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Abstract: Problem statement: When analyzing random variables it is useful to measure the degree of 
their monotone dependence or compare pairs of random variables with respect to their monotonicity. 
Existing coefficients measure general or linear dependence of random variables. Developing a measure 
of monotonicity is useful for practical applications as well as for general theory, since monotonicity is 
an important type of dependence. Approach: Existing measures of dependence are briefly reviewed. 
The Reimann coefficient is generalized to arbitrary random variables with finite variances. Results: 
The article describes criteria for monotone dependence of two random variables and introduces a 
measure of this dependence-monotonicity coefficient. The advantages of this coefficient are shown in 
comparison with other global measures of dependence. It is shown that the monotonicity coefficient 
satisfies natural conditions for a monotonicity measure and that it has properties similar to the 
properties of the Pearson correlation; in particular, it equals 1 (-1) if and only if the pair X, Y is 
comonotonic (counter-monotonic). The monotonicity coefficient is calculated for some bivariate 
distributions and the sample version of the coefficient is defined. Conclusion/Recommendations: The 
monotonicity coefficient should be used to compare pairs of random variables (such as returns from 
financial assets) with respect to their degree of monotone dependence. In the problems where the 
monotone relation of two variables has a random noise, the monotonicity coefficient can be used to 
estimate variance and other central moments of the noise. By calculating the sample version of the 
coefficient one will quickly find pairs of monotone dependent variables in a big dataset.  
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INTRODUCTION 
 
 Dependence of random variables is studied and 
estimated in various applications (see, for example, 
Tularam et al., 2010). Two most important types of 
dependence are linear and monotone dependence. 
Other types include positive and negative quadrant 
dependence (see Kimeldorf and Sampson, 1987). 
 Random variables X and Y are called Positively 
Quadrant Dependent (PQD) if for any  x, y ∈R,  
FX,Y (x, y)     ≥≥≥≥ FX (x) ⋅ FY (y).   
 “Negative Quadrant Dependence (NQD) is defined 
by reversing the concept of PQD” (Kimeldorf and 
Sampson, 1987).  
 Suppose H1 and H2 are the joint distribution 
functions of <X1, Y1> and <X2, Y2>, respectively, with 
the same marginals; then <X1, Y1> is called more PQD 
than <X2, Y2> if for any x, y∈ R, H1(x, y) ≥≥≥≥ H2(x, y). 

 Kimeldorf and Sampson (1978) introduced the 
concept of monotone dependence as follows: two 
continuous random variables X and Y are called 
monotone dependent if there exists a monotone 
function g, in which Y = g (X) with probability 1.  
 Global measures of dependence of two random 
variables include the Pearson correlation ρ, the 
coefficients of Spearman, Kendall, Schweizer and 
Wolff and others (see, for example, Scarsini, 1984; 
Schweizer and Wolff, 1981) 
 Kimeldorf and Sampson (1978) introduced 
monotone correlation ρ* and showed that if X and Y are 
monotone dependent, then ρ* (X, Y) = 1; but the 
converse is false. Also ρ*  does not distinguish between 
the increasing and decreasing types of monotonicity.  
 The Spearman, Kendall and Schweizer-Wolff 
coefficients can be used to measure monotone 
dependence but they are more appropriate for ordinal 
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variables rather than continuous variables, since they 
depend only on the ranks of the observations. 
 Schweizer and Wolff (1981) used copulas and 
metrics to generate several nonparametric measures of 
dependence. Copulas are a useful technique developed 
earlier for Pearson, Spearman and Kendall correlations. 
 Reimann (1992) introduced a measure λ** for 
PQD random variables X and Y. In this article it is 
generalized to some random variables X and Y with 
finite variances; it is shown to measure monotonicity. 
 

