
Full citation: Sallis, P.J., Aakjaer, A., & MacDonell, S.G. (1996) Software forensics: old methods for a 
new science, in Proceedings of Software Engineering: Education & Practice (SE:E&P'96). Dunedin, 
New Zealand, IEEE Computer Society Press, pp.481-485. 
doi: 10.1109/SEEP.1996.534037  

Software Forensics: old methods for a new science  

Philip Sallis, Asbjorn Aakjaer and Stephen G. MacDonell  
Computer and Information Science 

University of Otago, Dunedin, New Zealand 
 
Abstract  

Over the past few years there has been a renewed interest 
in the science of software authorship identification; this 
area of research has been termed ‘Software Forensics’. 
This paper examines the range of possible measures that 
can be used to establish commonality and variance in 
programmer style, with a view to determining program 
authorship.  It also describes some applications of these 
techniques, particularly for establishing the originator of 
programs in cases of security breach, plagiarism and 
computer fraud.  
 
1. INTRODUCTION  

Programming style has fascinated the computing 
community from the earliest days of computer 
programming. The stylistic influence of an individual on 
algorithm implementation within the constraints of a given 
programming language is limited but can be identified to 
some extent as traits or tendencies in the expression of logic 
constructs, data structure definition, variable and constant 
names and calls to fixed and temporary data sets.  To some 
extent, the stylometric methods used in literary analysis and 
computational linguistics can be applied to the quest for 
program authorship identification, particularly in 
determining the frequency of a determined set of 
characteristics, such as data name instances.  Similarly, 
software science measures and conventional metrics such as 
McCabe's Program Complexity Measure [12] can be used 
to compare programs in an attempt to identify authorship 
commonality.  

Forensic analysis as a term refers to ‘after the fact’ 
experimentation and study.  Software Forensics is the area 
of Software Science aimed at authorship analysis of 
computer source code.  Authorship analysis of any kind, 
whether it be applied upon source code or written word, is 
based upon the premise that authors develop a style and 
approach that is identifiable.  Although there is no formal 
proof that a computer program has embedded within it the 
characteristics of the author, one can see merely by looking 
at two code fragments that each author has their own style, 
and methods.  

Software Forensics therefore endeavours to use observable 
characteristics to determine authorship of code fragments.  
Individual authors have their code examined to determine 
their ‘image’ or stylistic profile.  Program code fragments 
for analysis are compared with the author profiles. 
Statistical methods are then used to determine which author 
is the most likely to have authored the code.  
 
2. WHAT CAN SOFTWARE FORENSICS 

OFFER?  

Software Forensics is a new area of research with to date, 
limited published results.  Previous studies have not defined 
how accurate the analysis methods are, or what factors may 
influence the result.  It can be seen that the greater the 
number of possible authors in any sample for analysis, the 
greater the chance of error.  

From a scientific point of view, Software Forensics is a 
modern attempt at an old science.  The metric-based 
approach, when combined with natural language processing 
(computational linguistics), suggests an exciting realm for 
new research.  

Since the first reference to Software Forensics [16], its base 
has been in computer security.  When a security breach has 
been detected, often the only evidence other than the 
damage, is the occasional code fragment.  Software 
Forensics is an attempt to help determine if two or more 
fragments were authored by the same person.  This could be 
valuable information, especially if security breaches are 
repeated.  If for instance, the code was written in-house, 
Software Forensics could help find the culprit.  

With the huge expansion of the Internet and other 
multinational networks, it is important to have some form 
of software auditing.  Software Forensics may well find a 
place within this domain.  
 
3. USING TRADITIONAL METHODS FOR 

SOFTWARE FORENSICS RESEARCH  

Forensics analysis or authorship analysis has in the past 
been primarily based on software metrics.  Metrics are 

http://dx.doi.org/10.1109/SEEP.1996.534037�


chosen that distinguish the author-specific portions of the 
code being analysed.  Hence, the choice of metrics is 
crucial to the eventual result.  

This is true of any statistical study, where a variable, or a 
group of variables determines the outcome.  When the 
variables change, the entire solution changes.  This 
dependence can be decreased by choosing a representative 
set of metrics.  This has the effect of decreasing the 
weighting of each metric, thereby reducing the possible 
deviation that any one metric can cause, providing more 
robust results.  

