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Abstract

Companies and organizations all over the world aims to progress and prosper 

and anyone who wishes so is expected to know about the current progress of 

the company which can be got from live data. One such live data is found via 

email data. By analysing email data which comprises chains of conversation 

between the employees of the company and clients, one can make a judgment 

as to how well the progress is. But to perform analysis on such large data is 

tiresome, time consuming and prone to error if done manually. Sentiment 

analysis which is a domain under Natural Language Processing is a concept 

which can address this issue. Using Sentiment analysis, we can make such a 

judgment about the progress of the company or organization. The purpose of 

this thesis or research work is to bring out the most efficient and best 

algorithm to perform sentiment analysis on large data set comprising email 

data with the best precision. This thesis throws light on understanding the 

basic concepts of sentiment analysis and then showcases a model which 

performs sentiment analysis on an email data set. Drawbacks of the current 

model are observed and either an improvement is made to it or a new model is 

developed to address those drawbacks. Every new model features something 

new either in terms of handling the data or making use of better classification 

algorithms and giver better performance values compared to the previous 

model. The performance is measured in terms of precision, recall and 

accuracy. In the thesis, an algorithm is demonstrated to show how sentiment 

analysis is performs where supervised learning is made use of. The next model 

is built using this model which makes use of a larger email data set. The first 
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model uses a simple K-nearest neighbours classifier to give us the 

performance measures. The next few models are built to improve the values 

by using different classifiers and new features such as Named Entity 

Recognition and Vectorization. In order to achieve greater values, a model 

was implemented using Artificial Neural Networks and its derivatives like 

LSTM. Finally, a domain agnostic model built using the concept of 

bidirectional LSTM gave the best values and this is the model that is presented 

as the best. The model also has a few features implemented like Word2vec 

embedding and Dask to improve the efficiency during run time. The literature 

survey section shows how researching about work conducted by others in the 

same domain enabled me to come up with the models. The thesis shows an 

experimental quantitative approach where models are experimented with and a 

better model is prepared to improve the performance measures. A section is 

also presented to explain the various concepts, algorithms and formulas used. 

The thesis concludes by showing the best model to perform sentiment analysis 

on the large data set and why it is the best. The advantages and strengths of 

the model are discussed.  

Keywords: Sentiment Analysis, Algorithm, Classification, Data set. 
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Annotations and Details about the Thesis 

 

The entire thesis document contains some short annotations of some words 

that occur repeatedly.  

 

ANN: Artificial Neural Network 

DNN: Deep Neural Network 

DL: Deep Learning 

RNN: Recurrent Neural Network 

Bi-RNN: Bidirectional Recurrent Neural Network 

CNN:  Convoluted Neural Networks 

LSTM: Long Short Term Memory 

Bi-LSTM: Bidirectional Short Term Memory 

NLP: Natural Language Processing 

NER-Tagging: Named Entity Recognition Tagging 

KNN: K-Nearest Neighbour 

SVM: Support Vector Machine 

NLTK: Natural Language Tool Kit 

RF: Random Forest 

DCT: Decision Trees 

LogReg: Logistic Regression 

 

 

Other key points about the thesis: 

* The references are in the form APA-6th 
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* All the algorithms referred to in the methodology and Results section are 

present in the appendix as psuedocodes in Python. 

* The data set used across all the algorithms in the methodology section is the 

same. The data set is 200 MB containing email text data. 
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1. Research Question 

 

This thesis deals with sentiment analysis of text data and the various methods 

that can be adopted to do so. This takes into account going about different 

methods and algorithms to address how the sentiment analysis can be 

performed.  

 

Research Question: To investigate the various machine learning algorithms, to 

evaluate the algorithms for accuracy and efficiency and optimize the best one 

for large textual sentiment analysis data. The research will investigate 

different ways or methods to perform sentiment analysis on large text data.  

 

 

Issues that form the research question 

 

If we consider a scenario where one wishes to know the quality of something 

(a product, service, event etc), there exist a way to make a judgment based on 

the way that something is reviewed. A judgment about the reliability can be 

made by using existing data in the form of reviews, comments or real time 

experience from users. We can analyse the way something has been perceived 

by users and can come up with a method of making a judgment. However, 

when we consider an object such as a movie or an airline, and we wish to 

know how reliable the movie or airline is, we study past data about them 

which could mainly be in the form of user reviews and from this study we can 

analyse if they are reliable or not. The goal is to not only ease this process of 
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making judgments about the reliability or dependability of something but to 

also find a very feasible method to do so with maximum precision and 

accuracy.  

 

In scientific domains, there occur challenges like reliability of substances, 

formulae or anything related to the domain and there are requirements to know 

the usability of them. With data sets of text data in the form of comments or 

chains of email data exchanged between people or scientists, we can use the 

various concepts of NLP to come up with results, address the various 

challenges and also optimize the best one of those. 

 

 

Why the is research question set this way 

When we deal with a concept like sentiment analysis which simply means to 

assess something to be either positive or negative, one can think of a range of 

different methods depending on what kind of data is at their disposal. The 

more we study the kind of data we are dealing with, the size of that data, we 

can then narrow in on particular methods which can be experimented with and 

if suitable, implemented with. We must keep in mind that this analysis of data 

is in the perspective of the organization or company and not the user’s 

perspective. Since there is a lot of data available which deals with similar 

study and methods, we must consider the most suitable method of all and 

implement a model to perform sentiment analysis on large text data.  

 

How can addressing this research question be useful 

When such data which showcases how well a product or service is being 

perceived by the users is at the disposal of a company or organization, they 
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can come up with ideas to make improvements. This concept has existed ever 

since mankind got involved in trade but as of today, we have powerful tools 

and software at our disposal to help us and enable us to address this issue with 

a lot more precision and efficiency. By putting such software, tools and 

algorithms to use, we can come up with ways of analysing large text data. 
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2. Problem Statement 

 

Knowing the performance and progress of one’s company or organization is 

an integral task of anyone who wishes for their company or organization to 

progress well. In order to know this, one needs to analyse how the 

performance of that company or organization has been over a period of time. 

In order to do this, some valid data is required which can be any data which 

can tell us about the performance of the company or organization. Once such 

data is collected, it has to be studied thoroughly in order to make a judgment 

about the reliability or dependability and whether it will be useful to the 

organization or not.  

 

Addressing the problem 

If the company or organization has products or provides services, then 

collecting data which is in the form of reviews or comments about the 

products or services can provide us with data which can be subjected to 

analysis. So the task is to collect as many data as possible about that product 

or service we wish to analyse and structure the data collected. This can be 

found using data sets which can be issued by the company itself or can be 

found on the internet or is some cases can also be manually prepared by 

collecting data.  

 

Apart from products or services provided by an organization, even the 

working ethics of the company can be taken into consideration when we can 

have access to data which tells us about the interaction between the 



14 

organization and the customers. Such data can be collected by having access 

to communication between the former and latter. One such readily accessible 

data can be found in the exchange of emails between the organization and its 

customers. Once such data is collected, methods can be considered to solve 

the issue. 

 

Let us consider an example. Let us assume we wish to know how good an 

automobile manufacturing company is selling a particular model of a car. We 

can read reviews provided by the users who have had prior experience with 

that car. We can use this data (which is in text form) to analyse and judge 

whether that car will serve the purpose. But the focus is on the company’s 

perspective about how good the car is selling and not the user’s perspective. 

For this, the company can collect user reviews and analyse them. This way, 

the automobile company can not only get to know how good or bad the car is 

being sold in the market but can also find ways to improve the sales of that car 

by addressing the problems which by the users are mentioned in the data.  

Emails are a reliable source of such text data for the following reasons: 

 

i. The exchange of text data can be trusted as mostly facts and actual figures 

are present in the emails. 

 

ii. As most email exchanges in a professional domain are in most cases 

assumed to be very ethical, the data is in proper text form and not comprise 

short annotations. This kind of text data can be interpreted much better. 

 

iii. Most of the emails contain date and time of when the email was sent or 

typed. This data is very useful in increasing the accuracy when concepts of 
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machine learning and NLP are put to task. 

 

So basically, the research question deals with establishing different methods 

and to come up with the most reliable one of them all. 
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3. Research methods and architecture of the 
research. 

 

The research question has been discussed and deals with developing various 

methods to perform sentiment analysis on large data in text form. Some ways 

to deal with the question have been discussed along with the research question 

itself. But in order to address the issue, a suitable research method is required. 

Now let us look into the research question again and find a way to come up 

with ideas to answer the question. We are required to come up with some 

methods to perform sentiment analysis on large text data. Once we have come 

up with some models, we chose the most suitable one / ones to solve the issue 

and in turn provide a solution which can also be used by others.  

 

So in short, we need a research methodology that will be based on 

mathematical calculations, statistics, results and experimentation. The suitable 

research method to be considered is a quantitative research method. 

Quantitative research can be described as an investigation done systematically 

by gathering quantifiable data and performing mathematical, computational 

and statistical techniques [143]. We will have to consider computational 

algorithms to analyse the text data and come up with a way to classify the 

overall data into positive or negative in terms of sentiment. For this, we can 

make use of several tools, software, mathematical formula and modules. 

Under a quantitative research, the approach to be selected will have to involve 

researching about a method to perform analysis on the text data, implement it, 

analyse the model, come up with the drawbacks and think of ways to address 

the drawbacks, better the model or develop a better model. This will have to 
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be done by opting an approach which will involve researching and 

experimenting with the goal of coming up with an even better model than the 

prior one or improving the existing model in mind.  

 

The research method explained 

What is considered for this research is a quantitative research method which 

will involve experimentation. To debrief the concept, I intend to adopt a 

method which will be based on computation which make use of algorithms, 

programs and software, comparing the results derived from various models, 

comparing the results with the use of tabulation and statistics, then finding 

ways to either better the existing model or contemplating a new model by 

researching until a desirable model is developed. We can call this an 

experimental quantitative research method which is adopted to come up with 

methods to address the research question.  

 

This method is quantitative because it deals with computational techniques as 

well as statistical information provided by other sources to perform analysis 

on data. The results derived by each method are compared using results and 

algorithms are used to build the models. This method is experimental because 

it deals with building a model from scratch and developing a better model by 

researching articles, papers, publications and websites and gathering data to 

come up with a better model with the intention of addressing the shortcomings 

of the previous model in mind and presenting the most advanced and suitable 

model which can also be used by others in the future. An approach is adopted 

wherein each step research is done to either better the existing model or 

contemplate a better model.  
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Reasons for considering this methodology 

The goal of the research is to get a step closer to answering the research 

question with every improvement made to the current model or by developing 

a new model. In order to provide an understanding of what sentiment analysis 

is, it is key to start with a very basic model making use of minimal tools and 

software. We have to keep in mind that sentiment analysis covers a wide range 

of topics (will be explained in detail in a later part of the thesis) and it requires 

a lot of research to come up with something better which performs the same 

task with better ease or efficiency and can bring about other features to better 

the model. The various aspects of sentiment analysis can be covered by 

researching more about what others have done and making use of that 

information to build a better model.  

 

Quantitative research method has a few key characteristics: 

 

1. The research and study to be made is designed prior to the collection of 

data. 

2. Tools, algorithms and computer software is used to collect data and analyse 

it. 

3. Data is usually in numerical or statistical forms. 

4. It involves the enumeration of the concepts which are under study. 

5. Makes use of experimentation and involves utilizing previously conducted 

research by others to use so that it can help us in building a model. 

 

The requirements of my research were in agreement with the above mentioned 

points about experimental quantitative research and as a result, this method 

was adopted. 
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4. Literature Survey

There were some papers, articles, books, websites and other sources which 

gave me an extensive knowledge on various aspects of the thesis such as the 

algorithms I had to develop, the metrics, concepts of NLP etc. Researching a 

few such sources of information, extracting the required information and 

comparing the values was an integral part of this research. This section 

discusses the various sources of information which offered me knowledge and 

help to proceed with my research.  

In the methodology section we see the basic approach to sentiment analysis 

using four examples. These algorithms deal with both labelled and unlabelled 

data sets. In order to proceed with the actual data set which was intended to be 

used through the thesis, the need to come up with various machine learning 

algorithms was required to implement sentiment analysis on the text data in 

the labelled data set. The data set was a large CSV file which was 

approximately 75 MB in size and comprised email text data. In order to 

subject the data to training and classification, the data first had to be processed 

and then a machine learning algorithm had to be used to perform training and 

classification. In order to come up with suitable algorithms which offer the 

best precision, recall and accuracy values, research was done using various 

articles as seen in the Literature Review section. The following were the 

classification algorithms considered: 
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1. K-Nearest Neighbours 

2. Decision Tree 

3. Support Vector Machine 

4. Neural Networks 

5. Bayesian Belief Network. 

 

Based on the requirements of optimizing the best algorithms for sentiment 

analysis on email text data, the most likely classification algorithms based on 

my research were the five algorithms mentioned above. This is the main 

reason they were chosen. 

 

This comparison enables one to look into each algorithm, see the strengths and 

weaknesses of each and pick suitable ones.  

 

A paper I researched [56] presents results on the performances of two learning 

algorithms, Decision Tree classifier and Bayesian classifier algorithms on two 

text data sets [56]. The authors of this paper came up with approaches to 

perform text categorization and measure the performances using the two 

algorithms. The introduction to text categorization is made and the two 

algorithms are discussed in detail. The algorithms are compared in terms of 

the metrics and performance. The metrics compared are fallout (or precision) 

and recall. This paper describes the working of both the algorithms as well. 

Random Forests and Decision Trees [57] was another paper which I looked 

into in detail which compared the performances of two algorithms on large 

data sets. One of the algorithms was RF and the other algorithm was J48 

Decision Tree classifier. DTC is the common algorithm studied in detail in 

both the papers [56, 57]. By comparing the performance values of RF 
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algorithm in both the papers, a way of deciding if the algorithm was to be 

considered in my research work or not could be used. Apart from this, the two 

algorithms also describe in detail the working of Bayesian classifier in the first 

and DTC algorithm in the second. An article [58] gives details of an extensive 

research conducted which involved the comparison of three different machine 

learning algorithms and their performances to perform cover classification for 

image data sets.  The three algorithms chosen were RF, SVM and KNN.  

 

 

Comparison of the methodologies 

In [56], the concept of text categorization is described in detail as text 

categorization is the gist of the paper. The two algorithms Bayesian Classifier 

and DTC classifier are used for two tasks, one is indexing financial news wire 

stories for retrieval of documents and the other is extracting data on terrorist 

incidents from variable text sources. The approaches for text categorization 

are shows in this paper. They mention two main approaches for construction 

of text categorization systems. One of the approaches includes many systems 

and how knowledge engineers define a few layers of conclusions between the 

words and textual features and output categories and mention rules for 

mapping between layers and for removing conclusions. The other approach is 

to use manually categorized text in constructing categories by inductive 

learning. The two algorithms used by them are then described, the 

performances of the algorithms are then compared. The evaluation of the 

performances are described in terms of Fallout, Recall Precision.  

 

Paper [57] compares the performances of DTC algorithm with RF classifier 

for classifying 20 data sets. The strengths and applications of each of the 
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algorithms are first discussed, then the classification methods are shown. Few 

of the types of DTC algorithms are describes including the J48 algorithm and 

then RF classifier is described in detail. The classification performances of the 

two algorithms are measured using the experimental set-up using large and 

small data sets. The goal of the comparison is to create a base line which will 

be useful for classification scenarios and selection of an appropriate model. 

Results are derived and discussed and the comparison results are show.  

 

In [58], the objective of the research article is to compare the performance 

measurements of three algorithms on image data sets. The Sentinel-2 system is 

described [16] and some literature survey is provided. The methodology 

adopted is a complex process using the image data provided by Sentinel-2. 

The image data is split into testing and training data. The training samples are 

subjected to parameter tuning with parameters such as re-sampling 

approaches. Then the classification algorithms like KNN, SVM and RF are 

used for classification. The testing data is sent as classified images and finally, 

the accuracy is measured and the accuracy values are compared. The three 

classification algorithms and their working are studied and the results are 

calculated for 8 sub-data sets. The error rate of each algorithm is tabulated for 

all the 8 sub-data sets. And finally, the performance metrics like Accuracy and 

Precision are calculated for all three algorithms and compared.  

 

 



23 

The data sets used 

For [56], two data sets are used which make use of different text 

categorization tasks. The first one was a data set consisting of 21450 stories 

from the year 1987 which are manually indexed using 135 categories. The 

training and testing parts of the data set were divided based on a specific date. 

The data which was present before that data was training set and the data that 

followed after the date belonged to the testing set. The second data set 

comprised 1500 documents from US Foreign broadcasting informative service 

which was used previously for some other NLP task. This data set includes 

text translated from Spanish language and include newspaper stories, 

transcripts and other material. Stop words were not removed from the text 

data.  

 

The authors in [57] got their data sets from UCI Machine Learning repository 

[60] for classification. Some data is nominal and some are linear. There were 

20 data sets used all of which show the number of instances and the number of 

attributes.  

 

In the article [58], the data sets were in image formats. They were acquired 

and downloaded from USGS website [61]. These were satellite images taken. 

The training and testing samples were collected based on the manual 

interpretation of the Sentinel-2 data and imagery from Google Earth. They 

used a tool to create about 135 polygons in the data sets.  
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The algorithms used 

There were comparisons made between or among algorithms in the above 

papers and articles which I researched on. In [56], there were two algorithms 

which were made use of. The Bayesian classifier and the DTC. The Bayer’s 

classifier was used to come up with an algorithm of their own which they 

called PropBayes. This uses the Beye’s rule to estimate the probability. The 

formula for the calculation of probability is: 

 

P (Cj — 1 | D)        --- (1) 

 

The probability that a category Cj is to be assigned to a document D based on 

the prior probability of a category and the conditional probabilities of 

particular words in a document which belongs to a category. The DT-min10 

approach was based on the DTC learning algorithm. For each category, a 

decision tree was calculated using recursive algorithm with information gain 

splitting rule. When there were less than 10 examples that fell at a node, a leaf 

was forced.  

 

Both the algorithms make use of training examples to estimate conditional 

probabilities of the occurrence of a feature. The PropBayes can make an 

estimate of conditional probability of category assigned for a feature but only 

by assuming a product distribution. D-Tmin10 estimates the conditional 

probabilities separately for each set of conjunctions of features. This way, the 

DT-min10 avoids independent assumptions and demands larger training 

instances.  

 

In the paper [57], there are two algorithms which are made use of. The DTC 
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and RF classifier. Among the decision tree based algorithms, the J48 was 

chosen. The J48 algorithm is used to generate a decision tree. The WEKA data 

mining tool was made use of. This, according to the authors is a standard 

Decision tree algorithm. One of the classification algorithms in data mining is 

Decision tree induction. In this the classification algorithm is learned 

inductively to construct a model from previously classified data sets where 

each data item is defined by the values of the features. The RF classifier is 

described as a group of un-pruned classification or regression trees derived 

from random selection of samples of the training data. It is mentioned in [57] 

that Random Forests generally show better performance as compares to a 

single tree classifier.  

 

The three algorithms used for classification in [58] are SVM, RF and KNN. 

As discussed before, the data sets used are image data sets. The radical basis 

function (RBF) kernel of SVM is shown to be commonly used as a good 

performer and so the RBF is used to implement the SVM algorithm. Two of 

the parameters which have to be set are the optimum parameter of cost and the 

kernel width parameter. The Random forest makes use of two parameters to 

be set up. One is the number of trees and the other is the number of features in 

each split. According to [62], larger number of trees provide a stable result of 

importance. It is also mentioned that making use of more than the required 

number of trees can be unnecessary but, it does not harm the model [63]. For 

this study, a range of values for parameters were tested and evaluates to find 

the optimal Random Forest model for classification. In this, the tree value was 

taken as 100, 200, 500 and 1000 and mtree value was 1:10 with a step size of 

1. The K-nearest neighbors approach is non-parametric which has been used 

before [64]. The theory behind the KNN is that it finds a group of K samples 
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which are nearest to unknown samples and from these K samples, the class of 

unknown samples are determined by calculating the mean of the response 

variables. This is how the ‘K’ value plays an important role in finding the 

performance of the KNN. 

 

 

Results and Findings: 

The final results obtained as metrics and parameters show the efficiency of the 

algorithms used. In [56], there were the two algorithms used namely 

PropBayes and DT-min10 where the former makes use of a Bayesian 

classifier while the latter uses a DTC. PropBayes estimates a conditional 

probability of category assignment for a conjunction of feature values but by 

assuming a product distribution. DT-min10 estimates conditional probabilities 

separately for every selected set of conjunctions of feature values. The 

performance measures used were recall and precision. As mentioned, the 

algorithms were used on two different data sets. On one of the data sets 

(Reuters data), both the algorithms performed well. The DT-min10 algorithm 

performed well on the data set at high recall levels and gave about 95% recall 

value. However, on the other data set (MUC-3), both the algorithms 

underperformed comparatively. For PropBayes, the performance peaks at 

around 10 features for the first data set (Reuters data) and 15 features for the 

other (MUC-3). However, with more features, the performance starts to 

decline gradually. This is mainly due to the over fitting problem. DT-min10 

evaluates the quality of each feature in the context of the features in the tree. 

On the Reuters data, this algorithm is shown to improve through 90 features 

and peaks at 4 to 10 features on the smaller MUC-3 data set.  
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In [57], the classification results of the J48 decision tree and the RF algorithms 

were compared. Like mentioned in [56], the over fitting problem was likely to 

occur so in order to eliminate this issue, the accuracy was obtained using 10-

fold cross validation which makes use of 90% of the data for training and only 

10% for testing. All the 20 data sets, their number of instances and attributes 

and the correctly and incorrectly classified instances were tabulated. It was 

shown that the RF classifier gave better results for the same number of 

attributes and larger data sets. It was also shown that the J48 Decision Tree 

classifier was better for smaller data sets or when the number of instances are 

less. The performance metrics measured were Precision, recall and F-measure. 

Out of the 20 data sets, for one of them, both the algorithms gave very high 

results. The precision and recall values were 97.7% and 96.9% for RF and J48 

respectively. The conclusion they make is that RF classifier gives better, 

accurate and more precise values in case of larger data sets. 

 

The article [58] compared the performances of KNN, RF classifier and SVM. 

It was shown from the results obtained from experimentation that SVM gave 

the most accurate results which were then followed by RF and then KNN. The 

three highest accuracy values however of all the three classifiers were only 

slightly different. These three algorithms were tested on 8 sub data sets. The 

performances of KNN, RF and SVM classifiers were measured on various 

imbalanced and balanced training samples. SVM gave 96.32% accuracy for 

one of the imbalanced samples which was the highest. RF classifier gave 

94.7% accuracy as its highest and KNN gave 94.57% which was only 

marginally lower than the accuracy of RF classifier. On the balanced samples 

however, SVM again outperformed the other two algorithms by giving 

95.29% accuracy which was followed by RF classifier which gave 94.59% 
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and KNN gave 94.1% accuracy. It was shown that all the three algorithms 

gave accuracy values ranging from 90% to 95% with SVM producing the 

highest values of accuracy with the least sensitivity to training sample size 

which were then followed by RF classifier and KNN.  

 

Summary: 

The main purpose for researching the above three papers and comparing the 

derived values was to find suitable classification algorithms to perform 

training and classification on the data set. Among the various machine 

learning algorithms present, the need to zero in on only some to experiment on 

was required. The comparison of some algorithms shown in [25] gave me an 

idea as to which are the few algorithms I can use to perform classification and 

training on my data set. Then, the above three papers enables to use four of the 

algorithms in my algorithms. 