MONOTONICITY CONDITIONS 
 
 In this article we will consider only non-degenerate 
random variables (a degenerate random variable is 
constant almost surely).  
 As usual, for a random variable X with 
distribution function FX, the quantile function 1

XF−  is 

defined by: 
 
  1

XF−  (u) = inf {x∈R:   FX (x) ≥ u},  u∈[0, 1],   

 
with inf ∅ = +∞ by convention. 
 The quantile function 1

XF −  is non-decreasing and left-

continuous. Other simple properties of the quantile 
function are listed in the following lemma. 
 
Lemma 1:  
 
1) For any u∈[0, 1], x∈R: 1

XF − (u) ≤ x ⇔ u ≤ FX (x) 

1. 2) 1
YF−

+α  (u) = 1

Y
F − (u) + α for all u∈(0, 1) 

2) If β > 0, then 1
YF−

β (u) = β 1

Y
F− (u)  for all u∈(0, 1) 

3) If β < 0, then 1
YF−

β (u) = β 1

Y
F− (1-u) for all u∈(0, 

1), except a countable or finite set of points  
 
 The concepts of comonotonicity and counter-
monotonicity were studied by Bauerle and Muller 
(1998); Denuit and Dhaene (2003); Dhaene et al. 
(2002); Dempster (2002); Rachev (2003). 
Comonotonicity of a pair of random variables X and Y 
means their monotone increasing dependence, i.e., 
their values change in the same direction. Counter-
monotonicity of the pair of X and Y means their 
monotone decreasing dependence, i.e., their values 
change in opposite directions. Dhaene et al. (2002) 
give a mathematically accurate definition of 
comonotonicity for n random variables, which we 
reproduce here for n = 2. 
 1) A set A  ⊆ R2 is called comonotonic if for any of 
its elements <x1, y1> and <x2, y2>: either (x1 ≤ x2 and y1 

≤ y2) or (x1 ≥ x2 and y1 ≥ y2) holds. 

 2) A pair <X, Y > of random variables is said to be 
comonotonic if it has a comonotonic support.  
 A counter-monotonic pair <X, Y > is defined by 
changing the second row in 1) to:  
either (x1 ≤ x2 and y1 ≥ y2) or (x1 ≥ x2 and y1 ≤ y2) holds.  
 Three criteria for comonotonicity were proven in 
(Dhaene et al., 2002). In case n = 2 they have the 
following form. 
 
Theorem 1: A pair <X, Y > of random variables is 
comonotonic if and only if one of the following 
equivalent conditions holds: 
 
(1) (∀x, y∈R) [FX, Y (x, y) = min {FX (x), FY (y)}] 
(2) For U ~ Uniform (0, 1), <X, Y > =d < 1

XF −  (U), 1
YF−  

(U)> 
(3) There exist a random variable Z and non-

decreasing functions g, h, such that  
                                                                                 

<X, Y > =d < g (Z), h (Z) > 
 
 Here FX, Y denotes the joint distribution function of  
 
 X, Y and =d denotes equality in distribution. A 

similar theorem for counter-monotonicity follows. 
 
Theorem 2: The pair <X, Y > is counter-monotonic 
if and only if one of the following equivalent 
conditions holds: 
                                                                                 
(4) (∀x, y∈R)[FX,Y (x, y) = max{FX(x) + FY(y) −1, 0}] 
(5) For U ~ Uniform (0, 1)  
                                                                                 

<X, Y > = d < 
1

XF − (U), 1
YF− (1−U) > 

                                                                                 
(6) There exist a random variable Z, a non-decreasing 

function g and a non-increasing function h, such 
that: 

 
<X, Y > =d < g (Z), h (Z) > 

 
 In the following theorem we prove other criteria 
for comonotonicity and counter-monotonicity. We 
assume that the random variables X and Y are defined 
on the same probability space < Ω, ∑, P >, where ∑ is 
the collection of all events in this space. 
 
