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Abstract 

Given the electron microscopy images, virus recognition using deep learning approaches 

from digital images is critical at present, because virus identification by human virology 

experts is slow and time-consuming, this research project aims to develop a deep learning-

based method for automatic virus detection. There are four virus species in this thesis, 

they are SARS, MERS, HIV, and COVID-19. This study is based on classification and 

bounding box regression.  

    In this thesis, we firstly examine virus morphological characteristics and propose a 

novel loss function which targets to reflect the viruses on the given electron micrograph. 

In this project, we take into account the attention mechanism, virus images are processed 

in advance to be trained for classification and localization. In order to make the best 

estimation of bounding boxes and classification for a virus, we test five deep learning 

networks: R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, based on the prior 

knowledge of virus electron microscopy. Additionally, in this project, we discuss the deep 

learning training problems and illustrate the evaluation approaches. The conclusion 

reveals SSD and Faster R-CNN outperform in the virus detection from digital images. 

Keywords: Classification, localization, CNN, virus, electron microscopy images 
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Chapter 1 

Introduction 

 

This chapter mainly includes five parts. The first part 

primarily explicates background and motivation of 

automatic recognition of viruses from digital images by 

using deep learning methods. In Sections 1.2 and 1.3, we 

list the research problems to be probed in this thesis and 

make meaningful contributions to the field of deep learning. 

In Section 1.4, we expound the significance of this research 

and its implementation. Finally, the detailed content of this 

thesis and the context of each chapter will be outlined in 

Section 1.5. 
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1.1 Background and Motivation 

Viruses are the most active lives on our earth, with millions of years of history, more than 

the sum of all others. The viruses have a variety of shapes, like ball, silk thread, bullet, 

brick, tadpole, etc. Some of these viruses are highly contagious and have posed a 

significant threat to public health.  

    SARS-CoV-2 has seriously threatened the safety of our human lives. By May of 2020, 

the new coronavirus (SARS-CoV-2) has infected about 5.1 million people and causes at 

least 333,000 deaths, and the numbers are predicted to continue growing in the future. It 

has not only caused severe economic panic but also raised panic for all humans. The CT 

imaging and nucleic acid detection are two effective testing methods. However, they have 

their own advantages and disadvantages, especially the nucleic acid test is not accurate 

inaccuracy. Thus multiple tests are needed before the confirmation of diagnosis (Jing, et 

al., 2020). Accordingly, how to quickly and accurately classify viruses, especially highly 

infectious viruses, is a must.  

    Deep learning is a branch of machine learning, which applies artificial neural 

networks as an architecture to conduct representation learning on well-collected data. Its 

advantage is to use unsupervised or semi-supervised feature learning as well as 

hierarchical feature extraction algorithm to replace manual feature acquisition. The 

application fields of deep learning (e.g., computer vision, bioinformatics, medical image 

analysis, material inspection) have produced significant contributions. The results 

obtained by using this technology are comparable to the performance of human experts, 

even exceed the performance of the experts. Convolutional neural networks, as one of the 

deep learning architectures, can provide more reliable results in image and speech 

recognition than other methods. CNNs provided the most advanced accuracy in various 

image recognition, including object recognition, segmentation, image super-resolution, 

object detection, etc. 
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    In this thesis, virus detection using deep learning is proposed to identify the viruses 

with electron microscope images. Although the image recognition technology has 

become more and more experienced, there is still a lack of practice in automatic 

recognition of virus images under the microscope. Consequently, this research project 

aims to develop an automatic detection method based on deep learning. In this thesis, the 

images of four types of viruses will be taken into consideration: SARS, MERS, HIV, and 

COVID-19. Additionally, for the betterment of detecting viruses, in this research project, 

we will compare the performance of five deep learning models, namely, R-CNN, Fast R-

CNN, Faster R-CNN, YOLO, and SSD, for the purpose of identifying viruses from 

microscope images. 

1.2 Research Question 

The main research question of this thesis is related to classification and bounding box 

regression for multiple viruses appeared on electron microscopy images. This is a typical 

mission in computer vision. In this research project, we have identified the following 

issues that need to be resolved. 

    Different from image classification problems as illustrated in various computer vision 

competitions such as ImageNet, the provided images for virus detection were derived 

from the electron microscope and have distinguished visual displays. The derived images 

are often grey scaled and noisy due to hardware limitations. Prior to training, a number 

of operations of data augmentations should be conducted to improve the data quality. 

   In order to achieve better prediction results in this research project, we take advantage 

of known virus morphological characteristics. A detailed examination of the knowledge 

is required to quantify the morphological characteristics, so that deep learning algorithms 

can utilize the knowledge to process image data. 

    There are five predictive models in this research project: R-CNN, Fast R-CNN, Faster 

R-CNN, YOLO, and SSD. The networks are pretrained on different datasets such as 
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ImageNet. There exists a compatibility issue between the predictive models and input 

data, a number of network modifications are made to permit the models to be more fit to 

the virus classification and bounding box regression problem. 

1.3 Contributions 

We would like to list the three contributions of this thesis as:  

• A comprehensive summary of the visual features of virus images from electron 

microscopy  

The electron microscopy images and virus morphological information are reviewed in 

this thesis; accordingly, image augmentations with multiple operations are implemented 

to make better utilization of the source images. 

• A term of novel virus morphological loss function  

The objects in this thesis are not agnostic, which is possible to include the prior 

knowledge for prediction. The approach is a comparison between predicted objects 

confined in bounding boxes with visual features. 

• Implemented the state-of-the-art technology of deep learning 

There have been numerous novel image processing proposals in recent years. In this 

research project, we take into account the latest developments and implement a few were 

available, such as recently proposed activation functions and attention mechanism. 

• Multiple virus recognition models  
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R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD are tested in this research. A

number of modifications are made to achieve better object prediction results within the 

virus bounding box for resolving the object anchoring and object classification problem. 

1.4 Objectives of This Thesis 

Automatic recognition of virus particles by using deep learning methods is studied in this 

research project, this thesis aims to illustrate the motivations, review the trending 

technology pertaining to this research topic, and what this experiment has achieved in the 

given context. 

   The topics covered in this thesis are background introduction, literature review, virus 

morphological characteristics that are beneficial to object detection, visual features of 

electron microscopy images, deep learning implementations for the virus detection as 

well as the betterment for the deep learning networks.  

   Based on the practical methods for analysing the electron microscopy images, the 

performances of proposed predictive models are evaluated. In this thesis, we launch a 

number of discussions on the effectiveness of the proposed solutions. Additionally, in this 

thesis, we share knowledge of experimental limitations and our future work. 

1.5 The Structure of This Thesis 

This thesis is arranged in seven chapters: Introduction, literature review, methodology, 

model training, experimental results, resultant analysis and discussions, conclusion and 

future work. 

    The first two chapters (i.e., introduction and literature review) present the motivations 

of this research work and an introduction of the latest technology developed based on the 

relevant subjects.  
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    The next chapter is the methodology. This chapter provides an elaboration of a novel 

loss term that reflects prediction errors against well-known virus morphological 

information and selected predictive models as well as the modifications to the models for 

compatibility, where the predictive models can better reflect the information that the 

source images contain. Data preprocessing is discussed in this chapter. 

    The training section is arranged in a chronological sequence. Not only does this 

chapter discuss the proposed hyper parameters, but also it illustrates modifications to the 

networks in practice when training. 

    Our experimental results follow the training chapter, which introduces the selected 

evaluation methods and lists performance metrics reflecting different research interests 

in the virus particle classification and bounding box regression problem.  

    The next chapter (i.e., analysis and discussions) is detailed based on the results that 

shed light on possible reasons why virus detection is failed the predictive models. Our 

significant statistical results, e.g., superior performance of a particular predictive model 

than others, are explained. 

   The last chapter (Conclusion and Future Work) briefs the experiment limitations and 

future work that aims to address the listed limitations for expected better networks and 

broad implementations.  
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Chapter 2 

Literature Review 

 

With a comprehensive examination of the research 

questions and reasonable reviews of the previous studies, 

the focus of this chapter is on the performance of five deep 

learning networks, namely, R-CNN, fast-CNN, Faster R-

CNN, YOLO, and SSD. 

. 

 

.  
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2.1 Introduction 

With the spread of COVID-19 pandemic, reagents are lack of supply, and the testing is 

slow and widespread infection among the public is becoming increasingly severe. At 

present, the most popularly utilized detection methods are to find target DNA, RNA, and 

unique proteins through various detection methods. However, there is insufficient to meet 

the requirements of people around the world. Thus, how to identify the virus quickly and 

accurately is becoming increasingly urgent.  

    In recent years, deep learning, especially deep convolutional neural network, has 

rapidly developed into a research hotspot in the field of medical image analysis (Shen, et 

al., 2017). At the same time, with the continuous development and promotion of the 

technology in the fields of computer vision and medical imaging, the computers science 

for medical image analysis have become an indispensable tool and technical means for 

clinical disease diagnosis, medical research and treatment (Miller and Brown, 2018). 

Accordingly, it resembles that deep learning techniques could be tried to identify viruses. 

    The two events inspired the research experiment, which is based on deep learning for 

the detection of virus particles in microscopic images. Furthermore, due to the lack of 

deep learning technology to achieve automatic virus identification, this thesis will 

conduct an experimental comparison of several popular image detection models in terms 

of R-CNN, Fast R-CNN, Faster R-CNN, SSD, and YOLO. 

2.2 Target Morphological & Electron Micrograph 

Characteristics  

Virus detection from digital images is one of the common subjects of object detection and 

image recognition. Nevertheless, learning and detecting the virus have invariably been 

one of the challenging and complex tasks because it is challenging to learn and detect via 

computer systems with different noise levels (Shakri, et al., 2017). In this project, we  
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will leverage virus morphological characteristics (on electron microscopy images) for 

virus recognition by using deep learning. Useful features are angular second moment, 

contrast, entropy (Haralick, Dinstein, & Shanmugam, 1973) selected features by filtering 

(Wu, Chen, & Hsieh, 1992), texture information (Kylberg & Sintorn, 2011)(Tuceryan  & 

Jain, 1998)(Nanni, Paci, Brahnam, Ghidoni, & Menegatti, 2013), including the 

assessment of intensity level of pixel information (Ojala, Pietikäinen, & Mäenpää, 2002). 

    Major virus morphological characteristics are shown as spherical shape and scattered 

“white dots” for spike protein projections. Coronavirus family shares substantial 

similarity in morphology while HIV is relatively different. However, they all have protein 

projections on the viral envelope. These features can be utilized, at least, for 

distinguishing viruses from irrelevant objects, due to disturbances from the background. 

    The electron micrography images are generated by using the electron microscope that 

radiates a beam of electron electrons as a source of the illumination, with the wavelength 

of an electron up to 100,000 times shorter than that of human visible light photons, and 

the resulted image resolution can be 50 pm (Erni, Rossell, Kisielowski, & Dahmen, 2009), 

enabling magnifications above 50 million times. The produced images are usually 

greyscaled (brightness levels) (Hortolà, 2010), colourization of electron microscopy 

images adds no new information to the greyscale specimen other than aesthetics.  

    Multi-detector can be used to combine various specimen properties into one single 

pixel (Antonovsky, 1984). Different attributes representing the different aspect of 

information and colourization can be conducted accordingly for each primary colour 

representing one information channel (Danilatos, 1986). Nevertheless, the images from 

the electron microscope are brightness level representation as the received energy 

feedbacks from an electron beam on a specimen do not include wavelengths that are 

semantic in human perception to visible light. 

    Given the nature of electron micrography image generation, all produced images are 

in greyscale. However, when encoded in a digital format out of distribution concerns, 

images are of RGB colours. In this research project, we consider this issue and one-
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channel greyscale images are derived in data preprocessing, as multicolour information 

in general serves for aesthetic purposes rather than reflecting actual virus existence. Since 

all images are obtained via the electron microscope, it is unlikely that visual features are 

highly non-linear, low-level features extracted from CNN should be scale invariant across 

all virus particles on electron microscopy images (Denton, Zaremba, Bruna, LeCun, & 

Fergus, 2014) (Xue, Li, & Gong, 2013). In other words, image distortion during the pre-

processing data phase should be exerted with caution, as in reality highly scale variant 

visual features in electron microscopy images do not exist (Oho, Ichise, Martin, & Peters, 

1995). 

2.2.1 HIV Morphological Characteristics on Electron Micrograph 

HIV (Human Immunodeficiency Virus) is a member of the genus Lentivirus and share 

similar morphological properties. It has two species: HIV-1 and HIV-2 (Gilbert, et al., 

2003). Inside the viruses, envelopes are two copies of positive-sense single stranded RNA 

responsible for encoding nine viral genes that are enclosed by 2,000 copies of conical 

capsid virus protein P24 (Compendium, 2008). Viral protein P17 surrounds the capsid 

aiming to preserve the integrity of virion particle (Compendium, 2008), viral protein P17 

is enclosed by viral envelope comprised of lipid bilayer derived from host cell membrane 

when virus particle buds erupt from host cells, taking with glycoprotein120 (Chan, Fass, 

Berger, & Kim, 1997) (Klein, Bjorkman, & Rall, 2010).  

   The protein projections on the viral envelope are N-linked glycans, a type of chemical 

compound consisted of a substantial number of monosaccharides connected 

glycosidically, and are of high density in distribution on the viral surface. The molecular 

structure of the protein projections can be revealed by electron microscopy (Lyumkis, et 

al., 2003). The projections present as spikes on electron microscopy images. 

    HIV morphological appearance is roughly spherical usually about 120 nm of diameter 

(McGovern, Caselli, Grigorieff, & Shoichet, 2002). An electron microscopy image of the 

HIV virus particle is shown in Figure 2.1. 
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Figure 2.1: Electron micrograph of HIV 

2.2.2  SARS-CoV-1 Morphological Characteristics on Electron Micrograph 

SARS (Severe Acute Respiratory Syndrome) is a member (species) of coronavirus family 

and shares morphological similarities (Wong, et al. 2019), appeared in electron 

micrograph as pleomorphic spherical particles with bulbous surface projections 

(Goldsmith, et al., 2004). Physical size of one virus ranges from 50 to 150 nm, excluding 

spikes (Neuman, et al., 2006). Typical viral envelope is comprised of a lipid bilayer in 

which membrane, envelope and spike proteins are anchored, forming bulbous surface 

projections (Michael, Cavanagh, & Lai, 1997). Nucleocapsid inside viral envelope 

protects 30-kb (kilo base pair) RNA genome, constructed in a continuous beads-on-a-

string conformation manner (Fehr & Perlman, 2015) (Chang, et al., 2014). The spike 

protein of SARS-Cov-2 shows a sequence similarity of 76%~78% with that of SARS-

Cov-1 (Rabaan, et al., 2020). 
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Figure 2.2: Electron micrograph of SARS coronavirus 

2.2.3 MERS-CoV Morphological Characteristics on Electron Micrograph 

MERS-CoV (Middle-East Respiratory Syndrome-Related Coronavirus) (Groot, et al., 

2013) causes MERS (Middle-East Respiratory Syndrome), also known as camel flu. It is 

a coronavirus species (Saey, 2013). Similar to other coronavirus structure, MERS appears 

crown-like structures on electron microscopy images, with positive-stranded RNA as 

genomic material and an outer envelope (McIntosh, Dees, & Becker, 1967)(Masters, 

2019). The genome is enclosed inside the nucleocapsid, helical in shape. Glycoprotein 

spikes scatter on the virus’s surface. 