 

 

The machine learning classification algorithms used in my research gave me 

decent values of Precision, Recall and Accuracy but there was a requirement 

for further improvement in the values. Researching papers, articles and 

websites about Artificial Neural Networks (ANNs) gave me an understanding 

about the working and structure of ANNs and I came up with ideas of 

implementing a model using ANNs. Deep learning is a concept of making use 

of more than one intermittent layer of neural network layers in order to enable 

the model to train and learn even better. There are some types of neural 

networks which can be used for deep learning such as Convolution al Neural 

Networks, Recurrent Neural Networks, Long Short-Term Memory (LSTM) 

etc. After detailed study, I contemplated an approach to use RNN and LSTM 
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to build a model to improve the values of the parameters. Bidirectional RNNs 

and more specifically Bi-LSTM was the best concept I could think of based on 

my research, literature review and study to build a model to get the best 

results.  

 

The paper [65] deals with LSTM neural network for sentiment classification. 

The abstract of the paper mentions that RNNs are used more these days to 

classify text data and are displacing feed-forward networks in doing so. The 

goal of the paper is to demonstrate the working of LSTM networks and its 

modifications like bidirectional LSTM and Gated Recurrent unit to classify 

text data. The superiority of the model over other algorithms for text 

classification is demonstrated using three data sets. The results are compared 

with some feed-forward neural networks.  

 

Bidirectional LSTM networks for improved classification and recognition is 

studied from another paper [66]. In this paper, two experiments are carried out 

on a speech corpus text data set with bidirectional LSTM and LSTM 

networks. There are two goals the paper focuses on, the first is to show that 

Bidirectional LSTM outperforms regular LSTM networks and the second is to 

demonstrate a hybrid LSTM-HMM system and how it outperforms a 

traditional HMM system.  

 

Bi-RNNs are studied in detail using a data set in [67]. The goal of the paper is 

to show how when a regular RNN is extended to a Bi-RNN the network can 

be trained without the limitation of using input information and how it can 

give better results than a regular RNN.  
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Comparison of methodologies: 

In the research conducted in [65], dictionaries are made use. There 

dictionaries are collection of words which describe the surroundings and 

feelings and their order and context is important. The paper aims to classify 

entire sentences into groups using RNNs, LSTM, Gated recurrent unit and Bi-

LSTM. The paper describes the concept of LSTM and the reasons for the 

development of LSTM when there were already RNNs available. Bi-LSTM 

and Gated Recurrent unit networks are explained. The experimental setup 

makes use of three different data sets. For the experiment, the sentiment labels 

are divided into three classes ranging from in the scale from 1 to 5 where 1 

and 2 are negative, 3 represents neutral comment and 4 and 5 represent 

positive sentiment. The goal is to classify the content into positive, negative or 

neutral opinions based on the title. The results obtained from the RNNs and its 

derivatives are compared with the bag-of-words algorithm. The data was 

preprocessed in such a way that grammar and punctuation had no influence on 

the results and only pure word stream was used. The data was trained and 

results were obtained.  

 

In [66], the paper first describes LSTM network and the hybrid LSTM-HMM 

recognition model. The experiments were carried out using the TIMIT 

database [68]. Two experiments were conducted, the first experiment was a 

frame wise phoneme classification. In this experiment, the frames of speech 

data were classified into phonemes. The goal was to hand labelled 

transcriptions with data and the recorded scores were the percentage of frames 

in the training and test states.  The architectures were evaluated using Bi-

LSTM, Unidirectional LSTM, bidirectional standard RNN and unidirectional 
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RNN. For Bi-LSTM they experimented with duration weighted error where 

the error injected on each frame was scaled by the duration of the present 

phoneme. The Bi-LSTM hidden layers consisted of 140 blocks of one cell in 

each and the RNN hidden layers contained 275 units. The second experiment 

was phoneme recognition in which a HMM was developed with a speech 

recognition toolkit.  

 

The model and the experiments conducted in [67] do not make use of LSTM 

or Bi-LSTM as was in the case of [66] and [65]. RNNs are only used in the 

experiments described in this paper [67]. The experiments conducted in this 

paper aims to show the performances of ANNs and RNNs over artificial and 

real-world data sets and to show that RNNs outperform traditional ANNs. 

Then, a Bi-RNN was also developed which overcame some limitations of 

RNNs. At first, the concepts of RNNs and bidirectional RNNs were described. 

Two experiments were conducted on using artificial data and the other using 

real-world data. For each, the data was described, the experiment setup was 

shown and results were obtained.  

 

The paper [65] conducts the experiment where the labels are divided into 

classes representing the opinion or sentiment. Since the aim of the experiment 

was to classify the opinions based on titles, the results were compared to 

another model. The aim was to show that the accuracy obtained by using 

bidirectional LSTM, was greater than that of LSTM. In the paper [66] 

however, two experiments were conducted and unlike in paper [65], the goal 

here was to evaluate an architecture using four derivatives of RNNs. But 

similar to the paper [65], the results showed the high performance of using Bi-

LSTM and how Bi-LSTM outperforms regular LSTMs. In this paper, a hybrid 
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LSTM-HMM model was also developed and even in this, when it was 

upgraded to a Bi-LSTM-HMM hybrid model, gave better accuracy values. 

Paper [67] unlike the other two papers does not make use of Bi-LSTM and the 

experiments are limited to using just Bi-RNNs. There were some limitations 

observed when RNNs were put to use. In order to overcome these limitations, 

a model was developed using Bi-RNNs.  

 

So to brief things up, [65] and [66] conducts different types of experiments to 

show that Bi-LSTMs outperform LSTM models. One experiment was 

conducted in [65] and two were conducted in [66] so in between the two 

papers, there were three experiments all of which had different concepts. But 

in all three, it was shown that Bi-LSTMs give better results when compared to 

regular LSTMs. Paper [67[did not make use of LSTMs but the results of the 

experiments showed that Bi-RNNs give better results when compared to 

regular RNNs.  

 

 

The data sets used: 

Three data sets were used in the experiments conducted in paper [65]. These 

were: 

 

a) Spam base data set (1999) 

b) Farm advertisement (2011)  

c) Amazon book reviews data set (2016) 

 

The first data set consists of 13.4% spam messages and the rest were eligible 

messages [69]. The second data set was collected from text advertisements 
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found in 12 websites which deal with various farm animal topics. 53.3% of the 

messages were accepted while the rest were rejected [70]. The Amazon book 

review data set consists of 213335 book reviews for eight different books but 

the experiment was limited to five books.  

 

The data sets used in the experiments described in paper [66] were from the 

TIMIT database [71]. The TIMIT comprise sentences of prompted English 

speech with a full phonetic transcript. It contains a lexicon on 61 phonemes. 

There were 4620 utterances for training and 1680 for testing. For the 

experiments conducted, 5% of the training utterances were used as a 

validation set.  

 

Two experiments were conducted in paper [67] one using an artificial data set 

and the other using real time values. The artificial data set used for the first 

experiment, the data is generated by streaming 10000 random numbers 

between zero and one which is created as a single dimensional input data to 

the Neural network. The one dimensional output data is derived as the 

weighted sum of the inputs within 10 frames to the left and 20 frames to the 

right with respect to the current frame. For the other experiment, real time data 

was used. The TIMIT phoneme database is used which consists of 6300 

sentences spoken by 630 speakers. Two of the sentences are not included in 

the experiments and the remaining are divided into training and testing sets. 

The training set consists of 3696 sentences from 462 speakers and the test data 

set consists of 1344 sentences from 168 speakers.  
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Results and Findings: 

As discussed earlier, three data sets were used in paper [65]. The results 

obtained on the SPAM data set showed that the model using Gated recurrent 

unit gave the best accuracy results of 99.945% while Bi-LSTM lagged behind 

it by a negligible rate and gave 99.834% accuracy. When the Farm 

advertisement data set was used, Bi-LSTM model gave the best accuracy of 

96.017% while the model using Gated recurrent unit gave an accuracy of only 

87.521%. When the Amazon data sets was used, Bi-LSTM again had the 

upper hand in terms of accuracy value and gave 86.4%. Gated recurrent unit 

model gave 75.821% accuracy.  

 

Paper [66] conducted the experiment of frame wise phoneme classification 

where various derivatives of RNN were used and their performance values 

were compared. In this, the findings were such that Bi-LSTM gave the best 

training and testing values for just 21 epochs. The second best results were 

from Bi-RNNs. BI-LSTM gave 77.4% and 69.8% accuracies for training and 

testing sets respectively. Bi-RNNs gave 76.0% and 69.0% for training and 

testing respectively. 

 

In paper [67], it was shown that Bi-RNNs gave the best results for training and 

testing sets when compared to the other models on which the experiments 

were conducted. The unit of measurement was record rate percentage. For 

training data, Bi-RNNs gave 70.03 % and for testing, it gave 68.53%. These 

values outperformed the values of other models.  
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Summary: 

All the three papers take into account Neural Networks and more specifically 

RNNs. Both the papers [65] and [66] conduct various experiments using 

different data sets to show that Bi-LSTM is liable to give the best performance 

values compared to many other RNN derived networks. Paper [67] however 

does not include Bi-LSTM but shows that Bi-RNN has the capacity to give 

very good results when compared to regular RNNs. LSTM is a derivative of 

RNN. Researching these papers and comparing various aspects of the papers 

such as experiments and results, encouraged me to build a model using 

Bidirectional LSTM. 

 

 

A paper about Deep Learning (DL) and its various use in NLP was studied 

[73]. The paper throws light on the recent advancement of deep learning for 

NLP and also gives us knowledge on its advantages and drawbacks. It is 

assumed that there are five major tasks in NLP. They are: 

 

1. Classification 

2. Matching 

3. Translation 

4. Structured prediction 

5. Sequential decision process 

 

It is shown that DL approaches have outperformed traditional approaches in 

the first four tasks. Two of the key features that make deep learning powerful 

for NLP are end to end training and representation learning. It has been 

observed that deep learning can enhance the performances of the first four 
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tasks. Among the various NLP problems, progress in machine learning 

translation is remarkable. Machine translation using DL has significantly 

outperformed traditional statistical machine translations. DL has successfully 

been applied to image retrieval which involves text to image conversion, a 

task which was not possible till off late. In this task, query and image are first 

transformed into vector representations using convolution neural networks 

(CNNs) and the representations are matched with Deep neural networks 

(DNNs) and the relevance of the image to the query is calculated [74] .  

 

Some advantages of Deep Learning discussed in the paper:  

 

* DL is employed in natural language dialogue in which, if an utterance is 

provided, the system generates a response automatically and the model is 

trained in sequence to sequence learning [75]. 

 

* It is good at pattern recognition. 

 

* Cross model processing is possible. 

 

* Learning algorithms is simple. 

 

* Performance is high in many problems. 

 

 

Apart from the above mentioned, the paper also mentions that the 

representations of data in various forms using deep learning such as text and 

images can be learned as vectors.  
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A few challenges have also been mentioned: 

 

1. Not good for decision making. 

2. Difficult to handle long term phenomena. 

3. Model is usually difficult to understand 

4. Unsupervised learning methods still needs to be developed. 

 

 

Data in natural language follows a proper law distribution. And hence if the 

size of the vocabulary increases as the size of the data increases, it means that 

irrespective of the amount of data there is for training, there always exist cases 

that the training data cannot cover. By resorting to deep learning alone, this 

problem is hard to address.  

 

 

How this paper helped in my research 

The task of this paper is very basic. It first gives some information as to what 

deep learning is and how it has changed things for natural language 

processing. Then it speaks about the advantages and disadvantages of deep 

learning. 

 

1. ANNs are the basic most types of Neural networks. It does not enable us to 

solve a lot of classification and training problems alone. DL solves a lot of 

drawbacks of regular neural networks and this paper describes the advantages. 

 

2. Some of the advantages included that learning of an algorithm is simple and 
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it gives high performance. If an algorithm to train a large data set of email text 

data is used, then there is the requirement of high performance. Deep learning 

concepts like Deep neural networks appears to be the most feasible choice 

here. 

 

3. Thanks to the drawbacks mentioned, the drawbacks could be eliminated. 

The difficulty to handle long term phenomena can be addressed using LSTM. 
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This paper [76]  deals with sentiment analysis on multiple dimensions rather 

than just using a binary classification technique which may classify data into 

either positive or negative sentiments.The claim is that it provides more fine 

grained sentiment analysis. The proposal is about a regional CNN-LSTM 

based model which consist of two parts used for prediction. This is unlike a 

regular Convoluted Neural Network (CNN) which considers an entire text as 

input. In this proposed regional CNN, an individual sentence is considered as 

a region which divides an input text into many regions. This regional 

information obtained by this is integrated with LSTM for prediction. The 

authors propose that by integrating CNN with LSTM the local information 

within a sentence and long-distance dependency across sentences can be 

considered in the prediction process.  

 

The multiple dimension is a valence arousal (VA). The approach represents 

emotional states as continuous numerical values in multiple dimensions. The 

dimension of valence refers to the degree of positive or negative sentiment 

while the dimension of arousal represents the degree of calm and excitement. 

Both the degrees range from 1 to 9. The authors predict that such high arousal 

texts could help prioritize product reviews. The research has addressed VA 

recognition on a word-based level as well as a sentence based level. Generally, 

Convoluted Neural Networks are capable of extracting local information, but 

they are liable to fail when capturing long distance dependencies. This is 

where LSTM comes into play. A CNN-LSTM integrated model has been 

proposed which comprises two parts.  

 

Regional CNN-LSTM Model: 

In this model, the word vectors of words are trained from a large corpus using 
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Word2Vec toolkit. For every text the regional CNN model uses a sentence as 

a region to divide the text into a number of regions. Useful features can be 

extracted from each region. This occurs once the word vector passes via 

neural network layers. These regional features are then sequentially integrated 

across other regions using LSTM to build a text vector for prediction.  

The following Neural Network layers are used to pass the word vectors: 

1. Convoluted Layer 

2. Max-Pooling layer 

3. Sequential Layer. 

 

The values in both the valence as well as arousal dimensions are continuous. 

The VA prediction requires a regression and hence a linear activation function 

is used in place of a softmax classifier.  

 

 

Experimentation: 

The proposed CNN-LSTM integration model is evaluated using three 

methods.  

 

1. Lexicon-based 2. Regression-based 3. Neural-Network based 

 

There were two different data sets used for the experimentation. A standard 

sentiment treebank and a Chinese VA text dataset. Two lexicon based 

methods were used for comparison.  

 

1. Weighted Arithmetic Mean (wAM) 

2. Weighted Geometric Mean (wGM) 
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These were used alongside two regression based methods: 

 

1. Average Values Regression (AVR) 

2. Maximum Values Regression (MVR). 

 

The valence ratings of English words were taken from the extended ANEW 

and those of Chinese were taken from Valence Arousal Words (CVAW) 

lexicons. A CNN, RNN and LSTM were also implemented for comparison. 

 

Performance was evaluated using the following: 

 

Root Mean Square Error (RMSE) 

  

 RMSE = √(Σni=1 (Ai – Pi)2 / n)     --- (1) 

 

Mean Absolute Error (MAE) 

 

 MAE = 1/n Σni=1 |Ai – Pi|      --- (2) 

 

Pearson Correlation Coefficient (r) 

 

 r = 1/n-1 Σni=1 ((Ai – Ã)/σA) ((Pi – Ṕ)/σP)   --- (3) 

 

In the above formulas: 

Ai : Actual Value     n : Number of test samples 

Pi  : Predicted Value    Ã : Arithmetic mean of A 

Ṕ : Arithmetic mean of P    σ : Standard deviation 
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Results: 

Comparative results of the regional CNN-LSTM were put against the results 

of other methods for VA prediction of text for both English and Chinese 

corpora. For the lexicon based approach, the wGM outperformed wAM. The 

regression based methods showed better performance as these methods learnt 

the correlations between the VA ratings of words and text instead of using the 

VA ratings directly. The performance of Neural Network based methods 

improved the performance drastically when the word embedding and deep 

learning techniques were introduced. The regional CNN-LSTM outperformed 

the other Neural Network based methods. It is also shown that arousal is 

difficult to predict as Pearson correlation coefficient of prediction is arousal is 

lower than that of valence prediction.  

 

How was this paper helpful in my research: 

 

1. While researching about Recurrent Neural Networks, this paper was found 

to be interesting as it talks about a model which uses LSTM in it. It tells us 

about the working and advantages of LSTM. 

 

2. The paper gives idea about a higher dimensionality of sentiment 

classification other than just a binary classification. 

 

3. The strengths of Neural networks and how they are better than traditional 

machine learning algorithms for learning is identified here. 



43 

Some other sources of information I found on the internet which helped me in 

my research: 

 

This research paper shows how context can better a sentiment analysis model 

for text data [81]. 

 

This paper gives elaborate information about cleaning noisy email text data 

which is to be subjected to natural language processing [155].  

 

This paper elaborates about how bidirectional LSTM networks are used to 

parse a graph based dependency. The information gathered by reading this 

paper was useful to understand how bidirectional LSTM networks can help 

not only retain memory over a long period of time but also to get more than a 

single source of memory [168]. 
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5. Introduction to Sentiment Analysis 

 

Sentiment analysis aims to decide the opinion polarity passed on through a 

range of text data regarding a particular entity [1] This text data can concern 

anything ranging from objects, reviews, one-liners, comments etc. It deals 

with the process of categorizing sentiment from textual data and determining 

what the data signifies and if it a positive sentiment or a negative one [1]. 

Other ways of referring to Sentiment analysis include Opinion Mining or 

Subjectivity analysis [86]. It falls under the domain of Machine learning and 

has picked up pace over the last decade courtesy of the numerous use of social 

media, blogs, and networking sites [1]. Sentiment analysis refers to classifying 

the opinion or polarity of the text data into positive, negative or neutral 

sentiment and at times also calculate the intensity of how positive, negative or 

neutral it is [87]. There are numerous methods of performing sentiment 

analysis along with a number of different algorithms that can be used to 

classify the data based on sentiment [88].  

 

One of the major applications of sentiment analysis is to evaluate the 

performance of a company’s products or services [89]. This is the application 

mainly considered in this thesis. In short, by classifying the sentiments or 

opinion on a product, it gives the company which is dealing with that 

particular product a better insight of how good the product is in the hands of 

customers. For instance, if the negative sentiment about the product exceeds 

the positive ones, then it can be deemed as a bad product for the company. 

Considering the granularity of the text data, there are different levels in which 

sentiment analysis can be carried out.  
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1. Sentence Level [2]  

2. Aspect Level [3]  

3. Document Level [4]  

 

The thesis goes through the three levels of sentiment analysis and shows how 

accurate the classifications are. The research included many steps and 

findings, building a better model over the previous one not only to increase the 

efficiency or/and accuracy but also to build a more robust model to perform 

sentiment analysis on larger data sets. Let us go through a very basic approach 

of Sentiment analysis. 
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A very Basic Sentiment Analysis Approach 

 

In order to demonstrate a very basic form of sentiment analysis a simple data 

set of unlabelled text data was made use of. Basically, sentiment analysis 

comprise three steps, The initialization step where data is collected and 

preprocessed, the learning step where the data is trained and the evaluation 

step where data is tested and classified. The first step was to develop a very 

simple sentiment analysis model which uses the basic method to sequentially 

classify each text data from a large data set into its respective sentiment 

according to rules provided.  

 

Let us take a look at Algorithm_1a in the appendix section. This program 

written using Python3.6 shows a basic rule based sentiment analysis working 

on a data set of reviews. What this algorithm basically does is, it goes through 

each line of the data set which contains text data, it makes use of a basic 

machine learning library called Text blob and classifies each text data into 

sentiment. In this, the step of pre-processing the data is missing. The text data 

is subjected to classification as they are. The missing step of processing the 

data is shown in the next algorithm.  

 

Outline and Working of the algorithm 

Refer to Algorithm_1a in the appendix section. The programming language 

used here is Python3.6 as mentioned. At first, the required libraries and 

modules are imported. Then the data set is read into a data structure called 

Data frame which will be explained in detail later. The data set is a large data 

set of reviews of some online course provided. The module used to create the 
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data frame is Pandas. Pandas is a Python library that consists of data structures 

and functions which can be made use of to work along with structured data 

efficiently and in an expressive way and is an important module in python 

which serves as a good tool for data analysis [5]. The data structure used with 

Pandas is a data frame which comprise rows and columns of data. Once the 

data set is loaded into the data frame, we then create a simple list from the 

data frame so that it makes it easier to iterate through the list. This list just 

consists of the ‘Review’ column of the data set which consists of the reviews. 

Now the module Text blob is used to classify the sentiment into positive, 

negative or neutral using an inbuilt function. Text blob is a library in python 

which provides API for natural language processing tasks to process textual 

data [6]. At first, three variables are initialized each to hold the number of 

positive, negative or neutral sentiments. Then the list containing the reviews is 

iterated over. Each string or text data is subjected to sentiment classification. 

This is where the Text blob functionality comes into play. An object 

‘Textbook’ under the text blob library is used to create a blob which is in turn 

stored in the variable ‘blob’. By performing blob.sentiment.polarity, we can 

get the polarity of the sentiment. Polarity is an object under sentiment of a 

blob variable which analyses the sentiment of the text and gives a polarity 

ranging from -1.0 to +1.0 where -1.0 represents absolute negative polarity and 

+1.0 represents absolute positive polarity. This way, each text data is given a 

polarity. In the next step, a label is provided which is based on the polarity. 

The labels range from 1 to 5 where: 

 

1 represents very negative, 

2 represents mildly negative 

3 represents neutral 
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4 represents mildly positive and 

5 represents very positive. 

 

The blob.sentiment() function of text blob uses an inbuilt rule based analyser 

to give this polarity. In the same step, the positive, negative and neutral scores 

are also calculated. At the end, the one with the highest score happens to 

represent the overall sentiment of the data. In this case, it turns out to be a 

positive sentiment.  

 

Note that the step of pre-processing the data is missing in this algorithm. Now 

we shall consider another algorithm which does the same as the previous 

algorithm but where the data is subjected to pre-processing.  

 

 

Subjecting Processed data for classification: 

Let us consider Algorithm_1b from the appendix. The main working is the 

same as in the case of Algorithm_1a but in this case, the data is first processed 

and is then subjected to classification using Text blob. When we look at 

Algorithm_1b, we see the function or method process() which does the 

processing of data. Data processing is done mainly so that it makes it easier 

for the classifier to understand the data. Processing of data can include steps 

like removal of unwanted data such as proper nouns, trimming particular 

words and others. In the above algorithm, Python’s NLTK is used for 

processing the data. NLTK stands for Natural Language Tool Kit. NLTK is a 

collection of open source modules and provides tools used for natural 

language processing [7]. Natural Language Toolkit (NLTK) is a 

comprehensive library in Python mainly used for NLP functions and text 
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analytics which is adopted in the industry for research and development due to 

its various advantages [8]. NLTK will be discussed in detail further in the 

thesis so let us focus more on the algorithm. The process() function loads the 

data into a data frame, and subjects each text data from the ‘Review’ column 

of the data frame which contains data about reviews of the course and sends 

each text data to another function preprocess() which will make use of various 

functionalities of NLTK. We can see various applications of NLTK like 

removal of stop-words, word tokenization, stemming and removing of 

punctuations all of which will be in detail discussed later. This processed text 

data is sent back and is added into a new column in the data frame. This data 

frame is then subjected to the same classification steps that are carried out in 

Algorithm_1a where making use of Text blob, we can derive a polarity for 

each text data and an overall sentiment can be given. 
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Comparing the two algorithms: 

The only difference between Algorithm_1a and Algorithm_1b is that in the 

latter, the text data is processed first and then sent for classification but on the 

other hand, the former lacks this step. This comparison of the two algorithms 

shows what efficiency processing of the data can provide us with. Let us take 

a look at image-01 in appendix which show us the time taken for text blob to 

assign a polarity to each text data, deriving the positive, neutral and negative 

scores and defining the overall sentiment of the data set. The image_01 in the 

appendix section shows the overall sentiment derived using Algorithm_1a and 

the number of seconds taken for the above three steps mentioned compared 

with Algorithm_1b. We can see that while Algorithm_1a takes about an 

average of 45 seconds to assign polarities for each text data, derive the scores 

and define the overall sentiment, Algorithm_1b takes an average of about 38 

seconds which is about 7 seconds faster. The data set used here is about 2.7 

MB. The above observation shows the advantage of processing text data 

before subjecting them to classification.  