In 1994, Ivan Krsul published a paper discussing the results 
of a study completed at Purdue University [9].  The study 
showed that no particular metric or group of metrics 
demonstrated the ability to identify an author outright.  This 
is to be expected, however, as Software Forensics can only 
be considered a tool; it will never be able to determine 
beyond all doubt the author of a piece of code.  

The Purdue study identified a large range of metrics that 
can be used to help determine the author of a program.  The 
metrics were collected from a variety of sources 
[3,8,14,18], with three particular groups of metrics 
identified:  

• Program Layout Metrics  

• Program Style Metrics  

• Program Structure Metrics  

The study produced good results - up to 78% of code 
fragments were classified correctly.  These code fragments 
however, were collected in a relatively controlled 
environment (university environment).  Unfortunately the 
study did not give conclusive results as to which type of 
metric gives best results, nor did it propose a generic set of 
metrics that could be used in further studies.  

The use of code-based metrics in software authorship 
identification has some promise, but its effective 
application may be most fruitful in the area of plagiarism 
detection.  In fact, the two objectives of authorship 
identification and plagiarism detection may produce 
conflicting evidence for a given pair of programs, in that 
whilst the two programs may return very similar values for 
structural metrics (which might suggest plagiarism) it may 
be that the authors of those programs are very much 
distinct, and were simply taught by the same instructor.  
This type of conflict could be overcome, however, by a 
more comprehensive approach to code analysis, 
incorporating some of the lexical methods described in the 
final section of this paper.  
 
3.1. Authorship identification  

It is our contention that programmers adopt certain styles; 
characteristics that are evident (and therefore measurable) 
in the programs they write.  Given that code examples are 
collected on a regular basis from each programmer, specific 

profiles can be developed using this common set of 
characteristics.  

Software science metrics [4] and those based on the 
control-flow of programs (e.g. [12]) produce metric values 
that are clearly program-specific (see the following 
subsections for definitions of these metrics).  This implies 
that the identification of the author of a code segment or 
program using these metrics is dependent on the existence 
of a functionally similar program in the previously 
collected sample.  Given extensive software reuse by 
individual developers, this may be quite possible - a 
programmer is likely to use (and adapt if necessary) a 
previously developed code segment to execute the same 
function in different systems. (If reuse is based on a 
common library, however, with global access by all 
programmers, identification of an individual author with 
such metrics is less likely.) 

A simplified example may help to illustrate this approach.  
In a previous project a programmer may have developed a 
bubble sort routine as part of a file update subsystem.  This 
program has been tested and is error-free.  The programmer 
now finds that a similar routine is needed in her/his current 
project.  Rather than write it from scratch, the programmer 
is likely to retrieve the routine and adapt it to suit the 
current application.  This may involve changing some data 
item names and formats, but much of the structure 
(including the control structures used, the control flow 
through the routine, and the number of program tokens 
employed) will remain essentially the same.  Thus the 
profile of the structural characteristics will also be the 
same, and authorship, if unknown, could be established 
with some confidence in this manner.  This confidence 
could be significantly increased with the complementary 
use of token frequency analysis in the identification 
process.  
If the intent of a program is malicious then the programmer 
may make an earnest attempt to disguise the code, through 
the use of characteristics that are inconsistent with their 
profile.  In these circumstances authorship verification 
based on traditional software metrics is less likely.  For one 
thing, it is highly improbable that a previous functionally 
equivalent program would be held in the collected sample!  
For another, the skills of the programmer in disguising the 
code could make identification from a purely structural 
basis virtually impossible.  It is under these circumstances, 
however, that lexical analysis, which is concerned with 
variable names and layout characteristics (e.g. all variables 
in lower case), may be used to greater effect.  
 
3.1.1. Halstead's Software Science  

The basis of Halstead's theory involves the identification of 
operands and operators in the expression of algorithms and 
then applying certain manipulations to the counts of these 
basic elements to obtain quantitative measures. Halstead 
defined operands as "...variables or constants" and 
operators as "...symbols or combinations of symbols that 



affect the value or ordering of an operand" [4 p.5]. These 
and other basic properties are denoted as follows:  

n1 = number of unique or distinct operators  

n2 = number of unique or distinct operands  

N1 = total usage of all the operators  

N2 = total usage of all the operands  

The vocabulary is derived from these initial figures as:  

n = n1 + n2  

and the implementation length as 

 N = N1 + N2  

One of the primary measures formulated from the element 
counts was the size measure, volume: 

 V = N log2 n  

This is said to be a reflection of the number of mental 
comparisons required to generate a program. 
 