    In comparison with COVID-19 and SARS, MERS is the most distinct in terms of 

genetic composition (Rabaan, et al., 2020). The length of Spike proteins on SARS and 

MERS is shorter than that of COVID-19, which is a noticeable visual feature in electron 

microscopy images (Rabaan, et al., 2020). 
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Figure 2.3: An example of MERS particles under the electron microscope (in 100 nm) 

2.2.4 SARS-COV-2 Morphological Characteristics on Electron Micrograph 

Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-COV-2), or COVID-19 

given the year of discovery, is a novel severe acute respiratory syndrome coronavirus 

(Johnson, et al., 2020). COVID-19 is similar to SARS in terms of morphological 

appearance on electron microscopy images. Four typical proteins are identified Spikes 

(S), Envelope (E), Membrane (M) and Nucleocapsid (N) (Zhang, et al., 2020). One 

recognized electron microscopy feature is spiked imageable at an atomic level (Wrapp, 

et al., 2020). 

    SARS-COV-2 morphological appearance is roughly spherical about 50 - 200 nm of 

diameter (Chen, et al., 2020).An electron microscopy image of COVID-19 virus is shown 

in Figure 2.4. 
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Figure 2.4: Electron micrograph of COVID-19 

2.3 Deep Learning 

Deep learning, also known as deep neural learning or deep neural network, is an artificial 

intelligence method that mimics how the human brain works when processing data and 

creating patterns for decision making (Samek, Wiegand, & Müller, 2017). Furthermore, 

deep learning is a subset of machine learning that trains a computer to perform human-

like tasks, such as recognizing speech, identifying images or making predictions (Ishtiaq, 

et al., 2020). It utilizes hierarchical artificial neural networks to complete the process of 

machine learning. The physical structure of the artificial neural network is like the brain 

of the human, and neuron nodes are connected like a network (Nie, Gao,Wang, & Shen, 

2018), its network can learn from unstructured or unlabelled data without supervision.  

• Artificial Neural Network 

Artificial neural network (ANN) is inspired by biological neural networks where neurons 

release energy signals to inform other neurons (Chen, Lin, Kung, Chung, & Yen, 2019), 

and collectively they represent the flow of information (Guimarãaes & McGreavy, 1995). 

The concept was first proposed (McCulloch & Walter, 1943) by following Hebbian 

learning and invention of perception (Rosenblatt, 1958). The modern ANN (Schmidhuber, 
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2015) is proposed with the philosophy (Willis, Montague, Di Massimo, Tham, & Morris, 

1992) that the algorithm should be capable of “learning” from given observations (Kleene, 

1956). From a graph perspective, an ANN is a directed weighted graph that input neurons 

are weighted and connected with next layer neurons (Zell, et al., 1994). There are a host 

of extensions of ANN such as CNN and RNN, and they will be discussed in the following 

paragraphs.  

    Neuron is the basic unit of ANN. The internal structure includes weighted links that 

take into account source inputs and a sum operator (sum is the most selected operator) 

that adds all weighted input information. The thresholding is optional. An activation is 

applied to map the input to an output. Neurons in the first layer take input data such as 

documents and images, while neurons in the last layer output semantic probability for a 

given task.  

    A typical network consists of connections, and each connection provides the output 

of one neuron as an input to another neuron. In addition, each connection is assigned a 

weight (connections are weighted links) that represents its relative importance (Zell, et 

al., 1994). A neuron has multiple input and output connections (Abbod, 2007). 

    A propagation function treats the input to a neuron from the outputs of its predecessor 

neurons. The connections in between are weighted. A bias term can be linearly added to 

the result of a propagation function (Dawson & Wilby, 1998). This is used to simulate 

signal energy released by biological neurons, e.g., sigmoid and ReLU (Nair & Hinton, 

2010). 

• Convolutional Neural Network 

Convolutional Neural Network (CNN) is widely used in image and video analysis 

(Valueva, Nagornov, Lyakhov, Valuev, & Chervyakov, 2020), which is the backbone 

technology for various network proposals in this research. It employs convolution for 

matrix multiplication to process multi-dimensional information (Goodfellow, Bengio, & 

Courville, 2016). The invention of CNN draws inspiration from biological processes 



16 

 

(Hubel & Wiesel, 1968), where artificial neuron connectivity resembles that of animal 

visual cortex (Fukushima, 1980), in which cortical neurons react to stimuli on restricted 

vision-functional regions known as receptive fields (Matusugu, Mori, Mitari, & Kaneda, 

2003).   

    CNN utilizes high dimensional filters as receptive fields to an artificial neuron to 

specific stimuli and filter sizes vary in different layers as defined in hyper parameters. A 

convolutional layer is efficient in processing clustered semantic information than by a 

fully connected layer (Aghdam & Heravi, 2017). 

Due to considerable computation cost given high dimensionality, pooling 

significantly reduces input dimensions by combining the outputs of a neuron cluster into 

single value output. Pooling layers usually follows convolutional layers (Ciresan, Meier, 

Masci, Gambardella, & Schmidhuber, 2011). Typical pooling methods are maxed 

operator by selecting max elements (Wang et al., 2018) and average operator by 

computing the mean values over inputs (Mittal, 2020). Some famous novel CNN structure 

proposals are GoogleNet with inception modules and ResNet that takes into account 

cross-layer information transmission. 

• Recurrent Neural Network 

Recurrent Neural Network (RNN) (Williams, Hinton, & Rumelhart, 1986) includes latent 

information between samples with positional relationships by forming a directed graph 

(recent RNN proposals see the complex flow of information instead of a naïve directed 

graph) along with a temporal sequence of inputs. Thus, RNN is capable of using internal 

memory to process sequential inputs, and this property is useful in image processing tasks 

(Graves, et al., 2009).  

    The significant contribution of this network is the inclusion of a time-varying 

activation mechanism (Miljanovic, 2012) that considers input with an additional 

dimension: time, and accordingly additional weight matrices are introduced for each 

neuron to process the extra dimension information (Elman, 1990). Neurons of RNN are 
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arranged in a successive manner (Jordan, 1997) that the neurons in the layer ℎ𝑡 given the 

input 𝑥𝑡 at the 𝑡-th input are connected to the layer at the previous state ℎ𝑡−1, and will 

influence the state of the layer ℎ𝑡+1 given the next input 𝑥𝑡+1 (𝑍ℎ𝑎𝑛𝑔 𝑒𝑡 𝑎𝑙. , 2018).   

   The variant of RNN are Long Short Term Memory (LSTM) that adds the complexity 

of different “gates” to control information memory in respects of time (Hochreiter & 

Schmidhuber, 1997), and Gated Recurrent Unit (GRU) that attempts to simplify 

computation with fewer gates but with comparable performance (Cho, et al., 2014). 

2.4 R-CNN 

R-CNN (‘R’ for region proposal) is selected in this experiment for virus particle 

recognition and localization. As discussed in the previous sections, a number of 

modifications are made to the loss function. In this research project, we test different 

activation functions on R-CNN, but the structure is unaltered.  

    R-CNN proposes image regions of interest in an agnostic manner by using selective 

search (Girshick, Donahue, Darrell, & Malik, 2017) (Uijlings, Sande, Gevers, & 

Smeulders, 2013) (Wang, Yang, Zhu, & Lin, 2013). Regions of interest appear in 

semantic colour, shading, texture, morphological characteristics, scale, etc., selective 

search approaches solve this problem by using hierarchical grouping (Uijlings, Sande, 

Gevers, & Smeulders, 2013). It takes into account bottom-up grouping as a hierarchical 

approach (Comaniciu & Meer, 2002) (Chen, Liu, Tuzel, & Xiao, 2016) that firstly 

proposes a number of initial object location hypotheses by using a fast segmentation 

method (Felzenszwalb & Huttenlocher, 2004), then merges neighbour regions with high 

levels of similarities until only one region is presented for an image.  

   In the experiment, the region proposal mechanism in R-CNN remains unchanged. The 

proposed image regions are warped before being fed into a base CNN consisting of five 

convolutional neural networks and two fully connected networks (Krizhevsky, Sutskever, 
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& Hinton, 2012), which are scored by SVM applied with a greedy non-maximum 

suppression that rejects a region for a high IoU (Intersection Over Union).  

    The size of the input to the base CNN is 227 × 227 × 3 for RGB encoded images, 

which is consistent for all R-CNN implementations. To demonstrate how this proposal is 

applied to virus recognition and localization with prior knowledge in comparison to the 

base CNN structure, in this research, we take into consideration of the construct of the 

same CNN as stated in the early study (Girshick, Donahue, Darrell, & Malik, 2017) 

(Krizhevsky, Sutskever, & Hinton, 2012), but it is different in terms of input sizes since 

the source images contain less information (in grey scale with limited numbers of objects 

in question). There are two image sizes tested:  64 × 64 and 128 × 128. Different sizes 

of images have distinct levels of granularities by mandating different sizes of input, it is 

expected that if granularities are in any way conducive to high accuracy prediction, these 

tests can confirm this hypothesis.  

   For the implementation of SVM (support vector machine) with R-CNN, which is used 

for scoring features for each class, a modification is made to the SVM loss function to 

reflect misclassifications on the virus. A typical SVM loss function is given as 

𝐿𝑜𝑠𝑠 =
1

2
||𝑤||

2
+ 𝐶∑𝜉𝑖

𝑖

 

subject to (s. t.) 

𝑦𝑖
 (𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖                      (2.1) 

where 𝐶  represents the cost to control sensitivity to misclassified data sample 𝑥𝑖 

corresponding to label 𝑦𝑖, 𝑤 is the weight for data samples, ||𝑤|| should be minimized 

to maximize hyperplane margin, 𝜉𝑖 is a slack variable for error tolerance. Given the prior 

knowledge, the loss function is expressed as equation (2.2). 

𝐿𝑜𝑠𝑠 =
1

2
||𝑤||

2
+ 𝐶∑𝜉𝑖

𝑖

+ 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦𝑖
′, 𝑦𝑖, 𝑡𝑖

′) 
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s. t. 

𝑦𝑖
 (𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖                            (2.2) 

where 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦𝑖
′, 𝑦𝑖) is the loss function to impose penalty on wrong classifications by 

SVM. Non-maximum suppression (NMS) (Hosang, Benenson, & Schiele, 2017) is used 

to reduce the number of overlapped bounding boxes by merging bounding boxes based 

on confidence score 𝑆  and an overlap threshold 𝜆𝑛𝑚𝑠 , (Felzenszwalb, Girshick, 

McAllester, & Ramanan, 2009) (Girshick, Donahue, Darrell, & Malik, 2017) (J. Redmon, 

S. Divvala, Girshick, & Farhadi, 2016) (Liu, et al., 2010) (Girshick, et al., 2015)   

    For the NMS implementation, the threshold 𝜆𝑛𝑚𝑠 is set at 0.8. The empirical study 

on the results determines this, 𝜆𝑛𝑚𝑠 = 0.8 is optimal in discriminating bounding boxes 

of different visual objects.  

    R-CNN records the highest mAP (mean Average Precision) on VOC 2010 test, 

leading by nearly 10% in mAP (Girshick, Donahue, Darrell, & Malik, 2017). This study 

(Girshick, Donahue, Darrell, & Malik, 2017) experimented on different depths of CNN 

feature layers and shows the effectiveness of deep neural network (Krizhevsky, Sutskever, 

& Hinton, 2017). In this experiment, R-CNN was tested given different conditions and 

their performances are recorded for evaluation. 

2.5 Fast R-CNN 

Fast R-CNN (Girshick, 2015) is an improvement of R-CNN with achieved higher 

computation speed as well as prediction accuracy. In order to adapt Fast R-CNN for virus 

recognition and localization, we summarize novel proposals in Fast R-CNN and test other 

alternatives to see if there is any improvement. This research made a number of 

modifications to the internal structure of Fast R-CNN for adaptation to the virus work.  

• Region of Interest (RoI) and Pooling Layer 



20 

 

One major novelty of Fast R-CNN is at the pooling layer. In Fast R-CNN, an 𝐻 ×𝑊 

grid of rectangular windows with each cell having a size of (approximate) ℎ/𝐻 × 𝑤/𝑊 

is fed into a max pooling layer, where filters extract information by using max operator 

on each subwindow. This implementation draws similarities to pyramid SSPnets (spatial 

pyramid pooling networks) (He, Zhang, Ren, & Sun, 2015) except that there is only one 

pyramid level. 

    There are no conclusive evaluations in the literature review (Gua, et al., 2018) 

regarding relative superiority in feature extraction for max and average pooling method, 

in this thesis, we test another pooling method (average) to see whether there is any 

improvement in prediction accuracy. However, it is worth noticing that the performance 

is slightly dropped in comparison with that from max pooling method. Hence, this thesis 

kept the max pooling method unchanged for all Fast R-CNN implementations. 

• Pretrained ImageNet Networks 

It should be noted that the source data is responsible for ImageNet, network training does 

not include viral objects on electron microscopy images. Thus, extracted features from 

ImageNet networks do not represent objects in this experiment. Initialization requires to 

take into account pretrained ImageNet (Marmanis, Datcu, Esch, & Stilla, 2015) networks. 

A network is retrained in the same way as to how an ImageNet network is trained for 

general object classification and localization. In detail, given a pretrained network (e.g., 

Fast R-CNN), the network consists of five convolutional layers and five max pooling 

layers), this proposal simply adds two fully connected layer together for the structure 

being resembled in this proposal (Krizhevsky, Sutskever, & Hinton, 2012), the training 

on source data (virus particles on electron microscopy images) for classification. It is 

expected that the retrained network is adjusted for visual features presented on virus 

electron microscopy images. 

    In Fast R-CNN, the last max pooling layer of the pretrained network is replaced by 

using an RoI pooling layer which is organized through setting 𝐻 and 𝑊 to be compatible 
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with the input shape of the pretrained network at its first dense layer. This research work 

has included that how regions of interest from the 2,000 electron microscopy images with 

a size of 𝐻 and 𝑊 should be adapted for training, the input and output layers for feature 

extraction should be compatible with electron microscopy source images as well as 

proposed regions. 

    Another novel proposal in Fast R-CNN is the last dense layer and softmax of the pre-

trained network being replaced with a new dense layer and softmax for class prediction 

in association with bounding box regression. The task in this experiment is as same as in 

Fast R-CNN, there is no modification to the network output (for category prediction and 

bounding box regression).  

• Multitask Loss Function 

Multitask loss function refers to two sibling output layers for category prediction and 

bounding box regression. Given 𝐾 categories for prediction, one output layer produces 

a discrete probability distribution over 𝐾 + 1  categories per RoI by softmax, 𝑦′ =

(𝑦′0, 𝑦′1, … , 𝑦′𝐾). The other is bounding box four-tuple 𝑡𝑘 = (𝑡𝑟
𝑘 , 𝑡𝑐

𝑘 , 𝑡ℎ
𝑘 , 𝑡ℎ

𝑘), where 𝑘 ∈

{1, 2, 3, … , 𝐾} as the category label index. A multitask cost 𝐿 on regions of interest for 

object classification and bounding box regression is expressed as 

𝐿(𝑦 
′, 𝑦 , 𝑡𝑢, 𝑣) = 𝐿𝑐𝑙𝑠(𝑦 

′, 𝑦 ) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣)                (2.3) 

where 𝐿𝑐𝑙𝑠(𝑦 
′, 𝑦 ) = − log 𝑦′𝑦 stands for the logarithmic loss function for a true class 𝑦 

given the proposed probability 𝑦′. The second term is for localization denoted as 𝐿𝑙𝑜𝑐 

over a tuple of the anchor and shape descriptor of a predicted bounding box 𝑡𝑘 =

(𝑡𝑟
𝑘 , 𝑡𝑐

𝑘 , 𝑡ℎ
𝑘 , 𝑡ℎ

𝑘) and ground truth bounding box 𝑣 = (𝑣𝑟
 , 𝑣𝑐

 , 𝑣ℎ
 , 𝑣𝑤

 ) for the class 𝑦.  

