
 1

Novel applications of Association Rule Mining- Data Stream Mining

Omkar Vithal Kadam
(Student ID: 0787047)

This thesis is submitted as part of Degree of Masters of Computers and Information
Sciences at the Auckland University of Technology

August 2009

 2

Table of Contents

List of Abbreviations ...6

List of Tables..7

List of Figures...8

Abstract ..9

Chapter 1 Introduction.. 10

1.1 Motivation for the Research... 10

1.2 Research Objective ... 12

1.3 Structure of the thesis.. 13

Chapter 2 Literature Review... 15

2.1 Introduction.. 15

2.2 Exact approaches to Frequent Itemset Mining .. 15

2.3 Approximate approaches to Frequent Itemset Mining 18

2.4 Memory Management Techniques .. 20

2.5 Summary ... 24

Chapter 3 Research Methodology.. 25

3.1 Introduction.. 25

3.2 Research Approach... 25

3.3 Research Opportunities and Hypotheses .. 26

3.4 Overall Architecture ... 26

3.5 Basic Building Blocks... 29

3.5.1 Data Structure.. 29

3.5.2 Chernoff Bound..30

3.5.3 1 Itemset Pruning...30

3.5.4 Closed Itemset Mining ... 32

3.5.5 Generation of Frequent Itemsets from Closed Frequent Itemsets 34

3.5.6 Overall Algorithm Structure... 35

3.6 Summary ... 47

Chapter 4 Experimental Design ... 48

4.1 Introduction.. 48

4.2 Datasets .. 48

4.3 Performance Metrics.. 49

4.4 Support and Reliability... 50

4.5 Experimental Plan ... 51

 3

4.5.1 Experiment 1.. 51

4.5.2 Experiment 2.. 51

4.5.3 Experiment 3.. 53

4.6 Summary ... 54

Chapter 5 Research Findings... 55

5.1 Introduction.. 55

5.2 Findings from Experiment 1... 55

5.3 Findings from Experiment 2... 61

5.4 Findings from Experiment 3... 64

5.5 Summary ... 66

Chapter 6 Future Work... 67

Chapter 7 Conclusion... 69

References... 70

 4

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of

my knowledge and belief, it contains no material previously published or written

by another person nor material which to a substantial extent has been accepted

for the qualification of any other degree of diploma of a university or other

institution of higher learning, except where due acknowledgement is made in

the acknowledgements.”

Yours sincerely,

(Omkar Kadam)

 5

Acknowledgements

I sincerely thank Dr. Russel Pears and Dr. Yun Sing Koh for their endless

support and encouragement without which this research work would not have

been attainable.

I also thank Professor Krassie Petrova and Gordon Grimsey for their support

and help.

 6

List of Abbreviations

• CET: Cost Enumeration Tree,

• CFI: Closed Frequent Itemsets,

• DIUpdate: Direct Update tree,

• DSM: Data Stream Mining algorithm,

• FI: Frequent Itemsets,

• FPDM: Frequent Pattern Data Stream Mining algorithm,

• FP tree: Frequent Pattern tree,

• minSup: minimum support,

• Sup: support

 7

List of Tables

Table 2-1: Node maintenance statistics 17

Table 3-1: Transactional dataset A 33

Table 3-2: Transactional dataset B 37

Table 3-3: Transactional dataset C 45

Table 4-1: Parameter values 49

Table 4-2: Performance metrics 49

Table 4-3: Key parameters used in experimentation 50

Table 5-1: Accuracy with fixed delta-Experiment 1-1 56

Table 5-2: Accuracy with fixed support-Experiment 1-2 56

Table 5-3: Accuracy with fixed delta-Experiment 1-3 59

Table 5-4: Accuracy with fixed support-Experiment 1-4 59

Table 5-5: Accuracy findings-Experiment 3 64

Table 5-6: Performance findings-Experiment 3 65

 8

List of Figures

Figure 2-1: Relationship between frequent, closed frequent and

maximal frequent itemsets 22

Figure 3-1: Overall Architecture 28

Figure 3-2: Item pruning 32

Figure 3-3: Itemset lattice 33

Figure 3-4: Node structure 36

Figure 3-5: Closed tree 37

Figure 3-6: Powerset generation 43

Figure 3-7: Hash table superimposed on tree 44

Figure 3-8: Closed tree construction 46

Figure 4-1: Recall and Precision formulae 50

Figure 5-1: Memory and time with fixed delta-Experiment 1-1 57

Figure 5-2: Memory and time with fixed support-Experiment 1-2 58

Figure 5-3: Memory and time with fixed delta-Experiment 1-3 60

Figure 5-4: Memory and time with fixed support-Experiment 1-4 60

Figure 5-5: Recall with fixed support-Experiment 2-1 61

Figure 5-6: Precision with fixed support-Experiment 2-2 62

Figure 5-7: Recall with fixed support-Experiment 2-3 63

Figure 5-8: Precision with fixed support-Experiment 2-4 63

Figure 5-9: Execution details-Experiment 3 66

 9

Abstract

From the advent of association rule mining, it has become one of the

most researched areas of data exploration schemes. In recent years,

implementing association rule mining methods in extracting rules from a

continuous flow of voluminous data, known as Data Stream has generated

immense interest due to its emerging applications such as network-traffic

analysis, sensor-network data analysis. For such typical kinds of application

domains, the facility to process such enormous amount of stream data in a

single pass is critical.

Nowadays, many organizations generate and utilize vast data streams (Huang,

2002). Employing data mining schemes on such massive data streams can

unearth real-time trends and patterns which can be utilized for dynamic and

timely decisions. Mining in such a high speed, enormous data streams

significantly differs from traditional data mining in several ways. Firstly, the

response time of the mining algorithm should be as small as possible due to

the online nature of the data and limited resources dedicated to mining

activities (Charikar, 2004). Second, the underlying data is highly volatile

and subject to change over period of time (Chang, 2003). Moreover, since

there is no time for preprocessing the data in order to remove noise, the

streamed data can have noise inherent in it. Due to all aforementioned

problems, data stream mining is receiving increasing attention and current

research is now focused on the efficient resolution to the problem cited

above.

Although, the field of data stream mining is being heavily investigated, there is

still a lack of a holistic and generic approach for mining association rules from

data streams. Thus, this research attempts to fill this gap by integrating ideas

from previous work in data stream mining. This investigation focuses on the

degree of effectiveness of using a probabilistic approach of sampling in the data

stream together with an incremental approach to maintenance of frequent

itemsets in a data stream environment. The following thesis describes the

design and experimentation conducted with a novel association rule mining

algorithm that can be deployed on a high speed data stream.

 10

Chapter 1 Introduction

1.1 Motivation for the Research

Association rules, as its name suggests, expresses relationships between items

in (generally large) datasets. This powerful data mining technique has a wide

range of applications including Market-Basket analysis, text mining, web mining

and pattern recognition between genes in a dataset. Such rules enable users to

uncover hidden relationships and patterns in large datasets. For example,

customer’s buying patterns or relationships between different genes in

organisms. The seminal work of (Agrawal, 1994) and the proposed Apriori

algorithm spurred a plethora of research in the area of association rule mining.

In a wide range of emerging applications, data is in the form of an enormous,

continuous stream where the speed at which the data is produced outstrips the

rate at which it can be mined (Charikar, 2004). This is in direct contrast to

traditional static databases; thus data stream mining therefore is substantially

deviant from conventional data mining in numerous aspects. Firstly, the

absolute volume of data embedded in a data stream over its lifespan can be

overwhelmingly huge (Gaber, 2005). Secondly, due to resource bottlenecks,

generating timely responses by keeping response time to queries on such data

streams is necessary (Jiang, 2006).

Because of the issues stated above, data stream mining has become the

subject of intense research and the problem of obtaining timely and accurate

association rules is a contemporary research topic. There is a critical need to

switch from traditional data mining schemes to those methods that are able to

operate on an open-ended, high speed stream of data (Manku, 2002).

Due to the inherent nature of a data stream, any mining scheme faces the

following challenges (Gaber, 2005). Firstly, due to the continuous nature of

stream data, the traditional approach of scanning the database multiple times

for model creation is no longer feasible. Moreover, the time required to rescan

the database can severely degrade performance and response time. In the

most fundamental sense, storage of the large amount of data produced will

 11

pose a major constraint on storage resources. Hence, an effective and compact

memory structure along with an appropriate single pass algorithm becomes

indispensable for data stream mining (Jiang, 2006).

Secondly, the algorithm should be able to adjust itself to the changing nature of

the stream data which gives rise to the notion of Concept Drift (Wang, 2003). All

data streams are susceptible to change in the content of data with the passage

of time. Such changes in data content usually give rise to changes in patterns,

thus giving rise to the phenomenon referred to as Concept Drift. Concept drift

tends to further complicate the process of mining as patterns which were

generated on a past segment of data may not hold in the future, thus giving

need to a continuous monitory mechanism that checks and updates models

created as and when necessary.

Thirdly, due to the fact that data in a stream may arrive at high speed, the data

has to be processed quickly lest we lose important data. This constrains the

mining speed to be faster than the incoming data rate (Lin, 2005), otherwise,

the algorithm will have to employ some form of approximation technique such

as load-shedding, sampling, or sketching (Gaber, 2005) which has the effect of

degrading accuracy due to the probabilistic approach employed. Since storage

of data in secondary storage is not an option, the success of any data stream

mining algorithm depends on its ability to build a synopsis of the data in main

memory and maintain such a synopsis in the face of continuous changes that

take place in the underlying data stream. To this end, research into closed

itemset mining becomes relevant as closed itemsets are a compact

representation of the set of all itemsets without loss of information (Chi, 2004).

Given a set of frequent closed itemsets it is possible to deduce the subset of

frequent itemsets, along with their support values. Thus closed frequent itemset

mining is one of the fundamental building blocks of this research.

The three factors above, taken together, dictate that an incremental approach to

mining needs to be adopted in a data stream environment (Huang, 2002). The

major factor affecting the efficacy of such a mining algorithm is: computing

resources such as CPU time and memory; hence a resource-aware algorithm

capable of adjusting itself as per resource availability is crucial for upholding the

 12

performance of the mining algorithm. Thus, it is clear that in the field of data

stream mining, a novel approach is required that for exploits the generation of

frequent closed itemsets along with sampling and memory optimization

techniques is crucial.

1.2 Research Objective

Many application domains require investigating the associations inherently

present in the databases, such domains include text mining, pattern analysis,

web data analysis, bio informatics (Pang, 2006). Association rule mining, as the

name suggests, an activity of discovering hidden relationships and associations

in the large databases, therefore becomes a highly valuable and vital data

mining technique in such domains. Armed with information and relationships

provided by association rule mining techniques , the data miner can have the

ability to determine buying patterns of customers in market-basked analysis

application or to unearth the genetic correlation in a bio-informatics study or to

discover credit card defaulter behavioral patterns in banking domain.

Association rule mining basically can be seen as a two step activity: first,

determining the frequent itemsets that fulfill the minimum support threshold,

second, deriving rules from the frequent itemsets that were discovered in first

step. Since, the efficiency and effectiveness of the generated rules is highly

affected by the frequent itemset mining phase (Chi, 2004), the frequent itemset

mining phase has received much significant attention so far. The works such as

(Chi, 2004), (Charikar, 2004), (Yu, 2004), (Jiang, 2006) are few examples

where the focus of the research has been mainly on frequent itemset mining

rather than rule generation phase. Another reason for researchers to focus on

frequent itemset mining is because the rule generation can be executed

exponentially quicker than first phase (Bodon, 2003). Therefore, this research

also is focused on the problem of the frequent itemset mining instead of the rule

generation.

