this is not a mathematically precise definition). As this structure does

not change while the sensor is moving, the only factor affecting the observations would

be the motion of the agent. Therefore, this poses an inverse problem of recovering the

motion from observed changes in scene points.

Let x = (x, y)⊺ and x′ = (x′, y′)⊺ be the observations of a 3D point y = (X,Y,Z)⊺

via projection functions π and π′, respectively. Let R ∈ SO(3) and t ∈ R3 be the

rotation matrix and translation vector, respectively, together representing the Euclidean

transform caused by the motion from a first to a second view. Formally, this is expressed

by

x = π(y)

x′ = π′(Ry + t) .
(3.1)

The described geometrical configuration establishes a triality among scene structure,

camera motion, and image correspondences (i.e. given a sufficient number of known

entities in any two of the three spaces, missing entities in the third space can be uniquely

recovered.

The geometry of these mappings π and π′ is addressed in Fig. 3.1. Scene structure,

Figure 3.1: The triality of two-view geometry
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Table 3.1: Strategies to solve unknowns under multi-view geometry

Scene
structure

Image cor-
respondence

Camera
motion

Strategy

0 Known Known Known Trivial case.
1 Unknown Known Known Perform back-projection to triangu-

late scene structure. Camera motion
between at least two views is required;
extensible to multi-view triangulation
(Sec. 3.2).

2 Known Unknown Known Perform forward projection. When
the uncertainty of both the estimated
scene structure and camera motion
is high, it is preferable to perform
feature matching (Sec. 3.3.2). With a
good confidence in motion estimation,
bounded search along epipolar lines is
more efficient (Sec. 3.3.1).

3 Known Known Unknown Solve perspective-n-point (PnP)
problem to recover camera motion.
Minimally, three correspondences are
required to uniquely determine the
motion (Sec. 3.4.1).

4 Unknown Unknown Known Perform unbounded 1D search along
epipolar lines (Sec. 3.3.1), then do
triangulation (see Case 1).

5 Unknown Known Unknown Perform an essential matrix decom-
position to recover camera motion
(Sec. 3.4.2) followed by triangulation
(see Case 1). The absolute scale of
translation remains unknown, so does
the scale of the triangulated structure.

6 Known Unknown Unknown Perform feature matching to estab-
lish image correspondences then
solve a PnP problem (see Case 2).
Alternatively one may perform
correspondence-free pose estimation
(Sec. 3.4.3).

7 Unknown Unknown Unknown Establish image correspondences
(see Case 6), perform essential matrix
decomposition then do triangulation
(see Case 5).
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camera motion, and image correspondences define three categories of linked entities in

the context of multi-view geometry. Due to camera motion ξ, a 3D point y is observed

at two different image locations x and x′. This linkage creates the mentioned triality,

given a sufficient amount of constraints. Note that the camera motion is represented

by the Lie-algebra entity ξ that minimally defines a 3D Euclidean transform. Such a

representation is detailed later at the end of Section 3.4.

Table 3.1 summarises a comprehensive list of strategies for solving problems in

SLAM and VO.

3.2 Structure recovery

Recovery of structure from imagery data is an essential building block of a visual

mapper. This section reviews the structure recovery problem in its simplest form,

namely 2-view point triangulation. A special case, that is frequently used for retrieving

dense reconstructions from two rectified views, is then given in Section 3.2.2. This case

is then extended for multiple views in Section 3.3.1.

3.2.1 2-view triangulation

A 2-view point triangulation function τ ∶ R2 × R2 → R3 finds the 3D coordinates

y = (X,Y,Z)⊺ of a scene point, given its corresponding projections x ↔ x′ in two

views. We assume that the pose of the second view with respect to the first one,

specified by (R, t), and the projection functions π,π′ are known to allow intersecting

the back-projected rays.

The process of τ is often over-determined as there are three unknowns in y while x

and x′ pose four degrees of freedom. Due to errors in image correspondence analysis,

and the nature of numerical computations, back-projected rays never meet ideally at a

point in 3D space. It is therefore required to define a to-be-minimised error metric for
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finding an optimal solution (X,Y,Z). There exists a number of methods to work out

such a solution; see below.

Estimating the uncertainty of a solution is often as important as finding the solution

itself. The uncertainty can be approximated by the propagation of the covariance matrix

of (x,x′) through a first-order linearisation of the triangulation function τ . Let Σx,x′

be the 4 × 4 covariance matrix encoding the uncertainty of an image correspondence

x↔ x′. The error covariance of τ can be approximated as

Στ ≈ JτΣx,x′J
⊺
τ (3.2)

where

Jτ = (∂τ
∂x

∂τ

∂y

∂τ

∂x′
∂τ

∂y′
) (3.3)

is the 3 × 4 Jacobian matrix of τ at (x,x′).

Method 1: Direct linear transform

The structure can be calculated in a linear manner if π and π′ are perspective projections,

as the perspective model linearly relates motion and structure in the projective space to

each other.

Given a 3-by-4 projection matrix P, a scene point (X,Y,Z) and its image (x, y),

both in homogeneous coordinates, it follows that

⎛
⎜⎜⎜⎜⎜⎜
⎝

x

y

1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∼ P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= (p1 p2 p3)
⊺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.4)

where ∼ denotes the equality up to a scale. The scale ambiguity can be eliminated
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by dividing the first and the second rows of Eq. (3.4) by the third, which yields a

homogeneous form

⎛
⎜⎜
⎝

p⊺
1 − xp⊺

3

p⊺
2 − yp⊺

3

⎞
⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0 . (3.5)

Note that the same equation can be obtained by applying a cross product with (x, y,1)

on both sides of Eq. (3.4).

Taking into account observations from the second view, an over-determined homo-

geneous linear system is populated, having four equations constraining three unknowns:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p⊺
1 − xp⊺

3

p⊺
2 − yp⊺

3

p′⊺
1 − x′p′⊺

3

p′⊺
2 − y′p′⊺

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Aỹ = 0 . (3.6)

Let A = UDV⊺ be the singular value decomposition (SVD) of A. The solution of

Eq. (3.6) is found to be ỹ = v4, i.e. the 4-th right singular vector corresponding to the

zero singular value (hence minimising ∥Aỹ∥2). The Euclidean coordinates vector y is

recovered by the conversion of ỹ as follows:

y = ( ỹ1

ỹ4

,
ỹ2

ỹ4

,
ỹ3

ỹ4

)
⊺

. (3.7)

When the projection matrices are parametrized by upper triangular camera matrices

K and K′, we have that P = K[I 0] and P′ = K′[R t].

Let x̃ = (x1, x2,1)⊺ be x in homogeneous coordinates, and π−1
K (x) = K−1x̃ the

inverse1 of the projection function πK. Using normalised image coordinates x̊ = π−1
K (x)

1 The inverse of projection is also known as backward projection. As infinitely many points in 3D
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and x̊′ = π−1
K′(x′), the projection matrices become P = [I 0] and P′ = [R t].

Equation (3.6) can then be rewritten in non-homogeneous form as follows:

Ay =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 −x̊

0 1 −ẙ

r11 − r31x̊′ r12 − r32x̊′ r13 − r33x̊′

r21 − r31ẙ′ r22 − r32ẙ′ r23 − r33ẙ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

t3x̊′ − t1

t3ẙ′ − t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= b, (3.8)

where rij is the entry at i-th row and j-th column of R, and t = (t1, t2, t3)⊺. The

triangulated 3D coordinates vector is then given by y = (A⊺A)−1A⊺b. The use of

normalised image coordinates has been found to improve the numerical stability (Hartley

& Zisserman, 2004).

A generalisation of Eq. (3.6) into a multi-view case has a similar (low) complex-

ity level as solving an over-determined homogeneous linear system. Estimating the

structure in this way is known as direct linear transform (DLT). The DLT technique

has been widely used not only for point triangulation but also for camera calibration,

homography estimation, or pose recovery (Hartley & Zisserman, 2004). Equation (3.5)

poses a linear duality between the structure and the motion if the number of constraints

is sufficient. Thus, the motion can be immediately calculated in a least-squares form

once the structure is determined, and vice versa. Such a duality allows the structure

computation to be implicitly embedded into a pose recovery problem (Chien, Geng &

Klette, 2015).

Applying the DLT method to find the structure y requires either inverting a 3 × 3

matrix, or finding the SVD of a 3 × 4 matrix, which are both computationally inexpens-

ive. However, the solved structure minimises the algebraic distance δDLT = ∥Ay∥2 in

homogeneous coordinates, hence it is geometrically meaningless (Hartley & Zisserman,

space can be projected onto the same image point, the inverse actually defines a line in the space, which
is inherently modelled as a one-to-one function in homogeneous coordinates.
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2004; Lindstrom, 2009). The remaining two methods in this section approach the

problem of estimating structure in a Euclidean way.

Method 2: Mid-point triangulation

An alternative choice of an error metric is the shortest Euclidean length of a line

connecting back-projected rays. In such a case, the error is defined with respect to free

parameters k, k′ ∈ R+ as follows:

δMID(k, k′) = ∥kR̊x + t − k′x̊′∥2 (3.9)

where x̊ = π−1
K (x) and x̊′ = π−1

K′(x′) are the directional vectors of the back-projected

rays. The geometric interpretation of δMID(k, k′) is shown in Fig. 3.2. The minimum of

Eq. (3.9) corresponds to the least-square solution of the following linear system:

(−R̊x x̊′)
⎛
⎜⎜
⎝

k

k′

⎞
⎟⎟
⎠
= A

⎛
⎜⎜
⎝

k

k′

⎞
⎟⎟
⎠
= t (3.10)

Let m = x̊′⊺R̊x′ , n = x̊⊺x̊ and n′ = x̊′⊺x̊′ be the inner products of the directional

vectors. The analytical solution

⎛
⎜⎜
⎝

k

k′

⎞
⎟⎟
⎠
= (A⊺A)−1A⊺t = 1

nn′ −m2

⎛
⎜⎜
⎝

mx̊′⊺ − n′x̊⊺R⊺

n̊x′⊺ −mx̊⊺R⊺

⎞
⎟⎟
⎠

t (3.11)

denotes two points on each of the back-projected rays at the shortest mutual distance in

3D space. The midpoint of those two points,

y = 1

2
(kR̊x + t + k′x̊′) , (3.12)
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Figure 3.2: Geometry of mid-point triangulation. The dashed line segment perpendicular
to the back-projected rays is the shortest line connecting them.

is therefore the optimal solution subject to the defined error metric. Substituting the

values of k and k′ from Eq. (3.11) into Eq. (3.12) shows the solution y in a plain form:

y = 1

2
(m (M −M⊺) + nN′ − n′N

nn′ −m2
+ I) t (3.13)

where M = R̊x̊x′⊺, N = x̊̊x⊺ and N′ = x̊′x̊′⊺ are the outer products of the directional

vectors. This approach is known as mid-point triangulation.

The singularity of Eq. (3.13) happens when the back-projected rays are nearly

parallel (i.e. m ≈ nn′). A closed-form formulation of the partial derivatives is much

more complicated than Eq. (3.13).

Compared to the DLT method, the mid-point triangulation is not only more com-

putationally efficient but also more geometrically meaningful. The method can be

generalised to multiple views (Beardsley, Zisserman & Murray, 1997).
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Method 3: Optimal triangulation

An alternative way to evaluate the geometric fitness of a triangulated solution y is

to measure the geodesic distances between its projection and observations x and x′.

For ensuring a projective invariant estimation, the problem is formulated as finding

an optimal correspondence x̂ ↔ x̂′ that is minimising the reprojection error (RPE)

(Hartley & Sturm, 1995; Lindstrom, 2009; F. C. Wu, Zhang & Hu, 2011)

δOPTIMAL(x,x′) = ∥x − x̂∥2 + ∥x′ − x̂′∥2 (3.14)

subject to the epipolar constraint x̂′⊺Fx̂ = 0. The solution of Eq. (3.14) achieves

a maximum likelihood estimation (MLE) if observations x ↔ x′ are corrupted by

Gaussian noise.

As an optimal match x̂ ↔ x̂′ is constrained to be on the epipolar line, a unique

structure y is automatically found once Eq. (3.14) is minimised. In particular, the

optimal structure is

y = m⊺Ex̂

m⊺m
x̂′ (3.15)

where m = Rx̂ × x̂′.

Solving this equation, however, poses a quadratically-constrained quadratic min-

imisation problem which, unfortunately, has no closed-form solution. Hartley and

Sturm (Hartley & Sturm, 1995) re-parametrized the objective function using a variable

that controls the pencil of epipolar lines; they suggested a numerical solver to find

all roots of the resultant six-degree polynomial in terms of the introduced variable.

Recently, various algorithms have been proposed to improve the numerical stability

and computational cost in solving the optimal triangulation problem (Lindstrom, 2009;

F. C. Wu et al., 2011).
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The optimal solution can also be approached iteratively, using a numerical optimisa-

tion algorithm such as the one shown in Section 3.4.4. In this case, one may use the

DLT technique or the mid-point method to obtain an initial solution. It is worth noting

that, the minimisation of the reprojection error, as defined by Eq. (3.14), is considered

the “gold standard” in the context of parameter estimation in computer vision. The

objective is discussed repeatedly throughout this thesis (e.g. Sections 3.4.1, 4.3.2, and

5.4.2).

3.2.2 Disparity-depth conversion

In a special case where the image planes are co-planar and the cameras’ principal axes

point toward the same direction, the epipolar geometry is said to be rectified (Klette,

2014). As epipolar lines are parallel, one degree of freedom is eliminated from the

second image point x′. In particular, it follows that x = (x, y)⊺ and x′ = (x − d, y)⊺,

where d ∈ R+ is the displacement between corresponding pixels, known as disparity.

A stereo matcher provides a dense depth map by means of a (more or less) heuristic

search in disparity space (Hirschmüller, 2008). For each pixel, a disparity is decided

to achieve a minimum of a defined matching cost, specified by a data term and a

smoothness constraint. Details can be found in Section 3.3.1.

A disparity-to-depth conversion transforms a pixel (x, y, d) into a point (X,Y,Z)

in 3D space. This conversion can be linearly described in homogeneous coordinates as

follows:

τ(x, y, d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 −xc

0 1 0 −yc

0 0 0 f

0 0 −1

b
−xc − x

′
c

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x

y

d

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.16)

where b is the length of the baseline, (xc, yc) and (x′c, y′c) are the principle points of
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the rectified left and right camera, respectively, and f is the effective focal length after

rectification (see Fig.3.3). More details of image rectification can be found in the

text (Klette, 2014).

To study the error covariance of the conversion, we first abstract the perspective

projection function and rewrite Eq. (3.16) in non-homogeneous form as follows:

τ(x, y, d) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

⎞
⎟⎟⎟⎟⎟⎟
⎠

= bf
d
⋅ π−1

K (x, y) , (3.17)

where π−1
K (x, y) = (x̊, ẙ,1)⊺ is the back-projection of image coordinates (x, y) to a

point (x̊, ẙ,1) in the normalised image plane by the rectified camera matrix K. Then

we calculate the partial derivatives

∂τ

∂x
= bf

d
⋅ ∂π

−1
K

∂x
= Z (∂x̊

∂x
,
∂ẙ

∂x
,0)

⊺

∂τ

∂y
= bf

d
⋅ ∂π

−1
K

∂y
= Z (∂x̊

∂x
,
∂ẙ

∂x
,0)

⊺

∂τ

∂d
= −bf

d2
⋅ π−1

K = Z (− x̊
d
,− ẙ
d
,−1

d
)
⊺

(3.18)

In the rectified case it holds that
∂x̊

∂y
(x, y) = ∂ẙ

∂x
(x, y) = 0 and

∂x̊

∂x
(x, y) = ∂ẙ

∂y
(x, y) = 1

f
.