3.1.2. McCabe's Cyclomatic Complexity  

McCabe's measure [12] uses the number of execution paths 
through program code as an indication of code complexity, 
as each path must be traced if the program is to be 
completely understood. McCabe's metric (v(G)) is derived 
from a flowgraph representation of program code, where 
nodes are blocks of sequential statements and edges are 
processing paths. The metric is calculated in the following 
way: 

v(G) = e - n + 2p 

where e = the number of edges in the graph 

n = the number of nodes in the graph 

p = the number of components in the graph  

(p = 1 for one module).  

A ‘short-cut’ method of calculation has also been widely 
promoted, based solely on the number of decision structures 
(selection and iteration) in the code [5,12]: 

v(G) = π + 1 

where π = the number of decisions  structures in the  
code.  

 
3.2. Plagiarism detection  

A substantial body of research into the detection of 
plagiarism in programs using software metrics already 
exists (for example, see [6,10,17]).  This is a specific case 
of authorship verification that is in many ways easier to 
undertake than strict identification.  This is clearly due to 
the fact that in many cases the programs being compared 
are, by definition, functionally equivalent.  Thus there is no 
need to refer back to collected samples of a programmer's 

work so as to determine the authorship of a new program.  

Of the more recent attempts to develop a set of measures 
for plagiarism detection, Leach [10] promotes a more 
comprehensive approach, in that characteristics other than 
those normally considered are proposed.  In order to 
augment the token and control flow measures, Leach 
suggests the use of indicators that consider the degree of 
coupling between modules (through data and control 
transfer).  This coverage helps to ensure that three different 
aspects of a program are considered in the analysis - 
volume, control flow and structure - so that changes to one 
aspect in order to avoid plagiarism detection will not 
necessarily go unnoticed.  

To continue this development, we would suggest that the 
list of metrics should be increased further, so that a 
comprehensive characteristic vector of relatively 
independent indicators can be used as a baseline for 
program comparison.  This would require the inclusion of a 
data dependency metric, a nesting level metric and a control 
structure metric.  Thus a six-tuple vector should provide 
ample coverage of the various program structure 
characteristics that might vary (or remain the same in cases 
of plagiarism) according to author.  Candidate metrics for 
these three extra categories will need to be tested for their 
effectiveness, but the following might be included:  

Data dependency - Just as control flow dependency is 
assessed from a directed graph using the McCabe measure, 
data dependency can be measured from a similar 
representation. Bieman and Debnath [1] suggest the 
development of a Generalised Program Graph (GPG), in 
which nodes denote both predicate clauses and variable 
definitions.  Measures derived from such a representation 
should therefore enable the assessment of both aspects.  

Nesting level - Measures for program, module and average 
nesting depth may be derived from the work of Dunsmore 
[2]. Computation of the program and module measures 
involves assigning each line of code a nesting level 
indicator, as follows:  

(i) the first executable statement is assigned a nesting 
level of 1  

(ii) if statement a is at level l and statement b simply 
follows sequentially the execution of statement a, then 
the nesting level of statement b is l also  

(iii) if statement a is at level l and statement b is in the 
range of a loop or a conditional transfer controlled by 
statement a, then the nesting level of statement b is l + 
1.  

The sum of all the statement levels in the program or 
module produces the total nesting depth measures.  Average 
nesting depth can be calculated by dividing the total 
measures by the number of statements in the 
program/module.  

Control structure - This particular set of indicators provides 
a link to the lexical measures suggested elsewhere in this 



paper, in that specific structures produce different values 
for use in the profile.  Two examples of such an indicator 
are the MEBOW measure [7] and the NPATH measure 
[13]. MEBOW (Measure Based On Weights) assigns 
various weightings to expression types (e.g. an IF...THEN 
construct has a weighting of 3) and the sum of the 
weightings is used to denote program complexity. NPATH 
adopts a similar approach but is more comprehensive in the 
constructs considered.  The final calculation of NPATH is 
then based on the product of the individual construct 
values.  