 

Now let us consider the same method of using Text blob to analyse a data set 

of Twitter data. 
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Analysing Twitter data using Text blob 

In the previous examples it was shown how Text blob can be used to analyse 

text data and classify them into positive, neutral or negative. Now let us 

consider an example where Twitter data is being analysed. In the next 

example, a model is shown which accepts parameters and accordingly gives us 

output values which is an analysis of the data. Tweepy library of python was 

used in this. Tweepy is a library in Python which can be used to interact with 

Twitter’s API [11]. Tweepy also provides us with access to Twitter API, and 

so we can get to use data sets of Twitter data [11]. It comes with various 

functionalities to analyse Twitter data. Then apart from Tweepy, Text blob 

was used as shown in the previous examples and the same functionalities of 

Text blob were used to classify the sentiment into positive, neutral or negative.  

 

Reasons for analysing Twitter data: 

The process was started with Twitter data or ‘Tweets’ because each element of 

text data will be comparatively shorter when compared to very large text data 

sets like email or documents. Tweets generally comprise one line data and 

only a few words [90]. However, there were some tweets which consisted of 

two to three lines of text data in the data set used here. Another reason for 

considering analysing Twitter data was to show the use and advantages of data 

pre-processing. Data pre-processing as discussed earlier enables us to derive 

data which the model can more easily read as compared to the data that is 

unstructured without being subjected to pre-processing. Since on Twitter data 

or Tweets, a lot of special characters are used. Apart from these characters, 

each Tweet consists of an ampersand (‘@’) and this data will not be required 

to be subjected to classification as it does not refer to any sentiment. The 
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processing of Twitter data will be discussed later. Twitter data will also 

contain a lot more emotions and emotes as compared to reviews about a 

product. These can be considered for deriving the sentiment.  

 

Research: 

The algorithm of using Text blob along with Tweepy was developed after 

researching about Tweepy and its various functionalities. The Tweepy 

documentation [12] gives a large idea of how the module or library can be 

used to perform sentiment analysis on Twitter data. 

  

An article very useful in which the authors have made use of Tweepy to 

perform sentiment analysis based on location which identifies trends towards 

elections in a country [11] was also useful. In this paper, the authors have 

come up with a model to analyse the Tweets and also collect the data about its 

location. Using this, they analyse what political party the user/typist of the 

Tweet is either for or against and the location of that person. They then plot a 

map which shows how likely a place in the country is likely to vote for which 

of the political parties. Along with Tweepy, a Twitter-API related to Geo-

location was also made use of. They have also discussed data pre-processing 

which made use of understanding and analysing emotions.  

 

 

Method and explanation of algorithm: 

Although the algorithm used in this thesis was not as complex as the one 

mentioned in [11], researching the paper gave an advantage to use Tweepy to 

perform simple sentiment analysis using Text blob.  

 



53 

Refer to Algorithm_2a. In this, we first encounter four variables once the 

required modules are imported. There four variables are: 

 

1. consumer_Key 

2. consumer_Secret 

3. access_Token 

4. access_Token_Secret 

 

In order to collect Twitter data and use them, it is necessary to set up a 

protocol which allows user profiles to access an API. For this, we have to 

specify the four variables. These are keys and tokens for one to authenticate 

and make use of the Twitter API. These tokens are generated automatically 

when we register to Twitter. These four variables are initialized and their 

respective values are given in string formats. We also have to specify 

authentication parameters. Two other variables are also initialized for which 

the user is expected to give in values. The first in the search term. In this the 

user gives a string data of what term specifically has to be analysed and the 

second variable is number of search terms which is a numerical value of how 

many of those terms need to be analysed. Once this is done, we initialize three 

variables of the positive, negative and neutral values. From here on, the 

method is very similar to the previous algorithms. First, the Tweets are 

iterated and for each, Text blob is used to classify it into positive, neutral or 

negative sentiments and polarity is also calculated. With each variable one of 

the three variables (positive, neutral or negative values) increases. Finally, the 

percentage of each of the three values is found and whichever is the highest, 

the search term corresponds to that sentiment. Image_003 shows a few outputs 

of the above algorithm. 
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The above algorithms showed a rule based approach to analyse text data 

making use of NLTK for processing and Text blob to classify data and derive 

sentiment. Although is it easy to interpret and generate a rule based classifier, 

it involves manual work, and has lesser learning capacity [9]. It is also meant 

to be more time-consuming [10]. In order to overcome the shortcomings of 

rule based classification, supervised classification was adopted. 

 

 

Using Machine Learning algorithm to perform Twitter sentiment 

analysis: 

Supervised Learning can be defined as a learning paradigm which deals with 

the study of how computers learn to use labelled data [13]. So when we 

consider a labelled data set, we can subject the processed data to classification 

which makes use of the various algorithms present for classification. We can 

build a model of our own using these. To demonstrate this, a data set which 

consists of Twitter data or Tweets are used and are subjected to analysis. The 

algorithm also shows the pre-processing of the Twitter data and how 

specifically for Twitter data, special considerations are made to process the 

data before subjecting them to classification. In the earlier models or 

algorithms, It is shown how a group of words of text data can be analysed 

using a simple functionality of the Text blob module and can be classified into 

groups such as positive, neutral or negative. In this case, and the ones that 

follow, labelled data is made use of. Which means each text data is already 

classified and a label is provided which groups that text data into positive, 

neutral or negative. But what is introduced that is new is that the model is 

subjected to classification and training. As discussed before, Twitter data is 
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easier to analyse comparatively when we take comment data, reviews of 

something or large documents. So in this, a simple algorithm which processes 

the data, and makes use of a simple machine learning algorithm to train the 

data is made use of.  
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Reasons for considering this approach: 

Basically, classification of data discussed so far is only a basic part of 

sentiment analysis and does not directly deal with any concept of Machine 

Learning as there is no training of model present. This example of an 

algorithm introduces us to how a basic training model can be developed and 

the information that can be derived out of doing so. Again, the steps of pre-

processing the data are shown. This example is also to enable one to 

understand the process of training data and if he / she can understand this, the 

research that follows can also be understood with clarity. 

 

Research Conducted: 

The algorithm developed can be used for other kinds of data such as 

comments or reviews of a product. So it is a model that works well across a 

verity of domains. What varies slightly are some steps in pre-processing the 

data as Tweets are special text data with certain characters. An article about 

Twitter sentiment analysis making use of distant supervision [14] was studied 

in order to come up with this model. The article gives us an idea of how an 

automated method of classifying sentiments of Twitter messages was made 

use of. The goal of the above mentioned paper is mainly to help consumers to 

make a decision of whether or not to buy particular products based on Twitter 

data about that product. This goal is similar to that of my Research work.  

 

The research of [14] is a result of analysing an article [15] published article 

and makes use of the same data which consists of movie reviews in the form 

of Twitter data. The above data has been analysed. The approach followed by 

the authors of [14] is to eliminate the recognized neutral Tweets and hence 

considering only the positive and negative Tweets. Constraints such as 
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maximum length of a Tweet, language model and domain are defined. The 

Machine learning algorithms used for classification are i) Naive Bayes, ii) 

Maximum Entropy and iii) Support Vector Machine (SVM). The pre-

processing of raw data included some steps. Some of them included, removal 

of only noisy emoticons [16], Removing links, user names from the raw Tweet 

and removing repeated words. The processed data was then subjected to 

training using the three classifiers. The derived accuracy using Naive Bayes 

was 81.0%, using Maximum Entropy was 80.4% and using SVM was 82.9%.  

 

How the above research helped: The primary use of researching the above 

paper [14] was to get an idea of processing raw Twitter data. The methods 

followed included removal of noisy (or useless) emotions. It also included 

removal of repeated words and links from the data. The paper also gives a 

brief information about three machines learning algorithms namely Naive-

Bayes, Maximum Entropy and Support Vector Machine. In order to proceed 

with the research, It was vital to gain some knowledge about the various 

Machine Learning algorithms and how they can be used. The working of these 

algorithms is also shown which helped me. 

 

Explanation of the Model and methodology 

The model conducted for the above research includes a basic sentiment 

analysis approach. Let us refer to Algorithm_2b in the appendix section. The 

program is written using Python3.6 and several modules and libraries have 

been made use of. We see in the start that required modules are imported. 

Some of these modules are pandas, which is used to create data frames to store 

our raw labelled data, sklearn to use machine learning algorithms to train and 

classify the data, nltk using which we can process the data and several others.  
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This algorithm or program consists of three different functions or methods. 

Function ‘process()’ is used to create a data frame, and send each row of data 

from the data frame to another function ‘pre_process()’ to process the raw data 

so that it can be easier for training purposes. The method ‘pre_process()’, 

makes use of several NLTK functions. NLTK, its functions and other modules 

will be explained in detail further in the thesis. To explain in brief the working 

of the function, the word_tokenize functionality of NLTK which will create a 

list of words from the text data which is passed as a parameter to the function 

is used. Then, stop words (Words that are not required. This will also be 

explained later) are removed. After this step, the sentence is stemmed and 

finally, punctuations are removed. This is now processed data as unwanted 

characters such as punctuations and stop words are removed. The raw data is 

sent back to the function process() and is added to a new row which is created 

in the data frame. Once every row of data is processed and is added to a new 

row, the entire data frame is sent to the function ‘tweet_analysis()’. This is 

where the classification and use of machine learning algorithms for training is 

used. We can observe that first, the rows of the data frame containing the 

Reviews and Labels are named and are put into a list for each of them. Then 

the lists are divided into training and testing purposes. After this, a 

classification algorithm to classify and train the data is used. This is the K-

Nearest-Neighbor algorithm. Using this algorithm, four values have been 

calculated: 

i) Accuracy  

ii) Precision  

iii) Recall Value 

iiii) F-Score 
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The values of the above parameters are as follows for a selected data set: 

 

i) Accuracy --> 74.65% 

ii) Precision --> 67.22% 

iii) Recall --> 60.43% 

iiii) F-Score --> 63.04% 



60 

 

The Data Set 

The data set selected for the above model is a csv file which consists of 

reviews of an airline. The csv file consists of 14641 columns of data and 

several other columns. When loaded into a data frame using Pandas, we can 

see that the various rows in each column consists of the review in text form 

which are the Tweets, a label which has data in three forms (positive, negative 

and neutral), a column for the reason of the review and others. What we need 

to consider are only the reviews and the labels. In this data set the label is in 

text form of ‘positive’, ‘negative’ and ‘neutral’. In the data sets used 

previously for Algorithm_1a and Algorithm_1b consists of labels in numerical 

forms like 0, -1 and 1. This is a relatively small data set which is 3.5 MB and 

consists of only Twitter data. 

 

Reasons for presenting this model and algorithm 

The above model and Algorithm_2b was presented to show basically how 

sentiment analysis is performed on Twitter data. Twitter data is comparatively 

easy to analyse and when we consider data sets which are larger and may 

consist of a few lines of data, we can use a similar approach. The next few 

chapters deals with analysing sentiment on a larger data set. Unlike in 

Algorithm_1a and Algorithm_1b, we are not just analysing each data and 

classifying them into positive, negative or neutral sentiments. Sentiment 

analysis is not just about classifying the data but also training the data and 

calculating the precision and accuracy. For this purpose, the above model is 

presented.  

 

Note: The Algorithm_2b makes use of K-Nearest-Neighbor algorithm for 
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classification and training. The algorithm along with the reason for 

considering it will be elaborated later on. 
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6. Framework of Methodology 

 

The methodology was to follow the research method which is a quantitative 

analysis involving experimentation. We come up with a model, analyse the 

model along with its drawbacks and find a way to either improve the model or 

build a new model either ways intending to address the drawbacks of the 

previous model. First, the same model which was described in the previous 

chapter was considered and used but with the email data set which will be 

used across all the algorithms. In order to derive better results, a model where 

the pre-processing of raw data is done better was made use of. The concept of 

vectorization was introduces to give weights for each word and other 

classifiers were used. The best results were derived when the model 

implemented using RNNs was used. More specifically when the model using 

bidirectional LSTM networks was used, the best results were derived. 

 

The basic requirments to go ahead with implementing this methodology is a 

large email data set and a set of algorithms which are suitable to use to 

perform sentiment analysis on the data set. We make assumptions such that 

one classification algorithm can give better values than another but we can 

only prove it by experimentation.  
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7. Methodology Section 

 

In this section the main algorithms used, the working and research conducted 

will be discussed. In the previous chapter / section we have seen the basic 

models of sentiment analysis to get an understanding of how sentiment 

analysis works. In this section, we attempt to answer the Research Question by 

introducing a model, implementing it, noting the drawbacks and either 

improving the model to give better values or build another model which 

addresses the drawbacks of the previous one. The section shows a set by step 

procedure of how the best model was come up with after extensive research 

and experimentation. 

  

 

1. Implementing the model on a large email data set 

 

In the previous chapter, a model was demonstrated using which Twitter data 

was analysed and for classification and training KNN algorithm was used. As 

discussed, the data set was small labelled data set of Tweets which was about 

3.5 MB in size. Here we shall consider the same model for a much larger data 

set and in this case, the data set consists of chains of emails in text form that 

are much larger than the ones in the data set used in the previous algorithm for 

analysing Twitter data. The main reason for using the same model for just a 

different data set is to show how good the model can work across different 

domains or different labelled data sets.  
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Methodology and explanation of the model 

Since the same model used for the Twitter sentiment analysis is being used 

here, the steps are all the same. The only difference in loading a different data 

set. Refer to Algorithm_3a which is again written using Python3.6. We 

observe that all the steps are just the same. 

 

The reason for using the same model is, so we can observe how the model can 

work across various data sets. Apart from this, by comparing the values such 

as precision, recall and accuracy with the ones in the previous algorithm for 

Twitter data analysis, we can see if the model can actually perform better or 

worse with a much larger data set. 

 

 

Observations 

As mentioned, the main reason for comparing the values of the parameters 

with the ones derived by analysing the Twitter data is to observe how well the 

model can perform. The data sets used were different. While Algorithm_2b 

used a small 3.5 MB data set of Tweets, Algorithm_3a used a large email  data 

set. The execution for the latter was more but gave better performance metrics 

than the former. 

 

 

Reasons for using K-Nearest-Neighbor classifier 

For both Algorithm_2b and Algorithm_3a the machine learning algorithm 

used was KNN. Among the various algorithms available for training and 

classification, the KNN classifier was specifically chosen at first simple 

because it is a non-parametric and a lazy learning algorithm [17]. This 
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algorithm does not make any pre assumptions of data distribution which are 

helpful in cases where the data sets do not follow mathematical assumptions 

[17]. It also requires no training data points to generate a model which makes 

training of the data faster [17]. KNN algorithm is one of the oldest and 

simplest methods of classification [18]. In a study conducted, it was assumed 

that KNN always belonged to the same class while examples from different 

classes were separated by a large margin [18]. In this article, the author 

mentions that when there is minimal knowledge about distribution of data, 

KNN happens to be one of the simplest and fundamental methods of 

classification [19]. All the above mentioned were the reasons I chose KNN 

algorithm for classification in the above two algorithms. 

  

Note: The working and functioning of KNN algorithms will be explained in 

detail in a later part of the thesis. Shortly, we shall also see the training and 

classification of data using other machine learning algorithms, why they were 

used and how they compare against KNN. 

 

Advantages and Drawbacks 

One good thing about the model is that it gave decent results of precision and 

recall. These values were better than the ones where a smaller data set 

consisting of Twitter data was used. But still, about 71% precision and 67% 

recall are not really high values. A better model has to be considered which 

can either:  

i) Have better processed raw data or 

ii) Make use of other machine learning classification methods. 

 

This way, we could better the precision and recall values 
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2. Using Named Entity Recognition to process the data 

 

In most cases, the data sets available which contain data in text form will be in 

simple English. This text data can be reviews as seen in the data sets used in 

above mentioned algorithms, comments or Tweets. Authors mention that there 

are factors that affect the success of a task performed using Machine Learning 

and the quality of the data is of great importance and if there happens to be 

irrelevant, unwanted and noisy data then the training of data can be 

challenging [20]. Preparing data for training is mandatory as unprepared or 

unclean data can affect a data mining algorithm from training the data 

properly [21]. The main purpose of cleaning the data is for these reasons. So 

that during the training phase, the data can be trained better. In the above 

algorithms we have made use of the NLTK module of Python3.6 [8] to clean 

the unwanted data. The steps included removal of stop-words, removing 

punctuations and stemming (All of which will be discussed later in the thesis). 

Apart from the usage of NER-Tagging, the dropna() function is also used on 

the Data Frame in order to remove the rows of data will null values.  

 

New method considered 

After reading about NER-Tagging and its use in processing of data, using this 

method in my model was considered. This was added as an additional step in 

the pre-processing phase where the words recognized as ‘NNP’ or Proper 

Noun by using the NER-Tagger, were removed. This was based on the 

assumption made that Proper Nouns are noisy or irrelevant and can be 

removed in order to better the training of data. In domains such as information 

retrieval, information extraction and machine translation, Named Entity 
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Recognition and more particularly classification of proper nouns plays an 

important role [22]. The KNN method was used here as well for classification 

and training and then in the next algorithm, three other classifiers were used. 

Particular entities that have unique context are named entities [173].  

 

Note: The working of NER-tagging will be explained in detail later in the 

thesis. 

 

Research conducted 

Apart from reading about NER-Tagging from various links on the internet and 

some Python NLTK tutorials, I also experimented around with some text data 

using NER-Tagging. NER-Tagging enables us to extract data like names, 

places, organization names events etc. The paper [23] gives a description 

about how an application was developed which made use of Named Entity 

Recognition with Maximum entropy to retrieve entity sets from a database 

[23].  

  

Other articles also showcased the use of Named Entity Recognition where it 

can be used to get names or organizations or places from large text. Such data 

can be tagged and can also be removed if one feels that group of tagged 

entities is not required. This is a functionality of the NLTK module of 

Python3.6. 

 

Explanation of the model and algorithm 

The algorithm that explains this model is shown in Algorithm_3b. This is 

similar to Algorithm_3a is all the steps except for the pre-processing of raw 

data which in both the algorithms is shown in the ‘pre_processing()’ function. 
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In Algorithm_3b, in the data processing method or function, we can observe 

that a variable ‘tagged’ is used. Another variable ‘namedEnt’ is a list of all the 

named entities. As every entity is looped over, when a proper noun (tagged as 

NNP) is found, it is removed. This as mentioned before is based on the 

assumption that proper nouns are noisy. The steps that follow are the same as 

Algorithm_3a. In the next method, a few other classifiers will be 

implemented. The same will later be implemented to Algorithm_3b as well. 

The same algorithm (Algorithm_3b) is then implemented using three other 

classifiers (DTC, RF and SVM) and this is shown in Algorithm_3c.  

 

Note: The only difference between Algorithm_3b and Algorithm_3c is that in 

the latter, there are fours classifiers used as opposed to only one (KNN) in the 

former. 

 

Additional pre-processing 

This algorithm featured a more complex pre-processing module for the raw 

data. The same pre-processing steps were used in the next two algorithms as 

well. The pre-processing was based on the text that was present in the data set. 

This data set comprises email data which are chains of emails. The pre-

processing improvements made are: 

 

* In some of the rows of email text data there were dates present such as 

‘31/10/2017’. This date was considered unwanted and were removed using 

NLTK. 

 

* Most of the emails consisted of formalities such as ‘Good morning’, ‘Hello’, 

‘Greetings’ etc. These again were noisy or unwanted data and were removed 
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using a list of such formality texts in string forms. Example - [‘hello’, ‘good 

morning’, ‘regards’, ‘greetings’].  

 

* A few informal email texts were observed in the data set which consisted of 

unwanted punctuations. Unwanted punctuations were also assumed to be 

typos. These were removed.  

 

* NER tagging was used to remove proper nouns. So at the end of the email, 

mostly there would be a proper noun as a signature. These were removed.  

 

* Some of the rows of data had null data in them. These were dropped using 

the dropna() function.  

 

Observations 

After subjecting the same data set to classification and training,  the following 

values of precision, recall, f-value and accuracy were derived.  

 

It can be observed in the results section that with respect to all the parameters, 

the model which makes use of NER-Tagging gives slightly better values when 

compared to the model which does not make use of NER-Tagging in the 

processing of raw data. This is the reason for me to consider either using 

NER-Tagging. 

 

Drawbacks 

The most evident shortcoming is that the precision, recall and f_score were 

only slightly better when compared to the model which did not make any use 

of NER-Tagging. The other drawback was that execution time was really high 
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when compared to the other model. The execution of the program took a lot 

more time when compared to the other model, approximately 4 minutes more. 

This was mainly because of the large increase in the number of iterations to 

tag entities. In such a data set, the text data consists of chains of email data 

which is labelled. If for the current data set, if the execution time is really 

high, then it is practical to assume that it can take exponentially lot more time 

for the email data set which is much larger. 
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3. Introducing other classification algorithms 

 

Based on research, the algorithms using KNN for classification and training 

were implemented as it was found to have some advantages which makes 

implementation easy. The other major reasons to consider KNN are mentioned 

in the previous chapter. Each machine learning classification techniques are 

used for different purposes and in different scenarios based on the type of data 

or a method required to classify data [91]. KNN was chosen because of the 

reasons which are already mentioned in the earlier chapters. It should be noted 

that all of these classification algorithms when implemented using Python3.6 

make use of a module or library called SciKit Learn (Or sklearn). Sklearn is a 

module in Python which makes use of various machine learning algorithms 

for training of supervised or unsupervised data and aims to make machine 

learning easy using high level language [24]. Even the KNN classification was 

implemented using sklearn module as observed in the algorithms. Every 

machine learning classification method also comes with its own advantages 

and shortcomings. As the data set used was labelled and various classification 

methods could be used to classify data and train them, some other 

classification algorithms were studied and implemented them. The results of 

precision, recall, f-score and also accuracy were compared across various 

machine learning algorithms and the results were observed.  
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Why is this important 

Since the role of this thesis is to analyse sentiment over large data sets, it is 

important to come up with a model that not only gives the best classification 

results but also has a high precision and recall value. Initially, in order to 

demonstrate the working of sentiment analysis over a text data set, KNN 

classifier was used. KNN comes with its advantages, one of which is that it is 

easy to be implemented. But one should keep in mind that for a simple data set 

of labelled text data, other classifiers could derive better or worse values. One 

way to find this out is to implement them for the same data and calculate the 

precision and recall values.  

