
Summary
 Bronchiectasis patients move in and out of a state of

exacerbation. There are two kinds: event-based exacerbations
(EBEs) and symptom-based exacerbations (SBEs).

 Ascertainment of EBEs requires contact with a clinician. SBE
status is determined by adjudication of patient-recorded
symptom scores (ordinal, 0–4) for sputum volume, sputum
purulence and dyspnoea.

 Daily symptom diaries kept by 140 bronchiectasis patients over
a 6 month period studied by Wong et al. (2012) were manually
adjudicated. EBEs and wellbeing (St. George’s Resp. Q’aire)
were also recorded.

 Manual adjudication of SBEs is labour intensive and based on a
complicated scoring rule.

 A new definition of SBE is proposed based on a prediction rule
validated against clinically adjudicated EBEs. The prediction
rule is derived by regressing current EBE status on current and
previous symptom scores and previous EBE status.
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Results Method
Overview
1. Build a retrospective prediction model for EBE(𝑡𝑡0) using

observed symptom scores and observed EBEs at times 𝑡𝑡 ∈
𝑡𝑡0 − 𝜏𝜏, 𝑡𝑡0 .

2. Convert to a prospective model for EBE(𝑡𝑡0) using observed
symptom scores and �EBE𝑡𝑡 at times 𝑡𝑡 ∈ 𝑡𝑡0 − 𝜏𝜏, 𝑡𝑡0 .

3. Estimate predictive performance using cross-validation.

Retrospective Prediction Model
 EBE status at current time, t, dependent on current and past

symptom scores and EBE status at 𝑡𝑡 − 𝛿𝛿, 0 < 𝛿𝛿 ≤ 𝜏𝜏.
 Used generalized linear mixed model with logit link, rand.

intercepts for patient (a ‘regressive logistic’ with random
effect, Bonney, 1987) to predict the time-ordered, clustered,
binary outcome, EBE, estimated with ML:

logit Pr EBE𝑖𝑖,𝑡𝑡| � = 𝑓𝑓 𝑿𝑿𝑖𝑖,𝑡𝑡 , EBE𝑖𝑖,𝑡𝑡−𝛿𝛿 𝜷𝜷 + 𝒁𝒁𝑖𝑖𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑡𝑡
 Entries 𝑥𝑥𝑖𝑖,𝑡𝑡 in 𝑿𝑿𝑖𝑖,𝑡𝑡 are diarized symptom scores at times
𝑡𝑡 ∈ 𝑡𝑡0 − 𝜏𝜏, 𝑡𝑡0 , 𝑓𝑓 � indicates an averaging scheme,
𝑏𝑏𝑖𝑖~Normal 0, 𝜏𝜏2 , 𝜀𝜀𝑖𝑖,𝑡𝑡~Normal 0,𝜎𝜎2 .

 Used area under the ROC curve to search among models
defined by 𝑓𝑓, 𝛿𝛿,𝑿𝑿𝑖𝑖,𝑡𝑡

 Binary prediction by dichotomizing at the threshold where
sens. = spec.

Prospective Prediction Model
 Fitted prospective model by sequentially fitting the

retrospective model with predicted EBE in place of
observed:

logit Pr EBE𝑖𝑖,𝑡𝑡| � = 𝑓𝑓 𝑿𝑿𝑖𝑖,𝑡𝑡 , �EBE𝑖𝑖,𝑡𝑡−𝛿𝛿 𝜷𝜷 + 𝒁𝒁𝑖𝑖𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑡𝑡
 Re-estimated the dichotomization threshold.
 Two-fold cross-validation used to estimate predictive

performance.

Wellbeing
 Assessed daily from St. George’s Resp. Q’aire total score,

dichotomized (1, 2 = “bad”; 3, 4, 5 = “good”).
 Dichotomization threshold determined by regressing

dichotomized wellbeing under each threshold on symptom
scores, and selecting that which led to a model with best
prediction performance.

Figure. ROC curve for the 
retrospective model.
AUC = 0.97
Dichot’n threshold = 0.09
Sens. = spec. = 0.91
Event predictions from 
this model were included 
as fixed effects in the 
prospective model.

Retrospective Model Fit
 The best 𝛿𝛿 was 5 days. The best performing summarization

scheme for the symptoms, 𝑿𝑿𝑖𝑖,𝑡𝑡, was an average of scores over
two windows:
 Current window: [-3, 0] days
 Comparison window: [-8, -4] days.

 A very well-fitting retrospective model was found, AUC = 0.97,
sens. = spec. = 0.91
𝔼𝔼 logit Pr EBE𝑖𝑖,𝑡𝑡| � = 𝑓𝑓 𝑿𝑿𝑖𝑖,𝑡𝑡∈ −3,0 ,𝑿𝑿𝑖𝑖,𝑡𝑡∈ −8,−4 , EBE𝑖𝑖,𝑡𝑡−5 𝜷𝜷

EBE Prediction Performance
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Dataset Model t‘hold
(used)

t’hold
(opt.)

Sens. Spec.

Training Retro. 0.093 0.093 0.91 0.91
Prosp. 0.093 0.048 0.76 0.88
Prosp. 0.048 0.048 0.83 0.83

Hold-out Prosp. 0.048 0.90 0.79

Validation Against Wellbeing
 Association between wellbeing and EBE was weak: sens. = 0.04,

spec. = 0.83; most days of bad wellbeing are not on days with
EBE.

 Association between wellbeing and our new definition of SBE was
also weak: sens. = 0.64, spec. = 0.09; specificity increased at large
expense to sensitivity.

Conclusions
 A new definition of SBE was proposed which can be

automatically adjudicated with useful precision.
 SBE was no more associated with patient-reported wellbeing

than clinically adjudicated EBE.
 Future work will investigate joint validation against patient-

reported wellbeing and EBE.

Limitations
 Assigned equal loss for both types of misclassification;

differential loss could improve predictive performance.

 Error in the predicted EBE state, Var �EBE𝑖𝑖,𝑡𝑡 , was not
propagated.
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