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Abstract 

This paper tackles two questions related to software effort 
prediction. First, is it valuable to combine prediction 
techniques? Second, if so, how? Many commentators have 
suggested the use of more than one technique in order to 
support effort prediction, but to date there has been little 
or no empirical investigation to support this 
recommendation. Our analysis of effort data from a 
medical records information system reveals that there is 
little, or even negative, covariance between the accuracy 
of our three chosen prediction techniques, namely, expert 
judgment, least squares regression and case-based 
reasoning. This indicates that when one technique 
predicts poorly, one or both of the others tends to perform 
significantly better. This is a particularly striking result 
given the relative homogeneity of our data set. 
Consequently, searching for the single ‘‘best’’ technique, 
at least in this case, leads to a suboptimal prediction 
strategy. The challenge then becomes one of identifying a 
means of determining a priori which prediction technique 
to use. Unfortunately, despite using a range of techniques 
including rule induction, we were unable to identify any 
simple mechanism for doing so. Nevertheless, we believe 
this remains an important research goal. 
 
Keywords:  Software effort prediction, Empirical 
analysis, Multiple techniques 
 
1. INTRODUCTION 

Among the more prominent and enduring challenges 
faced by software project managers is that of accurate and 
consistent prediction. Managers are called on to predict a 
variety of factors, including defect density, schedule 
slippage, effort requirements, project costs, and the like. 
In order to assist managers in this task extensive research 
has sought to build, evaluate and recommend prediction 
techniques, to the extent that a very large number of 
techniques now exist. The question that must be answered 
by a project manager, then, is ‘‘Which technique, or 
techniques, should I use?’’  

There are a number of factors that can, and should, be 

considered in the selection of a prediction technique, and 
it is likely that trade-offs will need to be made in the 
process. Technique selection should be driven by both 
organizational need and organizational capability. In 
terms of need, the most common aim is to maximize 
accuracy in prediction; however, other issues may also 
need to be considered. For instance, perhaps a technique 
that produces slightly less accurate but generally more 
robust models would be preferred, particularly in cases 
where organisations do not have access to locally 
calibrated, well-behaved data sets. In terms of 
organizational capability, some modeling techniques are 
more complex than others, requiring significant expertise 
if they are to be used effectively. Whilst it is undoubtedly 
very positive that more sophisticated (and potentially 
more useful) techniques are being employed to build 
predictive models, this will only provide genuine benefit 
if the techniques are used appropriately.  

For the moment, however, our main focus is on 
optimizing the accuracy of our predictions––in other 
words, we wish to produce estimates that are as close as 
possible to the actual values, irrespective of the other 
factors that may be important in the wider organizational 
setting. Given the availability of a range of techniques, 
recent research has attempted to determine which 
approach might be considered as the ‘‘best’’, this 
determination being based most commonly on one or 
more accuracy measures e.g. Briand et al. (2000) and 
Gray and MacDonell (1999). Since there are many factors 
that can vary from one study to another it is not surprising 
that the outcomes of these studies do not always 
correspond, and thus we find that the best technique 
varies from one study to another (Jeffery et al., 2001). In 
light of this inconsistency in outcomes, some authors have 
suggested that reliance on a single prediction is 
unnecessarily risky. To mitigate such a risk, researchers 
have recommended that for each prediction needed 
managers should use at least two approaches (Boehm, 
1981; Kitchenham, 1996). One of the few studies to 
directly explore this area is (Kitchenham et al., 2002) 
based on prediction data for 145 projects from Computer 
Sciences Corporation. Here they had multiple estimates 
and used one of two strategies: either to take an average 
of the estimates or to select one that they decided they 
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would use (almost always an expert opinion estimate).  

