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Abstract 

Mobile cloud computing is the state-of-the-art mobile distributed computing paradigm 

which comprises of three heterogeneous domains: mobile computing, cloud computing, and 

wireless networks aiming to enhance the computational capabilities of resource-constrained 

mobile devices towards a rich user experience. For example, heavy computations can be 

offloaded to the cloud to reduce energy consumption for the mobile device. However, we 

discovered that, in some mobile cloud application cases, it is more energy inefficient to use 

cloud computing than the traditional computing conducted in the local device.  

In our study, we chose a navigation application, Osmand, running on an Android 

mobile platform to do the empirical measurement because Osmand has both cloud-based 

and non-cloud-based versions. So, we were able to compare non-cloud-based Osmand and 

cloud-based Osmand in term of energy efficiency. In the empirical measurements, we 

found that non-cloud-based Osmand and cloud-based Osmand consume a similar amount 

of energy regarding to LCD and GPS activities. For non-cloud based Osmand, the majority 

of CPU energy consumption was used on calculating route results. In addition, we found 

that the complexity of maps affects the CPU energy consumption. On the other hand, the 

cloud-based Osmand consumes more CPU energy than non-cloud-based Osmand because 

the majority of CPU energy consumption was used for creating events and displaying on 

the mobile screen. Moreover, cloud-based Osmand needs a network connection to send a 

request to the cloud to calculate a route result. Thus, 3G communications is considered as 

an extra factor that causes energy consumption in cloud-based Osmand. We found that 3G 

communications makes cloud-based Osmand energy inefficient due to tail energy in 3G 

communication costing extra energy consumption.  

Therefore, a prototype of an Energy Efficient Scheduling Manager (EESManager) 

was proposed and developed based on the awareness of tail energy and the complexity of 

maps. The results from the evaluation show that EESManager can improve the energy 

efficiency of cloud-based Osmand in two cases: 1) if the mobile device receives route 

results back from the cloud within the tail time, and 2) in the case when the mobile device 
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does not receive the route results from the cloud within the tail time and the map scenario is 

simple. 
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Chapter 1 Introduction 

In recent years, smart phone technologies have become powerful and smart phones are now 

like small computers for mobile users. Due to more powerful computation, better 

processing and sharper mobile screens in smart phones, there are various mobile 

applications in the market which use the advantages of smart phone technologies to make 

applications more interesting. However, there are many mobile applications such as games, 

navigation, voice recognition, and image retrieval which can cause batteries to drain 

quickly because of the heavy computation required by these multi-media applications. 

Therefore, battery drain has become a big issue in smart phones. A study [1] showed that 

mobile users in 15 countries worry the most about short battery life of their smart phones. 

Another study [2] also had a similar result with 38% of 215 iPhone users having short 

battery life as their biggest concern. 

Industry and academics have widely recognised cloud computing as the next 

generation of computing infrastructure. Cloud computing can provide scalable and 

powerful computing power, processing memory and storage. Meanwhile, wireless 

broadband networks deploy rapidly, and this allows many mobile users to experience 

Internet services from their smart phone. Therefore, integrating cloud computing into the 

mobile environment is a promising and innovative idea to bring new varieties of services 

and facilities to mobile users. Mobile users can access the cloud via the existing Internet-

based cloud and wireless technologies. Tasks and raw data from smart phones can be sent 

to the cloud for processing and implementation. Offloading heavy computation to the cloud 

can reduce energy consumption in smart phones, therefore resolving the battery life issue 

[3]. 

However, mobile cloud computing faces battery life challenges as well as shown in 

a measurement study [4] which found that three types of cloud-based applications actually 

consume more energy than non-cloud-based applications or device-based applications due 

to energy inefficient network communications in the cloud-based applications. Hence, a 

conclusion could be drawn that cloud-based applications are more energy inefficient than 
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non-cloud-based applications. However, another study [5] concluded that each mobile 

application is designed differently. Thus, each application has different energy 

consumption characteristics. It is really a case-by-case condition. 

Therefore, this thesis emphasises on the energy efficiency of the chosen mobile 

application. Empirical energy measurements and energy models were proposed. Then our 

Energy Efficient Scheduling Manager (EESManager) was developed based on energy 

efficiency recommendations and the proposed changes were evaluated using a simulation 

environment.    

1.1 Background 
Mobile cloud computing is the combination of the mobile environment and cloud 

computing which draws benefits from both technologies. Mobile cloud computing moves 

the data processing and storage from smart phone devices to powerful computing machines 

in the cloud to overcome smart phone limitations. Mobile cloud computing provides mobile 

users with communication and entertainment that can be accessed anywhere and anytime 

with existing wireless technologies. Mobile cloud computing uses the same main concept 

as cloud computing; however, mobile devices have replaced PCs as the preferred means of 

accessing the internet. [6-8] 

Despite mobile cloud computing being a new promising idea, it still faces several 

problems for mobile devices such as short battery life, storage, security and so on. One of 

the most critical concerns for mobile devices is energy efficiency. Smart phone capabilities 

are becoming increasingly powerful and fast. Unfortunately, battery technology has 

developed slowly and it is not able to match the energy consumption requirements of 

hardware components [9-11]. A battery has limits in terms of  the amount of energy that it 

is capable to store and the battery technology is only increasing capacity 5% annually [12]. 

Therefore, solving the energy inefficiency in mobile devices has become a challenge of the 

mobile industry. 
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1.2 Motivation 
The goal of this thesis is to improve the energy efficiency of a selected mobile application 

and a smart phone device. So, three research questions are posed to carry out this thesis. 

1. What are the characteristics of a cloud-based application on the battery 

draining of smart phone devices compared to a non-cloud-based application 

by using existing technologies and tools? 

2. What are the features, characteristics or scenarios of a cloud-based prototype 

built using energy efficient recommendations? 

3. What are the results of comparing the energy use of the device-based 

application vs. the cloud-based application using a simulation environment? 

To answer those research questions, we firstly identified characteristics of the 

selected mobile application Osmand that cause energy to be used by using existing 

technologies and tools which will be discussed in Chapter 3. Then, a prototype was 

developed based on energy efficiency recommendations discussed in Chapter 4. The results 

of comparing energy consumption using a simulation environment were presented in 

Chapter 5. 

1.3 Thesis structure 
The thesis’s structure is depicted in Figure 1.1 below. The remainder of this thesis contains 

an introduction of relevant background knowledge, followed by the empirical energy 

measurement of Osmand and an analysis of energy models based on the empirical energy 

measurements and studies surveyed [13-20]. The simulation studies are then presented to 

evaluate our novel prototype. The chapters of the thesis are organised as follows: 
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Chapter 2 gives a detailed background introduction of mobile cloud computing. 

The concept model of mobile cloud computing and its issues are introduced based on the 

existing literature. Furthermore, an overview of the Android platform that is used and 

Chapter 2 Background and Related Work 

Chapter 3 Empirical Energy 

Measurement of a chosen mobile 

  

LCD  GPS CPU 3G 

To identify the energy consumption of non-

cloud-based Osmand and cloud-based 

 

Chapter 4 Analytical Characterization 

on Energy Consumption 

To identify energy models for each mobile 

hardware component 

Energy Model of 

LCD  

Energy Model of 

GPS 
Energy Model of CPU Energy Model of 

3G 

Chapter 5 Evaluation 

Chapter 6 Conclusion and Future Work 

Figure 1.1 - Thesis structure 
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studied in this thesis is presented. Moreover, previous work related to mobile cloud 

computing is presented. 

Chapter 3 presents the methodology of the thesis and the empirical energy 

measurements of the Osmand application in an actual smart phone device. Four hardware 

components (LCD, GPS, CPU and 3G) of the smart phone device involved in Osmand have 

been presented in terms of energy consumption. Each empirical energy measurement shows 

the comparison of non-cloud-based and cloud-based versions of the selected mobile 

application. 

Chapter 4 describes the energy consumption of each hardware component in an 

energy model that is based on the empirical measurements and knowledge from several 

studies [13-20]. Also, the energy efficiency recommendations based on previous 

knowledge and the EESManager are presented. 

Chapter 5 presents the simulation studies of EESManager in different scenarios. 

The comparison of non-cloud-based Osmand, original cloud-based Osmand and cloud-

based Osmand with EESManager are used in the simulation studies to evaluate 

EESManager. A discussion on the performance of EESManager based on the simulation 

results is presented. 

Finally, the findings and results are concluded in Chapter 6. In addition, we suggest 

some possible research directions to advance our prototypes in future work. 
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Chapter 2 Background and Related work 

In this chapter, we give an overview of mobile cloud computing including its concept and 

architecture. The issues of mobile cloud computing are then introduced and bring out the 

research problems. Furthermore, an overview of Android platform which was used in the 

empirical measurement in Chapter 3 and previous related work are presented and discussed 

in details. 

 The remainder of this chapter is organised into three categories: (1) background on 

mobile cloud computing, (2) background on Android, and (3) previous research. In section 

2.1, we give an overview of mobile cloud computing, its concept model and its 

architecture. In addition, this section addresses the issues and concern under mobile cloud 

environment. Section 2.2 describes Android and its architecture. Moreover, mobile 

applications and mobile cloud applications are introduced. Section 2.3 reviews the previous 

work which relates to mobile cloud computing. In section 2.3, it will be divided in to 2 sub-

heading; 1) energy efficient approaches and 2) Measurement study of mobile cloud 

computing. 

2.1 Mobile cloud computing 
In this section, the concept model for mobile cloud computing is presented to analyse 

mobile cloud computing technology and then several architecture models are provided to 

organise mobile cloud computing systems. Afterwards, the partition of applications and 

offloading is explained. Finally, issues regarding mobile cloud computing will be 

discussed. 

2.1.1 Concept model of mobile cloud computing 

We can divide cloud computing services into three types including Infrastructure as a 

Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). However, 

mobile cloud computing is not divided into these three known layers of cloud computing 

services. The main key of mobile cloud computing is to connect the client to the cloud [21]. 
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Moreover, Christensen [22] provided three archetypes of components for the next 

generation of mobile applications including context enablement, REST-based cloud 

computing and the combination of smart mobile devices. These three components form a 

mobile cloud transmission model. The study [21] rebuilt a concept model on vertical view 

as can be seen from Figure 2.1. 

 

Figure 2.1 - Mobile cloud computing concept model. Reprinted from [21] 

The client and the cloud are represented as the left and right entities. There are three 

components between the client and the cloud: the transmission channel, resource 

scheduling and context management. Resource scheduling and context management 

include components of both the client and the cloud. The precondition of this model is 

context-awareness on the client side and it delivers elastic, on-demand services for clients 

on the cloud side. Various wireless transport protocols can be referred to as the 

transmission channel. Resource scheduling components are used to address resources such 

as storage resources, computing resources and so on, which are referred to as the schedule 

resources. For context management, mobile device features are enabled by context to let 

users ascertain additional information from their mobile devices with no need for explicit 

user input. Context parameters can be tracked by context management and adapted to 

modification of context conditions. 
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2.1.2 Architecture of mobile cloud computing 

The organisation systems of mobile cloud computing is referred to as mobile cloud 

computing architecture. Guan, Ke, Song and Song [21] discussed architecture schemes 

containing agent-client schemes and collaborating schemes. 

2.1.2.1 Agent-client scheme 

To help mobile devices overcome restrictions, such as processing power and data storage 

limitations, almost all resources are provided by the cloud side that create an agent for each 

mobile device. The agent is used to communicate between mobile devices and the cloud. 

2.1.2.2 Collaborating scheme 

In this scheme, mobile devices are considered as part of the cloud. The cloud server 

functions may control and schedule collaboration among mobile devices. 

2.1.3 Partition of application and offloading 

In order to achieve the migration and offloading of applications, each application should be 

divided into components and developers should consider resource consumption and data 

dependency of application partition. 

 In the study [23], a two-step approach was presented to partition or divide 

applications between a server and a mobile phone. First, an application’s behaviour is 

represented as a data flow graph. In the second step, this graph finds a partitioning 

algorithm to provide an objective function. There are two types of partitioning algorithms 

that are given. The first type is ALL, which is used for the computed offline partitioning to 

consider different types of mobile phones and network conditions, while the second type, 

K-step, is used for on-the-fly partitioning. A mobile device connects to the server and the 

server provides resources and satisfies requirements issued by the mobile phone. 

 In another study [24], the author presented a two-step Hybrid Application 

Partitioning Strategy. The first step is to partition the workload by using the by-scale 

strategy. The by-scale strategy is used to break down the workload at a certain scale level 

into cluster nodes. The second step is to partition the cluster nodes, which is broken down 
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at a large scale level from the first step, by using the by-region strategy. The by-region 

strategy is used to scan the cluster nodes with the surround nodes. 

Offloading is used to increase the energy efficiency of mobile devices [3] and 

involves sending the processing of mobile devices to powerful machines to perform the 

computation. Making offloading of computation more attractive depends on the amount of 

data transmitted, the amount of performing computations, and the wireless bandwidth 

available. Mobile image processing, for example, which sends images over wireless 

networks to the cloud, uses a significant amount of energy. The study [3] was used in a 

framework of Heterogeneous Network (HetNet) [25] to make the offload decision. The 

offload decision is made taking under consideration the offloading gain and the cost of 

energy. 

In a study conducted by Eduardo Cuervo and colleagues [26], they presented the 

MAUI system, which increases energy efficiency by using fine-grained code offload. At 

the same time, the MAUI system reduces energy waste. The authors proposed three steps. 

The first step is to use code portability from the MAUI system to make two smart phone 

application versions. One of them computes on the mobile device and another version 

computes on the cloud. The second step is to use the combination of programming 

reflection and type safety to find and automatically extract the program state needed. The 

final step is to use the results from step two to determine the cost of network shipping. 

2.1.4 Issues 

There are issues with the mobile cloud computing environment today based on users and 

mobile application developers’ opinions as Hung et al. [27] and Kumar and Lu [3] report. 

2.1.4.1 Energy efficiency of mobile cloud based applications 

Mobile devices are expected to handle many different sizes of data such as videos, speech, 

images and so on with a limitation of bandwidth wireless connection. If a user keeps using 

more extensive and continuous data transferring, the problem of energy efficiency arises 

because wireless network communication consumes the large amount of energy [28]. 

Therefore, offloading cannot always save energy [29]. 



