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Incremental Learning for Online Face Recognition
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Abstract—In this paper, a new approach to face recognition is
presented in which not only a classifier but also a feature space
of input variables is learned incrementally to adapt to incoming
training samples. A benefit of this type of incremental learning
is that the search for useful features and the learning of an
optimal decision boundary are carried out in an online fashion. To
implement this idea, an extended version of Incremental Principal
Component Analysis (IPCA) and Resource Allocating Network
with Long-Term Memory (RAN-LTM) are effectively combined.
Using IPCA, a feature space is updated by rotating its eigen-axes
and increasing the dimensions to adapt to a new training sample.
In RAN-LTM, a small number of training samples called memory
items are selected and they are utilized for retraining a classifier
to realize an excellent incremental ability. To accommodate the
classifier to the evolution of the feature space, we present a
way to reconstruct the neural classifier without keeping all of
the training samples given previously. In the experiments, the
proposed incremental learning model is evaluated over a self-
compiled face image database. As the result, we verify that the
proposed model works well without serious forgetting and the
test performance is improved as the learning stages proceed.

I. INTRODUCTION

One of the main subjects in face recognition tasks is to en-
hance the robustness against the spatial and temporal variations
of human faces due to the growth (or aging) and the changes
in lighting conditions, face directions, expressions, make-up,
and so forth [1], [2]. Conventional face recognition systems
can achieve an excellent recognition performance when tested
against a benchmark dataset. However, the performance could
be dropped rather drastically when they are operated in a
practical environment. This is because the initial training set
of face images is either insufficient or inappropriate. Even if a
large amount of face images are available when constructing a
face recognition system, all the variations that will happen in
future cannot be considered in advance; thus high recognition
performance in practical situations can hardly be expected with
only a static dataset. In addition, constructing a large database
should impose a severe burden on not only system builders
but also registered people. A solution to these problems is to
make face recognition systems learn continuously to adapt to
incoming training samples. This can be done by embedding
an incremental learning ability into a face recognition system.

In conventional face recognition systems, the information
processing is composed of the two parts: feature selection
and classification. This means that when constructing an
adaptive recognition system, we should consider two types
of incremental learning: one is the incremental learning of
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feature space and the other is that of classifier. In many
conventional approaches, these have been separately developed
[31, [4], [5]. As for the feature selection, Principal Component
Analysis (PCA) has been often adopted in face recognition
tasks [6], [7], [8], [9]. Since PCA is not suited for incremental
learning purposes, Hall and Martin have devised a method
to update eigenvectors and eigenvalues (i.e., the update of
an eigen-feature space) in an incremental way, called Incre-
mental Principal Component Analysis (IPCA) [10]. On the
other hand, Kasabov has proposed a fast on-line clustering
method called Evolving Clustering Method (ECM) [11]. Both
IPCA and ECM are categorized into one-pass incremental
learning algorithms, in which the given training samples can
be discarded after the training; thus, a distinctive property of
these algorithms is that they do not consume so much large
memory to enhance their performances. In this context, we
have recently proposed a new efficient scheme for pattern
recognition in which IPCA and ECM are effectively combined
to realize a one-pass incremental learning of a feature space
and a classifier [12], [13]. In this scheme, IPCA is used
for learning a feature space and ECM is used for learning
prototype vectors in the k-nearest neighbor classifier.

In this paper, we present another incremental approach in
which a neural classifier, Resource Allocating Neural Network
with Long-Term Memory (RAN-LTM) [14], [15], is adopted
in place of ECM. The motivation of using neural classifiers
is that we can expect the high generalization properties in
classification. However, since the feature space is updated by
IPCA every time when a new training sample is given, the
eigen-axes are always rotated and the dimensions of the feature
space could be increased. This means that RAN-LTM should
also be updated to adapt to the evolution of a feature space.
We give a solution to this problem.

This paper is organized as follows. Section II gives a brief
explanation about an extended IPCA algorithm and RAN-
LTM. In Section III, after giving an overview of our face
recognition system, we describe how to accommodate a neural
classifier (i.e., RAN-LTM) to the evolution of an eigenspace
updated by IPCA. In Section IV, some experiments are con-
ducted to evaluate the incremental learning performance, and
the concluding remarks are given in Section V.

II. INCREMENTAL LEARNING MODEL

It is well known that the learning of neural networks
becomes difficult in the situations where only a small number
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Fig. 1. The architecture of RAN-LTM.

of training data are presented at a time and all of the given
training data are not able to keep due to the system limitations
(i.e., the retraining of all given data is not permitted). In
such situations, the input-output relations acquired in the
past are easy to be collapsed by the learning of new data.
This disruption in neural networks is called “forgetting” or
“catastrophic interference” that is caused by the excessive
adaptation of connection weights to new data [16].