Theorem 3: 
 
1) The pair <X, Y > is comonotonic if and only if 

there exists B∈∑, such that P (B) = 1 and  
(7) (∀ω1, ω2 ∈B) [X (ω1) < X (ω2) ⇒ Y (ω1) ≤ Y (ω2)] 
2) The pair <X, Y > is counter-monotonic if and only 

if there exists B∈∑, such that P (B) = 1 and  



J. Math. & Stat., 8 (2): 221-228, 2012 
 

223 

(8) (∀ω1, ω2 ∈B) [X (ω1) < X (ω2) ⇒ Y (ω1) ≥ Y (ω2)] 
 
Proof: 
1) ⇒ Suppose <X, Y > is comonotonic. Then it has a 

comonotonic support A. Denote:  
 

B = {ω∈ Ω: < X (ω), Y (ω)>∈ A} 
 
 Consider ω1, ω2 ∈B with X (ω1) < X (ω2). This 
implies Y (ω1)≤ Y (ω2), since both pairs  
< X (ω1), Y (ω1) > and < X (ω2), Y (ω2) > belong to A.  
 ⇐ Suppose there exists B∈∑ of probability 1, such 
that the condition (7) holds. Denote: 
  

A = {< X ( ω), Y (ω)>: ω∈ B} 
 
 Then P (< X, Y > ∈A) = P (B) = 1, so A is a 
support of < X, Y >.  
 Suppose <x1, y1> ∈A and <x2, y2> ∈A. Then for 
some ω1, ω2 ∈B, x1 = X (ω1), y1 = Y (ω1), x2 = X (ω2) 
and  y2 = Y (ω2). By (7),  x1 < x2 implies  y1 ≤ y2 and  x1 
> x2 implies y1 ≥ y2. Hence A is comonotonic. 
2) <X, Y > is counter-monotonic if and only if <X, 

−Y> is comonotonic. Hence part 2) of the Theorem 
follows from part 1) 

 
Note: Clearly X and Y can be interchanged with each 
of the conditions (7) and (8).  
 Sometimes the condition (1) in Theorem 1 is taken 
as the definition for comonotonicity and the condition 
(4) in Theorem 2 for counter-monotonicity. The 
criteria in Theorem 3 are more suitable for the 
definitions of comonotonicity and counter-
monotonicity, since they reflect their meaning and 
are similar to the definitions of increasing and 
decreasing functions.  
 In the case of continuous marginals FX, FY, the 
second inequality in the formulas (7) and (8) can be 
made more strict. Also in the following two theorems 
the conditions (2), (3), (5) and (6) are made stronger 
(the proofs follow from Theorem 3). 
 
Theorem 4: Suppose the marginal distribution 
functions FX and FY are continuous. The pair <X, Y > is 
comonotonic if and only if one of the following 
equivalent conditions holds: 
 
• ( )( )XFFY X

1
Y
−=  with probability 1. 

• There is a non-decreasing function g such that  
Y = g (X) with probability 1.      

 
Theorem 5: Suppose the marginal distribution 
functions FX and FY are continuous. The pair <X, Y > 

is counter-monotonic if and only if one of the 
following equivalent conditions holds: 
 

• Y = 1
YF− [1 − FX(X)] with probability 1 

• There is a non-increasing function h such that  
Y = h (X) with probability 1 

 
 According to Theorems 4 and 5, in the case of 
continuous marginals, comonotonicity (counter-
monotonicity) is equivalent to monotone increasing 
(decreasing) dependence defined by Kimeldorf and 
Sampson (1978), which was described in our 
introduction. 
 

MONOTONICITY COEFFICIENT 
 
 We will fix a random variable U with the 
uniform distribution on (0, 1). For a random variable 
X with distribution function FX denote:  
 

X * = 1
XF− (U) and X′ = 1

XF− (1-U) 

 
 By the quantile transfer theorem, X*  =d X and  
X ′ =d X (see Dhaene et al., 2002). 
 