In this case, the Jacobian matrix of τ is reduced into an upper triangular form

Jτ(x, y, d) = Z ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1

f
0 − x̊

d

0
1

f
− ẙ
d

0 0 −1

d

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.19)

which propagates error covariance from the image-disparity space to the 3D Euclidean
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Figure 3.3: The shaded area shows the 1-σ ellipsoid corresponding to Στ on the X-Z
plane. The vectors Jd and Jx are the third and first column of Jτ , respectively.

space by

Στ(x, y, d) = Jτ

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ2
x 0 0

0 σ2
y 0

0 0 σ2
d

⎞
⎟⎟⎟⎟⎟⎟
⎠

J⊺τ (3.20)

where σx, σy, and σd are the standard deviations with respect to the independent

variables x, y, and d, respectively.

A geometric representation of Eq. (3.20) as a 1-σ error ellipsoid, with σx and σd set

to 1, is visualised in Fig. 3.3. Figure 3.4 shows a point cloud in 3D space reconstructed

by using disparity-to-depth An in-depth error analysis of disparity-generated 3D data

can be found in (Kim, Ansar, Steele & Steinke, 2005).

3.3 Establishing image correspondence

Finding image correspondences plays a key role in a variety of vision tasks, and it is

no exception in the field of VO and SLAM. Correspondences between observations of
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Figure 3.4: The upper plot shows a scene reconstructed from a disparity map on the
X-Z plane with having the Y -coordinate colour coded. The bottom plot visualises the
halved length of the principal axis of each reconstructed point’s error ellipsoid following
Eq. (3.19), showing that the uncertainty of triangulation grows nonlinearly with respect
to depth. The magnitude of Jd at depth Z = 120 metres is about 0.5 metre. The figures
are rendered from a frame from sequence 2011_09_26_drive_0091_sync of the
KITTI Vision Benchmark Suite (Geiger et al., 2013).
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Table 3.2: Comparison of two basic options for establishing image correspondences.

Photometric matching Descriptor matching
Domain Image intensity Vectors in feature space
Transform invariant No Feature-space dependent
Epipolar constraint Preserved Ignored *

Point density Sparse or dense Sparse **

Image patch Sharp, blurred or texture-
less

Sharp texture required

Point displacement Limited to a search range Unlimited in feature space

* Post-filtering techniques such as RANSAC are required.
** Dense correspondences are possible but at a very high computational cost and
with poor accuracy.

a stationary scene point in multiple views are useful to derive the 3D coordinates of

this point (as discussed in Section 3.2) and the egomotion of the camera (covered in

Section 3.4). Therefore, image correspondences serve as a bridge between structure

and motion.

This section describes two classes of techniques for establishing image correspond-

ences in subsequently recorded images.

Methods in the first class of photometric matching perform direct matching on image

data; this is useful for generating dense correspondences subject to a global smoothness

regularisation. Methods in the second class of descriptor matching find sparse image

correspondences by matching characteristic vector representations of sparse key points,

known as descriptors in a feature space. Both classes are compared in Table 3.2.

3.3.1 Photometric matching

A straightforward way to establish correspondences between two subsequently recorded

images is to perform direct matching on pixel intensities. The general intensity-based

matching problem, regarding two temporally related images, is known as optical flow

estimation.
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This field has been extensively studied in computer vision. Many approaches

such as the Horn-Schunck (Horn & Schunck, 1981) algorithm, the Lucas-Kanade

algorithm (Lucas & Kanade, 1981; Baker & Matthews, 2004), and the Farnebäck

algorithm (Farnebäck, 2003), have been developed and successfully applied to solve

a wide variety of problems. The Lucas-Kanade algorithm was later further developed

into a point tracker (Tomasi & Kanade, 1991; Shi & Tomasi, 1993), known as the

KLT method, which has been adopted by many modern VO implementations (Badino,

Yamamoto & Kanade, 2013; Ci & Huang, 2016).

The KLT method performs correspondence search along an image gradient-guided

path which might violate epipolar constraints, even for a static 3D point. It is therefore

more appropriate to constrain the search space on the epipolar line when the camera

motion is known. This way not only the epipolar condition is preserved but also the

dimensionality of the search space is greatly reduced from 2D to 1D.

To perform a correspondence search on an epipolar line, defining a way to para-

meterise a correspondence x↔ x′ is required. Inverse depth parameterization (Civera,

Davison & Montiel, 2008) is a commonly adopted approach in the context of SLAM.

Using the inverse depth of x, its 3D coordinates are defined in the reference frame as

follows:

g(x, d) = 1

d
π−1(x) (3.21)

where d is the inverse depth parameter. The correspondence hypothesis in the second

view is therefore

x′ = π′ (Rg(x, d) + t) (3.22)

where [R, t] denotes the pose of the reference frame with respect to the base.

To find the corresponding point x′ that best matches x, given a reference image I ′,
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a photometric error function is defined:

C(x, d) = δ [I (x) − I ′ (x′)] (3.23)

where δ ∶ R → R+ is a selected metric and x′ is the correspondence hypothesis gener-

ated from d “on-the-fly”. The best match is found to maximise the photoconsistency,

specified as follows:

d̂ = argmin
d∈D

{C(x, d)} (3.24)

When an estimate (d̂0, σd) is known beforehand, the search space can be further bounded

to a portion on the epipolar line, based on a confidence interval, say D = [d̂0−σd, d̂0+σd],

if it is known, or an empirically set value.

In practice, instead of using single pixel intensities, a block of neighbouring pixels

is taken into account to improve the matching accuracy and robustness. Patch-based

photoconsistency is defined by

C(x, d) = δ [I (x) − I ′ (x′)] (3.25)

where I(x) samples a block of W ×W image intensities around centre pixel x and

δ ∶ RW×W ×RW×W → R is any suitable metric that measures photoconsistency between

two blocks.

Frequently used metrics are the sum-of-squared-differences (SSD), the sum-of-

absolute-differences (SAD), cross-correlation, or mutual information (MI) (Scharstein

& Szeliski, 2002). The window can be optionally warped using a perspective transform

at an extra computational cost (Forster, Pizzoli & Scaramuzza, 2014).

When it comes to establishing dense correspondences, it is often desired to regularise

the per-pixel local search in Eq. (3.24) to maintain global smoothness. Regularised
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search leads to the problem of finding a dense map D that minimises the functional

Φ(D) = ∑
x∈Ω

[C (x,D(x)) + λ ∑
u∈Ax

E(x,u;D)] (3.26)

where Ω is the domain of image I , Ax is a set of neighbouring pixels around x, E is a

pair-wise smoothness penalty function, and λ > 0 is the damping variable controlling

the importance.

The minimisation of Φ has been well studied in the special case where the first

and second views form a rectified left-right stereo-image pair. Some stereo matchers,

such as the semi-global matcher (SGM) (Hirschmüller, 2008), for example, have been

developed to compute an optimal map D. Note that the inverse depth is proportional to

the disparity value (in the rectified case) by factor bf , where b is the length of the stereo

baseline, and f is the effective focal length.

Block matching can further be generalised to multiple views (Newcombe, Lovegrove

& Davison, 2011). Given a set of N reference frames {Ij}, each of which is equipped

with a transform Tj from the base frame, the data cost in Eq. (3.26) is extended into a

multi-view variant:

C(x, d) = ∑
1≤j≤N

δ [I (x) ,Ij (π (Tj g̃(x, d)))] . (3.27)

As the computation is very expensive, it is often done in an off-line phase.

3.3.2 Descriptor matching

Photometric matching methods require a known camera pose to actualise the perspective

warping. When this is not the case, descriptor-based matching offers an alternative

solution. A descriptor ν(x) is the vector representation of an image point x derived

from image I using a feature transform (Klette, 2014). Instead of searching in the image
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domain, point correspondences are established in the feature space.

Let F and F ′ be sets of image features identified in the first and second views. A

feature point χ ∈ F is mapped onto χ′ ∈ F ′ where

χ′ = argmin
χ⋆∈F ′

δ [ν(χ), ν(χ⋆)] (3.28)

using a metric δ that measures the similarity among two feature vectors. In the case of

binary descriptors, the Hamming distance is used; otherwise one might choose SSD or

SAD as a metric.

Pairwise nearest neighbour matching can be done by using either a brute-force

search over F ′, or by performing a heuristic strategy (Muja & Lowe, 2009).

When features are extracted from an image with repetitive patterns or similar

textures, then there may exist an ambiguity in the resulting matching. Ambiguous

matches are identified by a difference ratio check. Let χ′′ ∈ F ′ be the second best match

of χ. The mapping χ→ χ′ is said to be ambiguous if

δ(χ,χ′)
δ(χ,χ′′) < R (3.29)

where 0 ≤ R < 1 is a pre-defined threshold for this distance ratio. In the literature it is

suggested to set R = 0.8 (Lowe, 2004).

It is also important to remove inconsistent matches by performing a process of

backward matching, from F ′ to F . In particular, a match χ → χ′ is considered to be

inconsistent if it is found that

argmin
χ⋆∈F

δ [ν(χ′), ν(χ⋆)] ≠ χ . (3.30)

After enforcing Eqs. (3.29) and (3.30), a set of unambiguously symmetric matches
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{χ↔ χ′} is established. Correspondence search in feature space is able to identify cor-

responding points with large displacements in two images which is often a challenging

case in photometric methods.

Feature-based correspondences, however, may violate the epipolar constraint, as

image topology is not preserved in feature space. It is necessary to conduct filtering

techniques before the established correspondences can be used for egomotion estima-

tion (Fraundorfer & Scaramuzza, 2012). A variety of geometric filtering approaches are

detailed in Section 4.2.

3.4 Camera motion recovery

Motion recovery is one of the key tasks of a mapper or odometer. The motion of a

camera can be estimated by using correspondences between 2D, 3D, or photometric

spaces, considering these spaces for two views. In this section we provide a brief initial

review of widely adopted two-view pose estimation techniques. A more comprehensive

study is later given in Section 4.3.

3.4.1 Perspective-n-point (PnP) problem

Pose recovery of a camera, given a set of 3D points in the first view and their projections

in the second, is known as the perspective-n-point (PnP) problem. The problem can be

linearly solved following a DLT technique, similar to the one previously described in

Section 3.2.1.

Let {yi} be a set of 3D points observed in the first view, and {x′i} be the set of
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corresponding image points in the second view. For each correspondence we have that

x̃′i =

⎛
⎜⎜⎜⎜⎜⎜
⎝

x′i

y′i

1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∼ Pỹi (3.31)

where P = K[R t] is the 3 × 4 projection matrix containing known camera matrix K

and unknowns R and t.

If the matrix P is treated as a “black box”, the correspondence forms a homogeneous

linear system of twelve unknowns

⎛
⎜⎜
⎝

ỹ⊺
i 0 −x′iỹ⊺

i

0 ỹ⊺
i −y′iỹ⊺

i

⎞
⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

p1

p2

p3

⎞
⎟⎟⎟⎟⎟⎟
⎠

= 0 (3.32)

where p⊺
j is the j-th row of P.

By stacking the constraints of more than six correspondences xi↔ yi, the matrix P

can be uniquely solved based on

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ỹ⊺
1 0 −x′1ỹ⊺

1

0 ỹ⊺
1 −y′1ỹ⊺

1

ỹ⊺
2 0 −x′2ỹ⊺

2

0 ỹ⊺
2 −y′2ỹ⊺

2

⋮ ⋮ ⋮

ỹ⊺
6 0 −x′6ỹ⊺

6

0 ỹ⊺
6 −y′6ỹ⊺

6

⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

p1

p2

p3

⎞
⎟⎟⎟⎟⎟⎟
⎠

= 0 (3.33)

using the aforementioned SVD approach followed by a normalisation having p34 = 1.
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The pose can then be recovered by [R t] = K−1P.

The over-parametrized rotation matrix R, solved in a linear way, needs to be

projected into SO(3) to be a valid orthonormal matrix representation for rotation.

Furthermore, the linear technique is known to be unstable when the correspondences

{x′i ↔ yi} are noisy. Various sophisticated solvers have been proposed to address these

issues. The recently proposed efficient PnP solver (EPnP) (Lepetit, Moreno-Noguer &

Fua, 2009) is considered to be one of the state-of-the-art approaches to deal with a large

number of noisy correspondences in linear time complexity (Mur-Artal et al., 2015).

The success of Lepetit et al.’s solver is based on a reformulation of Eq. (3.31)

as a four-point rigid alignment problem, which has a trivial closed-form solution. It

first selects four reference points {c1,c2,c3,c4} that form a simplex, containing all

the 3D points {yi}, each of which are then transformed into barycentric coordinates

ai = (ai1, ai2, ai3, ai4)⊺ in the subspace spanned by the simplex, following the mapping

yi =
4

∑
j=1

aijci = Γai (3.34)

where Γ is the 3 × 4 matrix with cj in its j-th column.

The projection of yi in the first view now becomes

x̃i ∼ Kyi = KΓai . (3.35)

Let Γ′ = [c′1 c′2 c′3 c′4] be the matrix of reference points in the second view, with the

transform [R t] applied column-wise:

c′j = Rcj + t, j = 1,2,3,4 . (3.36)

Since the barycentric coordinates are invariant under rigid transforms, the projection in
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the second view can be rewritten as

x̃′i ∼ KΓ′ai = P′ai (3.37)

where an “agent” projection matrix P′ has been introduced in this equation.

The matrix can be solved by using the linear technique previously applied to

Eq. (3.33). Once P′ is found, Γ′ can be recovered projectively (i.e. Γ′ ∼ K−1P′).

It is straightforward to find the absolute scale from Γ, as rigid transforms are norm-

preserving. The last step is to extract R and t from the correspondences {cj ↔ c′j}

according to Eq. (3.36). This can be efficiently done using quaternions (Horn, 1987).

Details regarding rigid alignment are discussed in Section 4.3.4.

3.4.2 Essential matrix decomposition

Under some circumstances, such as monocular visual odometry, 3D coordinates y

might not be available as a prior. In such a case, the motion of the camera can still be

recovered from epipolar conditions but where the scale of t remains undetermined due

to lack of metric reference (Longuet-Higgins, 1981).

Without loss of generality, we assume that ∥t∥ = 1 in the following. Let x↔ x′ be a

2D-to-2D correspondence. It follows that

x̃′⊺K−⊺[t]×RK−1x̃ = 0 (3.38)

where

[t]
×
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −t3 t2

t3 0 −t1

−t2 t1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.39)

denotes the skew-symmetric form of t = (t1, t2, t3)⊺. Equation (3.38) is the well-known
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epipolar constraint , and the matrix E = [t]
×
R is called the essential matrix (Hartley &

Zisserman, 2004).

The essential matrix can be recovered without knowing any 3D structure. Among a

variety of essential matrix recovery techniques, the eight-point algorithm is a popular

choice (Chojnacki & Brooks, 2003). This algorithm first estimates the fundamental

matrix F = K−⊺EK−1 using at least eight point correspondences {xi ↔ x′i}. For each

correspondence, a homogeneous constraint is introduced by Eq. (3.38) as follows:

xix
′
if11 + yix′if12 + x′if13 + xiy′if21 + yiy′if22 + y′if23 + xif31 + yif32 + f33 = 0 (3.40)

where fjk denotes the entry of the j-th row and k-th column of the fundamental matrix.

By means of the SVD technique, all the nine elements of the fundamental matrix

can be determined (up to a scale) from at least eight constraints. This is known as the

eight-point algorithm in computer vision (Longuet-Higgins, 1981; Hartley, 1997).

According to E = K⊺FK, the essential matrix is recovered from the solved funda-

mental matrix. To extract pose [R t] from an essential matrix E, one may decompose

it using the SVD technique:

E = UDV⊺ (3.41)

where U and V are 3 × 3 orthonormal matrices, and D = diag(1,1,0) is a diagonal

matrix having 1 at the first and second diagonal element, and 0 at the third (due to the

rank deficiency of E).