There are two ways in which multiple predictions might 
be harnessed. The first relates to the application of 
multiple techniques to different groups of observations in 
a data set. Predictive accuracy has been shown to be 
significantly affected by characteristics of the underlying 
data set (Pickard et al., 1999; Shepperd and Kadoda, 
2001). Software engineering data is frequently 
heteroskedastic, and may contain a number of outlier 
observations. As a result we may see a prediction 
technique perform well on a subset of the data, but then 
perform very poorly on the remaining data points. This 
might be alleviated through the use of more than one 
technique across the data set. The second way in which 
multiple techniques could be utilized is in improving the 
accuracy of individual predictions. In order to predict a 
new value with greater confidence, more than one 
technique could be used to produce a range of estimated 
values. The project manager may then choose to adopt an 
upper and lower limit approach to the prediction or some 
(perhaps weighted) combination of the individual results 
could be used to produce a single adjusted value. Such an 
approach is based on the assumption that the larger the 
number of predictions made, the more likely that the 
predictions will converge to a reasonable value for the 
estimate.  

In both cases reliance on a single prediction technique 
could therefore be a sub-optimal strategy, thus there may 
well be some potential in the application of multiple 
techniques. To date, however, there appears to have been 
no empirical work undertaken to assess the worth of such 
an approach. In the absence of any such evidence, most 
research concludes by recommending a single prediction 
technique as the most appropriate. An alternative 
approach might therefore be to use a combination of 
prediction techniques over a single data set. This may 
enable us to find an optimal set of approaches that 
together provide classifications and/or predictions that are 
more accurate, consistent and credible for a greater 
number of observations. Furthermore, it may also be 
possible to develop a set of heuristics that indicate, for a 
given environment or other characteristics, when an 
estimator should use a particular technique.  

The remainder of the paper is organized as follows. The 
next section provides some background information on 
the three different prediction techniques that are used as 
the basis for our study. This is followed by a description 
of the case study itself. Then we describe our analysis and 
how we address the question of whether it is worth 
combining multiple techniques, followed by the question 
of how techniques could be combined. The paper 
concludes with discussion of the significance of our 
results and how the research could be progressed. 

 
2. PREDICTION TECHNIQUES 

Accurate and consistent prediction of resource 
requirements is a crucial component in the effective 
management of software projects. In spite of extensive 
research over the last 20 years the software community is 
still significantly challenged when it comes to effective 

resource prediction. On the whole, research efforts have 
focused on the development of techniques that are 
quantitatively based, in an effort to remove or reduce 
subjectivity in the prediction process. Examples of this 
work include the original parametric and regression-based 
models developed by Albrecht (1979), Putnam and 
Fitzsimmons (1979) and Boehm (1981). Of late, this work 
has been supplemented by the application of other data-
driven techniques such as neural networks, in a further 
attempt to produce more accurate predictions of resource 
requirements (Bode, 1998; Gray and MacDonell, 1999; 
Wittig and Finnie, 1997).  

The use of data-driven techniques does, however, have 
significant limitations. For instance it can lead to the 
development of models that may well be accurate for a 
given sample but that fail to generalize when conditions 
change. In an industry characterized by change, in 
technologies, processes, people and so on, this can prove 
to be a major constraint. Furthermore, whilst a model 
derived via a neural network may produce reasonably 
accurate predictions, it may be unacceptable to project 
managers because it is not sufficiently transparent to 
enable understanding of the predictive model in terms of 
how a particular prediction value is reached. As a result, 
in recent years we have observed the resurgence of 
modeling techniques that emphasize transparency and 
explanation. For example, expert judgment has become 
more acceptable as a genuine (albeit informal) modeling 
technique. Approaches that attempt to incorporate aspects 
of the philosophy underlying expert judgment have also 
gained prominence in recent studies––this includes 
techniques based on analogy and case-based reasoning, 
and techniques that explicitly build uncertainty into the 
prediction process (Mukhopadhyay et al., 1992; Shepperd 
and Schofield, 1997).  