Lemma 2: For the random variable Y and α, β∈R, the 
following holds: 
 
1) (Y +α)* = Y* + α. 
2) If β > 0, then (βY)* = βY* and (βY)′ = βY′. 
3) If β < 0, then (βY)* = βY′ with probability 1 and 

3) (βY)′ = βY *  with probability 1.  
 
 Lemma 2 follows from Lemma 1.      
 In the rest of the article we will consider only non-
degenerate random variables with finite variances. The 
following theorem presents some well-known results 
(see, for example, Denuit and Dhaene, 2003) using the 
aforenamed notations. 
 
Theorem 6: For the random variables X and Y the 
following holds: 
 
1) <X*, Y*> is comonotonic and Cov (X*, Y*) > 0. 
2) <X*, Y′> is counter-monotonic and  
    Cov (X*, Y′) = Cov (X′, Y*) < 0. 
3)  Cov (X*, Y′) ≤ Cov (X, Y) ≤ Cov (X*, Y*). 
4)  <X, Y> is comonotonic ⇔  
   Cov (X, Y) = Cov (X*, Y*). 
5)  <X, Y> is counter-monotonic ⇔  
   Cov (X, Y) = Cov (X*, Y′).       
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Fig. 1: Graphs for Example 1 
 
 The monotonicity coefficient ρm of random 
variables X and Y is defined by:  

 

( )

( )
( ) ( )

( )

( )
( ) ( )

* *

*

Cov X,Y
if Cov X,Y 0,

Cov X ,Y

ρm X,Y 0 if Cov X,Y 0,

Cov X,Y
if Cov X,Y 0.

Cov X ,Y


>



= =



− <
′

 

 

 The definition is valid due to Theorem 6.1), 2). 
 When the coefficient ρm (X, Y) is closer to 1, 
then Cov (X, Y) is closer to the covariance Cov (X* , 
Y *) of a comonotonic pair, hence the pair <X, Y> is 
more comonotonic. Similarly, when the coefficient 
ρm (X, Y) is closer to −1, then Cov (X, Y) is closer 
to the covariance Cov (X* , Y′) of a counter-
monotonic pair, hence the pair <X, Y> is more 
counter-monotonic. Thus, ρm can be used to measure 
the degree of monotonicity (monotone dependence) 
between X and Y. 
 
Example 1: Suppose X ~ Uniform (0, 1), Y = g (X) and 
Z = h (X), where: 
 

( )

1
2x if 0 x ,

3
1 2

g x 1 x if x ,
3 3
2

2x 1 if x 1,
3

 ≤ ≤

= − < ≤



− < ≤
     

 

 
and: 

( )

1
1.8x if 0 x ,

3
1 2

h x 0.6x 0.8 if x ,
3 3
2

1.8x 0.8 if x 1
3

 ≤ ≤

= − + < ≤



− < ≤


 

 
 The monotonicity coefficients for these bivariate 
distributions are:  
 

ρm (X, Y) = 13/10  ≈ 0.7692 and 
ρm (X, Z) = 293/ 261 ≈ 0.8908. 

 
 So the second pair is more comonotonic, which is 
also obvious from the graphs in Fig. 1.      
 
Theorem 7: Properties of the monotonicity 
coefficient: For the random variables X and Y the 
following holds: 
 
1) ρm (X, Y) > 0 ⇔ ρ (X, Y) > 0,  
     where ρ (X, Y) is the Pearson correlation of X and Y. 
2) ρm (X, Y) < 0 ⇔ ρ (X, Y) < 0. 
3) | ρ (X, Y) | ≤ | ρm (X, Y) | ≤ 1.  
 
    The degree of linear dependence is not greater than 
the degree of monotone dependence. 
 
4)  −1 ≤ ρm (X, Y) ≤ 1. 
5)  ρm (Y, X) = ρm (X, Y). 
6)  If X and Y are independent, then ρm (X, Y) = 0. 
7)  For any α∈R: ρm (X +α, Y) = ρm (X, Y). 
8)  For any β∈R:  
    if β> 0, then ρm (X, βY) = ρm (X, Y);  
     
    if β < 0, then ρm (X, βY) = −ρm (X, Y) . 
 