 

 

Research conducted 

A survey of analysing the uses of various methods of machine learning 

algorithms [25] threw light on the advantages and disadvantages of five 

different methods. The methods considered were KNN, DTC, SVM, Neural 

Networks and Bayesian Belief Network. This comparison once again 

mentioned easy implementation to be one of the advantages of KNN [25]. The 

method with most advantages mentioned was DTC. It is mentioned that there 

be no prior knowledge on the domain required to carry out this method, and it 

can handle numerical and categorical data [15]. Like KNN, it is also easy to be 

implemented. SVM was said to give better accuracy as compared to other 

classifiers [25] and can also handle complex non-linear data points better. It 

was also mentioned that Neural Networks were capable of handling noisy data 

which was a clear drawback when using NER-tagging.  
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This gave a brief but informative explanation of a few machine learning 

classifiers with their uses, pros and cons [26]. In this, SVM classifier is 

defined as a representation of training data as points in space which are 

separated by spaces as much as possible. It is mentioned that SVM is effective 

when it comes too high dimensional spaces and makes use of a subset of 

training points. Even here, KNN is defined as non-parametric and a lazy 

algorithm and is not really a learning algorithm and simply classifies based on 

similarity of input variables [26]. Another classifier is DTC which splits the 

sample into a number of homogeneous sets called leaves based on the 

significant differentiators in the input variables. It is mentioned that Decision 

Tree requires little preparation of data and can handle both numerical and 

categorical data just like how it is mentioned in [25]. RF classifier is a higher 

version of DTC. It produces a number of trees and classifies objects based on 

the vote of all trees. This classifier is shown to handle larger data sets and 

maintain high accuracy. In [27] it is said that Logistic Regression (LogReg) 

uses a binary scale to test data points as either zero or one. If in case the value 

is 0.5 it is classified as 1. LogReg comes with the advantage that it can be used 

for multi class classification and is quick to train. You can also print out the 

probability values for each class as well. On the flip side, it takes time to test 

the data.  

 

LogReg is a model of choice in many classification tasks in fields such as 

medicine [28]. The authors of [28] summarize the similarities and differences 

of models and compare them with other machine learning algorithms. They 

study the performances of using LogReg for classification of a medical study 

related data and compare the results with the performances of ANNs. The 

same performances are also observed using other algorithms. The article 
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shows that LogReg and  ANN share common features in patter recognition 

and how ANNs are a generalized form of LogReg. The quality of results 

obtained using the models depends mainly on three factors: 

 

1. Quality of the data set 

2. Care with which the adjustable model parameters are chosen 

3. Evaluation criteria to report the results. 

 

Towards the end, the model building process of LogReg and ANNs are 

analysed and observe which factor has to be considered when making a 

judgment about results using predictive models. The other algorithms studied 

for classification results are: 

 

1. SVM 

2. KNN 

3. DTC 

 

Two studies were performed. One in which they analysed various papers to 

see what other researchers and/or authors preferred. They noticed that details 

on model building were more often given for Logistic Regression than ANN 

and this could be because most probably the forward, backward and stepwise 

variable selection schemes were implemented using LogReg. They also 

concluded that LogReg takes more effort on the user’s part to achieve the 

same level of sophistication with ANNs. In the other study, the discriminatory 

power of both LogReg and ANN were compared. In this, it was observed that 

both the classification algorithms perform on about the same level but ANNs 

were more flexible and outperformed LogReg in some cases. Out of 72 
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papers, the authors of 18% of them chose ANN as the better performer in 

contrast to just 1% choosing LogReg. 42% of them found no difference. These 

were with regard to statistical testing. This also shows that ANNs can be used 

for more sophisticated and larger data sets where they take the advantage and 

outperform algorithms like LogReg.  But, LogReg is preferred where model 

building is to be made easy. 

 

A study of comparing the performances of Random Forest classifier (RF) with 

Support vector Machine (SVM) showed the advantages of using RF classifier 

[28]. Parameters such as accuracy and training time were compared between 

the two classification algorithms. They noted the differences between the two 

algorithms the most prominent being that RF classifier is a tree-based 

classifier and SVM classifier is based on increasing the margin between two 

classes. To conduct the comparative study, a large data set of mapped data of 

agricultural was used.  

 

The results showed that RF classifier achieved a slightly better accuracy when 

compared to SVM. Another advantage of RF classifier was that it requires 

only two parameters to be set on the other hand, SVM requires a number of 

user defined parameters. The RF classifier is also capable of handling 

categorical, unbalanced data and also data with missing values which makes it 

a better choice. 

 

After researching about these and a few other sources, I implemented a model 

which makes use of various classifiers and derives the precision and recall 

values along with f-score.  
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Explanation of the model and algorithm_3c shows the model where four 

different machine learning classifiers are used for the same data set. The same 

four parameters were calculated for each namely Precision, Recall, F-score 

and Accuracy. Once the data set is loaded, the steps of processing of raw data 

using NLTK are all the same. Just like how KNN algorithm was used to 

calculate the values in the previous algorithms, the same way Decision Tree, 

Logistic Regression and Random Forest classifiers were used.  

 

Reasons for considering and using these algorithms 

The objective of this thesis is to analyse sentiment on a large data set of 

emails. The analysing not only refers to classification of sentiments but also 

involves training the data. As of now, a single data set is used. But if one 

requires the training over a verity of data sets, then the scenario is different as 

different algorithms perform better and has its own strengths and weaknesses 

when used with different data sets. Since my thesis focuses mainly on 

sentiment analysis where the text data involves chains of emails exchanged 

between the employees of a company and their customers, analysis of which 

of the algorithms can give me the best precision, recall and accuracy when 

used with the data set had to be made. Another factor to consider is the time 

taken to classify. After extensive research, It was found that the above three 

algorithms were better to use for my data set chosen because of their uses and 

advantages. So this algorithm compares the values of the four algorithms, and 

we can observe which of them gives the best results. No algorithm is better in 

general than another [29]. 
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Advantages of Decision Tree: 

 

1. Requires less effort compared to other algorithms for data preparation. 

2. Does not require normalization of data. 

3. Missing or Null values in data does not affect the process. 

 

 

Advantages of Logistic Regression: 

 

1. Efficient as it does not require many computational resources. 

2. It outputs well calibrated predicted probabilities. 

 

 

Advantages of Random Forest Classifier: 

 

1. Shown to give some of the best results of prediction for supervised learning 

algorithms [30]. 

2. Repeated model training is not required. 

 

 

The above advantages of the three algorithms were the reasons why I chose to 

train the model using these classification algorithms.  
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Observations 

We can see the output of executing the algorithm in the results section which 

shows as output the precision, recall, f-score and accuracy values of the four 

classification algorithms.  

 

Note: The above algorithms are all implemented using SciKit Learn module of 

Python3.6 otherwise known as sklearn. In the program/algorithm, we can see 

that the steps are all the same for each of the classification algorithms. The 

differences are not evident as sklearn is a high level library to make the 

implementation easier for the user. The algorithms will all be explained in 

detail with their advantages, drawbacks, uses and unique features in a later 

part of the thesis. 

 

Note: The three other algorithms selected are implemented in Algorithm_3b 

which includes NER-Tagging in pre-processing.  
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4. Implementing a model based on Vectorization 

 

The previous algorithm showed values of four different classification 

algorithms for a particular data set. That was intended to compare the different 

algorithms and to derive the precision and recall values. Any time, when we 

use a larger data set, we tend to derive better values as the model gets trained 

over a larger amount of data. But this could also increase the computation and 

training speed and if the data set has larger and ore noisy data in each row, 

then there are chances of the accuracy decreasing. These were some of the 

drawbacks observed in the previous algorithm. In order to overcome these, 

implementing a vectorization model was considered. Vectorization is basically 

the process of implementing a loop in such a way that it processes a number of 

elements of an array simultaneously rather than processing a single element of 

an array a number of times. It is also used to speed up the execution without 

the use of loops.  

 

In order to come up with a vectorization model, a model which makes use of 

the concept of Bag-of-Words was implemented. In this, the CountVectorizer() 

function of SciKit Learn module was used. The goal of this approach was not 

just to increase the accuracy, precision and recall values but mainly to 

improve the way the computation and training were performed. This could be 

achieved by vectorization as it is a concept where each word in a number of 

text data groups are represented as the number of occurrences of that word 

[31]. The main objective of this approach is to quantize each key point into 

one word and represent each of them by a histogram [31].  
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Research Conducted 

A number of articles are available which shows the working and concept of 

vectorization and the working of a Bag-of-Words model. A study conducted 

where sentiment classification was performed using two methods, a bag of 

words approaches which makes use of Multinomial Naive Bayes algorithm 

and SVM algorithm and a Redcurrant Neural Network method [32]. The goal 

of this experiment was to test the role of word order in sentiment classification 

by comparing the Bag of words approaches where the word order is not 

present with a Redcurrant Neural Network (making use of LSTM) where the 

latter can handle sequential data as inputs. The Bag of Words features are 

created by viewing the documents as an unordered collection of words which 

are used to classify the data in the document [32]. The data sets used in this 

experiment include a labelled data set of Amazon food reviews and one on 

academic reviews. The Bag of words model was trained with Multi Nominal 

Bayes algorithm with and without Tf-IDF and the same was done with SVM 

algorithm. The LSTM model was trained using Word2Vec, GloVe and a self 

initialized vector. The results showed that for both the data sets the LSTM 

outperformed the Bag of Words model. But training the bag of words models 

against SVM and MNB algorithms showed that the accuracy and training 

performance can be improved when compared to the previous algorithm 

(Algorithm_3c). 
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Working of a Vectorizer 

Let us assume we have two sentences. 

Sentence_1 — “the quick brown lazy fox jumped over the lazy dog” 

Sentence_2 — “education is what you have if you are not lazy to jump to 

conclusions and be quick” 

 

When we vectorize the sentences, we get the frequency or occurrence of each 

word in both the sentences.  

 

So the occurrence of the word “the” is 2. 

The occurrence of the word “lazy” is 3. 

 

The occurrences of each word is calculated and is stored as an array or a list.  

 

 

Explanation of the model and algorithm 

Algorithm_3d in the appendix shows the model where vectorization is 

implemented. The pre-processing of data steps are the same as the previous 

algorithm. Once the data frame is loaded and the text data is processed by 

removing noisy unwanted data, it is split into training and testing parts. The 

CountVectorizer is made use of to perform the vectorization. This basically 

performs what is mentioned above of vectorizing each word as its number of 

occurrence. The training and testing lists of text data are vectorized and are 

sent for training. After this, the precision, recall and f-score values are 

calculated using the same classification algorithms used in Algorithm_3c but 

in addition we also have a Multinomial Naive Bayes algorithm. The MNB 

algorithm was experimented with as I did some research with [32] and this 
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paper gave me some knowledge about the algorithm. The precision, recall, f-

score and accuracy values of this vectorization model are shown in the results 

section. 

 

 

What is lacking in this method and drawbacks 

This approach takes into account four different classification algorithms. We 

observe that the values of precision, recall and f-score are slightly better than 

the values derived from the previous algorithm. But values like the accuracy 

and precision can still be made better or higher. The model makes use of a 

vectorization method and the concept is similar to using Bag-of-Words. As 

shown and discussed, the frequency of each word in the text data is taken into 

consideration. This concept of vectorization comes with a few limitations. 

First off, this concept does not consider the order of words or its context [33]. 

Context is something that can offer a lot to the model [34]. Another drawback 

is the amount of time it takes the program to execute when this method is 

implemented. It is slightly slower when we implement vectorization.  

As discussed, the two major drawbacks are the context of a word is not 

considered and the execution time is high. Both these drawbacks have to be 

addressed. So for this, the next thing to consider is an ANNs. 

 

 



83 

 

5. Implementing Neural Networks 

 

An Artificial neural network (ANN) is a model which borrow the concept of a 

biological neural network in the Brain of a human [92]. They work using the 

concept of pattern matching and are used for classification and regression 

problems and come with a number of variations for solving numerous 

problems [34]. ANNs come with its own branch of algorithms such as 

Multilayer Perception (MLP), Back-Propagation, Hopfielf Network etc [34]. 

ANNs are new computational tools which when compared to other traditional 

algorithms have found a wide application in solving a number of real world 

problems [35]. This journal published [35] gives us a glimpse of the use of 

ANN in today's problems and mention that ANNs come with remarkable 

characteristics to process information which are concerned mainly with fault 

and noise tolerance, learning and generalization capabilities. Neural networks 

have layers [172]. A neural network has to be designed such that a set of 

inputs produces desired set of outputs [172].  

 

An article which I came across [36] mentioned a few advantages of ANNs. To 

name a few: 

 

1. ANNS come with the ability to work with incomplete knowledge. 

2. They are fault tolerant. If one or more cells of an ANN happens to get 

corrupted, it does not prevent it from generating an output. 

3. It has a distributed memory. 

 

Apart from the above mentioned, there are several other advantages of ANNs.  
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In the Appendix-D section, image_06 shows the structure of an ANN. 

 

In image_06, we see three layers, an input layer, hidden layer and an output 

layer. Each layer has nodes which are represented by circles and the 

connections between two nodes are represented by lines.  

 

Note: The functioning and working of an ANN will be discussed in the 

appendix section of the thesis. For now let us focus on the research and 

implementation of ANNs in the algorithms. 

 

Research conducted 

In the previous chapters we observed some of the drawbacks of using machine 

learning algorithms for classification when we used the Vectorization method 

and the algorithms before that. In order to address those drawbacks, a model 

using ANNs was implemented. A research paper [38] gives an overview of 

ANNs, its working and training. The paper also discusses the applications and 

advantages of ANNs. They mention that Neural Networks opt a different 

approach when compared to traditional approaches for problem solving. Since 

Neural Networks process information in a similar way the human brain does, a 

computer is liable to be powerful enough to perform tasks which we are not 

aware of [38]. The paper discusses the working of an ANN wherein there are 

many ways individual neurons can be clustered together. It also discusses the 

parts of a Neural Network as shown in the image. Training of an ANN, it’s 

application in supervised and unsupervised learning, applications and 

advantages have all been discussed in this paper. Altogether, the information 

gathered from reading and researching this paper [38] gave me a lot of 
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knowledge about how one can implement a model using ANN to overcome 

the shortcomings encountered in the previous algorithms and the approaches 

adopted in them.  

 

Another research report which involved a comparative assessment of three 

different methods for making a prediction was studied [39]. In this report, the 

performances of Support Vector Regression (SVR) algorithm, RF and ANNs 

are compared for predicting and mapping soil that is rich in organic carbon. 

This task involved more of predicting and not learning. The results showed 

that SVR was the best to make the predictions but ANNs was behind only 

marginally. They also mention that it can be bettered with calibration. The 

task was to make predictions wherein ANN proved to be almost equally good 

as SVR. But when it comes to learning, ANN definitely outperforms the other 

two. 
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6. Deep Neural Networks, Deep Learning and Recurrent Neural 
Networks 

 

The previous section showed why ANNs were considered and some of the 

articles, papers, websites and other sources referred which in turn gave me a 

good understanding of ANNs and why they are useful. However, ANNs do 

come with their list of drawbacks. Some drawbacks include: 

  

1. Artificial Neural Networks generally require processors with parallel 

processing capabilities [36]. This is courtesy of the amount of computation 

required. 

 

2. Many of the times, the structure of an ANN is determined by brute force 

[36]. 

 

3. Over time, it becomes difficult to understand what an ANN has learnt [93]. 

 

This led to a requirement of coming up with something that addresses the 

drawbacks of ANNs.  

 

Deep learning is a machine learning concept that learns features directly from 

data which can be in various forms [40]. Deep learning enables computational 

models which are composed of multiple processing layers to learn with 

multiple levels of abstraction [40]. Authors define Deep learning as a class of 

machine learning techniques which exploit many layers of non-linear 

information processing for either supervised or unsupervised feature 
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extraction, transformation and classification [41]. Deep learning is also known 

as end to end learning because the task is learnt directly from data.  

 

In the previous section, we have seen the basic structure of an ANN with its 

layers. A DNN is a neural network which generally consists of more than one 

hidden layer in between the input and output layers [42]. Image_07 in the 

Appendix-D section shows the structure of a Deep Neural Network. 

 

As we can see, a fundamental difference between an ANN and DNN is the 

number of hidden layers in between the input and output layers. There are 

more than just one hidden layer in case of the DNN and this feature enables it 

to learn directly from the data provided and can learn more efficiently and 

faster.  

Note: We shall discuss the working of a DNN later on in the thesis.  

 

Reasons to consider Deep Learning and DNNs 

We have seen some of the drawbacks of ANN. In order to address them, DNN 

was considered. Here are some of the advantages of DNNs over ANNs: 

 

1. Deep learning outperforms other techniques of machine learning when the 

data size is large. In case of smaller data size, Machine Learning algorithms 

are preferred [94]. 

 

2. DNNs can handle variations in the data which is learnt [44]. 

 

3. Parallel computations can be performed and DNNs can perform better with 

larger data [95]. 
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4. DNNs are flexible and can be adapted to new problems [95]. 

 

So far, we have made use of a few fairly large labelled data sets which consist 

of email data. Each chunk of text data comprise a few words to a few dozen 

words and on an average about two to three sentences. The thesis deals with 

email data which deals with chains of emails exchanged between consumer 

and seller. The algorithms developed so far deals with classification and 

training data but not learning. If we wish to achieve not just better accuracy 

but also improve the output each time the data is trained, we will have to come 

up with a model that is capable of learning from past data. Deep Learning can 

provide this strength. 

 

Recurrent Neural Networks and LSTM 

RNNs has the capability of remembering past and make decisions influenced 

by that past data [45]. The working of a RNN deals with taking as their input 

not just the currant input but also what they have learnt previously in time 

[46]. One of the main advantages of RNN over ANN is that it can model 

sequences of data and each sample is assumed to be dependent on the previous 

sample [96]. Image_05 in the Appendix-D section shows an image of a RNN. 

 

In a regular Neural network of ANN, generally the assumption is that all 

inputs and outputs are not dependent of each other. But in a case where we 

wish to predict the next word in a sentence, it is required to know the words 

that came before it. RNNs addresses this problem by considering the output 

being dependent on the previous computation [48]. There are forms of RNN 

which come with their uses. One of these forms is a Bidirectional RNN (Bi-
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RNN). A Bi-RNN is a form of RNN that can be trained without the use of 

input information just to a present future frame [48]. The idea of using RNN is 

to use a sequential information unlike assuming that all inputs are independent 

of each other in the case of ANNs [170]. RNNs are similar to feedforward 

neural networks wherein they can process data from the initial input to the 

final input but in the case of RNNs, they make use of back-propagation [171].  

 

Long Short Term Memory (LSTM) come with the feature of remembering 

information for a long period of time. LSTM has a complex structure and 

consists of many gates in each layer. LSTM comes under the category of RNN 

and is a more advanced and sophisticated form of RNN.  

 

Using these concepts to build a model 

In this chapter we have seen the concepts of ANNs, deep learning, DNNs, 

RNNs and LSTM. The next thing done is to use these concepts to build a 

simple model to demonstrate the use and working of a Neural Network model 

for classification and learning.  

 

Refer to Algorithm_IMDB in the appendix which shows the working of a the 

model. This model makes use of LSTM layers to train an IMDB movie review 

data set. This model makes use of RNNs in the form of LSTM layers. Keras is 

used here to build the neural network layers. Keras is a high level API 

provided by Python which is a framework for Tensor flow and enables more 

efficient experimentation on deep neural networks [49]. Note that this 

program is only to show the reader how neural networks can be used to 

perform sentiment analysis.  
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Explanation of the algorithm 

Just like the other algorithms which did not include neural networks for 

training, a data set will have to be loaded to perform sentiment analysis. Keras 

has its set of inbuilt data sets. This is provided by the keras.datasets module. 

From this module, the IMDB data set is downloaded. This data set consists of 

a movie review provided by IMBD [50]. Parameters are set to load the data set 

in a desirable form such as maximum words. The next step includes splitting 

the data set into training and testing purposes. Keras uses a function add a new 

neural networking layer. Here we see three layers being added. The first is an 

embedding layer, the second is a LSTM layer with a dropout value of 0.2 and 

the third layer is a Dense layer. By using the model.compile() function, the 

layers are compiled. Like in the previous algorithms, model.fit is used to train 

the data and finally the parameters like accuracy are calculated.  

 

Note: The layers of Keras are discussed in the appendix section. 
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7. Implementing a model based on Recurrent Neural Networks 
and LSTM Networks 

 

The previous algorithms were based on using SciKit learn classification 

algorithms to train the model. Sentiment analysis was performed using those 

algorithms and the precision, recall and accuracies were compared. The 

algorithms came with some drawbacks and with the intention of eliminating 

those drawbacks and come up with a better model, Neural Networks were 

considered. The research question is about coming up with methods to 

perform sentiment analysis on large email text data and so far we have been 

coming up with a better model which addresses the drawbacks observed in the 

model prior to it. Since we observed some limitations of using the 

vectorization concept in Algorithm_3d, research about Neural Networks was 

conducted and implemented in a model. 

 

Reasons for considering this approach 

While the classification algorithms used so far all machine learning 

algorithms, Neural Networks use their own set of algorithms which enables 

the machine to learn. The advantages of Neural Networks were discussed in 

the previous chapter. Now let us take a look at some of the advantages of 

Neural Networks over other machine learning classification algorithms: 

  

1. Neural networks and more specifically Deep Learning enables the machine 

to learn based on the context of text with time. 

 

2. ANNs make good use of parallel computation [95]. 
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3. Large data can be handled better with ANNs and DNNs [94]. 

 

It is important to note that the concepts of Neural Networks are different from 

Machine learning. Both have their uses in various applied areas. A Neural 

Network is a subset of machine learning. Machine learning algorithms at some 

point is liable to give inaccurate values but a Neural Network algorithm is 

capable to make accurate predictions.  

 

Research Conducted 

Using deep learning for text feature extraction has been demonstrated in this 

article [51]. Here the authors mention that traditional methods of feature 

extraction require more features to be done manually. They mention the 

requirement of something more efficient. It is mentioned that deep learning 

comes with the feature of acquiring new feature representation from training 

data. Their article mainly focuses on text mining and deep learning does not 

fail to make things easier. A major feature that differentiates deep learning 

from conventional methods is that the former automatically learns features 

from large data and does not rely on prior knowledge of designers. Feature 

extraction of text which extracts text information to represent a text message is 

a basis of large number of text processing [52]. Their thesis [51] deals with 

summarizing a lot of literature to present a text feature extraction method and 

develop a model based on it.  

 

Another paper examined showed the introduction of a Recurrent Convolution 

al Neural Network model for classification of text [53]. Their model involves 

the application of a recurrent structure to capture contextual information when 

learning word representations. They also create a Deep Learning layer called 
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Max Pooling layer which can automatically judge which words play key roles 

in text classification. Four different data sets were used to conduct the 

experiment. The results of the experiment showed that their model 

outperforms other models mainly on document level data sets. The pre-

processing of the data sets were done using Stanford Tokenizer [54] for the 

English documents to obtain tokens. Six different methods were chosen for 

comparison. The experimental results showed that the Neural network 

methods which included Recurrent Convolutional Neural Network (RCNN) 

outperformed the other methods. When the RCNN model was compared to 

Convolution Neural Network model, RCNN gave better results.  

 

Explanation of the model and algorithm 

This is a Neural Network based model. It was designed keeping in mind the 

various advantages provided by Neural Networks. The function 

process_reviews() is used to process the reviews which happen to be the 

column in the data set comprising text data. From this function, the text data is 

sent to clean_reviews() function where NLTK functions are used to remove 

unwanted and noisy text. The function process_labels() is to reduce the 

number of classes to three instead of five. The function process() deals with 

the rest of the tasks. Pandas is used to create a data frame which stores the 

data of the data set. Then we come across the load() function. Keras modules 

are imported and the data set is split into training and testing parts. We can 

then see Neural Network layers being added. There is an embedding layer 

followed by two LSTM layers. There is a Dense layer and finally an 

Activation layer. Finally, the Accuracy, Precision, Recall and F-score are 

calculated. 
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Let us get back to the line which contains the load() function. Here, a.model 

file saves the previously learnt information. Each time the program is 

executed, it loads this information, trains it and saves it back to the.model file. 