In this study we have chosen to use a representative 
selection of three modeling techniques to investigate 
whether techniques are indeed complementary––where 
one performs poorly, does another perform well? The 
three techniques chosen are expert judgment, least-
squares linear regression (LSR) and case-based reasoning 
(CBR) via the ANGEL software tool (Shepperd and 
Schofield, 1997). 

2.1 Expert judgment  

As the name implies, expert judgment is the informal 
process whereby one or more informed individuals 
provide their own experience-based predictions. In spite 
of the existence of many other more formal or semiformal 
alternatives there remains strong evidence of the 
continued use of expert judgment in project management 
(Heemstra, 1992; Host and Wohlin, 1998; Hughes, 1996) 
and there is little suggestion that it will be entirely 
superseded by other approaches. However, there is also 
evidence of bias in such expert estimation (DeMarco, 
1982; Gray et al., 1999). Accepting these two conditions 
leads us to suggest that we may be more successful in 
prediction and project management if, rather than 
attempting to replace expert judgment, we instead work 
with it by considering where expert judgment performs 



 

 

less well and building alternative models in order to 
supplement personal expertise. 

2.2. Least-squares linear regression  

Linear regression attempts to find a straight-line 
relationship between one or more predictor parameters 
and a dependent variable, minimizing the square of the 
errors across the range of observations in the data set. 
Some researchers have advocated building simple local 
models, e.g. Kok et al. (1990), using this type of 
approach. The philosophy is essentially one of solving 
local prediction problems before attempting to construct 
universal models. The resulting prediction systems take 
the form:  

Ŷ = β0 + β1X1, ..., βnXn  (1) 

where
 Ŷ is the estimated value and X1,..., Xn are 

independent variables, for example number of files or 
interfaces, that the estimator has found to significantly 
contribute to the prediction of effort. A disadvantage with 
LSR is its vulnerability to extreme outlier values although 
robust regression techniques, that are less sensitive to 
such problems, have been used successfully, e.g. Briand 
et al. (2000). Another potential problem is the impact of 
collinearity––the tendency of independent variables to be 
strongly correlated with one another–– upon the stability 
of a regression type prediction system. 

2.3. Case-based reasoning  

CBR, otherwise known as estimation by analogy, 
attempts to predict by finding similar cases to the target 
project. Generally, similarity is measured as Euclidean 
distance in p-dimensional feature space, where each case 
is characterized by p features such as the number of 
interfaces or type of programming language. Having 
found similar projects with known effort values, these can 
then be utilised to predict effort for the target project. A 
number of researchers have used this type of approach 
with generally quite encouraging results, for example, 
Finnie et al. (1997), Prietula et al. (1996) and Shepperd et 
al. (1996). For a fuller discussion of different distance 
measures and adaptation strategies, see Kolodner (1993). 
CBR contrasts substantially with LSR in that it is more 
robust to problems of distribution and seeks to cluster 
observations rather than interpolate or extrapolate. 
 
3. THE CASE STUDY 

The empirical analysis undertaken in this study centres on 
a set of measures taken from modules in a single medical 
records database system, built and implemented over a 
period of five months1

                                                           
1 Readers wishing to obtain a copy of the data set should please contact 
either of the authors. 

. 
 
There were 77 observations in the 

data set, each representing a module built to implement 
data entry/edit or reporting functionality. For each module 
we had 26 independent variables describing the data 
model (for example, the number of entities and the 
number and type of different entity relationships), the 
number and types of transaction to be processed and the 
number and types of different screens that were required. 

All this data was available from the module specification 
and so could legitimately be used as input to a prediction 
system. For each module we also had the project 
manager’s estimate of effort and the actual effort in 
person hours.  