9) ρm (X, Y) = 1 if and only if the pair <X, Y> is 

comonotonic. 
10) ρm (X, Y) = −1 if and only if the pair <X, Y> is 

counter-monotonic. 
11) If X and Y are PQD, then ρm (X, Y) ≥ 0.  
       If X and Y are NQD, then ρm (X, Y) ≤ 0. 
12) If <X1, Y1> is more PQD than <X2, Y2>, then ρm 

(X1, Y1) ≥ ρm (X2, Y2). 
 

13) ( )

( )
( ) ( )

( )

( )
( ) ( )

* *

*

ρ X,Y
if ρ X,Y 0,

ρ X ,Y

ρm X,Y 0 if ρ X,Y 0,

ρ X,Y
if ρ X,Y 0

ρ X ,Y


>



= =



− <
′
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Proof: 1)-10) follows from Lemma 2 and Theorem 6.  
11) and 12) follow from the formula of Hoeffding: 
 

( ) ( ) ( ) ( )X, Y X YCov X,Y F x,y F x F y dxdy
∞ ∞

−∞ −∞

 = − ∫ ∫  

 
13) Obvious.     
 The linear properties in Theorem 7.7), 8) are stated 
only for one argument but they also hold for the other 
argument due to symmetry. 
 Thus, the properties of the monotonicity coefficient 
ρm are similar to the properties of the Pearson 
correlation ρ but with respect to monotone dependence. 
The measure ρm is not entirely new. For PQD random 
variables X and Y, Reimann (1992) defined a measure 
λ**  by the formula: 
 

( )
( )

X, Y X Y
**

X Y X Y

F F F dxdy

λ X,Y

min F ,F F F dxdy

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

 − 
=

 −  

∫ ∫

∫ ∫
 

 
 The coefficient ρm is a generalization of λ**  to any 
random variables with finite variances; for PQD 
variables X and Y, ρm (X, Y) = λ**  (X, Y) by the 
Hoeffding formula. Reimann (1992) did not study the  
properties of λ**  except the property λ** ≥ ρ. He 
described λ**  as a measure of association of two 
random variables rather than a measure of monotone 
dependence. He defined λ**  in terms of double integrals 
and ρm has a simpler definition in terms of covariances.  
 

COMPARISON TO OTHER COEFFICIENTS 
AND APPLICATIONS 

 
 The relation between ρm and ρ is described in the 
following theorem. 
 
Theorem 8: Relation to the Pearson correlation: 
Suppose Cov (X, Y)  ≠ 0. Then: 
 

ρm (X, Y) = ρ(X, Y) ⇔ 
 
there exist numbers a and b, such that Y =d a + bX.     
 In the following examples we compare the values 
of ρm and ρ for some bivariate distributions.  
 
Example 2: Suppose the joint density function of X 
and Y is given by: 
 

( ) 2 if 0 x y 1,
f x,y

0 otherwise

≤ ≤ ≤
= 


 

 Then the monotonicity coefficient is: 
 

ρm (X, Y) = 
2

32 9− π
≈ 0.5368 

 
versus the Pearson correlation ρ (X, Y) = 0.5.      
 
Example 3: Suppose X~normal (0,1),  ε~normal ( µ,τ), 
X and ε are independent and Y = (X+ε)3. Then the 
monotonicity coefficient is: 
 

ρm (X, Y) =
2

1

1+ τ
 

 
 As expected, the monotonicity coefficient 
decreases with increase of τ (the spread of the noise ε) 
and does not depend on µ (the constant shift of X).  
 The Pearson correlation is:  
 

ρ(X, Y) = 
( )

( ) ( ) ( )

2 2

3 22 2 2 4 2

3 1 τ µ

15 1 τ 36µ 1 τ 9µ 1 τ

+ +

+ + + + +
 

 
 In the case when ε has the standard normal 
distribution (µ = 0, τ2 = 1), the monotonicity coefficient is 

ρm (X, Y) =
1

2
≈ 0.7071 versus the Pearson correlation 

ρ(X, Y) = 
3

30
≈ 0.5477.       