By introducing two matrices

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ±1 0

∓1 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∓1 0

±1 0 0

0 0 ±1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.42)
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and based on D = ZW and U⊺U = I, we can rewrite Eq. (3.41) as follows:

E = UZU⊺UWV⊺ . (3.43)

It is verified that S = UZU⊺ is a skew-symmetric matrix, and R′ = UWV⊺ is an

orthonormal matrix. Following the definition E = [t]
×
R = SR′, the rotation matrix

R = R′ and the unit translation vector t = (S32, S13, S21)⊺ are instantly found.

Due to the sign ambiguity of Z and W, there are four possible solutions. As

described in the next section, the best candidate is decided by applying a triangulation

method on {xi↔ x′i}, and checking the number of resulting points that fall in front of

the cameras to select the best candidate. In the non-singular case, only one candidate

gives a valid geometric setup. Figure 3.5 depicts an example of all the four possible

solutions.

As an essential matrix has five degrees of freedom (three from rotation, two from

translation with scale ambiguity), obviously, solving it using eight-point correspond-

ences is an over-parametrized approach. It has been shown that the essential matrix can

be recovered efficiently by using minimally five image correspondences to find the roots

of a degree-10 univariate polynomial, which is known as the five-point algorithm (Nistér,

2004). The algorithm is further improved by Hartley et al. and now considered as a

state-of-the-art solver (Li & Hartley, 2006).

3.4.3 Correspondence-free methods

When the scene structure is known, it is possible to determine the pose without any

pre-computed correspondences which, in fact, will be established on-the-fly while the

pose is being solved. A well-known method in this category is the iterative-closest

point (ICP) algorithm (Besl & McKay, 1992). The technique is useful to align two sets

of point clouds, which are, in the context of two-view pose recovery, the reconstructed
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Figure 3.5: An example of four possible egomotion estimates from essential matrix
decomposition. Each arrow starts from the centre of projection and points to the
orientation of view. Only the top-right one shows a valid geometric configuration where
all the triangulated 3D points lie in front of both cameras.
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scene structure in the first and in the second view. However, the reconstruction from a

disparity image is often too noisy to yield a good 3D alignment using ICP (Scaramuzza

& Fraundorfer, 2011; Steinbruecker, Sturm & Cremers, 2011; Ci & Huang, 2016).

To overcome the inaccuracy of the structure estimate, mainstream correspondence-

free methods use not only depth data but also the source image. These methods are

designed to search for a rigid transform (R, t) such that, once applied for warping

the image from the first view perspectively to the second using the depth as prior,

the photometric difference is minimised. In particular, the estimation is based on

the minimisation of the photoconsistency error previously defined by Eq. (3.23) in

Section 3.3.1, where the scene structure is now considered as a known factor, and the

transform T as being the unknown.

An example of such a photometric-driven adjustment is illustrated by Fig. 3.6. As

the estimation is completely driven by image data, there exists no closed-form solution.

Instead, an iterative nonlinear optimisation needs to be carried out. The minimisation

process is detailed in Section 3.4.4.

This approach has been widely adopted by many real-time direct VO implement-

ations that avoid feature extraction, matching, and filtering due to prohibited com-

putational cost (Newcombe et al., 2011; Engel et al., 2013; Forster et al., 2014).

This approach is also considered being the standard VO approach for RGB-D cam-

eras (Steinbruecker et al., 2011; Kerl, Sturm & Cremers, 2013).

A direct search of optimal pose in the image space, however, can be unreliable

when significantly many pixels are occluded, moving, largely displaced, or displaying

non-Lambertian reflectance. Under such circumstances the alignment may diverge. We

visit the photometric alignment issue again in Section 4.3.3.
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Figure 3.6: An example of pose recovery using direct photometric alignment. The
top two rows show the target image and the source disparity map computed from the
source stereo image (not displayed). Third row and fourth row visualise overlapped
perspective warping of the source image to the target frame, using camera motion,
respectively, before and after the optimisation. The mis-alignment of the closest store
sign and windows on the right is significantly removed after the adjustment. The figures
are rendered from the same frame shown in Fig.3.4.
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3.4.4 Iterative energy minimisation

A nonlinear optimisation process is usually carried out to refine a linearly solved pose

(e.g. EPnP), or to solve the pose if a closed-form solver is not available (e.g. direct

photometric alignment). In this section we formulate an abstract framework to treat the

pose estimation problem as an energy minimisation process.

So far this chapter represented a camera pose as a Euclidean transform T ∈ SE(3)

that consists of a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3. It is

known that a Euclidean transform in 3D space has 6 degrees of freedom, while there

are, however, twelve entries in [R t].

To study pose recovery as an optimisation problem, a minimal representation must

be adopted. One of those representations is to use twist coordinates ξ ∈ R6, which is a

Lie-algebra entity minimally representing a Euclidean transform. Converting a twist to

and from its corresponding Euclidean transform follows

T = expse(3)(ξ) and ξ = logSE(3)(T) (3.44)

where se(3) is the Lie algebra corresponding to the Lie group SE(3). Two twists ξ and

ξ′ can be composited by the multiplication of their corresponding Euclidean transform

matrices

ξ ○ ξ′ = logSE(3) (expse(3)(ξ′) ⋅ expse(3)(ξ)) (3.45)

where ○ is the pose concatenation operator.

To formulate pose recovery as an energy minimisation problem, a residual function

ϕ(x,y; ξ) ∈ R, parametrized over ξ, is defined for each established correspondence

x↔ y to solve for pose. Note that x and y can be any entities of interest. Individual

residuals are further summarised as a scalar to be minimised. This is commonly done in

the sum-of-squares form to achieve a maximum-likelihood estimation (MLE) when the



Chapter 3. Scene Structure, Image Correspondence, and Camera Motion 61

error distribution of residuals is believed to follow a Gaussian.

Let Φ(ξ) = (ϕ1, ϕ2, ..., ϕN)⊺ be an N -vector function instantiated from N corres-

pondences. The optimal pose estimate is found to be

ξ̂ = argmin
ξ∈R6

∥Φ(ξ)∥2
Σ (3.46)

where ∥⋅∥2
Σ is the squared Mahalanobis distance defined by Σ, anN×N positive-definite

matrix denoting the error covariance over all the correspondences.

When the correspondences are believed to be established independently (as in most

of the cases), Σ is simplified as a diagonal matrix. Equation (3.46) can then be rewritten

as

ξ̂ = argmin
ξ∈R6

∑
i

wi ∥ϕi (xi,yi; ξ)∥2 (3.47)

where wi is the inverse of the i-th diagonal entry in Σ. An optimal estimate ξ̂, that

minimises the weighted sum-of-squares, can be approached iteratively by

ξ̂k+1 = ∆ξk ○ ξ̂k (3.48)

with the update computed using the Levenberg-Marquardt algorithm (Levenberg, 1944):

∆ξk = (H + λ diag(H))−1
J⊺Φ(ξ̂k) (3.49)

where λ ∈ R is the damping variable, and H = J⊺WJ is the Hessian matrix approxim-

ated by the weight matrix W = diag(w0,w1, ...,wi−1) and the Jacobian

Jij =
∂ϕi
∂ξj

(ξ̂k) (3.50)

of Φ at ξ̂k.
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The variable λ is adaptively adjusted to control the optimisation toward a Gauss-

Newton-like process (when ξ is far from a local minimum), or a gradient-descent-like

process (when ξ is closer to a local minimum.) The models, considered in this work, are

minimised in this manner with the Jacobian matrix numerically computed by first-order

finite differentiations. The next chapter discusses a variety of energy models; see

Section 4.3.

3.5 Closure

This chapter provided a walk-through in three key areas of multi-view geometry, namely

scene structure, image correspondences, and camera motion. The mathematical models,

connecting those areas, serve as building blocks to develop a generic multi-objective

visual odometry algorithm in the next chapter.



Chapter 4

Visual Odometry

Visual odometry tracks projections of a set of landmarks in the scene, frame-by-frame,

and continuously derives the camera’s egomotion. The historical path of developments

in VO has lead to different models and implementation details. In this chapter we

propose a novel formulation unifying these models to achieve accurate egomotion

estimation while maintaining a good flexibility that also supports extensions to a variety

of sensor configurations.

4.1 Overview

Let Ikj ∶ Ωk ⊂ R2 → R denote the image captured in frame j by camera k where Ωk is

the camera’s image domain, and Tj the Euclidean transform from a reference frame to

frame j.

A K-camera VO problem is to derive a sequence of transforms (T1,T2, . . .TN),

given a sequence of N images (Ik1 , Ik2 , . . . IkN), where 1 ≤ k ≤K.

Typically the problem is approached by subsequently solving a series of two-frame

pose estimation problems, each of which yields an instantaneous transform ∆Tj , from

63
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Figure 4.1: Stages of a generic VO implementation annotated by related topics. An
appearance-based method is a special case where Stages 2 and 4 are combined in an
iterative egomotion estimation loop, skipping Stage 3.

frame j − 1 to j, and concatenating the solved local transforms to find a global one:

Tj = ∆TjTj−1 , (4.1)

with the first frame being set as the reference, i.e. T1 = I.

Stages of a typical visual odometer are shown in Fig. 4.1. The flow starts with

some pre-processing tasks such as image rectification and feature detection as a new

frame arrives. The identified key points are then associated with elements in the

previously tracked point set to establish image correspondences which are then used at

the egomotion estimation stage to solve for the camera’s local transform.

Once solved, the egomotion is used to refine scene structure, and the new measures

are integrated into the current state of the system (the integration is also known as

filtering). The VO process, considered in this chapter, is seen as a front-end of a SLAM

system which has some back-end stages that deal with long-term tracking and filtering

as introduced in Chapter 5.
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Based on how egomotion is solved, VO implementations are categorised as be-

ing either feature-based or appearance-based methods. The methods have their own

strengths and weaknesses, as well as applicable types of sensor configurations. In

this section we review these perspectives, preparing for the formulation of a unifying

framework in the next section.

4.1.1 Feature-based methods

Feature-based methods detect image features and extract their descriptors for estab-

lishing sparse correspondences between frames, following the approach previously

described in Section 3.3.2. Because a feature transform, in general, does not preserve

image geometry, it is difficult to enforce the epipolar constraint in the feature space.

However, if doing so, a robust outlier rejection strategy is required to remove incorrect

point correspondences before motion can be reliably estimated.

The random sample consensus (RANSAC) technique, proposed by Fischler et

al. (Fischler & Bolles, 1981), is nowadays considered to be a standard outlier-rejection

paradigm in the context of SfM and VO (Kitt, Geiger & Lategahn, 2010; Fraundorfer &

Scaramuzza, 2012).

Assume that F and F ′ are features in two frames, and M = {χi ↔ χ′i}, where

χi ∈ F and χ′i ∈ F ′ is a mapping established by descriptor matching between two feature

sets.

The RANSAC technique first randomly selects a subset of NSAMPLE elements from

M. A best-fit model hypothesis f̂ is then generated from the samples. The hypothesis

is applied to the populationM to establish the consensus set:

C = {χi↔ χ′i ∈ M ∣ δ(χi, χ′i; f̂) ≤ ε} (4.2)

where δ measures the fitness of the model, and ε is a threshold for accepting a feature
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match as an inlier.

The hypothesis f̂ is said to fit the data if ∣C∣ / ∣M∣ ≥ α where α ∈ (0,1] is a

predefined threshold. Such a process is repeated for NTRIAL times, and the hypothesis f

that maximises the size of the consensus set is elected as a true model. The matches

that do not fit the model well are treated as outliers.

A typical choice in VO is to use an essential matrix as f̂ , an epipolar distance

function as δ, and a five-point solver (Nistér, 2004) for finding the best-fit model, given

NSAMPLE = 5 sample correspondences (see Section 4.3.1 for details).

As the RANSAC technique is a non-deterministic iterative approach, the filtering

can be time consuming when the best-fit estimation of f̂ is computational expensive. A

heuristic strategy is often deployed to decide an upper bound to stop iterating earlier to

obtain a statistically accurate estimate at a desired confidence.

Assuming we have confidence thatM contains at least α percent inliers, then the

probability that at least one element in sample set S ⊆M is an outlier equals 1 − α∣S∣

given that the samples are drawn independently fromM.

The probability that the sample set always contains at least one outlier after n

iterations is then (1 − α∣S∣)n. Let 0 < p < 1 be the certainty that a valid model f is found.

It follows that 1 − p = (1 − α∣S∣)n. The upper bound of parameter NTRIAL can therefore

be estimated by

n = log(1 − p)
log(1 − α∣S∣) (4.3)

where ∣S∣ = NSAMPLE.

A number of improved RANSAC methods has been proposed such as M-estimator

sample and consensus (MSAC) (Torr & Zisserman, 2000) or preemptive RANSAC (Nistér,

2003). For a comprehensive comparison on RANSAC-type methods, readers are re-

ferred to the study by Choi et al. (S. Choi, Kim & Yu, 2009).

Filtered image correspondences C ⊆M are used to estimate the camera’s egomotion,



Chapter 4. Visual Odometry 67

Figure 4.2: Egomotion estimation of a feature-based VO implementation

applying one of the approaches covered in Section 3.4. The process is depicted by

Fig. 4.2. An advantage of using a feature transform is to obtain a set of accurate point

correspondences even with a large image displacement, under which circumstances an

optical flow algorithm usually would fail. A comparison on the influence of different

image features on egomotion estimation is provided in Appendix B.

4.1.2 Appearance-based methods

Appearance-based VO methods do not use any pre-established image correspondences

to find the camera’s egomotion. The correspondences are instead associated on-the-fly

by perspective warping using pixel depths and a motion hypothesis while egomotion is

being solved.

As depicted by Fig. 4.3, egomotion estimation is achieved by iteratively minimising

the photometric difference between warped pixels and a target image. Details of the

photometric aligning process are described later in Section 4.3.3.
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Figure 4.3: Egomotion estimation of a direct VO implementation. The egomotion is
iteratively estimated through a nonlinear photometric error minimisation process.

Direct alignment in the image domain is well-preserving the epipolar condition. Fur-

thermore, warping sparse or semi-dense points is much more computationally efficient

than performing a feature transform with descriptor matching in a high-dimensional

space. However, outliers may exist due to the following:

• A pixel is wrongly warped due to inaccurate depth.

• A warped pixel belongs to a moving object.

• A warped pixel is occluded.

• Pixel intensity changes due to varied illumination, sensor exposure, or surface

specularity.
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A feature-based method comes with robustness against these situations, due to the

outlier rejection stage. In the next section we provide a unifying egomotion-estimation

framework based on strengths of feature- and appearance-based methods.

4.2 A unifying framework

Egomotion estimation by a conventional VO system is based on a single objective:

direct methods use a photoconsistency objective that aims at minimising a photometric

alignment error while feature-based methods often target the minimisation of a re-

projection error following a perspective alignment model.

An outlier rejection technique may take into account a secondary model such

as epipolar alignments; nevertheless, it is not tightly integrated into the egomotion

estimation stage. Mono-objective implementations can be less reliable when collected

data is severely corrupted to fit the target model.

Based on the observed shortcoming, we propose a unifying framework that achieves

egomotion estimate targeting multiple objectives, as shown in Fig. 4.4. The integration

of multiple models improves a system’s robustness to work in a complex scene such as

a street.

Our unifying framework takes advantages from both categories of existing VO

methods. In the feature-based category, a set of image features is identified and matched

in feature space to establish initial correspondencesM. A subset of the correspondences

are drawn to provide a motion hypothesis by a pose solver. The hypothesis is then

verified by a set of N models built from a variety of criteria which may include epipolar

constraints, perspective alignments, or photoconsistencies.