The seminal work of (Aggarwal, 1993) first addresses the problem definition of

frequent itemset mining, which can be modified to adjust finding frequent

itemsets over continuous data stream and be expressed as following,

 13

Let ‘I’= {i1, i2, i3... im} be set of items. A data stream of transactions ‘T’ is a

sequence of incoming transactions where each transaction contains itemset ‘X’

which is a subset of items ‘I’. Support of ‘X’, denoted as ‘sup(X)’ is the number

of transactions that contained X. The itemset X is a frequent itemset is sup(X) ≥

‘s’, where ‘s’ is minimum support threshold. The algorithm Data-Stream-Mining

(DSM) is to find an approximate collection of frequent itemsets (relative to the

minimum support threshold provided by the miner). The approximation is

controlled (similar to (Yu, 2004)) by parameters epsilon ‘ε’ and delta ‘δ’ to

regulate the degree of error and reliability respectively.

1.3 Structure of the thesis

This chapter has discussed the challenges associated with rule generation in a

data stream environment. Technical issues such as the need for efficient

memory management and the need for an incremental approach for model

building were shown to be indispensable for mining rules in a data stream

environment. Furthermore, the problem of concept drift was identified and it was

noted that a monitoring mechanism that continuously tracks changes in the data

stream needs to be implemented.

 In the next chapter we will survey past work done in the area of association rule

mining, with particular emphasis to algorithms proposed for mining in a data

stream environment. We will also note and briefly comment on research into

closed frequent itemset mining as it forms one of the cornerstones of our

research.

In Chapter 3 we will present our methodology which will include an overall

architecture and the design of the algorithm that we utilized for experimentation.

The three different strands of our research, namely the partitioning of the data

stream into blocks, the use of closed itemset mining and the incremental

approach will be fully described.

A plan for the empirical study will be presented in Chapter 4. We will detail the

various experiments that we ran and compare results with previous work, where

 14

appropriate. Our experimentation will track performance measures such run

time, memory consumption and rule accuracy which is measured in terms of

Precision and Recall.

Chapter 5 presents the experimental results that show that our proposed

algorithm outperformed the current state of the art data stream association rule

miner on all metrics that we tracked.

Chapter 6 discusses several different directions in which future work can be

undertaken to further improve the performance of our proposed. Chapter 7

concludes the thesis with a discussion of the key achievements of the research.

 15

Chapter 2 Literature Review

2.1 Introduction

The problem of mining association rules from a data stream has been

addressed by many authors but there are several issues (as highlighted in

previous sections) that remain to be addressed. In the following section we will

discuss existing literature based on the problems in data stream mining that

they address.

The research in this domain can be effectively classified into three different

domains namely, Exact methods for Frequent Itemset Mining, Approximate

Methods and Memory Management techniques adopted for data stream mining.

2.2 Exact approaches to Frequent Itemset Mining

There are two main approaches to mining association rules in a data stream

and these can be categorized into either Exact or Probabilistic approaches

(Gaber, 2005). The Exact approaches offer the highest level of accuracy but

compromises on execution speed, particularly in the case of voluminous, high

speed streams. The algorithms that adopt exact approaches include (Yang,

2004), (Chi, 2004).

(Yang, 2004) proposed a method for determining short frequent itemsets in one

scan of data and then generating association rules from the discovered frequent

itemsets. It used a basic primitive data structure, an array, to store the support

information of the frequent itemsets for a predefined length of the itemset. The

elements in the array are arranged in lexicographical order just as in a

dictionary. The array at any moment of time contains only those itemsets who

has length less than ‘k’ where ‘k’ is predefined maximum length of frequent

itemsets in the database. Since the array is set up in lexicographical order,

adding a new itemset to the array becomes very efficient and quick with the

help of a merge sort operation.

 16

Whenever a transaction is received, for all the itemsets that fulfill the itemset

length condition (less than k), a method ‘rank’ is invoked to return the index of

the itemset in the array structure. Once the index position is obtained, the

itemset at that location gets its support count incremented. If the itemset does

not exist then an entry for the new itemset is created with the help of the merge

sort operation. Whenever the user requests mined results, all the itemsets

fulfilling minimum support threshold are determined by traversing the array and

the association rules are generated and presented to the user.

The approach proposed by (Yang, 2004) suffered from a major limitation in that

it was capable of only handling short (k ≤ 3, where ‘k’ is length of itemset)

itemsets and it failed in the case of large itemsets. It is based on the assumption

that most applications would be interested in only short frequent itemsets. This

assumption is questionable in a data stream environment.

Chi (2004) proposed a new algorithm, Moment, to mine and store all closed-

frequent-itemsets using a sliding window which holds the most recent samples

in a data-stream. The recent samples are stored using memory-structure called

the Closed-Enumeration-Trees (CET) The CET is constructed using a depth-

first process which maintains every itemset in lexicographical order and if the

itemset is found frequent then it is added to the tree as a node. Non-frequent

itemsets are also stored as they may become frequent in the future. This

approach distinguishes between 4 types of nodes, namely, Infrequent gateway

node (infrequent nodes whose parents and/ siblings are frequent), Unpromising

gateway node (infrequent node who has a superset having same support as

itself), Intermediate node (frequent node who has a superset having same

support as itself), and Closed node (node which has no children with greater or

equal support as itself).

During the sliding window timeframe, whenever a transaction arrives, Moment

classifies the nodes present in the transaction into one of the 4 categories

mentioned previously. Unlike prefix trees, Moment’s CET maintains only closed

itemsets and nodes that mark the boundary between closed itemsets and the

rest of the itemsets. A hash table keeps track of all the nodes seen so far which

is updated to maintain support information of all the nodes seen so far. After the

 17

arrival of a new transaction the oldest transaction is effectively deleted from the

time window by traversing through the nodes that were affected by this

transaction. At the same time the new transaction is added by noting the node

type for each itemset contained in the transaction and updating the relevant

nodes in the CET as needed. Whenever the user requests for mined results the

CET (which observes only closed nodes and boundary nodes) is traversed to

mine the top ‘n’ closed-frequent itemsets.

(Chi, 2004) assumed that all the interesting changes occur at the boundary of

closed-frequent itemsets and rest of the itemsets which turns out to be true

most of the time. Nevertheless, the Moment algorithm suffers greatly due to the

CET data structure (cost-enumeration-trees) whose operations such as tree

creation and maintenance is very time-consuming (since it scans the

constructed tree in a depth-first manner). Although the algorithm suggested by

(Chi, 2004) outperformed the then state-of-art approach which was CHARM (M.

Zaki, Gouda, K., 2001), it maintained a large number of nodes in the tree

structure which hindered its performance significantly.

Table 2-1: Node maintenance Statistics (Chi, 2004)

It is evident from Table 2.1 that Moment spends significant amount of resources

on creating and maintaining a huge number of unnecessary nodes. Column 4

shows that the total number of nodes it maintains is at least 26.5 times the

number of closed frequent nodes. Given that all information on rule generation

can be obtained through the use of closed frequent itemsets only, it is evident

that the storage and computational overheads consumed by Moment are very

high.

 18

Thus, it can be surmised that, although algorithms based on exact methods

guarantee better accuracy they suffer greatly in terms of computation time and

memory requirements. Therefore, several approximation based methods were

initiated to provide satisfactory performance by keeping computation costs

under control. Such approximation based approaches include (Yu, 2004),

(Wang, 2003), (Manku, 2002) and (Charikar, 2004).

2.3 Approximate approaches to Frequent Itemset Mining

We now describe approximate methods that prioritize on performance, at the

possible expense of accuracy. Some of them offer worst-case error guarantees

to provide a level of confidence in the results generated (for example, (Charikar,

2004)). The algorithms that do not provide such error guarantees include (Yu,

2004). Since these were approximated results, the algorithms following these

methods suffered from either False-Positives (certain itemsets which are not

frequent are wrongly identified as frequent itemsets) or False-Negatives (certain

frequent itemsets are not identified by the algorithm as frequent itemsets) (Yu,

2004)(Jiang, 2006). Many of these algorithms employed approximation

techniques such as sampling, load-shedding, clustering and sliding window

mechanisms (Gaber, 2005).

Yu (2004) proposed algorithms that can mine frequent items as well as frequent

itemsets from data-streams with the use of a memory-consumption constraint.

The suggested algorithm, Frequent-Data-stream-Pattern-Matching, (FDPM)

produces a set of frequent itemsets that has Recall values that are reported to

be in the high 90 percentile mark, meaning that the results it produces are a

very good approximation to that produced by exact methods such as Moment.

The approximation is governed by two parameters that are referred to as the

error-control and reliability-control parameters that set the level of error and the

degree of statistical significance attributable to the result, respectively. The

algorithm is false-negative oriented meaning that it may not pick every frequent

itemset but it guarantees that every itemset picked is frequent.

The algorithm uses the Chernoff bound (Ravikumar, 2004) to conceptually

partition the data stream into frames, each of which represents a chunk of data

 19

on which inferences about the frequency status of itemsets can be made with a

pre- specified probabilistic guarantee. FPDM2 uses two data structures,

namely, ‘P’ and ‘F’. The structure P maintains all the frequent itemsets in the

current frame whereas F maintains frequent itemsets seen so far. Whenever a

transaction arrives FPDM2 updates the support information of itemsets that

exist in P. At the end of a frame it determines the frequent itemsets in P that

must be transferred to F. Once the current frequent itemsets are transferred to

F, the data structure P is truncated in order to make room for frequent itemsets

from the next data frame. Whenever the user requests the mined results, the

algorithm outputs elements from F that fulfill the minimum support threshold. As

mentioned before the approach is false negative in nature and was compared

against (and outperformed) false positive approaches such as Lossy-counting

and Sticky sampling (Manku, 2002). The Chernoff bound enabled the FPDM2

algorithm to prune infrequent itemsets from the data structure F safely without

loss of information as statistical guarantees could be obtained regarding the

frequency status of such itemsets. Thus, the memory resources consumed by

FDPM could be kept within very tight bounds unlike exact methods such as

Moment.

Charikar also employed an approximate approach (Charikar, 2004). With the

help of a compact data-structure, their Count-sketch algorithm mined the data

stream in a single pass.

The thrust of (Charikar, 2004) lies in the creation and maintenance of its data

structure, Count Sketch. This data structure consists of a collection of hash

functions along with an array of counters that simulate an array of hash tables

(referred to as Heaps). Count sketch has two crucial methods: to append the

newly found itemset, and to estimate its support count (which is done with the

help of median values obtained from hash functions). Once the data structure is

constructed, whenever a new transaction comes, the algorithm computes the

estimated support count for itemsets present in the transaction and adds them

into the data structure if the estimate for these itemsets is greater than the

estimated value for that heap. If the itemset already exists then its count

information is updated. Whenever the user requests for mined results, it reports

the top ‘k’ elements as frequent itemsets.

 20

This approach mainly focused on obtaining the top ‘n’ frequent itemsets with the

help of an efficient data-structure. The algorithm is simple in design and is

compared with a traditional sampling algorithm. The Count-sketch algorithm

outperformed sampling in the context of storage-space since Count-sketch

keeps only the top ‘n’ objects from stream whereas sampling keeps

substantially a large number of objects. The proposed algorithm can be

extended to a 2-pass algorithm for a scenario of estimating items with large

frequency-change between two inter-connected data-streams; this issue was

not addressed so far by any other work. The algorithm is based on hash

functions which are inherently fast, thus yielding increased speed for the Count-

sketch algorithm. The data structure count-sketch stores only top ‘k’ elements at

any moment of time. In spite of this, the authors did not address the cost of

actually storing the elements from the data-stream since different encoding

techniques (such as Zipfian method) will yield different space usage.