10 
 

A simple model was given by the study [3] to provide energy analysis of 

computation offloading. Suppose a task of computation requires C instructions. M is 

defined as the speed in instructions per second for a mobile device while S is defined as the 

speed in instructions per second for the cloud server. D is defined as bytes of data exchange 

between the cloud server and the mobile device and B is defined as the transmission rate of 

the mobile device. In the mobile device, mobile computation consumes 𝑃𝑐 watts while a 

mobile being idle consumes 𝑃𝑖 watts and a mobile sending and receiving data consumes 𝑃𝑡𝑟 

watts. The mobile device consumes 𝑃𝑐  × (𝐶
𝑀

) watts for performing the computation while 

the server consumes �𝑃𝑖  × �𝑐
𝑠
�� +  �𝑃𝑡𝑟 × �𝐷

𝐵
��watts for performing the computation. So the 

amount of energy saved is 

𝑃𝑐  × �
𝐶
𝑀
� −  𝑃𝑖  × �

𝑐
𝑠
� −  𝑃𝑡𝑟 × �

𝐷
𝐵
� 

Therefore, the mobile device can benefit from offloading when a large amount of 

computation C and a small amount of communication D are present. This model agrees 

with the one in study [4] in which cloud computing was shown to be energy efficient when 

the mobile device can offset the communications energy consumption. As a result, a 

challenge arises when a developer needs to determine an offloading decision in order to 

make a cloud-based application more energy efficient. 

2.1.4.2 The re-design and deployment of applications 

Traditional client-server applications have many advantages in the cloud. However, the 

requirement of application partitioning and deployment of services is to enable fine-grain, 

dynamic client-server collaboration [27]. Moreover, the performance of web applications or 

cloud applications appears to be slower than stand-alone applications due to real-time data 

on an application. For example, a chess game application, which is based on mobile cloud 

computing and needs to send and receive data from the cloud, causes slower performance 

[3]. Additionally, client-server applications reduce effects on the deployment of personal 

applications. Also, the server is owned by someone else and needs to be maintained [27]. 
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2.1.4.3 The condition of network and service availability 

A model of Quality of Service (QoS) is designed basically for high bandwidth and real-

time traffic such as video conference [28]. However, the performance of mobile cloud 

applications depends on the cloud service and wireless network [3, 30, 31]. The quality of 

the network between mobile devices and the cloud depends on latency, bandwidth, etc. It is 

hard to ensure the smoothness of a mobile application especially in poor network 

conditions [28]. For example, in a national park users may not be able to use mobile cloud 

applications for organisation, retrieval or identification of data. It is also difficult to make 

mobile cloud computing available in subways, tunnels and building basements [3, 30, 31]. 

The reliability of the cloud depends on a low number of service outages and high amounts 

of data storage. As an example of a failure of this technology, the mobile Sidekick service 

of T-Mobile and Microsoft crashed and lost customers’ data and contacts [3]. 

 Therefore, the most challenge for wireless network of mobile cloud computing is 

the wireless connectivity which can meet mobile cloud computing requirements with 

respect for scalability, availability and energy efficiency [32]. 

2.2 Android 
Android is a mobile operating system designed for mobile devices such as smart phones, 

tablets and netbooks. The concept and platform was created by Android Inc., and Android 

was bought by Google in 2005. The original goal of Android was to create an operating 

system that was small, easily upgraded and flexible for handsets used in businesses or 

industry. The intended use of Android 1.x and 2.x is for smart phone devices whereas 

Android 3.x is designed for high-end support of tablet computers [33]. 

2.2.1 Architecture and background of Android 

In this section, the Android platform architecture will be discussed to provide an 

understanding of its key concepts. The Android platform stack is divided into three layers 

as you can see in Figure 2.2. Each layer in an Android architecture contains several 

program components and provides different services in each layer [34]. 
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Figure 2.2 - The system architecture of the Android platform. Reprinted from [35] 

2.2.1.1 Linux Kernel 

The Linux Kernel is a base of the whole Android OS. The Linux Kernel is designed to 

stores all the essential mobile hardware drivers. The mobile hardware drivers, which are 

programs, are controlled by the Linux Kernel to communicate with the mobile hardware. 

Moreover, the Linux Kernel is used to take care of the operation of the core system, which 

includes power and memory management, networking, and process management. The 

Linux Kernel can be referred as a layer of abstraction between other software layers and the 

hardware. [34-36] 

2.2.1.2 Libraries 

Libraries in this section are referred to as C/C++ runtime libraries. They run directly on the 

Linux Kernel and make core services (such as display management, video and audio media 

playback, graphics support and so on) available for the Android runtime and applications. 

[34-36] 
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2.2.1.3 The Android runtime 

The Dalvik Virtual Machine (DVM), which is a type of Java Virtual Machine, is the main 

component of the Android runtime and there is a core set of Java libraries and APIs 

supporting the DVM. This means there are detailed documents and open source files for 

application developers to use. Each DVM is located in the process of the Linux Kernel, 

which has priority in the threading of system-level and memory management. The DVM 

can support multi-threading which means that Android applications can be run on its own 

process. [34-36] 

2.2.1.4 Application framework 

The application development is directly supported by the Android application framework. 

It uses the set of Java namespaces and classes to develop an application. The application 

framework provides application developers with a wide Android Manager Provider range 

including namespaces and classes for creating system notifications; managing the 

telephone, camera, acceleration detection, the user interface, etc. [34-36] 

2.2.1.5 Applications 

The top layer in the Android architecture is applications where are installed in an Android 

mobile. The system treats all Android applications and standard Android applications (such 

as SMS application, dialler, web browser and contact manager) and libraries of native code, 

which are able to be called and loaded by the Java Native Interface to develop applications. 

[34-36] 

2.2.2 Mobile applications 

When an application is developed, a developer writes a program in Java. Once an Android 

application is installed, the Android application is located in its security sandbox. So, each 

application can only access the resources that it requires [37]. 

There are four kinds of application components including activities, services, 

content providers and broadcast receivers. In the activity component, an e-mail application, 

for example, displays an e-mail being composed on a mobile screen while the other 

activities may show a list of new e-mails or reading an e-mail. In the service component, it 
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is used to perform the long running operation or work for remote processes. This 

component runs in the background. For example, a user may run a radio application while 

he or she uses another application. In the content provider component, a shared set of 

application data is managed by the content provider [37]. In the broadcast component, a 

reactive object is launched to handle a specific task [38]. 

There are several categories of mobile applications. Applications for general 

information provide mobile users information in a particular area. Applications using 

personal data to login require personal information to access the server. For example, a 

bank account application would require the customer username and password. The 

encryption of this information is required on a channel of communication between the 

mobile device and the bank’s database. Network communication applications provide 

communication between a user and other users. Commercial applications let users purchase 

goods, make payments or engage in other commercial activities. Games entertainment 

applications that users choose to play in their free time [39]. 

2.2.3 Mobile cloud applications 

There are two types of cloud-based applications including web applications(or browser-

based applications) and native applications [40]. 

Browser-based applications involve the access of mobile applications by using a 

native browser. They use standard web technologies such as CSS, HTML and JavaScript to 

execute on the server. The advantages of browser-based applications are that there is no 

need to maintain the server, there is flexibility to run on any platform, there is no need to 

process application approvals and they use the same architecture as traditional web 

applications. However, there are some disadvantages of browser-based applications. For 

example, the network latency can cause poor user experience. Also the graphical interface 

may be of poor quality based on the application or mobile device. Moreover, users do not 

use the applications without a network connection. On the other hand, native applications 

use Java and Android APIs to develop native applications to provide applications that are 

the most flexible and provide the best user experience. Moreover, low-level hardware can 

be accessed. 
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2.2.3.1 Programming concepts 

There are two sides of mobile cloud applications including cloud servers and mobile 

application frameworks. A cloud server is the server-side infrastructure component that is 

in the cloud. Mobile-oriented features (such as real-time push, data synchronisation and so 

on) are provided by the system. There are two programming concepts including the channel 

server and Mobile Service Bean. The channel server is a gateway used to integrate objects 

of on-device models and data with the systems of server-side backend storage. With the 

channel server, developers do not have to worry about low-level state management, 

synchronisation or mobile-oriented issues. The Mobile Service Bean provides a 

request/response service, which is based on a synchronous invocation mechanism [40]. 

In a mobile application framework there are many components designed to support 

applications in terms of mobile data, mobile model-view-controller (MVC) and the mobile 

cloud. For example, data-oriented services such as simple Remote Procedure Calls (RPCs), 

real-time push notifications and data synchronisation are provided by the mobile data 

framework [40]. 

2.3 Previous research 
To easy to understand, we divide previous research in this section into 2 sub-sections which 

are 1) energy efficient approaches and 2) measurement studies of mobile cloud computing. 

2.3.1 Energy Efficient Approaches 

Pathak, Hu and Zhang [41] created an energy profiler for applications on smartphones 

called “eprof”. Eprof’s architecture has three components: code instrumentation and 

logging, power modelling and energy accounting, and profile presentation. Firstly, eprof 

collects processes, threads, subroutines and application system calls. Secondly, it tracks, 

logs and draws back energy activities to smartphone hardware components. Thirdly, eprof 

draws the energy activities matching with the entities responsible for the activities. Eprof 

was used in case studies to understand the energy use by mobile applications. A result of 

using eprof shows that free applications use 65%-75% of energy consumption for third-

party advertisement. 
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Addressing the challenges of energy efficiency of communication on smart phones, 

Sharma, Navda, Ramjee, Padmanabhan and Belding [42] developed Cool-Tether to provide 

energy efficiency on WAN links, which are based on GRPS/EDGE/3G and WiFi radios. 

Firstly, they identified the properties in detail and the specific architectural elements of the 

two main energy components, which are associated with WAN and WiFi links, to be 

addressed in the system design. The Cool-Tether system contains three key components 

including a cloud-based gatherer, an energy-aware striper and a reverse-infrastructure mode 

WiFi LAN. Finally, they evaluated the Cool-Tether system by comparing the system with 

the COMBINE system [43]. The result showed that Cool-Tether can save over 50% of 

energy while on Wi-Fi mode. 

Chun, Ihm and Maniat is [44] presented the design and implementation of the 

CloneCloud system, which chooses parts of an unmodified application that can benefit 

from remote computation to transfer the chosen parts of the unmodified application to the 

cloud. There are two key parts in the design of CloneCloud including partitioning and 

distributed execution. The aim of the partitioning mechanism in CloneCloud is to choose 

which parts of an application’s computation to migrate to the cloud and which parts to run 

locally. To produce a partition, the CloneCloud partitioning framework combines static 

program analysis with dynamic program profiling. CloneCloud uses static analysis to 

identify legal choices for migrating and to locate re-integration points in the code. At the 

code level, CloneCloud transfers only the point at the boundaries of application methods 

and at the virtual machine layer method’s boundaries. The core-system library method and 

the native method boundaries cannot be transferred. For example, a method uses a local 

resource such as a GPS, a microphone or a camera in the mobile device. This method has to 

run locally. Moreover, a method may create and access lower states than a VM and the 

method may share the native state. Therefore, the method has to be collocated with the 

same machine because CloneCloud does not send native states. Moreover, the dynamic 

profiler collects the data that will be used to make a cost model. In this study, execution 

time and energy consumed at the mobile device are used for the cost metric. For the 

execution time cost metric, CloneCloud collects the execution time of methods and 

computes migration costs by simulating migrations at each method. For energy 

consumption, the Monsoon power monitor was used to measure energy providing a model 
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to estimate energy cost. Then, the optimiser aims to choose which method of an application 

to transfer to the clone from a mobile device. Two analysers are used to inform the 

optimisation regarding the methods to be transferred. CloneCloud uses a distributed 

execution mechanism to carry out a specific partition of processes of an application that 

runs inside an application layer virtual machine. The distributed execution uses the thread 

migrator to stop a migrant thread from collecting the migrant thread’s state. Then the thread 

migrator sends the state to the node manager for data transfer. A phone will mark states that 

are migrated to the clone for resuming and merging later. Hence, CloneCloud can increase 

the execution speed and reduce energy consumption. 

Cuervo, Balasubramanian and Cho [26] use the advantages of two approaches in 

their architecture to reduce energy consumption. The first approach addresses how to 

partition a program to be sent to the cloud. Therefore, this approach can reduce power 

consumption. The second approach is to use a virtual machine migration to migrate a 

program to the cloud. Thus, programmers do not to need to change a program to obtain 

advantages from remote execution. MAUI is a system that is placed between applications 

and the server. The MAUI system requires an application to have two versions of a 

program: one for running locally and the other to run on the server. Before the application 

starts computation, MAUI profiles each version of the application and calculates the energy 

cost of each method including CPU and memory cost. The energy cost of transmission over 

the network is also measured including its bandwidth and delay. Information from the 

previous step helps MAUI decide which methods run locally and which methods run on the 

cloud. When the application starts processing, MAUI chooses the best way for each method 

to operate to maximise energy saved. While another approach [45] does not estimate the 

computation time and the energy consumption in an application like MAUI, it lets the 

application run locally within a timeout. If the computation of the application is not 

completed within the timeout period, the computation will be offloaded to the cloud. Given 

the propensity of online mobile games to request constant connectivity and to consume 

high levels of energy, the battery power has become one of the main concerns with smart 

phones.  

Bhojan and Akhihebbal [46] introduced ARIVU to conserve the power consumed 

by the network connection, display and processor of smart phones. ARIVU is a middleware 
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that reduces client’s energy consumption for multiplayer online role-playing and first-

person shooting games without decreasing the quality of game play. ARIVU contains two 

components including the Resource Data Collector (RDC) and the Resource Controller 

(RC). The RDC collects necessary raw data from the client side and samples game states. 

Then the RC uses raw data from the RDC to analyse a client’s game state. 

2.3.2 Measurement studies of mobile cloud computing 

A measurement study [47] found mobile networking technologies such as 3G and WiFi 

used a large amount of energy because of tail energy. Tail energy is energy spent to keep a 

network interface in the same power state after a data transfer is complete. However, if a 

data transfer occurs within the tail time, there is no energy spent. Therefore, TailEnder was 

developed based on the study [47] to reduce energy consumption while still meeting user 

expectations. In e-mail applications, for example, TailEnder schedules a data transfer to 

minimise tail energy. 