[𝑢 ≥ 1] = {
1, 𝑢 ≥ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (2.4) 

   For bounding box regression loss, the computation is given as 

𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖

𝑢 − 𝑣𝑖)𝑖∈{𝑟,𝑐,ℎ,𝑤}                 (2.5) 
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where  

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) {
0.5𝑥2, |𝑥| < 1

|𝑥| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

where 𝐿1 loss is less sensitive to outliers in comparison to that of 𝐿2 as implemented in 

R-CNN and SPPnet. There exists a hyper-parameter 𝜆 to reach a trade-off between the 

two task losses. 𝜆 = 1 is set for an equally balanced loss computation strategy.  

    Given prior morphological knowledge of the objects in question, it is feasible to take 

advantage of such knowledge as illustrated in the aforementioned chapters. By 

introducing a new loss term 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦𝑖
′, 𝑦𝑖), to reflect prior knowledge, there is 

𝐿(𝑦 
′, 𝑦 , 𝑡𝑢, 𝑣) = 𝐿𝑐𝑙𝑠(𝑦 

′, 𝑦 ) + 𝜆1[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣) + 𝜆2𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦 

′, 𝑦 , 𝑡𝑖
′)    (2.6) 

where 𝜆1 and 𝜆2 are weight parameters for controlling the importance of 𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣) 

and 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦 
′, 𝑦 ). 𝜆1 = 1 is set as same as Fast R-CNN implementation. 𝜆2 = 0.01 

is set. The reason for 𝜆2 = 0.01 is explained in the analysis chapter.  

    Generally speaking, in this research project, we impose this loss function for training 

to punish predictions that are vastly contradictive to what prior morphological knowledge 

would suggest, but do not want to overwhelm 𝐿(𝑦 
′, 𝑦 , 𝑡𝑢, 𝑣) with this kind of costs, so 

that the network training would still be concentrated on classification and localization 

errors. 

• Mini-batch sampling 

Minibatch sampling in Fast R-CNN sets 𝑁 = 2 images for each batch and 𝑅 = 128 that 

gives 64 regions of interest per image per mini-batch. Only does the proposed region with 

IoU overlap 𝜆 of equal to or more than 0.5 with ground truth regions being taken into 

consideration. Images are horizontally flipped on the probability condition of 0.5 and 

there is no other data augmentation implemented.  
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    In this experiment, minibatch size is adjusted so that the training for Fast R-CNN 

model can better fit the virus classification and localization work. The details of these 

specifications are elaborated in the Training Section. 

• Backpropagation through the region of interest pooling layers 

Backpropagation through the region of interest pooling layers is important in loss 

convergence. Hereinafter, we define 𝑥𝑖 ∈ ℝ as the 𝑖-th input to a region of interest layer 

and 𝑦𝑟𝑗 as 𝑗-th output of this layer for the 𝑟-th region of interest, 𝑦𝑟𝑗 = 𝑥𝑖∗(𝑟,𝑗), where 

(𝑟, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖′∈𝑅(𝑟,𝑗)𝑥𝑖′ and 𝑅(𝑟, 𝑗) is denoted as the index set of inputs.  

    The derivative of the pooling layer with respect to 𝑥𝑖 is 

𝜕𝐿

𝜕𝑥𝑖
= ∑ ∑ [𝑖 = 𝑖 ∗ (𝑟, 𝑗)] 

𝜕𝐿

𝜕𝑦𝑟𝑗
𝑗𝑟  .                        (2.7) 

    The Fast R-CNN implementation in this thesis does not propose changes to this back-

propagation technique; however, it is worth noting that 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦 
′, 𝑦 )  does not 

discriminate between different regions. 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦 
′, 𝑦 )  is treated as a simple 

representation of contradiction to prior virus morphological knowledge. 

    For weight initialization and learning, the initialization of weights takes zero-mean 

Gaussian distributions with standard deviations of 0.01  and 0.001  for softmax 

classification and bounding box regression predictors, respectively. Biases are initiated 

to 0. Global learning rate is set at 0.001 and decayed to 0.0001 after a few training 

iterations. In this experiment, we test a number of learning rates. 

• Sample source image method 

Scale invariance in statistics is a concept describing an object or law being persistent in 

an aspect of scale, energy or other attributes are “dilated” or “compressed” (multiplied by 

a common factor). Fast R-CNN utilizes an image pyramid to sample source image data 

(Girshick, et al., 2015). In Fast R-CNN implementation, the sampling method is similar 

to that of Fast R-CNN, the image pyramid is in proportion to image or input sizes. 
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2.6 Faster R-CNN 

Faster R-CNN (Ren, He, Girshick, & Sun, 2015) is a further improvement of R-CNN to 

achieve faster computation speed and higher prediction accuracy. It proposes a Region 

Proposal Network (RPN) in combination with Fast R-CNN, and incorporates attention 

(Chorowski, Bahdanau, Serdyuk, Cho, & Bengio, 2015) mechanisms. 

    A Region Proposal Network (RPN) is a deep convolutional neural network that makes 

the practice of images with arbitrary size and returns one or multiple of rectangular 

bounding boxes that identify object locations (Long, Shelhamer, & Darrell, 2015). Faster 

R-CNN is based on a number of base neural networks with different levels of shareable 

convolutional layers (Simonyan & Zisserman, 2014) (Matthew & Fergus, 2014) whose 

final feature layers are processed and mapped to a low dimensional feature map, by which 

two sibling fully connected layers are trained for bounding box regression and box 

classification, respectively.  

    Similar to region proposals of Fast R-CNN based on extracted feature map, Faster R-

CNN relies on convolutional feature map output. As suggested in this study (Krizhevsky, 

Sutskever, & Hinton, 2012), the deep neural network is more likely than a shallow one to 

record high accuracy prediction, with the help of novel networks such as ResNet (He, 

Zhang, Ren, & Sun, 2016), VGG (Simonyan & Zisserman, 2014), and GoogLeNet 

(Szegedy, et al., 2015). That recorded the best prediction result in various global 

competitions, the deep networks for feature map output are tested for virus morphological 

feature extraction. The feature extraction process is as same as what has been proposed 

in Faster R-CNN (Ren, et al., 2015), two sibling networks are taken into consideration 

for the control of the output features for classification and localization work. 

    The deep neural networks are pretrained based on ImageNet and retrained based on 

the electron microscopy images for virus particle recognition. There are various proposals 

of ResNet, VGG, and GoogleNet, which are different in terms of the number of layers 

and other minor modifications, e.g., applied activation functions. The selected variants of 
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ResNet and VGG are ResNet152 and VGG11. The considerations are hardware 

limitations and prediction accuracy, the determination of selections is a tradeoff between 

them. The details of the network specifications for training and classification results are 

illustrated in model training and resultant analysis further. 

    Anchors for a bounding box have consisted of four-tuples (𝑟, 𝑐, ℎ, 𝑤) so that 𝑘 

sliding windows should have 4𝑘  outputs. An anchor (𝑟, 𝑐)  is centred at a sliding 

window. By default, Faster R-CNN adopted three scales and three aspect ratios 

(𝑤𝑖𝑑𝑡ℎ/ℎ𝑒𝑖𝑔ℎ𝑡) that give nine anchors for each sliding position. Translation invariance 

refers to a concept in geometry (computer vision) that object does not change in terms of 

semantic representation (still recognizable) when points (pixels) move by the same ratio, 

this is addressed by using the implementation of multiscale and multiracial anchoring. 

    More ratios between 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 are expected to enhance the capability of 

neural networks related to visual features. However, due to hardware limitations as well 

as the prior knowledge of virus morphological features and “white dots” on electron 

microscopy images, there is no demand of increasing the number ratios to high, as simple 

rectangles with nine different shapes (Ren, et al., 2015) are sufficient to cover a virus 

particle fully. Despite keeping the number of ratios unchanged, there are minor 

modifications to ratio values, and again, given the shape of a typical virus particle being 

roughly spherical, a bounding box should be approximately square rather than a long 

rectangle. The loss function of RPN is designed to specifically target the two tasks: 

Bounding box regression and object classification. 

𝐿(𝑦𝑖
′, 𝑡𝑖

′) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑦𝑖

′, 𝑦)𝑖 + 𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑦′𝐿𝑟𝑒𝑔(𝑡𝑖

′, 𝑡𝑖)𝑖           (2.8) 

where 𝑖 is an anchor index, 𝑦′ and 𝑡′ are predictions of classification and bounding box 

regression, respectively. Accordingly, 𝑦 and 𝑡 are the ground truth for the object label 

and anchored bounding box. 𝐿𝑐𝑙𝑠 is logarithmic loss and 𝐿𝑟𝑒𝑔 is smooth 𝐿1. 𝑁𝑐𝑙𝑠 and 

𝑁𝑟𝑒𝑔 are two normalization terms. The two types of loss are weighted by 𝜆 = 10 to exert 

importance on bounding box regression errors.  
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    Given Faster R-CNN loss function, we introduce a new loss term 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉, because 

general virus morphological characteristics are prior knowledge, when a detection 

mechanism discovers prominent outlier vision features, e.g., viruses are roughly spherical 

but a detected object enclosed in a bounding box is a polygon which is vastly dissimilar 

from a circle. Consequently, the new loss function is expressed as 

𝐿(𝑦𝑖
′, 𝑡𝑖

′) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑦𝑖

′, 𝑦)𝑖 + 𝜆1
1

𝑁𝑟𝑒𝑔
∑ 𝑦′𝐿𝑟𝑒𝑔(𝑡𝑖

′, 𝑡𝑖)𝑖 + 𝜆2
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦𝑖

′, 𝑦, 𝑡𝑖
′)𝑖   

(2.9) 

where 𝜆1 and 𝜆2 are weights for the two loss items, respectively. 𝜆1 is set to 10 as 

same as Faster R-CNN (Ren, et al., 2015), 𝜆2 is assigned as 0.01, most detected objects 

are spherical and do not pose as bizarrely foreign objects resulting in significant great 

𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉. 

    General information flow of Faster R-CNN model for virus classification and 

localization is as same as what it has been proposed in this study (Ren, et al., 2015). Firstly, 

the RPN is initialized by using the ImageNet pretrained model specially designed for 

region proposal tasks. Then, an object detection network is trained by using Fast R-CNN 

given the proposed regions of interest output from the first step. The two networks do not 

share convolutional features. Object detection network is used to initialize RPN and fine-

tune the unique RPN layer. 

2.7 You Only Look Once (YOLO) 

YOLO (You Only Look Once), a novel CNN structure that has achieved fast computation 

as well as high prediction accuracy (Redmon, Divvala, Girshick, & Farhadi, 2015). A 

number of modifications are introduced to YOLO as well to make YOLO more suitable 

for the area of virus classification and localization on electron microscopy images.   
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    Source image is separated into a grid consisted of 𝑆 × 𝑆 cells. If a cell contains part 

of an object, the cell is accountable for this object detection. Each cell renders bounding 

boxes and confidence scores for the object.  

    In order to preserve visual information granularity, the number of cells in the 𝑆 × 𝑆 

grid is proportional to the input size of an image. In practice, there are two sizes of input 

images: 64 × 64 and 128 × 128 . The number of cells for 64 × 64 input images is 

4 × 4, for 128 × 128, it is 8 × 8. 

    The confidence score is a probability of how confident a model is relating to the 

bounding box enclosing the target object. The confidence is defined as 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑃𝑟𝑜𝑏(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ .                 (2.10) 

where IOU is the intersection area between the ground truth and the predict (represented 

by a percentage, that 100% is a complete overlap). The bounding box is the shared area 

of the two unions. 𝑃𝑟𝑜𝑏(𝑂𝑏𝑗𝑒𝑐𝑡) refers to the probability of an object (of an arbitrary 

label) which is contained in a bounding box. 

    In the virus classification, each object should have one label of the class, that means, 

each virus as visual objects only belong to one species. The confidence is expressed as 

the probability of a bounding box containing an object (one virus particle) of a class 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =

𝑃𝑟𝑜𝑏(𝑐𝑙𝑎𝑠𝑠𝑖) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ =

𝑃𝑟𝑜𝑏(𝑐𝑙𝑎𝑠𝑠𝑖 | 𝑂𝑏𝑗𝑒𝑐𝑡) × 𝑃𝑟𝑜𝑏(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑢𝑡ℎ .

(2.11) 

    Consequently, each cell predicts a total of five parameters: four parameters (four-

tuple) that define a bounding box’s location and size (𝑟, 𝑐, 𝑤, ℎ) in which a virus particle 

resides, and the probability of the virus particle class. 

    In Figure 2.5, for a source image split into 𝑆 × 𝑆 cells, each cell is responsible for 

predicting the label of an object denoted as 𝑃𝑟𝑜𝑏(𝐶𝑙𝑎𝑠𝑠𝑖) from 𝐶 classes, and the four-
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tuple (𝑟, 𝑐, 𝑤, ℎ) of 𝐵 proposed bounding boxes. Hence, a predictive model result is of 

an 𝑆 × 𝑆 × (5 × 𝐵 + 𝐶) tensor. In the case of virus classification and localization, given 

two input sizes for SARS, HIV and COVID-19, with specified two  bounding box 

predictions for each cell, the outputs are with the sizes 4 × 4 × (5 × 2 + 3)  and 

8 × 8 × (5 × 2 + 3). 

 

Figure 2.5: A typical YOLO process on an image 

    In YOLO (Redmon, Divvala, Girshick, & Farhadi, 2015), the adopted activation is 

Leaky ReLU. A number of other activation functions have been tested, and the 

performance results are recorded for evaluation. The implementation of YOLO loss 

function is illustrated as  

𝐿𝑦𝑜𝑙𝑜 = 

𝜆𝑐𝑜𝑜𝑟𝑑∑∑Ι𝑖,𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥̂𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 

𝜆𝑐𝑜𝑜𝑟𝑑∑∑Ι𝑖,𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤̂𝑖)
2
+ (√ℎ𝑖 −√ℎ𝑖̂)

2] +

𝐵

𝑗=0

𝑆2

𝑖=0
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∑∑Ι𝑖,𝑗
𝑜𝑏𝑗

[(𝐶𝑖 − 𝐶̂𝑖)
2
] +

𝐵

𝑗=0

𝑆2

𝑖=0

 

𝜆𝑛𝑜𝑜𝑏𝑗∑∑Ι𝑖,𝑗
𝑛𝑜𝑜𝑏𝑗

[(𝐶𝑖 − 𝐶̂𝑖)
2
] +

𝐵

𝑗=0

𝑆2

𝑖=0

 

𝜆𝑛𝑜𝑜𝑏𝑗∑Ι𝑖,𝑗
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

+  

𝜆𝑐𝑜𝑟𝑜𝑛𝑎𝑉 ∑ 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝐶𝑗 , 𝐶̂𝑗 , 𝑅𝑜𝐼𝑗)
𝐵
𝑗=0 .                 (2.12) 

    YOLO loss function consists of five components to impose penalties on wrong 

bounding box parameters 𝑟, 𝑐, 𝑤, ℎ  (denoted in this formula as (𝑥, 𝑦, 𝑤, ℎ) ) and 

classification 𝐶  for an image gridded into 𝑆 × 𝑆 cells with each cell responsible for 

predicting 𝐵 bounding boxes, plus one loss term to penalize enclosed objects dissimilar 

from prior virus morphological knowledge. 𝜆𝑐𝑜𝑜𝑟𝑑 = 5 and 𝜆𝑛𝑜𝑜𝑏𝑗 = 0.5 are scalers to 

control the penalties of bounding box coordinates and classification, respectively. 