It can be deduced that both exact and probabilistic approaches each have their

own benefits and drawbacks. Therefore, selection of an association rule mining

approach should be done as per the domain of investigation since some of the

application domains may require a higher degree of accuracy (such as the

Medical or Financial sectors) and certain domains like Marketing require faster

rather than the most accurate results.

2.4 Memory Management Techniques

With respect to memory management, researchers have emphasized on the

use of compact data structures for incrementally maintaining itemsets in

contrast to traditional static database approaches (Jiang, 2006). This is primarily

because the traditional approaches are not applicable for data stream mining for

several reasons. First is the problem of insufficient memory. The stream data is

vast in volume and storing such voluminous data is impractical. Second, the

support information of the transactions is susceptible to frequent updates and

therefore, scanning and updating such a huge volume of data is a very costly

process. Therefore, it is essential to keep minimal, yet sufficient enough for

mining the association rules from stored data. As an answer to this problem,

 21

research by (Yang, 2004), (Charikar, 2004), (Chang, 2003) keeps only frequent

itemsets in main memory (Jiang, 2006). Thus, their research concentrates on

the use of compact and efficient memory structures to hold information

pertaining to only frequent itemsets.

(Charikar, 2004) used the Count-sketch data structure that keeps the estimated

count support of high frequency itemsets. The main problem with this approach

is that it supports the generation of only top ‘N’ itemsets (as ranked by

frequency of occurrence in the data) and does not consider the notion of

concept drift. Moreover, it suffers from the accuracy-space tradeoff as with

many other approximation based approaches. Yu (2004) showed that small

increases in accuracy were accompanied by very exponential increases in

memory requirements.

Another similar approach is that of (Huang, 2002) which followed the use of the

FP (frequent-pattern) tree structure, a compact data structure (Lin, 2005) for

intermediate storage of frequent itemsets. This method is modified and followed

by many other research works such as (Lin, 2005) and (Chi, 2004). Yet,

creation, maintenance, and traversal remain primary concern and potential

bottleneck for FP tree (Huang, 2002).

In general, the literature has employed the tree structure for maintaining

frequent itemsets and this research will be following the same approach of

using tree structure for intermediate storage of frequent itemsets.

As mentioned so far, mining association rules from stream data demands

significant amount of computation resources such as CPU time and memory.

This is mainly due to the fact that the algorithm has only one scan of the data in

data stream mining. Thus, the decision as to when to update the model

(whether at mining time or as and when updates come) is crucial and influences

the performance of the underlying mining algorithm (Jiang, 2006).

The most commonly followed approach is the use of an incremental approach

for maintaining and updating association rules. The first such effort was that of

(Cheung, 1996). Although, this approach was not fully applicable for stream

 22

data, it provided the necessary framework for all other approaches that follow

an incremental approach for updating and maintaining association rules. Zheng

in (Zheng, 2003) employed a metric for determining the difference between

sequential patterns. This metric was used to indicate when to update the

support information of the sequential patterns. Nevertheless, this approach was

suitable only where the problem of concept drift was minimal. Certain other

approaches try to determine a trigger event which can be used as a cue to

update all the transactions. Such approaches include (Ben-David, 2004) which

used statistical means such as chi-square methods to find out the difference

between past frame data and current frame data. Depending on the variation in

the data the decision of updating the rule base or to defer the update to a later

stage was taken. Nevertheless, it assumed that the underlying data distribution

would remain the same for the lifespan of the data stream which is seldom the

case in most real-world data streams.

Besides an efficient memory construct to hold valuable information, memory

management also involves the use of the closed frequent itemsets. In practice,

transactional data leads to the production of an exponentially vast number of

frequent patterns, therefore it becomes incumbent to discover a small fraction of

patterns that are representative and from which other frequent itemsets can be

derived (Pang, 2006). There are two such representations, namely, Maximal

frequent itemsets, and, Closed frequent itemsets (Celgar, 2006). The proportion

of maximal and closed frequent itemsets against frequent itemsets is as shown

in following figure.

Fig. 2-1 Relationships between Frequent, Closed frequent and Maximal

frequent itemsets (Pang, 2006)

 23

A maximal frequent itemset can be defined as a frequent itemset for which none

of its direct children (supersets) are frequent itemsets, whereas, a closed

frequent itemset ‘X’ can be defined as a frequent itemset for which none of its

direct successors (supersets) have same support as that of ‘X’. It is clear from

the definition and the figure above that the number of maximal itemsets in a

dataset is significantly lesser than that of closed frequent and frequent itemsets.

In spite of providing a concise representation, Maximal frequent itemsets do not

provide lossless representation since they do not contain support details of their

ancestors (subsets). Closed frequent itemsets, on the other hand do provide a

compact and lossless representation and therefore much research (Jiang,

2006), (Wen, 2004), (Chi, 2004), (Zaki, 2002) has focused on exploiting the

power of closed frequent itemsets in association rule mining.

Jiang (2006) exploited closed frequent itemsets for association mining in a data

stream environment. The proposed algorithm, called CFI-stream computes

closed itemsets incrementally, on the fly without any support information (with

the help of closure function). It uses the closure function to determine whether

an itemset is closed or not. The data structure referred to as DI Update (Direct

Update) tree stores only closed itemsets in a lexicographical order.

CFI-stream is based on sliding window framework and therefore has to account

for new transactions arriving in the window as well as decaying the effect of

transactions that were dropped off. Whenever a transaction is dropped off as

result of its departure from the sliding window, a routine traverses through every

itemset in that transaction and then updates the related closed itemsets to

reflect deletion of the transaction. Addition of a new transaction is also dealt

with similarly by updating only associated closed itemsets. This checking of

closed nodes to see if they are associated with itemsets from current

transaction saves computational time in case of introduction of a new

transaction, but it can severely degrade performance while diminishing the

effect of past transactions since it has to traverse through the tree for all the

nodes and update them.

Although CFI-stream outperformed Moment (Chi, 2004) in most of the

experiments, it is highly efficient only for the datasets where there exists a

 24

higher degree of correlation between the transactions. Moreover, the

housekeeping functions to simulate sliding window framework, such as

traversing the DI Update tree and updating all the associated closed nodes for

introduction of new transactions and deletion of old transactions can very well

be resource consuming.

It is observed that closed frequent itemset mining has been significantly

researched for last few years and it continues to be so because of advent of

different application domains such as high speed data streams.

2.5 Summary

In this chapter, we have provided a brief outline of association rule mining

algorithms in data stream environment with the help of basic introduction,

variety of approaches, their pros and cons. We have also underlined the current

major issues in mining association rules in data streams. In the following

chapters we will carry out a detailed analysis of the research methodologies,

research issues and design a novel algorithm followed by an analysis of

experimental results in Chapter 5.

 25

Chapter 3 Research Methodology

3.1 Introduction

This chapter presents the research methodology and paradigm that

fundamentally governs the methodology selected to fulfill the planned objectives

of this research. It offers a brief overview of research approach, the

methodology chosen to carry out this research and the research methods that

were employed.

The field of data mining is essentially concerned with pragmatic and

efficient solutions. Data mining is mainly employed in order to optimize

the value of existing data and extract useful and valuable information from

large datasets. Therefore, such investigations are more closely aligned with a

Positivist research paradigm or theoretical perspective since we assume that

the application of data mining will result in the generation of useful

knowledge (Dash, 2005).

The French philosopher Comte suggested that a positivist approach utilizes

observation and experiment to understand the domain under consideration

(Dash, 2005) which is the case in data mining as well. Hence, this research will

be heavily reliant on the positivist (Collis, 2003) research paradigm.

3.2 Research Approach

As opposed to the Positivist research approach, Interpretivist research

tends to be subjective in nature where interpretation of an individual (or

researcher) about a phenomenon or event is important (Burrel, 1979).

However, the key features of the Positivist research approach such as the

notion of objectivity, well-planned experiments and research, the seeking of

exact measurements and evaluations, etc. tends to align with this research

work more closely than the Interpretivist approach. Therefore, this research

will utilize the Positivist approach.

 26

3.3 Research Opportunities and Hypotheses

The Introduction section underlined some of the crucial issues that need

to be addressed in data stream mining. Despite the fact that there has been

substantial research carried out in the area of data stream mining , it still lacks

a holistic and generic approach to mine association rules from data streams.

Thus, this research will attempt to fill this gap by integrating ideas from previous

work in data stream mining. This investigation will focus on the degree of

effectiveness of using a probabilistic approach of sampling in the data

stream together with an incremental approach to maintaining frequent

itemsets in a data stream environment.

3.4 Overall Architecture

This section highlights the interface of main building blocks in this algorithm (the

building blocks are explained at length in next section). The basic building

blocks this algorithm is based on are as follows,

• Tree Data Structure,

• Chernoff Bounds,

• 1 Itemset pruning,

• Closed Itemsets,

• Generation of Frequent Itemsets (FIs) from Closed Frequent Itemsets

(CFIs)

The aforementioned blocks mainly make the foundation of the proposed

algorithm, Data Stream Mining. Our approach is based on closed frequent

itemset mining, and therefore there has been a strong necessity to have a tree

data structure which is capable of holding parent-child relationship; essential in

closed itemset determination.

Chernoff bounds is a statistical guarantee which allows determining a number of

samples (in our case, transactions) that would allow us to infer with acceptable

confidence. Chernoff bounds allows us to establish the number of transactions

that make up the individual frames (Yu, 2004).

 27

The powerset generation, an imperative task in order to determine all possible

supersets of singleton items turns out to be a resource intensive process since

the average number of singleton items in a transaction from data stream can

very well be in few hundreds, moreover, many of such generated powersets

yield no rewards in closed itemset mining, therefore, we have incorporated a

method of 1 itemset pruning which strips the incoming transaction from any

infrequent items found in previous passes of processing, allowing us to reduce

the number of singleton items that generate interesting supersets without losing

any information. In this way, we use only the previously found frequent items to

generate powerset since according to Apriori principle; no infrequent subset can

lead to frequent superset (Aggarwal, 1994).

Closed itemset mining is a very promising alternative to frequent itemset mining

mainly because closed frequent itemsets provide a concise and lossless

representation (Pang, 2006) allowing us not only to infer the support information

of its supersets but also generation of all the frequent itemsets. It means that

just by maintaining closed frequent itemsets we can determine all the frequent

itemsets along with their support information. Since the closed frequent itemsets

are subset of frequent itemsets (Pang, 2006), maintaining a smaller number of

items offers us computational gains.

Our algorithm is mainly closed frequent itemset mining, but in order to generate

interesting patterns, we need the frequent itemsets. (Pang, 2006) presented a

method to identify all frequent itemsets along with their support information from

closed frequent itemsets, we shall be implementing this method in our algorithm

so as to list out frequent itemsets as mined results.

Following diagram highlights the overall architecture of our algorithm underlining

how the building blocks mentioned previously fit together in our algorithm,

 28

Input File
Chernoff

Bounds

1 Itemset

pruning

Determination of

Closed Itemsets

FI Generation

from CFI

Closed Tree

Algorithm

Fig. 3-1 Overall Architecture

As shown in figure 3-1, the algorithm reads the input transaction file (in a data

stream environment, it shall be continuous stream of transactions), the Chernoff

bounds breaks the input transaction stream into frames, depending on

previously identified frequent singletons, 1 itemset pruning removes infrequent

singletons from the transaction. Once, the transaction is striped off from the

infrequent items, a block of code generates powerset for every pruned

transaction. Once the powerset is generated, with the definition of closed

itemset, the algorithm updates the closed tree that holds the intermediate

information about all the closed itemsets. At the end of every frame, we store

the closed itemsets found in that frame into the closed tree, whenever the user

requests for the mined results, the algorithm traverses through the closed tree

and determines the closed frequent itemsets, once all the closed frequent

itemsets are identified, the routine to generate FIs from CFIs is called, giving us

all the frequent itemsets along with their support information.