The aim of the case study was to compare different 
prediction techniques and consider how they might 
usefully be combined. The three techniques were chosen 
on the grounds of contrasting approach and frequency of 
use either by practitioners or within the research 
community. In order to consider the predictive capability 
of each technique we divided the dataset in the ratio of 
2:1 into a training set and validation set. Essentially this is 
the situation where one can imagine that 51 modules have 
been completed and 26 are outstanding. Since all the 
modules comprise a single system there was no 
meaningful ordering information so the division of the 
dataset was done randomly. From other work (Shepperd 
and Kadoda, 2001) we have found that one-off sampling 
can lead to misleading results so we repeated the 
sampling process in order to increase our confidence in 
the results. The training sets were labelled TS1 and TS2.  

Since we were more concerned to explore combining 
techniques than identifying the best technique we decided 
to use a straightforward approach to both LSR and CBR. 
For the LSR we considered the cross correlations between 
the collected variables. From this it was evident that there 
was considerable inter-item correlation, with the 
underlying dimension corresponding to data model size.  

We also observed the strongest relationship was between 
the number of attributes in the data model (ATTRIBS) 
and effort (ACTHRS) as revealed by Fig. 1. These 
patterns were quite stable between the two training sets. A 
stepwise procedure offered little additional explanatory 
power and may have led to potential problems due to 
collinearity, consequently we used two very simple, and 
similar, regression equations.  

Effort = 1.147 (ATTRIBS)  (2) 

Effort = 1.160 (ATTRIBS)  (3) 

Note that Eq. (2) was derived from TS1 and Eq. (3) from 
TS2. Both intercepts were small, positive and not 
statistically significant and were therefore dropped from 
the equations.  

When using CBR there are a number of decisions that 
must be made, e.g. the number of analogies to use, which 
distance measure to employ and whether to use a subset 
of all available features. Unfortunately, the answers to 
such questions are largely heuristically based since no 
general theory exists. As with LSR we adopted a fairly 
simplistic––and from a practitioner perspective realistic––
approach. We decided to use three analogies as there is 
some evidence that increasing the number of analogies 
with the size of the case base is an effective strategy 
(Kadoda et al., 2000). We also decided to use the entire 
feature set even though there is evidence to suggest this is 
less than optimal. The reason for this decision is that there 
are no known efficient algorithms to solve this problem 
and our dataset comprised 26 features, so a brute force 



 

 

approach, as implemented in ANGEL, would take an 
inordinate amount of time.  

 

 
Fig. 1. Scatter plot of attributes against effort. 

 
4. RESULTS  

First we consider the errors that arise from each of the 
three prediction techniques (expert judgment, LSR and 
CBR). Recall that we repeated the sampling procedure so 
that we have two training sets (TS1 and TS2) with 51 
cases randomly sampled from the data set leaving 
validation sets of 26 modules in each case.  

 
Table 1. Absolute error by technique for TS1 (panel A) 

and TS2 (panel B) 

 

 
Table 2. Frequencies of technique performing best 

 
Table 1 (panels A and B) shows the relative accuracies of 

the three techniques using absolute2
 
residuals in person 

hours––our preferred indicator since it is unbiased––and 
MMRE since it is easier to compare across different 
validation sets. In this case we observe no conflict3

Fig. 2a–c provides an illustration of the different 
behaviors of each prediction technique. Each diagram 

 

between the rankings for either training set, with LSR to 
be preferred to CBR which in turn is to be preferred to the 
expert. The righthandmost column denotes the tendency 
for bias. All three techniques tend to under-estimate, CBR 
exhibiting the fewest problems. Expert judgment 
performs particularly poorly in this regard. Thus a fairly 
straightforward analysis would point to the use of LSR as 
the preferred prediction technique.  

Table 2 shows the frequencies of which technique is best, 
where best is defined as the technique with the minimum 
absolute residual for a particular module. This again 
suggests––in line with the sums of absolute residuals 
(Table 1 (panels A and B))––that LSR is the most 
effective technique and expert judgment the least 
accurate. Note, however, that pursuing a single-technique 
strategy (in this case using only LSR) would result in 
using a sub-optimal technique more than 50% of the time 
(31 out of 52 predictions). In fact careful examination of 
the prediction errors from the three techniques shows 
quite a marked tendency for the techniques to behave 
independently.  