Namboodiri and Ghose [4] tried to answer the question of “when is the usage of 

non-cloud-based applications less preferable in terms of energy consumption than cloud-

based applications?” Three types of applications including word processing, multimedia 

and gaming were used in this study. The local word processing application required no 

communications and used local resources for running the application. On the other hand, 

the cloud-based word processing application needed some network connectivity and used 

little local computation. Multimedia applications had two options. The first option was that 

the multimedia application played files remotely from servers over the network. The 

second option was to let the multimedia application download files and store them so they 

could be played when the multimedia application is offline. Finally with game applications, 

the amount of processing required depends on the nature of the game. In this case online 

games involved network communications to support their interactivity requirements. The 

HTC Desire phones were used in this study to run sample applications and the PowerTutor 

[14] tool was used to measure energy consumption. Both WiFi and 3G access were turned 

off for all trials involving device-based (local) applications. The QuickOffice application 

was used as the local word processing application and Google Docs was used as the cloud-

based word processing application. Local video files were played to test a local multimedia 
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application and YouTube ran as a sample of a cloud-based multimedia application. For 

gaming, they used the same game application but for non-cloud-based applications they 

played chess with the computer locally and remotely. The results show that cloud-based 

applications consumed more energy than non-cloud-based applications. Especially, the 

cloud-based multimedia applications were the most energy inefficient because playing an 

online video required significant local processing and communication to send a stream of 

data. They reported that the WiFi interface’s power consumption was significant for cloud-

based applications while non-cloud-based applications turned the WiFi interface off. Then, 

the authors analysed the energy consumption of a device used in their earlier study, which 

provides the factors which relate to the energy consumption of cloud-based applications 

and non-cloud-based applications. They discovered that cloud-based application scans were 

more energy efficient than non-cloud-based applications if the decreased local computation 

can offset the energy consumption of network communications. Furthermore, they found 

that the energy consumption of CPU execution has to be bigger than the energy 

consumption of network connectivity to be energy efficient. Next, the authors introduced 

GreenSpot, which is an algorithm, designed to help mobile devices to choose cloud or non-

cloud versions to run an application. First, GreenSpot checks the available versions of the 

application. If only one version is available, GreenSpot uses that version. If both versions 

are available, GreenSpot evaluates the two options to select the most energy efficient one 

for the application. 

Lagerspetz and Tarkoma [48] analysed and measured the trade-off between mobiles 

and the cloud for mobile search and from the point of view of energy use. They developed 

a mobile search and synchronisation application based on the Dessy project [49]. A 

collection of files is read or indexed by the mobile search and synchronisation application. 

This method allows the application to search for key words in files. Cloud technologies 

make indexing faster and achieve more accurate search results. Also, the results showed 

that cloud technologies improved the energy use in mobile devices. In Kumar and Lu’s 

paper [3], they explained offloading, which is used to increase the amount of energy saved 

in mobile devices. The concept of offloading involves sending the processing of mobile 

devices to a powerful machine to perform the computation. This can result in a high level 

of energy efficiency. They examined energy consumption from offloading by carrying out 
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a simple analysis. A chess game and an image processing application were used as 

examples to test offloading. They used a formula that they developed to measure energy 

consumption. As a result the chess game serves as an example of the advantages of 

offloading when the amount of computation is very large while the amount of bytes 

exchanged between the server and the mobile system is small. Therefore, the attractiveness 

of offloading of computation depends on the amount of data being transmitted and the 

amount of computation required; the wireless links and transmission use most of the 

energy. Mobile image processing, for example, which sends images over a wireless 

network to the cloud, uses large amounts of energy.  
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Chapter 3 Empirical Measurement 

In previous chapter, we reviewed the partition of application and offloading which involved 

energy efficiency on mobile devices. In this chapter, we have proposed results of the 

empirical measurement of energy consumption on mobile hardware components of our 

chosen mobile application. Due to the empirical measurement, the results of energy 

consumption in each mobile hardware component contain collected data from the non-

cloud-based version and the cloud-based version of our chosen application. The first two 

results which are energy consumptions of LCD and GPS have the similar trend of 

consuming energy in both versions. However, the last two results of energy consumption 

which are CPU and 3G communication show different trend in the two versions. CPU and 

3G communication of the cloud-based version have the larger amount of energy 

consumption compared with the non-cloud-based version. 

The remainder of this chapter is organised as follows. Firstly we will explain a 

chosen Android application, which is Osmand, for this empirical measurement under 

consideration and its characteristics. Osmand in general, non-cloud-based Osmand and 

cloud-based Osmand will be proposed to understand nature of Osmand and how it works. 

Next, the methodology of the empirical measurement will be described. The existing 

technologies which were used in the empirical measurement will be also defined. Finally 

results of the measurement study on a smart phone running an Android platform will be 

shown. 

3.1 Osmand: Map & Navigation 
In this empirical measurement, one particular navigation application was chosen to study 

in-depth because there is no navigation application has been studied before and useful 

information from in-depth study can explain how the navigation application consumes 

energy. Osmand (Open Street Map Automated Navigation Directions) running on an 

Android mobile platform [50] was chosen as our testing application (from the view point of 

energy efficiency) because Osmand is a popular open source navigation project on Google 
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code for Android and BlackBerry developers [51]. Osmand is a step-by-step navigation 

application that has been downloaded by more than 6,000 people worldwide on their smart 

phones [52, 53]. Also Open Street Map(OSM) map databases, which is created and 

provided free geographic data to everybody [54, 55] are used to display maps in Osmand, 

and they can be stored on a local device’s memory card. Moreover, Osmand provides 

offline and online modes for finding route results. Therefore, we can compare the energy 

efficiency of non-cloud-based Osmand and cloud-based Osmand as the main functions in 

Osmand can work in both offline and online modes. To use Osmand, a user clicks on the 

Osmand icon on a mobile screen. Then the Android system shows Osmand on the screen as 

you can see in Figure 3.1. There are four buttons: Map, Search, Favorites and Settings. The 

user can click on the Search button to start looking for a route to a particular destination or 

choose the Map button to show the user’s current position on the map.  

 

Figure 3.1 - Osmand’s main menu 
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Figure 3.2 - Osmand’s sub-menu 

Next the user can choose a search button in a sub-menu to choose the destination 

address as you can see from Figure 3.2. After the user selects a destination using the Search 

button on the main menu or the sub-menu, Osmand starts searching for a route from the 

user’s current position, which is referred to in this study as the starting point of the trip. The 

method used to find a route result differs depending on navigation services. When the result 

is found, it is overlaid on the map. 

Osmand has offline and online modes for its navigation services. We call offline 

mode in Osmand as non-cloud-based Osmand while online mode is called cloud-based 

Osmand. Here below are the explanations of non-cloud-based and cloud-based Osmands. 

3.1.1 Non-cloud-based Osmand 

A user can use offline mode of Osmand by changing Osmand’s navigation service at 

Setting Menu. Offline mode or we call it as non-cloud-based Osmand uses the ‘OsmAnd’ 

utility as its navigation service. This utility uses the A* algorithm approach and the A* 

algorithm calculates the moving cost between the starting point and the destination point 
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[56, 57]. First, the algorithm calculates the moving cost (by based on the destination point) 

between the starting point and nodes which surround the starting point. Then the algorithm 

chooses the lowest moving cost from the starting point to one of the surrounding nodes (we 

refer it as node A). Then the algorithm, again, calculates the moving cost between node A 

and nodes which surround node A. The algorithm repeats this process until reaching the 

destination point. More detail about how A* algorithm work will be in section 4.3. When a 

result is found, Osmand overlay the result on the map. 

3.1.2 Cloud-based Osmand 

A user also can change to use online mode by changing Osmand’s navigation service at 

Setting Menu. Online mode or we call it as cloud-based Osmand uses CloudMade as its 

navigation service. Cloud-based Osmand works by sending a request file to search a route 

that contains the coordinates of the particular starting point and destination point to 

CloudMade on this url [58]. Then, CloudMade processes the result and sends it back to the 

local device. Osmand in the local device parses the result and shows on the mobile screen. 

3.2 Methodology 
Experimental methodology was considered to take part in the empirical measurement (in 

Chapter 3) as its methodology because the concept of experimental methodology is to find 

relationship between factors in a subject [59, 60]. Strong evidence is provided by using the 

experimental methodology for causal interpretations [61]. Thus, doing experimental 

methodology can provide answers of Research Question 1 (What are the characteristics of a 

cloud-based application on the battery draining of smart phone devices compared to a non-

cloud-based application by using existing technologies and tools?) with proof of results 

from experiment that are able to explain the characteristics of a cloud-based application in a 

smart phone device which causes energy used. Moreover, we considered simulation 

methodology to be used in the evaluation in Chapter 5 to answer Research Question 3 

(What are the results of comparing the energy use of the device-based application vs. the 

cloud-based application using a simulation environment?) because hypotheses which are a 

cloud-based prototype build using energy efficient recommendations in this thesis can be 

tested by simulation to save the cost and time [62]. Simulation methodology is the use of a 
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mathematical/logical model to test the performance of a new system without the use of the 

system in the real world [63-67]. 

 In Chapter 3, experiments in the empirical measurement were designed using an 

approach of energy profilers for smart phones [41]: the energy inside applications is 

explored by using three steps. In the first step, we tracked and recorded application’s 

activities for further analysis, and in the second step, the energy activities of the smart 

phone’s hardware components are tracked. Thirdly, collected data from the previous two 

steps are correlated for further analysis. The collected data can allow determining the 

causes of energy waste from applications’ activities and smart phone hardware 

components. 

 In the first step, Logcat [68, 69] is used in the empirical measurement to profile and 

collect applications’ activities. The Android logging system (also called Logcat) was 

developed to collect and view the system debug output of Android applications including 

error messages and messages that developers write from applications. To use Logcat, we 

need to set up the Android development environment in Eclipse which is a multi-language 

software development tool [70, 71] first. Eclipse can be written in many languages such as 

Java, PHP, Perl, Ruby and so on. The easiest way to set up the Android development 

environment is to download the Eclipse IDE with built-in Android Developer Tools (ADT) 

which is a plug-in for Eclipse [72]. ADT contains Android Software Development Kit 

(Android SDK) with the API libraries and the essential developer tools which are included 

Logcat and Traceview [73]. 
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Figure 3.3 - DDMS with Logcat 

Logcat can be used from the Dalvik Debug Monitor Server (DDMS) in Eclipse as it 

seen in Figure 3.3 which shows a screenshot of DDMS with Logcat when a smart phone is 

connected to a computer. DDMS is a debugging tool which provides Android developers 

the system debug output (from Logcat), heap usage for a process, tracking memory, the 

network traffic and so on [74]. 

In the second step, it is to track the energy activities of the smart phone’s hardware 

components.  In the study [13, 26], Monsoon [75] was used to measure energy in smart 

phones. Monsoon is the power monitor hardware which works together with Power Tools 
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software to give an energy measurement for mobile devices. However, Monsoon costs 

$771 USD and a buyer has to be responsibility for shipping cost, tax, and export charges. 

This will be costly for the thesis. Moreover, the measurement results from Monsoon do not 

show energy consumption of each hardware components in a smart phone [76]. 

Fortunately, there is an alternative way to measure energy consumption in a smart phone. 

The study [13] developed an Android application names ‘PowerTutor’ which has energy 

models based on experimental results from Monsoon the power monitor. Also, the study 

[4] used PowerTutor to measure energy consumption of Android applications. Therefore, 

PowerTutor was used in the second step to track the energy activities of the smart phone’s 

hardware components. 

 

Figure 3.4 - Screenshots of PowerTutor 

PowerTutor [14] is an Android application that is used to collect energy 

consumption statistics for hardware components including CPU, 3G, LCD and GPS for 

Android applications. There are a few states for each smart phone hardware component that 

cause energy consumption. Information of energy consumption is given by PowerTutor in 

term of Watt per second. The power model of LCD displays [13], for example, is 

determined by the brightness level and whether it is in the on or off state.GPS is measured 

by the power states of the GPS device, which include active, sleep and off states. Figure 3.4 

shows screenshots of PowerTutor; the screenshot on the left side is the main menu of 
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PowerTutor, while the screenshot in the middle shows the energy consumption by 

displaying various charts and the screenshot on the right side shows the energy 

consumption as a pie chart. However, in the energy measurement results from PowerTutor, 

PowerTutor does not determine which threads in the CPU component consume energy. 

Hence, Traceview is used to perform energy accounting of an application and find out 

which CPU threads cause energy consumption and energy waste [41]. In Traceview, 

execution logs and application performance are profiled and shown as a graphic, a timeline 

panel and a profile panel [77, 78]. 

 

Figure 3.5 - Screenshot of Traceview timeline panel 

 

Figure 3.6 - Screenshot of Traceview profile panel 

Figure 3.5 shows the timeline panel of the traffic usage of an application. On the 

left side, there are names of threads such as the main thread, the sensor thread, etc., which 

are shown on separate rows. Bars on the right side next to the names of threads are thread 

executions. Each bar shows the methods that are used for the thread. Also, each method has 

its own colour and in Figure 3.6, it shows the profile panel, which displays the time usage 

for each method. 
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A Samsung Galaxy Nexus smart phone was used in this measurement study. It has a 

Dual-core 1.2 GHz Cortex-A9 as its CPU and runs on Android platform version 4.2.2 

which is also called Jelly Bean [79]. The smart phone tested had Osmand and PowerTutor 

installed. The phone also needed to connect with a computer installed with Eclipse IDE and 

built-in ADT before collecting data to use Logcat [74]. 

3.3 Measurement Results 
Here are the results of experiments on a smart phone in the empirical measurement using 

the method that we mentioned in section 3.2. As mentioned earlier, the only differences 

between non-cloud-based and cloud-based Osmand are their navigation services and how 

these services find route results. We refer to finding route results as the “calculating route” 

activity.  

 

Figure 3.7 - Energy usage of hardware components of non-cloud-based Osmand 

Non-cloud-based Osmand uses OsmAnd as its navigation service and OsmAnd uses 

the A* algorithm [56, 57] to find route results. Therefore, energy consumption of hardware 

components in non-cloud-based Osmand involves the CPU, LCD and GPS while 3G was 
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turned off as can be seen in Figure 3.7. On the other hand, cloud-based Osmand uses 

CloudMade as its navigation service and network communication is needed for cloud-based 

Osmand to receive route results from CloudMade. So, energy consumption of hardware 

components in cloud-based Osmand involves the CPU, 3G, LCD and GPS as can be seen 

in Figure 3.8. 

 

Figure 3.8 - Energy usage of hardware components of cloud-based Osmand 

3.3.1 LCD energy consumption 

For this measurement, the tested smart phone was set at full brightness; Figure 3.7 shows 

the energy used for hardware components of the non-cloud-based Osmand. At second 4 and 

onwards, Osmand begins working and displays on the mobile screen. As a result, the LCD 

consumes 900mW per second to display Osmand on the screen. Moreover, Figure 3.8 

shows the energy used for hardware components of cloud-based Osmand. Osmand starts 

working and is shown on the screen at second 3, so the LCD consumes 900mW per second. 

Therefore, LCDs in non-cloud-based Osmand and cloud-based Osmand consume the same 
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amount of energy to display the application. When Osmand stops working or the tested 

smart phone is in the sleep mode, the LCD consumes 0mW per second. 