 29

3.5 Basic Building Blocks

This section presents the major building blocks that constitute the proposed for

mining association rules in a Data Stream environment.

3.5.1 Data Structure

In the domain of high speed data streams where the volume of incoming data is

enormous, an effective and concise data structure is required to store, update

and retrieve essential information. This is mainly because of memory

constraints and the huge amount of incoming data in case of data streams

(Jiang, 2006). In the absence of such a compact data structure buffering of data

on secondary storage may be required, leading to significant increases in

processing time due to I/O operations.

An efficient data structure is therefore a vital part of an effective data stream

mining we thus seek a compact memory structure capable of supporting

efficient insertion, deletion, modification and retrieval.

The existing literature has favored several variations of a tree data structure

such as the Frequent Pattern (FP) Tree (Huang, 2002) and the Closed

Enumeration Tree CET (Chi, 2004) for the following reasons,

• A tree data structure aids in fast counting of itemsets (Huang, 2002).

• With trees, we can employ inter and intra-node pruning techniques which will

help us in reducing search space (Moonesinghe, 2006).

• It facilitates easy insertion, deletion, retrieval and updation of information

(Huang, 2002).

Because of aforementioned reasons, the use of a tree data structure to store

itemset information is common and therefore this research will also make use of

the tree structure for retaining support information about the discovered

frequent closed itemsets.

 30

3.5.2 Chernoff Bound

The Chernoff bound which is a special case of the Chernoff inequality and gives

a lower bound value for ‘n’ independent, yet equally likely incidents (Ravikumar,

2004). Algorithms such as CHARM (M. Zaki, Li, W., Ogihara, M., 1997) and

Moment (Yu, 2004) used the Chernoff bound for determining a sample size

because of Chernoff bound’s statistical guarantees on the degree of error in the

estimation of itemset support.

Considering ‘X’ as a real valued variable with range R, the Chernoff bound

states that (Ravikumar, 2004), with a probability of (1-δ) the actual mean of the

variable (X&&&) under consideration is within ‘Є’ of the mean irrespective of the

underlying stochastic distribution of the variable X, where Є is given by:

Equation 3.1

In other words, the above statement means that if we can determine X&&& to be

within Є of its actual value with a probability of ’δ ’, we need to accumulate only

‘n’ samples of variable ‘X’ to make inferences. The value n is given by:

Equation 3.2

If we associate X&&& with the running support value of an itemset then the

Chernoff bound enables us to determine the size of that block of data from

which statistically sound inferences can be made about the frequency status of

itemsets.

3.5.3 1 Itemset Pruning

The necessary step for computing itemsets from the stream of items in a

transaction is the computation of a powerset that would take into account all the

possible combinations of itemsets of size 1 (that is, individual items appearing in

the transaction without combination with other items) seen in a transaction. The

problem such an approach is that in a data stream where the incoming

 31

transaction can very well hold hundreds of items, the CPU time would be

prohibitive as the time complexity for the powerset computation is O(2n) where n

is the items in the transaction.

As a solution to this problem, our approach undertakes 1 itemset pruning. In

this approach, the data stream is segmented into a number of equal-sized

blocks which we call frames. The size of a frame is determined by the Chernoff

and is given by,

Equation 3.3

(For derivation of above formula from generic Chernoff bounds formula, please

refer (Yu, 2004)). As per above formula, when, the minimum support threshold

‘s’=0.001 and delta ‘δ ’= 0.1, the memory bound n0 = 7991, that is every frame

is marked by 7991 transactions.

 We use the first frame of data to determine a list of 1-frequent itemsets

(singletons). We then make use of the Apriori property (Agrawal, 1994) which

states that a subset of a frequent itemset must also be a frequent itemset which

implies that no superset that is infrequent can ever yield a frequent subset. It is

therefore safe and appropriate to focus resources on computing the powerset

from only the frequent singletons. Once the first frame is processed, we are in a

position to prune infrequent singletons and compute the powerset only from the

singletons who survive the pruning step. In order to avoid missing frequent

singletons in subsequent frames, we will monitor singletons in every frame and

compile a list of singletons that were frequent up to the last frame that was fully

processed. At the end of every frame, the algorithm will identify the set of

frequent singletons found in the current frame and compare it with the

cumulative list found across all previous frames. The union of these sets will

then be used to prune the transactions in the current frame. The procedure is

outlined in Fig 3-2 below.

 32

Repeat following steps for transactions 1 to n0 (as calculated

by the Chernoff Bound)

Read the transaction

Parse the transaction and tokenize to get

singletons

Create a new singleton if it doesn’t exist, update its

support count if it already exists

Prepare the list of frequent singletons found in

pass 1 to be used for pruning in next pass

Fig. 3-2 Item Pruning

3.5.4 Closed Itemset Mining

Frequent itemset mining has a crucial role to play in association rule mining

(Agrawal, 1994). Nevertheless, the task of mining association rules can result in

a huge number of candidate itemsets that need to be assessed against their

frequency status, thus impacting on efficiency. The classical Apriori (Agrawal,

1994) approach generates candidate k-itemsets for every pair of (k-1) frequent

itemsets. When the minimum support threshold is et a low enough value, this

can result in a combinational explosion the number of candidates to be

processed (Chi, 2004).

Closed Frequent itemset mining presents itself as an attractive alternative to

classical frequent itemset mining, particularly in a data stream environment. A

closed itemset I is any itemset that does not contain a superset with the same

frequency as itself. A closed frequent itemset is one that has support above the

minimum support threshold. Extensive research has shown that the set of

closed frequent itemsets is a small subset of the set of all frequent itemsets

(Chi, 2004), (Gaber, 2005), (Pang, 2006), (Jiang, 2006). At the same time,

closed frequent itemsets can be used to both derive the identities and the

support values of all frequent itemsets (Pang, 2006). Pang et al describe an

algorithm by which the support of all frequent itemsets can be extracted

efficiently from the set of closed frequent itemsets.

 33

We now illustrate the compact nature of closed itemsets with a simple example.

Consider the following example of a frequent itemset lattice corresponding to a

set of 4 transactions.

Fig. 3-3 Itemset Lattice

Figure 3-3 highlights a frequent itemset lattice with a minimum support

threshold of 1. The transactional dataset that produces this lattice is shown

below in Table 3-1.

Transaction
ID Items

1 C
2 B D

3 A C D

4 A B C D

Table 3-1 Transactional dataset A

As it is clear from this simple example, the number of closed frequent itemsets

is significantly lower than that of frequent itemsets Given the compact nature

and the lossless representation of closed itemsets it is a logical choice for

mining data streams which require models to be stored entirely in memory and

it for these reasons that we adopted this approach in our research. Closed

itemsets offer the possibility of mining at low support thresholds that tend to

overwhelm the memory due to the often exponential increase in the number of

candidate itemsets that need to be tracked with classical frequent itemset

mining. Closed itemset mining, on the other hand effectively enables the miner

to operate at lower support levels than would be possible with traditional

methods.

 34

3.5.5 Generation of Frequent Itemsets from Closed Frequent Itemsets

As explained before, maintaining the closed itemset serves multiple purposes,

viz. compact representation and reduced overhead. Another such advantage of

concentrating on closed frequent itemsets is that the Closed Frequent Itemsets

(CFIs) provide loss-less information, meaning that by just keeping track of CFIs,

we can find out all other frequent itemsets as well. Once the closed frequent

itemsets (CFIs) are identified, these CFIs can be used to determine the support

of all the non closed frequent itemsets (Pang, 2006). The basic principle needed

to find the support of non-closed frequent itemsets is to exploit the definition of a

closed frequent itemset, that is, if a node is not closed, its support must be the

same as one of its supersets. According to the Apriori principle, any transaction

that has a superset of item X must also contain item X itself, but any transaction

that contains X does not necessarily include the superset of X; therefore, the

support of a non-closed frequent itemset must be equal to the maximum

support among its supersets (Pang, 2006). The following routine infers the

support of non-closed frequent itemsets from the set of closed frequent

itemsets,

Routine: calculateSupport ()

Parameters:

• Let ‘C’ be a list of closed frequent itemsets,

• Let ‘F’ be a list of all non-closed frequent itemsets,

• Let ‘maxLength’ be length of the largest frequent itemset

Method:

1. Find the maxLength in order to facilitate bottom-up traversal (that is

largest itemset first)

2. For k= maxLength to 1

a. Find list of all the frequent itemsets ‘Fk’ of size ‘k’,

b. For all ‘f’ Є Fk, repeat following,

i. If ‘C’ does not contain ‘f’, then support of ‘f’ is maximum of

its descendants’ supports

c. End for

3. End for

 35

Description:

The routine traverses the tree in a bottom up fashion. For each node scanned

its closure status is first determined; if the node is not closed then, as

mentioned previously, its support must be the maximum of its supersets’

support. On the other hand if the node is closed then no further action is taken

other than to scan the next node in the bottom up traversal order.

In this way, the compact and lossless closed itemset representation allows us to

find all possible frequent itemsets without actually storing them.

3.5.6 Overall Algorithm Structure

As discussed in previous sections, the most suitable data structure for frequent

closed itemset mining is a tree structure. Accordingly this research uses a tree

structure for storing itemset information that would facilitate the mining phase

later on.

Each node in the tree represents an itemset ‘i’. Unlike prefix trees (Chang,

2003) and FP trees (Giannella, 2003), this tree structure maintains only closed

itemsets which includes both frequent and infrequent itemsets. However, the

algorithm will undertake periodic pruning to ensure that tree maintains closed

itemsets that are either currently frequent or have the potential to become

frequent over a period of time into the future. The pruning routine that we use is

as follows,

Routine: pruneTree ()

Parameters:

• Let ‘H’ be a list of closed itemsets in the form of a Hash table,

• Let ‘minSup’ be a minimum support threshold,

Method:

4. For all the elements in Hash table, do the following

a. Retrieve the node ‘N’ from the tree with the help of reference from

Hash table,

 36

b. If Support(N) < minSup, then

i. Obtain the list ‘L’ containing all the children of N,

ii. Remove the nodes present in ‘L’ from tree and hash table

c. End If

5. End for

Description:

The pruneTree routine, traverses through Hash table that keeps track of all the

frequent nodes created so far, and investigates infrequent closed nodes present

in the hash table. Once, we have obtained the infrequent nodes, we retrieve

their reference from hash table in order to find corresponding nodes in the tree

(which has parent-child information of the nodes). After we get a list of

infrequent nodes, we traverse through their children and remove them from the

tree as well as the hash table. It makes more sense to remove the children of

infrequent nodes and purge that branch because the children of infrequent

nodes can only become frequent if one or more of their parents become

frequent, therefore we give chance to infrequent nodes to become frequent in

future but purge their children.

The node structure is as follows and shown in Figure 3-4:

• Itemset identification, ‘i’,

• Support ‘s’,

• Links to its immediate ancestors and descendants.

Fig. 3-4 Node Structure

The literature has adopted several variations of tree structures such as the FP

tree (Huang, 2002), CET tree (Chi, 2004) and prefix tree (Chang, 2003). This

algorithm however is based on the lattice tree structure similar to the work of

(Chang, 2003). One of the tasks for future work would be comparing and

contrasting other tree structures available and verifying the use of lattice for

storing intermediate information about itemset supports.