You can see the saving happening at the end of the process() function 

represented by the save() function. This was, each time the program is 

executed, it learns from the previous model. 
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8. Implementing Word2Vec Embedding 

 

The word2vec is a group of models which are used to produce word 

embedding [55]. Word2Vec is basically a Neural Network model that have 

two layers and make up contexts of words. This is a context based learning. It 

takes a large corpus of text as inputs and produces a vector space [55]. 

Word2Vec model is used for learning vector representations of words which 

after the learned vectors are fed into a model are used to generate predictions 

[55].  

 

Implementing Word2Vec in the algorithm 

Neural_Net_Word2vec in the appendix shows the same model as 

Neural_Net_01 algorithm but with word2vec embedding. Every other step is 

similar except for the addition of those few lines. We first see five parameters 

with values. Then a model is defined which produce word embeddings. The 

trained model is then saved as a.model file. The same number of epochs are 

used for both the algorithms to train the training data.  

 

The results section shows the readings of Precision, Recall, Accuracy and F-

score of the model with Word2Vec embedding. We can observe that the 

values are slightly better when Word2Vec is implemented. 
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9. Implementing a Bidirectional LSTM Model 

 

As the research question talks about the different methods we can come up 

with to analyse large text data, so far we have been analysing text data 

consisting of email data with simple data pre-processing steps. Now we will 

use a few complex pre-processing steps to clean the email data. This data set 

consists of chains of emails between company and customers. The problem 

statement has been discussed before. In this section, we shall only see the 

working of the model. For this method, machine learning algorithms would 

prove to be very inefficient. Deep Learning is used here because this data has 

to be analysed with regard to context and has to be learnt just like the previous 

algorithm discussed.  

 

A few papers, articles and web pages were studied in detail which gave me 

knowledge on Bidirectional RNNs and Bidirectional LSTM. Reading a paper 

which deals with sentiment analysis on multiple dimensions in order to 

classify data into either positive or negative gave me an understanding about 

the uses of LSTM. The literature review section of the thesis shows some 

papers, articles, websites and other sources which were researched and which 

enables me to build this model. 

 

Explanation of algorithm 

Bi-LSTM shows us the model. This is a very large algorithm so only a step-

by-step process is shown in the appendix instead of the python file. If we refer 

to the algorithm, the large email data set is read into a pandas data frame. A lot 

of functions are present which are used to pre process the data but in this case, 
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the pre-processing does not only include the use of NLTK functions but also 

other ways like stripping the large chunk of text data. Email data is very large 

when compared to smaller text data like Tweets. Especially when the data 

includes chains of emails exchanged between two or more people. Three main 

steps were included to pre process the data such that some unwanted text is 

removed. 

 

In the algorithm, we see that the overall positive, negative and neutral scores 

are calculated. For these, we have three variables initialize. Like the previous 

algorithm, parameters like top words, maximum length and nb_classes are 

provided. The data frame is split into Reviews and Labels sections and each of 

those are split into testing and training parts. Then we can see the neural 

network layers created using Keras. After this, the model.fit performs the 

training of the data and then finally, values of precision, accuracy and recall 

are calculated.  

 

Pre-processing the raw data 

 

1. The algorithm is a context based model. Stop words cannot be disregarded. 

So a custom list of stop words were made use of. 

 

2. Smaller rows of data which comprised only small words were assumed to 

make less sense and were removed. 

 

3. A dictionary is created which contains short annotations of words as keys 

and their respective formal words are stored as items. For example, “aren’t” is 

represented as “are not”. 
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Then, keras modules are imported and a previously trained model is loaded. 

Keras layers are created, the data set is split into training data and testing data. 

Finally, the precision, recall, f_score and accuracy are calculated. 

 

The precision, accuracy and recall values are slightly lower when compared to 

the previous model. But this model has the following advantages over the 

previous one: 

 

1. It can handle very large data 

2. It can learn better thanks to the usage of Bidirectional LSTM. 

3. Data is preprocessed much better. 
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10. Making the model Domain Agnostic 

 

A domain agnostic model is one which can learn across various types of data. 

The algorithms discussed so far are not domain agnostic. So as the data keeps 

getting trained, the machine learns but it is specific to one domain. Making a 

domain agnostic model is to train the model in such a way that it will be able 

to learn and recognize data (text data in this case) from different domains. 

This can be very helpful in industries today.  

 

Method: By collecting a number of data sets all of which contain text data 

about different domains, we run a Python script which read every one of the 

data sets into data frames, and then a model is trained on all the data sets and 

stored. The next time the script runs, it loads the trained data from the.model 

file and repeats the process. This trains the model to be domain agnostic. 
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11. Implementing Dask 

 

Dask is an open source flexible library for parallel computing in Python [175]. 

Dask will be explained in detail later. In this small section we shall see how 

dask was used in Algorithm_email_SA to make it slightly more efficient. In 

Algorithm_email_SA, the data frame was loaded using Pandas just like in 

every other algorithm in the entire research work. In this algorithm, since the 

data set is very large, pandas takes a long time to load it. For this reason, dask 

was considered. Since it finds its application in the domain of parallel 

computing, Dask comes with its own data frame. One of the most prominent 

differences between a pandas data frame and a Dask data frame is that a Dask 

data frame cannot be worked on. That means, we cannot make any changes or 

edit the data frame. But this is not the case with a pandas data frame. But 

loading the data set into a Dask data frame takes relatively less amount of 

time. So this is what was implemented: 

 

The data set was loaded into a Dask data frame. Then using the .compute() 

function, the Dask data frame was converted to a Pandas data frame. The 

conversion did not take a long time and so, the loading of data set into the data 

frame took lesser time and then after conversion, the data frame could be 

implemented. 

 

The same concept could be applied to the data frames in the other algorithms 

as well but Dask has the upper hand in terms of speed and efficiency only 

when the data to be loaded is very large. 

 



101 

 

8. Results and Findings 

 

The previous chapter of methodology shows the various algorithms and their 

working. We started with a model which made use of the KNN classification 

algorithm to train and classify the data from the data set. As the research 

question talks about evaluating various machine learning algorithms and fine 

tune the best ones for large text data. Each algorithm developed either came 

with some drawbacks or there was a requirement to better the metric values so 

a better model was developed. The research method is a quantitative research 

based on experimentation. So in each step, we experiment based on the values 

derived from the previous model and either implement a new model or better 

the existing one to bring out better values.  

 

Data Set 

The data set which is used in all the algorithms is an email data set which 

comprises exchange of chains of emails between the employees of a company 

and their clients. The data set is a CSV file which is about 200 MB in size. 

This is a labelled data set which consists of a few columns two of which are 

Email Body and Labels. The labels of the data set represent classes. There are 

5 classes which range from a numerical value of 1 to 5.  1 represents very 

negative, 2 represents negative, 3 represents neutral, 4 represents slightly 

positive and 5 represents very positive. In order to perform binary 

classification on the labels, in each algorithm developed by me, the 5 classes 

were reduced to 2 classes. Based on the research question, The 5-class labels 

have been reduced to a binary class. In each algorithm, the labels 1 and 2 are 

converted to 0. On the other hand, labels 4 and 5 are converted to 1. Wherever 
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the label is 3, the respective text data in the data frame is considered and a 

textblob function is used to see if it is more towards the positive or the 

negative side. Based on this, it is either put into 0 or 1. Hence the 5 classes are 

reduced to 2 classes. The large part of the email data fell into classes 3, 4 or 5 

which made the data in the data set signify slightly positive sentiment. There 

are a few lines of unwanted data or null data in both the review and the label 

columns. These were removed so the operations that can be performed on the 

data frame were easier and the precision value would also increase. 

 

One of the issues with this data set was the large amount of uncleaned data. 

Many steps had to be taken to clean the data which consumes time even while 

pre-processing the data. Each row of the data set had large text data which 

comprised the body of the email. Most of them had formalities such as “Good 

Morning” or “Hello sir” and did not provide any use for the sentiment 

analysis. All of those had to be removed. Moreover, some of the rows of data 

also consisted of dates and signatures which are considered noisy data and had 

to be removed. 

 

Results: 

At first, the model mentioned above is implemented with three other 

classifiers using SciKit Learn module. The performance values are observed 

with all four algorithms. The model made better in order to improve the 

performance values. To achieve this, Named Entity Recognition tagging is 

used in the step where data is subjected to pre-processing in order to become 

more clean. Along with this, null values are removed from the data set. The 

values of the four classifiers are measured using this algorithm. To improve 

the performance values even further, a model based on vectorization was 
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considered and implemented. This model uses a concept similar to bag-of-

words approach and provides weight for each chunk of text like word. This 

was shown to improve the values even further. Among the four classifiers 

used, SVM classifier gave the best precision and recall values. The need to 

improve the performance values even further gave rise to the implementation 

of a model based on Artificial Neural Networks and more specifically DNNs. 

A model was built using Keras where network layers like LSTM layer were 

implemented. The  model gave slightly better precision value compared to the 

model based on vectorization using SVM classifier but gave much better 

recall value when compared to the latter. To better this model, Word2Vec 

embedding was implemented in the same model. This showed slightly better 

values. A final model was brought out which made use of Bidirectional LSTM 

layers, more complicated pre-processing of raw data, a domain agnostic model 

was implemented. This gave the best values and was chosen as the algorithm 

to be presented in the thesis.   

The metric values are tabulated and the results are shown. Table_01 shows the 

tabulated results of Algorithm_3b when classified using the four chosen 

classification algorithms. 

 

Metrics --> Precision Recall F - Measure Accuracy 

Algorithms  

 

    

KNN 71.801 % 67.796 % 69.546 % 80.363 % 

Decision 

Tree 

65.311 % 65.123 % 65.216 % 90.211 % 

Random 

Forest 

65.672 % 65.352 % 65.509 % 91.322 % 

SVM 89.204 % 74.528 % 81.414 % 88.280 % 

Table_01: Results of Algorithm_3b when classified using the four algorithms 
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In the above table we see the precision, recall, f-measure and accuracy values 

of all the four algorithms. It is clear that SVM derives better results of 

precision and recall when compared to the other three algorithms. RF 

classifier gives the best accuracy results among the four classifiers but the 

important metrics here are precision and recall and hence F-measure. In order 

make an attempt to better the values, a model that makes use of NER-Tagging 

and also the dropna() function of Pandas were made use of which removes 

text data with null values or missing values. Table_02 shows the results of 

Algorithm_3c which uses NER-Tagging and dropna() function. 

 

 

Metrics --> Precision Recall F-Measure Accuracy 

Algorithms 

 

    

KNN 72.317 % 68.567 % 70.201 % 81.927 % 

Decision Tree 65.938 % 65.768 % 65.853 % 90.774 % 

Random 

Forest 

66.086 % 65.992 % 65.992 % 91.829 % 

SVM 89.484 % 74.873 % 81.529 % 88.866 % 

Table_02: Results of Algorithm_3c when classified using the four algorithms 

 

 

In table_02, we can see that the metric values are slightly better than the ones 

in table_01. Both the accuracy and the precision recall values are slightly 

higher. This is because of the use of NER-Tagging which was used to identify 

proper nouns, organization names and events from the text data set and clean 

the data. This made the training steps easier. Moreover, the dropna() function 
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which was absent in Algorithm_3b was made use of here. This function drops 

or removes the lines in the data set with missing values. NER-Tagging was 

made use of in the pre-processing step in the algorithm. The steps are 

discussed in the methodology section. Because of cleaner data being subjected 

to training and classification, the precision and recall values are slightly better 

in this algorithm and also because of missing values being removed. In 

table_02 similar to table_01, we see that SVM is the algorithm which 

outperforms the other three algorithms in terms of precision and recall values. 

The precision and recall values are 89.204% and 74.528% respectively for 

Algorithm_3b and for Algorithm_3c, the precision and recall values are 

89.484% and 74.873% respectively. There is only a slight improvement in the 

values in Algorithm_3b when compared to the values in Algorithm_3c. 

Table_03 shows the tabulated metric values of the four classifiers when used 

with Algorithm_3d which uses the concept of vectorization. 

 

Metrics --> Precision Recall F-Measure Accuracy 

Algorithms 

 

    

KNN 72.329 % 68.618 % 70.426 % 82.463 % 

Decision Tree 65.968 % 65.787 % 65.877 % 90.792 % 

Random 

Forest 

66.188 % 65.992 % 66.089 % 92.083 % 

SVM 91.917 % 79.116 % 85.052 % 89.218 % 

Table_03: Results of Algorithm_3d when classified using the four algorithms 

 

The table above shows the values derived from Algorithm_3d in the appendix 

section. This model makes use of vectorization concept similar to a bag-of-

words approach.  
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The graph below compares the parameters of various classification algorithms 
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Reasons why Algorithm_3d gives better values than the other two: 

The vectorizer is defined using the CountVectorizer. These makes use of 

numpy arrays and converts each element into a vector. Vectors are created 

which have the dimensionality of the size of the vocabulary so if the text data 

contains that vocabulary (or word), then the count of that dimension increases. 

If there are no occurrences then a ‘0’ is put in that place instead. We will have 

a large list of vectors, and we use them on the text data. The value of that 

vector is represented as the weight for that vocabulary (or word). Since there 

is a weight for each word, the algorithm will process the ones with higher 

weights with even more accuracy. This is the reason why better values are got 

when compared to the previous algorithms. 

 

Algorithm_3d was built on top of Algorithm_3c. So the former was an 

implementation of vectorization with NER-tagging concept in the data 

processing steps. Algorithm_3c is built on top of Algorithm_3b. So each is an 

improved version of the earlier one and for all three of the algorithms, SVM 

classifier gave the best results. Considering this, Algorithm_3d implemented 

with SVM classifier was chosen as the best model till present. This had the 

following values: 

 

Precision: 90.917% 

Recall: 79.116% 

F-Measure: 84.607% 

Accuracy: 89.218% 
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Reading and researching about the strengths and versatility of ANNs and 

DNNs encouraged experimenting with a model based on the above two 

concepts and come up with an algorithm. Keras was used to implement the 

model and some neural network layers were used. LSTM is known as Long 

Short Term Memory and is a type of Recurrent Neural Network. This was the 

main network layer used in the next algorithm. So Algorithm Neural_Net_01 

was implemented using the above mentioned concepts. This algorithm gave 

better F-Measure value and accuracy value when compared to Algorithm_3d. 

But there was a need to make the model context based and exploit the 

resources provided by Neural networks and deep neural networks to further 

improve the performance values. For this, the same model (Neural_Net_01) 

was given an addition of Word2vec embedding. The working and concept of 

Word2vec is explained in the next chapter. The addition of Word2vec 

embedding improved the performance values only slightly.  

 

 

Metrics --> Precision Recall F-Measure Accuracy 

     

Neural_Net_01   90.571 %   90.487 %   90.528 %   93.714 % 

Neural_Net_Word2vec   90.875 %   90.843 %   90.858 %   93.917 % 

 

Table_04: Comparison of performance values between Algorithms Neural_Net_01 and 

Neural_Net_Word2vec 

 

 

In Table_04 we see that the performance values of Neural_Net_Word2vec are 

better than Neural_Net_01. It is to be noted that the latter is built on top of the 

former. The latter uses the same model as the former does but with the 

implementation of Word2Vec embedding.  
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The graph below compares the parameters of the two algorithms involving 

Neural Networks. It is evident as to why using Word2Vec embedding is better. 



110 

 

Why does the model with Word2Vec embedding give better values than 

the model without it: 

Word2Vec embedding works in such a way that it takes the context of every 

word that is present in the input text data and attempts to predict the word 

which corresponds to the context of the word. It makes use of vectorization 

concept and matches a word to its context. This is the reason why it gives 

slightly better values.  

 

In table_04, since among the two algorithms, the one with Word2vec 

embedding gives slightly better values, we consider it. The performance 

values are: 

 

Precision: 90.875% 

Recall: 90.843% 

F-Measure: 90.858% 

Accuracy: 93.917% 

 

Researching about Bi-RNNs and more specifically bidirectional LSTM 

networks enabled me to consider implementing another model which makes 

use of bidirectional LSTM layers. Although Word2Vec embedding was used in 

this model as well, it was not based completely on the previous model 

(Neural_Net_Word2vec). This model made used of a pre-trained model in 

order to make it domain agnostic, was implemented with bidirectional LSTM 

network layers, used a different set of data pre-processing steps, creating a 

custom set of list of words to be considered and not considered as clean text 

data and to improve the speed of execution used Dask framework. Bi-
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LSTM_Algorithm presents this model. The implementation of the model 

using the above mentioned concepts gave the following performance values:  

 

Precision: 92.715% 

Recall: 92.715% 

F-Measure: 92.715% 

Accuracy: 93.945% 

 

We now have three algorithms which make use of different concepts. The 

three algorithms are: 

 

1. Algorithm_3d (Vectorization model with SVM classifier) 

2. Neural_Net_Word2vec 

3. Bi-LSTM_Algorithm 

 

Table_05 shows the tabulation of performance values of the above three 

algorithms. 

 

Metrics --> Precision Recall F-Measure Accuracy 

     

Algorithm_3d (SVM) 90.917 % 79.116 % 84.607 % 89.218 % 

Neural_Net_Word2vec   90.875 %   90.843 %   90.858 %   93.917 % 

Bi-LSTM_Algorithm   92.715 %   92.715 %   92.715 %   93.945 % 

 

Table_05: Comparing the performance values of the three derived algorithms 
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The graph below shows the comparison of parameters of the three algorithms. 

Note that Bi-LSTM_Algorithm gives the best parameter values overall. 
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We have now narrowed down to three algorithms as seen in table_05. At first, 

three of the algorithms were built on top of each other and the one with the 

best values was Algorithm_3d. Two models were implemented using recurrent 

neural networks. The one with Word2vec embedding implemented was chosen 

as the one to give netter performance values (Neural_Net_Word2vec). And 

finally using more complex data processing steps and the concept of 

bidirectional LSTM layers another model was introduced, Bi-

LSTM_Algorithm.  

 

Why Neural_Net_Word2vec gave better results than Algorithm_3d: 

Neural_Net_Word2vec is the algorithm based on RNNs and more specifically 

LSTM layers while Algorithm_3d made use of SVM classifier. It is already 

noted that among the four classifiers Algorithm_3d was implemented with 

(KNN, DTC, RF and SVM), SVM gave the best performance values. 

Neural_Net_Word2vec was based on LSTM network implemented with 

Word2vec embedding. We can observe that Algorithm_3d gives slightly better 

precision value when compared to the other algorithm. However, its recall 

value is much lesser when compared to its counterpart. This is the same case 

for the accuracy as well. Let us take a look at how precision and recall are 

measured. 

 

Precision is defined as the value of what propagation of positive 

identifications were actually right [158]. So if we are to break it down to the 

formula: 

Precision = True_Positives / (True_Positives + False_Positive) --(1) 
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Recall is defined as the value of what propagation of actual positives were 

identified correctly [158]. 

 

Recall = True_Positive / (True_Positive + False_Negative) – (2) 

 

In the above two formulas: 

True Positive is the outcome of the correctly predicted positive class by the 

model 

 

False Positive is the outcome where the model incorrectly predicts the positive 

class. 

 

False Negative is an outcome where the model incorrectly predicts the 

negative class. 

 

If we look into the two formulas, we can see that there should be lesser 

number of false positives and false negatives in order to be more accurate. The 

precision and recall values are based on this and the F-measure gives a 

balance between the precision and recall. If Neural_Net_Word2vec is giving 

90.843% of recall value and Algorithm_3d is giving 79.116% recall value, it 

means that there were a larger number of false negatives derived in the latter 

and fewer false negatives in the former. A better model or algorithm gives 

lesser false positives and false negatives. Finally, if we look at the F-measure 

which is the balance of the precision and recall scores, we can see that 

Neural_Net_Word2vec gives 90.858% F-score and Algorithm_3d gives 

84.607% F-score. So there is a greater balance of precision and recall in the 

former as compared to the latter. This is because of the following: 
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* LSTM networks are doing a better job in eliminating the false negatives. 

This means more correct predictions are made. 

 

* Word2Vec embedding is bringing in the concept of context based analysis. 

Thanks to this feature, a word is matched to its more probable context which 

improves the accuracy. 

 

* Neural_Net_Word2vec algorithm is implemented using Keras which 

provides us with a feature to input the number of training cycles. This is 

known as epochs. The number of epochs defines the number of times the 

model is subjected to training. This running of multiple cycles of training can 

improve the accuracy and precision, a feature that is clearly lacking in the 

other model. 

 

These are the reasons why Neural_Net_Word2vec is a better model than 

Algorithm_3d. 

 

 

Reasons why Bi-LSTM_Algorithm gives better performance values 

compared to the other two algorithms: 

This algorithm made use of functions that pre process the data much better 

than the previous algorithms did. It was also made domain agnostic by 

training a number of similar text data sets and storing (pickling in Python) the 

model. Every time the model is run, it loads it from the model file. This was 

where Bidirectional LSTM was used in place of traditional LSTM layers. 

Even here, Keras was made use of. Bidirectional LSTM layers have the 
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capability to retrieve memory over a long period of time and can get data from 

both the past and the future. This makes the layer more accurate and precise.  

 

So to mention in brief what are the strengths of the final algorithm and why it 

gives the best results: 

 

* The data pre-processing steps are more complex. Since this algorithm is 

context based, we cannot remove stop words or tags like in the case of 

Algorithm_3c where NER-Tagging was used to remove particular nouns. 

 

* The pre-processing steps included creating a list of custom stop words, 

cleaning rows with very little data, tokenizing sentences and filtering out bi-

grams and tri-grams. This made the cleaned data to be processed better. 

 

* Bidirectional LSTM networks have the advantage over traditional LSTM 

networks that they can not only retain memory over a longer period of time 

but also can receive input data from both past and future nodes. This way, in 

Bi-LSTM_Algorithm, each layer or node receives data from both the past 

layer or node and the future layer or node.  

 

* To improve the speed slightly, Dask was used. Dask provides functionalities 

to create a data frame using the concept of lazy loading which makes the 

process of loading a lot faster. 
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9. Conclusions and Future Work 

 

The methodology describes the flow of how in each step, either a better model 

was adopted to address the shortcomings of the previous model or a feature 

was added to the existing model to make it work better and give better 

performance. The research work first showed the basic concept of sentiment 

analysis by taking a small example of sentiment analysis using Textblob on an 

unlabelled data set. Then Twitter sentiment analysis was introduced for which 

a model was developed which would later be used on the real email data set. 

The model was used on the email data set but the performance metrics like 

precision, recall and accuracy were low. In order to better the performance, 

there was an attempt to make the steps of processing raw text data even better 

by introducing NER-tagging. Using this and the dropna() function which 

removes null value, a better model was made. The concept of vectorization 

was studied and a model was implemented to bring out even better values. But 

this model which made use of vectorization was built on top of the previous 

one. These models made use of four classifiers out of which SVM gave the 

best performance values. Although the precision value was quite high, the 

recall value was relatively lower which meant that the false negatives or the 

negative values which are falsely classified were more. In order to address this 

issue, the concept of ANNs was adopted. A model was built using the concepts 

of RNNs and more specifically LSTM. This model gave both high precision 

and well as high recall values. A brief research about the concept of Word2vec 

encouraged me to implement it in the existing model. By doing so, marginally 

higher values were achived. But considering a good model is the one with not 
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only high performance metrics but also a domain agnostic one, the need to 

come up with another model was required which made use of the concepts of 

Bi-LSTM. The model also adopted better steps to process the raw data. Apart 

from that, a few minor features like using Dask to improve the execution and 

loading times were helpful.  