The verification results in a set of consensus sets (C1,C2, ...,CN), and the hypothesis

are elected as being the candidate estimate if the size of the union consensus set is

significant and larger than the consensus set of the current candidate.
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Figure 4.4: Egomotion estimation using a unifying multi-objective VO implementation.
A set of models is selected to build objectives from the data aggregated from matched
features, images, as well as from scene depth.

A modified RANSAC process, following the pseudo-code in Fig. 4.5, works more

like a direct VO approach which verifies a motion hypothesis using dynamically associ-

ated correspondences based on it through the egomotion estimation stage. In Section 4.3

we review a number of alignment models that can be adopted for verification of a motion

hypothesis.

A nonlinear refinement process is carried out to further optimise the elected motion

candidate after a RANSAC process. The optimisation is subject to the models and their
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Input : Image correspondencesM, pose solver h, set of objective models ϕ,
number of iterations NTRIAL

Output :Egomotion estimate T
T← I;
n← 0;
for k ← 1 to NTRIAL do

Sk ← DrawSamples(M);
Tk ← SolvePose(h,Sk);
nk ← 0;
for i← 1 to ∣Φ∣ do
Ci = FindInliers(ϕi, Tk);
nk ← nk + ∣Ci∣;

end
if nk > n then

T← Tk;
n← nk;

end
end

Figure 4.5: RANSAC process to find consensus egomotion among multiple objectives.

consensus sets C1,C2, . . .CN to avoid biased adjustments towards a single target. The

multi-objective optimisation process is detailed in Section 4.4.

4.3 Alignment models

In the context of VO and SLAM there are a number of measures or metrics adopted

to evaluate an estimated camera pose [R t]. In this section we review a number

of alignment models as well as how uncertainty of a measurement can be taken into

account to build a model.

Uncertainty estimation in this context is necessary to normalise the evaluated quantit-

ies to support the integration of different objective functions in a statistically meaningful

way, as discussed in Section 4.4. In this work we follow a Gaussian framework and

apply the Mahalanobis metric to achieve MLE estimation.
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4.3.1 Epipolar alignment

Given an image point x = (x, y)⊺ in the current frame and (R, t) for the motion of the

camera, the corresponding epipolar line can be obtained in the next frame identifying the

search domain for the corresponding image point x′ = (x′, y′)⊺. Such a 2D-to-2D point

correspondence x↔ x′ is useful for evaluating the correctness of a motion hypothesis.

As back-projected rays through x and x′ have to be co-planar, this leads to the

well-known epipolar constraint (Hartley & Zisserman, 2004; Klette, 2014)

x̃′⊺K−⊺[t]×RK−1x̃ = 0 (4.4)

where [t]× is the skew-symmetric matrix form of vector t, K is the camera matrix, and

x̃ = (x, y,1)⊺ are homogeneous coordinates of an image point in vector form.

In practice, the ideal equality of Eq. (4.4) is never true as a result of numerical

computations, errors in correspondences, or inaccuracy of the motion hypothesis. For

the last factor, from a set of correspondences x↔ x′, one may obtain the residual terms

ϕ(x,x′;R, t) = x̃′⊺Fx̃ (4.5)

where F = K−⊺[t]×RK−1 is the fundamental matrix encoding the given epipolar

geometry. Algebraic distances, however, are biased as image points far away from the

epipole tend to be over-penalised.

A geometrically meaningful modelling approach is to measure the shortest distance

between x′ and the corresponding epipolar line l = Fx̃ = (l0, l1, l2)⊺. The distance is

given by

δ(x′, l) = ∣x̃′⊺Fx̃∣√
l20 + l21

. (4.6)
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As the observation x′ also introduces an epipolar constraint on x, we have that

δ(x, l′) = ∣x̃′⊺Fx̃∣√
l′20 + l′21

(4.7)

where l′ = F⊺x̃′ denotes the epipolar line in the first view. By applying symmetric

measurements on the point-to-epipolar-line distances, the energy function defined by

Eq. (4.5) is now revised as follows:

ϕ(xi,x′i;R, t) = δ2(x′i,Fxi) + δ2(xi,F⊺xi) (4.8)

This yields geometric errors in pixel locations.

A noise-tolerant variant is to treat the correspondence x↔ x′ as a deviation from

the ground truth x̂↔ x̂′. When the differences ∥x − x̂∥ and ∥x′ − x̂′∥ are believed to be

small, the sum of squared mutual geometric distances can be approximated by

δ2(x̂, l̂′) + δ2(x̂′, l̂) ≈ (x̃′⊺Fx̃)2

l20 + l21 + l′20 + l′21
. (4.9)

This first-order approximation to the geometric error is known as the Sampson distance

(Hartley & Zisserman, 2004).

As the computation of these epipolar errors only uses 2D correspondences, the

energy model can be useful when 3D structures of a scene are not known (i.e. in case

of monocular VO). The five-point method, credited to Nistér (Nistér, 2004), may be

applied (as discussed before). The absolute scale of t, however, is not recoverable

without any reference in the 3D space, as explained in Section 3.4.2.
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4.3.2 Projective alignment

A scale-aware alignment model uses not only 2D projections but also 3D data. The

3D-to-2D correspondences are constrained by a sensor’s projection model as well as

the egomotion of the system. The reprojection error (RPE) is defined as the geodesic

distance between the projection of a 3D point and its predicted position in an image.

This error is considered to be the “gold standard” in SfM and VO (Hartley & Zisserman,

2004; Engels, Stewénius & Nistér, 2006). In particular, the residual is defined by

ϕ(g,x′;R, t) = ∥x′ − π (Rg + t)∥2
Σ (4.10)

where g = (X,Y,Z)⊺ is the current 3D location of a feature, x′ = (x, y)⊺ are the

feature’s image coordinates in the next frame, π ∶ R3 → R2 is the projection function

that maps a 3D point into the 2D image coordinates, and Σ is the 2 × 2 error covariance

matrix of the correspondence.

When a backward correspondence g′ ↔ x is known, Eq. (4.10) can be modelled in

an inverse mapping form as follows:

ϕ(g′,x;R, t) = ∥x − π (R⊺ (g′ − t))∥2
Σ . (4.11)

When an error covariance matrix is associated to the 3D point g, it has to be properly

propagated to the image and integrated into the covariance matrix equipped with x′. In

particular, the covariance used in Eq. (4.10) is replaced by the integrated covariance

matrix Σ̄:

Σ̄ = JπRΣR⊺J⊺π +Σ′ (4.12)

where Jπ is the 2× 3 Jacobian of π at Rg+ t, Σ is the 3× 3 covariance matrix of g, and

Σ′ is the 2 × 2 covariance matrix of x′.
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The geodesic reprojection error has been a widely adopted energy model in camera

re-sectioning, including calibration, pose estimation, or bundleadjustment (Engels et al.,

2006). Its closed-form linear solution has been extensively studied in the domain of

PnP problems (Gao, Hou, Tang & Cheng, 2003).

A popular solver is the efficient algorithm due to Lepetit et al. (Lepetit et al., 2009).

Section 3.4.1 provides details of this linear solver. A linear solution is usually iteratively

refined using a derivative-based minimiser (e.g. a Gauss-Newton algorithm). It has been

shown that the projective alignment can be further regularised using the aforementioned

epipolar alignment to reduce the impact of noisy 3D measurements (Chien & Klette,

2017).

4.3.3 Photometric alignment

The photometric criterion is based on comparisons between raw or transformed image

intensities. Direct methods make direct alignments on pixel intensities while feature-

based methods rely on descriptor matching after a feature transform.

If an image correspondence x ↔ x′ is not observable, one may perform direct

photometric matching using a motion hypothesis as shown in Section 3.4.3. In this case,

a matching residual is defined over intensity images I and I ′ as follows:

ϕ(x,g;R, t) = ∥I(x) − I ′[π(Rg + t)]∥2 (4.13)

assuming that the 3D coordinates g = (X,Y,Z) of image point x = (x, y) are known.

This is also known as correspondence-free egomotion estimation, and it is pervasively

used by direct VO techniques.

As discussed previously, Eq. (4.13) can be extended to use a block of pixels instead

of single pixel intensities, given a properly defined metric such as SAD or SSD.

The evaluation of Eq. (4.13) is computationally expensive compared to all the other
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geodesic criteria considered in this work. It invokes a rigid transform, a perspective

transform, and two image sub-sampling procedures. As the minimum of photometric

errors can only be approached iteratively, such an expensive cost function will need to

be invoked repeatedly for constructing numerically the Jacobian matrix.

To ease the incurred burden, various direct methods adopt an inverse-compositional

form of the residual term (Forster et al., 2014)

ϕk(g, ξk; ∆ξ) = ∥I[π(∆T ⋅ g)] − I ′[π(Tk(ξk) ⋅ g)]∥2 (4.14)

where we represent R and t by the twist ξ such that ∆T = exp(∆ξ) and Tk = exp(ξk).

Along with the inverse form of

ξk+1 = ∆ξ−1
k ○ ξk (4.15)

the Jacobian of φ can be written in the chain form

∂ϕ

∂∆ξ
(g, ξk) =

∂I

∂x
∣
x=x

⋅ ∂π
∂y

∣
y=g

⋅ ∂T

∂ξ
∣
ξ=0

⋅ g (4.16)

which is independent of the current motion hypothesis ξk.

The first term of Eq. (4.16) is the gradient of base image I at key point x which

requires only one-time evaluation at the beginning of the minimisation procedure; the

second and third term can be calculated symbolically, and the last term is constant, for

each tracked key point.

When the covariance of g is known, it can be taken into account to normalise

Eq. (4.13), following

ϕ(x,g;R, t) = ∥I(x) − I ′[π(Rg + t)]∥2
Σ (4.17)
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where Σ is the propagated covariance

Σ̄ = JIJπRΣR⊺J⊺πJ
⊺
I (4.18)

with JI = [∂I
∂x

(x′) ∂I

∂y
(x′)] the gradient of the image manifold at x′ = π(Rg + t).

4.3.4 Rigid alignment

If a dense depth map is available and the establishment of 3D point correspondences

is straightforward, then a rigid alignment can also be used to measure the fitness of a

motion hypothesis.

Given 3D-to-3D correspondences g↔ g′, where g = (X,Y,Z)⊺ and g′ = (X ′, Y ′, Z ′)⊺,

the energy model is defined by

ϕ(g,g′;R, t) = ∥g′ − (Rg + t)∥2
Σ (4.19)

where Σ denotes the 3 × 3 error covariance matrix.

The formulation can be ill-behaved for far points if 3D coordinates are derived from

a disparity map, due to the non-linearity of disparity-to-depth conversion. It is therefore

critical to model the covariance matrix properly.

If 3D coordinates are obtained by using a two-view triangulation function τ ∶

R2 ×R2 → R3, then the covariance matrix can be modelled as

Σ = Jτ

⎛
⎜⎜
⎝

Σx 0

0 Σx′

⎞
⎟⎟
⎠

J⊺τ (4.20)

where Σx and Σx′ are the 2 × 2 error covariance matrices of image points x = (x, y)⊺
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and x′ = (x′, y′)⊺, respectively, and Jτ is the 3 × 4 Jacobian matrix

Jτ = [∂τ
∂x

(x,x′) ∂τ

∂y
(x,x′) ∂τ

∂x′
(x,x′) ∂τ

∂y′
(x,x′)] (4.21)

with respect to correspondences x↔ x′, used to triangulate g = (X,Y,Z)⊺ (Maimone

et al., 2007).

The rigid model has closed-form solutions that are guaranteed to minimise Eq. (4.19).

A popular choice is based on quaternion parametrization and SVD, as shown by

Horn (Horn, 1987).

4.4 Egomotion estimation

Based on the selected alignment models, a set of mappings is built and input to the

multi-objective RANSAC process described in Section 4.2. For each correspondence

χ↔ χ′ ∈ M, the building of model data is as follows:

• Let ρj(χ) be the image coordinates of feature χ in the j-th frame; the 2D-to-2D

correspondences ρj−1(χ) ↔ ρj(χ′) are used to build the epipolar constraints,

denoted byMEPI.

• Let ḡj(χ) be the estimated 3D coordinates of feature χ in the j-th frame; the

correspondences ḡj−1(χ) ↔ ρk(χ′) are used to build the projection constraints,

denoted byMÐÐ→
RPE. We also make use of constraints gj(χ′) ↔ ρj−1(χ) to build

backward reprojection constraintsM←ÐÐ
RPE whenever available.

• The intensity-3D-intensity correspondences Ij−1[ρj−1(χ)] ↔ ḡj−1(χ) ↔ Ij[ρj(χ′)]

are used to instantiate a set of photometric constraints, denoted byMPHOTO.

• If the measure gj(χ) of a feature’s 3D coordinates in the new frame is available

(either from a disparity map, a LiDAR scan, or any other sources), we construct a
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set of 3D-to-3D constraints ĝj−1(χ) ↔ gj(χ′), and have it denoted byMRIGID.

All the constructed mappingsMEPI,MÐÐ→
RPE,M←ÐÐ

RPE,MRIGID, andMPHOTO are col-

laboratively used in the introduced RANSAC process to remove outliers.

First, at the initialisation stage, a minimum set of correspondences is randomly

withdrawn from one of the five mappings. From the samples, an initial motion hypo-

thesis ξ̄ is solved by the closed-form solver associated with the chosen mapping. At the

verification stage, the hypothesis is applied to each class.

By means of the appropriate energy model, introduced in Section 4.3, the data terms

are evaluated and the inliers are found as the correspondences achieving an error below

a pre-defined class-specific threshold. If the population of inliers, summed over all

the classes, achieves a record high, the hypothesis is taken as the best model. Such a

process goes until a stopping criterion is met.

The closed-form solver and associated energy model for each class are summarised

in Table 4.1. Note that the MEPI class is excluded at the estimation stage, as the

translation of estimated motion ξ̄ does not have an absolute unit, prohibiting it from

being used to evaluate data terms in other classes. TheMPHOTO class is also excluded

because there is no closed-form solver for the photometric alignment problem.

The best-fit model ξ̄ from the RANSAC process serves as the initial guess at the

Table 4.1: Summary of alignment model and data terms

Model Mapping Alignment Type Solver NSAMPLE

ΦEPI MEPI Epipolar 2D-to-2D Five-point 1 5
ΦRPE MÐÐ→

RPE,M←ÐÐ
RPE Perspective 3D-to-2D EPnP 2 5

ΦRIGID MRIGID Rigid 3D-to-3D SVD 3 4
ΦPHOTO MPHOTO Photometric Int.-to-int. * N/A N/A

* “Intensity-to-intensity”.
1 Five-point root-finding algorithm (Nistér, 2004)
2 Efficient PnP solver (Lepetit et al., 2009)
3 Quaternion-based SVD approach (Horn & Schunck, 1981)
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non-linear optimisation stage over the integrated energy model

Φ(ξ) = ΦRPE(ξ) +ΦEPI(ξ) +ΦRIGID(ξ) +ΦPHOTO(ξ) (4.22)

with each sub-objective summarising the squared residuals instantiated from the census

set of the corresponding class. Note that the combination does not use per-class

weightings as the residuals are already normalised by the estimated error covariance, as

discussed in Section 4.3. Function Φ is minimised using the iterative process described

in Section 3.4.4.

4.5 Post-motion processing

After a motion hypothesis is solved, it can be used to refine a previously estimated state

which (in this work) refers to the 3D structure of tracked features. It is also helpful in

recovering features lost by descriptor matching or the outlier-rejection process.

4.5.1 Inlier injection

Those long-term features that have been successfully tracked over a period of time

contribute to accurate egomotion estimation more than the features that survive only

a few frames (Badino et al., 2013). Recovery of lost features not only increases the

number of high-quality features but also reduces false instantiation of landmarks due to

disrupted observations which is critical to eliminate redundant structure parameters at

the global optimisation stage, to be discussed in the next chapter.

A feature χ ∈ F is lost if it is not included in any consensus mapping C that

contributed to the final egomotion estimate ξ.