3.3.2 GPS energy consumption 

As shown in Figure 3.7 (non-cloud-based Osmand), from seconds 19 to 22, a user selects to 

show their current position on a map. During this interval in the active state, the GPS 

consumes 429mW per second. Then after second 22, the user selects the search button to 

look for a destination and as Osmand does not need coordinates for this function, the GPS 

moves to the sleep state and consumes 173mW per second. As it is not being used at this 

point, the GPS stays in that sleep state for five seconds before it turns off. When non-cloud-

based Osmand starts navigating, the GPS switches to the active state and consumes 429mW 

per second from second 47 onwards as you can see in Figure 3.7.  

As seen in Figure 3.8 (cloud-based Osmand), from seconds 26 to 30, Osmand 

shows the user’s current position on a map. This causes the GPS to consume 429mW per 

second to detect the coordinates. Next at seconds 31 to 64, Osmand uses the search 

function and does not need the GPS, so the GPS switches to the sleep state and then it turns 

off. When the navigation starts working at second 65, the GPS turns on and consumes 

429mW per second.  

As seen in Figures 3.7 and 3.8, the GPS consumes similar amounts of energy in the 

non-cloud-based and cloud-based Osmands.  

3.3.3 CPU energy consumption 

First, CPU energy consumption of non-cloud-based Osmand will be explained and then 

CPU energy consumption of cloud-based Osmand will follow. 

3.3.3.1 CPU energy consumption of non-cloud-based Osmand 

In the calculating route activity for non-cloud-based Osmand, the CPU consumes varying 

amounts of energy from 500mW to 1500mW depending on the complexity of the map 

between the starting point and destination point as it can be seen in Figure 3.9. 
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(a)                                                                         (b) 

Figure 3.9 - Potential routes between starting points and destination points 

In Figure 3.9(a), the starting point is on Parliament Street and the destination point 

is the New World supermarket in Victoria Park. Moreover, the route distance between on 

Parliament Street and the New World supermarket is 2.38km. The CPU of non-cloud-based 

Osmand consumes about 1412mW for calculating route activity of Figure 3.9(a).  

However, in Figure 3.9(b), the destination point is changed to Greenlane Hospital 

and the starting point is the same point as Figure 3.9(a). In addition, the route distance from 

on Parliament Street to Greenlane Hospital is 6.97km. The CPU of non-cloud-based 

Osmand consumes approximately 599mW for calculating route activity of Figure 3.9(b). 

From the finding, the route in Figure 3.9(a) is shorter than the route in Figure 3.9(b) 

but calculating route activity of Figure 3.9(a) uses the larger amount of CPU energy 

consumption than calculating route activity of Figure 3.9(b). It is because the route in 
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Figure 3.9(a) has more possible ways from the starting point to the destination point than 

the route in Figure 3.9(b). Therefore, CPU in Figure 3.9(a) has heavier computation to 

search for the route than CPU in Figure 3.9(b). It can be concluded that the complexity of 

maps affects the amount of CPU energy consumption. 

 

Figure 3.10 - Timeline panel of each thread’s execution of non-cloud-based Osmand 
for calculating route activity 

The CPU execution is logged by Traceview while PowerTutor measures energy 

consumption. The CPU execution logs correspond to the calculating route activity in Figure 

3.9. The left side of Figure 3.10 shows the threads referring to the calculating route activity 

of non-cloud-based Osmand. The bar charts next to the threads show the traffic of thread 

usages. 

When an Android application starts working, a thread of execution called the 

“main” is automatically created by the system for the application. The main thread’s role is 

to dispatch events to the suitable user interface widgets. Additionally, the main thread 

communicates the application to components of the Android UI toolkit [80]. Thus, there is 

heavy traffic during the main thread’s execution. Furthermore, the calculating route thread 

of non-cloud-based Osmand in Figure 3.10 performs in a local device. This requires heavy 

computation and there is a lot of usage traffic. After the calculating route thread begins the 

searching route process, a loader map object thread is launched to prepare data objects to 

display on the mobile screen. Also, a garbage collection thread is created due to the heavy 

computation load in the three previously mentioned threads. 
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The energy consumptions of each thread were calculated by estimating call counts 

or CPU utilization per routines [41, 81] from Traceview. Drawing data from Traceview in 

Figure 3.10, the energy consumption of each thread in the calculating route activity of non-

cloud-based Osmand is summarised in Figure 3.11. 

 

Figure 3.11 - Energy consumption of each thread in the calculating route activity of 
non-cloud-based Osmand 

Figure 3.11 shows a summary of the thread energy usage during the calculating 

route activity of non-cloud-based Osmand. Due to the heavy computation required to 

search for a route result, the calculating route thread accounts for approximately 37.8% of 

total CPU energy consumption. This supports our finding in Figure 3.9 that the complexity 

of maps influences the amount of CPU energy consumption. Also, the main thread 

accounts for about 33.5% of total CPU energy consumption is to create events for Osmand. 

While non-cloud-based Osmand searches for route results, the loader map object starts 

preparing map objects for overlay on the map. This accounts for approximately 19.5% of 

total CPU energy consumption. Due to the heavy computation required in these three 

threads, the garbage collection thread is used to reclaim memory that is no longer in use; it 

accounts for 4.4% of total CPU energy consumption. The sensor thread, which uses GPS to 

detect the user’s location, accounts for 0.2% of total CPU energy consumption. 
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Hence, the calculating route thread of non-cloud-based Osmand was analysed more 

in-depth to determine which functions involved energy consumption of the calculating 

route thread in Figure 3.12. 

 

Figure 3.12 - Energy consumption of functions involved in the calculating route 
thread of non-cloud-based Osmand 

The navigation service ‘OsmAnd’ for non-cloud-based Osmand uses the A* algorithm [56, 

57], so the calculating route thread is computation intensive. As a result, the searching 

route result function accounts for over 80% of the total energy of the calculating route 

thread, while the loading data function accounts for about 18.8% of the total energy of the 

calculating route thread. 

3.3.3.2 CPU energy consumption of cloud-based Osmand 

In the calculating route activity of cloud-based Osmand, the CPU uses the range energy 

consumption between 900mW and 2300mW. Two examples from our measurement results 

show that the CPU of cloud-based Osmand consumes 2250mW for calculating route 

activity from Parliament Street to the New World supermarket in Victoria Park as seen on 

Figure 3.9(a). Additionally, the CPU of cloud-based Osmand consumes 1509mW for 
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calculating route activity from Parliament Street to Greenlane Hospital, which is the route 

displayed on Figure 3.9(b). 

Our study shows that the CPU of cloud-based Osmand consumes more energy that 

the CPU of non-cloud-based Osmand, which consumes only 599mW to find a route result 

from Parliament Street to Greenlane Hospital and 1412mW to find a route result from 

Parliament Street to the New World supermarket in Victoria Park.  

Thus, Traceview becomes useful for studying the execution threads inside CPU 

when PowerTutor cannot inform the execution thread inside the CPU. Traceview can 

profile execution logs and application performance, which are shown as a graphic. 

 

Figure 3.13 - Timeline panel of each thread’s execution of cloud-based Osmand in the 
calculating route activity 

The CPU execution logs correspond to the calculating route activity of cloud-based 

Osmand, which is shown in Figure 3.13. The left side of Figure 3.13 shows the threads that 

are used in the calculating route activity of cloud-based Osmand. The bar charts next to the 

threads show the thread traffic usages. 

As cloud-based Osmand sends the task of searching route results to CloudMade, 

there is a smaller amount of traffic usage for the calculating route thread compared with 

traffic usage in the calculating route thread of non-cloud-based Osmand in Figure 3.10. The 
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traffic usage of the calculating route thread is only at the start when cloud-based Osmand 

sends a request file to CloudMade to search for route results and at the end when cloud-

based Osmand receives route results back from CloudMade and parses the results. On the 

other hand, the main thread and the loader map object thread work the same as the threads 

of non-cloud-based Osmand. From the Traceview data in Figure 3.13, we can summarise 

the energy consumption of each thread in the calculating route activity. 

 

Figure 3.14 - Energy consumption of each thread in the calculating route activity of 
cloud-based Osmand 

Figure 3.14 shows the summary of thread energy usage of the calculating route 

activity of cloud-based Osmand. The main thread accounts for the largest amount of energy 

consumption—approximately 67.7% of the total CPU energy use of cloud-based Osmand. 

The loader map object accounts for about 21%, while the calculating route thread accounts 

for only 7.5% of the total CPU energy consumption. The sensor thread, which relates to the 

GPS and the other threads, consumes 3.6% and 0.2%. 

In the calculating route activity of cloud-based Osmand, the main thread consumes 

more energy and functions differently than the main thread of non-cloud-based Osmand. 
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Therefore, the main thread and the calculating route thread were analysed in-depth to 

compare them with non-cloud-based Osmand as it seen in Figure 3.15. 

 

Figure 3.15 - Energy consumption of functions related to the main thread 

The main thread of cloud-based Osmand accounts for 86.4% of the total energy 

consumption of the main thread for creating and displaying event on the mobile screen. The 

button event accounts for 8% of the total energy consumption while the system sensor 

function accounts for about 4.7%. The other functions only account for 0.9%. From this 

information, we can summarise that programming and source code make Osmand's display 

function in cloud based Osmand consume the large amount of energy and cause energy 

inefficiency for cloud-based Osmand. However, this is out of our study scope, so we do not 

study further in application side to improve display function of cloud-based Osmand. 

Next, the calculating route thread will be analysed in-depth as seen in Figure 3.16. 
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Figure 3.16 - Energy consumption of functions involved in the calculating route 
thread 

As cloud-based Osmand uses the navigation service CloudMade, there is a small 

amount of energy used for the calculating route thread and loading the route result function 

accounts for 62.3% of the total energy consumption of the calculating route thread. 23.3% 

is used for calculating and parsing a route result function, while the network connection 

(which is 3G communication in this study) accounts for 13.6%. The other functions 

consume 0.8%. 

3.3.3.3 Summary 

Based on the results of the empirical measurement, the complexity of maps has influence 

on the CPU energy consumption of non-cloud-based Osmand because non-cloud-based 

Osmand uses A* algorithm [56, 57] for calculating route activity which makes heavy 

computation for CPU of non-cloud-based Osmand. As a result, this causes the energy 

consumption of CPU for non-cloud-based Osmand. On the other hand, cloud-based 

Osmand has less computation for calculating route activity because cloud-based Osmand 

has CloudMade processes the calculating route activity for cloud-based Osmand. However, 

the CPU of cloud-based Osmand consumes more energy than the CPU of non-cloud-based 
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Osmand because the main thread in the calculating route activity of cloud-based Osmand 

uses a large amount of energy to generate and display maps on the mobile screen. As a 

result, the CPU of cloud-based Osmand is more energy in-efficient than the CPU of non-

cloud-based Osmand. 

3.3.4 3G communication energy consumption 

Cloud-based Osmand requires network connection to send a request file to CloudMade and 

receive a route result back from CloudMade. Hence, 3G communication energy 

consumption is considered as another factor that causes energy consumption in cloud-based 

Osmand. However, 3G communication does not apply to non-cloud-based Osmand as a 

factor which causes energy consumption. 

 

Figure 3.17 - Energy usage of CPU and 3G communication of cloud-based Osmand 
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Figure 3.17 shows the results of the CPU and 3G communication energy usage of 

cloud-based Osmand. Based on Figure 3.17, cloud-based Osmand loads a map and shows a 

user’s location from seconds 8 to 27. Between seconds 28 and 32, the user searches for a 

destination address. Cloud-based Osmand sends a request file to CloudMade at second 33 

and it consumes 570mW to send the file. After sending the request file and with no other 

files arriving, the 3G interface still consumes 570mW per second until second 37. Next, the 

energy consumption of the 3G interface drops to 401mW. At second 40, cloud-based 

Osmand receives the route result back from CloudMade, and this consumes 570mW. Then, 

the 3G interface consumes 570mW per second for another 4 seconds without file 

transmitting. Next, the 3G interface consumes 470mW for another 6 seconds. Finally, the 

3G interface consumes 10mW per second at second 51. As a result from Figure 3.17, the 

3G interface consumes over 5000mW for network transfers. More explanation about how 

3G consumes energy will be in the section 4.4. 

3.3.5 Summary 

The results from our measurement study found that both non-cloud-based Osmand and 

cloud-based Osmand consume the same amount of energy for the GPS and LCD 

components. For CPU of non-cloud-based Osmand, the complexity of maps is a factor that 

causes the CPU energy consumption. However, the CPU of cloud-based Osmand uses more 

energy compared with the CPU of non-cloud-based Osmand because of the main thread use 

over 60% of the total energy to create and display events on the mobile screen. 

Additionally, 3G communication causes cloud-based Osmand to consume over 5000mW 

for network transfers. 
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Chapter 4 Analytical Characterization on 

Energy Consumption 

In previous chapter, we showed results of the empirical energy measurement on mobile 

hardware components of non-cloud-based Osmand and cloud-based Osmand. In this 

Chapter we formulate the analytical models to characterise the energy consumption of each 

mobile hardware component involved in the earlier empirical measurement (LCD, GPS, 

CPU and 3G). Then, knowledge from the analytical models of CPU and 3G is used to 

design the energy efficient recommendations and EESManager is developed based on the 

recommendations to improve energy efficiency on cloud-based Osmand and a local device. 

The remainder of this chapter is organised as follow. The LCD energy model will 

be firstly analysed and explained how PowerTutor gets the LCD energy consumption in 

section 3.3.1 and follow by the GPS energy model. Next, the CPU energy model will be 

described and also we will explain how A* algorithm affects the CPU energy consumption 

of non-cloud-based Osmand based on the results of the previous empirical measurement. 

Then, we will analyse and explain the overview of the 3G communication energy model. 

Furthermore, we will give 5 possible 3G communication energy models of file transmission 

for cloud-based Osmand. Finally, the energy efficient recommendations and EESManager 

will be presented. 