 

The results section gave us a clear understanding as to why Bi-

LSTM_Algorithm is the best algorithm to address the problem statement. We 

have answered the research question by providing the best algorithm and the 

reasons are mentioned. Better and smarter steps to process raw data, making 

use of lists to store custom stop-words, and the usage of bidirectional LSTM 

layers definitely gave the model an upper hand. We have compared the 

different algorithms and seen the drawbacks of each, and we have also seen 

how the drawbacks are addressed in the next model. Although the model 

presented is the best among the algorithms presented in the thesis, it does 

come with some shortcomings. The execution is quite slow. Dask framework 

is used to address this issue which has made the execution slightly faster. But 

there still remains the requirement to improve the execution speed. Based on 

my literature survey, there were papers and articles which mentioned models 

similar to this analysing data set similar to the one used here gave better 

values than the ones derived here. This could be due to better processing of 

data or better cleaning of data. 

 

Based on the research conducted which is documented in the Literature 

Review section of this thesis, certain knowledge was obtained about existing 

knowledge in the domain of sentiment analysis on large data sets such as 

email. Some of the articles and papers reviewed have worked on email 
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sentiment analysis. Some points about how this research work is different is 

pointed out. One of the strengths of this research work / thesis is that is 

introduces a domain agnostic approach which enables data across various 

domains to be accepted. Some other attributes of this thesis which makes it 

stand out include the introduction of Dask framework which brings in the 

concept of parallel computation and some advanced pre-processing steps. 

These are some of the points which advances existing knowledge which is got 

by researching other articles. 

 

In the future, I plan to implement the PySpark module which is based on 

parallel computing. The concept is similar to Dask but can perform even 

better. A hybrid model of bidirectional LSTM combined with Convolution 

neural networks (CNN) can be considered. Based on my reading, CNN are 

designed to automatically and adaptively learn spatial hierarchies of features 

using a back-propagation algorithm [72]. 
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Appendix A 

 

This part of the appendix shows the psuedocodes for the algorithms. 

 

1. Algorithm_1a 

 

""" IMPORTING PYTHON MODULES """ 

def main(): 

    dframe = pandas.read_csv ("/home/san1234/thesis/write-up/coursera_small.csv") 

    del dframe ['Label'] 

    

    ls_label = [] 

    ls_rev = list (dframe['Review']) 

 

    positive_score = 0 

    neutral_score  = 0 

    negative_score = 0 

 

    i = 0 

    start = time.time() 

    while (i < len(ls_rev)): 

        blob = TextBlob (ls_rev[i]) 

        polarity = blob.sentiment.polarity 

 

        if (polarity > 0.5): 

            ls_label.append (5) 

            positive_score += 1 

        elif (polarity > 0.0 and polarity <= 0.5): 

            ls_label.append (4) 

            positive_score += 1 



142 

        elif (polarity == 0.0): 

            ls_label.append (3) 

            neutral_score += 1 

        elif (polarity > -0.5 and polarity < 0.0): 

            ls_label.append (2) 

            negative_score += 1 

        elif (polarity <= -0.5): 

            ls_label.append (1) 

            negative_score += 1 

        else: 

            ls_label.append ("INVALID") 

 

        i += 1 

    stop = time.time() 

 

    dframe ['Labels'] = ls_label 

    print ("\n\n") 

 

    if (positive_score > negative_score and positive_score > neutral_score): 

        print ("\n\nThe data has POSITIVE sentiment.") 

    elif (negative_score > positive_score and negative_score > neutral_score): 

        print ("\n\nThe dataset has NEGATIVE sentiment.") 

    elif (neutral_score > positive_score and neutral_score > negative_score): 

        print ("\n\nThe dataset has NEUTRAL sentiment.") 

 

 

    total_time = (stop - start) 

    print ("\n\nTotal time --> {} ms\n".format (total_time * 1000)) 

 

main() 
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2. Algorithm_1b 

 

""" IMPORTING REQUIRES PYTHON MODEULES """ 

def process(): 

    df = pandas.read_csv ("/home/san1234/thesis/write-up/coursera_small.csv", encoding = "ISO-

8859-1") 

    dframe = pandas.DataFrame() 

    dframe ['Review'] = df ['Review'] 

    dframe ['Labels']  = df ['Label'] 

 

    fin_ls = [] 

 

    for i in dframe ['Review']: 

        str1 = pre(i) 

        fin_ls.append(str1) 

    del dframe ['Review'] 

    dframe ['Reviews'] = fin_ls 

    success_token = "SUCCESS..." 

    return (dframe, success_token) 

 

def pre(example): 

    word = nltk.word_tokenize (example) 

 

    stop_words = list (stopwords.words ("english")) 

    filtered_sent = [] 

    for i in word: 

        if i not in stop_words: 

            filtered_sent.append  (i) 

    str1 = '' 

    for i in filtered_sent: 

        str1 = str1 + i + ' ' 

 

    example = str1 
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    ps = PorterStemmer() 

    word = nltk.word_tokenize (example) 

    ls = [] 

    for w in word: 

        ls.append (ps.stem (w)) 

    str1 = '' 

    for i in ls: 

        str1 = str1 + i + ' ' 

 

    example = str1 

 

    word = nltk.word_tokenize (example) 

    word = [word.lower() for word in word if word.isalpha()] 

 

    str1 = '' 

    for i in word: 

        str1 = str1 + i + ' ' 

 

    return (str1) 

 

import pandas 

def main(): 

    dframe, success_token = process() 

    del dframe ['Labels'] 

 

    ls_label = [] 

    ls_rev = list (dframe['Reviews']) 

 

    positive_score = 0 

    neutral_score  = 0 

    negative_score = 0 

 

    i = 0 
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    start = time.time() 

    while (i < len(ls_rev)): 

        blob = TextBlob (ls_rev[i]) 

        polarity = blob.sentiment.polarity 

 

        if (polarity > 0.5): 

            ls_label.append (5) 

            positive_score += 1 

        elif (polarity > 0.0 and polarity <= 0.5): 

            ls_label.append (4) 

            positive_score += 1 

        elif (polarity == 0.0): 

            ls_label.append (3) 

            neutral_score += 1 

        elif (polarity > -0.5 and polarity < 0.0): 

            ls_label.append (2) 

            negative_score += 1 

        elif (polarity <= -0.5): 

            ls_label.append (1) 

            negative_score += 1 

        else: 

            ls_label.append ("INVALID") 

 

        i += 1 

    stop = time.time() 

 

    dframe ['Labels'] = ls_label 

    print ("\n\n") 

 

    if (positive_score > negative_score and positive_score > neutral_score): 

        print ("\nThe data has POSITIVE sentiment.") 

    elif (negative_score > positive_score and negative_score > neutral_score): 

        print ("\n\nThe dataset has NEGATIVE sentiment.") 

    elif (neutral_score > positive_score and neutral_score > negative_score): 
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        print ("\n\nThe dataset has NEUTRAL sentiment.") 

 

 

    total_time = (stop - start) 

    print ("\n\nTotal time --> {} ms".format (total_time * 1000)) 

 

main() 
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3. Algorithm_2a 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def percentage (part, whole): 

    return (100 * float (part) / float (whole)) 

 

consumerKey = "zB0rMPOldUVpmQnMQFGAIG9nh" 

consumerSecret = "IevXrHjv8qfdB7DkuBda9sXTeG8TAapffZFvyv0Sn62vR3ZJvb" 

accessToken = "1170896970400927744-Qj9IaO6SghaaEjGs56nojLUOye8yhq" 

accessTokenSecret = "eJ9rroWpQIRmBiaTVO6ADdLV50R6Lha9QIUrwpimMBHBj" 

 

auth = tweepy.OAuthHandler (consumerKey, consumerSecret) 

auth.set_access_token (accessToken, accessTokenSecret) 

api = tweepy.API (auth) 

 

searchTerm = input ("Enter keyword/hashtag to search about: ") 

noOfSearchTerms = int (input ("Enter how many tweets to analyse: ")) 

 

tweets = tweepy.Cursor (api.search, q = searchTerm, language = "English").items 

(noOfSearchTerms) 

 

positive = 0 

neutral = 0 

negative = 0 

 

polarity = 0                #-- Average of all tweets 

 

for tweet in tweets: 

    print (tweet.text) 

    analysis = TextBlob (tweet.text) 

    polarity += analysis.sentiment.polarity 
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    if (analysis.sentiment.polarity == 0): 

        neutral += 1 

 

    elif (analysis.sentiment.polarity < 0): 

        negative += 1 

 

    elif (analysis.sentiment.polarity > 0): 

        positive += 1 

 

dc = {"Positive" : positive, "Neutral" : neutral, "Negative" : negative} 

print ("\n") 

print ("DC --> {}".format (dc)) 

print ("\n") 

 

positive = percentage (positive, noOfSearchTerms) 

negative = percentage (negative, noOfSearchTerms) 

neutral  = percentage (neutral,  noOfSearchTerms) 

polarity = percentage (polarity, noOfSearchTerms) 

 

positive = format (positive, '.2f') 

negative = format (negative, '.2f') 

neutral  = format (neutral,  '.2f') 

 

print ("How are people reactine about " + searchTerm + " by analysing " + str (noOfSearchTerms) 

+ " Tweets.") 

 

if (polarity == 0): 

    print ("Neutral") 

elif (polarity < 0): 

    print ("Negative") 

elif (polarity > 0): 

    print ("Positive") 
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4. Algorithm_2b 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def process(): 

    df = pandas.read_csv ("GOP_Tweets.csv") 

    dframe = pandas.DataFrame() 

    dframe ['Review'] = df ['Review'] 

    dframe ['Labels']  = df ['Label'] 

 

    fin_ls = [] 

 

    for i in dframe ['Review']: 

        str1 = pre(i) 

        fin_ls.append(str1) 

    del dframe ['Review'] 

    dframe ['Reviews'] = fin_ls 

    return (dframe) 

 

def pre(example): 

    word = nltk.word_tokenize (example) 

 

    stop_words = list (stopwords.words ("english")) 

    filtered_sent = [] 

    for i in word: 

        if i not in stop_words: 

            filtered_sent.append  (i) 

    str1 = '' 

    for i in filtered_sent: 

        str1 = str1 + i + ' ' 

 

    example = str1 
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    ps = PorterStemmer() 

    word = nltk.word_tokenize (example) 

    ls = [] 

    for w in word: 

        ls.append (ps.stem (w)) 

    str1 = '' 

    for i in ls: 

        str1 = str1 + i + ' ' 

 

    example = str1 

 

    word = nltk.word_tokenize (example) 

    word = [word.lower() for word in word if word.isalpha()] 

 

    str1 = '' 

    for i in word: 

        str1 = str1 + i + ' ' 

 

    return (str1) 

 

def tweet_analysis(): 

    dframe = process() 

    le = pre-processing.LabelEncoder() 

    dframe ["Reviews"] = le.fit_transform (dframe ["Reviews"]) 

 

    X = dframe ["Reviews"] 

    Y = dframe ["Labels"] 

 

    x_train, x_test, y_train, y_test = train_test_split (X, Y, test_size = 0.2, random_state = 1) 

 

    x_train = x_train.values.reshape(-1, 1) 

    y_train = y_train.values.reshape(-1, 1) 

    x_test = x_test.values.reshape(-1, 1) 

    y_test = y_test.values.reshape(-1, 1) 
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    knn = KNeighborsClassifier (n_neighbors = 3) 

    knn.fit (x_train, y_train) 

    score = knn.score (x_train, y_train) 

    print ("\n\nAccuracy --> {:.3f} %\n".format (score * 100)) 

 

tweet_analysis() 
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5. Algorithm_3a 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def process(): 

    df = pandas.read_csv ("/home/san1234/thesis/write-up/email_data_200.csv") 

 

    dframe = pandas.DataFrame() 

    dframe ['Review'] = df ['Review'] 

    dframe ['Labels']  = df ['Label'] 

 

    """ Each row of email text data is sent to the function pre_process() which cleans the data """     

 

def pre(example): 

    word = nltk.word_tokenize (example) 

 

    """ Step-1: Dates and formalities are removed """  

 

    """ Step-2: Stop Words are removed """ 

 

    """ Step-3: Words are stemmed and lemmatized """ 

 

    """ Step-4: Punctuations are removed from the text """ 

 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import f1_score 

 

def tweet_analysis(): 

    dframe = process() 

    le = pre-processing.LabelEncoder() 

    dframe ["Reviews"] = le.fit_transform (dframe ["Reviews"]) 
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    X = dframe ["Reviews"] 

    Y = dframe ["Labels"] 

 

    x_train, x_test, y_train, y_test = train_test_split (X, Y, test_size = 0.2, random_state = 1) 

 

    x_train = x_train.values.reshape(-1, 1) 

    y_train = y_train.values.reshape(-1, 1) 

    x_test = x_test.values.reshape(-1, 1) 

    y_test = y_test.values.reshape(-1, 1) 

 

    knn = KNeighborsClassifier (n_neighbors = 3) 

    knn.fit (x_train, y_train) 

    score = knn.score (x_train, y_train) 

 

    y_pred = knn.predict (x_test) 

    y_score = knn.score (x_test, y_test) 

 

    prec = precision_score (y_pred, y_test, average = 'weighted') 

    recall = recall_score (y_pred, y_test, average = 'weighted') 

    fscore = f1_score (y_pred, y_test, average = 'weighted') 

 

    print ("\n\nAccuracy --> {:.3f} %\n".format (score * 100)) 

    print ("\nPrecision --> {:.3f} %\n".format (prec * 100)) 

    print ("\nRecall --> {:.3f} %\n".format (recall * 100)) 

    print ("\nF1_Score --> {:.3f} %\n".format (fscore * 100))  

 

tweet_analysis() 
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6. Algorithm_3b 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def process(): 

    df = pandas.read_csv ("/home/san1234/thesis/write-up/email_data_200.csv") 

 

    dframe = pandas.DataFrame() 

    dframe ['Review'] = df ['Review'] 

    dframe ['Labels']  = df ['Label'] 

 

    """ Each row of email text data is sent to the function pre_process() which cleans the data """     

 

    """ Once each row of text data is processed, the dropna() function of pandas is used to remove 

missing values and null vales """ 

 

def pre(example): 

    word = nltk.word_tokenize (example) 

 

    """ Step-1: Dates and formalities are removed """ 

    

    """ Step-2: Stop Words are removed """ 

 

    """ Step-3: NER-Tagging is used to identify names of organizations and proper nouns. Even the 

names and signatures are eliminated """ 

 

    """ Step-4: Words are stemmed and lemmatized """ 

 

    """ Step-5: Punctuations are removed from the text """ 

 

 

 

def tweet_analysis(): 



155 

    dframe = process() 

    le = pre-processing.LabelEncoder() 

    dframe ["Reviews"] = le.fit_transform (dframe ["Reviews"]) 

 

    X = dframe ["Reviews"] 

    Y = dframe ["Labels"] 

 

    x_train, x_test, y_train, y_test = train_test_split (X, Y, test_size = 0.2, random_state = 1) 

 

    x_train = x_train.values.reshape(-1, 1) 

    y_train = y_train.values.reshape(-1, 1) 

    x_test = x_test.values.reshape(-1, 1) 

    y_test = y_test.values.reshape(-1, 1) 

 

    knn = KNeighborsClassifier (n_neighbors = 3) 

    knn.fit (x_train, y_train) 

    score = knn.score (x_train, y_train) 

 

    y_pred = knn.predict (x_test) 

    y_score = knn.score (x_test, y_test) 

 

    prec = precision_score (y_pred, y_test, average = 'weighted') 

    recall = recall_score (y_pred, y_test, average = 'weighted') 

    fscore = f1_score (y_pred, y_test, average = 'weighted') 

 

    print ("\n\nAccuracy --> {:.3f} %\n".format (score * 100)) 

    print ("\nPrecision --> {:.3f} %\n".format (prec * 100)) 

    print ("\nRecall --> {:.3f} %\n".format (recall * 100)) 

    print ("\nF1_Score --> {:.3f} %\n".format (fscore * 100))  

 

tweet_analysis() 
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7. Algorithm_3c 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def process(): 

    df = pandas.read_csv ("/home/san1234/thesis/write-up/email_data_200.csv") 

 

    dframe = pandas.DataFrame() 

    dframe ['Review'] = df ['Review'] 

    dframe ['Labels']  = df ['Label'] 

 

    """ Each row of email text data is sent to the function pre_process() which cleans the data """     

 

    """ Once each row of text data is processed, the dropna() function of pandas is used to remove 

missing values and null vales """ 

 

def pre(example): 

    word = nltk.word_tokenize (example) 

 

    """ Step-1: Dates and formalities are removed """  

 

    """ Step-2: Stop Words are removed """  

 

    """ Step-3: NER-Tagging is used to identify names of organizations and proper nouns. Even the 

names and signatures are eliminated """ 

 

    """ Step-4: Words are stemmed and lemmatized """ 

 

    """ Step-5: Punctuations are removed from the text """ 

 

 

 

 



157 

def main(): 

    dframe = process() 

    col_names = list (dframe.columns) 

 

    label_encoder = pre-processing.LabelEncoder() 

    dframe ['Reviews'] = label_encoder.fit_transform(dframe['Reviews']) 

 

    X = dframe ["Reviews"] 

    Y = dframe ['Labels'] 

 

    x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1) 

 

    dtc = DecisionTreeClassifier() 

 

    x_train = x_train.values.reshape(-1, 1) 

    y_train = y_train.values.reshape(-1, 1) 

    x_test = x_test.values.reshape(-1, 1) 

    y_test = y_test.values.reshape(-1, 1) 

 

 

    ''' Implementing the K-Nearest-Neighbors (KNN) classifier and calculating the performance 

metrics ''' 

 

    ''' Implementing the Decision Tree (DT) classifier and calculating the performance metrics ''' 

    

    ''' Implementing the Random Forest (RF) classifier and calculating the performance metrics ''' 

 

    ''' Implementing the Support Vector Machine (SVM) classifier and calculating the performance 

metrics ''' 

main() 
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8. Algorithm_3d 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def process(): 

    df = pandas.read_csv ("/home/san1234/thesis/write-up/email_data_200.csv") 

 

    dframe = pandas.DataFrame() 

    dframe ['Review'] = df ['Review'] 

    dframe ['Labels']  = df ['Label'] 

 

    """ Each row of email text data is sent to the function pre_process() which cleans the data """     

 

    """ Once each row of text data is processed, the dropna() function of pandas is used to remove 

missing values and null vales """ 

 

def pre(example): 

    word = nltk.word_tokenize (example) 

 

    """ Step-1: Dates and formalities are removed """  

    

    """ Step-2: Stop Words are removed """ 

 

    """ Step-3: NER-Tagging is used to identify names of organizations and proper nouns. Even the 

names and signatures are eliminated """ 

 

    """ Step-4: Words are stemmed and lemmatized """ 

 

    """ Step-5: Punctuations are removed from the text """ 

 

def precision(): 

 

    dframe = process() 
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    dframe.head() 

 

    X = dframe ["Reviews"] 

    Y = dframe ["Labels"] 

 

    vectorizer = CountVectorizer() 

 

    x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1) 

 

    x_train = vectorizer.fit_transform (x_train) 

    x_test = vectorizer.fit_transform (x_test) 

 

    feature_names = vectorizer.get_feature_names() 

 

    """ Other important steps of vectorizing """ 

 

     ''' Implementing the K-Nearest-Neighbors (KNN) classifier and calculating the performance 

metrics ''' 

 

    ''' Implementing the Decision Tree (DT) classifier and calculating the performance metrics ''' 

    

    ''' Implementing the Random Forest (RF) classifier and calculating the performance metrics ''' 

 

    ''' Implementing the Support Vector Machine (SVM) classifier and calculating the performance 

metrics ''' 

 

precision() 
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9. Neural_Net_01 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def preprocess(): 

    df = pd.read_csv('Coursera_Reviews.csv')  

    dframe = pd.DataFrame() 

    dframe['Review'] = df['Review'] 

    dframe['Label'] = df['Label'] 

 

    print (dframe.columns)     

 

    df_reviews = (dframe ['Review']) 

    df_labels  = (dframe ['Label']) 

    main_dframe = pd.DataFrame ({'Reviews' : ls_reviews, 'Labels' : ls_labels}) 

    print (main_dframe) 

 

    model_name = "/home/san1234/thesis/sampling.model" 

    model.save(model_name) 

    num_features = 300 

 

    top_words = w_model.wv.syn0.shape[0] 

    mxlen = 50   

    nb_classes = 3 

 

    train_set, test_set = train_test_split (main_dframe, test_size=0.2) 

     

    batch_size = 128 

    nb_epoch = 1 

    n_timesteps = 10 

 

    embedding_layer = Embedding(embedding_matrix.shape[0], 

                                embedding_matrix.shape[1], 
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                                weights=[embedding_matrix], 

                                trainable=False) 

 

    model = Sequential() 

    model.add(embedding_layer) 

    model.add(LSTM(200, recurrent_dropout=0.2, dropout=0.2, return_sequences=True)) 

     

    model.add(LSTM(200)) 

    model.add(Dense(nb_classes)) 

    model.add(Activation('softmax')) 

    model.summary() 

 

    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

    rnn = model.fit(X_train, y_train, nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, 

                    validation_data=(X_val, y_val)) 

    score = model.evaluate(X_val, y_val) 

    print("Test Loss: %.2f%%" % (score[0] * 100)) 

    print("Test Accuracy: %.2f%%" % (score[1] * 100)) 

 

 

    y_pred = model.predict (X_test) 

    print ("\n\n\n\n\nY_Pred --> {}\n\n\n\n\n".format (y_pred)) 

     

     

    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', f1_m, 

precision_m, recall_m]) 

 

     

    history = model.fit(X_train, y_train, validation_split=0.3, epochs=10, verbose=0) 

 

     

    loss, accuracy, f1_score, precision, recall = model.evaluate(X_test, y_test, verbose=0) 

 

    print ("\n\n\n Loss -> {}\nAccuracy -> {}\nF1_score -> {}\nPrec -> {}\nRecall -> {}\n".format 
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(loss, accuracy, f1_score, precision, recall)) 

     

 

    model_name = "/home/san1234/thesis/sampling_temp.model" 

    model.save(model_name) 

    print ("\n\n\nMODEL SAVED SUCCESSFULLY !!!\n\n\n") 

 

def recall_m (y_true, y_pred): 

    """ Calculate the recall value """ 

 

def precision_m (y_true, y_pred): 

    """ Calculate the precision value """ 

 

def f1_m (y_true, y_pred): 

    """ Calculate the F-Score """ 

 

def process_reviews(df_reviews): 

 

    """ This function does the pre-processing of raw data """     

 

def clean_reviews(review): 

     

   """ This function cleans each line of text data """ 

 

def process_labels(ls_labels): 

     

   """ This function is used to make the 5 classes into binary class """ 

 

if __name__ == '__main__': 

    preprocess() 
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10. Neural_Net_Word2vec 

 

""" IMPORTING REQUIRED PYTHON MODULES """ 

 

def preprocess(): 

    df = pd.read_csv('Coursera_Reviews.csv')  

    dframe = pd.DataFrame() 

    dframe['Review'] = df['Review'] 

    dframe['Label'] = df['Label'] 