A KLT tracking algorithm (Baker & Matthews, 2004) is applied on each lost feature

in F to find its image position in the current frame, and an augmented feature set is
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created by gathering all the results. Two outlier rejection techniques are performed on

the augmented set afterwards.

First, backward tracking is conducted to map augmented features in the current

frame to the previous one; if the distance between a feature’s originating location and

the back-tracked pixel is larger than a tolerable distance of, say, 0.5 pixels, the feature

will be removed from the augmented set. Such a check is known as bidirectional

consistency (J. Choi, Kim, Oh & Kweon, 2014) test.

Second, this test is followed by enforcing the epipolar constraint based on ξ. A

tracked feature is rejected if its updated position deviates from the epipolar line over a

reasonable range which (in this research) is set to the same threshold used to enforce

bidirectional consistency.

If a lost feature’s depth is known in the previous frame, its 2D coordinates can also

be predicted by projecting the 3D coordinates to the current image, given the egomotion

has already been solved (Badino et al., 2013; Forster et al., 2014). In this case we

also perform a scoped epipolar search following the manner described in Section 3.3.1.

Figure 4.6 demonstrates examples of the introduced feature-recovery strategies.

4.5.2 Structure recovery and recursive filtering

Census mappings (from all the adopted alignment models plus the augmented mapping)

form a feature flow which is used by a two-view triangulator to measure the 3D

coordinates of the features. Integration is required if a triangulated feature already

has a previously estimated depth, either from another triangulation, a disparity-depth

conversion, or other sources. In this work, a Bayesian framework is adopted to actualise

the integration by taking the certainty of each measurement into account.
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Figure 4.6: Recovery of lost features in sub-pixel accuracy. Four features lost through
the VO pipeline have been successfully recovered using solved egomotion and their 3D
coordinates. Each pair of two image windows shows on the left a feature in the previous
frame and on the right its recovered position in the current frame. Please note that the
correspondences are established without any descriptor matching.

In the univariate case, given two estimates (x0, σ2
0) and (x1, σ2

1), the merged estim-

ates follow

x̄ = σ
2
1x0 + σ2

0x1

σ2
0 + σ2

1

, σ̄2 = σ2
0σ

2
1

σ2
0 + σ2

1

. (4.23)

In the related literature, variances are often modelled as inverse weightings (Badino et

al., 2013). Using weightings w0 = 1/σ2
0,w1 = 1/σ2

1 , the updating formula becomes

x̄ = w0x0 +w1x1

w0 +w1

, w̄ = w0 +w1 . (4.24)

An alternative form of Eq. (4.23) is

x̄ = x0 +G ⋅ (x1 − x0), σ̄2 = Gσ2
1

(4.25)

where the coefficient

G = σ2
0

σ2
0 + σ2

1

(4.26)

is known as the Kalman gain (Civera et al., 2008).
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Filtering can be generalised to the multivariate case. Let (x0,Σ0) and (x1,Σ1) be

the estimates to be merged. The Kalman gain is computed in its matrix form

G = Σ0(Σ0 +Σ1)−1 (4.27)

and the update is as follows:

x̄ = x0 +G(x1 − x0), Σ̄ = GΣ1 . (4.28)

In the case of det(Σ0) ≫ det(Σ1), where the uncertainty of x0 is much higher

than x1, it appears that (Σ0 +Σ1)⊺ ≈ Σ−1
0 as the error covariance Σ0 is dominating the

inverse over Σ1, and therefore G ≈ I. In this case, the new estimate is closer to x1 as it

is more trustworthy.

In the context of VO, we consider x0 to be previously integrated 3D coordinates of

a feature, and x1 the newly triangulated estimate transformed to the reference frame

using the solved egomotion. The covariance matrices are estimated as described in

Section 3.2.1. To properly model the system, we also take into account the uncertainty

of the estimated egomotion.

Let ḡj−1 be a previously integrated 3D position of a feature, and gj the new estimate

in Frame j. The fusion follows

ḡj = ḡj−1 + Σ̄j−1 (Σ̄j−1 +Σj)
−1 [R⊺ (gj − t) − ḡj−1] (4.29)

where covariance Σj is propagated by the solved egomotion [R t], following

Σj = R⊺ (Jxx′Σxx′J
⊺
xx′ + JξH

−1J⊺ξ)R (4.30)

via Jxx′ , the triangulator’s 3 × 4 Jacobian with respect to image correspondence x↔ x′
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Figure 4.7: Two measures of a point at Z = 7.33 ± 0.54m are fused. The outer error
ellipsoid visualises the first measure which is based on disparity-depth conversion (see
Section 3.2.2). The inner grey ellipsoid shows the second measure using a two-view,
mid-point triangulation (see Section 3.2.1) based on solved egomotion. The ellipsoid
showing the new estimate is shaded in red. A Bayesian filter tends to move the fusion
towards the second estimate as it poses a less dispersed uncertainty due to a longer
baseline.

of error covariance Σxx′ used to do the triangulation, Jξ the 3 × 6 Jacobian with respect

to egomotion estimation ξ, and H the 6 × 6 Hessian matrix obtained when ξ is solved

by the Levenberg-Marquardt method (see Eq. (3.49) in Section 3.4.4).

Figure. 4.7 shows the fusion of two triangulations of the same point following

the model. The first triangulation is based on a depth-disparity conversion following

a stereo matching process by the time the exemplary feature is initially discovered.

The second triangulation uses a recovered egomotion after the camera moves to a new

position. Based on the established image correspondence, the measure finds the closest

point of two back-projected rays. See Section 3.2 for the triangulation processes.
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4.6 Experiments

4.6.1 Multi-objective egomotion estimation

We selected sequence 2011_09_26_drive_0027 from the Road category of the

KITTI benchmark suite (Geiger et al., 2013) for evaluating the unified VO framework.

The vehicle had travelled 350 metres (while recording 188 frames) on a single two-lane

carriageway, with trucks and cars coming from the opposite lane.

The VO implementation computes disparity maps using a semi-global block matcher

implemented in OpenCV 3.3.0 (“The OpenCV Reference Manual: Camera Calibra-

tion and 3D Reconstruction”, 2017). For each frame, SURF features (Bay, Tuytelaars &

Van Gool, 2006) are detected and a 256-byte descriptor is extracted for each detected

feature. The features are tracked through the image sequence. The images from the

right camera are only used for disparity generation. The depth of a tracked feature is

continuously integrated using a recursive Bayesian filter. No additional optimisation

technique (e.g. bundle adjustment, lost feature recovery, or similar) has been deployed.

To test how each energy model affects the VO process, we tried all the possible

combinations by enabling a subset of data terms among MEPI, M←ÐÐ
RPE, MRIGID and

MPHOTO, for each test.

Note that the forward-projection term MÐÐ→
RPE is always used as it is required to

properly bootstrap the RANSAC process. This results in sixteen configurations. Due

to the randomness introduced into the outlier-rejection stage, we carried out five trials

for each configuration. Table 4.2 summarises motion drifts from eighty estimated

trajectories.

In most cases, using additional energy model(s) significantly reduces the drift in

estimated egomotion. Exceptions are observed in the cases of xxRx, Bxxx, and BxRx.

When the rigid alignment is solely imposed (xxRx), the drift only slightly reduces
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Table 4.2: Egomotion estimation drifts (%) of different energy model combinations.
Maximum and minimum value in each column are in bold.

Model * Best Worst Mean Std. Model Best Worst Mean Std.

xxxx 4.97 5.54 5.21 0.27 Bxxx 5.14 5.99 5.41 0.34
xPxx 2.26 2.76 2.52 0.21 BPxx 1.99 2.50 2.23 0.21
xxRx 4.65 5.09 4.88 0.15 BxRx 5.10 6.00 5.58 0.37
xPRx 1.84 2.39 2.18 0.26 BPRx 1.96 2.56 2.16 0.26
xxxE 2.27 2.31 2.28 0.01 BxxE 2.21 2.29 2.24 0.03
xPxE 2.24 2.71 2.47 0.17 BPxE 2.17 2.48 2.31 0.11
xxRE 2.29 2.38 2.34 0.03 BxRE 2.18 2.31 2.24 0.05
xPRE 2.41 2.59 2.50 0.08 BPRE 2.21 2.40 2.33 0.08

* Letters B, P, R, and E, respectively, indicate the use of backward projection (M←ÐÐ
RPE),

photometric (MPHOTO), rigid (MRIGID), and epipolar (MEPI) alignment models.

by 0.35%. A result, worse than the forward-projection-only baseline configuration

(xxxx), is found in BxRx where it is simultaneously applied with the back-projection

alignment model. A similar result is observed when the backward projection is used

(Bxxx). The loss of accuracy is due to the use of feature depths obtained in Frame t+ 1,

where the recursive Bayesian filter has not been applied, as the egomotion from t to

t + 1 is not yet estimated (see Fig. 4.1).

Interestingly, the results show that, when the epipolar term is used with the forward

projection model (xxxE), the VO process yields highly robust estimates with a very

low standard deviation (0.01%). Such finding corresponds to work reported in (Chien

& Klette, 2017).

We further compared the baseline model with the best case, worst case, and the case

using all energy models. Accumulated drifts are plotted in Fig. 4.8. In the best case the

accuracy is improved by 58.3%, while by imposing all four energy models, this option

achieves an improvement by 54.8%.

We also profiled the run-time of each test case. The processing time for each frame

are 230 ms and 200 ms for the best case and the baseline implementation, respectively.

This time measurement indicates that the introduction of additional energy terms only
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Figure 4.8: Drift analysis of the best (BPRx), worst (BxRx), all-enabled (BPRE), and
the baseline model (xxxx)

incurs 13% more computational cost, while an improvement of above 50% in terms of

accuracy is attainable.

4.6.2 Tracking topology

Conventionally, feature tracking is performed over every two consecutive frames, which

forms a linear topology1 in the pose graph. Few recent work suggests to deploy

tracking in some more general topologies to improve the system’s performance and

robustness (Geiger, Ziegler & Stiller, 2011; Ci & Huang, 2016). For example, a circular

matching pattern that tracks left image’s features from Frame j to Frame j + 1, crossing

to the right image, back to Frame j, and finally back to the left image, was proved to be

an effective approach to remove a false matching.

In this section we test the proposed VO framework in a variety of topological

configurations, as summarised by Table 4.3.

The tracking topologies listed in the table are tested using the sequence chosen in

Section 4.6.1. The detected SURF features are associated with depth data and tracked

over left and optionally right image sequences. The KLT point tracker for lost feature

1 “Topology” not in the sense of mathematical topology; here this term characterizes the connectivity
between nodes of a graph.
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Table 4.3: Feature tracking topologies.

Topology Pattern Description

Linear In the simplest configuration of VO, matching
takes place from Frame j to j + 1.

Look-ahead Frame j + 2 is also tracked from j to avoid
a feature drop due to single tracking failure.
The topology has been deployed also for the
purpose of outlier rejection using the trifocal
tensor introduced by 3-view geometry (Song,
Chandraker & Guest, 2013).

Stereo linear This is perhaps the most straightforward way
for extending the feature tracking framework
also to the right camera. It has been adopted
by a number of common stereo VOs where
left-right feature matching is performed for
triangulating features’ 3D coordinates (Olson,
Matthies, Schoppers & Maimone, 2000;
Maimone et al., 2007; Mur-Artal et al., 2015).

Stereo parallel Stereo parallel tracking introduces an in-
dependent tracking path for the right cam-
era (Zhong & Wildes., 2013). Tracked fea-
tures are bridged via the left-right matching in
the common stereo linear setup.

Circular Circular matching traces a feature back to its
originating image. For example, a circular
matching pattern that tracks the left image’s
features from Frame j − 1 to Frame j, crossing
to the right image, back to Frame j − 1, and
finally back to the left image, was shown
to be an effective approach to remove false
matching results (Geiger et al., 2011; Ci &
Huang, 2016; Min, Xu, Li, Zhang & Zhao,
2016).

Cross-eye Cross matching not only avoids occlusion
but also offers a better precision in triangula-
tion. Based on such a setup, a multi-camera
multi-frame feature integration technique has
been recently proposed (Chien, Geng, Chen &
Klette, 2016).
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recovery is also based on an OpenCV implementation.

GPS and IMU data, provided by the dataset, is used as ground truth. The motion-

estimation error analysis of the tested tracking topologies is plotted in Fig. 4.9. Referring

to the linear topology as the baseline, we found that three configurations show improved

performance, up to 30.2%. The best estimation is achieved by the stereo-parallel

topology which maintains features from left and right images in parallel, and has them

integrated by a left-right matching.

The circular tracking pattern achieves a performance comparable to the cross-eye

topology. Both of the tracking patterns reduced motion drift by 15% over a monocular

tracking method. Such finding corresponds to previous work (Chien, Geng et al., 2016).

On the other hand, the stereo-linear topology shows a slightly worse performance.

A possible cause is due to incorrectly associated left-right features, as in this work we

impose only generic epipolar constraints without further limiting the range of left-right

disparity.

Another configuration that shows even worse results is found to be the look-ahead

topology. We detected numerous incorrectly associated features due to inaccurate

optical flow computation over large image displacements, especially in the look-ahead

step. As in our current implementation the tracking operator considers only two frames

in each step, the third frame does not have any impact. Such a configuration can be

further improved by using trifocal tensors for 3-view geometry (Kitt et al., 2010; Hartley

& Zisserman, 2004).

4.7 Closure

This chapter presented a novel VO framework. Based on a unifying framework, the

proposed implementation achieves accurate egomotion estimation targeting multiple

alignment models which previously have been deployed independently in two families of
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Figure 4.9: Evaluated motion error presented in two components: transitional (left) and
rotational (right). For error analysis, see Appendix B for details.

existing VO methods. Our VO pipeline uses recursive Bayesian filtering to continuously

integrate state measurements over time, based on the propagation of error covariances

through the underlying VO pipeline. Experimental results show the improvement based

on our contributions.

Based on the enhanced egomotion estimation technique, we present a multi-sequence

3D mapper for street-side reconstruction in the next chapter.



Chapter 5

Multiple-run Reconstruction

The integration of reconstructions of the same scene, based on different sequences, can

fill-in missing data and improve previous reconstructions. The integration requires a

rigid transform between referenced frames of each of the two considered sequences.

This chapter presents a solution based on an extension of the unifying VO framework

proposed in the previous chapter.

5.1 Overview

Solved egomotion for a given sequence allows us to register 3D data, collected in each

frame, in a consistent (world) coordinate system which is essential for global scene

reconstruction. Such a reconstruction can be further expanded by merging with another

reconstructed scene, assuming that there are overlapping data in both sequences.

This expansion requires that two reconstructions are presented in one consistent

coordinate system. A target sequence’s frame is considered in the reference coordinate

system of the source sequence. The problem is equivalent to finding a rigid transform

that maps the reconstruction from the source sequence to the target one.

Finding such a transform, however, is not straightforward. One of the simplest

91
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solutions is perhaps to treat the problem as registering two point clouds which can be

efficiently solved by using one of the ICP algorithms (Besl & McKay, 1992). The

algorithms usually work out a good solution when the point clouds are roughly aligned.

However, this is often not the case as each video sequence might begin at an arbitrary

position in the scene. This issue can be addressed by finding a rough alignment first

using 3D features such as the fast point feature histograms (FPFH) (Rusu, Blodow &

Beetz, 2009).

3D features, extracted from the source and the target point clouds, are extracted and

matched in feature space to establish a set of 3D sequence-to-sequence correspondences,

based on which a Euclidean transform is efficiently solved by deriving a closed-form

solution. The extraction of 3D features, however, requires that the reconstructed

point clouds pose similar point densities, and is therefore not applicable to a case

where heterogeneous 3D structures are present in source and target (e.g. if the source

reconstruction is from a stereo camera while the target from LiDAR scans).