4.1 LCD energy model 
In the section 3.3.1 in Chapter 3, the LCD energy consumption from the empirical 

measurement was presented. In this section, we explain how PowerTutor [13, 14] measures 

the LCD energy consumption in a smart phone. The LCD power model is measured from 

the on or off state of the LCD and the brightness level of the LCD. Let 𝐸𝐿𝐶𝐷 be the energy 

consumption of the LCD of a smart phone device and it can be written down as shown in 

Table 4.1. 
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Table 4.1 - The LCD power model, Adapted from Zhang, Tiwana, et al. [13] and 
PowerTutor’s source code [17, 19, 20] 

Model 𝐸𝐿𝐶𝐷 =  𝐿𝐶𝐷𝑜𝑛 ×  (𝛽𝑏𝑟𝑖𝑔ℎ𝑡 × 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝛽𝑏𝑎𝑐𝑘𝑙𝑖𝑔ℎ𝑡) 

Category System variable Range Power coefficient 

LCD 

𝐿𝐶𝐷𝑜𝑛 0,1 n.a 

Brightness 0-255 
𝛽𝑏𝑟𝑖𝑔𝑛𝑡 : 2.40276 

𝛽𝑏𝑎𝑐𝑘𝑙𝑖𝑔ℎ𝑡 : 287.9606 

 

Where 𝐿𝐶𝐷𝑜𝑛 is the state of LCD. When 𝐿𝐶𝐷𝑜𝑛 is 1, it means LCD is in the on state 

otherwise it is in the off state. 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 is the brightness level of the LCD mobile screen 

which can range from 0 to 255, while 𝛽𝑏𝑟𝑖𝑔𝑛𝑡 and 𝛽𝑏𝑎𝑐𝑘𝑙𝑖𝑔ℎ𝑡 are power coefficients of the 

LCD power model. 

From the measurement results of LCD energy consumption in Chapter 3 (section 

3.3.1), we set the tested smart phone at full brightness. So, 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 is 255 for the 

brightness level and we can calculate LCD energy consumption by using the LCD energy 

model as below: 

𝐸𝐿𝐶𝐷 =  𝐿𝐶𝐷𝑜𝑛  ×  (𝛽𝑏𝑟𝑖𝑔ℎ𝑡 × 𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 + 𝛽𝑏𝑎𝑐𝑘𝑙𝑖𝑔ℎ𝑡) 

𝐸𝐿𝐶𝐷 = 1 × (2.40276 × 255 +287.9606) 

𝐸𝐿𝐶𝐷 = 900.6644mW 

4.2 GPS energy model 
In the section 3.3.2 in Chapter 3, we presented the GPS energy consumption from the 

empirical measurement. In this section, we explain how PowerTutor [13, 14] measures the 

GPS energy consumption in a smart phone. PowerTutor uses a GPS power model, which is 

influenced by GPS states: the on state, the sleep state and the off state. However, the 

number of satellites available or the signal strength has a small influence on energy 
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consumption. Let 𝐸𝐺𝑃𝑆 be the GPS energy consumption of a smart phone device and we 

can write it down as shown in Table 4.2: 

Table 4.2 - The GPS power model, Adapted from Zhang, Tiwana, et al. [13] and 
PowerTutor’s source code [16, 19, 20] 

Model 𝐸𝐺𝑃𝑆 =  (𝛽𝐺𝑜𝑛 × 𝐺𝑃𝑆_𝑜𝑛) + ( 𝛽𝐺𝑠𝑙𝑒𝑒𝑝 × 𝐺𝑃𝑆_𝑠𝑙𝑒𝑒𝑝) 

Category System variable Range Power coefficient 

GPS 
GPS_on 0,1 𝛽𝐺𝑜𝑛: 429.55 

GPS_sleep 0,1 𝛽𝐺𝑠𝑙𝑒𝑒𝑝: 173.55 

 

Where GPS_on is the on state of GPS and GPS_sleep is the sleep state. When 1 means that 

the state is active and 0 means that the state is inactive. The GPS energy model has 𝛽𝐺𝑜𝑛 

and 𝛽𝐺𝑠𝑙𝑒𝑒𝑝 as its power coefficient. 

From the measurement results of the GPS energy consumption in Chapter 3 (section 

3.3.2) when the GPS is used to show a user’s current position on Osmand, we can calculate 

the GPS energy consumption by using the GPS energy model as below: 

𝐸𝐺𝑃𝑆 =  (𝛽𝐺𝑜𝑛 × 𝐺𝑃𝑆_𝑜𝑛) + ( 𝛽𝐺𝑠𝑙𝑒𝑒𝑝 × 𝐺𝑃𝑆_𝑠𝑙𝑒𝑒𝑝) 

𝐸𝐺𝑃𝑆 = (1 ×429.55) + (0 ×173.55) 

𝐸𝐺𝑃𝑆 = 429.55mW 

If Osmand does not need coordinates from the GPS, the GPS changes to the sleep state and 

it consumes energy as we can calculate below: 

𝐸𝐺𝑃𝑆 = (0 ×429.55) + (1 ×173.55) 

𝐸𝐺𝑃𝑆 = 173.55mW 

If there is no need for coordinates while the GPS is in the sleep state for six seconds, the 

GPS moves to the off state [16, 19, 20]. 
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4.3 CPU energy model 
In the section 3.3.3 in Chapter 3, the CPU energy consumption from the empirical 

measurement was presented. In this section we explain how PowerTutor [13, 14] measures 

the CPU energy consumption in a smart phone. 

PowerTutor measures the CPU energy consumption influenced by CPU utilisation 

and CPU frequency using the system frequency file in the /sys file system [13, 15]. Table 

4.3 indicates the CPU power model used in PowerTutor and the variables in Table 4.3 

show the difference of power use of the CPU during active and idle states. Let 𝐸𝐶𝑃𝑈 be the 

CPU energy consumption of a smart phone device and it can be written down as shown in 

Table 4.3: where 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦ℎ is the high level of the CPU frequency while 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑙 is 

the low level of the CPU frequency. Utilization in CPU can range in between 1 and 100, it 

has 𝛽𝑢ℎ and 𝛽𝑢𝑙 as its power coefficients for the high and low levels of utilization. CPU 

consumes 𝛽𝐶𝑃𝑈 mW when CPU is in the on state. Therefore, the CPU energy consumption 

can be calculated by using the CPU energy model. 

 

Table 4.3 - The CPU power model, Adapted from Zhang, Tiwana, et al. [13] and 
PowerTutor’s source code [13, 15, 19, 20] 

Model 𝐸𝐶𝑃𝑈 = (𝛽𝑢ℎ × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦ℎ + 𝛽𝑢𝑙 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑙) × 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

+ 𝛽𝐶𝑃𝑈 × CPU_on 

Category System variable Range Power coefficient 

CPU 

Utilization 1-100 𝛽𝑢ℎ: 4.3388 

𝛽𝑢𝑙: 3.4169 

frequencyl 

frequencyh 

0,1 

0,1 
n.a. 

CPU_on 0,1 𝛽𝐶𝑃𝑈: 121.46 
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In the empirical measurement, we found that the CPUs in non-cloud-based and 

cloud-based Osmands have different energy consumption for the calculating route activity 

because non-cloud-based Osmand performs on a local device whereas cloud-based Osmand 

performs in the cloud. So, CPU energy consumption while calculating route activity will be 

the focus of this analysis, because non-cloud-based and cloud-based Osmands share the 

same functions in other activities. Therefore, there is no difference in CPU energy 

consumption with other activities. 

For non-cloud-based Osmand, the complexity of maps has influence on the CPU 

energy consumption of non-cloud-based Osmand as it can be seen in section 3.3.3.1 

because non-cloud-based Osmand uses the A* algorithm approach to search for a route 

result. So we will explain how A* algorithm works to understand how the complexity of 

maps involves the CPU energy consumption. The A* algorithm calculates the moving cost 

between the starting point and the destination point [56, 57]. 

 

Figure 4.1 - Introduction of A* algorithm approach, Adapted from Lester [57] 

Figure 4.1 shows how the A* algorithm works. Let A be a starting point and B a 

destination point, and the blue block is a wall that separates A and B. The algorithm finds a 

route from A to B by using path scoring. Assume that the path scoring uses the following 

equation: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)  

where 𝑔(𝑛) is the cost of moving from A to any node n, while ℎ(𝑛) is the estimated 

cost of moving from node n to the destination, which is referred as B in Figure 3.3. On the 
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other hand, 𝑓(𝑛) is calculated by adding 𝑔(𝑛) and ℎ(𝑛). For the next step, the A* 

algorithm uses Equation 1 as a key to determine the shortest path by starting from A. 

 

Figure 4.2 - Path scoring of the A* algorithm approach adapted from Lester [57] 

Figure 4.2 shows the process of scoring the path of the A* algorithm. As seen in 

Figure 4.2, there are eight squares surrounding the starting point A. Let us assign 𝑔(𝑛) of 

the horizontal and vertical squares a cost of 10 and 𝑔(𝑛) of the diagonal squares a cost of 

14, while ℎ(𝑛) can be estimated by calculating the distance to destination point B by 

moving only horizontally and vertically. For example, in the square that contains letters G, 

H and F, 𝑔(𝑛) is 10 and ℎ(𝑛) is 30. Therefore, 𝑓(𝑛) is 40 for the square. 

In the next step, the algorithm chooses the lowest score of 𝑓(𝑛) from all eight 

squares surrounded starting point A. In Figure 4.2, the square that has 𝑓(𝑛)equal to 40 is 

chosen as the next node; we refer to this as node1. Then the eight squares surrounding 

node1 are calculated to find 𝑓(𝑛). However, if we look at Figure 4.2, there is a blue wall 

next to node1. So, the algorithm does not calculate 𝑓(𝑛) and ignores the wall. Afterwards, 

node2, which has the lowest F value, is chosen and the process will be repeated until it 

reaches destination point B. 
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Figure 4.3 - Path determining of the A* algorithm approach, Adapted from Lester 
[57] 

Figure 4.3 shows how the A* algorithm approach determines the shortest path. This 

process starts from destination point B and moves backward by choosing the lowest F value 

from one node to the next, which will take the route back to starting point A as you can see 

from Figure 4.3. From the A* algorithm, we can conclude that the A* algorithm influences 

heavy computation for calculating route activity which causes the CPU energy 

consumption in non-cloud-based Osmand. This supports in our finding in section 3.3.3.1 in 

Chapter 3 that more than 80% of energy consumption of the calculating route thread in 

non-cloud-based Osmand was used for searching a route result. On the other hand, only 

7.5% of the CPU energy consumption of cloud-based Osmand was involved in the route 

searching process. 

4.4 3G communication energy model 
As cloud-based Osmand uses CloudMade as its navigation service, cloud-based Osmand 

requires wireless network communications. For our empirical measurement, we used 3G 

communications. The 3G power model, which is used in PowerTutor [13] is influenced by 

the data rate between a local device and the cloud, and the size of transmitted files. 

However, signal strength is not considered in the 3G power model [13].  
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Let 𝐸3𝐺  be the energy consumption of 3G communications of a smart phone device 

and we can write it down as shown in Table 4.4: 

Table 4.4 - The 3G communication power model, Adapted from Zhang, 
Tiwana, et al. [13] and PowerTutor’s source code [14, 18-20] 

Model 𝐸3𝐺 = �𝛽3𝐺𝑖𝑑𝑙𝑒 × 3𝐺𝑖𝑑𝑙𝑒� + �𝛽3𝐺𝐹𝐴𝐶𝐻 × 3𝐺𝐹𝐴𝐶𝐻� + (𝛽3𝐺𝐷𝐶𝐻
× 3𝐺𝐷𝐶𝐻) 

Category System variable Range Power coefficient 

3G 

Data rate 0-∞ n.a. 

Size of files 0-∞ n.a 

3𝐺𝑖𝑑𝑙𝑒 0,1 𝛽3𝐺_𝑖𝑑𝑙𝑒: 10 

3𝐺𝐹𝐴𝐶𝐻 0,1 𝛽3𝐺_𝐹𝐴𝐶𝐻: 401 

3𝐺𝐷𝐶𝐻 0,1 𝛽3𝐺_𝐷𝐶𝐻: 570 

 

Where 3𝐺𝑖𝑑𝑙𝑒 is the IDLE state, 3𝐺𝐹𝐴𝐶𝐻 is the FACH state of the 3G interface which has 

the 3G interface sharing a channel of communication to the base station and the data rate 

for this state is only a few hundred bytes per second [13], and 3𝐺𝐷𝐶𝐻 is the DCH state of 

the 3G interface which uses high-speed data rates for network transmission [13]. Moreover, 

𝛽3𝐺_𝑖𝑑𝑙𝑒, 𝛽3𝐺_𝐹𝐴𝐶𝐻 and 𝛽3𝐺_𝐷𝐶𝐻 are power coefficients for those states. 

From the measurement results of the 3G communication energy consumption in 

Chapter 3 (section 3.3.4) when there is no file transmitting over the network, the 3G 

interface stays in the IDLE state. It can be calculated energy consumption for this state as 

below: 

𝐸3𝐺 = �𝛽3𝐺𝑖𝑑𝑙𝑒 × 3𝐺𝑖𝑑𝑙𝑒� + �𝛽3𝐺𝐹𝐴𝐶𝐻 × 3𝐺𝐹𝐴𝐶𝐻� + (𝛽3𝐺𝐷𝐶𝐻 × 3𝐺𝐷𝐶𝐻) 

𝐸3𝐺 = (10 × 1) + (401 × 0) + (570 × 0) 

𝐸3𝐺 = 10mW 
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If there is a file presented and we assume that the 3G interface moves to the FACH state. 

We can calculate energy consumption as below: 

𝐸3𝐺 = (10 × 0) + (401 × 1) + (570 × 0) 

𝐸3𝐺 =401mW 

On the other hand, if the 3G interface moves, the energy consumption is shown as below: 

𝐸3𝐺 = (10 × 0) + (401 × 0) + (570 × 1) 

𝐸3𝐺 = 570mW 

 

Figure 4.4 - 3G power states (From Zhang, Tiwana, et al. [13]) 

Figure 4.4 shows how PowerTutor works and measures 3G communication energy 

consumption. The 3G communication power model from Table 4.4 and Figure 4.4 is based 

on the size of files. Before 3G communication energy consumption of cloud-based Osmand 

is explained, the parameters that are used for explaining 3G communication energy 

consumption of cloud-based Osmand using the 3G power model are listed in Table 4.5. 

Table 4.5 - 3G power model parameters for cloud-based Osmand 

Symbol Meaning 

𝑡𝑖𝑚𝑒𝐷𝐶𝐻 Tail time of the DCH state 

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 Tail time of the FACH state 

𝐸3𝐺  3G communication energy consumption 

𝐸𝑖𝑑𝑙𝑒 Energy consumption while in the IDLE state 

𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 The energy consumption of sending a request file 

𝐸𝑟𝑒𝑠𝑢𝑙𝑡 The energy consumption of receiving a route result file 
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𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 The sizes of a request file 

𝑠𝑖𝑧𝑒𝑟𝑒𝑠𝑢𝑙𝑡 The sizes of a route result file 

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 The size of the state transition threshold 

 

As seen in Figure 4.4, when the 3G interface does not have any files transferred 

over the network it remains in the IDLE state and consumes 10mW per second. If there is a 

file sent over the network to a mobile and the file size is less the state transition threshold 

or 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the 3G interface enters the FACH state and consumes 401mW per second 

to receive the file until the 3G interface finishes the transmission. However, if the file is 

bigger 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the 3G interface enters the DCH state and consumes 570mW per 

second. In the DCH state, the 3G interface uses high-speed data rates for communication 

activities [13], so it consumes more energy than when in the FACH state. 