A way of overcoming this problem is that only representa-
tive training data are kept in memory and some of them are
learned with newly given training data. In this context, we
have proposed an incremental learning model called Resource
Allocating Network with Long-Term Memory (RAN-LTM)
[14]. Let us briefly explain it in the following.

A. Resource Allocating Network with Long-Term Memory

Figure 1 shows the architecture of RAN-LTM which con-
sists of two parts: Resource Allocating Network (RAN) [17]
and Long-Term Memory (LTM). RAN is an extended model
of Radial Basis Function (RBF) network [18] in which the
allocation of hidden units is automatically carried out.

Let us denote the number of input units, hidden units, and
output units as I, J, K, respectively. Moreover, let the inputs
be € = {z1,---,z1}T, the outputs of hidden units be y =
{y1,---,ys}T, and the outputs be z = {z1,---,2x}T. The
calculation in the forward direction is given as follows:

Iz —cill?y
= oGy =10,
Yi exp( 207 ) @ ), (D
J
% = Yy wgy+& (k=1,---,K) ?
=t
where ¢; = {cj1,---,¢;1}T and o} are the center and

variance of the jth hidden unit, wy; is the connection weight
from the jth hidden unit to the kth output unit, and & is the
bias of the kth output unit.

The items stored in LTM are called “memory items” that
correspond to the representative input-output data. These data
can be selected from training samples, and they are learned
with newly given training data to suppress forgetting. In the
learning algorithm, a memory item is created when a hidden

unit is allocated: that is, an RBF center and the corresponding
output are stored in a memory item.

The learning algorithm of RAN-LTM is divided into two
phases: the allocation of hidden units (i.e., the selection of
RBF centers in an incremental fashion) and the calculation
of connection weighs between hidden and output units. The
procedure in the former phase is the same as that in the original
RAN [17], except that memory items are created at the same
time. Once hidden units are allocated, the centers are fixed
afterwards. Therefore, the connection weights W = {wy;} are
only parameters that are updated based on the output errors.
To minimize the errors based on the least squares method, it
is well known that the following linear equalities should be
solved [19], [201]:

W=D 3

where D is the matrix whose column vectors correspond to
the target outputs. Suppose that a training sample (x,d) is
given and M memory items (&,,, Z,) (m =1,---, M) have
already been created, then the target matrix D are formed as
follows: D = {d, %1, ,2pm}7. Furthermore, ® = {{;}
is calculated from these target vectors as follows:
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To solve W in Eq. (3), Singular Value Decomposition (SVD)
can be used. The learning algorithm of RAN-LTM [5] is
summarized as follows.

[Learning Algorithm]

1) Find the nearest center c* to an input & and then
calculate the output error E.

2) If E > ¢ and || — c*|| > 4, then allocate a hidden unit
(ie., J «— J + 1) and create a memory item (&, Zp)
as follows:

[Hidden Unit] wj; =d - 2, cj ==z,

[Memory Item] ,, ==, Zm =d.
Then, increment the number of memory items as M «—
M + 1 and go to Step 6. Otherwise, go to Step 3.

3) Calculate hidden outputs for the training sample (x, d)
and memory items (%p,,2n) ( = 1,---,M), and
calculate ® in Eq. (3).

4) Using SVD, decompose ® as follows: ® = UHVT
where U and V are orthogonal matrices, and H is a
diagonal matrix. Then, calculate the weight matrix as
follows: W = VH™'UTD.

5) Give the input  to RAN-LTM again, and calculate the
output error E. If E > ¢, add a hidden unit and generate
a memory item (& s, Zp7) in the same way of Step 2.

6) If a new training sample is given, go back to Step 1.

B. Extended IPCA Algorithm

In IPCA, an eigen-feature space is updated through the
following two operations: the rotation of eigen-axes and the
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dimensional augmentation. The dimensional augmentation is
carried out whenever the norm of a residue vector is larger
than a threshold value. However, this is not a good criterion
in practice because a suitable threshold can be varied depend-
ing on the magnitude and variance of input values. If the
threshold is too small, a redundant high-dimensional feature
space tends to be obtained; this will lead to deteriorating the
generalization performance and the computational efficiency.
To obtain an informative feature space with small-dimensions,
we have proposed an extended IPCA algorithm in which the
accumulation ratio is used as a criterion of the dimensional
augmentation [13]. Let us explain this extended IPCA briefly.