𝜆𝑐𝑜𝑟𝑜𝑛𝑎𝑉 = 0.01  is as same as the networks mentioned above for the same reason. 

However,  𝜆𝑐𝑜𝑟𝑜𝑛𝑎𝑉   with recorded results is illustrated in the Results Section. 𝑅𝑜𝐼 

represents the four-tuple (𝑟, 𝑐, 𝑤, ℎ)  that gives information about how to anchor a 

bounding box. 

   The model instability problems might be arisen given equally treating bounding box 

coordinate and object classification errors as cells without including any object (Redmon, 

Divvala, Girshick, & Farhadi, 2015). Penalty tends to zero in localization confidence 

scores. Ι𝑖,𝑗
𝑜𝑏𝑗

 is a binary operator (either output 0 or 1) that denotes the presence of an 

object for the 𝑖-th cell and the 𝑗-th proposal. It is reasonable to assume that the width and 

height of a bounding box should be tightly fit to the contour of an object so that heavy 

penalty for bounding box anchor (the four-tuple (𝑟, 𝑐, 𝑤, ℎ)) is applied to restrict the 

growth of large bounding box.  
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    Prior to training, the base CNN for YOLO (all convolutional layers responsible for 

feature extraction) was first pretrained based on the source images. In the YOLO proposal 

(Redmon, Divvala, Girshick, & Farhadi, 2015) where the base CNN of YOLO was pre-

trained on ImageNet, we obtained the pretrained YOLO model and detached the base 

CNN from YOLO, and then we used the same method of how the first YOLO pretrains 

it is base CNN (Redmon, Divvala, Girshick, & Farhadi, 2015) by selecting the first 20 

convolutional layers followed by an average pooling layer and a dense layer for 

classification, to pre-train the customized YOLO. The structure for the customized YOLO 

is totally identical as proposed in the first YOLO (Redmon, Divvala, Girshick, & Farhadi, 

2015).   

    When information flows through convolution layers and then dense layers, a network 

does not take into account latent connections between extracted features before being 

flattened. What quite often is that images are comprised of various features that together 

build a concept of an object globally. Bilinear CNN (B-CNN) is proposed (Lin, 

RoyChowdhury, & Maji, 2015). B-CNN splits input matrices into two feature maps. The 

products of feature vector multiplication are flattened into a linear form, and the model 

then continues as what a typical dense layer would do. The matrix 𝑋 from two streams 

𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) before linearization is shown as 

𝑋 =
1

𝑛
(∑𝑖=1

𝑛 𝑎𝑖𝑏𝑖
𝑇 ) + 𝜀                         (2.13) 

    The bilinear layer is adopted in YOLO between the last convolutional layer and the 

followed fully connected layer. The performance of YOLO with the added bilinear layer 

is offered for evaluation purpose. The predicted regions of interest are processed by non-

maximum suppression (NMS) to reduce the number of bounding boxes.  
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2.8 SSD 

Single Shot Detector (SSD) (Liu, et al., 2016) is a novel CNN structure that utilizes only 

one deep neural network for object detection (object classification and localization). The 

considerations of utilizing multi-scale features are reflected in the last layer of a base 

network, progressively decreasing in shape. The convolutional predictors are of various 

sizes with smallest ones to 3 × 3 × 𝐶 (𝐶 for channel number, that in the case of this 

experiment, 𝐶 = 1 for grey scale for electron microscopy images). Feature maps are 

downsized as network goes deep, and on each layer, there is a 3 × 3 filter convolving 

through the feature map for object detection.  

    A research study (Liu, et al., 2015) demonstrated high prediction accuracy for SSD 

in comparison with others such as YOLO given input images with relatively small sizes 

(low resolution indicative of a reduced level of visual information). One motivation of 

selecting SSD for this research project is that the electron microscopy images are often 

noisy even after data enhancement techniques such as denoising, and are low in terms of 

visual information content since the most visual features are simple morphological 

characteristics. SSD is proven well-performed for recognising objects given an 

information-scarce environment. 

    Default bounding boxes are configured to respect prior virus morphological 

information. The ratio between width 𝑤 and height ℎ of a bounding box vary by a lot in 

the SSD proposal (Liu, et al., 2015) for that SSD is trained on ImageNet dataset. Hence 

it is agnostic about objects. This is different in this thesis where virus as visual objects 

are already investigated for their morphological presence being roughly spherical. Given 

this understanding, the default bounding boxes for the SSD for virus classification and 

localization can be configured in advance to adjust 𝑤 and ℎ. In SSD terminology (Liu, 

et al., 2016), this is referred to as fixed default bounding box priors. The implemented 

fixed bounding boxes by using SSD (Liu, et al., 2016) include long rectangular (with high 

ratio between 𝑤 and ℎ, i.e., either high 𝑤/ℎ or ℎ/𝑤), whereas, in this research project, 

the max ratio is set as 1.5 for the aspect ratio of the bounding box. 
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    Similar to other base network implementations, SSD combines with VGG16 for 

feature extraction. VGG16 was pretrained on ImageNet dataset (Russakovsky, et al., 

2015). In this research project, the pretrained VGG16 was retrained on the source images. 

The base network training is as same as what has been suggested in this work (Chen, 

Papandreou, Kokkinos, Murphy, & Yuille, 2014), that fc6 and fc7 are converted to 

convolutional layers and parameters are subsampled from gc6 and fc7; pool5 is 

transformed from 2 × 2 − 𝑠2  to 3 × 3 − 𝑠1  (for 𝑠𝑖𝑧𝑒𝑘𝑒𝑟𝑛𝑒𝑙 × 𝑠𝑖𝑧𝑒𝑘𝑒𝑟𝑛𝑒𝑙 × 𝑠𝑡𝑟𝑖𝑑𝑒 ) 

with a trous (Holschneider, Kronland-Martinet, Morlet, & Tchamitchian, 1990) to fill 

“holes”. Fc8 is removed and all dropout layers are disabled (no dropouts).  

   The improvements can be observed for SSD prediction in combination with other 

networks or with adjustments for specific contexts, that draw inspiration for this research. 

Deconvolutional SSD (Fu, Liu, Ranga, Tyagi, & Berg, 2017) records increased mAP over 

standard datasets such as PASCAL VOC and COCO dataset with added deconvolutional 

layers. RefineDet (Zhang, Wen, Bian, Lei, & Li, 2017) takes advantage of SSD and 

enhances the prediction capability via adjustments of anchors. An attention mechanism 

is used that is dedicated to text region image detection (He, et al., 2017). A feature-

focused network with a bidirectional network instructing semantic feature circulation saw 

increases in accuracy (Wang, et al., 2019). For human face detection, a context-assisted 

SSD is constructed with novel contextual anchors (Tang, Du, He, & Liu, 2018). 

    Given the knowledge as mentioned above of possible combinations with other 

networks for prediction improvements, other state-of-the-art CNNs are tested as the base 

networks, such as GoogleNet and ResNet. The pretrainings of GoogleNet and ResNet are 

similar to that of VGG16, the final convolutional layers are processed with the same 

technique proposed in the first SSD proposal (Liu, et al, 2015). 

    GoogLeNet (already pretrained on ImageNet) was directly implemented for training 

on the electron microscopy images. There intermediate outputs from middle layers that 

are used to prevent gradient vanishing problems. The intermediate output layers are not 

used for extraction. The feature extraction for SSD is conducted by using the last 
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convolutional layer of GoogLeNet, a concatenated convolutional output from previous 

inception modules, whose output is processed with a number of filters that are consistent 

with what SSD has suggested in its first proposal (Liu, et al., 2015). The resultant feature 

maps may vary in shape, but filtering processes by using convolution, the pooling are 

identical. 

    RessNet (also, already pretrained on ImageNet) followed the same process as that of 

GoogLeNet. The last convolutional layer of ResNet is applied to the same filtering 

processes with the decreasing resultant feature maps for prediction.  

 

Figure 1.6: SSD convolutional layers on which predictions are made (parameters 

shown in this figure are indicative only) 

    The extracted features from each decreased feature map are processed by using two 

networks for bounding box regression and object classification. In order to illustrate the 

loss function in combination with virus prior knowledge, hereinafter, we denote 𝑥𝑖,𝑗
𝑝 =

{1,0} that matches the 𝑖 -th box to the 𝑗-th ground truth box of class 𝑝 . Given this 

matching scheme, the sum should be ∑ 𝑥𝑖,𝑗
𝑝

𝑖 ≥ 1. Consequently, the loss function is 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔))                 (2.14) 
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where 𝑁 is the number of default boxes that correspond to ground truth boxes. For 𝑁 =

0 , loss 𝐿 = 0  is configured, 𝛼  is a weight term set to 1  (𝛼 = 1 ). 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐)  is 

confidence loss which refers to the softmax loss over class confidence 𝑐. Equation (2.15) 

states that for each positive prediction (the object being detected), there should be 

penalties applied to the wrong label data. There is no penalty on non-object bounding 

boxes. 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = −∑ 𝑥𝑖,𝑗
𝑝 log(𝑐̂𝑝)𝑁

𝑖∈𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 − ∑ log(𝑐̂0) 
𝑖∈𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒            (2.15) 

𝑐̂𝑝 =
exp(𝑐𝑖

𝑝
)

∑ exp(𝑐
𝑖
𝑝
)𝑝
                               (2.16) 

where 𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) is the loss for punishing the wrong localizations, the expression is 

given as equation (2.17) 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = −∑ ∑ 𝑥𝑖,𝑗
𝑝 

𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ} 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖
𝑚 − 𝑔̂𝑗

𝑚)𝑁
𝑖∈𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒   (2.17) 

where ground truth box 𝑔 and prediction box 𝑙 with the anchor (𝑐𝑥, 𝑐𝑦) as the centre 

of the default bounding box 𝑑 are used for loss computation. The revised loss function 

reflects the punishment on objects enclosed in bounding boxes being contradictive to 

prior virus morphological information, the loss function is expressed as equation (2.18) 

𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) + 𝛼𝑐𝑜𝑟𝑜𝑛𝑎𝑉𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑐̂

 , 𝑐 , 𝑙)).(2.18) 

   In the revised 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉 , 𝛼𝑐𝑜𝑟𝑜𝑛𝑎𝑉 = 0.01  is configured for the same reasons 

explained in the preceding chapters, that 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉  does not excessively influence on 

training.   
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Chapter 3 

Methodology 

 

This chapter chiefly provides an elaboration of a novel loss 

term that reflects prediction errors against well-known 

virus morphological information and selected predictive 

models as well as the modifications to the models for 

compatibility, where the predictive models better reflect the 

information that the source images contain. Additionally, 

data preprocessing is justified in this chapter. 
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3.1 Research Design 

In this thesis, original images and preprocessed images were studied as datasets. There 

are 6,000 electron microscopy images evenly (approximately) divided for the four 

categories: SARS, MESR, HIV, and COVID-19, with each one category having more 

than 1,500 images. The 6,000 images vary in sizes and are greyscale. All image regions 

have five labels: A four-tuple (r,c,w,h) representing the enclosed bounding box and label 

representing the class (species) of the detected object (virus particle). Each image has at 

least one region of interest (one bounding box containing one virus particle), only 

contains objects with the same class (but the predictive models referenced in this research 

support multi-class prediction for a given image). The data preprocessing methods used 

in this research work is based on electron microscopy image augmentation as well as 

image quality enhancement. 

3.2 Dataset Preprocessing   

3.2.1 Grey-Scaling Transformation 

Virus images obtained by electron microscopy are in nature greyscale, multichannel 

images (e.g., RGB) are unlikely to hold useful information. All source images are 

converted into greyscale images if they are colour one, even if images are displayed in 

greyscale, they are often encoded in three RBG format. For an RGB image, given three 

channels 𝑅, 𝐺, 𝐵, the computed greyscale pixel 𝑝 is 

𝑝 = 0.2989𝑅 + 0.5870𝐺 + 0.1140𝐵                   (3.1) 
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3.2.2 Image Resizing 

The convolutional neural network requires consistent sizes of input, and all source image 

data was resized to 64 × 64 × 1  and 128 × 128 × 1 , which is a typical size for 

computer vision tasks. 

    The selected algorithm for image resizing is the nearest neighbour interpolation 

(Roma & Sousa, 2011), also known as proximal interpolation, which is an approximation 

to a non-given point by simply taking the nearest point value. For the purpose of 

downsampling an image, image pixels are removed in proportion to image shrinkage ratio. 

3.2.3 Image Brightness Adjustment 

This method is to adjust the image brightness level to render images being natural to 

match human perception as well as easy for virus visual feature recognition. A preview 

of collected source images reveals that electron microscopy images are with various 

brightness levels. This adjustment aims CNN to only focus on morphological features 

instead of brightness levels when images display the same virus specimen of a class but 

considerably vary in terms of brightness level. This approach is only used in training not 

in validation or test. 

    In this research project, regions of interest (RoI) for each image are cropped and 

processed to derive pixel histograms from seeing an overall brightness representation of 

the image regions. If an image region is dark, this image region is enhanced in terms of 

brightness level by adjusting each pixel value to a normal state. An empirical study on 

sampled images determines a normalized image region. In general, a normalized region 

should have an average of pixel intensity, for any image region with large deviation from 

this average of pixel values. The image region is determined being either excessive bright 

or dark brightness adjustments are made to the whole image so that the enhanced image 

is of a normal brightness state. After this, we denote all regions of interest in an image as 
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𝑅𝐼 = {𝑅𝐼_1, 𝑅𝐼_2, … 𝑅𝐼_𝑖, … , 𝑅𝐼_𝑛} for an image 𝐼 of 𝑛 regions with each region denoted 

by index 𝑖, the average pixel value 𝑝𝑎𝑣𝑒 for image 𝐼 by using 

 𝑝𝑎𝑣𝑒 =
1

𝑛
∑ (

1

𝑁𝑅𝐼_𝑖
∑ 𝑝𝑗𝑅𝐼_𝑖

)𝑛                            (3.2) 

where 𝑗 is the index of a pixel in the image region 𝑅𝐼_𝑖. The brightness adjustment is 

expressed as 

𝐼 = {
𝐼, |𝑝𝑛𝑜𝑟𝑚 − 𝑝𝑎𝑣𝑒| < 𝑝𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐼 +
𝑝𝑛𝑜𝑟𝑚−𝑝𝑎𝑣𝑒

3
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                (3.3) 

    In equation (3.3), (𝑝𝑛𝑜𝑟𝑚 − 𝑝𝑎𝑣𝑒)/3 is a heuristic determined by using an empirical 

overview. The criterion is how appealing an enhanced (added or reduced brightness level) 

image is to human visual perception system, as well as resembling the natural colour of a 

typical electron microscopy image with balanced darkness and lightness.  

    The brightness adjustment for data augmentation takes into account regions of 

interest and determines whether an image overall is too dark or bright, and applies 

brightness level adjustment to the whole image. 