 37

This research concentrates on discovering closed itemsets over a data stream.

On arrival of a new transaction, the algorithm will inspect every Itemset in the

transaction and update the support counts of related closed itemsets. All the

current closed itemsets are maintained in the lattice tree structure. This tree

structure always remains resident in main memory so as to reduce memory

latency. Consider following set of transactions shown in Table 3-2:

Transaction
ID Items

1 A B

2 A B C

3 A C

4 B C

5 A C D

Table 3-2: Transactional dataset B

The above set of transactions will result in the closed itemset tree given in

Figure 3-5. As mentioned previously we observe that the number of closed

nodes (at 8) is significantly less than the number of nodes that a simple prefix

tree would have generated (at 15) for the same set of transactions.

Fig. 3-5 Closed tree

Although most of the algorithms output the closed itemsets as soon as the user

requests for the mined results, this algorithm however postpones the output of

results until the end of the current frame as determined by the Chernoff bound.

This is in order to achieve processing efficiency in terms of computing time and

speed. The algorithm could output the mined results whenever user asks for it

but this would give rise to a less accurate picture; therefore, as a solution to

this issue, the algorithm postpones the output until the expiry of the frame.

A

AB

B C

Ø

AC BC

ABC ACD

 38

However, in the context of a high speed data stream with tens of thousands of

transactions arriving per second the time postponement will be negligible in

size. Consider a test scenario that we executed in experimentation, where

minimum support threshold was 5% and delta threshold was 10%, the average

execution time for a frame was 75 milliseconds which is much smaller than the

human reaction time which is generally 120 to 160 milliseconds (Kosinski,

2009), suggesting that there will be no practical need in a real time scenario to

output instantaneous mined results. Moreover, the higher human response time

indicates that the effect of postponing of the mining will be insignificant.

Our approach produces an incremental algorithm where it inspects closed

itemsets and updates their support information on the basis of past mined

results. This is therefore a more effective approach than those algorithms which

scan and generate closed itemsets multiple times. Following routine presents

the algorithm used to process the first frame.

Routine: firstPass ()

Parameters:

• Let ‘minSup’ be the minimum support threshold,

• Let ‘frameSize’ be number of transactions per frame determined by the

Chernoff bound,

• Let ‘frequentSingletons’ be the list of frequent 1 itemsets found in this

frame

• Let H be a hash table contains the identity of frequent itemsets,

Method:

1. For index=0 to frameSize

a. Read the transaction from the data file,

b. Parse and tokenize the transaction to obtain the singleton items

c. For all tokens, repeat

i. If the token is already seen previously then update its

support information,

ii. Else, create a node entry in the hash table H for the newly

obtained token

d. End for

 39

2. End For

3. Populate the list ‘frequentSingletons’ with frequent 1 level items with the

help of minSup threshold

Description:

The pass through the first frame is primarily to determine frequent singletons

which will be used to prune transactions in subsequent frames. Whenever a

transaction arrives, it is parsed and tokenized to obtain singleton itemsets.

Once, all the singletons in a transaction are identified, they are looked up

against a hash table that maintains singletons observed so far. If a particular

singleton exists in the hash table then its support information is updated or else

a new entry corresponding to the previously unregistered singleton is created.

Once all the transactions from pass 1 are processed, a temporary list is

populated with the frequent singletons found in the pass; this list will be used for

transaction pruning in the next pass.

Routine: secondPass ()

Parameters:

• Let ‘minSup’ be the minimum support threshold,

• Let ‘frameSize’ be number of transactions per frame as determined by

the Chernoff bound,

• Let LA be the list of frequent singletons found across all previous passes

• Let LC be the list of frequent singletons found in the current pass

• Let LT be the list of singletons of interest in the current transaction

• Let H be a hash table contains the identity of frequent itemsets,

Method:

 LC =Φ

1. For index=0 to frameSize

a. Read the transaction from the data file,

b. LT= Φ

c. Parse and tokenize the read transaction to obtain singletons,

d. For all the singletons, repeat

i. If the singleton is already seen then update its support

information,

 40

ii. Else, create a node entry in the hash table H for the newly

obtained singleton

e. End for

f. // now get singletons belonging to the current transaction that

have been //found to be frequent in pass 1

g. LT= {set of singletons in current transaction} ∩ LA

h. Generate the powerset of LT

i. For every element of the powerset, repeat

i. If the element is already seen then update its support

information,

ii. Else, create a node entry in hash table H for the new

element,

j. LC = LC U LT

k. End for

l. // ensure that items that become frequent in the current pass are

picked up in // the next pass

m. LA = LA U LC

Description:

This pass is used to find out frequent itemsets to be used for Apriori-like

pruning. Steps 1-a to 1-e are similar to that of routine firstPass () which deal

with singleton maintenance. Once the first pass is done, all subsequent passes

through the data use the LA list to purge infrequent singletons from the current

transaction; in this way the pruned transaction contains only frequent singletons

seen so far. We do not lose any potential frequent items because even if an

item is flagged as being infrequent in the LA list it still has an opportunity to be

inserted into the LA list at the end of the pass if it does become frequent in the

current pass. This will ensure that such an item is picked up in the next pass.

We now describe a generic routine that is used to mine the stream from the 3rd

pass onwards.

Routine: mineData ()

Parameters:

• Let ‘minSup’ be minimum support threshold,

 41

• Let ‘frameSize’ be number of transactions per frame determined by

Chernoff bounds,

• Let LC be list of frequent 1 level items found in this pass

• Let LA be list of current frequent singletons found across all frames so far

• Let H be a hash table contains the identity of frequent itemsets,

Method:

1. Repeat while data file is not empty,

a. For index=0 to frameSize,

i. Read and parse the transaction to generate singletons,

ii. For every singleton,

1. If the singleton has already been seen then update

its support information,

2. Else, create a node entry in hash table H for the

newly obtained singleton

iii. End for

iv. LT = LT ∩ LA

b. Generate the powerset of LT

// The logic here is first identify frequent itemsets found in previous

pass, if an itemset is not frequent then it is not viable to generate

its superset since due to Apriori principle that future superset will

also be infrequent. //

i. For every element of powerset, repeat

1. Check if the element was marked as frequent in

previous pass,

a. If frequent then add it to a temporary list T,

b. Else, continue to the next element in

powerset

ii. End for,

iii. For all the elements in T, repeat

// In this step, we find out the common prefixed itemsets.

Such itemsets, when merged together will be prime

candidates for being frequent – itemsets AB, AC which

have already been identified as being frequent when

 42

merged gives ABC which is a prime candidate for being

frequent //

1. Retain only those elements that have common

prefixes

2. Add them to list “powersetElements”

iv. Goto step(iii) to generate supersets,

v. For all the elements, in powersetElements list, repeat

// This step deals with the node creation and maintenance

for the closed tree.//

1. If the element exists as node in the Tree, then

retrieve the node and update its support information

2. Else,

a. Check whether this node qualifies to be

added to the createNode list (refer to the

description below for explanation),

b. If node qualifies to be added, then check if

there exists superset ‘e’ of current node ‘f’. If

so, then add node ‘f’ with support =

support(e)+1,

LC = LC U LT

vi. End for

vii. Now, the createNode list contains only closed nodes to be

created with their support information, create entries in tree

for all the elements from the createNode list,

viii. This marks the end of the frame,

c. Prune the tree by deleting children of infrequent nodes, keep

infrequent nodes so as to give them chance to become frequent in

future frames,

d. LA = LA U LC

2. Traverse through the tree and determine Closed frequent itemsets (all

the nodes that fulfill the minSup threshold will qualify as CFIs),

3. Generate frequent itemsets from CFIs (as explained in section 3.4.5)

4. Output the list of frequent itemsets.

 43

Description:

This routine is the central focus of the proposed data stream mining approach.

The initial steps 1-a-i to 1-a-iii are similar to that of the routines given earlier for

passes 1 and 2. Similar to pass 2, after stripping off the infrequent items from

the transaction we generate a powerset (containing itemsets, rather than items),

so there is a major difference in powerset generation when compared to passes

1 and 2. In this pass, as in all passes, we make use of the Apriori pruning

principle. We use the frequent itemsets found in pass 2 to aid us in this step and

it works as follows. After obtaining frequent singletons, we generate itemsets of

size 2 from singletons. We then check for existence of any frequent itemset in

this size 2 itemset list; if there are any frequent itemsets found then we check

for common prefixes (there is no need to generate supersets of two or more

itemsets if they do not have any common prefixes). If we get any frequent

itemsets composed from common prefixes then all we have to do is to find

higher level itemsets from these common prefixed frequent itemsets. This is a

recursive procedure which is used to generate all higher level itemsets. Figure

3-6 further explains the use of the Apriori principle to optimize powerset

generation.

Fig. 3-6 Powerset Generation

Consider the example shown above where we have A, B, C as frequent

singletons; our powerset generation approach first generates their immediate

supersets AB, AC, and BC. Once they are generated, we determine the

itemsets to be used for higher level powerset generation (common prefixed

frequent itemsets). In the above example, assuming that AB and AC are

frequent itemsets (and given the fact that they have a common prefix A), they

will be used to generate the level 3 itemset that is ABC. In this way we avoid

creation of unnecessary and potentially infrequent powerset elements.

 44

Figure 3-7 shows that after the powerset is generated, we check every element

of the powerset against the hash table that is superimposed on prefix tree

structure.

Fig. 3-7 Hash table superimposed on Tree

If an itemset is already seen, then we update its support count or else we add it

to a temporary list which is responsible for batch creation of nodes at the end of

transaction. While adding an itemset to this list we perform one basic check: we

add an itemset to this list only if there does not exist, a superset of this node in

the temporary list having the same support. This test is to ensure that we do not

create nodes that are not closed. Once the node qualifies to be created, we

then check the starting support value that it needs to have; for this we look up

the hash table to find a superset, if we find such superset then the starting

support of this new node must be support of superset+1 (as explained in

algorithm). At the end of the transaction, the temporary list “createNode” has all

the nodes that must be created as a consequence of the current processed

transaction. Now we traverse through the createNode list and generate nodes

for all the entries present in that list. The tests that we just explained ensure that

at any moment of time our hash table which is superimposed on a prefix tree

contains only closed nodes (frequent as well as infrequent) at any moment of

time. These steps are repeated for all the transactions constituting frame

(marked by Chernoff bounds value). After the frame expiry, we update the lists

and hash tables to reflect latest frequent singletons and itemsets information

and prune the children of infrequent closed nodes from the tree; this keeps tree

nodes bound and ensures faster traversal through the tree.

 45

Because the Apriori principle is used in generating the powerset, we avoid

creation of children of infrequent itemsets similar to Moment (Chi, 2004). At the

end of the frame we also undertake pruning. In this phase we traverse through

the tree and identify the latest infrequent nodes. Once we have obtained these,

we purge their children since for these children nodes to be frequent or even

potentially frequent, their parents must become frequent first, therefore it is safe

to delete them. Due to these two mechanisms, namely, using Apriori principle

for powerset generation and pruning at the frame end, we keep the node

creation and maintenance operations under good control.

Since there is no definite end to data stream the above steps are carried out

until such time that the user requests for mined results. Whenever the user

requests for the output, we traverse through the tree and identify all the closed

frequent itemsets.

Consider the following worked example that illustrates the working of the

algorithm. The transactions T1, T2, T3, T4 and T5 are considered to arrive in

consecutive frames F1, F2, F3, F4 and F5. For the sake of simplicity we use a

frame size of 1, although in practice the frame size will be much higher than

this. Table 3-3 gives details of the five transactions.