 

    print (dframe.columns)     

 

    df_reviews = (dframe ['Review']) 

    df_labels  = (dframe ['Label']) 

 

    main_dframe = pd.DataFrame ({'Reviews' : ls_reviews, 'Labels' : ls_labels}) 

    print (main_dframe) 

 

    num_features = 300 

    min_word_count = 1 

    num_workers = 4 

    context = 10 

    downsampling = 1e-3 

 

    print ("\nTraining model.... \n\n") 

 

    model = word2vec.Word2Vec (main_dframe ['Reviews'], 

                               workers = num_workers, 

                               size = num_features, 

                               min_count = min_word_count, 

                               window = context, 

                               sample = downsampling) 
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    model.init_sims (replace=True) 

 

    model_name = "/home/san1234/thesis/sampling.model" 

    model.save(model_name) 

         

    num_features = 300 

 

    top_words = w_model.wv.syn0.shape[0] 

    mxlen = 50   

    nb_classes = 3 

 

    train_set, test_set = train_test_split (main_dframe, test_size=0.2) 

    batch_size = 128 

    nb_epoch = 1 

    n_timesteps = 10 

 

    embedding_layer = Embedding(embedding_matrix.shape[0], 

                                embedding_matrix.shape[1], 

                                weights=[embedding_matrix], 

                                trainable=False) 

 

    model = Sequential() 

    model.add(embedding_layer) 

    model.add(LSTM(200, recurrent_dropout=0.2, dropout=0.2, return_sequences=True)) 

     

    model.add(LSTM(200)) 

    model.add(Dense(nb_classes)) 

    model.add(Activation('softmax')) 

    model.summary() 

 

    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

    rnn = model.fit(X_train, y_train, nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, 

                    validation_data=(X_val, y_val)) 

    score = model.evaluate(X_val, y_val) 
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    print("Test Loss: %.2f%%" % (score[0] * 100)) 

    print("Test Accuracy: %.2f%%" % (score[1] * 100)) 

 

 

    y_pred = model.predict (X_test) 

    print ("\n\n\n\n\nY_Pred --> {}\n\n\n\n\n".format (y_pred)) 

       

    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', f1_m, 

precision_m, recall_m]) 

 

     

    history = model.fit(X_train, y_train, validation_split=0.3, epochs=10, verbose=0) 

 

     

    loss, accuracy, f1_score, precision, recall = model.evaluate(X_test, y_test, verbose=0) 

 

    print ("\n\n\n Loss -> {}\nAccuracy -> {}\nF1_score -> {}\nPrec -> {}\nRecall -> {}\n".format 

(loss, accuracy, f1_score, precision, recall)) 

     

 

    model_name = "/home/san1234/thesis/sampling_temp.model" 

    model.save(model_name) 

    print ("\n\n\nMODEL SAVED SUCCESSFULLY !!!\n\n\n") 

 

def recall_m (y_true, y_pred): 

    """ Calculate the recall value """ 

 

 

def precision_m (y_true, y_pred): 

    """ Calculate the precision value """ 

 

 

def f1_m (y_true, y_pred): 

    """ Calculate the F-Score """ 
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def process_reviews(df_reviews): 

 

    """ This function does the pre-processing of raw data """     

 

def clean_reviews(review): 

     

   """ This function cleans each line of text data """ 

 

def process_labels(ls_labels): 

     

   """ This function is used to make the 5 classes into binary class """ 

 

if __name__ == '__main__': 

    preprocess() 
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11. Bi-LSTM_Algorithm 

 

""" IMPORTING ALL THE REQUIRED PYTHON MODULES """ 

 

march8 = pandas.read_csv('email_data_200', encoding="ISO-8859-1") 

 

ls1 = [] 

ls2 = [] 

 

 

march8 = march8.sort_values(['Case Number'], ascending=[True]) 

march8 = march8.dropna(subset=['Text Body']) 

march8 = march8.reset_index(drop=True) 

march8.head(30) 

 

def read_email(fname): 

    """ This is only a testing function which reads the email text data as a unicode """ 

 

def corpus2sentences(corpus): 

    """ This function splits a corpus into a list of sentences """ 

 

 

case_dict = {} 

new_set = [] #dictionaries are stored in this before they are added to a dataframe 

case_nos = list(march8['Case Number'])[:4] #get the first n case numbers, so n threads 

count = 0 

for case in case_nos: 

  count += 1 

  print(count) 

  random_thread = march8.loc[march8['Case Number'] == case]  

  message_list = list(random_thread['Text Body'])  

 

  email_counts = [] 
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  split_on = 

"From:(?:[^\n]+)\nSent:(?:[^\n]+)\nTo:(?:[^\n]+)\n(?:Cc:(?:[^\n]+)\n)?Subject:(?:[^\n]+)\n" 

   

  """ Steps of pre-processing of raw data """ 

 

apos = { 

"aren't" : "are not", 

"can't" : "cannot", 

"couldn't" : "could not", 

"didn't" : "did not", 

"doesn't" : "does not", 

"don't" : "do not", 

"hadn't" : "had not", 

"hasn't" : "has not", 

"haven't" : "have not", 

"he'd" : "he would", 

"he'll" : "he will", 

"he's" : "he is", 

"i'd" : "I would", 

"i'd" : "I had", 

"i'll" : "I will", 

"i'm" : "I am", 

"isn't" : "is not", 

"it's" : "it is", 

"it'll":"it will", 

"i've" : "I have", 

"let's" : "let us", 

"mightn't" : "might not", 

"mustn't" : "must not", 

"shan't" : "shall not", 

"she'd" : "she would", 

"she'll" : "she will", 

"she's" : "she is", 
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"shouldn't" : "should not", 

"that's" : "that is", 

"there's" : "there is", 

"they'd" : "they would", 

"they'll" : "they will", 

"they're" : "they are", 

"they've" : "they have", 

"we'd" : "we would", 

"we're" : "we are", 

"weren't" : "were not", 

"we've" : "we have", 

"what'll" : "what will", 

"what're" : "what are", 

"what's" : "what is", 

"what've" : "what have", 

"where's" : "where is", 

"who'd" : "who would", 

"who'll" : "who will", 

"who're" : "who are", 

"who's" : "who is", 

"who've" : "who have", 

"won't" : "will not", 

"wouldn't" : "would not", 

"you'd" : "you would", 

"you'll" : "you will", 

"you're" : "you are", 

"you've" : "you have", 

"'re": " are", 

"wasn't": "was not", 

"we'll":" will", 

"didn't": "did not" 

} 

 

#remove all the standard stopwords that seem to contain sentiment - especially those involving 
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"not" 

custom_stopwords = ['rt','i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", 

"you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 

"she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 

'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 

'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 

'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'between', 'into', 'through', 'during', 

'before', 'after', 'to', 'from', 'in', 'out', 'on', 'off', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 

'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'only', 'own', 

'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ma'] 

 

def text_process(df): 

  """ This function cleans each row of text data """ 

 

 

def process(df, ReviewCol, RatingCol): 

  new_df = pd.DataFrame( 

    {'Review': df[ReviewCol], 

     'Rating': df[RatingCol] 

    }) 

  return new_df 

 

X_test = test_sentences 

top_words = 51853#embedding_matrix.shape[0] 

mxlen = 50 #tested, this is about right 

nb_classes = 3 

 

with open('/home/san1234/dask/sentiment_analysis/X_train_yuge.pkl', 'rb') as f: 

  X_train = pickle.load(f) 

tru_neu = 0 

tru_pos = 0 

tru_neg = 0 #number of true positives and negatives ENCOUNTERED 

classified_neu = 0 

classified_pos = 0 
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classified_neg = 0 #for the ones we actually classified (didn't ignore), sum up these three 

corr_pos = 0 

corr_neg = 0 

corr_neu = 0 #for overall accuracy, sum the last 3 and divide by the number of reviews 

rev = list(basic['Message Body']) 

#rat = list(combo_vader['Rating']) 

for i in range(len(rev)): 

  #print(review, "\n\n") 

  review = rev[i] 

  score = sid.polarity_scores(review) 

  pos_score = score['pos'] 

  neu_score = score['neu'] 

  neg_score = score['neg'] 

  comp_score = score['compound'] 

 

 

  if pos_score > 0.2 and neg_score < 0.2: 

    classified_pos += 1 

    y_classes[i] = 1 

 

 

  elif neg_score > 0.2 and pos_score < 0.2: 

    classified_neg += 1 

    y_classes[i] = -1 

 

  elif neu_score > 0.75: 

    classified_neu += 1 

    y_classes[i] = 0 

 

test_list = list(basic['Message Body'])[:10] 

for index, item in enumerate(test_list): 

  print(y_classes[index]) 

  print(item) 

 



172 

 

df = pd.DataFrame() 

df ['Text Body'] = march8 ['Text Body'] 

df ['Labels'] = march8 ['Labels'] 

 

max_words = 20000 

print ("LENGTH ===> {}".format(df)) 

 

 

train_x = df ['Text Body'] [0:75800] 

test_x  = df ['Text Body'] [75801:108285] 

 

train_y = df ['Labels'] [0:75800] 

test_y  = df ['Labels'] [75801:108285] 

 

print ("Creating Bi-LSTM model... ") 

e_init = K.initializers.RandomUniform(-0.01, 0.01, seed=1) 

init = K.initializers.glorot_uniform(seed=1) 

simple_adam = K.optimizers.Adam() 

embed_vec_len = 32 

 

 

model = K.models.Sequential() 

model.add(K.layers.embeddings.Embedding(input_dim=max_words, output_dim=embed_vec_len, 

embeddings_initializer=e_init,mask_zero=True)) 

model.add(K.layers.LSTM(units=100, kernel_initializer=init, dropout=0.2, recurrent_dropout=0.2)) 

model.add(Bidirectional(LSTM(20, return_sequences=True), input_shape=(n_timesteps, 1))) 

model.add(K.layers.Dense(units=1, kernel_initializer=init, activation='sigmoid')) 

 

model.compile(loss='binary_crossentropy', optimizer=simple_adam, metrics=['acc']) 

 

bat_size = 32 

max_epochs = 2 

print ("\nStarting training... ") 
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model.fit(train_x, train_y, epochs=max_epochs, batch_size=bat_size, verbose=2) 

print ("Training complete... \n") 

 

loss_acc = model.evaluate (test_x, test_y, verbose=2) 

 

print("Test data: loss = %0.6f  accuracy = %0.2f%% " % (loss_acc[0], loss_acc[1] * 100)) 

 

time.sleep (2.0) 

print ("COMPLETE... ") 
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12.  Algorithm_IMDB 

 

“”” IMPORTING PYTHON MODULES “”” 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 

 

def main(): 

  print("IMDB sentiment analysis using Keras/TensorFlow") 

  np.random.seed(1) 

  tf.set_random_seed(1) 

 

  max_words = 20000 

  print("Loading data, max unique words = %d words\n" % max_words) 

  (train_x, train_y), (test_x, test_y) = K.datasets.imdb.load_data(seed=1, num_words=max_words) 

 

  max_review_len = 80 

  train_x = K.pre-processing.sequence.pad_sequences(train_x, truncating='pre', padding='pre', 

maxlen=max_review_len) 

  test_x = K.pre-processing.sequence.pad_sequences(test_x, truncating='pre', padding='pre', 

maxlen=max_review_len) 

 

  print("Creating LSTM model") 

  e_init = K.initializers.RandomUniform(-0.01, 0.01, seed=1) 

  init = K.initializers.glorot_uniform(seed=1) 

  simple_adam = K.optimizers.Adam() 

  embed_vec_len = 32  # values per word 

 

  model = K.models.Sequential() 

  model.add(K.layers.embeddings.Embedding(input_dim=max_words, 

output_dim=embed_vec_len, embeddings_initializer=e_init, mask_zero=True)) 

  model.add(K.layers.LSTM(units=100, kernel_initializer=init, dropout=0.2, 

recurrent_dropout=0.2))  # 100 memory 

  model.add(K.layers.Dense(units=1, kernel_initializer=init, activation='sigmoid')) 
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  model.compile(loss='binary_crossentropy', optimizer=simple_adam, metrics=['acc']) 

  print(model.summary()) 

 

  bat_size = 32 

  max_epochs = 3 

  print("\nStarting training ") 

  model.fit(train_x, train_y, epochs=max_epochs, 

  batch_size=bat_size, shuffle=True, verbose=1) 

  print("Training complete \n") 

 

  loss_acc = model.evaluate(test_x, test_y, verbose=0) 

  print("Test data: loss = %0.6f  accuracy = %0.2f%% " % \ 

  (loss_acc[0]*100, loss_acc[1]*100)) 

 

#-------------------------------- 

 

def main_trial(): 

  print("IMDB sentiment analysis using Keras/TensorFlow") 

  np.random.seed(1) 

  tf.set_random_seed(1) 

 

  max_words = 20000 

  max_review_len = 80 

  df = pandas.read_csv ("cloth_short.csv") 

  df = df.dropna() 

 

  train_x = df['Reviews'][0:140] 

  test_x  = df['Reviews'][141:197] 

 

  train_y = df['Labels'][0:140] 

  test_y  = df['Labels'][141:197] 

 

  train_x = K.pre-processing.sequence.pad_sequences(train_x, maxlen=max_review_len, 

dtype='int32', padding='pre', truncating='pre', value=0.0) 
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  test_x  = K.pre-processing.sequence.pad_sequences(test_x, maxlen=max_review_len, 

dtype='int32', padding='pre', truncating='pre', value=0.0) 

 

  print("Creating LSTM model") 

  e_init = K.initializers.RandomUniform(-0.01, 0.01, seed=1) 

  init = K.initializers.glorot_uniform(seed=1) 

  simple_adam = K.optimizers.Adam() 

  embed_vec_len = 32  # values per word 

 

  model = K.models.Sequential() 

  model.add(K.layers.embeddings.Embedding(input_dim=max_words, 

output_dim=embed_vec_len, embeddings_initializer=e_init, mask_zero=True)) 

  model.add(K.layers.LSTM(units=100, kernel_initializer=init, dropout=0.2, 

recurrent_dropout=0.2))  # 100 memory 

  model.add(K.layers.Dense(units=1, kernel_initializer=init, activation='sigmoid')) 

 

  model.compile(loss='binary_crossentropy', optimizer=simple_adam, metrics=['acc']) 

  print(model.summary()) 

 

  bat_size = 32 

  max_epochs = 3 

  print("\nStarting training ") 

  model.fit(train_x, train_y, epochs=max_epochs, batch_size=bat_size, shuffle=True, verbose=1) 

  #model.fit (train_x, train_y, epochs=max_epochs, batch_size=bat_size) 

  print("Training complete \n") 

 

  loss_acc = model.evaluate(test_x, test_y, verbose=0) 

  print("Test data: loss = %0.6f  accuracy = %0.2f%% " % \ 

  (loss_acc[0], loss_acc[1]*100)) 

 

  #------------------------------ 

 

if __name__ == '__main__': 

  main() 
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Appendix B 

 

This part of the appendix gives a brief explanation of various modules, algorithms 

and concepts which are made use of in this thesis. 

 

1. Sentiment Analysis and Natural Language Processing 
(NLP) 

 

The entire thesis is about Sentiment Analysis (SA). Sentiment Analysis is a field 

of study which concerns with opinions, sentiments, emotions or attitude of people 

towards entities like products, services, organizations or events and their attributes 

[97]. Sentiment analysis is also known by other names such as Opinion mining, 

Subjectivity analysis, Review mining etc [97].  

 

Some applications of Sentiment Analysis include:  

 

1. When a consumer wishes to make decisions about a product, important 

information about the reputation of that product is required. This is derived by 

people’s opinions which Sentiment Analysis can reveal what people’s opinions 

are [98]. 

 

2. Companies can know the opinions of the products they are selling [98]. 

 

3. Sentiment Analysis is proposed as a component of other technologies [98]. 
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Classification of Sentiment Analysis: 

The image above shows the classification of Sentiment Analysis based on three 

methods: Lexicon-based methods, Machine-learning methods and Hybrid 

methods. 

 

Sentiment Analysis examines the problem of analysing texts such as reviews, 

comments or posts uploaded by people on social networking sites and use this 

data to judge the content as a positive or a negative one [99]. The entire thesis and 

the research which are documented in the previous chapters all focus on sentiment 

analysis on text data. The definitions mentioned above along with the 

classification make it clear as to what we are trying to achieve by performing 

sentiment analysis. 

 

Natural Language Processing (NLP): NLP can be defined as technology which 

can adopt computers to interpret the natural language of Humans [101]. Some 

tasks included in NLP are Part-of-speech tagging, Chunking, Named-Entity-

Recognition and others [102]. Researchers intend to gain knowledge about how 

humans understand and make use of language to develop appropriate tools and 

methods to enable computers to understand natural languages just like humans 

[103]. NLP has found its application in processing text data in a verity of 

languages such as Chinese, Hindi, Spanish and others [104]. Sentiment Analysis 

is a subset of Natural Language Processing. 
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2. Machine learning methods 

 

We have seen various algorithms in the chapters concerning the research. Each 

algorithm is used to define a model developed. These chapters show algorithms in 

a step-by-step procedure right from a very basic model all the way till a very 

advanced algorithm which makes use of bidirectional Neural Networks. All of 

these algorithms perform sentiment analysis and is used to classify or train the 

data. This can be performed in three major ways.  

 

1. Unsupervised learning: A category of machine learning which learns from test 

data and does not include labelled, classified or categorized data [105]. In this 

method of learning, the data can be grouped according to similarities and 

differences even if there are no categories provided [106]. Algorithm_1a, 

Algorithm_1b and Algorithm_2a make use of unlabelled data sets and the 

Textbook function provided by Python3.6. The algorithms classify the sentiment 

of data into positive, negative or neutral. This is an example of unsupervised 

learning. Unsupervised learning algorithms can be grouped into either clustering 

or association problems [107]. Clustering problem is the one which involves 

discovering the inherent groupings of data [107]. Association learning is the one 

which involves knowing the rules which describe large part of the data [107]. 

Some unsupervised learning algorithms include K-means clustering and 

Agglomerative clustering [108]. 

 

2. Supervised learning: This type of machine learning provides tools to classify 

and processes data which is labelled and which is classified [109]. The data set is 

used for predicting the classification of unlabelled data with the use of machine 
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learning algorithms [109]. Algorithm_2b onwards, we see the models making use 

of supervised learning. In these, we have labelled and classified data sets. An 

advantage of supervised learning over unsupervised learning is that we can know 

the number of classes there are in order to train the data [110]. Some supervised 

learning algorithms include Support Vector Machine, Naive Bayes, Neural 

Networks, Logistic Regression and others as we can observe in the image [100]. 

 

3. Reinforced learning: This involves the training of machine learning models to 

make a sequence of decisions [111]. In reinforced learning, a situation is 

encountered where the computer employees train and error to form a solution to a 

problem [111]. This thesis does not include reinforced learning. 

 

 

3. Different Classification Machine learning Algorithms 

 

The algorithms which are shown in the form of Python programs presented make 

use of one or more machine learning algorithms to perform classification and 

training. In Algorithm_2b and Algorithm_3a we see the use of K-Nearest-

Neighbor (KNN) algorithm. In Algorithm_3c and Algorithm_3d we see three 

other classification algorithms Logistic Regression (log reg), Random Forest 

Classifier (RF) and Support Vector Machine (SVM). The reasons why these four 

algorithms were chosen are mentioned in an earlier section of the thesis. In this 

section, let us look at a detailed understanding of each of these algorithms, their 

applications, working and their advantages and drawbacks.  

 

1. K-Nearest-Neighbors Algorithm (KNN): This algorithm is easy, simple to 
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implement supervised machine learning algorithm which can be used for 

classification and regression problems but is more useful for classification 

problems[138]. In order to evaluate a technique, three important aspects are 

looked into. The ease to interpret the output, Calculation time and Predictive 

power [139]. Among the three aspects, KNN is mainly used for the ease of 

interpretation of output and low calculation time [139]. 

 

Working of KNN algorithm: 

The first step when using KNN algorithm is to transform data points into feature 

vectors or mathematical values [140]. The next step is that it finds the distance 

between the mathematical values of the points. The most common way to find the 

distance is by using the Euclidean distance [140]. 

 

 

 

(1)--  

 

 

Shown above is the Euclidean distance formula [140]. KNN runs the above 

formula (1) to compute the distance between each data point and the test data. The 

probability of the points being similar to the test data is calculated and it is 

classified based on which points share the highest probabilities [140].  
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Image showing the KNN classification [141] 

 

The above image shows the working of KNN algorithm using pictorial 

presentation. In the above image K is the number of neighbours. The test sample 

is represented by the inner circle. It is to either be classified into the first class 

represented by the blue squares or the second class represented by the red 

triangles. If we take the value of k = 3, then it is assigned to the second class 

because two red triangles are present and only one blue square is in the inner 

circle. If we assume k = 5, then it is assigned to the first class as three blue 

squares are present versus two red triangles in the outer circle [141].  

 

 

Advantages of KNN algorithm: 

1. Easy to implement [17]. 

2. The algorithm makes no pre assumptions about the data [17]. 
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Drawbacks of KNN: 

1. It requires homogeneous features [142]. 

2. One of the biggest issues is that it requires optimal number of neighbors [142]. 

3. It provides no good facility to treat missing values [142]. 

 

 

2. Logistic Regression Algorithm (log reg): This is a machine learning algorithm 

mainly used in case of binary classification problems [144]. Log reg algorithm is 

similar to the Linear regression algorithm but while the former is used to predict 

values, the latter is used to classify data [145]. Binary classification is where this 

algorithm finds its best applications where for example, classifying if a website is 

fake or not or checking if an email is spam or not is done [145]. Log reg algorithm 

uses a linear equation to predict values [145] since it is required to output the 

algorithm to be either a 0 or 1 for no and yes respectively [145]. For this, a 

Sigmoid function is made use of: 

 

 

 

 

(1)-- 

 

 

 -- (2) 
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(3)-- 

 

 

In the above equations, ‘z’ represents the output of the linear equation. This 

output z is given to the function g(x) in equation (2) which returns a squashed 

value ‘h’. The value of h will be in the range of 0 to 1.  

 

In the Algorithms in this thesis which make use of Logistic regression algorithm 

to classify data, the Sigmoid function will take into account the number of classes. 

The data set used for those algorithms have 5 classes ranging from 1 to 5. But 

irrespective of the number of classes, the output will be in a binary form, which is 

either 1 or 0. 

 

Advantages of Logistic Regression: 

1. It does not require many computational resources [146]. 

2. It does not require input features to be scaled [146]. 

3. It is efficient [146]. 

 

Drawbacks of Logistic Regression: 

1. If there is a feature that would separate the two classes, Log reg model cannot 

be trained [147]. 

2. Log reg cannot solve non-linear classification problems since its decision 

surface is linear [148]. 
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3. Random Forest Classifier algorithm (RF): Random forest algorithm is a 

supervised classification algorithm which creates a forest using a number of trees 

[149]. It is mentioned that when there are more trees in the forest, the forest looks 

more robust and therefore, higher number of trees in the forest can give better 

accuracy values [149]. This algorithm is built on top of the Decision tree 

algorithm. This is one of those algorithms which can be used for both 

classification and regression tasks [149]. Although this thesis mainly focuses on 

classification of data. 

 

Let us look into an example to understand the RF algorithm even better. Let us 

consider a node which has to make a decision as to which channel out of many it 

has to send a message. It looks into the history of another node and gets 

information about the channels it has used and based on this makes a decision. 