Assume that N training samples &; € R™ (i =1,---,N)
have been presented so far, and an eigenspace model @ =
(2,U,A,N) is constructed by calculating the eigenvectors
and eigenvalues from the covariance matrix of x;, where T
is a mean input vector, U is an n x [ matrix whose column
vectors correspond to the eigenvectors, and A is an [ x | matrix
whose diagonal elements correspond to the eigenvalues. Here,
[ is the number of dimensions of the current eigenspace.

Let us consider the case that the (N + 1)th training sample
y is presented. The addition of y will lead to the changes in
both of the mean vector and covariance matrix; therefore, the
eigenvectors and eigenvalues should also be recalculated. The
mean input vector Z is easily updated as follows:

1 _
T —N+1(N:n+y). @

The problem is how to update the eigenvectors and eigenval-
ues.

When the eigenspace model 2 is reconstructed to adapt
to a new sample, we must check if the dimensions of the
eigenspace should be changed or not. If the new sample has
almost all energy in the current eigenspace, the dimensional
augmentation is not needed in reconstructing the eigenspace.
However, if it has some energy in the complementary space to
the current eigenspace, the dimensional augmentation cannot
be avoided. This can be checked by the accumulation ratio
whose incremental representation is given as follows [13]:

N(N+1) ¥ A+ NIUT (y - @)
N(N+1)3 A+ Ny —z|)?
If A(l) is smaller than a threshold value 6, a new eigen-axis

is added to the current eigenspace along the following residue
vector:

Al) =

®

h=(y-z)-Ug (6)

where
g=UT(y-z). 0

It has been shown that the eigenvectors and eigenvalues can
be updated based on the solution of the following intermediate
eigenproblem [10]:

N [A O N a9’ g At
(N+1[OT 0}+(N+1)2[7g’-" 72 )R =RA
¥

where v = hT(y —Z), Risan (I +1) x (I +1) matrix whose
column vectors correspond to the eigenvectors obtained from
the above intermediate eigenproblem, A’ is the new eigenvalue
matrix, and O is an [-dimensional zero vector. Using R, we
can calculate the new n x (I + 1) eigenvector matrix U’ as
follows:

U =[U, hlR )
where
- [ h/||h| if A()< 6
h = { 0 otherwise. (10)

Here, @ is a threshold value.

III. FACE RECOGNITION SYSTEM
A. System Overview

The proposed face recognition system mainly consists of
the following functional modules: face detection, face recog-
nition, face image verification, and incremental learning. The
operations in these modules must be done online without any
human intervention. Figure 2 shows the overall process in the
proposed system. In the face detection part, at each time frame,
face regions are localized based on the information of skin
color and edges. Thereafter three types of facial features (eye,
nose, mouth) are searched for within the localized regions
through raster operations. In each raster operation, a small
sub-image is extracted from a localized region, then the eigen-
features of the sub-image are given to a Detection Neural
Network (DNN) to verify if it corresponds to any one of
the facial features. These eigen-features are obtained using
PCA. After all raster operations are done, face candidates are
generated by combining the identified facial features based on
some geometrical constraints. The output of the face detection
part is the center positions of the face candidates.

Next, in the face recognition part, some rectangular regions
of the face candidates can be extracted from the original image,
and then each of the extracted regions is transformed into
an eigen-feature vector using IPCA in order to reduce the
dimensions. This eigen-feature is given to Recognition Neural
Network (RNN) that is implemented with RAN-LTM, and then
a recognition result is obtained.

The misclassified images are collected to use as training
samples for incremental learning and sent to the face verifica-
tion part. Since the perfect face detection cannot be ensured,

Face Detection

Face
Localization D

RNN

I8
Face D i Recognition
Recognition i Results

DNN / Muisclassification
Incremental G Face Image

Detected Faces
Learning Verification
VNN

Facial Features D
Detection

Image
Input

Renew RNN's parameters

Fig. 2. Block diagram of the process in the proposed face recognition system.
Italic characters are the abbreviates of the names of the three neural networks
to be used.
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there is a possibility that non-face images happen to be mixed
with the misclassified face images to be learned. Apparently
the training of these non-face images will deteriorate the
recognition performance of RNN. Thus, another neural net-
work called Verification Neural Network (VNN) is introduced
into this part in order to filter out non-face images.

After the verification process, the learning for the misclas-
sified face images is carried out by RNN in the incremental
learning part. Note that RNN should be reconstructed when
the eigen-feature space is updated using IPCA.

