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Abstract

In this thesis we provide a characterization of view materialization in the con-
text of multi domain heterogeneous search application. Web data view ma-
terialization is presented as a solution for technical constraints and problems
implied by the unknown structure of the web data sources. The web data ma-
terialization model extends the search computing (SeCo) multi-layered model,
where the search services are registered in a service repository that describes
the functional (e.g. invocation end-point, input and output attributes) infor-
mation of data end-points.

Our first research goal is to solve the problem of finding a sequence of
access patterns, which when executed produces a materialization output.

Our second research goal is the optimization of the materialization process
so that the most optimal sequence in terms of materialization output efficiency
and quality, executes at all times. As each access patterns can be mapped to
several services each differentiated by its performance and materialized data
domain characteristics, the services sequence needs to be monitored in ma-
terialization run-time by gathering and analysing predefined materialization
metrics. According to materialization run-time metrics the materialization
process is optimized by switching between available services.

For the first research goal we make the following novel contributions: 1)
Formulation of the building blocks for the materialization feasibility analy-
sis; 2) Definition of the materialization feasibility analysis method and the
accompanying algorithms; 3) A detailed empirical study conducted on a set
of materialization tasks ranging in their schema dependencies complexity.

For the second research goal we make the following novel contributions:
1) Formulation of a set of performance dimensions and their metrics for web
source materialization; 2) A cost model that utilizes optimization metrics
in order to qualitatively differentiate between web services in terms of
materialization time; 3) A query optimization procedure that explores the
characteristics of the underlying source data domain in order to prioritize the
execution of the most productive queries in terms of their data harvesting

power; 4) Materialization process optimization strategies based on the web
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source performance dimension metrics and query optimization procedure;
5) A detailed empirical study conducted on several relevant web based data

sources that clearly shows the effectiveness of the proposed solution.
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CHAPTER 1

Introduction

1.1 Overview

Web based data sources represent a segment of the web commonly interfaced
by HTML forms or web service APIs. Recent research has estimated the size
of this type of web data to be an order of magnitude larger than the size of the
surface web [Madhavan 2008] i.e., the information accessible via the static
URL links. This vast amount of data is commonly referred to as the deep
or hidden web. In other words the deep web might be seen as a myriad of
heterogeneous web based data sources commonly accessible via web forms or
web API calls.

The aim of search computing [Ceri 2010] is to answer multi domain queries
by accessing heterogeneous web based data sources typically found in the deep
web. The usual scenario for answering such queries is to identify domains
contributing to answering of the query; identify web based data sources related
to those domains; query the web sources by invoking their web forms or APIs;
collect the results and join them in order to answer the original query.

A major difficulty facing multi-domain query search is our inability to
control query execution upon its submission to a remote data source. Often,
the search process is affected by the high latency due to the Internet network
congestion, routing problems or simply slow responsiveness of the 'other’ side.
Involved services may also restrict the number of daily accesses or impose
time delays between search requests. Further, the obtained data might suffer
from low coverage and high level of duplicates, thereby requiring multiple
invocations of multiple sources, if available, in order to harvest the required
data corpus for answering the given query.

Evidently such constraints act detrimentally to the quality of the search
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process in terms of result delivery time and the result quality itself as the
decreased availability of web sources might cause just a subset of the required
result to be obtained.

Search Computing (SeCo) [Ceri 2010] addresses the specific problem of
search service integration in order to answer multi-domain queries: the task
in hand is a complex data integration process, where data comes from Web
based data sources (commonly accessible through Web forms or Web APIs)
that return paginated and ranked result lists. Unfortunately the access to Web
data repositories is typically constrained by the data provider, e.g., by limiting
the number and frequency of allowed daily service invocations; moreover, the
Web service query interface constrains the set of accessible data to a subset
of the whole corpus.