This is analogous to the Decision Tree algorithm. If the first node feels that the 

information from the other node could be biased, it will look into the history of 

several other nodes and come up with a better decision. This is Random Forest 

algorithm. 

 

Working of the RF algorithm: There are two major stages in the RF algorithm. 

The first one deals with the creation of a forest and the second one is to make a 

prediction. First, “K” features are selected from a total of “m” features. Next, 

among the “K” features, the best split point is used to calculate the node “d”. The 

node is then split into number of nodes using best split. The above three steps are 

repeated until a certain number of nodes are reached. To create “n” number of 
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trees, the above four steps have to be repeated for “n” number of times.  

 

Advantages of Random Forest algorithm: 

1. This algorithm avoids the over fitting problem [150]. Over fitting is a problem 

where the algorithm continues to develop hypothesis which reduce the training 

error at the cost of increasing the testing error [151]. 

2. The same algorithm can be used for both classification and regression tasks 

[150]. 

3. It can be used to identify the most intricate features from the training data set 

 [150]. 

 

Drawbacks of Random Forest algorithm:  

i) The main drawback is the algorithm’s complexity. This occurs due to the 

creation of many trees and combining the outputs [152]. 

ii) Takes more time for training [152]. 

 

 

 

4. Support Vector Machine algorithm (SVM): This algorithm is based on the 

concept of decision planes which define a boundary [153]. A decision plane 

separates between a set of objects having different class memberships [153]. SVM 

model represents the examples as points in space mapped in such a way that the 

examples of separate categories are divided by a clear gap [154]. 

 

Working of SVM algorithm: 

The SVM model creates a hyper-plane which separates data into classes. It puts a 
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theoretical line or a hyper-plane that separates every class [156]. It takes data as 

input and gives the line that separates those classes as outputs [156].  

 

In the Appendix-D section, image_08 shows an example in which there are two 

classes [156]. One class is represented by the red squares and the other class is 

represented by blue circles. The goal is to find an ideal line that separates the two 

classes. But we can observe more than one line on the image above. There are two 

lines. So the ambiguity is to know which is better to choose. The algorithm 

chooses the yellow line as the hyper-plane. The green line although separates the 

two classes, it is not generalized line. 

 

Advantages of SVM [156]: 

1. It works well when there is a clear margin of separation between classes. 

 

2. It is efficient in cases where a number of dimensions is greater than the number 

of samples. 

 

3. It is memory efficient. 

 

Drawbacks of SVM [156]: 

1. It is not suitable for large data sets. 

 

2. When the data is noisy, this algorithm fails to perform well. 

 

3. The algorithm will underperform where the number of features for each data 

point exceeds the number of training samples. 
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4. Performance Metrics 

 

The thesis deals with how I conducted my research to answer the research 

question which deals with performing sentiment analysis on large text data. We 

have come up with three models two of which are for text data set with comment 

data and one for a very large email data set. All of these algorithms involve the 

calculation of four parameters. Precision, Recall value, F-score and Accuracy. Let 

us discuss in brief what these values are. But before that let us look into some 

definitions: 

 

1. True Positive: It is an outcome where the model predicts correctly the positive 

class [157]. 

 

2. True Negative: It is an outcome where the model predicts correctly the negative 

class [157]. 

 

3. False Positive: It is an outcome where the model incorrectly predicts the 

positive class [157]. 

 

4. False Negative: It is an outcome where the model incorrectly predicts the 

negative class. 

 

Let us take an example to explain the above definitions. In case of a game of 

cricket, when the umpire is to make a decision whether the batsman is out or not,  
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* Umpire gives NOT OUT when the batsman is not out: True Positive. 

 

* Umpire gives OUT when the batsman is out: True Negative. 

 

* Umpire gives NOT OUT when the batsman is out: False Positive. 

 

* Umpire gives OUT when the batsman is not out: False Negative. 

 

Now that we have learnt about the above four definitions, let us look into the 

parameters and what they mean: 

 

1. Precision: Precision gives us the value of what propagation of the positive 

identifications were actually correct [158]. 

 

Precision = TP / (TP + FP)  --- (1) 

 

Where: TP — True Positive   FP — False Positive 

 

 

2. Recall: Recall gives us the value of what propagation of actual positives were 

identified correctly [158]. 

 

Recall = TP / (TP + FN)   --- (2) 

 

Where: TP — True Positive   FN — False Negative 

 



190 

 

3. Accuracy: Accuracy is the fraction of predictions which the model has got right 

[158]. 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) --- (3) 

 

Where: TP — True Positive   TN — True Negative 

  FP — False Positive   FN — False Negative 

 

 

4. F1 Score: This gives a balance between the precision and recall [159]. 

 

F1score = 2 * (Precision * Recall) / (Precision + Recall) --- (4) 
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5. Recurrent Neural Networks 

 

The research section has a chapter which explains Artificial Neural Networks 

(ANNs) in detail. The chapter also explains why ANNs was adopted to build a 

model, its advantages and disadvantages. Deep learning and Deep Neural 

Networks (DNNs) have also been explained in detail. In this section we shall take 

a look at Recurrent Neural Networks (RNNs) and its types.  

 

1. Recurrent Neural Network (RNN): This is a class of Neural Networks which 

enable the previous outputs to be used as inputs in the form of hidden states [160]. 

 

The above image [160] shows an architecture of a Recurrent Neural Network 

where the output of the previous node is the input to the next one.  

 

Advantages of RNN [160]: 

 

 The possibility of processing inputs of any length is high. 

 Weights are shared across time. 

 Historical information is considered for computation. 

 

 

Drawbacks of RNN [160]: 

 

 Computation is slow. 

 Accessing information from a long time in the past is a problem. 

 Future input cannot be considered for the current state. 
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2. Bidirectional Recurrent Neural Network (Bi RNN): Bi RNNs connect two 

hidden layers in opposite directions to a single output which allow them to receive 

information from both past and future states [161]. This deep learning technique is 

more prominent is supervised learning approaches [161]. 

 

 

The image above shows the structure of a bidirectional RNN [162].   

From this structure we can infer that each output is given as an input to another 

node and at the same time, it receives information from both the previous node 

and the next node.  

 

 

3. Bidirectional Long Short Term Memory (Bi LSTM): We have already seen the 

working of LSTM. Here we shall briefly observe the working of a bidirectional 

LSTM. Bi LSTM incorporates the concepts of Bi RNNs and LSTM and connects 

two hidden LSTM layers in opposite directions to a single output. This way, it is 

able to receive information from both past and present and is capable of retaining 

the memory for a long time. Algorithm_email_SA makes use of Bidirectional 

LSTM. 
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Appendix C 

 

This part of the appendix explains the tools, and Python modules used to develop 

the algorithms. 

 

1. Python 3.6 and its modules 

 

In order to implement the models and algorithms, the programming language 

made use of is Python3.6. Python is an interpreted object oriented programming 

language created in 1990 which differs from other programming languages 

wherein it marked code readable and use white space over compact small source 

files [112]. Python3.6 is one of the latest versions of the programming language 

and as we have seen in the algorithms, offers a wide range of in built libraries and 

modules to perform various functions in domains of mathematics, machine 

learning ad others. Python is a high level language and is interpreted, which 

means, it is written in a compiled language (C or C++) using a compiler. Hence, 

Python does not require compilation. Let us take a look at some of the major 

Python libraries used in the algorithms: 

 

A. Numpy: Numpy is a basic package provided by Python for scientific 

computing [113]. Numpy provides us with an object N-dimensional array (array) 

[114]. It also provides us with a universal function object (ufunc). An N-

dimensional array is a collection of items which are indexed using integers [114].  

 

In Algorithm_3d, we see the use of numpy. In this algorithm, Numpy is imported 
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as ‘np’. This is the algorithm which represents the vectorization model. We see in 

line 108 numpy.mean() method being used. Numpy.mean() Returns the average of 

the array elements [115]. In Algorithm_NN1, we see the use of Numpy module 

where a functionality np.zeros() is used. This is observed in line 159. What this 

does is, it returns a new array of a shape and size which is filled with zeros [116]. 

We also observe in line 163 numpy.sum() function. This function adds the array 

elements and gives the sum of them [117].  

 

 

B. Pandas: Pandas is a high level tool used for manipulation of data built on the 

Numpy package and provides Data Frame as a key data structure [118]. These 

data frames enable us to store and manipulate data in tabular form which are in 

the shape of rows and columns [118]. We can observe the use of a Pandas data 

frame in every algorithm used. These data frames not only provide the required 

tabular data structure to store our data in rows and columns but also provide us 

with functionalities with which we can change or operate on the data in the data 

frames.  

 

In every algorithm, we can see that to create a data frame out of a.csv file, we 

write the following line: 

 

dframe = pandas.read_csv (“Food_Reviews.csv”) 

 

Here, dframe is the name of the data frame we intend to create, pandas.read_csv() 

is a function of pandas which will create a data frame from a.csv file and a string 

parameter is provided which contains the name of the csv file with which we want 
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to create the data frame. We can also see in many of the machine learning 

algorithms how we can create a new row in a data frame, delete a row, select only 

a particular part of the rows and other functions.  

 

 

C. Other libraries: Apart from Numpy and Pandas, there are other libraries which 

are used in the algorithms. Let us see some of them in brief: 

 

‘Re’: This module provides regular expressions functionalities to match patterns 

[119]. We can see this module in all the machine learning algorithms used in the 

data pre-processing steps to remove punctuations from raw data as the 

punctuations are considered noisy. In the algorithm concerning Twitter sentiment 

analysis (Algorithm_2a), the re module is used to remove emotions as well.  

 

‘String’: This module provides us with many useful constants using which we can 

operate on string data [120]. We can see the use of the ‘string’ module in the pre-

processing steps in our algorithms.  

 

‘sklearn’: This is the SciKit learn module which is already discussed before. It 

provides us various algorithms used for machine learning and also provides 

functions to perform numerical operations on data [121]. We can see several 

sklearn functions imported in our algorithms, and they are all used to perform 

classification on the data with a machine learning algorithm and to calculate 

numerical parameters like precision, recall and accuracy.  

 

‘text table’: It is a simple library provided by Python to read and write ASCII text 
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tables [122]. We have used this module to create tables to compare the parameters 

of different algorithms or readings.  

 

2. Python NLTK (Natural Language Tool Kit) 

 

Natural Language Toolkit or NLTK is an open source library provided by Python 

which provides us with tools and functions to enable us to perform operations on 

text data or to process natural language [7]. NLTK also finds its application in text 

analytics [8]. Let us take a look at some of the tools provided by NLTK which 

have been made use of in the algorithms: 

 

A. Word and Sentence tokenizer: Tokenization is the process of breaking up a 

series of text data into chunks such as words or sentences called tokens [123]. 

Word tokenizing is to break up a series of strings into words where each word is 

called a token. The nltk.word_tokenize() returns a tokenized copy of the text 

[124].  

 

An example: Assume a string str1 = “The cat will fit into the box” 

  Here str1 is a string.  

  Import nltk 

  word = nltk.word_tokenize (str1) 

  print (word) 

 

The output: [“The”, “cat”, “will”, “fit”, “into”, “the”, “box”] 

 

The same principle is seen in case of sentences where we use nltk.sent_tokenize(). 
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In this case, the entire block of text is split into sentences each of which is called a 

token [125].  

 

An example: Assume a string str2 = “There are clouds. It will rain tonight. So be 

prepared please” 

 

   import nltk 

  sent = nltk.sent_tokenize (str2) 

  print (sent) 

 

The output: [“There are clouds”, “It will rain tonight”, “So be prepared please”] 

 

Word tokenize is used in the pre-processing steps of the machine learning 

algorithms. 

 

 

B. Stop Words: The text data can contain words like ‘is’, ‘to’, ‘the’, ‘on’ etc. 

There are referred to as stop words and it is preferred to remove them from the 

raw data [126]. In the algorithms, if we look at the pre-processing steps, we can 

see the stop words being removed.  

 

From nltk.corpus import stopwords = list (stop words.words (‘English’)) 

print (stopWords) 

 

The output will be a list of inbuilt stop words in Python. Using this list, we can 

filter out the stop words in a list. We can also add our own words into the list of 
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stop words or if we wish remove one or more words.  

 

 

C. Stemming: Stemmers extract the morphological affixes from a word which 

leaves only the word stem. 

 

For example, if we have four words “activate”, “activity”, “activation”, 

“activation al”: 

 

from nltk.stem import PorterStemmer 

ps = PorterStemmer() 

words = [“activate”, “activity”, “activation”, “activation al”] 

for w in words: 

 print (ps.stem (w)) 

 

Output: activ, activ, activation, activ 

 

From the output, we can see that three out of four words have been stemmed 

down to their basic word ‘activ’. This way, if we can stem down similar words, it 

will be cleaner data for processing.  

 

D. Named Entity Recognition: Named Entity recognition locates and classifies 

named entities in text into pre-defined categories such as person, location, 

organization percentages, currency etc [127]. Using NER tagging, we can know 

the names of companies mentioned in an article, or the proper nouns in a block of 

text [127]. 
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For example, if we look into Algorithm_3b, we see how named entity recognition 

is used to tag words that belong to an entity and remove them. First, chunks of 

text are created with their entity tags into a variable namedEnt. Then an empty list 

is creates. The list namedEnt is iterated over and wherever we see a tag ‘NNP’ 

which corresponds to proper nouns, we remove them.  

 

3. TextBlob 

 

Textbook is a library provided by Python for processing textual data and provides 

simple APIs for performing Natural Language Processing (NLP) like part-of-

speech tagging, noun phrase extraction and sentiment analysis [128]. Textbook is 

useful in many an industry where dealing with and processing large data comes 

into play [129]. We can see the use of Textbook in three of the algorithms in this 

thesis. Algorithm_1a, Algorithm_1b and Algorithm_2a. Textbook comes with 

many sub modules and functionalities. One of them is the text 

blob.sentiment.polarity() function which is made use of in the algorithms 

mentioned above. What this function does is, it gives us the polarity of an English 

phrase of group of words as positive ot negative [130]. We can observe in 

Algorithm_12 that the entire row of text data from the data set is put into a Python 

list. The list is then iterated where in each iteration one row of text data is taken in 

and then on this string of text data text blob.sentiment.polarity is used which gives 

it a polarity. Similarly, in Algorithm_2a we use the same technique. Here a word 

is taken as an input and the number of occupants of that word is taken as another 

input. A variable ‘analysis’ is created which represents a Textbook object and 

analysis.sentiment.polarity is used and conditions are given. If the polarity 
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exceeds 0, it is positive. If the polarity is below 0, it is considered negative 

polarity and if the polarity is 0 it is neutral polarity. In an article which dealt with 

sentiment analysis to predict election results [131], Textbook was used and more 

specifically text blob.sentiment.polarity was used to predict the USA election 

results. Like NLTK, even Textbook comes with a word tokenizer which creates a 

chunk of words from text data. This word tokenizer of Textbook is shown in this 

paper [132]. Textblob can be used to analyse particular category of sentiment and 

classify a word into that category [137].  

 

4. SciKit Learn 

 

Scikit learn is a Python module which provides a range of selection of supervised 

and unsupervised learning algorithms [133]. Scikit learn is by far the easiest and 

cleanest machine learning library in Python [133]. Scikit Learn is built on top of 

some data and math libraries of Python [133] such as: 

 

i) Numpy 

ii) SciPy    

iii) Matplotlib 

iv) Ipython    

v) Sympy    

vi) Pandas 

 

Defines Scikit learn as an open source library which provides a consistent API for 

using machine learning algorithms in Python [134]. The main goal of using Scikit 

learn is to simplify the contentions and to limit the number of methods an object 
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should implement [134]. The name ‘Scikit learn’ is derived from SciPy ToolKit 

and in short is also referred to as sklearn [134].  

 

In the algorithms presented in this thesis, Scikit learn is the most widely used and 

most frequently used Python library. Several functionalities of Scikit learn have 

been made use of. Right from Algorithm_2b to Algorithm_email_SA, we can see 

various functionalities of Scikit learn to be used.  

 

Let us look into Algorithm_2b. In this algorithm, let us look at the function 

tweet_analysis(). The steps are as follows: 

 

Step-1: A data frame is got by calling another function process(). 

 

Step-2: A label encoder object is created. (Label encoder will be explained 

shortly). 

 

Step-3: The two columns of the data frame are split into two lists and each of 

them are further split into training and testing lists. Here we make use of the 

train_test_split function of Scikit learn. 

 

Step-4: We reshape each of the lists to make them suitable for classification. For 

this the pre-processing module of Scikit learn is made use of. Where we use the 

values.reshape() function.  

 

Step-5: K-Nearest-Neighbor algorithm is used to classify and train the data. Even 

the KNN and its functionalities are a part of the Scikit learn package. From this, 
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the accuracy, precision and other values are calculated.  

 

As we can see, Scikit learn comes with many functionalities which are made use 

of in several other algorithms presented in the thesis. Let us look at a few 

important functionalities: 

 

1. train_test_split(): This functionality of Scikit learn splits arrays or matrices into 

random train and test subsets by considering the parameters given [135]. 

 

We can import the module as follows:  

from sklearn.model_selection import train_test_split 

 

Then we can use the function as follows: 

x_train, x_test, y_train, y_test = train_test_split (X, Y, test_size=0.2) 

 

Where X and Y are arrays or lists containing data and test_size is a parameter that 

takes in the amount of test data size to be split into. Here 0.2 means 20% of the 

array or list will be split into test and 80% will be training data. 

 

 

2. sklearn.metrics: This module provides us with score functions and performance 

metrics for computation [136]. Using this, we can import metric values and 

calculate values of precision, recall and f-score. 

 

The module is imported like this: 

from sklearn.metrics import precision_score, recall_score, f1_score 
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Then we can use this to calculate precision score as: 

total_precision_score = precision_score (y_pred, y_test, average = ‘weighted’) 

 

Similarly, other values like recall and f-score can be calculated. 

 

3. sklearn.linear_model: This module is used to implement generalized linear 

models which includes Ridge regression and Stochastic gradient descent related 

algorithms [138]. In some of the algorithms, the Logistic Regression algorithm is 

made use of. This is imported from sklearn.linear_model. 

 

It is imported as: 

from sklearn.linear_model import LogisticRegression 

 

It is used this way: 

log reg = LogisticRegression() 

 

 

Scikit learn provides us with handy tools  and can perform a variety of things like 

predicting consumer behavior etc [169].  
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5. Keras 

 

Keras is a high level neural network API which runs on top of Tensor flow, 

CNTK or Theano and is written in Python [163]. Keras is a part of the Tensor 

flow core [164] which makes it a high level API. Keras provides seven data sets 

which can be loaded directly [164]. One of the data sets (imdb movie reviews data 

set) has been imported and used in Algorithm_keras.  

 

Why use Keras: Keras provides us with a wide range of functionalities most of 

which can be used in machine learning [163]. Some strengths of Keras which 

make it a preferred API are: 

 

1. It has a broad adoption in the industry [164]. 

2. It supports multiple back end engines [164]. 

3. It shortens the amount of code needed for execution. 

 

Tensor flow is an open source platform for machine learning which has 

comprehensive tools and libraries to enable the building of machine learning 

powered applications [165]. Using Keras which is an API for Tensor flow makes 

writing of code easier and in turn helping us ease the process to perform sentiment 

analysis.  

 

Layers of Keras comes inbuilt with many modules to make the process of 

machine learning easier. We have already seen that Keras provides us with seven 

inbuilt data sets which can be imported and used. Keras layers are the building 
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block of keras models [166]. Layers in Keras are created using the layer_ function 

[166]. There are a number of different layers provided by Keras. Some of them 

are: 

 

1. Core layers  2. Pooling layers  3. Recurrent layers 

4. Normalization layers  5. Embedding layers 

 

In Algorithm_NN01, we are using some of these layers. We are using: 

 

1. LSTM layer    2. Dense layer and 

3. Activation layer   4. Embedding layer 

 

In the algorithm, a model object is first created. Using this, we can perform Keras 

functions. Model.add() is a function which enables us to add a new layer. The first 

layer to be added in the LSTM layer. This layer comes under the Recurrent layer 

category. This layer is used to implement an LSTM layer [163]. In the algorithm, 

we create a LSTM layer by using the add() function. And in it, we supply the 

parameters recurrent_dropout, dropout and return_sequences. Following this 

layer, another LSTM layer is added with no parameters. After the creation of the 

LSTM layers, a Dense layer and an Activation layer are added.  

 

The first layer to be created here in the Embedding layer. This layer turns positive 

indexes into dense vectors of fixed size [163]. The layer is first created by 

supplying parameters and is then added using the add() function.  

 

Dense layer comes under the category of core layers. The Dense layer is a regular 
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dense Neural network layer [163].  

 

Activation layer is also a subclass of core layers. This applies an activation 

function to an output [163].  

 

 A pooling layer reduces the image dimensionality by retaining the important 

patterns [82].  

 

 

6. DASK 

 

Dask is a flexible library provided by Python for performing parallel 

computational tasks [175]. Dask is a revolutionary tool for data processing [176]. 

When we use Numpy or Pandas with respect to large data, there are cases where 

the data may not fit into the RAM [176]. This is where Dask comes into play. 

Dask supports the Data frame of Pandas and array data of Numpy and is capable 

of either running them on the local computer or be scaled up to run on a cluster 

[176].  

 

Working of Dask: 

Dask works on the concept of parallel computing. This means less time taken for 

execution. In case of a computer, if we assume it to have a fixed number of 

processors (let’s say 4 processors or cores), Dask splits the process equally into 

four parts and each processor is running a part of the task. But this is not all. Dask 

also uses the concept of lazy loading. Let us take the case of a data frame. When 

we use the Pandas module to create the data frame, the entire data set is loaded 
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into the data frame at once [177] and this is known as eager evaluation [177]. 

Pandas is also designed to work on a single core [177]. Dask on the other hand 

does not load the entire data set at once. It splits the data into many chunks and 

only loads one at a time [178]. 

The image_02 in the Appendix-D section shows the time and memory taken by a 

pandas data frame to load a data set compared with the time and memory taken by 

a Dask data frame to load the same data set. The time is measured in seconds and 

the memory is measured in bytes. We can see that in both time and memory 

utilization, Dask has the upper hand. This is because of three reasons:

1. The data set is large (About 1.3 Gigabytes). As mentioned before, Dask has the

upper hand when data to be handled is large.

2. The time taken by Dask data frame is less because of the parallel computing

abilities. It makes use of all the processors or cores of the system as opposed to 

just one core in the case of Pandas data frame.

3. The memory utilization is less in the case of Dask because of the lazy loading

function. It splits the entire data into chunks and loads only one at a time.

A Dask data frame is a parallel data frame which comprises many smaller Pandas 

data frames [83]. Dask clusters can run on one single machine or on many remote 

networks [84]. Dask array provides chunked algorithms which work on top of 

libraries similar to Numpy [85]. 



208 

 



209 

Appendix D 

 

This part of the appendix contains images which are referred to in other sections 

like the methodology section.  

 

 

Image_01: This image compares the time taken by Algorithm_1a versus the time 

taken by Algorithm_1b for execution. 
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Image_02: The comparison of time taken and memory used by pandas versus 

Dask. 
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Image_03: This picture shows the structure of LSTM [174]. 
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image_04: The image above shows a structure of classification of sentiment 

analysis [180].  

 



213 

 

Image_05: The basic structure of a Recurrent Neural Network [47]. 

 

 

 

 

Image_06: Basic structure of an Artificial Neural Network [37] 
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Image_08: A graph showing two classes in a Support Vector Machine (SVM) 

classifier [156].