Another issue, limiting the applicability of the 3D alignment approach, is the

distortion of point clouds due to accumulated egomotion estimation errors. This factor

can quickly become significant if the range of scans extends to up to a few hundreds of

metres (Zeng & Klette, 2013).

This chapter presents an approach that establishes inter-sequence image corres-

pondences in a scalable manner. It also discusses how these correspondences are used

to register reconstructions in a consistent coordinate system. Section 5.2 introduces

two sensor configurations as considered in this work. In Section 5.3 we study the

establishment of sequence-to-sequence correspondences in a scalable top-down manner.

Section presents a robust nonlinear algorithm to align reconstructions based on estab-

lished correspondences. Finally, Section 5.5 briefly outlines post processing that filters

and merges points in the aligned point clouds.
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5.2 Sensor configurations

5.2.1 Stereo sequence

A stereo sequence provides synchronised and rectified images from two calibrated

cameras. Each stereo image is converted into a disparity map by a stereo matcher and

transformed into 3D points as described in Section 3.2.2. The recovered 3D structure

is then used to solve the camera’s egomotion detection problem applying either a

projective or rigid alignment model as formulated in Section 4.3.2. Stereo vision-based

VO is one of the most frequently used SLAM approaches; details of the pipeline are

Figure 5.1: Reconstruction of a 120 metres long street-side scene using stereo VO.
The imagery data are taken from sequence Odometry_00 of the KITTI benchmark
suite (Geiger et al., 2013).

Figure 5.2: Street-view of a the reconstructed scene.
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introduced in Chapter 4. Figures 5.1 and 5.2 render 3D reconstruction results of a

street-side from a stereo sequence.

5.2.2 Monocular-LiDAR sequence

A few LiDAR-enabled visual odometry systems were proposed in recent years. These

systems take the advantage of accurate laser scanning and outperform conventional

vision-based odometry methods. By early 2016, the ranking of methods (evaluating

odometry accuracy) on the KITTI benchmark website (Geiger et al., 2013) is dominated

by LiDAR-based techniques (e.g. (J. Zhang & Singh, 2014, 2015)).

A straightforward implementation of a LiDAR-engaged visual odometry system is to

use laser-rendered depth maps for replacing those computed from stereo images. Laser

points are projected on the image plane and triangulated to produce an up-sampled dense

depth map (Chien, Klette, Schneider & Franke, 2016). See Fig. 5.3 for an example. To

enhance the resolution of the rendered depth map, multiple scans are accumulated and

aligned using estimated egomotion (J. Zhang & Singh, 2015).

An alternative strategy is to use projections of laser points to establish initial features,

track these features to build 3D-to-2D correspondences, and solve egomotion based on

following a projective alignment model.

Let Lj(χ) be laser-measured 3D coordinates of features χ in the j-th LiDAR frame.

The Euclidean measurement function, previously introduced in Section 4.4, is now

redefined as follows:

gj(χ;Γ, τ) = ΓLj(χ) + τ (5.1)

where g is now parametrised over extrinsic parameters Γ ∈ SO(3), and τ ∈ R3.

The image coordinates of χ in Frames j − 1 and j are then, respectively, decided by

ρj−1(χ) = π [gj (χ;Γ, τ)] (5.2)
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and

ρj(χ) = νk(ρj−1) (5.3)

where an image-feature tracker νk ∶ R2 → R2 is introduced. Parameters Γ and τ are

constant if the LiDAR has been extrinsically calibrated and is assumed to be static.

Following these formulations, egomotion is solved based on projective and epipolar

alignment models as introduced in Section 4.3. LiDAR-aided PnP ego-motion estima-

tion, described previously, however, needs to be enhanced when applied to real-world

sequences where non-static features and noisy tracking results are present.

In this work, we propose a robust monocular-LiDAR implementation by performing

image-feature detection and their extraction independently from the LiDAR-engaged

framework. The tracked features are maintained by an independent monocular visual

odometry module which provides epipolar constraints as well as projective alignment

constraints that are derived from those previously triangulated and integrated features

Figure 5.3: Example of a dense depth map from up-sampled LiDAR data. The figure is
rendered using data from the frame shown in Fig. 3.4.
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Figure 5.4: Monocular-LiDAR VO framework results for over a 350 metres sequence.
The epipolar constrained LiDAR-PnP model, enhanced by an augmented monocu-
lar alignment model (as depicted by the blue line), shows a significant reduction in
motion drift over implementations either without improvement and monocular vis-
ion (in red), or without multi-objective outlier rejection schemes (in orange). See
Section 4.2 for the multi-objective model. The evaluation is based on sequence
2011_09_26_drive_0091_sync of the KITTI Vision Benchmark Suite (Geiger
et al., 2013).

Figure 5.5: Reconstruction of a street side from 250 frames using monocular-LiDAR
VO. The range of the first one-third sequence is overlapped with the other sequence
shown in Figure 5.1.
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(see Section 4.5.2). In this case, the summation of energy models, as described by

Eq. (4.22), has to be rewritten as follows:

Φ(ξ) = ΦRPE(ξ) +ΦEPI(ξ) +ΦLRPE(ξ) +ΦLEPI(ξ) . (5.4)

where the LiDAR-related models ΦLRPE and ΦLEPI are appended after the monocular ones.

Figure 5.4 shows that the drift of monocular-LiDAR VO can be effectively reduced

by considering all four terms in Eq. (5.4), compared to using only one single model.

Figure 5.5 visualises the reconstruction of the same scene previously shown in Fig. 5.1

from another longer run.

5.3 Establishing inter-sequence correspondences

Reconstructions from multiple runs need to be aligned in a consistent coordinate system

to allow us that depth data are properly integrated. In this section we propose a scalable

solution that first selects, from each sequence, a set of keyframes, where subsequent

keyframes contain a minor amount of overlapping data, such that the computation

burden of cross matching at latter stages is reduced.

Based on these extracted keyframes we deploy then an efficient bag-of-visual-

word technique that transforms each frame into a vector representation, known as the

vocabulary. A brute-force search on the vocabulary is conducted to identify potential

cross-matches among keyframes, between source and target sequences.

At the final stage, the landmarks of any two matched keyframes are then associated

in the descriptor space, and their 3D positions as well as their 2D projections are used to

build a projective alignment-based egomotion model following the framework presented

in Chapter 4.

Based on this model, a rigid transform is estimated in RANSAC manner which
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contains essential information to align the source sequence to the target’s frame.

5.3.1 Keyframe extraction

Key-framing is an efficient technique to build a compact skeleton of a long image

sequence by selecting a subset of frames that essentially contain sufficient information

of the sequence. There are many possible criteria for keyframe selection. The selection

can be based on, for example, a fixed time interval, the distance the camera has travelled

since the last keyframe, or the number of lost features.

In this work we select keyframes based on covisibility which is defined by the

number of shared landmarks between two frames. The visibility of Landmark i in

Frame j is represented formally as follows:

vij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the i-th landmark is observed in the j-th frame

0, otherwise .
(5.5)

Based on Eq. (5.5), the covisibility is defined among Frames j and j′ as follows:

covis(j, j′) = ∑i vij ⋅ vij
′

∑i vij
(5.6)

See Fig. 5.6 for an example of a visualised covisibility matrix.

If the covisibility among the current frame and the closest keyframe reaches a lower

bound, it implies that many features have been lost, and it is a good time to select the

current frame as a new keyframe. In the case of VO, the images are considered to be

collected in temporal order, therefore we only need to consider the covisibility between

the current frame and the previous keyframe.

Covisibility-based keyframe selection is more robust than applying motion-based

criteria which might fail when the sensor presents a large variety in movement patterns.
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Figure 5.6: Covisibility matrix of the first 100 frames of the typical street sequence
shown in Fig. 5.1. Note that the locality pattern constantly changes due to the motion of
the camera.

Figure 5.6 shows the covisibility of a number of continuous frames; results illustrate

(when compared with the recorded sequences) that non-uniform locality patterns highly

dependent on the dominating motion component of the sensor’s egomotion as well as

on scene structure.

The snapshots of 24 keyframes, extracted from Fig. 5.6 are shown in Fig. 5.7, where

the minimum covisibility between any two consecutive keyframes is set to be 0.3.

5.3.2 Bag-of-words model

The bag-of-words (BoW) model was originally developed in natural language processing

and information retrieval. It has recently been extended to SLAM for recognition of

previously visited places (Galvez-López & Tardos, 2012; Lowry et al., 2016). The BoW
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Figure 5.7: Extracted keyframes with a minimum covisibility of 0.3.

model identifies from documents a set of keywords (the vocabulary), based on which

each document is transformed into a vector representation in the frequency domain.

Two documents, sharing similar components in the domain, are classified into the same

category in the context of document classification.

The extension of the BoW model to computer vision considers an image as being a

document, and features in the image are visual words. To generate a visual vocabulary,

descriptors of image features, extracted from a set of training images, are clustered

in descriptor (or feature-vector) space by means of a vector quantisation technique

(e.g. use of k-means clustering). The mean of each learned cluster is then chosen for

generating the vocabulary. The generation is done offline, using images that contain a

rich variety of appearances.

We follow an efficient BoW technique when detecting keyframes that were possibly

collected at the same place (Galvez-López & Tardos, 2012). A set of keywords is trained
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offline using oriented FAST and rotated BRIEF (ORB) features (see Appendix B.1.3

for details).

The generated vocabulary is organised as an L-level K-ary tree, with the visual

keywords stored at leaf level, where L = 10 and K = 5 in our case. Learned keywords

are further weighted by term frequency-inverse document frequency (tf-idf) index, in a

way such that rare words are given higher weights as they are more discriminative.

To establish frame-to-frame correspondences between two sequences, we first

transform each keyframe, extracted from the source sequence, into a frequency-based

vector representation. This is done by finding ORB features from the frame and mapping

extracted binary descriptors onto the learned W vocabulary.

The resulting vector has W entries, with the i-th entry storing the weighted oc-

currences of Keyword i in the keyframe. An inverse index database is built from the

transformed source keyframes. The database maintains a list of keyframes that share

the same keyword.

In the inquiry phase, each keyframe from the target sequence is transformed into

its vector representation following the same process applied to the source keyframes.

Figure 5.8: Cross-sequence similarity matrix, computed using 14,000 binary visual
words based on ORB features extracted from a source sequence’s keyframes.
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The database is then searched to conclude similarity between a target keyframe and any

of the source keyframes. The search is computationally scalable as the complexity is

logarithmically bound by the size of the database, thanks to the tree-structured inverse

indices and the sparse vector representations.

Figure 5.8 shows a similarity matrix that takes 24 keyframes of a stereo sequences

(see Fig. 5.1) as the source, and 53 keyframes of a monocular-LiDAR sequence (see

Fig. 5.5) as the target. The computation was done in real-time on a mainstream quad-

core laptop. Results show strong connections between the source sequence and the first

19 target keyframes.

Two keyframes are considered to be matched if the similarity is higher than a

threshold, say 0.2 in this work.

5.3.3 False-positive rejection

A cross-sequence correspondence hypothesis, suggested by the BoW model, might be

a false positive as the spatial relationships among features are not taken into account

throughout the process so far. This therefore requires further checks on geometric

constraints.

In this work we use a fundamental matrix-based outlier rejection model for a

fast rejection of any false-positive match. Note that the constraint, introduced by a

fundamental matrix, is not a strict criterion at this stage, where the sensors’ intrinsic

parameters are available to allow us a rigorous check. However, we leave such a check

to the next stage where outliers are examined again by a strict alignment model.

5.4 Aligning sequences

Based on discovered cross-sequence, frame-to-frame correspondences, a rigid transform

is initially estimated using a RANSAC process by means of a multi-projective alignment
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model. The process is followed by keyframe-based bundle adjustment for refining the

alignment of the sequences.

5.4.1 Finding an initial pose

For each frame-to-frame correspondence, a set of finer correspondences is established

at the landmark-to-image level. Descriptors of the landmarks, previously observed

in the source frame at the VO stage, are matched with those observed in the target

frame. A set of forward and backward projective constraints is then built following the

egomotion-estimation strategy described in Section 4.4.

Taking into account the poses of keyframes, solved in the VO process, all the

discovered constraints are aggregated and transformed into a coherent coordinate system

centred at the reference frame of the target sequence. This way, a solution, minimising

the resulting energy model, serves as the initial pose of the source sequence’s reference

frame with respect to the target one’s. Here, we adopt the same RANSAC technique as

shown in the previous chapter for solving for the pose.

5.4.2 Refinement using bundle adjustment

Bundle adjustment (BA) is considered to be the “golden standard” optimisation tech-

nique already for multi-view reconstruction over decades of research. The technique

simultaneously tunes camera parameters and scene structure to fit a nonlinear func-

tion, in a way that the discrepancy between the observations of landmarks and their

reprojections are minimised in a least-squares manner.

Given M landmarks observed in N frames, the objective function specific to the

BA problem in an abstract form is defined as follows:

ΦBA(a,b) =
M

∑
i=1

N

∑
j=1

vij∥yij − f(aj,bi)∥2
Σj

(5.7)
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where yij are the image coordinates of the i-th landmark observed in the j-th frame,

Σj is the 2 × 2 covariance matrix modelling the uncertainty of the observation, aj ∈ Va

and bi ∈ Vb are, respectively, parametric forms of a camera pose and a 3D point in

the chosen parameter spaces Va and Vb, vij is the binary function denoting landmark’s

visibility as defined in Section 5.3.1, and f ∶ Va ×Vb → R2 is the abstracted imaging

function.

As discussed in Section 3.4.4, an objective function in the least-square form, posed

by Eq. (5.7), can be minimised using the Levenberg-Marquardt (LM) algorithm (Levenberg,

1944).

Let x ∈ Rn where n = dim(Va) ⋅N + dim(Vb) ⋅M be the state vector that vectorises

a and b. Then, for m nonzero components, Eq. (5.7) can be represented in a more

compact form by a vector function ϕ ∶ Rn → Rm where each entry ϕk(x) denotes the

residual of the observation k and its projection. This way, minimising ΦBA is equivalent

to minimising the L2-norm of ϕ (i.e. ∥ϕ∥2) when identity covariance matrices are

assumed.

The LM algorithm uses the Jacobian-approximated second-order derivative of ϕ to

update x iteratively. For each iteration, the update is given by

∆x = (J⊺J + λI)−1J⊺ϕ(x) (5.8)

where Jij =
∂ϕi
∂xj

is the Jacobian matrix, and λ ∈ R+ the damping factor (Levenberg,

1944).

If x′ = x +∆x reduces ∥ϕ∥2, the update is accepted and λ is decreased, leading to a

Gauss-Newton-like behavior. Otherwise, λ is increased to resemble a gradient descent

approach, and a new ∆x is solved and tried repeatedly, until it attains a better solution.

The linear system A = J⊺J + λI poses a sparsity pattern due to mutually irrelevant

structure parameters. By splitting up the camera and structure components from the
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linear system
⎡⎢⎢⎢⎢⎢⎢⎣

U W

W⊺ V

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∆xa

∆xb

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

J⊺a

J⊺b

⎤⎥⎥⎥⎥⎥⎥⎦
ε(x) (5.9)

the matrix V is found; it contains nonzero entries only in its diagonal M sub-matrices

of size dim(Vb) × dim(Vb). Multiplying Eq. (5.9) by the matrix

⎡⎢⎢⎢⎢⎢⎢⎣

I −WV−1

0 I

⎤⎥⎥⎥⎥⎥⎥⎦
(5.10)

yields
⎡⎢⎢⎢⎢⎢⎢⎣

U −WV−1W⊺ 0

W⊺ V

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∆xa

∆xb

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

J⊺a −WV−1W⊺J⊺b

J⊺b

⎤⎥⎥⎥⎥⎥⎥⎦
ε(x) (5.11)

where ∆xa is first solved and then ∆xb.