Obviously, the existence and quality of a search process depends on those
constraints: as users expect good results provided in a timely and reliable way,
a response delay or the unavailability of the allocated data sources degrades
the performance of the search, thus, slowing down the processing of search
results and, ultimately, causing degraded user experience. In order to alle-
viate the problems possibly introduced by these technical constraints while
providing an efficient execution environment for multi-domain query answer-
ing, we aim at designing a solution for materializing queries as views, i.e.,
locally stored answers that can be, in turn, queried.

Techniques for dealing with high latency data sources involve caching
mechanisms that materialize the result of queries over the data sources. While
caching can increase the performance of a search system [Cambazoglu 2010],
its effectiveness can be limited by its very nature; typically, cache items (query
results) are stored according to a hash that is calculated from the query. While
several techniques (e.g., cold start), can be employed in order for the cache in-
frastructure to become effective, cache items are not reused unless the queries
issued are identical to those results already cached, thus, severely limiting the
utility of the caching mechanism.

Data integration systems working on open Web data sources like SeCo
instead, need to have the capability of exploiting already answered queries as

well in order to compute a response to different queries that may be presented
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to the engine in the future. Recently there have been efforts to integrate a vast
amount of structured data found on the Internet in the form of HTML tables
[Cafarella 2009] and by surfacing information hidden behind web forms [Mad-
havan 2008]. To the best of our knowledge, none of the proposed approaches
addressed the materialization of data provided through search interfaces where
results are ranked and paginated for the purposes of integration.

An alternative approach can be found in the literature of data integration
systems where data access limitations due to schema normalization or data
distribution are addressed using view materialization. A view can be mate-
rialized by storing the tuples of the view in the database or any persistent
storage medium. Index structures can be built on the materialized views,
thereby providing a much faster access to the materialized data. The data
integration systems described in [Levy 1996, Duschka 1997a, Kwok 1996, Lam-
brecht 1999] followed an approach in which the contents of the data sources
were described as views over a mediated schema. The mediated schema acted
as a virtual bridge between the actual search application and the remote
sources. Other works consider answering queries over materialized views as
a key role in developing methods for semantic data caching in client-server
systems [Jonsson 1996, Keller 1996, Adali 1996].

In this thesis we elaborate on the challenges raised and present solutions to
the problem of query results materialization in a multi-domain search setting

such as SeCo.

1.2 Motivation

Search Computing is concretely implemented through a search computing ap-
plication, a vertical Web search system that leverages on the SeCo framework
for enabling multi-domain search capabilities. The application typically re-
sides on a SeCo installation and consists of a configuration of one or more
multi-domain queries over the existing service repository.

As a search computing application deals with a large amount of concurrent
end user requests, a sub-second response time and scalability are of primary

importance. Therefore, high-performance architectures and deployment envi-
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ronments able to satisfy these requirements must be part of the solution.

Short response times and time-to-screen are crucial to guarantee system
responsiveness. These parameters are affected by two main factors in SeCo:
internal query processing time and remote services invocation time. The for-
mer can be reduced by executing a query on multiple nodes in parallel by
exploiting inter-query and also intra-query parallelism.

Service invocation time instead, can be reduced by minimizing and opti-
mizing communications with services, possibly avoiding them altogether. At
a physical level, invocation times can be reduced by efficiently using available
communication protocols. HTTP in particular, provides facilities for caching
Web server responses and pipelining requests to Web servers [EvenDar 2007].
At a higher level the communication problem has been addressed in meta-
search systems, where a crawl meta-search hybrid approach [Craswell 2004]
has been proposed to reduce Web search costs by indexing low-turnover and
small data sources while meta-search the other ones. In a meta-search, the
query is forwarded from the central server to each of the component sites and
their returned answers are merged and presented as if they had been identified
centrally.

A similar approach can be adopted for Search Computing by recurring to
materialization of frequently accessed services that provides access to small
amounts of data changing infrequently.

Hence, to efficiently execute search requests and deliver answers to the
users in a timely manner, SeCo search application requires an efficient and
reliable data access mechanism. In order to overcome the constraints imposed
by these uncertainties, while providing an efficient execution environment for
multi-domain query answering, we intend to define and characterize a system
for materializing queries as views, i.e., locally stored answers that can, in
turn, be queried. Such a system has to be able to source the already answered
queries as seen in typical caching approaches as well as for any future queries
that might be presented to the search engine.