Transaction ID Items

T1 A B D

T2 A B

T3 A

T4 B C

T5 A B C

Table 3-3: Transactional dataset C

The expansion of the tree occurs as shown in Figure 3-8.

 46

Fig. 3-8 Closed Tree construction

As explained previously, Pass 1 and 2 do not result in the creation of closed

tree, as their role is to determine frequent singletons and frequent itemsets to

be used for transaction pruning and powerset reduction. In pass 1, the

transaction T1 is treated purely as a collection of singletons and corresponding

entries in the hash table that maintains singletons are made. In pass 2,

transaction T2 is not needed to be pruned since it does not contain any

infrequent singleton, the algorithm then generates all the powerset elements (as

shown in the figure above), and these powerset elements are used in next pass

to restrict powerset generation. During the pass 3, the actual creation of the

closed tree commences. Transaction T3 that contains only A is responsible for

the creation of a closed node A. The next transaction T4 is purged to remove

item C since it has not been seen previously and therefore results only in

creation of another node B in the closed tree. The final transaction T5 contains

 47

all the singletons seen previously; therefore no transaction pruning is

performed. In the generation of the powerset, items A and B gives rise to higher

level elements such as AB, AC, and BC since A, B and C are nodes in the

closed tree. One point to note here is that, this will not lead to the creation of

powerset element ABC since none of its parents are yet frequent. In this way

we limit and optimize powerset generation. The output of pass 5 is mined output

with a minimum support threshold of 40%.

3.6 Summary

In this chapter, we have outlined and discussed research approaches and

objectives, along with the basic building blocks that constitute our proposed

approach for association rule mining in a data stream environment. We

provided an overall framework for our research approach as well as detailed

algorithms that describe our proposed data stream miner for generating

association rules. The following chapters will cover the empirical studies and

research findings.

 48

Chapter 4 Experimental Design

4.1 Introduction

This chapter will focus on describing the describing the experiments designed to

evaluate the performance of our proposed Data Stream Mining (DSM)

algorithm. DSM is compared against a contemporary frequent itemset mining

algorithm called the Frequent Pattern Data Miner or FPDM2 (Yu, 2004).

Although DSM was designed to mine closed frequent itemsets efficiently, we

have extended its capabilities to mine all frequent itemsets by incorporating a

routine that determines the frequent itemsets from the closed frequent itemsets

(as explained previously in Chapter 3).

The following sections will explain the experimental design along with metrics

that we used to compare the performance of DSM against that of FPDM2.

4.2 Datasets

The experimentation is carried out with the help of synthetic datasets that are

generated through the use of a dataset generator that is publically available

(Agrawal, 1994). Acquiring a real life dataset is quite difficult due to the fact that

many organizations refuse to part with their data because of the sensitivity and

confidentiality of the data. Therefore, artificial synthetic data generators such as

IBM are very commonly used by researchers to evaluate and benchmark their

algorithms’ performances.

At the same time synthetic dataset generators have the added advantage that

various different data characteristics can be captured which may not manifest

with certain real word datasets. Such characteristics are the degree of sparsity

of the data, variation in the length of the frequent itemsets, the number of items

in a transaction and finally the number of transactions itself. Variations in these

key data characteristics enable us to test the sensitivity of the algorithms on

each of these different conditions.

 49

We have generated three synthetic datasets with the help of IBM generator by

varying parameters such as average transaction length, average size of a

potential frequent itemset, number of unique itemsets in the generated dataset

and the number of transactions in the dataset. Table 4-1 describes the

aforementioned values for generated datasets.

Dataset

Average

Transaction

Size

Average

Frequent

Itemset size

Unique

Items

Number of

Transactions

T5I4 5 4 10K 500K

T10I4 10 4 10K 100K

T15I6 15 6 10K 100K

Table 4-1: Parameter Values

The above configurations for datasets are the most commonly used by Data

Stream mining researchers such as (Yu, 2004), (Chi, 2004) for benchmarking

their proposed algorithms.

4.3 Performance Metrics

The DSM and FPDM2 algorithms are evaluated against certain commonly used

performance metrics such as Accuracy (in terms of Recall and Precision),

Computational performance (in terms of time taken to process the dataset), and

Memory consumption in terms of number of nodes maintained. Recall and

precision can be defined as shown in Table 4-2 below (Provost, 1998).

Metrics Definition

Recall Recall indicates how many correct frequent itemsets were found.

Precision

Precision indicates how many of frequent itemsets found are

correct

Table 4-2: Performance Metrics

The above metrics are further elaborated as below,

 50

Fig. 4-1: Recall and Precision formulae

where “Frequent Itemsets in data” corresponds to all the frequent itemsets that

are actually present in the dataset (identified using Apriori implementation), and

“Retrieved frequent itemsets” are the itemsets reported by algorithms (DSM and

FPDM2) as frequent itemsets.

4.4 Support and Reliability

Minimum support is the threshold that determines whether an itemset is of any

interest to the end user. The reliability, on the other hand is the probability that

the estimated support of an itemset as measured over the frame structure

imposed by the Chernoff bound is within a given error margin, ∈. These two

parameters are the key factors that affect performance, given a dataset. Table

4-3 shows the support and reliability values used for the experimentation:

Parameter Values used

Support 0.1

 0.05

 0.01

Reliability 0.1

 0.05

 0.01

Table 4-3: Key Parameters used in Experimentation

The support range of [.01, 0.1] is typically used by many researchers in

association rule mining. Typically, low support values stress association mining

algorithms as they give rise to many candidate itemsets, thus requiring large

CPU and memory resources.

 51

The reliability measure expresses a probability that the estimate of support

produced by the Chernoff bound is in error. A value of r means that the true

support value is within an interval of [-∈,∈] with (1-r)*100% probability. The

three settings of the reliability parameter allow us to test our results at the 90%,

95% and 99% probability levels. Again, these settings have typically been used

in prior research before (Yu, 2004), (Cormode, 2007), (Chuang, 2009).

4.5 Experimental Plan

The experiments were conducted on a Windows XP PC equipped with a 1.7

GHz Intel Pentium IV processor, 1 GB of RAM memory and 40 GB of hard disk

space. The algorithms were implemented in the Java programming language.

The following sections describe how the different experiments were designed.

4.5.1 Experiment 1

This experiment was mainly designed to compare DSM and FPDM2 with

respect to the previously explained performance metrics. For this experiment,

we have used the T10I4 and T15I6 datasets which are relatively dense when

compared to T5I4 used in the previous experiment. The following steps were

executed in this experiment:

a) For the T10I4 dataset, vary the minimum support parameter while keeping

delta constant,

b) For theT10I4 dataset, vary the delta parameter while keeping minimum

support constant,

c) Repeat steps a and b for the T15I4 dataset

d) Measure the accuracy, computational performance and memory

consumption for each of the steps a), b) and c) above.

4.5.2 Experiment 2

This experiment was sketched to determine the effect of concept drift (Wang,

2003) on the performance of DSM and to compare it against FPDM2. Here, we

developed a routine that simulated the effect of concept drifts with the help of a

 52

Java construct called Random Generator. This random generator (on the basis

of an input parameter that governed the degree of concept drift) randomly

selects a subset of previously found frequent singletons whose effect will be

diminished by removing them from transactions to exhibit the effect of concept

drift. In this experiment, we have considered two scenarios, first, where the data

stream suffers from concept drift from the beginning, and second, where the

concept drift occurs after several frames of transactions are processed. The

simulation of concept drift can be understood from the following routine,

Routine: conceptDrift ()

Parameters:

• Let ‘cDrift’ be a flag indicating that user has requested to simulate effect

of concept drift,

• Let ‘cThreshold’ be the degree of concept drift

Method:

1. Read user input corresponding to concept drift and assign it to cDrift,

2. Check if cDrift= True, then

a. For all the transactions, do following,

i. Find out all the singletons present in this transaction,

1. For all the singletons, do following,

2. Call a random generator to obtain a random number

‘randNum’ corresponding to the current singleton,

3. If randNum ≥ cThreshold then do not remove this

singleton from the consideration,

4. Else, eliminate this singleton from the transaction to

be processed (to routine mineData()),

5. End If

6. End For

b. End for

3. Else, continue processing of all the transactions as explained in

mineData()

6. End If

 53

Description:

This routine is an ongoing check for all the transactions. When the user initiates

the algorithm, an input is received from the user indicating whether or not the

user intends to enable the concept drift simulation. If the user has requested to

activate the concept drift, then a small block of code is called before processing

every singleton of a transaction. This block of code generates a random number

that is checked against the concept drift threshold cThreshold. If the random

number generated qualifies (that is greater or equal to cThreshold), then this

singleton of the transaction can be processed, else, the current singleton is

removed from the transaction.

This block of code works in juxtaposition with the function that prunes the

transaction from the infrequent singletons. While purging an incoming

transaction of infrequent singletons, this routine ensures that only selected

frequent singletons are advanced for further processing. The selection process

targets frequent singletons at random.

We used the T10I4 dataset for this experiment and the following steps were

undertaken:

a) For DSM, we varied the degree of concept drift from 0% to 60% in steps of

20% while keeping the support and delta parameters constant,

b) Recorded recall and Precision for DSM,

c) Repeated steps a) and b) for FPDM2.

4.5.3 Experiment 3

The underlying intention of this experiment is to understand the effects of

sparsity on DSM performance. For this experiment, we have used the T5 I4

dataset which is sparse in nature (average size of transaction being 5 items per

transaction). Since the dataset is sparse we needed a significant number of

transactions to ensure the reliability of the mined results. The experiment

carried out the following:

 54

a) Varied the minimum support threshold given as input parameter while

keeping reliability (delta) constant

b) Measured the performance in terms of accuracy, computational performance

and memory consumption.

4.6 Summary

This chapter presented the reasoning and the structure of the empirical study

that we have used to evaluate the performance of the suggested algorithm. It

also presented a description of the datasets and the performance metrics with

which the assessment is to be carried out.

 55

Chapter 5 Research Findings

5.1 Introduction

The previous chapters have described the fundamental background behind

closed itemset mining, research objectives, overall architecture, and

experimental design. This chapter will focus on the experimental findings.

Both DSM and FPDM2 were tested on synthetic datasets and compared

against predefined performance metrics such as Accuracy, Computational

Performance, and Memory consumption.

5.2 Findings from Experiment 1

This experiment was mainly designed for comparing DSM and FPDM2 with

respect to performance. We first varied the minimum support threshold while

keeping the delta parameter constant. We recorded the accuracy, performance

and memory consumption for DSM and then repeated the procedure for

FPDM2. For this experiment, we have used T10I4 and T15I6 dense datasets

generated using the IBM data generator (IBM). The Recall and Precision were

calculated by comparing DSM and FPDM2 results against the Apriori

implementation (http://www.borgelt.net/apriori.html).

The Apriori implementation was run against data batched across a fixed number

of frames and presented as a single unit fixed size dataset to the Apriori

algorithm. It should be stressed that Apriori was only used for benchmarking

purposes for the Precision and Recall values. As mentioned earlier in the thesis

Apriori cannot be used in an actual data stream environment.

For the dataset T10I4, Table 5-1 gives the findings.