 
Example 4: Suppose X and ε are the same as in 
Example 3 and  Y = (ε−X)3. Then: 
  

ρm (X, Y) = −ρm (−X,Y) = −
2

1

1+ τ
      

 
 Scarsini (1984) introduced some conditions for a 
measure of dependence of two random variables. 
Theorems 7 and 8 shows that ρm satisfies a 
reasonable modification of these conditions. In 
particular, if each of random variables X and Y has a 
normal distribution, then ρm(X, Y) = ρ(X, Y) by 
Theorem 8.  
 One of the Scarsini’s conditions is the invariance 
of a measure of concordance under increasing 
transformations of X and Y. This condition might be 
useful for a measure of general dependence but not 
monotone dependence, since the result of increasing 
transformations of two variables can get closer to or 
further from a monotonic relation than the original 
pair, i.e., increasing transformations can change the 
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degree of monotone dependence. The Pearson 
correlation does not satisfy this condition; it 
measures linear dependence, which is a particular 
case of monotone dependence. The Spearman, 
Kendall and Schweizer-Wolff coefficients satisfy 
this condition; they depend only on the ranks of the 
observations. The coefficient ρm is only invariant 
under changes of scale and location in X and Y. We 
believe that ρm is a more appropriate measure of 
monotone dependence of two variables and illustrate 
this with the following two examples.  
 
Example 5. Table 1 defines random variables X, Y and 

Z on the sample space Ω = {ε1, ε2, ε3} with P (εk) = 
1

3
 

(k = 1, 2, 3). 
 Since the pairs <X, Y > and <X, Z > have the same 
ranks, their Kendall coefficients are equal: τ (X, Y) =  

= τ (X, Z) = 
1

3
 and so are their Spearman coefficients: 

ρS (X, Y) = ρS (X, Z) = − 1

2
. But the second pair is 

more counter-monotonic: it is closer to a decreasing 
relation as the graphs in Fig. 2 shows; this is reflected 
by its lower monotonicity coefficient:  
 

ρm (X, Y) =
2

3
− ≈ −0.667 and 

ρm (X, Z) =
10

11
− ≈ −0.909      

 
Example 6: Table 2 defines random variables X, Y and 
Z on the sample space Ω = {ω1, ω2, ω3, ω4, ω5, ω6} 

with P(ωk) = 
1

6
 (k = 1, 2,..., 6).  

 Since the pairs <X, Y > and <X, Z > have the same 
ranks, their Kendall coefficients are equal: τ (X, Y) =  

= τ (X, Z) = 
11

15
 and so are their Spearman coefficients: 

ρS (X, Y) = ρS (X, Z) =
31

35
. But the second pair is more 

comonotonic: it is closer to an increasing relation as the 
graphs in Fig. 3 shows; this is reflected by its higher 
monotonicity coefficient:  
 
            ρm (X, Y) ≈ 0.766 and ρm (X, Z) ≈ 0.991.      
 
 The coefficient ρm can be applied to the problems 
where Y is a monotone function of X with a random 

noise ε included; the monotonicity coefficient can be 
used to estimate some characteristics of the noise. It is 
natural to assume that ε has a normal distribution, as 
usual. The following two examples illustrate some 
cases when ρm(X, Y) is used to estimate the variance 
and central moments of the noise. Clearly, ρm cannot 
be used to estimate the mean of ε, since this mean is a 
constant shift of X or Y and it does not affect the degree 
of their monotone dependence. In the following 
examples we also assume the normality of X or Y, 
which simplifies the calculations. 
 