We approach the web data source query materialization as a novel concept
that has not yet been explored as a solution to the aforementioned problem.

By looking at online web caching and view materialization our intention
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is to combine the most desirable features from each into a novel web data
materialization approach which will satisfy search application need for uncon-
strained data access.

Whilst caching techniques offer advantages such as faster access to cached
resources therefore saving on network resources or imposing controls on the
content access and providing resources when the original web source is unavail-
able, they are constrained by the one to one query-result nature as the cached
result is unique to this query and cannot be reused for other semantically
similar queries.

As a contrast, a nature of the materialization view of providing a base
table of the executed query enables materialized views to deliver a much more
sophisticated rewrite algorithm. A cached result is only reused if the identical
query or query fragment is executed again. Queries that benefit from query
rewrite against materialized views may still roll-up data from materialized
views, join back to tables or other materialized views and apply additional
predicates, or in other words provide sophisticated rewrite capabilities.

Materialized view can be contained and containing, thus, providing subset
or superset of the queried result. They can also be further expanded provid-
ing options for materializing a view for a particular ’expanded query’; in order
to answer several containing queries. For instance materialization of a query
"Select all restaurants in Auckland’ against some restaurant rating web service
can expand ’all’ to any restaurant type, while location ’Auckland’ expands to
any areas within Auckland. Thus, we can provide answers to queries about all
Indian or Italian or Thai restaurants in Ponsonby, CBD or any other Auck-
land area as the original materialized query contains a wide geographic and
restaurant type area. This feature is particularly valuable as in practice one
cannot afford to materialize all possible views in a real-life system. The reason
is that (at least) two major types of system resources may be insufficient for
servicing the selected views: (1) the storage space needed for the materialized
views; and (2) the system costs of maintaining the materialized views (to keep
them up to date) with respect to changing base data.

Further, a materialized view preserves the data in the database storage,

whereas on-line result caches are in memory. They do not use more disk
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space and they disappear when the database instance is shut down or the
space inside the result cache is exhausted. Materialized view represents a base
table of the executed query therefore, it is possible to build indexes against the
tabled view and further apply DB self-tuning and self-management techniques
such as AutoAdmin [AutoAdmin 2014] or IndexAdvisor [IndexAdvisor 2014].
From the maintenance perspective a cashed result can be replaced as a
whole and refreshed at some regular time intervals, whereas materialized views
can be updated on a more atomic result row by result row basis. Thus,
materialized view provides means of fine tuning change propagation. The
nature of the materialization view in providing a base table for the executed
query also enables us to handle duplicates in materialized data set, and to
better cope with computation of view derivations [Gupta 1999].
Transposition of the concept of view materialization as a natural embodi-
ment of the ideas of pre-computation and caching in databases into the deep
web domain represents the first and to our knowledge unique attempt.
Challenges. We observe web materialization challenges through a view-
point of SeCo search application. Search applications approach the web data
corpus via the multi-layered model of the SeCo Service Description Frame-
work (SDF) [Brambilla 2011]. Here search services are typically registered in
a service repository that describes the functional (e.g., invocation end-point,
input and output attributes) information of data end-points. To illustrate the
search process in the SDF context we consider a SeCo query expressed in a
natural language "What are the cinemas showing comedies in Auckland". At
the top, conceptual level of the SDF model - the query features as:
SELECT Cinemas showing comedies in Auckland. At the middle, access pat-
tern level - the query is further differentiated by the input and output at-
tributes of the related access patterns MovieByTitle (AP1) and CinemaByC-
ity (AP2)
AP1 MovieByTitle: SELECT output attributes (Movie.Genre, Movie. Year,
Movie. Rating) where input attribute(Mowvie. Title), order by Movie.Genre.
AP2 CinemaByCity: SELECT output attribute (Cinema.addr, Movie. Title)
where input attribute( Theater.city).