B. Reconstructing Neural Classifier with Incremental Update
of Feature Space

As described in the previous subsection, the update of a
feature space by IPCA can lead to the rotation of eigen-axes
and the dimensional augmentation. This means that the inputs
of a neural classifier (i.e., RNN) can be changed in not only
their values but also the number of input variables whenever
the feature space is update due to the presentation of a new
training sample.

This operation is not easily realized in a one-pass incremen-
tal learning model since the past training samples are already
discarded. Hence, there is no way of retraining the neural
classifier to ensure that all previously trained samples can be
correctly classified again after the update of the feature space.
This problem can be circumvented if a minimum number
of representative samples are properly selected and used for
retraining the classifier. As easily expected, RAN-LTM is
suitable for this purpose.

To actualize this idea, we need to devise an efficient way
to adapt the memory items in RAN-LTM to an updated
eigenspace. Let an input vector of the mth memory item M,
be &, € R' and let its target vector Z,,: My, = {Zm, Zm}-
Furthermore, let the original vector associated with &, in
the input space be x,, € R™. These two vectors have the
following relation: &, = UT(:c:m - I).

After the current eigenspace model Q = (2, U, A, N+1) is
updated with a new sample y using IPCA, assume that a new
model Q' = (z'/,U’, A’, N +1) is obtained. Then the updated
memory item &,, should strictly satisfy with the following
equation:

& = UT@n-7)

T - 1 T~

= U" (em — %)+ e 1)U &-y) (A1)
where Z’ and U’ are given by Egs. (4), (9). The second term in
the right-hand side of Eq. (11) is easily calculated. To calculate
the first term strictly, however, the information on x,, that
is already discarded is needed. Therefore, to circumvent this
problem, we should consider the approximation to this term.

Let us assume that a new dimension is added. Substituting
Eq. (9) into the first term on the right-hand side of Eq. (11),
the first term is given as follows:

12)

Even if we attempt to calculate an estimate of x,, from
I, using a pseudo inverse of the matrix U, the estimated
vector UT Zm still lack the information in the complimentary
subspace that h spans; the information was lost during the
dimensional reduction process. However, recalling a fact that
h is orthogonal to every vector in the subspace spanned by

U, we can approximate the term sz(:’izm — &) to zero. Thus
Eq. (11) is reduced to
- T 1
zl, zRT[ Oxm ] + mU'T(a':—y). (13)
Now that all the information in Eq. (13) is available; then we
can update the memory items after the update of eigenspace.
After the update, the neural classifier RAN-LTM undergoes
the retraining with a new sample and the updated memory
items. That is to say, the memory items are set to the centers of
hidden units, and the connection weights between the hidden
units and output units are obtained based on the learning

algorithm stated in II-A.

IV. PERFORMANCE EVALUATION
A. Experimental Conditions and Evaluation Method

The dataset used here is divided into two sets: training
dataset and test dataset. The former is used for assessing the
performance of incremental learning in RNN through an online
recognition process. For this dataset, training samples are
given to RNN one by one, and the recognition and incremental
learning are carried out online. The latter dataset is used for
assessing the generalization performance of RNN. Hence, the
images in the test dataset are not used in the training.

These datasets contain video clips of seven people: four
people (2 males and 2 females) are chosen as registered
persons and the other three people (2 males and a female)
are non-registered persons. The video clips have durations of
5 ~ 15 seconds and they are taken over two weeks such that
some changes in facial appearances are included. The training
dataset consists of 654 images detected from the video clips
of the first week; on the other hand, the test dataset consists
of 499 images detected from the clips of the second week.
Since the extraction of face images is automatically done in
the detection part, some non-face images could inevitably be
included in the datasets. However, with regard to the training
dataset, almost all data are face images since non-face images
are presumably filtered out by VNN (see Fig. 2). Figure 3
shows the examples of detected face images for four registered
persons and three non-registered persons.

To simulate real-life consecutive learning, the training
dataset is further divided into six subsets. These subsets
are given to the face recognition system in turn, and the
misclassified images are collected and learned incrementally
in RNN. The number of images in each subset is as follows:
139 (initial training dataset) — 107 — 75 — 98 — 106 —
129. Hence, five stages of incremental learning are carried
out. In this experimental setup, only the images of the four
registered people are included in the initial training dataset.
The effectiveness of incremental learning is evaluated in terms

3177



Fig. 3. Examples of detected face images for four registered persons (upper)
and three non-registered persons (lower).

of the recognition accuracy for all subsets given so far (online
dataset). This evaluation is conducted to check if the forgetting
occurred in the incremental learning. The number of evaluated
images in the online dataset increases as the learning stage
proceeds: 139 — 246 — 321 — 419 — 525 — 654.