 56

 DSM FPDM2

 Recall Precision Recall Precision

Support Delta

0.1 0.1 100% 100% 100% 89%

0.05 0.1 100% 100% 100% 93%

0.01 0.1 100% 100% 100% 94%

Table 5-1: Accuracy with fixed Delta-Experiment 1-1

DSM and FPDM2 performed equally well on Recall for this experiment;

however, in terms of Precision, DSM outperformed FPDM2 (as shown in above

table). FPDM2 reported an increased false positive rate, reporting more

frequent nodes than what exists in reality. This is basically because FPDM2

periodically prunes its primary and secondary pool, removing all the support

information of the pruned itemsets. Thus when these itemsets are seen again,

their support information is incomplete and inaccurate, resulting in marking

infrequent nodes as frequent and vice versa (as seen in next experiment

results).

We then repeated the same procedure with varying delta and keeping the

minimum support threshold constant at 0.05. Here, DSM outperformed FPDM2

in terms of Recall as well as Precision,

 DSM FPDM2

 Recall Precision Recall Precision

Delta Support

0.1 0.05 100% 100% 100% 93%

0.05 0.05 93% 100% 80% 100%

0.01 0.05 100% 100% 80% 100%

Table 5-2: Accuracy with fixed Support- Experiment 1-2

As the delta threshold was lowered, FPDM2’s Recall suffered whereas DSM

continued to outperform FPDM2. In terms of Precision, initially FPDM2 had

poor Precision for the higher value of delta, but as the delta threshold was

lowered, it matched DSM’s Precision. The frame size is inversely proportional to

the delta value (as shown in section 3.4.2). As delta decreases, the frame size

 57

increases and the Chernoff estimate of support becomes more reliable, causing

a lesser number of frequent itemsets to be incorrectly deleted from FDPM2’s

secondary pool which keeps track of frequent itemsets over a period of time (as

opposed to the primary pool that keeps track of the frequent itemsets found in

current frame). This gives rise to an improvement in FDPM2’s Precision.

Next, we evaluated the memory and computational performances of DSM and

FPDM2. DSM continued to outperform FPDM2 on both these metrics.

Memory and Time with fixed Delta

0

1000

2000

3000

4000

Support

N
u

m
b

e
r

o
f

N
o

d
e

s

0
2000

4000
6000

8000
10000

12000
14000

16000
18000

T
im

e
 i

n
 m

S
e

c

DSM FPDM2 DSM Time FPDM Time

DSM 20 105 2692

FPDM2 57 156 3161

DSM Time 37 73 4382

FPDM Time 100 945 15728

0.1 0.05 0.01

Fig. 5-1 Memory and time with fixed delta-Experiment 1-1

 58

Memory and Time with fixed Support

0

50

100

150

200

Delta

N
u

m
b

e
r

o
f

N
o

d
e

s

0

20

40

60

80

100

120

140

160

T
im

e
 i

n
 m

S
e

c

DSM FPDM2 DSM Time FPDM Time

DSM 105 113 119

FPDM2 153 125 131

DSM Time 73 85 110

FPDM Time 95 148 130

0.1 0.05 0.01

Fig. 5-2 Memory and time with fixed support-Experiment 1-2

DSM computes the frequent itemsets only when the user requests for mined

results; until such time DSM continues to process and maintain closed frequent

itemsets. Since the number of closed frequent nodes is significantly lesser than

frequent nodes, maintaining and processing takes a lesser amount of time.

Therefore FPDM2 consumes more space and execution time for maintaining

and reporting frequent itemsets as compared to DSM which is based on closed

frequent itemset mining.

We next ran experiments on the T15I6 dataset, and the results were

significantly different. For constant delta and varying support, both DSM and

FPDM2 performed equally well on Recall and Precision; whereas for constant

support and varying delta, DSM outperformed FPDM2 in terms of Recall but

recorded similar Precision to FPDM2.

Tables 5-3 and 5-4 highlight the findings of this experimental setting,

 59

 DSM FPDM2

 Recall Precision Recall Precision

Support Delta

0.1 0.1 100% 100% 100% 100%

0.05 0.1 100% 100% 100% 100%

0.01 0.1 100% 100% 100% 100%

Table 5-3: Accuracy with fixed Delta-Experiment 1-3

 DSM FPDM2

 Recall Precision Recall Precision

Delta Support

0.1 0.05 100% 100% 100% 100%

0.05 0.05 93% 100% 89% 100%

0.01 0.05 100% 100% 81% 100%

Table 5-4: Accuracy with fixed Support-Experiment 1-4

The T15I6 dataset was significantly denser than T10I4, and therefore the loss of

support information that FPDM2 suffered in a less dense dataset was not as

influential, resulting in better Precision and Recall. In the case of fixed support,

the density of the dataset helped FPDM2 to result better recall than its Recall in

similar settings with T10I4 dataset.

DSM and FPDM2 were again tested against computational performance and

memory consumption for this dataset and results were similar to the results

obtained for the T10I4 dataset. DSM was marked as better in terms of number

of nodes created as well as average time taken to process a frame of

transactions as determined by the Chernoff Bound.

Figures 5-3 and 5-4 below report the execution time and number of nodes

created for this experiment,

 60

Memory and Time with fixed Delta

0

2000

4000

6000

8000

Support

N
u

m
b

e
r

o
f

N
o

d
e

s

0

500

1000

1500

2000

2500

T
im

e
 i

n
 m

S
e

c

DSM FPDM2 DSM Time FPDM Time

DSM 698 745 6390

FPDM2 768 860 6950

DSM Time 56 75 1266

FPDM Time 155 123 1957

0.1 0.05 0.01

Fig. 5-3 Memory and time with fixed delta-Experiment 1-3

Memory and Time with fixed Support

0

1000

2000

3000

4000

Delta

N
u

m
b

e
r

o
f

N
o

d
e

s

0

100

200

300

400

500

600

700

T
im

e
 i

n
 m

S
e

c

DSM FPDM2 DSM Time FPDM Time

DSM 745 2678 2421

FPDM2 860 2980 2541

DSM Time 75 337 430

FPDM Time 123 400 607

0.1 0.05 0.01

Fig. 5-4 Memory and time with fixed support-Experiment 1-4

As it is clear from the graph, DSM generates lesser nodes than FPDM2 and

finishes its frames significantly earlier than FPDM2. DSM has continued to

outperform FPDM2 in terms of computational time and space is mainly

because, DSM is based on the closed frequent itemset based approach,

 61

maintaining closed frequent nodes has proven to be much more efficient than

maintaining a huge collection of frequent nodes. Once DSM has mined closed

frequent itemsets, generation of frequent itemsets from CFIs (as explained

before) is a significantly easy, quick task and is carried out only once while

presenting output to the user. This saves a significant amount of memory and

CPU time. FPDM2 does not have this liberty and therefore suffered as

compared to DSM.

5.3 Findings from Experiment 2

Experiment 3 was carried out to test the effects of concept drift on accuracy of

DSM. To carry out this experiment, a small routine was developed which with

the help of Random generator (a Java construct). This routine randomly selects

whether to process a singleton from the transaction or not (as explained before

in experimental design). In this experiment, we have considered two settings,

one, where the data stream exhibits the effects of the concept drift from the

beginning (that is, we call the routine that deals with concept drift simulation

from pass 3 onwards), and second, where the concept drift begins to

demonstrate after a larger number (for this dataset, the drift was triggered after

50th frame) of passes of transactions are processed.

The findings of the first setting are as shown in Figure 5-5 and 5-6.

Recall with fixed Support

0%

20%

40%

60%

80%

100%

120%

DSM FPDM2

DSM 100% 87% 53% 40%

FPDM2 100% 53% 33% 13%

0% 20% 40% 60%

Fig. 5-5 Recall with fixed support-Experiment 2-1

 62

Precision with fixed Support

0%

20%

40%

60%

80%

100%

120%

DSM FPDM2

DSM 100% 100% 100% 100%

FPDM2 100% 100% 100% 100%

0% 20% 40% 60%

Fig. 5-6 Precision with fixed support-Experiment 2-2

As it is clear from above figures, FPDM2 severely underperformed DSM in

terms of Recall. At 20% of the concept drift, FPDM2 recorded a recall of 53%

whereas DSM registered 87% Recall. As we continued to increase the degree

of concept drift, FPDM2 continued to degrade its Recall steeply while DSM’s

Recall reduced more gradually. In terms of Precision, however, both DSM and

FPDM2 performed equally well, recording 100% precision on all levels of

concept drift indicating that all the presented itemsets were undoubtedly

frequent itemsets. The FPDM2 reported significantly lesser Recall because, due

to concept drift, a lesser number of the nodes obtained a chance to prove

themselves frequent and more of the nodes were pruned (since their support

was not large enough to qualify as being frequent) in FPDM2, resulting in a

sharp drop in Recall. The lowest recorded Recall was 13% for FPDM2 whereas

DSM delivered 40% Recall at 60% of concept drift. DSM’s performance was not

as affected as FPDM2 because DSM, instead of deleting the infrequent nodes,

only purges their descendants’ branch in the closed tree, thus allowing a

potentially frequent node to prove itself in future frames.

Both algorithms reported 100% Precision because the itemsets that were

reported as frequent itemsets were having high enough support to be

unaffected by the degree of concept drift.

 63

The outputs of second setting were better than those of first setting in the case

of Recall, Figures 5-7 and 5-8 report the outcomes of the second setting.

Recall with fixed Support

0%

20%

40%

60%

80%

100%

120%

DSM FPDM2

DSM 100% 100% 93% 87%

FPDM2 100% 80% 73% 60%

0% 20% 40% 60%

Fig. 5-7 Recall with fixed support-Experiment 2-3

Precision with fixed Support

0%

20%

40%

60%

80%

100%

120%

DSM FPDM2

DSM 100% 100% 100% 100%

FPDM2 100% 100% 100% 100%

0% 20% 40% 60%

Fig. 5-8 Precision with fixed support-Experiment 2-4

In the second setting, the effects of concept drift were exhibited after few frames

have been processed by both the algorithm. The dataset used was T10I4

having 100K transactions and the concept drift routine was called after

processing half of the transaction base, that is, after 50K transactions were

 64

processed. This setting recorded improved results in DSM primarily because,

since the concept drift began exhibiting its effect (that is when the routine

started randomly selecting set of previously seen frequent singletons and

removing them from the transaction), the algorithm had seen enough of the data

to build its baseline and keep on processing incrementally. At 20% of concept

drift DMS recorded 100% recall, the lowest recorded value for DSM in this

setting was 87% whereas in previous setting this value was 40%. FPDM2 as

well performed better than it had performed in the previous setting, since

FPDM2 also got a chance to observe the data stream for several frames, the

effect of future concept drift was not heavily detrimental, the highest and lowest

recall FPDM2 reported were 80% and 60% respectively (significantly better than

previous values of 53% and 13% respectively).

5.4 Findings from Experiment 3

The previous two experiments clearly established the superiority of DSM over

FDPM2. We were thus interested in assessing how DSM would perform on a

sparse dataset. The output of DSM was cross-checked against an Apriori

implementation provided at http://www.borgelt.net/apriori.html as in the previous

two experiments. Table 5-5 displays the result for the T5I4, a sparse dataset.

Support Delta Recall Precision

0.007 0.1 86% 100%

0.006 0.1 94% 100%

0.005 0.1 94% 98%

0.004 0.1 96% 99%

0.003 0.1 97% 100%

Table 5-5: Accuracy findings-Experiment 3

We t varied the support threshold values in a tight range from 0.007 to 0.003, as

shown in the Table 5-5. Support values above the upper threshold of 0.007

produced very few frequent itemsets. As the minimum support threshold was

lowered, Precision and Recall tended to improve. As transaction pruning is

done on the basis of historical information, higher support levels give rise to

more aggressive pruning of transactions, resulting in some frequent itemsets

 65

being pruned. This results in lower Recall values at the high end of the support

range.