    This transformation is exemplified in COVID-19 image preprocessing. Perceptually 

in human eyes, the displayed image is of low illumination despite being observable of 

virus particle contours. Given the labelled regions of interest, four rectangular regions are 

cropped to compute required metrics for brightness enhancement. Given the four cropped 

image regions, 𝑝𝑎𝑣𝑒 is computed. In addition, Table 3.1 provides medians for the regions 

of cropped images. 
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Figure 3.1: A COVID-19 image (perceptually dark) 

 

Table 3.2: For Image brightness enhancement, four regions of interest are computed for 

their mean and median 

Images  

    

Intensity 

Average 
62.09 66.97 78.64 69.36 

Median  59 65 82 69 

Average  

of All Four 

Regions  

73.16 

Median  of 

All Four 

Regions  

75 

 

   Given the defined threshold 𝑝𝑛𝑜𝑟𝑚 − 𝑝𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, the mean of pixel intensities over all 

regions of interest is below 80, the brightness adjustment is applied to add extra pixel 

value. Figure 3.2 illustrates the results before and after the process (top row), revealed in 

the histograms before and after (bottom row) applied brightness enhancement, the 

postprocessed image is slightly more illuminative than the source image without 

perceptually losing virus morphological information. 



40 

 

 

Figure 3.2: An example of a COVID-19 virus particle image before and after applied 

enhanced brightness level 

3.2.4 Image Contrast Adjustment 

The contrast adjustment allows the reduction of latent information given excessive or 

derisory ambient light exposure. Regions of interest in the contrast adjusted images are 

more evident than that in source images because different visible light spectrums have 

distinct contrast results. In this experiment, virus particles appeared on electron 

microscopy images are in greyscale, and their morphological characteristics are described 

in relative brightness levels. It is expected that contrast would render viral morphological 

characteristics more salient than un-processed. 

    Given a 3D image 𝐼  and each pixel value 𝑣𝑥,𝑦,𝑧  corresponding to respective 

coordinate in the image, there exists a contrast factor 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡. It renders a pixel as same 

as the mean intensity of all pixels of an image when 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 0, and keeps the pixel 

value unchanged for 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 1. Pixel intensity variation increases along with growing 

𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 . The relationship between 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  and input/output pixel intensities is 

described as 

𝑣𝑥𝑛𝑒𝑤,𝑦𝑛𝑒𝑤,𝑧𝑛𝑒𝑤 = 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑣𝑥,𝑦,𝑧.                     (3.4) 
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where 𝑣min 𝑖 is denoted as the minimum pixel value of an image, accordingly, 𝑣max 𝑖 is 

the maximum pixel intensity, 𝑣min 𝑜 and 𝑣max 𝑜 are the minimum and maximum pixel 

intensities for the processed image, the following expression states the update, 

𝑣𝑥𝑛𝑒𝑤,𝑦𝑛𝑒𝑤,𝑧𝑛𝑒𝑤 = (𝑣𝑥,𝑦,𝑧 − 𝑣min 𝑖) × (
𝑣max𝑜−𝑣min𝑜

𝑣max 𝑖−𝑣min 𝑖
+ 𝑣min𝑜).          (3.5) 

    A number of 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  candidate values are experimented. 𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 1.2  is 

determined in accordance to human perceptions to which degree images are after applied 

contrast, that derived images are inclusive of necessary visual information while being 

enhanced adequately to deliver granularities that are favourable to neural network training.  

    The result is shown in Figure 3.3, the morphological characteristics as highlighted 

between black and white besides the virus contours on the images. The pixel histograms 

before and after the applied contrast with a factor of 1.2 shows high concentration level 

of the absolute white pixel (255 in greyscale).   

 

Figure 3.3: Image before and after contrast adjustment 
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3.2.5 Image Sharpening 

Interpolation and extrapolation are used to sharpen images for expected enhanced image 

quality (Maurya, Mishra, Singh, & Misra, 2012). A 3 × 3 filter is defined as equation 

(3.6) 

𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑚𝑜𝑜𝑡ℎ =
1

13
( 
1 1 1
1 5 1
1 1 1

 ).                       (3.6)   

    Given the size of input images, it is expected that a 3 × 3 filter should be capable of 

detecting necessary information in an image. We denote a source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and a 

convolution result image 𝐼𝑠𝑚𝑜𝑜𝑡ℎ, there exists a relationship 

𝐼𝑠𝑚𝑜𝑜𝑡ℎ = 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 ∙ 𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑚𝑜𝑜𝑡ℎ,                      (3.7)   

where ∙ denotes a convolution multiplication operator. To sharpen an image, we define a 

sharpness factor 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛 , and denote 𝐼𝑏𝑙𝑒𝑛𝑑  as the processed image, the image 

derivation equation is expressed as equation (3.8). 

𝐼𝑏𝑙𝑒𝑛𝑑 = (1 − 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛)𝐼𝑠𝑚𝑜𝑜𝑡ℎ + 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛𝐼𝑠𝑜𝑢𝑟𝑐𝑒 .              (3.8) 

where 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛 controls the importance of 𝐼𝑠𝑚𝑜𝑜𝑡ℎ’s effects on the source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒. 

This technique is convenient for blurring or sharpening an image. By setting 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛 ∈

(0, 1), it renders image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 being partially blurred, and 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛 ∈ (1,+∞) inverses 

are smoothing to sharpening.  

    After sampled tests on different 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛 s on virus electron microscopy images, 

𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛 = 2.7  is determined. Figure 3.4 demonstrates a processed image with 

sharpening, the effect is evident as displayed on the two histograms. 
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Figure 3.4: An example of a sharpened image 

3.2.6 Image Rotation 

Rotation introduces nonlinearity for predictive models being more robust against mis-

recognised image features after rotation. All images are randomly rotated with an angle 

between 0° and 360° by the equation illustrated. 

   Hereinafter, we denote an image 𝐼 , a two-dimensional matrix with corresponding 

coordinates (𝑥, 𝑦) for pixel intensity 𝑣, 

 

𝐼(𝑥, 𝑦) = 𝑣𝑥,𝑦.                                   (3.9) 

    We denote a rotation matrix as 𝑅 given rotation angle 𝜃,  

𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

].                              (3.10)  

    For an arbitrary rotation angle 𝜃, there are 

[𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤] = [𝑥, 𝑦] [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

],                     (3.11) 
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and 

𝑣𝑥𝑛𝑒𝑤,𝑦𝑛𝑒𝑤 = 𝑣𝑥,𝑦.                                 (3.12) 

    The new image 𝐼𝑛𝑒𝑤 is denoted as 

𝐼𝑛𝑒𝑤(𝑥, 𝑦, 𝜃) = 𝐼 ([𝑥, 𝑦] [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]).                  (3.13) 

    After a rotation, unless 𝜃 is a multiple of 180°, it is expected that there are lost image 

regions and hollows. An image with 45° rotation renders 25% loss of information. The 

lost image regions are filled with pixel 0 (black), and is displayed in Figure 3.5.  

 

Figure 3.5: An image with a rotation angle of 45 degrees 

    Given this consideration, to preserve scale invariance as well as all image information, 

all images are rotated with an angle of 180° (flipping). In this experiment, 90% of 

images are flipped while 10% of rotated with an arbitrary angle between 0° and 360°. 

3.2.7 Image Noise Removal 

Image derivation is prone to noises for limitations such as vibration when an image is 

taken by the camera and device-dependent inaccuracy of how photosensors perceive light.  

Images are firstly converted into a CIELAB colour space (i.e., known as CIE L*a*b or 
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abbreviated as LAB colour space). CIE is an acronym for International Commission on 

Illumination who defines colour as a collective representation of three values: 𝐿∗ for 

lightness ranging from black (0) to white (100), 𝑎∗ for a range from green (−) to red (+) 

and 𝑏∗  for blue (−) to yellow (+). This representation is appealing to the human 

perception of natural colour given spectral power distribution. 

    A source RGB image is device-dependent and is first transformed to a device-

independent RGB format such as CIEXYZ (CIE 1931 XYZ), from which CIELAB 

encoding is derived. A CIEXYZ-CIELAB transformation is given as 

𝐿∗ = 116𝑓 (
𝑌

𝑌𝑁
) − 16 

𝑎∗ = 500(𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)) 

𝑏∗ = 500(𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
))                      (3.14) 

and 

𝑓(𝑡) = {
𝑡
1

3, 𝑡 > 𝛿3

𝑡

3𝛿2
+

4

29
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (3.15) 

Moreover, 

𝛿 =
6

29
,                                     (3.16) 

where 𝑋𝑛, 𝑌𝑛, and 𝑍𝑛 are XIEXYZ tristimulus values with respect to white point, 𝑛 for 

normalization We define an illumination control factor ℎ, ℎ is used to denoise 𝐿∗ and 

𝑎∗𝑏∗  components given two windows: A template window and a search window to 

compute the weights of pixel surroundings. 
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Figure 3.6: An example of noise removal 

3.2.8 Image Random Region Removal 

Image region random removal (Zhong, Zheng, Kang, Li, & Yang, 2017) is an image 

augmentation technique that addresses generalization issues by artificially introducing the 

absence of part of image regions. By removing regions of an image, this technique is 

expected to enhance the robustness of a neural network for better recognition in case of 

insufficient visual information. Hereinafter, we define a source image 𝐼 with 𝑤𝐼 and ℎ𝐼 

representing its width and height then defines two integers 𝑥𝑠𝑡𝑎𝑟𝑡 ∈ [0, 𝑤𝐼] and 𝑦𝑠𝑡𝑎𝑟𝑡 ∈

[0, ℎ𝐼] as a random start coordinate (𝑥𝑠𝑡𝑎𝑟𝑡, 𝑦𝑠𝑡𝑎𝑟𝑡). A removal region with a ratio 𝑟𝑏 is 

defined as in proportion to image width and height, 𝑤𝐼 and ℎ𝐼.  

    In this experiment, 𝑟𝑏 = 0.15. The two coordinates (bottom left (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡) and 

top right (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑)) of a removed image region are expressed as below 

(𝑥𝑠𝑡𝑎𝑟𝑡, 𝑦𝑠𝑡𝑎𝑟𝑡) = (𝑟𝑎𝑛𝑑𝑜𝑚(0,𝑤𝐼), 𝑟𝑎𝑛𝑑𝑜𝑚(0, ℎ𝐼))       (3.17) 

(𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑) = (𝑥𝑠𝑡𝑎𝑟𝑡 + 𝑟𝑏 𝑤𝐼, 𝑦𝑠𝑡𝑎𝑟𝑡 + 𝑟𝑏 ℎ𝐼)            (3.18) 

The random removal region selection process repeats five times, shown as in Figure 3.7. 
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Figure 3.7: An example of random image region removal 

3.3  Jaccard Index Crop 

The number of source electron microscopy images is limited as the images are quite costly. 

The number of image samples plays an important role in generalization. If selected 

images within a mini-batch are similar while others are distant in resemblance, the learned 

errors fluctuate substantially. This phenomenon is detrimental to training and should be 

addressed. Thus, Jaccard overlap is selected to compute source image similarity (Kotu & 

Deshpande, 2019). This image similarity index is computed given equation (3.19).   

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
,                                  (3.19) 

where 𝐴 and 𝐵 are two given images. If 𝐴 and 𝐵 are both empty, 𝐽(𝐴, 𝐵) is defined 

as 1 (𝐽(𝐴, 𝐵) = 1). If we randomly select a large image region that satisfies a Jaccard 

index between [0.75,0.95], then the cropped image region is resized to the same shape 

as that of the raw image. The histogram illustrates that there are no significant changes in 

pixel distribution. The image background is removed as well as the virus regions. There 

are reductions in the number of surrounding protein projections.    
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Figure 3.8: An example of the random image cropping by the defined Jaccard Index 

condition 

3.4  An Image Preprocessing Pipeline 

The processing result of the pipeline is a collection of 6000 electron microscopy images 

for four virus species: HIV, COVID-19, SARS, and MERS, with each species, 

approximately having 1500  images, the data as mentioned above preprocessing 

transformations are applied to the follows: 

• Image denoising 

• Image brightness adjustment 

• Image contrast 

• Image sharpening 

• Image rotation (0.1 probability of occurrence) 

• Image random region removal (0.1 probability of occurrence) 

• Image Jaccard Index Crop (0.1 probability of occurrence) 

• Image resizing 
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    Provided the preprocessing for an input image, the first four steps are considered for 

data enhancement for better image quality, the source electron microscopy images are 

likely to be noisy, followed by three data augmentation that aims to twist the source 

images with added noises in the attempt to improve the robustness of a predictive model. 

The end of the preprocessing is to resize images, that means, different predictive models 

require different sizes of input. 

    The result of the data enhancement is shown in Figure 3.9. The most significant 

operation is based on image denoising. Image contrast enhancement is apparent in terms 

that the virus regions see increases of illumination degrees; in the pixel histogram, the 

number of absolute white pixel surges a significant quantity. The contours of virus regions 

are clear after sharpening, despite being less visually observable.  

 

Figure 3.9: An example of four data enhancement pre-processing techniques, displayed 

as before and after 

     The data augmentation part (the 5-th, 6-th, and 7-th steps) aims to improve the 

predictive capability of a model by adding disturbances to the raw visual features 

presented in source images. Given a probability of 0.1 for the occurrence of the three 

events for each enhanced image, there are 23% of images going through at least one of 

the data augmentations, and the rest are kept unchanged. 
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3.5  Prior Virus Morphological Knowledge 

In this experiment, we propose a novel R-CNN specifically designed for three virus 

species recognition and localization. It includes a group of well-known morphological 

attributes, e.g., spherical shape and virus regions surrounded by spike protein projections 

for coronavirus. In addition, it is known that foreign objects might disturb virus visual 

information, e.g., air bubbles. These are useful information regarding virus identification.  

   In this research project, we developed a mechanism that takes into account the 

information by adding an extra loss term to R-CNN. For example, if the predictor detects 

an object contained in a bounding box without observing the main object surrounded by 

using proportionally small spherical objects, while predicting the object as a species of 

coronavirus, there is an added loss to reflect this error. In this study, there are a number 

of known virus morphological features being identified and summarised them to a 

comprehensive loss term.  

    Regions of interest are first transformed to binary only to preserve most important 

morphological information, as illustrated in Figure 3.10. A number of image pre-

processing techniques are applied for the transformation, first by denoising then to get 

binary representation by using the watershed algorithm. Given the predicted bounding 

box anchor expressed by a four-tuple (𝑟, 𝑐, 𝑤, ℎ), the proposed regions of interest are 

clipped from the source image. 