By exploiting the blocky sparse structure of V, its inverse can be quickly computed

in linear time O(M). Solving ∆x in this two-stage fashion greatly alleviates the

computational complexity of BA, since A is typically a giant matrix that involves a

huge number of scene points but only a few camera parameters (Lourakis & Argyros,

2009; Konolige, 2010). A runtime breakdown of solving BA problems for various sizes

is given in Fig. 5.9.

The breakdown shows that the computation time is dominated by the number of

landmarks involved in the adjustment. In the case of aligning two sequences, it often

covers thousands to millions of covisible landmarks. Under such circumstances, the

optimisation is time consuming.

In this research, an algebraic technique is deployed to address such issues. Recall

the linear triangulation approach described in Section 3.2.1. The central-projection

model relates camera pose and scene structure linearly in the projective space. Given

a 3-by-4 projection matrix P, a scene point x̃, and its image ỹ, both in homogeneous
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coordinates, follow the relationship

ỹ ∼ Px̃ = [p1 p2 p3]
⊺

x̃ (5.12)

where ∼ denotes the equality up to a scale. Alternatively, in homogeneous form, this

relationship is expressed as follows:

⎡⎢⎢⎢⎢⎢⎢⎣

y3p
⊺
1x̃ − y1p

⊺
3x̃

y3p
⊺
2x̃ − y2p

⊺
3x̃

⎤⎥⎥⎥⎥⎥⎥⎦
= 0 . (5.13)

This equation, posing a linear duality between the structure parameters and the para-

meters of the camera, can be inherently extended to a multi-view case where the 3D

coordinates of a landmark can be immediately determined given its observations in

more than two frames.

Using the duality, we embed the estimation of structure in the adjustment of camera

pose during the BA process. This not only eliminates the time-consuming construction

of Jb, but also removes the impact of a structure-measurement error.

Figure 5.9: Comparison of computation time of a bundle adjustment process.
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Figure 5.10: Visualisation of two sequences posed in their optimised positions after
keyframe-based BA. The sequences are identified by different colours, as previously
rendered in Figs. 5.1 and 5.5. A closer look at the marked area is provided in Fig. 5.11.

Figure 5.11: Top: A closer look on the aligned reconstruction at a cross-section. Bottom:
The reconstruction from a stereo sequence at the same location. Much information of
the road surface is missing from the disparity map due to low confidence. Laser scans
from a different run filled in the missing information as can be seen in the figure.
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The landmarks, mutually observed in the keyframes of both sequences, as well as

the pose of these keyframes are selected for a nonlinear adjustment, with the landmark

structure implicitly modelled. The BA process is bootstrapped by the pose estimated

using the RANSAC approach as introduced in the previous section.

Aligned frames are visualised in Figure 5.10, and a closer look on the aligned

sequences is shown in Figure 5.11. It can be found that, a great portion of missing data

from the first run is filled by the second run.

5.5 Depth integration and surface reconstruction

Once two sequences are aligned, we construct a 3D point cloud from back-projected

disparity maps from the stereo sequence and LiDAR scans of a monocular LiDAR

sequence. Considering the huge number of vertices in the noisy clouds, we perform

cleaning and subsampling pre-processing prior to depth integration and surface recon-

struction.

Isolated floating points, that have only a few neighbours, are identified as being noise

and are removed. Vertices closer than a predefined threshold, say 0.15 metres, to each

other are merged for reducing the size of the point cloud. The vertex normal vectors

are then estimated from the filtered point cloud. For normal computation we select

near neighbours of each vertex, and a least-squares tangent plane is estimated (Mitra,

Nguyen & Guibas, 2004).

A variation of a Poisson surface reconstruction is adopted to triangulate1 the pro-

cessed vertices. Given a discrete set of 3D points P = {p1,p2, ..pN} equipped with

normal vectors V = {n1,n2, ..nN}, surface reconstruction aims at finding a scalar func-

tion f ∶ R3 → R such that f(p) = 0,∀p ∈ P and ∇f(p) = n,∀n ∈ V , where p is the

1 The triangulation here refers to building a triangular mesh from given sparse vertices.
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point corresponding to n. Modelling such a problem by a sum-of-squares minimiser

ϕ(f) = ∑
i

∥ni −∇f(pi)∥2 (5.14)

leads to a least-squares solution in its second derivative form

∆f(pi) = ∇ni (5.15)

where ∆ is the Laplacian operator, and ∇ni is the gradient of a vector field constructed

from V at pi. This partial differential equation is known as Poisson equation.

A finite solution to Eq. (5.15) is based on a discretization of Poison’s equation which

first selects a set of N B-splines {g1, g2, ..., gN} ∶ R3 → R to form the new basis of f :

f(p) =
N

∑
j=1

xjgj(p) . (5.16)

Let ⟨◻,◻⟩ be the standard inner product. By Eq. (5.15) we have that

⟨∆f(pi),∇gj(pi)⟩ = ⟨ni,∇gj(pi)⟩ (5.17)

An over-determined linear system of M unknowns is instantiated by taking into account

all the (pi,ni)’s and gj’s.

In this work we selected an efficient octree-based hierarchical solver to approach

a discrete solution to the linear system (Kazhdan & Hoppe, 2013). Once the weights

x1, x2, ...xj are found, the mesh reconstruction is achieved by an iso-surface extraction

at f = 0. Figure 5.12 visualises an iso-surface consisting of 1.9 millions of triangles

having about 965,000 vertices. The reconstruction is based on a segment of the merged

sequences.
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Figure 5.12: Top: A filtered point cloud from two merged sequences. Bottom: The
reconstruction of the point cloud using a Poisson surface reconstruction process.
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5.6 Conclusion

In this chapter we presented a novel strategy to combine sequences of multiple runs,

generated by different sensor configurations, to produce a 3D reconstruction of a street-

side scene. The sequences are initially aligned using landmark-feature correspondences

discovered among keyframes. A nonlinear adjustment is then carried out to optimise

the poses of matched keyframes. Once aligned, the 3D data of the scene structure, from

each sequence, is processed and integrated in a consistent coordinate system, resulting

in a comprehensive reconstruction of the street-side scene.



Chapter 6

Future Work

The work presented in this thesis can be further improved and extended toward a

number of directions. The unifying VO framework, introduced in Chapter 4, has been

tested using binocular stereo vision as well as monocular-LiDAR configurations. The

model can be extended in a straightforward way to a trinocular setup which provides

some interesting options in terms of feature tracking topology. The third camera also

provides an additional source for verification of the solved egomotion (Chien, Geng &

Klette, 2014). A calibration tool for trinocular setup is readily deployed, as tested in

Appendix A.

We noticed that many buildings in reconstructed scenes are not yet complete (i.e.

their 3D surface). Perhaps such missing pieces can be filled by using a drone flying

around such buildings. If this provides an additional monocular sequence in this case,

the sequence aligning pipeline, introduced in Section 5.4, needs to be reworked to

consider the scale of the monocular reconstruction as an unknown factor, meaning that

the solution to the alignment is generalised from a 6-dof Euclidean transformation to a

7-dof similar one.

It is interesting to study the registration of sequences collected from opposite

directions, which remains challenging. In Fig. 6.1, two frames acquired at the same

112
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Figure 6.1: Two image sequences collected from opposite directions on which the BoW
model failed to establish frame-to-frame correspondences.

place but in very different viewing directions, failed to be associated using the BoW

model described in Section 5.3.2. The issue might be addressed using features in 3D

space to establish an initial alignment (Zeng & Klette, 2013), given that the estimated

camera poses are accurate to avoid distorted point clouds integrated over multiple

frames.

Applying the proposed integration technique to more than just two sequences also

poses new issues that are worth studying. For many-to-many alignments, the keyframe-

based search scheme, adopted in Section 5.3.2, would be less efficient. An incremental

computational-efficient approach needs to be developed. Identification and removal of

temporal objects (e.g. parked cars), that are not persistent in multiple sequences, is also

required to achieve consistent street-side reconstruction.

In many applications it is desired to access high-level information from a reconstruc-

tion for better scene understanding (Badino, Franke & Pfeiffer, 2009). In that case, the

scene can be modelled at a higher level, based on aligned point clouds and recovered

surfaces (N. Savinov & Pollefeys, 2016).
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Appendix A

Camera Model and Multiocular

Calibration

Calibration of geometric imaging parameters is a fundamental task in the field of

computer vision. Obtaining the imaging parameters allows accurate modeling of the

incident ray of each pixel, and once backprojected the light paths can be used to estimate

3D structure of the scene.

Calibrating an image sensor is essential to find the inverse mapping from image space

to world coordinates, given a set of 3D-to-2D correspondences (X,Y,Z) → (x, y). Any

object that once imaged produces such correspondences can be selected as a calibration

target. In this work we consider the use of a planar chessboard as the target, as the

making of such target is easier and the manufacturing accuracy can be controlled.

Off-the-shelf camera calibration packages such as OpenCV calib3dmodule (“The

OpenCV Reference Manual: Camera Calibration and 3D Reconstruction”, 2017) and

MATLAB Camera Calibration Toolbox (Bouguet, 2015) are available. These tools,

however, are originally designed for monocular and binocular configurations, and their

straightforward extension to multiocular case leads to consistency issues. This appendix

develops an automatic calibration algorithm that can be applied to monocular, binocular

115
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and multiocular cases.

A.1 Nonlinear camera model

We follow the nonlinear camera model implemented by OpenCV 3.3.0 (“The

OpenCV Reference Manual: Camera Calibration and 3D Reconstruction”, 2017).

Given E = (R, t) the extrinsic parameters consist of rotation matrix R ∈ SO(3) and

translation vector t, a 3D point (X,Y,Z) is first projected onto the ideal normalised

image plane at Z = 1 by

⎛
⎜⎜⎜⎜⎜⎜
⎝

x̊

ẙ

1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∼

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(R t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X

Y

Z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(A.1)

where ∼ denotes the projective equality (i.e. equivalent up to a non-zero scale). Then

the nonlinear distortion applies to find the distorted pixel (x̆, y̆):

⎛
⎜⎜⎜⎜⎜⎜
⎝

x̆

y̆

1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∼

⎛
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⎝

x̊ 2x̊ẙ r2 + 2x̊2 0

ẙ r2 + 2ẙ2 2x̊ẙ 0

0 0 0 1

⎞
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⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(A.2)

where r2 = x̊2 + ẙ2 is the radial distance, and parameters κ1..3 and p1..2 respectively

control the radial and tangential distortion of the image sensor. These parameters denote

the distortion coefficients. Finally the distorted pixel is transformed to the observed
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pixel coordinates
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(A.3)

where fx and fy are the effective focal lengths in longitude and latitude directions

respectively and (xc, yc) is the principal point where optical axis passes through the

image plane.

Note that, the entry k12 of the intrinsic matrix is set zero. This entry controls the

skewness factor of image formation, and is modeled when K is, more generally, an

upper triangle matrix (Hartley & Zisserman, 2004). Alternatively, the skewness factor

is modeled here by tangential parameters p1 and p2.

A.2 Monocular and stereo calibration

In the very beginning of the development, the direct linear transform (DLT) technique

was adopted to solve the calibration problem before any sophisticated algorithms are

proposed (Hartley & Zisserman, 2004). The DLT method treats the imaging process as

a linear transform and solves the projection matrix directly. Post-processing is therefore

required to extract the intrinsic and extrinsic parts of the parameters from the estimated

matrix.

In 1987, R. Tsai proposed perhaps the earliest popular camera calibration al-

gorithm (Tsai, 1987). Credited by his name the method has been well-known as

Tsai’s method by the community. The method first calibrates camera’s intrinsic paramet-

ers and the x, y components of extrinsic parameters, then the z components is estimated

by enforcing orthonormality. Tsai’s method is able to calibrate a camera from a single

image of a 3D calibration object.
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A decade later, Z. Zhang published an approach that soon became the de facto stand-

ard based on the image of an abstract geometry entity - the absolute conic (Z. Zhang,

2000). Given a homography defined by the calibration plane, the orthogonality and

normality of the rotation matrix respectively determine two out of six degrees of free-

dom of the image of the absolute conic (IAC). Since the IAC is defined by the camera’s

intrinsic parameters and is invariant to the derived homography, a linear system can be

constructed by stacking constrains of many (at least 3) observed homographies. Zhang’s

method first recovers the intrinsic parameters by solving the IAC, then the extrinsics are

determined using the solved intrinsics.

In practice the parameters estimated using any of the described techniques are never

used directly. Instead, they serve as an initial guess for the nonlinear optimisation stage

carried out right after applying a chosen calibration algorithm.

The monocular calibration is extended to calibrate stereo camera rigs. Provided by

the OpenCV library the subroutine stereoCalibrate implements a state-of-the-art

stereo calibration used widely by the community. The algorithm first independently

calibrates each camera’s intrinsic parameters and the pose of the calibration target in

each view. Since the target’s poses estimated from the first and the second cameras can

be inconsistent, the algorithm chooses the first camera-derived pose as the reference,

and the target pose derived from the second camera is used only for the estimation

of extrinsic parameters. Again, one has to work out the inconsistency of the estim-

ated extrinsic parameters. A workaround to alleviate the impact of inconsistency as

implemented by the subroutine is to decide the extrinsic parameters by averaging.1

Obviously, several drawbacks exist in the stated algorithm. First, the target has to

be observed by all cameras for each view. This can be an issue when calibrating a

multiocular camera system, as the overlapped field of view shrinks as more cameras are

considered. Second, estimating extrinsic parameters using an averaged pose is not an

1 STEREOCALIBRATE actually calculates the median of pose vectors.
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elegant solution and the accuracy heavily depends on the selection of reference camera.

The development of improvements over the naive approach is therefore required. Key

contributions of the proposed method are:

1. Automatic pairing ofK cameras to establishK−1 stereo couples with maximised

use of collected calibration data.

2. Nonlinear bundle adjustment in a unified coordinate system that simultaneously

optimise all the system parameters to achieve a global consistency.

A.3 Multiocular calibration

Calibrating K cameras with a calibration target placed in N different positions defines

a K-camera N -view calibration problem. There are K sets of intrinsic parameters,

K − 1 sets of extrinsic parameters and N sets of target poses to be estimated. The

pose parameters are defined by an arbitrarily selected camera space as the reference

coordinate system (therefore we calibrate only K − 1 instead of K camera poses, as the

transformation from the selected camera to the reference is always the identity).

The selection of the referenced camera, however, can be tricky. Due to occlusion

of the calibration target, one has to assume it is only observed partially by a subset of

cameras for each view. As the result, the extrinsic parameters could not be derived

directly using any single view. In this section we describe a multiocular technique

that automatically finds a robust way to assemble complete extrinsic parameters using

multiple views.

A.3.1 Calibration graph and parameters initialisation

The extrinsic parameters of a multiocular camera system can be modeled by a complete

directed graph G = (VG,EG). A vertex v ∈ V in the graph represents a camera, and an
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edge eij ∈ E between vertices vi, vj denotes the coordinate transformation from vi to

vj . Assume we have vertices vi and vj with their extrinsic parameters Ei = (Ri, ti) and

Ej = (Rj, tj), the transformation on edge eij is therefore Eij = (RjR−1
i , tj −R−1

i ti).

Explicitly estimating all
K(K − 1)

2
transformations Eij is not necessary (and could

be impossible due to view occlusion) for the recovery of extrinsic parameters Ei,1 ≤

i ≤K. As the transformation of coordinate system in Euclidean space is transitive, one

can derive Eij via an agent camera vk by concatenating Eik to Ekj . Calibrating edges

ET ⊂ EG in a spanning tree T = (VT ,ET ) of G is therefore sufficient to recover all the

extrinsic parameters.