Example 7: Suppose Y = g (X) + ε, where g is a 
monotone function, noise ε has a normal distribution 
with variance τ2, variables X and ε are independent and 
g (X) has a normal distribution with variance β2. Then: 
 

           ( )
22 τβ

β
YX,ρm

+
=   if g  is increasing and 

 

        ( )
22 τβ

β
YX,ρm

+
−=   if g  is decreasing.                 

 
Table 1: Random variables X, Y and Z from Example 5 

 ω1  ω2  ω3 
X 1  2  3 
Y 2−1 2−3 2−2  
Z 10−1 10−3 10−2 

 
Table 2: Random variables X, Y and Z from Example 6 

 ω1  ω2  ω3 ω4 ω5 ω6 
X   1 2.000  3.00 4.00 5.00 6 
Y −1 0. 199 −0.90 0.90 0.20 1 
Z −1 −0. 010 −0.05 0.35 0.34 1 

 

 
 
Fig. 2: Graphs for Example 5. 
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Fig. 3: Graphs for Example 6 
 
 The result holds for the particular case when 
g(x) = ln x, so X has a lognormal distribution with 
the second parameter β. The following example is a 
generalization of Example 3. 
 
Example 8: Suppose Y = g(X+ε), where g is a 
monotone function, noise ε has a normal distribution 
with variance τ2, variables X and ε are independent and 
X has a normal distribution with variance β2. Then 
 

           ( )
22 τβ

β
YX,ρm

+
=   if g  is increasing and 

 

        ( )
22 τβ

β
YX,ρm

+
−=   if g  is decreasing.                 

 
 For the random variables from Examples 7 and 8, 
the variance τ2 of the noise ε can be expressed in terms 
of the monotonicity coefficient ρm = ρm(X, Y): 
 

2 2
2

1
1

pm

 
τ = β − 

 
 

 
 Since ε has a normal distribution, this also defines 
its central moments: 
 

2
2K 2

1
1 (2k 1)!!, k 1,2,3,...

pm

 
σ = β − − = 

 
 

 
 Thus, in applications the monotonicity 
coefficient can be used to estimate the central 
moments of the noise.  

 The coefficient ρm naturally generates a 
monotonicity measure rm for a two-dimensional 
sample: 
 

( )

( )
( ) ( )

( )
( )

( ) ( )

s x,y
if s x,y 0,

s x ,y

rm x,y 0 if s x,y 0,

s x,y
if s x,y 0

s x ,y

∗ ∗

∗


>


= =

 − < ′

 

 
where s(x, y) is the sample covariance, x* is the sample 
x with its values in ascending order and y′ is the sample 
y with its values in descending order. The properties of 
rm are similar to the properties of ρm. Details are given 
in (Kachapova and Kachapov, 2010). 
  

CONCLUSION 
  
 This article introduced the monotonicity coefficient 
ρm, a new measure of the monotone dependence of 
random variables with finite variances. It was proven 
that ρm satisfies reasonable conditions for such a 
measure:  
 
• ρm has linear properties 
• it is invariant under changes of scale and location 
• ρm(X, Y) = 0 for independent random variables X, 

Y 
• ρm(X, Y) = 1 for a comonotonic pair X, Y 
• ρm(X, Y) = −1 for a counter-monotonic pair X, Y 
 
 The coefficient ρm is a more sensitive measure of 
monotonicity than the coefficients depending only on 
the ranks of observations. 
 The sample version rm of the monotonicity 
coefficient was defined. 
 We recommend using ρm to compare pairs of 
random variables with respect to their degree of 
monotonicity. For example, in portfolio analysis the 
monotonicity coefficient can be used to assess the degree 
of increasing or decreasing monotone dependence 
between two asset returns and to do respective 
comparison of pairs of assets. In the problems where the 
monotone relation of two variables has a random noise, 
the coefficient ρm can be used to estimate variance and 
other central moments of the noise.  
 We recommend to use the sample monotonicity 
coefficient rm to find monotonic relationships in big 
datasets. 
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