   This research work has the object detection mechanisms based on features of the 

coronavirus. The first one is primitively to identify the main body of the clipped image 

region (the largest area by using white pixels) and the surrounding scattered white dots 

(spike protein projections, other white pixel counts with sizes no more than 5% of the 

main body area). The number of white dots is one critical metric that indicates the 

included object is a coronavirus region. 
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Figure 3.10: A coronavirus micrograph after thresholding 

    The finding of isolated “white dots” is a typical question of counting the number of 

connected components in an undirected graph, which can be solved by using either Depth 

First Search (DFS) or Breadth Frist Search (BFS) (Kaur, Sharma, & Verma, 2014). Upon 

discoveries, the areas 𝑎𝑟𝑒𝑎𝑖 for the 𝑖-th dot is computed. Here we define a set of white 

dot areas 𝑎𝑟𝑒𝑎 = {𝑎𝑟𝑒𝑎1, 𝑎𝑟𝑒𝑎2, … , 𝑎𝑟𝑒𝑎𝑛}, hence, 𝑚𝑎𝑖𝑛𝐵𝑜𝑑𝑦 = max (𝑎𝑟𝑒𝑎). Then, 

we remove the white dots greater than 5% of 𝑚𝑎𝑖𝑛𝐵𝑜𝑑𝑦 (5% is determined upon 

examining sampled electron microscopy images for general sizes of spike protein 

projections relative to main bodies), and derive 𝑎𝑟𝑒𝑎𝑃𝑟𝑜𝑗  

Algorithm 3.1: Get valid spike protein projection areas 𝒂𝒓𝒆𝒂𝑷𝒓𝒐𝒋 

 

Input: 𝒂𝒓𝒆𝒂 = {𝒂𝒓𝒆𝒂𝟏, 𝒂𝒓𝒆𝒂𝟐, … , 𝒂𝒓𝒆𝒂𝒏} 

Output: 𝒂𝒓𝒆𝒂𝑷𝒓𝒐𝒋 

 

𝒂𝒓𝒆𝒂𝑷𝒓𝒐𝒋 = ∅  

𝒎𝒂𝒊𝒏𝑩𝒐𝒅𝒚 = 𝐦𝐚𝐱(𝒂𝒓𝒆𝒂)  

 

For 𝒂𝒓𝒆𝒂𝒊 in 𝒂𝒓𝒆𝒂 

        If 𝒂𝒓𝒆𝒂𝒊 < 𝟎. 𝟎𝟓 𝒎𝒂𝒊𝒏𝑩𝒐𝒅𝒚 Then 

                𝒂𝒓𝒆𝒂𝑷𝒓𝒐𝒋 = 𝒂𝒓𝒆𝒂𝒊⋃𝒂𝒓𝒆𝒂𝑷𝒓𝒐𝒋 

 

    There are a number of coronavirus electron micrographs examined and determined 

that even for improperly processed images, e.g., failed denoised images rendering a small 
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number of white dots, the count 𝑐 of white dots should not be less than 5.0, by which a 

loss term 𝐿1 given the count 𝑐 of 𝑎𝑟𝑒𝑎𝑃𝑟𝑜𝑗 is devised 

𝐿1(𝑐) = {

2,           𝑐 = 0
1

𝑐
, 0 < 𝑐 < 5

0,           𝑐 ≥ 5

.                         (3.20) 

    The second metric is geometrical location of the white dots related to the main body. 

All white pixel areas are treated as polygons in computation and their centroids are 

computed. Euclidean distances between the region centroid to the main body centroid are 

calculated. By comparing all distances, our conclusion is drawn.  

 

Figure 3.11:  A region of interest from a denoised coronavirus electron micrograph 

    The centroid, or geometric centre of a polygon, is the arithmetic mean of all points of 

this polygon, which holds true for 𝑛-dimensional polygon (Barton, 1972). We define a 

set of geometric centres 𝑔𝑐 = {𝑔𝑐1, 𝑔𝑐2, … , 𝑔𝑐𝑛}  for 𝑎𝑟𝑒𝑎𝑃𝑟𝑜𝑗 , given a Euclidian 

distance 𝐸𝐷(𝑝, 𝑞) for 𝑛-dimensional inputs which is expressed as 

𝐸𝐷(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)
2𝑛

𝑖=1                         (3.21) 

 

 



53 

 

Algorithm 3.2: Measuring Euclidian distance 𝑬𝑫  between main body and 

surroundings 

 

Input: 𝒈𝒄 = {𝒈𝒄𝟏, 𝒈𝒄𝟐, … , 𝒈𝒄𝒏} 

Output: Euclidian distance 𝑬𝒖𝒄𝑫𝒊𝒔 

 

𝑬𝒖𝒄𝑫𝒊𝒔 = ∅  

𝒈𝒄𝒎𝒂𝒊𝒏 = 𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅(𝒎𝒂𝒊𝒏𝑩𝒐𝒅𝒚)  

 

For 𝒈𝒄𝒊 in 𝒈𝒄 

        𝑬𝒖𝒄𝑫𝒊𝒔 = 𝑬𝒖𝒄𝑫𝒊𝒔. 𝒂𝒑𝒑𝒆𝒏𝒅(𝑬𝑫(𝒈𝒄𝒊, 𝒈𝒄𝒎𝒂𝒊𝒏)) 

 

    Pertaining to 𝐸𝑢𝑐𝐷𝑖𝑠, the standard deviation 𝜎 is computed as a heuristic to judge 

how spherical the surrounding white dots are. The greater 𝜎 is, the less likely white dots 

are surrounded main body by a circle. The second loss term is expressed as  

𝐿2(𝜎) = 𝑘𝜎3                           (3.22) 

where we add nonlinearity with a power of 3 to amplify penalty to large 𝜎 value and 𝑘 

for controlling the weight of this loss term. 

    The third metric is the main body of sphere similarity. Given the centroid of a virus 

particle main body, a circle grows from the centroid point until just fully containing the 

main body.  

 

Figure 3.12: A region of interest from a coronavirus electron micrograph with spherical 

enclosing 
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    The third loss term is the ratio of the two areas:  𝑚𝑎𝑖𝑛𝐵𝑜𝑑𝑦 and 𝑐𝑖𝑟𝑐𝑙𝑒𝐴𝑟𝑒𝑎, as 𝑟 =

𝑚𝑎𝑖𝑛𝐵𝑜𝑑𝑦/𝑐𝑖𝑟𝑐𝑙𝑒𝐴𝑟𝑒𝑎 . Weight 𝑘  and nonlinearity penalty with a power of 3  are 

applied 

𝐿3(𝑟) = 𝑘 (1 −
1

𝑟
)
3

.                         (3.23) 

    However, it is observable that the presented virus is unlikely of a perfect circle on an 

electron microscopy image, there should be no penalty on a roughly round object. Thus, 

upon an empirical study on sampled virus electron microscopy images, a threshold can 

be set to relieve penalty on normal roughly round objects, where 𝑟 = 0.3 is the threshold, 

and the following expression is derived 

𝐿3(𝑟) = {
𝐿3(𝑟), 𝑟 ≥ 0.3

0, 𝑟 < 0.3
.                       (3.24) 

   The fourth loss term is the ratio between width denoted as 𝑤  and height as   ℎ . 

Because virus regions are roughly spherical, they usually appear on electron microscopy 

images with a shape of a circle (the contour), the bounding box should be of a shape of 

square rather than a long rectangle. Hence, the loss term is expressed as 

𝐿4(𝑤, ℎ) = 𝑘 (
|1−

𝑤

ℎ
|+|1−

ℎ

𝑤
|

2
),                       (3.25) 

where 𝑘 is a scalar that controls the importance of the penalty. 

    Similar to the third loss term that there barely exists a perfect spherical virus particle, 

and penalty on normal approximately round objects should be avoided. Given this 

consideration, this equation is shown as 

𝐿4(𝑤, ℎ) =

{
 

 𝐿4(𝑤, ℎ), |1 −
𝑤

ℎ
| ≥ 0.2

𝐿4(𝑤, ℎ), |1 −
ℎ

𝑤
| ≥ 0.2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                  (3.26) 

    We summarize all aforementioned loss terms with respective weights 𝑤 , a 

coronavirus prior knowledge judgement loss term 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉 is derived as 
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𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉(𝑦
′, 𝑦, 𝑡 

′) = 𝑤1𝐿1 + 𝑤2𝐿2 + 𝑤3𝐿3 + 𝑤4𝐿4,              (3.27) 

where 𝑦′  and 𝑦 are predicted object class and 𝑡′ is the predicted bounding box that 

gives information about the shape and anchor of a rectangular image region, 𝑡′ is a four-

tuple. 

3.6 Attention Mechanism 

Attention in the neural network is a broad concept referring to highlighting specific 

contextual information that a network should be looking at (Vaswani, et al., 2017). An 

attention mechanism can access previous latent states and measure them by using 

relevancy to the current state. The motivation behind this innovation is to input sequence 

representation by using the encoder-decoder structure (Sukhbaatar, szlam, Weston, & 

Fergus, 2015) that generates a sequence of estimated representations given input. 

   A typical attention unit learns three weight matrices: Query weight 𝑊𝑄, key weight 

𝑊𝐾 and value weight 𝑊𝑉. For every input token 𝑥𝑖, there are 𝑞𝑖 = 𝑥𝑖𝑊𝑄, 𝑘𝑖 = 𝑥𝑖𝑊𝐾, 

𝑞𝑖 = 𝑣𝑖𝑊𝑉 for the query, key value of 𝑥𝑖. Attention weight 𝑎𝑖𝑗 from token 𝑥𝑖 to token 

𝑥𝑗 is the dot product of 𝑞𝑖 and 𝑘𝑗. Here we denote 𝑑𝑘 as the number of dimensions of 

𝑞𝑖 , and 𝑎𝑖𝑗/√𝑑𝑘  is the stabilized attention weight (√𝑑𝑘  can stabilize gradient during 

training). Softmax is applied to the output. Thus, we define 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛}, 𝐾 =

{𝑘1, 𝑘2, … , 𝑘𝑛}, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, the attention layer (scaled dot product attention) is 

represented as  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉.             (3.28) 

    In computer vision, an attention mechanism (of a 3 × 3 filter) is illustrated as Figure 

3.13, where each cell represents a pixel. A query 𝑊𝑄 looks at the current pixel while keys 

𝑊𝐾 and 𝑊𝑉 are taken into consideration of the pixel’s neighbours.  
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Figure 3.13: An attention mechanism in computer vision 

    For this experiment, it is observable that virus morphological features are largely 

contextual. In other words, in order to recognize a virus particle on an electron 

microscopy image, it is highly unlikely only to consider local visual information, e.g., a 

spike (or a “white dot”) can hardly indicate the existence of the virus particle to which it 

belongs. Upon this reflection, a large filter is used while a size of 7 × 7 is used, which is 

different from the example of a 3 × 3 filter. The query filter remains unchanged with a 

size of 1 × 1 . Attention mechanism aims to weigh source image pixels and mask 

background or foreign objects, preserve virus regions for Faster R-CNN training. 

    Given the example of an electron microscopy image of four coronavirus regions, in 

order to train an attention layer, the label for each pixel and the surroundings of the pixels 

is shown in Figure 3.14. Regions of interest are labelled in white while backgrounds or 

the irrelevant are black.  

    The desired output from the attention mechanism is highlights of regions of interest. 

In practice, the attention mechanism cannot invariably find the optimal virus regions, a 

hard mask should be discarded. Instead, in this experiment, the soft mask is selected to 

filter source images. 
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Figure 3.14: An electron microscopy image of four coronavirus regions and their masks 

 

Figure 3.15: A soft masked source image by using attention mechanism (this exemplary 

image is presented as the ground truth instead of a real output) 

    The implemented attention mechanism in this research project is a simple self-

attention network as described in this research. The simple self-attention network 

mechanism is regarded as a simple encoder-decoder network that only imports the source 

images, so that irrelevant areas are masked while the regions of interest are highlighted 

or preserved for visual feature extraction (Ramachandran, et al., 2019).  
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Chapter 4 

Training 

 

In this chapter, we describe the details of neural network 

training. Not only does this chapter expounds the proposed 

models and hyperparameters, but also it illustrates the 

modifications to the networks in practice after the training. 
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4.1 Training Toolboxes 

In this experiment, MATLAB deep learning toolbox is selected, which has built-in R-

CNN algorithms for model training. In addition, in order to exploit the latest machine 

learning and computer vision algorithms, PyTorch and associated toolboxes are selected 

for data preprocessing and model training. 

4.2 Supervised Training 

The network training for virus recognition belongs to a supervised learning process. There 

are two training models, one is for the attention network whose outputs (weighted source 

image pixels) are fed into Faster R-CNN for object localization and classification. 

4.3 Activation Functions 

Two activation functions are tested in this research. All network structures are kept 

unaltered with activation functions replaced with alternatives. The used activation 

functions for replacement are ReLU and Leaky ReLU (Nair & Hinton, 2010) (Maas, 

Hannun, & Ng, 2013). The expressions are listed as: 

ReLU: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

                                (4.1) 

Leaky ReLU: 

𝑓(𝑥) = {
0.01, 𝑥 < 0
𝑥, 𝑥 ≥ 0

                           (4.2) 
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4.4 Hyperparameters 

Two hyper parameters are tested, in detail, they are: 

4.4.1 Learning Rate  

Learning rate is an adaptive parameter that controls updates on network parameters 

(Chandra & Sharma, 2016), e.g., weights, etc. Learning rate is mainly maintained by two 

components: Decay and momentum. Decay refers to declines in learning rate over 

iterations and momentum is a speed control parameter which adjusts updates in 

accordance with scale and direction of back propagated loss, so that when the gradient is 

large, it speeds up (increase learning rate 𝜂) the update; when the loss fluctuates, it slows 

down. A number of learning rate update schemes are adopted. 

Constant 

                                                                       𝜂𝑛+1 = 𝜂0                           (4.3) 

where 𝜂0 is the initialized learning rate. 𝜂0 = 0.005 is set during the training. 

Step-based decay 

                                                             𝜂𝑛+1 = 𝜂0𝑑
𝑓𝑙𝑜𝑜𝑟(

1+𝑛

𝑟
),                      (4.4) 

in which 𝜂0  is the initialized learning rate, 𝑑  is a decay parameter describing the 

percentage of decreasing, usually set at 0.5, 𝑟 is value drop rate. 

    In this experiment, we set 𝜂0 as 0.01 with a decaying factor 𝑑 as 0.1. In addition, a 

relaxation term was added to avoid vanishing learning rate when 𝑛 is inordinate large 

and 𝜂𝑛 becomes inordinate small for training. The settling term is a simple constraint 

𝜂𝑛 = 𝜂𝑛−1 if 𝑛 > 30. The equation (4.5) reflects this thresholding. 

                                                       𝜂𝑛 = {
𝜂0𝑒

−𝑑𝑛, 𝑛 ≤ 30
𝜂𝑛−1, 𝑛 > 30

                        (4.5) 
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Time-based decay 

                                                                      𝜂𝑛+1 =
𝜂𝑛

1+𝑑𝑛
,                         (4.6) 

where 𝜂𝑛 is the learning rate, 𝑑 is a decay parameter given an iteration step 𝑛. At the 

first iteration, 𝜂0 = 0.01 is set with 𝑑 = 0.5. Thresholding is used to avoid vanishing 

learning rate when 𝑛 is undue small. 

                                                               𝜂𝑛 = {

𝜂𝑛

1+𝑑𝑛
, 𝑛 ≤ 30

𝜂𝑛−1, 𝑛 > 30
                      (4.7) 

Exponential  

                                                                        𝜂𝑛 = 𝜂0𝑒
−𝑑𝑛,                        (4.8) 

The configuration parameters share the same semantics as above mentioned. The learning 

rate update in this experiment is configured with 𝜂0 = 0.01  and 𝑑 = 0.5 . Also, 

thresholding is implemented to prevent the vanishing learning rate.  

                                                             𝜂𝑛 = {
𝜂0𝑒

−𝑑𝑛, 𝑛 ≤ 30
𝜂𝑛−1, 𝑛 > 30

                     (4.9) 

4.4.2 Mini-Batch Size 

Batch size plays a vital role in optimization. A batch is a small collection of source data 

samples, a large size permits a high level of parallelization of stochastic gradient descent 

and small size has the opposite effect (Peng, et al., 2018). The performance of a neural 

network regarding generalization is affected by it as well. The empirical study shows a 

strong correlation between the performance of generalization and batch size. 

Computation cost increases significantly when batch size increases. 
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    A number of mini-batches sizes have been tested out of considerations including 

hardware limitations, optimal performance, trained model generality and computation 

time. It was finally set 

                                                     𝑚𝑖𝑛𝑖𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 4                                                     (4.10) 

for the training period. 

4.5 Regularization 

Regularization is a process to tune a predictor and prevents overfitting by adding a 

regularization term 𝑅(𝑓) to a loss function 𝐶 for a predictive function 𝑓() given input 

samples 𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}  with corresponding label 𝑦 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛} . It 

minimizes the following function 

Min
𝑓
∑ 𝐶(𝑓(𝑥𝑖), 𝑦𝑖) + 𝜆𝑅(𝑓)
𝑛
𝑖=1                       (4.11) 

where 𝑅(𝑓) is a penalty imposed on 𝑓() to punish overfitting and smooth it (Cheng, et 

al., 2011), 𝜆 is an important control parameter that amplifies or limits the effect of 𝑅(𝑓).  