Costs on the edges have to be defined to form a spanning tree. In practice, different

formations of spanning tree lead to numerically distinguishing parameters due to data

imperfections. To ensure robustness, we define a cost function subject to the number of

shared views between cameras, which assigning to each edge a cost cij =
1

γij
where

γij = ∑
1≤r≤N

br(i, j) (A.4)

and

br(i, j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if vi and vj see the target in r-th image

0, otherwise
(A.5)

This way, cost between strongly connected cameras is low, and the minimum spanning

tree (MST) yields a more robust initialisation of extrinsic parameters.

Figure A.1 demonstrates an example of calibration graph and its MST formed using

the described cost function. In the shown calibration problem the number of shared

views between (v1, v2), (v2, v3), (v2, v4) and (v3, v4) are 7, 9, 5 and 4 respectively,

while pairs (v1, v3) and (v1, v4) share no views.

We estimate the initial parameters of a multiocular system as follows. First the

intrinsic parameters are calibrated independently for each camera. The intrinsics are
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Figure A.1: Example of a calibration graph and its MST.

then used to estimate the transformations pairwise in the MST. The calibration fails

if the MST of the calibration graph does not exist (i.e. isolated vertex present). The

formation of spanning trees is implemented by means of Prim’s algorithm (Boruvka,

1926) in this work.

Two problems remain with the initialised parameters. First, they are solved in a

linear manner whereas only algebraical errors are minimised, hence the lack geometric

meaning. Second, the estimations are done locally without taking global conditions

into account. This could lead to highly biased estimations. The global adjustment as

described in next section is therefore suggested to be carried out.

A.3.2 Nonlinear optimisation

The linearly initialised parameters are further tuned using our implementation of the

Levenberg-Marquardt (LM) algorithm. The algorithm iteratively searches the optimal

parameters x that minimises a nonlinear objective function Φ ∶ Rd → R in the sum-of-

square form Φ(β) = ∥y − f(x;β)∥2, given the observed correspondences x↔ y and

the measurement function f ∶ Rn → Rm parametrised by β ∈ Rd.

In iteration k the estimate βk is updated by βk+1 = βk +∆βk based on the solution
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of an augmented normal equations:

∆βk = [H + λdiag(H)]−1
εk (A.6)

with H = J⊺J the Hessian matrix approximated by J the Jacobian matrix (i.e. Jij =
∂fi(x;βk)

∂βj
), εk = J⊺[y − f(x;βk)] the error gradient and λ the damping variable. The

differentiation can be achieved using either symbolic or numerical approach, while the

numerical differentiation is implemented in this work.

The new estimate βk+1 is then assessed by checking Φ(βk+1) < Φ(βk). For a better

result the update is accepted and the damping variable is magnified to ηλ where η > 1

is a defined multiplier, turning the optimiser toward the gradient descent algorithm.

Otherwise we reject the update and decrease the damping variable to
λ

η
such that the

optimiser will behave more like the Gauss-Newton approach.

Termination criteria indicating convergence of the optimisation process are assessed

over time. The error drop and step size are considered good indicators of convergence.

In particular, we check the conditions

Φ(βk) −Φ(βk+1)
Φ(βk)

< ε (A.7)

and
∥∆βk∥
∥βk∥

< ε (A.8)

with the machine precision ε, which is usually set to a small positive value below which

the change is numerically meaningless (Press, Teukolsky, Vetterling & Flannery, 2007).

Setting higher ε tends to terminate the optimisation prematurely, while having a low ε

could be a waste of time.

In the context of camera calibration, the 3D-to-2D correspondences of control

points are used to instantiate the minimisation problem, f actualises the camera’s
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projection function, and the least square reprojection error (RPE) is attained by the

optimal parameters. In Bayesian terms, LM yields the maximum likelihood estimation

of the parameters with the highest probability given the observations, if the noises of

calibration data are Gaussian.

The parameters to be optimised include K-set intrinsics, (K − 1)-set extrinsics and

N -set target poses, as follows:

β = (µ1, µ2, ..., µK , ξ1, ξ2, ..., ξK−1, ρ1, ρ2, ..., ρN) (A.9)

where each intrinsic vector µ = (fx, fy, xc, yc, κ1, κ2, κ3, p1, p2) encodes camera’s in-

trinsic parameters, while ξi and ρi respectively describe the extrinsic parameters and tar-

get poses in the 6-vector form (ax, ay, az, tx, ty, tz) with first 3 components (ax, ay, az)

define the angle-axis representation of rotation, and last 3 components (tx, ty, tz) rep-

resent the translation. We therefore have d = 9K + 6(K − 1) + 6N the dimension of

parameter space. Figure A.2 visualises the Hessian matrix in a real case with respect to

β of the described vector form.

A.4 Experiments

We applied the developed technique to calibrate a trinocular camera system, and the

results are compared with the direct extension of the stereo calibration that comes with

OpenCV, which estimates parameters pairwise. A chessboard has been placed in 38

poses and simultaneously imaged by 3 cameras. Figure A.3 shows the positions of the

calibration target observed by the first camera.

The global optimisation runs for at most 30 iterations, and we set machine epsilon

ε = 10−8 for convergence check. The root-mean-square errors (RMSEs) of reprojected

control points are plotted in Fig. A.4. Significant error drops are observed through
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Figure A.2: Hessian matrix (in logarithmic scale) of a 3-camera 10-view calibration
problem.

iteration 4 to 8. In the first four iterations the improvement is not significant. A possible

explanation is that, the linearly initialised parameters are very close to a local optimum.

In this case, an insufficient termination criteria, say ε = 10−4, could lead to an early stop

of the optimisation process.

In Fig. A.5 the control points are reprojected using parameters obtained and locally

optimised by the OpenCV calibration subroutine, without global adjustment. Compared

to Fig. A.6 which shows the reprojections optimised according to Section A.3.2, an

improvement is indicated by the drops of RMSE from 0.3 to 0.07 pixels for the second

and the third cameras respectively, despite the error drop is not significant for the first

camera.

Image rectification is applied to study the accuracy of calibrated parameters. The

rectified trinocular views are shown in Fig. A.7 and Fig. A.8, respectively of pairwise

and globally optimised parameters. As can be seen, the epipolar constraint is well
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Figure A.3: Coverage of 38 placements of the calibration target.

Figure A.4: Error plot through the global optimisation process.

preserved near the marked control points in both cases. However, in the remaining

(e.g. the top margin of the image) significant misalignment is obvious in Fig. A.7. This

demonstrates the generalisation error due to the bias of locally optimised parameters.

A.5 Summary

A multiocular camera calibration tool has been demonstrated. The proposed method

automatically establishes robust calibration pairs by solving the MST problem. The

initialised parameters are further optimised in global scale using our implemented LM
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Figure A.5: Reprojection error of control points using pairwise optimised parameters
without global bundle adjustment.

Figure A.6: Control points reprojected using globally optimised parameters.
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Figure A.7: Views rectified using pairwise optimised parameters without global bundle
adjustment. Note the fluorescent lamps on the left-top of the middle and right images
are not vertically aligned to the epipolar line.
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Figure A.8: Rectified views using globally optimised parameters.

algorithm. As supported by the experimental results, the proposed method is able

to attain globally consistent parameters. Compared to the direct extension of stereo

calibration algorithm, an improvement of 44% in RPE is attainable.



Appendix B

Comparative Study on Image Features

B.1 Image features

In this section we provide brief descriptions of the types of image features considered

in this thesis.

B.1.1 SIFT

The SIFT (scale-invariant feature transform) algorithm, proposed by David Lowe in

1999 (Lowe, 2004), is perhaps one of the earliest work on providing a comprehensive

keypoint detection and descriptor extraction technique.

To formulate a scale invariant representation of image features, SIFT builds a multi-

resolution pyramid over the input image and applies difference of Gaussians (DoG)

operators to locate local extrema in the scale space. The locality is defined by a 3× 3× 3

window. These non-edge extrema, presenting high local contrast, are then identified as

the keypoints.

The image gradients of a 16 × 16 window, centred at each keypoint, are then

computed and grouped into 4×4 subregions. The direction of gradients within the same

subregion are then quantised to conclude an eight-bins histogram. By gathering all

129
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the bins from all sixteen histograms in the window, one obtains an 128-element SIFT

descriptor vector.

B.1.2 SURF

Six years after the advent of SIFT, Herbert Bay et. al. proposed an alternative image

feature detection and extraction algorithm known as SURF (speeded-up robust features),

which was claimed to be faster and more robust than SIFT (Bay et al., 2006). Instead of

the DoG operators, the SURF algorithm chooses a box-filter-approximated second-order

derivative computation to locate extrema in the scale space. These Haar-like operators

can be efficiently implemented over a computed integral image. This leads to a speed-up

of SURF compared to SIFT.

The robustness of SURF features comes from the identification of patch direction

before extracting its feature vector. The direction of a keypoint is decided based on

Gaussian-weighted responses of pixels in a circular neighbourhood with respect to

horizontal and vertical Haar wavelets. These responses are transformed into polar

coordinates, and partitioned based on a predefined angular resolution. The transformed

response vectors in the same partition are then summed up, and the angle of the longest

vector sum over all partitions is chosen as the direction of the patch. Based on the

direction, the patch is rotated and a Gaussian-weighted discrete sampling on pixel

responses to the Haar wavelets is performed to yield a real-vector descriptor.

B.1.3 ORB

In 2011, Ethan Rublee et. al. proposed the ORB (Oriented FAST and Rotated BRIEF)

features as an alternative to SIFT and SURF (Rublee, Rabaud, Konolige & Bradski,

2011). As its self-explanatory name, the ORB algorithm combines an enhanced FAST

(features from accelerated segment test) (Rosten, Porter & Drummond, 2010) technique
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to locate keypoints, with a direction-normalised BRIEF (binary robust independent

elementary) (Calonder, Lepetit, Strecha & Fua, 2010) descriptor extraction process.

To achieve scale invariance, the FAST algorithm is applied repeatedly to each layer

of a scale pyramid. The cornerness of detected FAST features is tested using a Harris

measurement (Harris & Stephens, 1988) and non-corner keypoints are excluded.

The BRIEF algorithm produces an n-bit string from local binary tests of n predefined

pixel pairs within a patch. This vector representation would be highly unstable against

rotation. To address this issue, ORB adopts a rotation-aware variant of BRIEF. For the

located keypoints, it first finds patch centroids by means of image moments (Klette,

2014). The direction of a vector, connecting a keypoint’s centre to its patch’s centroid,

then decides the direction of the keypoint. The binary test pattern is then rotated by

the direction of a patch before binary descriptor extraction, allowing a feature to be

represented in a rotation-invariant (i.e. isotropic) form.

B.1.4 A-KAZE

More recently, Pablo F. Alcantarilla el. al. developed an edge-preserving non-linear

filtering strategy to locate image features (Alcantarilla, Bartoli & Davison, 2012). The

filtering is based on the image diffusion equation:

∂I

∂t
(u, v, t) = div [c(u, v, t) ⋅ ∇I(u, v)] (B.1)

where div and ∇ are, respectively, the divergence and the gradient operator; I is an

intensity image, t > 0 is the scale variable, and c a conductivity function.

The diffusion of an image formulates an iterative way to find the filtered, yet

edge-preserved evolution of the original image, by choosing the conductivity function
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carefully. A good choice of the conductivity is as follows:

c(u, v, t) = [1 + (∇Iσ(u, v, t)
k

)
2

]
−1

(B.2)

where Iσ is a Gaussian-smoothed version of image I . In the follow-up work the fast

explicit diffusion (FED) technique is used to solve the diffusion equation efficiently,

contributing to an accelerated variation of the KAZE algorithm, proposed by the authors

in 2012 (Alcantarilla, Nuevo & Bartoli, 2013). The improved feature detection and

extraction technique is known as A-KAZE.

Keypoints are located by finding the extrema of the second-order derivatives of

the image over the non-linear multi-scale pyramid built from the principle of image

diffusion. A-KAZE deploys a technique similar to SURF to estimate the direction

of a patch. A modified local difference binary (LDB) representation of the rotation-

compensated patch is then extracted as its binary descriptor.

B.2 Experiments

We present results for a test sequence selected from the KITTI benchmark data-

sets (Geiger et al., 2013) to evaluate the image features. The sequence presents a

complex street scenario. Moving bicyclists, vehicles, and walking pedestrians are

present in the scene. The test vehicle travelled 300 metres and captured 389 frames. We

selected gray-level data of the left camera to perform monocular visual odometry. Data

of the remaining three cameras are not used.

We use feature detection and extraction subroutines shipped with OpenCV 3.1.

These subroutines are CPU-only implementations. The default parameters provided by

the library are used, with only one exception: We increased the number of detectable

features to 3,000 for ORB, as its default setting to 500 features is insufficient to produce
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Table B.1: Comparison of feature extraction

SIFT SURF ORB A-KAZE

# Features 765,436 1,140,410 1,017,350 603,246
Time spent 98 sec 50 sec 10 sec 43 sec
Disk storage 391 MB 305 MB 54 MB 49 MB

good results, compared to the other tested features. The obtained statistics of the feature

extraction process is reported in Table B.1.

For each tested feature, we repeat the visual odometry process 48 times on a quad-

core Intel Core i7 3.2 GHz laptop. Motion drifts are then evaluated using ground

truth available for these KITTI data (derived from GPS/IMU readings). To allow the

ego-motion estimation to be evaluated in a consistent scale, the inertial data of the first

and the second frame are used to bootstrap the monocular visual odometry process.

The mean drift of each run is calculated individually; the results of all 192 runs

are plotted together in Fig. B.1. The plot shows that SIFT and SURF features achieve

similar levels of accuracy, while the error distribution of the runs using SURF features

is slightly less dispersed, compared to SIFT. The ORB features, on the other hand, show

inconsistent performance with a wide range of drift errors. The A-KAZE features yield

intermediate performance in-between the cases of SURF and ORB.

The best run of each trial set is selected to render a detailed view of how the

different image features perform through the visual odometry process. The inter-frame

and overall drift errors of these runs are plotted in Fig. B.2. Initially, all the tested

features shared a similar performance as the vehicle is slowly accelerating. The drift

of the ego-motion, estimated from ORB features, however, grows faster than other

cases, as the vehicle reaches a moderate speed. At the end of the sequence, the drift

error follows the pattern “ORB > A-KAZE > SIFT > SURF”. It is also found that

ORB-based visual odometry is less stable, as significant inter-frame drift errors occur



Appendix B. Comparative Study on Image Features 134

Figure B.1: Box plot of tested features. For each feature, the quartiles are concluded
from 48 individual visual-odometry processes. The first and the third quartiles are,
respectively, denoted by the bottoms and tops of a box, and the second quartile (median)
is marked by the red line in the box.

more frequently.

The segmented motion errors, in terms of translation and rotation components of

the estimated ego-motion, are also computed, with respect to various travel distances.

The travel distance is not measured only from the beginning of the sequence;

applying the segmented error analysis of KITTI, we consider segments that begin from

an arbitrary frame k through to frame k+n, where n > 0. The actual length of a segment

is taken into account when calculating the error at image I being in a temporal interval

[lp, lq), with temporal order lp ≤ l < lq.

We divide the length of the sequence into 10 equally spaced segments for plotting.

The results are depicted in Fig. B.3. It shows that, in the translation component, the

A-KAZE features perform best for short movement within 150 metres, and the SURF

features achieve the lowest overall error of 1% as the vehicle reaches the end of the

sequence. In the rotational component, it presents a clear trend that the SIFT and SURF
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Figure B.2: Inter-frame (top) and accumulated (bottom) drift errors of the best cases of
SIFT, SURF, ORB, and A-KAZE features.



Appendix B. Comparative Study on Image Features 136

Figure B.3: Segmented motion error analysis on the translational (left) and rotational
(right) components.
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cases converge similarly to the lowest error, while the ORB features achieve two-times

worse accuracy, and the A-KAZE features show an intermediate error.
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