Next, we traced DSM in terms of Memory consumption and Computational

performance; the findings are as shown in Table 5-6.

Support Delta Nodes Time (mSec)

0.007 0.1 479 25

0.006 0.1 651 61

0.005 0.1 1572 152

0.004 0.1 4372 747

0.003 0.1 16757 7587

Table 5-6: Performance findings-Experiment 3

The findings in terms of memory consumption and execution time were in line

with past research; as we lower the minimum support threshold, the number of

nodes created in the closed tree increased and so did the execution time for

mining. As in (Yu, 2004) and the experiment described above, the reduction in

the support threshold widened the perimeter of nodes that are considered in

future frames and resulted in lesser degree of pruning, thus giving rise to an

increase in the number of nodes. The increase in the number of nodes also

gave rise to an increase in execution time since more number of nodes had to

be maintained.

Following figure 5-9 details the rise in the number of nodes created and

corresponding increase in execution time,

 66

Execution Details

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.007 0.006 0.005 0.004 0.003

Support

T
im

e
 i

n
 m

S
e

c

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

N
o

d
e

s

Nodes Time Taken

Fig. 5-9 Execution details- Experiment 3

5.5 Summary

This chapter has presented the research findings and analysis of the

experimental outputs. We have used graphs and tables whenever appropriate

to explain the outputs in more detail.

All the experiments have proved that our proposed algorithm DSM has

outperformed FPDM2 (Yu, 2004) in terms of all the performance metrics during

all the experiments. DSM has also proved itself to be promising in dealing with

the phenomenon of concept drift which is quite often observed in real-world

data streams.

 67

Chapter 6 Future Work

Although this research has proposed a generic algorithm for mining closed

frequent itemsets from a high speed data stream, there is a great deal of scope

for further development of this algorithm.

One possible extension of this research would be an investigation of the

benefits of deferred updates. Deferring the updates means postponing the

updates to the support information until the expiry of the current frame. At the

expiry of the frame all updates are batched together and then applied as one

single operation, rather than updates being applied for each transaction. This

mechanism offers the opportunity of reducing CPU overhead by reducing the

number of update operations on the closed tree, which is the current

performance bottleneck in the DSM algorithm.

However, this deferred update mechanism poses a few challenges as well. One

such challenge is to avoid revisiting nodes to avoid redundant (and in some

cases spurious) updates. Another problem is to keep track of the deferred

support value that must be added to every node’s support count. These issues

must be handled as part of implementing the deferred update strategy. As a

part of future work, we will be addressing these issues and analyzing the effects

of deferring updates on the accuracy of the mined results.

Another area of the future research would be to estimate, rather than to

measure the support information of the itemsets (Laur, 2005). Estimating the

support rather than updating every itemset on its occurrence can be significantly

rewarding. Along with support estimation, a closure-property-check, similar to

(Jiang, 2006) (which uses Galois operator, a commonly used mathematical

function as a closure operator) to determine whether an itemset is likely to be

closed itemset or not can further increase gains. The future research would

therefore be scrutinizing this combination of the support estimation and a

closure-properly-check.

Future work will also explore possibilities to further optimize the powerset

generation that the algorithm has to perform while processing the input

 68

transactions. Despite the heuristics used to trim transactions and reduce the

size of the powerset generated, there will always be a low enough support

threshold that causes the number of frequent items in a transaction to be large.

This in turn will give rise to correspondingly larger powersets. It will thus be

profitable to look for more efficient ways to handle powerset creation by

exploiting previously seen information.

Yet another direction for future research is to exploit the concept of maximal

frequent itemset mining. Maximal itemset are an even more compact

representation of frequent itemsets then closed frequent itemsets. There has

been a great deal of research in Maximal frequent itemset mining (Gouda,

2001), (Yang, 2004), (Ao, 2007). Our future research will also try to look into the

opportunities and challenges that Maximal frequent itemset mining holds in a

data stream environment.

 69

Chapter 7 Conclusion

Data stream mining is one of the most intensely investigated and challenging

research domains in contemporary research in the data mining discipline as a

whole. The peculiarities of data streams render conventional mining schemes

inappropriate.

In this research, we presented an overview of a novel approach for mining the

closed itemsets from a data stream. We have implemented an efficient closed

prefix tree to store the intermediate support information of frequent itemsets.

Moreover, we have employed the Apriori principle to reduce unnecessary

powerset creation along with transaction pruning to further enhance transaction

processing. We developed an incremental closed itemset mining algorithm

based on the probabilistic guarantees of Chernoff bounds.

The Chernoff bound helps in purging unnecessary itemsets from the data

stream and keeps the memory requirements within reasonable bounds. We

compared our approach with the FPDM2 algorithm proposed by Yu (2004).

Although FPDM2 is a frequent itemset mining algorithm and DSM a closed

frequent itemset mining algorithm, a basic routine computing frequent itemsets

from closed frequent itemsets enabled us to assess the performance of both the

approaches on the uniform grounds.

Our experimentation showed that DSM not only outperformed FPDM2 in all the

experimental settings but also excelled during the test for the effects of concept

drift. The next step in the research would be advancing the investigation into the

future research areas highlighted in the previous chapter.

 70

References

 Agrawal, R., Srikant, R. (1994). Fast algorithms for mining association rules.
Paper presented at the 20th International Conference on Very Large
Data Bases (VLDB'94), Santiago, Chile.

Ao, F., Yan, Y., Huang, J., Huang, K. (2007). Mining maximal frequent itemsets
in data streams based on FP trees. Springer Verlag Berlin Heidelberg,
479-489.

Ben-David, S., Gehrke, J., Kifer, D. (2004). Detecting change in data streams.
Paper presented at the 30th VLDB Conference, Toronto, Canada.

Burrel, G., Morgan, G (1979). Sociological paradigms and organizational
analysis. London: Heinemann.

Celgar, A., Roddick, J. (2006). Association mining. ACM Computing Surveys,
38(2), 1-42.

Chang, J., Lee, W. (2003). Finding recent frequent itemsets adaptively over
online data streams. Paper presented at the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA.

Charikar, M., Chen, K., Colton, M. (2004). Finding frequent items in data
streams. Theoretical Computer Science, 1-11.

Cheung, D., Han, J., Vincent, T., Wong, C. (1996). Maintenance of discovered
association rules in large database: An incremental updating technique.
Paper presented at the IEEE International Conference on Data Mining,
New York, USA.

Chi, Y., Wang, H., Yu, P., Muntz, R. (2004). Moment: Maintaining closed
frequent itemsets over a stream sliding window. Paper presented at the
IEEE International Conference on Data Mining, Brighton, UK.

Chuang, K., Chen, H., Chen, M. (2009). Feature-preserved sampling over
streaming data. ACM Transactions on Knowledge Discovery from data,
2(4), 15-60.

Collis, J., Hussey, R. (2003). Business Research. Basingstoke, UK: Palgrave
Macmillan.

Cormode, G., Garofalakis, M. (2007). Sketching probabilistic data streams.
Paper presented at the SIGMOD'07.

Dash, N. (2005). Selection of the Research Paradigm and Methodology. Online
Research Methods Resource. Retrieved from
http://www.celt.mmu.ac.uk/researchmethods/Modules/Selection_of_meth
odology/index.php

Gaber, M., Zaslavsky, A., Krishnaswamy, S. (2005). Mining data streams: A
review. ACM SIGMOD Record, 34(2), 18-26.

Giannella, C., Han, J., Pei, J., Yan, X., Yu, P. (2003). Mining frequent patterns
in data stream at multiple time granularities. In Next Generation Data
Mining (pp. 105-124).

Gouda, K., Zaki, M. (2001). Efficiently mining maximal frequent itemsets. Paper
presented at the 2001 IEEE International Conference on Data Mining.

Huang, H., Wu, X., Relue, R. (2002). Association analysis with one scan of
databases. Paper presented at the IEEE International Conference on
Data Mining, Maebashi City, Japan.

 71

IBM. IBM data generator, from
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/dat
asets/syndata.html

Jiang, N., Gruenwald, L. (2006). CFI-stream: Mining closed frequent itemsets in
data streams. Paper presented at the KDD, Philadelphia, USA.

Jiang, N., Gruenwald, L. (2006). Research issues in data stream association
rule mining. ACM SIGMOD Record, 35(1), 14-19.

Laur, P., Nock, R., Symphor, J., Poncelet, P. (2005). On the estimation of
frequent itemsets for data streams: Theory and experiments. Paper
presented at the CIKM.

Lee, S., Cheung, D., Shan, M. (1997). Maintenance of discovered association
rules: When to update. Research Issues on Data Mining and Knowledge
Discovery, 1-8.

Li, L. (2003). A graph-based algorithm for frequent closed itemset mining. Paper
presented at the 2003 IEEE Systems and Information Engineering
Design Symposium, Charlottesville, VA.

Lin, C., Chiu, D., Wu, Y., Chen, A. (2005). Mining frequent itemsets from data
streams with a time-sensitive sliding window. Paper presented at the
SIAM International Conference on Data Mining, California, USA.

Manku, G., Motvani, R. (2002). Approximate frequency counts over data
streams. Paper presented at the 28th International Conference on Very
Large Data Bases, Hong Kong, China.

Moonesinghe, H., Fodeh, S., Tan, P. (2006). Frequent closed itemset mining
using prefix graphs with an efficient flow-based pruning strategy. Paper
presented at the 6th International Conference on Data Mining (ICDM'06),
HongKong, China.

Pang, T., Steinbach, M., Kumar, V. (2006). Introduction to Data Mining:
Addison-Wesley.

Provost, F., Fawcett, T., Kohavi, R. (1998). The case against accuracy
estimation for comparing induction algorithm. Paper presented at the
Fifteenth International Conference on Machine Learning, Madison,
Wisconsin USA.

Ravikumar, P., Lafferty, J. (2004). Variational chernoff bounds for graphical
models. Paper presented at the 20th conference on Uncertainty in
artificial intelligence AUAI '04 Edinburgh, Scotland.

Uno, T., Kiyomi, M., Arimura, H. (2004). Efficient mining algorithms for
frequent/closed/maximal itemsets. Paper presented at the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations.

Wang, H., Wei, F., Yu, P., Han, J. (2003). Mining concept-drifting data streams
using ensemble classifiers. Paper presented at the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA.

Wen, L. (2004). An efficient algorithm for mining frequent closed itemset. IEEE,
4296-4299.

Yang, G. (2004). The complexity of mining maximal frequent itemsets and
maximal frequent patterns. Paper presented at the KDD.

Yang, L., Sanver, M. (2004). Mining short association rules with one database
scan. Paper presented at the International Conference on Information
and Knowledge Engineering, Las Vegas, Nevada.

Yu, J., Chong, Z., Lu, H., Zhou, A. (2004). False positive or false negative:
Mining frequent itemsets from high speed transactional data streams.
Paper presented at the 30th VLDB Conference, Toronto, Canada.

 72

Zaki, M., Hsiao, C. (2002). Charm: An efficient algorithm for closed itemset
mining. Paper presented at the 2nd International Conference on Data
Mining, Arlington, USA.

Zaki, M., Gouda, K. (2001). Fast vertical mining using diffsets: Rensselaer
Polytechnic Institute

Zaki, M., Li, W., Ogihara, M. (1997). Evaluation of sampling for data mining of
association rules. IEEE, 42-50.

Zheng, Q., Xu, K., Ma, S. (2003). When to update the sequential patterns of
stream data. Paper presented at the Pacific-Asia Conference on
Knowledge Discovery and Data Mining Seoul, Korea.