    Dropout (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) is a frequently used 

neural network regularization technique to address overfitting problem due to co-adaption 

on training data. This technique is proven effective for considerable dataset training. The 

core concept of this approach is randomly dropping neurons so that the network can be 

more robust. This process is illustrated in equation (4.12) 

𝑜𝑢𝑡 = 𝑚 ∗ 𝜎(𝑊𝑥),                            (4.12) 

where ∗ stands for an element wise product operator and 𝑚 for a binary mask vector. 

𝑚  follows 𝑚𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)  where 𝑗  is drawn independently, 𝑝  is a manually 

specified probability for an output layer’s result to be kept. 
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    DropConnect (Wan, Zeiler, Zhang, Cun, & Fergus, 2013) is another regularization 

tool similar to dropout mechanism except that it disables connections. Equation (4.13) 

illustrates this operation 

𝑜𝑢𝑡 = 𝜎((𝑀 ∗𝑊)𝑥),                       (4.13) 

where 𝑀  follows 𝑀𝑖,𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)  with 𝑖  and 𝑗  drawn independently given a 

manually specified probability 𝑝 of retainment of an output layer’s results. 

    In this experiment, a dropout probability of 0.1  is selected. Similarly, the drop 

Connect probability of 0.1 is selected. However, R-CNN does not use regularizations 

because the final prediction component is SVM. The regularizations only appear in dense 

layers. 

4.6 Training Parameters 

• The iteration number is set as 50. 

• Training and validation set split ratio as 1:9, it is about 1350 images per class for 

training and the rests are for validation. 

4.7 Attention Mechanism Training 

Prior to the training, after preprocessing, image data goes through a simple attention 

network for masking. Since this is not the focus of this research project and the 

implementation of attention serves more as a data preprocessing method, in this 

experiment, the simple attention network training is carried out with a small learning rate 

0.00001 along with an iteration number of 10.  

   This setup is a result of empirical performance study, in which the attention 

mechanism for self-encoding the regions of interest cannot guarantee the high accuracy 
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of region anchoring. However, it is safe to say that the attention mechanism would not 

introduce excessive disturbance (totally chaotic highlighted image areas for attention). 

Therefore, in this research project, the attention adjustment is made trivial so that there is 

not significant changes to the input images. 

4.8 Base Networks for Feature Extraction 

In this thesis, three deep CNNs are used as the base networks for visual extraction: ResNet, 

GoogLeNet, and VGG. The three base networks are already pretrained based on 

ImageNet prior to implementation in this experiment. The pretrained networks are then 

trained on electron microscopy images for classification, then the end layers (usually end 

fully connected layers) are truncated and the outputs (usually) from the last convolutional 

layer serve as the features for various prediction mechanism.  

    The preprocessed electron microscopy images are imported for training with the aid 

of attention mechanism to match the highlight image regions with irrelevant areas soft 

masks. The processed images are treated as the input data for CNNs training. Image 

resizing occurs to meet the input size requirements for various base networks. In this 

research project, a number of training rate schemes were tested and the top performers 

are selected. Activation functions are replaced with an alternative to see if there is any 

improvement in prediction accuracy, the best performed activation functions are selected 

for the final version of base networks later for virus detection (classification and 

localization). 

• R-CNN 

AlexNet is used as the base network only, AlexNet in R-CNN works on region proposals 

and does not require pre-training (Krizhevsky, Sutskever, & Hinton, 2012). 

• Fast R-CNN 
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AlexNet is selected to be pretrained on the electron microscopy images for a typical 

classification task (Krizhevsky, Sutskever, & Hinton, 2012). After training, the last max 

pooling layer of AlexNet is replaced with an RoI pooling layer and the last softmax 

prediction layer is replaced with two sibling layers for bounding box regression and 

classification. 

• Faster R-CNN 

VGG16, ResNet, and GoogLeNet are offered for feature map generation. The three base 

networks are pretrained on the electron microscopy images for a typical classification 

task, the outputs of the last convolutional layers are intercepted and fed into an RPN. 

• YOLO 

There are 20 convolutional layers followed by an average pooling layer, one fully 

connected layer is constructed (denoted as YOLO base Network) for pretraining. The 

weights of the first 20 convolutional layers are preserved, four convolutional layers are 

followed by using two fully connected layers, which are added with randomly initialized 

weights. This approach is as same as what YOLO shows (Redmon, Divvala, Girshick, & 

Farhadi, 2015).  

• SSD 

VGG16, ResNet, and GoogLeNet are pretrained on the electron microscopy images for a 

typical classification. The output of the last convolutional layer of the three networks is 

intercepted which are applied to a number of filters (added convolutional layers). The 

results of all convolutions from the extra convolutional layers are fed into a detector for 

object classification and localization. 
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4.9 Training for Virus Detection (Classification and 

Localization)  

Given the pretrained networks based on electron microscopy images, with the 

modifications to the output layer for bounding box regression and virus species 

classification, the networks, as mentioned above, are used for virus detection.  

    Similar to the training arrangements for the base networks (also referred as 

pretraining), the training for virus detection adopts the same training parameters, 

including learning rate schemes, activation functions, number of training epoch, and mini-

batch size.   

• R-CNN 

The feature output by using R-CNN based network is scored by SVM for each class; the 

proposed bounding boxes for object localization are using selective search and applied 

with Non-Maximum Suppression (NMS) to reduce the number of proposed bounding 

boxes to a reasonable level. 

• Fast R-CNN 

As already described, the RoI pooling layer and two sibling prediction layers are 

introduced to replace the last AlexNet layers. The added layers are initialized randomly 

between (0,1). 

• Faster R-CNN 

The proposed base networks for Faster R-CNN are VGG16, ResNet, and GoogLeNet. 

The network parameters (mainly weights) are preserved, the network is truncated with 

layers served as the outputs. The outputs are fed into RPN to produce Regions of Interest 

(RoIs). Based on RoIs, base network features are cropped and selected for object detection 
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(classification and localization) by using two sibling layers. The network for classification 

is as same as the final dense layers of base networks, the network for bounding box 

regression is another network with the same structure for classification. 

• SSD 

The final feature layers of pretrained base CNNs are intercepted and fed into a number of 

convolutional layers with decreasing filter sizes for scale invariant feature extraction.  

• YOLO 

Similar to that of SSD, given the pretrained base network, the layers after the final 

convolutional layer are truncated. In addition to the implementation above, 

regularizations are employed. Prior to the final prediction layer, dropout and dropConnect 

are placed both with a probability of 0.1. 
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Chapter 5 

Results 

 

The dominant content of this chapter is to bring in the 

selected evaluation methods and list performance metrics 

reflecting research outcomes in the virus classification and 

bounding box regression from digital images.   

  



69 

 

5.1 Evaluation Methods 

• mAP (mean Average Precision) 

In this thesis, the mAP is adopted for classification evaluation for multiple classifiers. 

Given a precision-recall curve, by incrementing a true-false threshold, mAP computes the 

average precision under different thresholds. Weights can be assigned to samples of 

different labels, so that imbalance samples concerning all labels have defined weights 

(this implementation is referred to as “macro mode”). The evaluation metrics are of macro 

mode and do not discriminate between samples of different labels. The expression is 

shown as 

𝑚𝐴𝑃 =
1

𝑄
∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄 ,                               (5.1) 

where 𝑄 is the number of queries for the average precision score. 

• Precision 

Precision is another classification evaluation tool. Precision is a general term describing 

information retrieval. It is calculated as the fraction of retrieved relevant records to the 

total queries. Hereinafter, we denote the number of total retrieved query records as 𝑛𝑢𝑚𝑄, 

over a query set 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛}, the number of relevant records as 𝑛𝑢𝑚𝑅, over a 

relevant record set 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑚} and the expression is displayed as  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑢𝑛𝑡(𝑅∩𝑄)

𝑐𝑜𝑢𝑛𝑡(𝑄)
.                        (5.2) 

    In this research project, the threshold for classifying between true-or-false from a set 

of probability results is 0.5. 

• Recall 

Recall is used to measure the sensitivity of the probability that a relevant record can be 

retrieved from a set of queries. Similar to that pf precision, here we define a query set 
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𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛}  and a relevant record set 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑚} , the computation is 

given as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑢𝑛𝑡(𝑅∩𝑄)

𝑐𝑜𝑢𝑛𝑡(𝑅)
.                               (5.3) 

• F-Score  

The mostly used F-Score formula is F1 score given by equation (5.4) 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
,                         (5.4) 

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  and 𝑅𝑒𝑐𝑎𝑙𝑙  are derived by the expressions above. F1 Score is 

summarised as the harmonic mean of precision and recall (Hand & Christen, 2018). The 

F1 score is selected along with precision and recall to evaluate classification 

performances of the developed classifiers in this research. 

• MSE (Mean Squared Error) 

MSE (Tuchler, Singer & Koetter, 2002), or otherwise referred to as Mean Square 

Deviation (MSD), measures the average of error squares. Given 𝑛  predictions 𝑦̂ 

generated from one or more predictive models, corresponding to ground truth labels 𝑦, 

the computation is shown as  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1 .                         (5.5) 

The employed loss metrics see the heavy implementation of MSE. 

• IOU (Intersection of Union) percentage 

In order to have fair comparisons between different methods, in this project, IOU is used 

to evaluate the proposed bounding boxes against the ground truth bounding boxes. A 

proposed bounding box compares all ground truth bounding boxes of an image, and the 

highest IOU percentage is selected as the IOU of the bounding box. The mean IOU 
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percentage of all bounding boxes produced by a regressor is regarded as the bounding 

box proposal benchmark for this regressor. Abounding box only takes into account the 

overlapping areas; thus, any classification error is not reflected. Algorithm 5.1 

demonstrates this evaluation process. 

Algorithm 5.1: Find mean bounding box IOU for a regressor 

 

Input:  𝑩𝒊̂ // proposed bounding boxes of image 𝑰𝒊 

             𝑩𝒊 // ground truth bounding boxes of image 𝑰𝒊 

             𝑰 // image set 

Output: 𝒊𝒐𝒖_𝒎𝒆𝒂𝒏 // mean IOU of all proposed bounding boxes yielded by one 

regressor 

 

𝒊𝒐𝒖 = ∅  

 

For 𝑰𝒊 in 𝑰 

        For 𝑩𝒊,𝒋̂ in 𝑩𝒊̂ Then 

                𝒊𝒐𝒖𝑩𝒕𝒎𝒑 = 𝟎 

                For 𝑩𝒊,𝒋 in 𝑩𝒊 Then 

                        𝒊𝒐𝒖𝑩𝒕𝒎𝒑 = 𝒎𝒂𝒙(𝑰𝑶𝑼(𝑩𝒊,𝒋̂, 𝑩𝒊,𝒋), 𝒊𝒐𝒖𝑩𝒕𝒎𝒑  ) 

                𝒊𝒐𝒖 = 𝒊𝒐𝒖. 𝒂𝒑𝒑𝒆𝒏𝒅(𝒊𝒐𝒖𝑩𝒕𝒎𝒑) 

 

𝒊𝒐𝒖_𝒎𝒆𝒂𝒏 = 𝒂𝒗𝒆𝒓𝒂𝒈𝒆(𝒊𝒐𝒖)  

• Absolute error for bounding box anchoring 

Another issue of evaluating bounding box anchoring is that there might exist multiple 

proposed bounding boxes for one ground truth bounding box, while for other ground truth, 

there is no matched proposed bounding boxes. To address this problem, for each image 

𝐼𝑖, all ground truth regions of interest are summed in terms of total areas 𝑎𝑟𝑒𝑎𝑦𝑖, as well 

as the proposed bounding box areas 𝑎𝑟𝑒𝑎𝑦𝑖̂.  

    MSE is computed for each image 𝐼𝑖. In order to present the MSE in a reasonable 

manner (MSEs may be considerably large values), the result MSE is divided by the square 
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of the image size (𝑁𝑖 ×𝑀𝑖)
2  for an image 𝐼𝑖  with the size of 𝑁𝑖 ×𝑀𝑖 . This 

consideration is summarized in eq. (5.6) 

𝑀𝑆𝐸𝑏𝑛𝑑 =
1

𝑛
∑

(𝑎𝑟𝑒𝑎𝑦𝑖−𝑎𝑟𝑒𝑎𝑦̂)
2

(𝑁𝑖×𝑀𝑖)
2

𝑛
𝑖=1 ,                     (5.6) 

where 𝑛 is the number of input images. 

• Loss and logarithmic loss 

In this project, the loss records of all predictive models are recorded to evaluate the 

performance of our models. In addition, the loss reflects that the prior knowledge is 

extracted to see the contribution of the correction by prior morphological knowledge 

adjustments. To illustrate the training loss changes when gradients gradually vanish for 

the later part of the training, the loss values are transformed in logarithm to amplify 

granularities of the loss trend. 

5.2 Performance Metrics 

Our research experiment employs a number of R-CNNs to perform the classification work. 

Our predictive models and corresponding mAPs for the four virus species are shown in 

Table 5.1. Despite pf close mAPs, the mAP of HIV virus detection is slightly higher than 

that of other four virus species. It should be noted that all predictive models show high 

mAPs up to 93%. Faster R-CNN generally performs better than its predecessors. 

Table 5.1: A summary of classification results (mAP) per classifier per class 

 SARS MERS COVID-19 HIV 

R-CNN 93.32 % 93.45 % 93.21 % 94.32 % 

Fast R-CNN 93.41 % 93.31 % 93.37 % 94.71 % 

Faster R-CNN 94.11 % 94.63 % 94.45 % 95.43 % 

SSD 94.08 % 94.58 % 94.27 % 95.18 % 

YOLO 93.92 % 94.93 % 94.32 % 95.01 % 
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   In this project, the pretrained results are recorded and displayed in mAP for each object 

class. All base networks display high mAPs above 91%. The results are resembled that 

of classifiers, that HIV virus detection is relatively higher than other base networks. The 

detailed data are shown in Table 5.2. 

Table 5.2: A summary of classification results (mAP) for the base networks 

 SARS MERS COVID-19 HIV 

VGG11 92.94 % 92.95 % 92.38 % 93.47 % 

VGG16 93.12 % 93.51 % 93.14 % 93.94 % 

GoogLeNet 93.51 % 93.33 % 93.72 % 93.96 % 

ResNet152 93.62 % 93.15 % 93.78 % 93.69 % 

AlexNet 92.22 % 92.38 % 92.25 % 92.71 % 

 

    The means of IOUs and MSE for bounding box areas are calculated for evaluating 

the performances of the predictive models. SSD performs the best regarding the means 

of IOU, while Faster R-CNN has the lowest 𝑀𝑆𝐸𝑏𝑛𝑑 . There is no large discrepancy 

regarding both means of IOUs and MSE of bounding boxes.  

Table 5.3: The means of IOUs for different predictive models 

 Means 𝑴𝑺𝑬𝒃𝒏𝒅 

R-CNN 83.54 % 0.141 

Fast R-CNN 84.91 % 0.134 

Faster R-CNN 84.26 % 0.133 

SSD 85.38 % 0.135 

YOLO 83.83 % 0.138 

 

    In this research project, the particular loss reflects the error 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉  against the 

defined prior knowledge, which is recorded per classifier per class. Given the applied 

small weight on 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉, the loss value for 𝐿𝑐𝑜𝑟𝑜𝑛𝑎𝑉 is multiplied by 100.0 for display.  
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Table 3.4: The loss (x100) against the prior knowledge 

 SARS MERS COVID-19 HIV 

R-CNN 0.381 0.382 0.380 0.342 

Fast R-CNN 0.421 0.423 0.421 0.431 

Faster R-CNN 0.410 0.409 0.410 0.473 

SSD 0.395 0.397 0.394 0.352 

YOLO 0.432 0.431 0.433 0.409 

 

    The total loss obtained through different learning rates is recorded shown in Table 

5.5, arranged by per method per classifier. The displayed losses are verified by using the 

validation set. 