When the 3G interface finishes its task and there is no activity required, the 

interface stay in the same state for fixed periods of time. We call this “tail energy” which is 

the energy spent to keep hardware components—in this case the 3G interface—in the same 

power state after finishing their task [13, 41, 47]. For example, the 3G interface is in the 

DCH state while sending a file. When the interface finishes its task, and if there is no file to 

send or to receive for Inactivity Timer 2 or 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 seconds, the 3G interface changes to 

the FACH state. The interface remains in that state for Inactivity Timer 1 or  

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds and if there is still no activity present, the 3G interface returns to the 

IDLE state. If there is a file presented while the 3G interface stays in the DCH state, there 

is no energy cost of the 3G communication for this file. On the other hand, if a file that is 

bigger than 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is presented to the 3G interface while tail energy forces the 3G 

interface to stay in the FACH state, the interface will enter the DCH state and the interface 

consumes 570mW for file transmission. However, if the file is less than 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, there 

is no energy cost. This finding supports the measurement study [47] that when a smart 

phone sends the next packet within tail time, there is no cost of transmission and no tail 

energy penalty. The recommendation of the measurement study [47] is to use multiple 

transfers to minimise tail energy. 
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For cloud-based Osmand, it works by sending a request file that contains a starting 

point, a destination point and an intermediate location list to CloudMade and this consumes 

𝐸𝑠𝑒𝑛𝑑𝑖𝑛𝑔. Next CloudMade searches for a route result. When this is complete, CloudMade 

sends the route result back to the local device and this process consumes 𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔. The 

local device then calculates and parses the result into a step-by-step route that is overlaid on 

a map. So, there are two files involved in this process— the request file and the route result, 

and these files cause 3G communication energy consumption. 

Based on our study, the size of route results or 𝑠𝑖𝑧𝑒𝑟𝑒𝑠𝑢𝑙𝑡 is always bigger than  

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Thus the 3G interface consumes 570mW per second to receive the route 

results, and we can express the 3G communication energy consumption in the case of 

cloud-based Osmand as: 

𝐸3𝐺  =  𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 + �𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡�401

+ �𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑡𝑖𝑚𝑒𝐷𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡�570 + 𝐸𝑖𝑑𝑙𝑒 

(1) 

Based our study, we can illustrate five main models of 3G communication energy 

usage as seen in Figures 4.5 to 4.9.  

 

Figure 4.5 - Model 1 
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Figure 4.5 shows the energy used for 3G communications for model 1 when a 

request file or 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is less the state transition threshold or 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a route 

result is sent back within 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds, where (a) is the energy consumed to send the 

request file to CloudMade, (b) is the energy consumption of the tail energy for the FACH 

state, (c) is the energy consumed to receive the route result from CloudMade, (d) is the 

energy consumption of the tail energy for the DCH state, and (e) is the energy consumption 

of the tail energy for the FACH state and then the cellular interface enters the IDLE state. 

We can express the 3G communications energy consumption from Figure 4.5 using 

formula(1), where 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 represents the energy consumption of (a), 𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 0 

because 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is in the FACH state, and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 < 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻because the route result 

is transferred back to cloud-based Osmand within 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds. This also means 𝐸𝑖𝑑𝑙𝑒 

is 0mW. Cloud-based Osmand receives the route result from CloudMade, and it consumes  

𝐸𝑟𝑒𝑠𝑢𝑙𝑡, which is referred to as (c). 𝑡𝑖𝑚𝑒𝐷𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 is  

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻. Therefore, 3G communications energy consumption is expressed: 

𝐸3𝐺  =  𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 + �𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻�401 + (𝑡𝑖𝑚𝑒𝐷𝐶𝐻)570 (2) 

 

Figure 4.6 - Model 2 

Figure 4.6 shows the energy used for 3G communications for model 2 when  

𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is less than 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a route result is sent back after 
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𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds, where (a) is the energy consumed to send the request file to CloudMade 

or 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡, (b) is the energy consumption of the tail energy for the FACH state, (c) is the 

energy consumed to receive the route result from CloudMade or 𝐸𝑟𝑒𝑠𝑢𝑙𝑡, (d) is the energy 

consumption of the tail energy for the DCH state, and (e) is the energy consumption of the 

tail energy for the FACH state and then the cellular interface enters the IDLE state. 

We can use formula(1) to express the 3G communications energy consumption 

shown in Figure 4.6, where 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is referred as (a) because 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is less than 

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑; 𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 0 because 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is in the FACH state while 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 because cloud-based Osmand receives the route result from CloudMade after 

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds, which consumes 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 to receive the result. Also 𝐸𝑖𝑑𝑙𝑒 is addressed in 

the 3G communications energy consumption because the transmission of the route result 

happens after 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds, so the 3G interface enters the IDLE state before 

continuing. 𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 is  

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻. Therefore, 3G communications energy consumption is expressed as formula(3): 

𝐸3𝐺  =  𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 + �𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻�401 + (𝑡𝑖𝑚𝑒𝐷𝐶𝐻)570

+ 𝐸𝑖𝑑𝑙𝑒 
(3) 

 

Figure 4.7 - Model 3 
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Figure 4.7 shows the energy used for 3G communications for Model 3 when  

𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡is bigger than 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a route result is sent back within 

𝑡𝑖𝑚𝑒𝐷𝐶𝐻, where (a) is the energy consumed to send the request file to CloudMade or 

𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡, (b) is the energy consumption of the tail energy for the FACH state, (c) is the 

action of receiving the route result from CloudMade but the energy cost of this action or  

𝐸𝑟𝑒𝑠𝑢𝑙𝑡 does not appear due to the benefit of the tail energy, and (d) is the energy 

consumption of the tail energy for the FACH state and then the cellular interface enters the 

IDLE state. 

We can use formula(1) to express the 3G communications energy consumption 

from Figure 4.7, where 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is referred as (a) because 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is bigger than  

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 while 

𝐸𝑟𝑒𝑠𝑢𝑙𝑡 is 0 because of a tail energy advantage and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is  

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻. On the other hand, there is no 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 or 𝑡𝑖𝑚𝑒𝐷𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 because 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 does not 

occur. Hence, we can show the 3G energy consumption of Model 3 as: 

𝐸3𝐺  =  𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + (𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻)401 + (𝑡𝑖𝑚𝑒𝐷𝐶𝐻)570 (4) 

 

Figure 4.8 - Model 4 
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Figure 4.8 shows the energy used for 3G communications for Model 4 when  

𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is bigger than 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The cellular interface enters the DCH state. 

Osmand receives a route result within 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds. (a) is the energy consumed to 

transfer the request file, (b) is the energy consumption of the tail energy for the DCH state, 

(c) is the energy consumption of the tail energy for the FACH state, (d) is the energy 

consumed to receive the route result, (e) is the energy consumption of the tail energy for 

the DCH state, and (f) is the energy consumption of the tail energy for the FACH state and 

then the cellular interface enters the IDLE state. 

We can explain the energy consumption of 3G communications shown in Figure 4.8 

using formula(1), where 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡represents the energy consumed to transfer the request file 

or (a). 𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 < 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 because the route result is 

transferred back to cloud-based Osmand within 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds. Thus, 𝐸𝑖𝑑𝑙𝑒 is 0mW and 

cloud-based Osmand receives the route result from CloudMade, which consumes 𝐸𝑟𝑒𝑠𝑢𝑙𝑡. 

𝑡𝑖𝑚𝑒𝐷𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 is 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻. Therefore, 3G communications energy 

consumption is formulated as: 

𝐸3𝐺  =  𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 + �𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻�401

+ (2 × 𝑡𝑖𝑚𝑒𝐷𝐶𝐻)570 
(9) 

 

Figure 4.9 - Model 5 
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Figure 4.9 shows the energy used by 3G communications when 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 

bigger than 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a route result is sent back after  

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds. So the 3G interface enters the IDLE state, and (a) is the energy 

consumed to send the request file to CloudMade, (b) is the energy consumption of the tail 

energy for the DCH state, (c) is the energy consumption of the tail energy for the FACH 

state and then the 3G interface enters the IDLE state, (d) is the energy consumed to receive 

the route result from CloudMade, (e) is the energy consumption of the tail energy for the 

DCH state, and (f) is the energy consumption of tail energy for the FACH state and then the 

cellular interface enters the IDLE state. 

We can explain the energy consumption of 3G communications as shown in Figure 

4.9 using formula(1) where 𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is represented as the energy consumed to transfer the 

request file or (a). 𝑡𝑖𝑚𝑒𝐷𝐶𝐻
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 because the route 

result is transferred back to cloud-based Osmand after 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 seconds. Thus, 𝐸𝑖𝑑𝑙𝑒 is 

considered in the 3G communications energy consumption. Cloud-based Osmand receives 

the route result from CloudMade, which consumes 𝐸2. 𝑡𝑖𝑚𝑒𝐷𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 is 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 and 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻𝑟𝑒𝑠𝑢𝑙𝑡 

is 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻. Therefore, 3G communications energy consumption is expressed as: 

𝐸3𝐺  =  𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡 + 𝐸𝑟𝑒𝑠𝑢𝑙𝑡 + (2 × 𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻)401 + (2 × 𝑡𝑖𝑚𝑒𝐷𝐶𝐻)570

+ 𝐸𝑖𝑑𝑙𝑒 

(11) 

Then we calculated the 3G communications energy consumption in the five case 

studies in Table 4.6. 

Table 4.6 - 3G communications energy consumption for five models 

Models 

Size of request file Time when receiving route result 

Energy spent 

(mW) 
< 

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

> 

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Within 

𝑡𝑖𝑚𝑒𝐹𝐴𝐶𝐻 

after 

sending a 

request file 

Within  

𝑡𝑖𝑚𝑒𝐷𝐶𝐻 

after 

sending a 

request file 

After 

being 

idle 

1      5657 - 8063mW 
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2      8063mW + 𝐸𝑖𝑑𝑙𝑒 

3      5826 – 8106mW 

4      8507 – 

10512mW 

5      10512mW + 

𝐸𝑖𝑑𝑙𝑒 

 

Based on the results from the measurement study, the 3G interface consumes at 

least 5600mW to search for a route result. It uses only 971mW to transmit a request file and 

route result over the network and the rest of the 3G communications energy consumption is 

tail energy. 

4.5 Designing a recommendation prototype 
The goal of this study was to make recommendations for improving the energy efficiency 

of cloud-based Osmand and a local device. Based on the empirical measurement and the 

analytical characterization on energy consumption in the previous section in this chapter, 

our first recommendation for cloud-based Osmand is that a route result should be allowed 

to transfer over the network if it is within 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 to minimise tail energy. In this study, 

we set 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 as 4 seconds. This recommendation is based on the finding from our 

empirical measurement and the study [11]. However, if 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 is over before the route 

result is transferred, cloud-based Osmand should switch to offline mode to continue 

searching for the route result and reduce 3G communication energy consumption. If cloud-

based Osmand searches the route result on a local device, it needs to consider the 

complexity of maps because from our empirical measurement, we found that the 

complexity of maps affects the CPU energy consumption. Thus, if the map between a 

starting point and destination point is complex, the CPU computation by the local device is 

heavier compared with a simple map. This is explained by Figure 4.10. 
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(a)                                                                   (b) 

Figure 4.10 - The complexity of maps 

Figure 4.10 models the complexity issue of maps. Assume A is a starting point and B is a 

destination point. The map in Figure 4.10(a) is simple because the map only contains a 

block between A and B. Thus, routes between A and B can be only two ways and if using 

path scoring of the A* algorithm [12-13] to find the shortest route from A to B, the 

computation is not heavy. On the contrary, a map such as Figure 4.10(b) is complex due to 

the 16 blocks between A and B. This makes CPU in a local device calculates more, which 

causes more CPU energy consumption, to find the shortest route because there are so many 

possible routes from A to B that are necessary to calculate. Hence our second 

recommendation is to allow a route result to be transferred over the network if a map is 

complex. This recommendation would reduce the CPU energy consumption of cloud-based 

Osmand in cases of complex maps. 

4.5.1 EESManager 

An Energy Efficient Scheduling Manager or EESManager was developed using the two 

recommendations mentioned above. We designed EESManager for Osmand and it works 

using an online feature, a map and a delay of route results. The conditions below are 

checked and a determination is made whether switching to an offline feature or not uses 
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less energy consumption. The parameters used in device side algorithm and cloud side 

algorithm are listed in Table 4.7. 

Table 4.7 - EESManager algorithm parameters 

Symbol Meaning 

𝑡𝑖𝑚𝑒𝐷𝐶𝐻 Tail time of the DCH state 

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 The size of the state transition threshold 

𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 The sizes of a request file 

𝑠𝑖𝑧𝑒𝑟𝑒𝑠𝑢𝑙𝑡 The sizes of a route result file 

𝑛𝑜𝑑𝑒𝑚𝑎𝑝 Number of nodes on a map between a starting point and a destination point 

𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 
The minimum number of nodes on a map between a starting point and a 

destination point that make a map complex 

 

Device side algorithm 

1:    if Osmand uses online feature Then 

2:        Get 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 and 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 

3:    if 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 < 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑then 

4:            put the 3G cellular interface in the DCH state 

5:        end if 

6:        Send the request file and 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 to CloudMade 

7:        if Osmand does not receive a route result within 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 seconds 

8:            if 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 < 𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 then 

9:                Osmand use offline feature 

10:           else 

11:               Start receiving the route result from CloudMade 
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12:           end if 

13:        end if 

Cloud side algorithm 

1:    if receive a request file and 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 from Osmand Then 

2:        compute a route result 

3:        if the route result is not sent within 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 seconds then 

4:            if 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 < 𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 then 

5:                stop processing 

6:            else  

7:        send the route result 

12:           end if 

13:        end if 

 

The device side algorithm of EESManagerstarts by a user using Osmand. The 

device side algorithm of EESManager checks which version of Osmand is being used. If 

Osmand uses an online feature, the EESManager algorithm is used. If not, Osmand uses an 

available offline feature.  