As a security system, it is also important to evaluate the
false-positive rate (the rate of the cases where non-registered
faces or non-faces are classified as registered faces). To do this,
we evaluate the recognition performance using another set of
3311 images, which consists of 1748 non-face images and
1563 face images that are collected from various databases.
This dataset is referred to as FP dataset.

The experiment is preformed in the following environment:
MS Windows XP and Athlon(tm) XP 2200+.

B. Experimental Results

In order to evaluate the effectiveness of learning a feature
space using IPCA, the classification performance of RAN-
LTM is examined when it combines with three different
eigenspace models: (1) a static eigenspace model obtained by
PCA (ESM1), (2) an adaptive eigenspace model obtained by
IPCA without the dimensional augmentation (ESM2), and (3)
an adaptive eigenspace model obtained by IPCA (ESM3). In
ESMI, the eigenspace is calculated from the initial training
dataset and it is not updated afterward. In ESM2, we examines
the effects of rotating the feature space without allowing the
dimensional augmentation in IPCA. The parameters of RAN-
LTM are fixed for all the experiments.

Table I shows the evolution of the eigenspace learning with
ESM3 in which the feature dimensions and the accumulation
ratio are examined. As you can see from Table I, the dimen-
sions of feature spaces increase such that the accumulation
ratio is maintained over the threshold value § = 0.891. This
means that we can control the dimensions of an eigenspace
by specifying a proper accumulation ratio.

Figure 4 shows the experimental results against four types
of datasets: (a) training dataset, (b) online dataset, (c) test
dataset, and (d) false positive dataset. As seen from Fig. 4(a),
the performance of ESM3 is slightly better than the other
eigenspace models ESM1 and ESM2. In addition, we can
say that the training dataset at the 4th stage is quite different
from those in other stages. Fig. 4(b) shows the performance
against the online dataset which consists of all the training

TABLE |
EVOLUTION OF THE EIGENSPACE MODEL ESM3.

Stage | Training | Dimensions | Accumulation
Samples Ratio
Initial 139 139 1
1 204 153 0.892
2 204 153 0.892
3 204 153 0.892
4 266 169 0.891
5 277 173 0.891

datasets given at the previous stages. The recognition rates
are fluctuated a little but they are not seriously falling down.
This means that RAN-LTM can learn incrementally in one-
pass without serious forgetting even after the eigenspace model
is simultaneously updated by IPCA. As seen from Fig. 4(c),
the overall recognition rate gets better if IPCA is introduced
in the incremental learning process. A large improvement in
recognition rate can be seen from stage 3 to stage 4. This is
again due to the fact that the training samples at the 4th stage
is significantly different from those at the earlier stages.

An interesting result in Fig. 4(c) is that the recognition
performance of ESM2 is better than that of ESM3, which
means that IPCA without the dimensional augmentation is
more suitable for enhancing the generalization performance
than that with the dimensional augmentation. On the other
hand, as seen from Fig. 4(d), the false-positive rate in ESM3
is suppressed as compared with ESM2. The result of ESM3
shows that the eigenspace possesses more information on the
non-registered faces through the dimensional augmentation.
Hence, this leads to a tradeoff between the generalization
performance and false-positive rate.

V. CONCLUSIONS

In this paper, we have proposed a new approach to con-
structing adaptive face recognition systems in which a low-
dimensional feature space and a classifier are incrementally
learned in an online fashion. To learn a useful feature space
incrementally, we adopt an extended version of Incremental
Principal Component Analysis (IPCA) in which the augmen-
tation of feature space dimensions is determined based on the
accumulation ratio. When the feature space is dynamically
changed over the learning stages, the inputs of a neural
classifier could also be changed in their values and the number
of input variables. To adapt to the evolution of a feature space,
an extended model of Resource Allocating Network (RAN)
called RAN with Long-Term Memory (RAN-LTM) is adopted
as a classifier, and we propose an efficient way to reconstruct
RAN-LTM after the update of the feature space.

To evaluate the incremental learning properties, a self-
compiled face image database is applied to the proposed
model. In the experiments, we verify that the proposed in-
cremental learning works well without serious forgetting and
the test performance is improved as the incremental learning
stages proceed. However, the dimensional augmentation of a
feature space leads to deteriorating its test performance, while
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it can decrease the false-positive rate.
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Fig. 4. The evolution of the recognition performance against (a) training
dataset, (b) online dataset, (c) test dataset, and (d) false-positive dataset.
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