    R-CNN sees that the most significant errors regardless of the choice of training rate 

schemes, in contrast to that of other predictive models with noticeable improvements in 

terms of loss values by all kinds of learning rate schemes. Between different updating 

scheme of learning rates, the constant is the least favourable with greater loss values than 

the rest of schemes. There is no significant superiority of any particular schemes among 

the rest three (step-based decay, time-based decay, and exponential). 

Table 5.5: The results by using different update schemes, measured by using total loss 

for each predictive model 

 Constant Step-based 

decay 

Time-based 

decay 

Exponential 

decay 

R-CNN 0.052 0.040 0.041 0.047 

Fast R-CNN 0.035 0.029 0.027 0.028 

Faster R-CNN 0.037 0.030 0.029 0.031 

SSD 0.036 0.028 0.029 0.031 

YOLO 0.038 0.029 0.027 0.032 

 

5.2.1 R-CNN 

The metrics for measuring R-CNN classification are shown in Table 5.6, followed by the 

training loss results. R-CNN shows relatively low accuracy compared with that of other 
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predictive models. The loss convergence plot shows strong convergence but halts at 0.040, 

which almost doubles other predictive models. 

Table 5.6: R-CNN classification performance metrics by using the validation set 

 Precision Recall F1 

SARS 0.918 0.921 0.919 

HIV 0.924 0.939 0.931 

COVID-19 0.917 0.921 0.918 

MERS 0.919 0.913 0.915 

 

Figure 5.1: The trends of R-CNN training loss  

5.2.2 Fast R-CNN 

The test based on Fast R-CNN shows that, in comparison to that of faster R-CNN, there 

are minor differences in performance. Again, the performance metric displays similar 

prediction capability, for SARS and COVID-19, the results are less satisfying than that 

of for HIV. Despite claimed superior prediction capability in accuracy (Ren, et al., 2015), 

this experiment only reveals a small gap between Faster R-CNN and Fast R-CNN. 
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Table 5.7: Fast R-CNN performance metrics for virus detection by using the validation 

set 

 Precision Recall F1 

SARS 0.934 0.929 0.931 

HIV 0.946 0.949 0.947 

COVID-19 0.933 0.930 0.931 

MERS 0.927 0.923 0.925 

 

Figure 5.2: The trends of Fast R-CNN training loss  

5.2.3 Faster R-CNN 

Table 5.8 shows the evaluation metrics for Faster R-CNN. On average, Faster R-CNN 

achieved 0.95 on precision, recall, and F1. It is noticeable that the metrics of HIV virus 

detection are higher than those of SARS and COVID-19, as revealed in the evaluation 

metrics. 

 

 

 

 



77 

 

Table 5.8: Faster R-CNN metrics by using the validation set 

 Precision Recall F1 

SARS 0.943 0.933 0.938 

HIV 0.956 0.957 0.956 

COVID-19 0.932 0.934 0.953 

MERS 0.935 0.932 0.933 

 

    The convergence plots of Faster R-CNN training are shown in Figure 5.3. Stochastic 

gradient descent shows strong convergence trends for bounding box regression and virus 

type classification. In order to amplify loss changes when training proceeds to a large 

iteration index, the plots show logarithms with a base of 10 for the loss values. 

 

Figure 5.3: The loss trends of Faster R-CNN training  

5.2.4 YOLO 

The metrics for evaluating YOLO classification performance are shown in Table 5.9. In 

comparisons with other predictive models, there is no significant advantage. The loss 

changes during the training process are illustrated in the loss trends. Both the training and 

validation sets show strong convergence.  
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Table 5.9: The metrics for evaluating YOLO classification by using the validation set 

 Precision Recall F1 

SARS 0.938 0.931 0.934 

HIV 0.947 0.951 0.948 

COVID-19 0.933 0.938 0.935 

MERS 0.930 0.931 0.931 

 

 

Figure 5.4: The trends of YOLO training losses  

5.2.5 SSD 

The experimental results based SSD classification are displayed in Table 5.10. The 

evaluation metrics could not show a prominent advantage over other predictive models. 

Among the classes, HIV virus detection has higher success rates than others. Regarding 

loss convergence, the loss plots of SSD training for both training and validation sets show 

strong convergence, which is similar to other predictive models. 
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Table 5.10: The metrics for evaluating SSD classification by using the validation set 

 Precision Recall F1 

SARS 0.939 0.932 0.935 

HIV 0.944 0.948 0.945 

COVID-19 0.931 0.940 0.935 

MERS 0.935 0.929 0.932 

 

 

Figure 5.5: SSD training loss trends 

    Judging by using the aforementioned performance metrics, SSD is selected for 

demonstration purposes (Faster R-CNN and other detectors see great performances as 

well).  The first example, as Figure 5.6, is a highly successful virus detection from an 

image, where all four virus regions are detected with right virus labels. The bounding 

boxes are marked as all bounding boxes fully enclose the objects without irrelevant areas. 
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Figure 5.6: The example of virus detection 1 (COVID-19) 

   Another example is about a MERS image where three MERS virus regions are 

presented, but only two are detected. The third object is low in illumination and the 

morphological features are vague. 

 

Figure 5.7: The example of virus detection 2 (MERS) 

   Figure 5.8 shown the ground truth bounding boxes should have been assigned with 

SARS labels. It is noticeable that the bounding boxes for the virus contain relatively large 
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irrelevant areas that lead to misrecognition by using the detector while considering more 

significant areas as regions of interest. 

 

Figure 5.8: The example of virus detection 3 (SARS) 

   Figure 5.9 is for HIV virus detection. For HIV virus regions in this image, the 

confidence score is high and the proposed bounding boxes are tightly enclosed the virus. 

 

Figure 5.9: The example of virus detection 4 (HIV) 

    During the review of image samples, there is not suspiciously long rectangular 

bounding box, which is a strong indicator of the prior knowledge being successful. 

However, this may play a role in the failure of detecting virus regions with irregular 

shapes. 
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Chapter 6 

Analysis and Discussions 

 

In this chapter, our experimental results will be clearly 

analysed and discussed. The general performance of a 

particular predictive model, along with others, are fulfilled 

and explicated. It also shed light on possible reasons why 

virus detection was failed in the predictive models.   
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6.1 Analysis 

The virus electron microscopy images are tested on a number of R-CNNs. From the 

displayed performance metrics, there are several issues. 

6.1.1 Protein Projections and Morphological Features 

Due to the limited quality of electron microscopy image, the majority of the source images 

display high levels of background noises. This reduces prediction capability significantly 

as spike proteins on the viral surface are likely blurred into image background. During 

the data pre-processing work, in this research project, we removed image noises and 

found that protein spikes are treated as background noises for high degrees of similarity 

to the background noises. A number of noise removal parameters were tested, but this 

problem remained unsolved.  

   Spike proteins are crucial morphological features for virus electron micrography 

classification and undistinguished spikes for resemblances to background noises. For 

highlighting the spike protein regarding better prediction performance, in this project, we 

introduced a number of data augmentation techniques. However, none of them achieved 

satisfactory results. Background noises tend to be amplified when we expect to enhance 

the image regions of virus objects, e.g., using image sharpening by highlighting edges of 

the viral envelope and making the morphological features obvious for recognition.   

6.1.2 Morphological Feature for Each Type of Virus 

SARS and COVID-19 are both appeared with spike proteins that give them the power of 

being highly contagious. The two types of viruses are from the same species (coronavirus), 

thus share a high degree of similarity in morphology. Consequently, the classification 

results are less satisfactory on HIV as it has fewer similarities with the other two. The 

strong similarities to corona visual features are found in MERS as well.  
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6.1.3 Attention Mechanism 

Despite the rising popularity of the attention concept in particular in the area of NLP 

(Natural Language Processing), as well as the implementations in computer vision, in this 

research project, there is no evident positive contribution to the viral visual information 

encoding and decoding. However, it should be noted that this is not a denial of the 

capability of attention mechanism. The attention mechanism in this thesis is not fine-

tuned, since this is not the focus of this thesis. Deep neural networks may be required to 

allow better visual feature interpretation so that the key matrix can be better adapted to 

our work. 

6.2 Discussions 

6.2.1 R-CNN 

In this thesis, we notice the similar prediction powers of the three classifiers of the R-

CNN family. In the results, R-CNN, Fast R-CNN, and Faster R-CNN have a similar 

performance. The proposed Faster R-CNN does not display high accuracy with a large 

gap than the other two. This is likely a consequence of insufficient source electron 

microscopy images for training. Based on Figure 5.1, Figure 5.2 and Figure 5.3, we see 

that they converge fast. If this experiment could collect more image data, there existed a 

greater probability of having better prediction capability, and the three predictors would 

differentiate themselves in terms of performance metrics. 

    The convergence plots of Faster R-CNN, Figure 5.3 show steadily declines for 

bounding box regression and classification loss. However, the plots converge in the first 

few iterations and remain halting at the 6-th iteration. By optimizing the hyperparameters 

such as learning rates, there exists a likelihood of improving stochastic gradient descent 

convergence on the two tasks (bounding box regression and classification).  
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6.2.2 Performance Discussions  

SSD sees comparable results with that of Faster R-CNN, regarding classification and 

bounding box regression performance. The results produced by other predictive models 

do not display a considerable performance gap behind the top performers. To take into 

account of loss convergence trends, all predictive models converge in the first few 

iterations. 

    YOLO does not produce great prediction results as that of SSD and Faster R-CNN in 

general (by object classification and bounding box regression). One major advantage of 

YOLO is computation speed, however, it is not evaluated in this thesis. Other predictive 

models achieve higher prediction accuracy than YOLO at the expense of increased 

computation costs. 

6.2.3 The Base Networks 

The classification results for base networks show different performance metrics by using 

different networks. It is observable that the depth of a network plays an essential role in 

prediction accuracy, that a deep network has a higher probability of producing a great 

result than a shallow one. This is evident by observing the performance of AlexNet. 

6.2.4 The Bounding Box 

For a typical virus object with a nice and clear presence in an electron microscopy image, 

it is confident to conclude that the virus object can be detected in a bounding box, as this 

virus particle shows evident morphological characteristics. The metrics for evaluating 

bounding box regressors exhibit high IOUs and low absolute errors, the demonstrated 

exemplar images show that most detected objects are tightly confined in bounding boxes. 
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6.2.5 Failed Prediction Discussions 

A significant number of virus objects are overlapping with each other, and they combined 

as an extremely complex polygon that is totally foreign to the well-known shapes of the 

viral envelope (typical spheres), the bounding box may give inaccurate inclusion of virus 

objects.  

    As demonstrated in the results, the virus as visual object on the images with 

significant vagueness has complex contours that are dissimilar with prior virus 

morphological knowledge. There exists a probability that data preprocessing treats virus 

objects as background noises, hence, it smooths the virus regions and further distorts the 

virus morphological information. 

6.2.6 Learning Rates 

In this research project, different update schemes of learning rates are tested. There is no 

conclusive findings for the absolute advantage of any particular schemes of learning rates. 

However, it is observable that the learning rate scheme is the least favourite as it 

introduces more errors than that of others. This is a consequence of settling at the minima 

where gradients are likely small, great learning rate will lead to great leaps and 

furthermore causes fluctuations. 

6.2.7 The Contribution of Prior Knowledge 

Given the prior virus morphological characteristics, the detection results reveal that no 

rectangular bounding boxes with high aspect ratios are proposed. The prior knowledge 

for loss term shows the penalty on predictions contradictive against prior knowledge. 

However, the imposed penalty on prior knowledge contradiction errors is not heavy. 
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Chapter 7 

Conclusion and Future Work 

 

In this project, five types of deep learning models for 

popular virus identification are justified, the research 

results and methods are expounded on details. In this 

chapter, it also integrates the conclusion into context as 

well as illustrates the limitations of this experiment, 

meanwhile we point out our future work at the end of this 

thesis. 
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7.1 Conclusion 

This study first examines the morphological characteristics of the images of virus electron 

microscopy that shed light on automatic virus recognition by using computer vision with 

deep learning approaches. Upon careful examinations, MERS, SARS, and COVID-19 

share more similarities than they are with HIV in terms of morphological appearance. 

Based on this consideration, in this research project, we propose a number of image 

quality enhancement and data augmentation methods aiming to improve data quality for 

expected prediction results.  

    Given the aforementioned virus morphological knowledge, in this thesis, we propose 

a novel loss term to reflect our predictions. The novel loss function mainly looks at 

surrounding protein projections appeared on electron microscopy images as “white dots”, 

and roughly spherical physical shape (appeared on electron microscopy images as an 

approximately round polygon). A bounding box shape is taken into account which is 

constrained from being of a high aspect ratio. However, the loss term is not heavily 

weighted so that a predictive model can maintain the focus on classification and bounding 

box regression. 

    In this study, we employ a total of five predictive models: R-CNN, Fast R-CNN, 

Faster R-CNN, SSD, and YOLO. Generally speaking, Faster R-CNN and SSD produced 

the best results in terms of classification and bounding box regression. However, different 

predictive models see different performance rankings, there is not any particular network 

across all performance metrics. In this project, we evaluate the training processes for 

different networks by measuring loss convergence, all networks see strong convergence 

trends. 
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7.2 Limitations 

One limitation of this research project is data quality. The collected images in this thesis 

have not significant variations in terms of the way of how viruses are placed naturally. In 

order to put the research discovery in practical use, more real images should be taken into 

consideration. The presented viruses are often isolated from their hosts or where they 

inhabit, and foreign objects, e.g., cells and large chemical compounds, are removed. The 

developed predictive models are not equipped with the capability of detecting virus 

particles in a complex environment instead of the plain background shown as in the 

figures mentioned above. Without filtering out the viruses from placements adjacent to 

numerous foreign objects, electron microscopy images are likely inclusive of high-level 

noises, because the fluids on microscopy images are complex.  

    Another limitation is network optimization. The employed base networks in this 

research are directly derived from pretrained networks based on ImageNet consisting of 

1,000 object labels with highly diverse image contents. The classification results of 

ImageNet datasets are above 90%, which is comparable with results produced by using 

neural networks employed in this research experiment. However, the employed networks 

in this research project only have four object classes. This contrast implies possible 

network compression where the number of network neurons can be significantly reduced, 

but the results remain the high accuracy. A reduction of the network size can render a 

faster computation. 

7.3 Future Work 

In order to overcome the listed limitations, our future work includes extensive 

considerations into viruses placements so that the predictive models can recognize viruses 

among complex foreign objects. The work includes a biological fluid environment, and 

then we will propose a virus detection mechanism that distinguishes desired virus image 

regions from noises. A large collection of electron microscopy images are required. 
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    The selected networks for the objects in question are deep networks, though AlexNet 

is relatively short. There is no noticeable decrease in result accuracy by using AlexNet 

because it is short. This proves that shallow networks are capable of catching crucial virus 

morphological information. Our future work takes into consideration of this phenomenon 

and will try shallow network structures. Fine-tuning the implemented networks for virus 

classification and localization can improve the accuracy of our experiments, this will be 

attempted in the near future. 
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