The next phase of the device side algorithm of EESManager is used to obtain 

parameter values to perform cloud-based Osmand. A request file and a route result assign 

𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 and 𝑠𝑖𝑧𝑒𝑟𝑒𝑠𝑢𝑙𝑡. From the empirical measurement, we found that 𝑠𝑖𝑧𝑒𝑟𝑒𝑠𝑢𝑙𝑡 is 

always bigger than the state transition threshold, 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is dependent on coordinates of 

the starting point and destination point, and an intermediate list. We assign  

𝑛𝑜𝑑𝑒𝑚𝑎𝑝 as the numbers of nodes on a map between a starting point and a destination 

point. If 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 is greater than 𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥, it means that the map is complex. If 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 

is less than 𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥, the map is not complicated. The request file is sent to CloudMade 

and if 𝑠𝑖𝑧𝑒𝑟𝑒𝑞𝑢𝑒𝑠𝑡 is smaller than the state transition threshold, EESManager switches the 
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3G cellular interface to the DCH state. If the route result is not completed within  

𝑡𝑖𝑚𝑒𝐷𝐶𝐻 seconds, there are two options from which to choose: First if 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 is less than 

𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥, Osmand switches to an offline feature. Second if 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 is bigger than 

𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥, Osmand continues to receive the route result from CloudMade. 

At the same time, the cloud side algorithm of EESManager begins with CloudMade 

receiving a request file from Osmand. Then the cloud side algorithm of EESManager lets 

CloudMade find a route result. If the route result is completed within 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 seconds, 

CloudMade sends the route result back to Osmand. If not, EESManager chooses from two 

options: if 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 is less than 𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥, CloudMade stops processing. If 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 is 

greater than 𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥, CloudMade sends the route result back to Osmand. 
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Chapter 5 Evaluation and results 

In this chapter, we report on an extensive simulation evaluation of the EESManager by 

using Android Emulator [82]. The proposed EESManager will be validated and evaluated 

through different navigation scenarios for its performance on improving energy efficiency 

for local devices. We compare the results of original cloud-based Osmand and cloud-based 

Osmand with the EESManagerin different navigation scenarios to determine whether the 

EESManager can improve energy efficiency of cloud-based Osmand and save energy 

consumption for local devices. The simulation evaluation has confirmed that the better 

energy efficiency of cloud-based Osmand with EESManager by comparing to the original 

cloud-based Osmand and EESManager also helps a local device reducing CPU energy 

consumption.  

The remainder of this chapter is organised as follows. Firstly we will explain a 

simulation environment which is Android emulator. Also, simulation configuration, the 

emulator control of network and the geo location provider emulation are presented to 

understand how Android emulator was configured. Next, the simulation methodology of 

this evaluation will be described. The existing technologies which were used in the 

evaluation will be also defined. Finally results of the evaluation on the Android emulator 

and summary of the results will be shown. 

5.1 Simulation environment 
In Chapter 5, simulation methodology is used to evaluate EESManager because testing the 

hypothesis with simulation can save us time and money. So, we used an Android emulator 

[82] for the simulation environment because the Android emulator has similar Android 

smart phone environment compared to other simulation tools.  

The Android emulator was used to simulate and evaluate EESManager, which is a 

virtual mobile device emulator that can run on computers. Android developers can use the 

emulator without using a real Android smart phone device to test, develop and prototype 

Android applications. When a developer runs a testing application on the emulator, the 
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service of the Android platform can be used by the Android emulator to invoke other 

applications or use Android features such as playing audio and video, or storing and 

retrieving data. Debug capabilities are also included in the emulator, so developers can 

simulate the interruptions of an application, and study the effects of network latency and 

package lost on the data network. Therefore, all the hardware and software features of a 

typical mobile device are included in the Android emulator.  

5.1.1 Simulation configuration 

To set up the simulation environment, here is a list of requirements; 1) Java 1.6, 2) Eclipse 

IDE with built-in ADT (Android Develop Tools), 3) Android NDK, 4) Osmand and 5) 

PowerTutor. First to run the Android emulator, Java 1.6 and Eclipse IDE with built-in ADT 

[72] are needed to be installed in a target computer. The Android emulator is provided by 

the Android Software Development Kit (Android SDK) [83, 84] which is in Eclipse IDE 

with built-in ADT. Next, Osmand is required the Android SDK platforms of Android 1.6 

(API 4) and Android 2.2 (API 8) [85] which can be downloaded in Android SDK Manager 

as seen in Figure 5.1. Then, the Android emulator also requires an Android Virtual Device 

which is a configuration of Android emulator that can let a developer models and creates a 

configuration of an actual device included hardware and software options [86]. In this 

simulation, we used Android Virtual Devices Manager (AVD Manager) [87] to create an 

Android virtual device as seen in Figure 5.2. 
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Figure 5.1 - The screenshot of Android SDK Manager 

 

Figure 5.2 - AVD Manager 
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In this evaluation, the simulation was run on Ubuntu 12 Operating System because 

Osmand can be downloaded easily using repositories in Ubuntu. Ubuntu is based on the 

Linux kernel in desktop environment and it is under a free and open source software license 

[88] and Ubuntu contains the majority of software packages which are under a free 

software license. Repositories are referred as software archives that store Ubuntu programs 

and repositories provide a high level of security while repositories install new software 

onto Ubuntu using network connection [89]. In this thesis, Osmand was downloaded using 

command line below 

$ repoinit-u git://github.com/osmandapp/OsmAnd-manifest.git 
$ repo sync 
 

 

Figure 5.3 - Android emulator with Osmand icon on the screen 

Then, Osmand was imported to Eclipse’s workspace and Osmand can run through 

the Android emulator as seen in Figure 5.3. Moreover, PowerTutor is needed to be installed 

in the Android emulator to collect the energy consumptions of hardware components of 
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Osmands. PowerTutor can be found and downloaded at [90]. To install PowerTutor, we 

opened the terminal and typed “directory” where platform-tools folder in Android SDK 

tools is and used the command line below 

adb install PowerTutor.apk 
 

Finally, the simulation which has Osmand and PowerTutor installed in the Android 

emulator was run to evaluate EESManager. In addition, the Android emulator provides 

navigation and control keys. The mapping between the emulator keys and the keys of a 

keyboard is summarised in Table 5.1. 

Table 5.1 - The mapping of emulator keyboard (Adapted from [82]) 

Emulated Device Key Keyboard Key 

Home HOME 

Menu (left softkey) F2 or Page-up button 

Star (right softkey) Shift-F2 or Page Down 

Back ESC 

Call/dial button F3 

Hang-up/end call button F4 

Search F5 

Power button F7 

Audio volume up button KEYPAD_PLUS, Ctrl-F5 

Audio volume down button KEYPAD_MINUS, Ctrl-F6 

Camera button Ctrl-KEYPAD_5, Ctrl-F3 

Switch to previous layout orientation (for 

example, portrait, landscape) 

KEYPAD_7, Ctrl-F11 

Switch to next layout orientation (for 

example, portrait, landscape) 

KEYPAD_9, Ctrl-F12 

Toggle cell networking on/off F8 
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Toggle code profiling F9 (only with -trace startup option) 

Toggle full screen mode Alt-Enter 

Toggle trackball mode F6 

Enter trackball mode temporarily (while 

key is pressed) 

Delete 

DPad left/up/right/down KEYPAD_4/8/6/2 

DPadcenter click KEYPAD_5 

Onion alpha increase/decrease KEYPAD_MULTIPLY(*) / KEYPAD_DIVIDE(/) 

5.1.2 Using the emulator console 

The Android emulator supports varied options and developers can use those options to 

control behaviour or appearance of an application when the emulator is launched. A control 

console is provided in each emulator and developers can connect and use the console for 

simulation. Before using the emulator control console, the path needs to be set up. Firstly, a 

developer opens the terminal and types “directory” where Android SDK tools is as it can be 

seen from Figure 5.4. 

 

Figure 5.4 - Setting up path for the emulator control console 

Next, the console of the target emulator is needed to connect as you can see from Figure 

5.5. 

 

Figure 5.5 - Command for connecting the target console 

Then, the terminal shows a result as can be seen from Figure 5.6. 
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Figure 5.6 - The result of connecting the target console 

5.1.1.1 Network emulation 

We needed to simulate the network connection between Osmand based on a mobile device 

and CloudMade, so network conditions affect directly the environment simulation. The 

Android emulator console can be used for checking the network status, delay and speed, 

and simulating network conditions [82]. 

A developer can simulate various network latency levels by using the Android 

emulator. Therefore, an application can be tested in more typical condition environments. 

A latency level or range can be set at emulator start up or the developer uses the emulator 

console to change the latency level while the emulator is running the application [82]. 

In this simulation, we set the latency level at the emulator control console after the 

console shows the result of connecting the console as can be seen in Figure 5.6. The 

netdelay command with a supported <delay> value from Table 5.2 is used when the 

emulator is running a test application and the developer connects to the emulator control 

console. Here is command that we used: 

network delay umts 

Table 5.2 - The format of network <delay> (numbers are in milliseconds), Adapted 
from [82] 

Value Description Comments 

Gprs GPRS (min 150, max 550) 

Edge EDGE/EGPRS (min 80, max 400) 

Umts UMTS/3G (min 35, max 200) 
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None No latency (min 0, max 0) 

<num> Emulate an exact latency (milliseconds)   

<min>:<max> Emulate a specified latency range (min, 

max milliseconds) 

  

 

5.1.1.2 Geo Location Provider Emulation 

We also needed to set the geo location in Osmand to run the simulation environment. The 

Android emulation provides the geographic location by using the emulator control. The 

easiest way to put a GPS coordinate location is, firstly, to click Window -> Open 

Perspective -> Other. The Open Perspective Window will be shown as you can see in 

Figure 5.7 and then DDMS is selected. The DDMS window is shown. 

 

Figure 5.7 - Open Perspective 
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Figure 5.8 - Location Controls in Emulator Control Tab 

From DDMS, we choose the Emulator Control Tab and scroll down to Location 

Controls. Longitude and latitude must be put in the boxes marked with a red square in 

Figure 5.8. When the developer clicks the send button, Osmand will show the longitude 

and latitude from Location Controls on the screen as seen in Figure 5.8. 

The Android emulator helps developers to test an application without using an 

actual Android smart phone device. However, the emulator still has limitations and it does 

not support some functions used in the actual device. Below is a list of the functional 

limitations [82]. 

The Android emulator has no support for: 

• Calling and answering real phone calls 

• USB connections 
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• Device-attached headphones 

• Ascertainment of network connected state 

• Ascertainment of battery charge level and AC charging state 

• Ascertainment of SD card insert/eject 

• Bluetooth 

 

5.2 Simulation methodology 
We only focus on improving cloud-based Osmand, so evaluation will be the comparison of 

original cloud-based Osmand and cloud-based Osmand with EESManager. Original cloud-

based Osmand and cloud-based Osmand with EESManager were used to run simulations 

on the Android emulator 10 times for each chosen route for each version of Osmand. We 

chose our chosen routes under conditions of distances and complexity of maps. Hence, 

there are four routes chosen for simulations which were:  

• Map scenario 1 which is from Wynyard Quarter to the Hilton Hotel which is 

represented a short distance and simple map, 

• Map scenario 2 which is from Orakei Yacht Sales to Mission Bay Beach which is 

represented a long distance and simple map, 

• Map scenario 3 which is from the Statesman Apartment to Auckland’s Central 

Library which is represented a short distance and complex map, 

• And map scenario 4 which is from Andrew Simms Chrysler Jeep Dodge to 

Greenlane Clinical Centre which is represented a long distance and complex map. 

To collect results of these evaluations, the PowerTutor [14], which was installed in 

the Android emulator, was used to measure CPU and 3G energy consumption, while 

Logcat [68, 69], which is part of the Eclipse IDE with built-in Android Developer Tools 

(ADT) was used to record Osmand’s activities. The matching data from both PowerTutor 

and Logcat will show the results of EESManager’s performance. 

 Moreover, in the simulation we make some assumptions as seen in Table 5.3: we 

define 𝑡𝑖𝑚𝑒𝐷𝐶𝐻 as four seconds and a map is treated as a complex map if  

𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 contains more than 25 nodes between a starting point and a destination point. 
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The complexity of maps is explained by an example from Figure 4.7 in Chapter 4. 

Moreover, 𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is assumed as 270 bytes. 

Table 5.3 - Parameters of simulation 

Symbol Meaning assumptions 

𝑡𝑖𝑚𝑒𝐷𝐶𝐻 Tail time of the DCH state 4 second[13, 18-20] 

𝑛𝑜𝑑𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥 

The minimum number of nodes on a map 

between a starting point and a destination point 

that make a map complex 

25 nodes 

𝑠𝑖𝑧𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 The size of the state transition threshold 270 bytes [13, 18-20] 

5.3 The results 

 

Figure 5.9 - Map scenario 1 from Wynyard Quarter to the Hilton Hotel 
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As shown in Figure 5.9, the route in this scenario starts at Wynyard Quarter and 

ends at the Hilton Hotel. In this study a complex map is considered as a map that contains 

more than 25 nodes between a starting point and a destination point. The map in Figure 5.9 

contains 21 nodes. EESManager will enforce the use of the local device if a route result is 

not found and sent to the local device within four seconds. However, if a route result is sent 

back within four seconds, EESManager will let the local device receive the route result. 

The starting point in this simulation is determined to be 0.853kilometres away from the 

destination. Thus, this scenario presents the map which is simple and has short distance. 

The analysis was based on the collected data for this simulation is shown in Figure 5.10. 

 

Figure 5.10 - Results of testing with a starting point of Wynyard Quarter and end 
point of the Hilton Hotel 

As shown in Figure5.10 are the results of testing between non-cloud-based Osmand, 

original cloud-based Osmand and cloud-based Osmand with EESManager. Results show 

that on average 3G communication energy consumption can be decreased approximately 

4000mW by using EESManager compared with the original cloud-based Osmand, but it 

causes cloud-based Osmand with EESManager to consume more CPU energy than the non-

cloud-based Osmand and the original cloud-based Osmand by 445mW for non-cloud-based 

Osmand and just over 1050mW for original cloud-based Osmand. As a result, EESManager 
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can save energy consumption nearly by 30% compared with original cloud-based Osmand 

in this scenario. 

 

Figure 5.11 - Map scenario 2 from Orakei Yacht Sales to Mission Bay Beach 

As shown in Figure 5.11, a simulation route is run from Orakei Yacht Sales as a 

starting point to Mission Bay Beach as a destination point. The map in Figure 5.11 has 

eight nodes. If CloudMade cannot find a route result within four seconds, a local device is 

used by EESManager instead of CloudMade. On the other hand, the local device will 

receive the route result if CloudMade sends the result back within four seconds. The route 

result is determined to be 2.93kilometers in length. Hence, this scenario is represented a 

simple map which has long distance than the map in Figure 5.9. Results from collected data 

for this simulation are shown in Figure 5.12. 
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Figure 5.12 - Results of testing with a starting point of Orakei Yacht Sales and a 
destination point of Mission Bay Beach 

As shown in Figure 5.12 are the results of testing between non-cloud-based 

Osmand, original cloud-based Osmand and cloud-based Osmand with EESManager. 