Thus we might reach a point where a profile of 
characteristics that enables or improves plagiarism 
detection includes: 

Volume: Halstead's n, N and V measures 

Control flow: McCabe's v(G) measure 

Structure: Leach's coupling assessment 

Data dependency: Bieman and Debnath’s GPG 
assessment 

Nesting depth: Dunsmore's program nesting depth and 
average nesting depth measures 

Control structure: Nejmeh's NPATH measure  

It should be noted here that we are not assessing the value 
of the metrics for their originally intended purpose, that is, 
program complexity assessment.  This topic has already 
seen widespread research and publication and is far beyond 
the scope of this work.  Rather it is our assertion that, when 
combined with the output of lexical analysis, an overall set 
of characteristics like the one described above should 
enable effective plagiarism detection and (perhaps to a 
lesser extent) independent authorship identification.  
 
4. THE NLP APPROACH TO STYLISTICS 

AND AUTHORSHIP ANALYSIS  

Establishing the authorship of documents, letters and other 
written works has posed a challenge to linguists for 
hundreds (and probably thousands) of years.  Several well-
known techniques have been used to characterise 
authorship such as hand-writing recognition and word 
usage.  More subtle indicators such as author's expressions 
or turns of phrase, their dependence on certain words or 
phrases, the frequency of individual words, preference for 
the use of short or long sentences, prosaic language, and so 
on, all contribute to a profile or set of individual authorship 
characteristics [11]. Sadly, research in this area suffers from 
inadequacies in the methodologies that are employed. 
Criterion-based analysis techniques are too rigid for the 
qualitative dimension often required to perform the desired 
analysis in computational linguistics.  These concerns 
notwithstanding, we are mostly left with document statistics 
as the only way to satisfactorily distinguish one text from 
another, and inevitably one author from another.  

Statistical techniques are generally employed to discern 
trends, frequencies and correlations from data gathered out 
of written text or documents in attempts to establish 
authorship style.  Many examples of the application of 
statistical methods to this area of analysis exist in 
contemporary research literature (e.g. see [11]). Data is 
usually gathered from an analysis of:  

1. the average length of sentences (in words)  

2. the average length of paragraphs (in sentences)  

3. the use of passive voice (expressed as a percentage) 

4. the number of prepositions as a % of total words 
5. the frequency of ‘function words’ used in each text. 

 
One technique, illustrated in Sallis [15], is to apply a set of 
‘function words’ that have been used to establish authorship 
in another document corpus, to a new set of documents, and 
to compare the results with a known or validated authorship 
style.  The set of function words is established from a word 
frequency analysis of a large single-author corpus.  The 
most celebrated of these function word sets has been 
developed out of an analysis of the Shakespearean Canon. 
This set can be as large or small as desired but generally 
includes a basic set of nineteen words such as a, and, but, 
by, for, from, in, it, of, that, the, to, with, I, you, my, me, 
is, not. This set is the result of word frequency analysis and 
is used throughout the literature as a reliable analytical tool.  
In itself, it is not very useful for application to software but 
the approach may have some merit. The set contains a 
sample of personal pronouns, prepositions and verbs.  

Readability scores such as the Gunning-Fog index and 
other literary measures are used for experiments in 
computational linguistics but only apply to domain-
independent and context-free grammars, where written text 
is being analysed.  Again, this does not apply to computer 
software.  

Unfortunately then, this approach has limited value for 
Software Forensics because there is no similar set of 
‘function words’ available.  In fact, working in the 
restricted domain of computer programming languages, a 
defined set of allowable words exists, which limits the 
variability of free expression.  There may be some future in 
analysing data and variable names but we are then faced 
with the problem of obtaining sufficient discrete works of 
assumed single authorship with a known product.  

Studies of samples with observed and expected values often 
lend themselves to using chi-square methods and binomial 
distributions, but usually the significance levels are not of 
sufficient magnitude for confident conclusions to be drawn 
about the positive identity of authors.  Multivariate statistics 
are also popular, particularly when syntactic elements are 
also counted in the analysis.  Ledger [11] illustrates this in 
attempting to determine differences in letters within a 
corpus, where no independent authenticated letter exists.  
He uses cluster analysis and illustrates his results with 



scatter grams to provide a spatial dimension to the stylistic 
differences between text.  In keeping with a number of 
results from this area of research, differences in style across 
a corpus of documents or letters that are supposed to have 
been written by a single author, often suggest that the work 
has been contributed to by others to a greater or lesser 
extent.  They do not usually authenticate absolutely that a 
single author was responsible, although clearly this may be 
confounded, for example, by changes in an individual’s 
style.  Interesting as this may be, it is unlikely that much 
can be gained from these approaches in isolation in 
analysing software for authorship identification.  