                                                           
2 We use absolute values since for the purposes of this analysis we are 
indifferent to under and over-estimates. 
3 Elsewhere we discuss some of the problems of different accuracy 
indicators and how to address potential conflicts when different 
indicators suggest different rankings for the same data set (Shepperd et 
al., 2000). 



 

 

shows the distribution of errors, as absolute percentages 
for ease of viewing. Here the bold case indicates the same 
module for all three histograms and shows how the worst 
error from expert judgment has a corresponding less bad 
prediction from LSR and an even better prediction using 
CBR. Note also the tendency of each technique towards a 
bimodal distribution indicating some dichotomisation 
between predicting adequately and quite poorly.  

 
Fig. 2. Histogram of % prediction errors for (a) the 

expert, (b) LSR and (c) CBR. 

Table 3 shows the covariance between the absolute errors 
where the covariance is a measure of association, 
however, unlike correlation covariance is not bounded by 
-1and +1. Pairs of values are shown for training sets TS1 
and TS2; however, there is little difference in behavior 

between the two sets of predictions arising from the two 
different training sets. The generally low values denote 
little relationship between errors from different 
techniques for the same module. This is an interesting and 
important finding since it indicates that just because one 
technique predicts badly it does not necessarily follow 
that the other techniques will be equally poor. This 
suggests that there is potential for improving upon the 
strategy of merely selecting the best technique.  

Put differently, if we could vary techniques and had a 
means of knowing a priori which would perform best, 
what scope is there for improving our prediction process? 
So our second research question becomes can we do 
better than just LSR? Unfortunately we were unable to 
find any simple statistical patterns to try and predict 
situations where LSR performs poorly and one or both 
other techniques do well.  

We therefore decided to explore the use of rule induction 
to try to learn a decision tree as to which technique to use 
in which circumstances. Our approach was to train the 
rule induction (RI) algorithm C5.0 on each training set to 
see if we could generate trees that were able to predict 
which technique would have the smallest error for the 
validation sets. To prevent over adaptation––a potential 
problem given the relatively small size of the training 
sets––we allocated the data to one of five bins.  

 
Table 3. Covariance between absolute errors from 

prediction techniques 

 

Table 4. Absolute error by technique for TS1 (panel A) 
and TS2 (panel B) 

Table 4 (panels A and B) summarize the results for each 
training set, showing absolute errors from LSR (our 
baseline single technique), using a simple unweighted 
average of all three techniques, applying the rule tree to 
select a technique and the theoretical optimum if we could 
always correctly pick the best technique. For both training 
sets we see that the theoretical optimum––assuming 
perfect knowledge––is significantly better than the single 
best technique, LSR. Unfortunately, the picture is more 
confused between the other two approaches, and there is 
no strong support for using RI to determine which 
technique should be used instead of LSR or even the 



 

 

average of LSR, CBR and expert judgment. We can only 
conclude that the factors that make CBR relatively more 
effective are to do with the absence of a good relationship 
between the data in the data set and effort leading to poor 
LSR performance. In other words, CBR might be better 
viewed as a default technique when LSR is unable to do 
well. Our difficulty is that searching for the absence of 
something is rather more problematic than its existence, 
which we believe partly explains our difficulties in 
finding objective rules for determining which prediction 
technique to utilize. So the problem is the data set––
which is somewhat orientated towards characterizing the 
data model––and the lesson is that a richer set of 
attributes is likely to have been more helpful. 

 

5. DISCUSSION  

In this paper we have considered two questions. Firstly, is 
there any potential benefit in following the advice of a 
number of prediction experts indicating that we should 
use more than one technique? Secondly, if there is 
potential benefit, how can this be exploited at the time of 
prediction as opposed to after the event?  