Results show that, on average, 3G communication energy consumption can be reduced 

nearly 3000mW by EESManager but it causes more CPU energy consumption in cloud-

based Osmand with EESManager compared to non-cloud-based Osmand, which is by 

238mW, and the original cloud-based Osmand which is by just over 680mW. In 

consequence, EESManager can save overall energy consumption by 23% compared with 

original cloud-based Osmand in the scenario. 
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Figure 5.13 - Map scenario 3 from the Statesman Apartments to Auckland’s Central 
Library 

As seen in Figure 5.13, a simulation begins at The Statesman Apartments and ends 

at Auckland’s Central Library. The route result is determined to be 1.04kilometers in 

length. The map in Figure 5.13 is a complex map because it contains 59 nodes between the 

starting point and the destination point. Thus, this scenario presents the map which is 

complex and has short distance. If a route result is sent back within four seconds, 

EESManager will let the local device receive the route result. However, if a route result is 

not found and sent to the local device within four seconds, EESManager will allows 

CloudMade to finish searching for the route result to save CPU energy consumption of the 

local device because the computation capabilities of CloudMade are more powerful than 

the local device’s and the process of finding a route result would be heavy for a local 

device. Results from the collected data for this simulation are shown in Figure 5.14.  
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Figure 5.14 - Results of testing with a starting point the Statesman Apartments to 
Auckland’s Central Library 

As shown in Figure 5.14 are the results of testing between non-cloud-based 

Osmand, original cloud-based Osmand and cloud-based Osmand with EESManager. 

Results indicated that both original cloud-based Osmand and cloud-based Osmand with 

EESManager consume similar amounts of CPU and 3G communication energy. However, 

EESManager determines to let CloudMade finish its task and the local device receives the 

route result if the route result is not sent back within four seconds. EESManager causes less 

CPU energy consumption compared with non-cloud-based Osmand by 1750mW. As a 

result, EESManager can save CPU energy consumption approximately 64% compared with 

non-cloud-based Osmand in this scenario. 
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Figure 5.15 - Map scenario 4 from Andrew Simms Chrysler Jeep Dodge to Greenlane 
Clinical Centre 

As shown in Figure 5.15, a simulation is used to run from a starting point at Andrew 

Simms Chrysler Jeep Dodge to Auckland’s Central Library. The route length is determined 

to be 3.38kilometers.The map in Figure 5.15 has 48 nodes on the map so this means that 

the map is complex. Therefore, this scenario represents the map which is complex and has 

longer distance compared with the map in Figure 5.13. Due to the map containing more 

than 25 nodes, the local device would require high processing power to search for a route 

result if a route result is not found and sent to the local device within four seconds. 

Therefore, to reduce the energy consumption of CPU in the local device EESManager 

allows CloudMade to finish searching for the route result because of the powerful 

computation ability of CloudMade. Results from the collected data for this simulation are 

shown in Figure 5.16. 
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Figure 5.16 - Results of testing with a starting point at Andrew Simms Chrysler Jeep 
Dodge and the destination point at Greenlane Clinical Centre. 

As seen in Figure 5.16are the results of testing between non-cloud-based Osmand, 

original cloud-based Osmand and cloud-based Osmand with EESManager. Results showed 

that both the original cloud-based Osmand and cloud-based Osmand with EESManager 

have similar CPU and 3G communication energy consumptions. On the other hand, 

CloudMade are allowed to finish searching for a route result and send the result back to the 

local device if the route result is not sent back within four seconds. EESManager makes 

CPU of cloud-based Osmand consumes less energy consumption compared with non-

cloud-based by about 1142mW. Consequently, EESManager can help the local device save 

CPU energy consumption by 49% compared to non-cloud-based Osmand in this scenario.  

From all results in Figure 5.9 – Figure 5.16, we summarise the energy consumption 

of three versions of Osmand as can be seen in Table 5.4. 
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Table 5.4 - The CPU and 3G communication energy consumption from the simulated 
results 

Map 

scenario 

Energy consumptions of 

non-cloud-based 

Osmand 

Energy consumptions of 

original cloud-based 

Osmand 

Energy consumption of 

cloud-based Osmand 

with EESManager 

CPU 3G CPU 3G CPU 3G 

Map 

Scenario 1 
1824.7mW 0mW 1220mW 8691.3mW 2270.3mW 4700mW 

Map 

Scenario 2 
2003.5mW 0mW 1555.8mW 7808.1mW 2242.1mW 4931mW 

Map 

Scenario 3 
2726mW 0mW 1076.5mW 7607.6mW 976.5mW 7647.7mW 

Map 

Scenario 4 
2325.3mW 0mW 1037.7mW 7686.8mW 1182.9mW 7888.3mW 

 

5.4 Summary 
On one hand, as shown in Figures 5.9 – 5.12, EESManager uses an offline version of 

Osmand if CloudMade could not finish finding route results within four seconds because 

the maps between the starting points and the destination points are simple which contain 

less than 25 nodes. As a result, EESManager can reduce 3G communication energy 

consumption of cloud-based Osmand in simulation testing compared with original cloud-

based Osmand. However, EESManager caused more CPU energy consumption when 

compared with non-cloud-based Osmand and the original cloud-based Osmand. Overall, 

EESManager can reduce by 26.6% of the total of energy consumption of the original cloud-

based Osmand. 

On the other hand, as seen in Figures 5.13-5.16, EESManager allows CloudMade to 

finish searching for the route after four seconds to save CPU energy consumption if 

Osmand did not receive route results within four seconds and these maps are complex 

because the process of finding a route result on a complex map and it would require heavy 
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computation for a local device. As a result, EESManager does not have any different results 

compared with the original cloud-based Osmand in both simulation testing results shown in 

Figures 5.14 and 5.16 but the results of cloud-based Osmand with EESManager compared 

with the result of non-cloud-based Osmand show that cloud-based Osmand with 

EESManager consumes less CPU energy than non-cloud-based Osmand. As a result, 

EESManager can help the local device reduce CPU energy consumption by 57% compared 

to non-cloud-based Osmand. 

Consequently, EESManager can improve cloud-based Osmand’s energy efficiency 

and a local device when 1) route results are not sent to Osmand within tail time and maps 

are simple and 2) route results are sent to Osmand within tail time. Furthermore, there is no 

study on energy efficient of mobile navigation applications in the public before and 

EESManager was designed for only Osmand. Hence, we cannot compare the performance 

of this thesis and the different previous research. 
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Chapter 6 Conclusions and Future work 

The purpose of this thesis was to improve the energy efficiency of a selected mobile 

application which is Osmand and a local device for this study. We were striving to discover 

what characteristics of the selected mobile application cause in term of energy used and to 

contribute new knowledge and solutions to build a cloud-based prototype by using energy 

efficient recommendations. 

6.1 Conclusions 
Inspired from the impact of cloud-based applications on the battery life of mobile devices, 

we have chosen Osmand as our selected mobile application, and identifies cloud-based 

Osmand’s characteristics of energy used compared with non-cloud based Osmand. Also, 

we try to tackle these problems by EESManager. 

The first conclusion we have found that the energy consumptions of GPS and LCD 

for both non-cloud based Osmand and cloud-based Osmand are the same. For CPU, we 

found that non-cloud-based Osmand consumes more CPU energy consumption for the 

calculating route result activity than other activities in non-cloud-based Osmand and the 

complexity of maps relates the CPU energy consumption of the calculating route result 

activity. In cloud-based Osmand, we found that cloud-based Osmand uses a large amount 

of energy consumption in CPU to create and display application’s events on the mobile 

screen compared with non-cloud based Osmand. This is because programming technique 

and source code of Osmand influence the CPU energy consumption of cloud-based 

Osmand. Furthermore, the network connection is required for cloud-based Osmand to send 

and receive files between the clouds. In 3G communication in cloud-based Osmand, tail 

energy was a factor that causes energy wasted. For this study, we focused on developing 

and improving 3G communication energy consumption and tail energy usage. We also 

focused on reducing CPU energy consumption by determining what feature, which is 

online or offline features, would be suited for each map scenario. 
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The second conclusion we have developed EESManager based on knowledge from 

the earlier measurement study and the consideration of the factors which are limiting the 

tail energy and the complex of maps. We have implemented EESManager in cloud-based 

Osmand running on the Android emulator. We chose 4 routes to run simulation ten times in 

non-cloud-based Osmand, the original cloud-based Osmand and cloud-based Osmand with 

EESManager for each route. The results from simulations show that EESManager can 

improve on the energy efficiency of cloud-based Osmand and the local device in two cases. 

The first case is when CloudMade can find route results and send the results back to the 

local device within the tail time. The second case is when CloudMade cannot find route 

results and send them back within the tail time and also map scenario are needed to be 

simple. 

6.2 Future work 
Considering the work covered in this thesis within a constraint in the limited time period 

and the development of the energy measurement technologies for applications, it would be 

useful to highlight some future areas to be further investigated. 

In this thesis EESManager was designed for Osmand, while the ideas of 

EESManager algorithm should be used and implemented for other type of mobile 

applications such as applications which have heavy process and applications which involve 

file transmission to gain benefits of energy saved in the future work. Furthermore, an 

application running on the Android was only focused in this study. Hence, applications in 

other mobile platform such as iOS and Windows Mobile should be studied on energy 

efficiency similar to this thesis. 

The sizes of data which were involved in the network connection of this thesis are 

small compared with other types of data such as video files, images and so on. The study of 

the large mobile data affecting the energy efficiency on the local device needs to be address 

in the future work. Also, the complexity of the A* algorithm should be studied in-depth and 

analysed to find the relationship between the complexity of the A* algorithm and energy 

consumption. 
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Glossary 

ADT: Android Developer Tools 

API: Application Programming Interface 

AVD Manager: Android Virtual Devices Manager 

DCH: the Dedicated Channel 

DDMS: Dalvik Debug Monitor Server 

DVM: Dalvik Virtual Machine 

EDGE: Enhanced Data Rates for GSM Evolution 

EESManager: Energy Efficient Scheduling Manager 

FACH: the Forward Access Common Channels 

GRPS: General Packet Radio Service 

HetNet: Heterogeneous Network 

IaaS: Infrastructure as a Service 

IDE: Intefrated Development Environment 

MAUI: the Mobile Assistance Using Infrastructure 

MVC: Mobile Model-View-Controller 

NDK: Native Development Kit 

Osmand: Open Street Map Automated Navigation Directions 

PaaS: Platform as a Service 

QoS: Quality of Service 

RC: Resource Controller 

RDC: Resource Data Collector 

REST: Representational State Transfer 
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RPC: Remote Procedure Call 

SaaS: Software as a Service 

SDK: Software Development Kit 
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Appendix A: Sample codes for 

EESManager’s algorithms 

Some Java scripts which were used in this thesis are shown below as examples of the 

scripts for the EESManager in this thesis. 

The sample Java codes for the device side 
Below are the codes for checking a version of Osmand which is used to find a route. 

Public RouteCalculationResultcalculateRouteImpl(RouteCalculationParamsparams){ 
  long time; 
  if (params.start != null&&params.end != null) { 
   if(log.isInfoEnabled()){ 
    log.info("Start finding route from " + params.start + 
" to " + params.end +" using " + params.type.getName()); //Finding a route 
starts working from here 
   } 
   try { 
    RouteCalculationResult res; 
    if(params.gpxRoute != null&& 
!params.gpxRoute.points.isEmpty()){ 
     res = calculateGpxRoute(params); 
    } else if (params.type == RouteService.YOURS) { 
     res = findYOURSRoute(params); 
    } else if (params.type == RouteService.ORS) { 
     res = findORSRoute(params); 
    } else if (params.type == RouteService.OSMAND) { 
     // non-cloud-based version is used 
     res = findVectorMapsRoute(params); 
    } else { 
     // cloud-based version is used 
     time = System.currentTimeMillis(); // get time 
to use to calculate tail time 
     int nodes = getNodes(params); //get numbers of 
nodes from the map 
     startEESManager(nodes,params,time); 
    } 
    if(log.isInfoEnabled() ){ 
     //the route is found 
     log.info("Finding route contained " + 
res.getImmutableLocations().size() + " points for " + 
(System.currentTimeMillis() - time) + " ms");      
    } 
    return res;  
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   } catch (IOException e) { 
    log.error("Failed to find route ", e);  
   } catch (ParserConfigurationException e) { 
    log.error("Failed to find route ", e);  
   } catch (SAXException e) { 
    log.error("Failed to find route ", e);  
   } 
  } 
  return new RouteCalculationResult(null); 
 } 
 

If cloud-based version is chosen to find the route, EESManager will start working. Below 

are the scripts of how EESManager works. If time of completing finding the route is over 

the tail time and the map is simple, EESManager will stop using CloudMade and switch 

into non-cloud-based version. If time of completing finding the route is over the tail time 

but the map is complex, EESManager will let CloudMade finish its work. However, if time 

of completing finding the route is before the tail time, EESManager will do nothing.  

Public void startEESManager(intnodes,RouteCalculationParamsparams, long time) { 
 RouteCalculationResult res; 
 if (nodes<25){//check the complexity of the map 
  //the map is simple 
  while (!stopRequested) { 
   res = findCloudMadeRoute(params,time);//send a request file 
to CloudMade 
 try { 
 wait(4000); 
         } catch (InterruptedException e) { 
  System.out.println(e);//stop using cloud-based version 
  res = findVectorMapsRoute(params);//switch to non-cloud-based 
version 
         } 
     } 
 }else{ 
  //the map is complex 
  res = findCloudMadeRoute(params); 
 } 
 
} 
 
Synchronized void requestStop() { 
stopRequested = true; 
if (thisThread != null) 
thisThread.interrupt(); 

} 
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The sample Java codes for the cloud side 
Below are the codes for how EESManager works in CloudMade.  

protected GPX findMapsRoute(LatLon start, LatLon end, long time){ 
 GPX result; 
 if(time = null){ 
  result = findVectorMapsRoute(start,end); 
 }else{ 
  while (!stopRequested) { 
   result = findVectorMapsRoute(start,end); 
 try { 
 wait(4000); 
         } catch (InterruptedException e) { 
  System.out.println(e); 
         } 
     } 
 } 
} 
 
Synchronized void requestStop() { 
stopRequested = true; 
if (thisThread != null) 
thisThread.interrupt(); 
} 
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