 
5. CONCLUSIONS  

It would seem from an initial review of available techniques 
that no single approach will adequately suffice for Software 
Forensics.  A combination of techniques from conventional 
software metrics and computational linguistics appears to 
be the way ahead and a great deal of experimental work 
needs to be carried out in order to advance a theory of 
software authorship identification.  

Of prime difficulty in experimental design for this research 
is the identification of a suitable software sample, even 
within a domain-dependent context.  Next, the 
establishment of an individual programmer's authorship 
style that is robust enough for authentication across the 
sample will require some unique analytical methods in 
order to maintain validity, even within acceptable statistical 
norms for probabilistic inference.  The creation of 
individual ‘profiles’ will require extensive empirical work 
across a non-trivial set of software.  The established 
profiles will then need to be verified through comparison 
with a random set of software.  In order for any inferences 
to be meaningful from this work, a large sample of software 
and authors will be required, highlighting the long-term 
nature of the project.  
 
REFERENCES  

[1] Bieman, J.M. and Debnath, N.C.  An analysis of 
software structure using a generalized program graph. 
Proceedings COMPSAC '85 (1985) 254-259  

[2] Dunsmore, H.E.  Software metrics: an overview of an 
evolving methodology. Information Processing & 
Management 20 (1984) 183-192  

[3] Conte, S., Dunsmore, H.E. and Shen, V.  Software 
Engineering Metrics and Models.  Benjamin/Cummings 
Publishing Company, Menlo Park CA (1986)  

[4] Halstead, M.H.  Elements of Software Science.  Elsevier 
North-Holland, New York (1977)  

[5] Hansen, W.J.  Measurement of program complexity by 
the pair (cyclomatic number, operator count). ACM 
SIGPLan Notices 13 (1978) 29-33  

[6] Jankowitz, H.T.  Detecting plagiarism in student Pascal 
programs.  The Computer Journal 31 (1988) 1-8  

[7] Jayaprakash, S., Lakshmanan, K.B. and Sinha, P.K. 
MEBOW: a comprehensive measure of control flow 
complexity.  Proceedings COMPSAC '87 (1987) 238-244  

[8] Kernighan, B. and Plauger, P. The Elements of 
Programming Style.  McGraw-Hill (2nd ed), New York 
(1978)  

[9] Krsul, I.  Authorship Analysis: Identifying The Author of 
a Program, Technical Report CSD-TR-94-030, Department 
of Computer Sciences, Purdue University (1993)  

[10] Leach, R.J.  Using metrics to evaluate student 
programs.  ACM SIGCSE Bulletin 27 (1995) 41-43, 48  

[11] Ledger, G. An exploration of differences in the Pauline 
epistles using multivariate statistical analysis.  Literary and 
Linguistic Computing, 10 (1995) 85-98  

[12] McCabe, T.J. A complexity measure.  IEEE 
Transactions on Software Engineering 2 (4) (1976) 308-
320  

[13] Nejmeh, B.A.  NPATH: A measure of execution path 
complexity and its applications.  Communications of the 
ACM 31 (1988) 188-200  

[14] Oman, P.W. and Cook, C.R.  A programming style 
taxonomy. Journal of Systems and Software 15 (1991) 
287301  

[15] Sallis, P.J. Contemporary computing methods for the 
authorship characterisation problem in computational 
linguistics. New Zealand Journal of Computing 5(1) (1994) 
85-96  

[16] Spafford, E.H. and Weeber, S.A.  Software forensics: 
Can we track code to its authors? Computers & Security 12 
(1993) 585-595  

[17] Whale, G. Software metrics and plagiarism detection. 
Journal of Systems and Software 13 (1990) 131-138  

[18] van Tassel, D. Program Style, Design, Efficiency, 
Debugging, and Testing.  Prentice Hall, Englewood Cliffs 
NJ (1978) 

 