Our analysis suggests even for the relatively 
homogeneous data set under study, where all modules are 
subparts of the same project, the three different prediction 
techniques showed a marked independence. In other 
words, just because one technique fares badly for a given 
prediction this does not imply that the others will be 
equally ineffective. This view was confirmed by 
examining the covariance between the errors from each 
technique. We found very little or even negative 
covariance. We also found that although LSR was overall 
the most accurate technique, this was not a very strong 
result. Simply using the best technique, that is LSR, 
would result in using a sub-optimal technique on 31 of 52 
occasions or the majority of the time. So therefore we can 
conclude that there is indeed potential benefit in using 
more than one technique within our data set.  

Factors that will influence how generally this finding 
might apply include the diversity of the different 
prediction techniques. We intentionally selected 
contrasting approaches. It is less obvious, however, that 
using a number of closely related flavors of regression 
analysis will lead to such wide variation in the prediction 
accuracy of the various techniques. Without this relative 
variation there is of course little merit in using multiple 
techniques. Another factor is whether one technique 
dominates the others. In our data set this did not appear to 
be the case. Other studies, for example Mair et al. (2000) 
using the Desharnais (1989) data set, have likewise failed 
to find a dominant technique, so we conclude that this is 
not that an unusual circumstance.  

Therefore, our advice to estimators is initially to establish 
whether a dominant prediction technique can be found. If 
so, there is little purpose in trying to combine more than 
one technique. If no dominant technique can be found, 
our recommendation is to employ as diverse a set of 
techniques as possible. Clearly LSR differs substantially 
from CBR since LSR uses interpolation and 
extrapolation, whilst CBR works more by clustering. 

Expert judgment differs in that it has access to a wider 
source of data than that necessarily captured in the data 
set. Another contrasting possibility, and not one that we 
have explored in this paper, would be to use fuzzy rules 
(Gray and MacDonell, 1997).  

Turning to our second question, it is all very well 
suggesting that multiple techniques can give more 
accurate results in theory but one is still left with the 
question, how. Unfortunately, our statistical analysis was 
unable to reveal any very clear patterns as to which 
conditions favored which technique, e.g. for large 
functions use expert judgment. Our next approach was to 
use a rule induction algorithm to learn rules from the 
training sets. The rules took the form of decision trees 
where the leaf nodes were the different prediction 
techniques. We then evaluated the rules on the two 
validation sets. Again our results were disappointing and 
although it could be argued that it is hard to show 
significance when there are only 26 cases in the validation 
set, there was no real evidence that this approach offered 
any real benefit. Also, the trees differed considerably 
between the two training sets, which did not increase our 
sense of confidence in their usefulness. Part of the 
problem would seem to be that there are many external 
factors that influence the effort to implement a function, 
so our search for an automated procedure to determine 
which technique to use is somewhat inhibited. Ideally the 
next step would have been to have sought input from the 
project manager and developers, particularly regarding 
those cases where either CBR or expert judgment had 
performed significantly better than the best technique, 
namely LSR. Unfortunately this was not possible since 
the data had been collected in 1996 and we no longer had 
access to the relevant staff. However, we note that this is 
consistent with the CSC data (Kitchenham et al., 2002) 
where they found that there was little difference in 
accuracy between estimates based on expert opinion and 
estimates based on averages (indeed, if anything the 
simple expert opinion estimates were marginally, but not 
significantly better). Another interesting implication of 
the CSC work is that in many cases the estimators were 
reasonably sure of which was the best estimate, that is, 
they correctly chose the most accurate one. Consequently, 
even if an automated RI technique does not produce 
useful results, expert opinion might.  

So, in conclusion, we have shown that the advice to use 
more than one effort prediction technique has some basis, 
and for our data set there were substantial potential 
benefits from using the three techniques of expert 
judgment, LSR and CBR. We were unable, however, to 
find a reliable means of knowing a priori which technique 
to use, so this must remain an open research question. 
Nevertheless, it is our view that this is an important 
question since it would be a means of unlocking 
considerable improvements in terms of prediction 
accuracy. 
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