

Nasal Morphology and Blood Flow During Augmented Air Pressure Therapies

White, D.E¹, Al-Jumaily, A.M¹. Bartley, J². Hankin, R.K.S³

¹ Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand.
 ² Department of Surgery, University of Auckland, Auckland, New Zealand.
 ³ School of Computing and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.

Investigate and quantify any change in nasal geometry and blood flows induced by breathing at augmented pressures.

Participant Distribution

Table1: Distribution of Participant Details

Age	Gender	Ethnicity		
22	Male	Asian		
21	Male	Indian		
53	Female	European		
30	Male	European		
29	Male	Middle Eastern		
35	Female	Asian		
33	Female	South American		
26	Female	European		

Table 2: Distribution of Participant Breathing Pressure.

Pressure	Male Participant	Female Participant		
(cm WG)	Number	Number		
15	108	115		
12	107	109		
9	101	106		
6	104	118		

Measurement of Nasal Cycle Status

Table3: Distribution of Participant Nasal Airflow Details

	Pre-Test MVV (litres/min)		Post-Test MVV (litres/min)		Patent Nasal Passage	Change in Nasal Cycle
Participant						
	Right Nare	Left Nare	Right Nare	Left Nare		
101	not detected	10.3	not detected	12.6	Left	No
104	9.8	8.9	8.6	6.8	Right	No
106	11.4	10.5	11.1	Not detected	Right	No
107	4.6	8.0	6.3	6.7	Left	No
108	8.1	8.5	11.6	13.5	Left	No
109	6.9	5.7	7.8	7.1	Right	No
115	not detected	13.5	not detected	6.5	Left	No
118	9.5	7.4	8.2	7.7	Right	No

Change in Nasal Geometry

Cross-Sectional Area Cross-Sectional Perimeter Volume Surface Area

Mid-Nasal Air-conditioning Parameters

 \triangle male, \Box female, \diamond combined.

Overall Nasal Air-conditioning Parameters

 \triangle male, \Box female, \diamond combined.

Change in CSA

Distribution of nasal volume change.

Nasal Blood Flow - Arterial Spin Labelling

HRA

Centre for Advanced MRI Skyra HFS

ALH

AUT,108

ID: AUT108 * 29/03/1981 Study 1 3/11/2010 9:11:16 a.m. 69 IMA

SL 0.77999997138977 TE 12 TR 700 Comment: 1mm ax MPR ambient Thiskness: 110mm

SP L0.8 FoV 181*181 320 *320 Sag>Cor(-3.6)>Tra(-1.8) W: 506 C: 284

Male Ambient

Male 15 cmWG

Male Ambient

Male 6 cmWG

Using a single sample two t-test, where null equals a mean of zero, pressure significantly changes (p=0.01759) the congested airway volume but does not significantly change (p=0.452) patent airway volume. There was no significance between male/female data.

Aylmer test for count data pressure causes a significant change in blood volume (p=0.04762

Change in perfusion and volume. (A) Airway volume. (B) Patent airway inferior turbinate blood volume.

— patent airway – – congested airway \triangle male, \Box female.

Conclusions from MRI Investigation

- 1. Nasal Parameters of:
 - Cross- Sectional Area
 - Cross-Sectional Perimeter
 - Volume
 - Surface Area

are all within normal physiological limits over the range of augmented air-pressures considered.

- 2. Nasal blood flow through patent airway erectile tissue changes in response over the range of augmented breathing pressures considered.
- 3. Morphological nasal examination during augmented air-pressure breathing should consider the influence of patent and congested nasal erectile tissue active compliance characteristics.

Acknowledgements

Assoc. Prof. Brett Cowan and Dr Beau Pontré, both from the Centre for Advanced MRI (CAMRI), University of Auckland.

Fisher & Paykel Healthcare

Institute to Biomedical Technologies (IBTec)

Erectile Tissue Compliance