Join operations between access patterns are performed via connection pat-
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terns, logical connections established by means of input and output attributes
in common domain. Thus, attribute Movie.Title logically joins access pat-
terns TheaterByCity and MovieByTitle.

Final query presents as:

SELECT M.Movie.Genre, M.Movie.Year, M.Movie.Rating, T.Cinema.addr,
T.Movie. Title FROM MovieByTitle as M, CinemaByCity as T WHERE
M. Movwie. Title=T.Movie. Title AND T.Cinema.City = ’Auckland’ ORDER
BY M.Movie. Genre.

Lastly the query is executed against the allocated service interface - bottom
SDF level, which in turn maps to an external data source. In the example
above we notice the effect of possible data retrieval delays or low quality of the
retrieved data due to duplicates saturation on each of the involved services.
In case the theater service is affected this prevents timely execution of the
movie service that is dependent on the latter’s results to form its own queries
and retrieve results. Ultimately the whole search process is delayed and fails
on account of untimely delivery of search results to the end-user.

Our intention is to approach materialization challenges at all SDF lev-
els. At a physical level where service interfaces directly wrap service calls,
materialization process deals with an issue of acquiring data in an efficient
and effective way. Our intention is to apply methods similar to hidden web
crawling techniques [Madhavan 2008] to query the target data source and iter-
atively uncover its content. Here the critical challenge is to acquire optimum
data source coverage while maintaining a minimum level of communication
with the target source. The level of coverage is measured by the completeness
of the answers produced by querying the materialized data set in comparison
with the answers obtained against the actual data-set. Hence, the adoption
of appropriate query reinforcement techniques is essential for this challenge
[Zerfos 2005, Wu 2006]. We intend to exploit semantic relations within source
input and output query attributes in order to achieve desired level of query
expansion, thus, retrieving the most out of each data source invocation. An-
other issue at the service interface level is the maintenance of currency and
relevance [Peralta 2008] of the materialized data corpus. We need to be aware

of changes in the actual sources and in a timely and efficient manner prop-
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agate those changes within the materialized data so that the accuracy and
correctness of answers is preserved.

At a logical level one or more service interfaces refer to a common access
pattern described in terms of domain entities. Here we are presented with the
task of integrating data obtained from different sources following the same
access pattern (schema). The differences in ranking functions between the
materialized data sets have to be considered and all the materialized data
sources belonging to the same access pattern should be assigned the same
rank. Another problem lies in the object identification and record matching.
There is a level of semantic ambiguity present at a lexical, spatial and temporal
level, thus, obscuring the differences or similarities within materialized data
that have to be assessed and dealt with.

At a conceptual level collection of service marts serve as a hub for access
patterns referring to the same types of entities. Here we deal with material-
ized data that shares the same focus while it is described by different access
patterns and ranks. The aim is to reconcile the access pattern (or schema)
differences and re-rank using one domain specific unifying ranking function.
Thus, we remain with one semantically cohesive and schema uniform materi-

alized data corpus referring to the same concept.

1.3 Research Goals

As illustrated above this sequence of service calls or communication between
SeCo search and external data sources is subject to factors influencing con-
nection pattern joins which in turn affects performance and accuracy of the
search. These factors are beyond SeCo engine control mechanism and can be
put into two main categories: the environmental constraints of the Internet
and internal rules of the mapped sources. Often the search process is affected
by the high latency due to the Internet network congestion, routing problems
or simply slow responsiveness of the ’other’ side. Mapped services may have
their own rules as in limited number of daily accesses or self-imposed time
delays between search requests.

In this thesis our first and overarching research goal is to solve the prob-
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lem of finding a sequence of access patterns which when executed produces a
materialization output. Our second research goal is the optimization of the
materialization process so that the most optimal sequence in terms of mate-
rialization output efficiency and quality, executes at all times. As each access
pattern can be mapped to several services each differentiated by its perfor-
mance and materialized data domain characteristics, the services sequence
needs to be monitored in materialization run-time by gathering and analyz-
ing predefined materialization metrics. According to materialization run-time
metrics the materialization process is optimized by switching between avail-
able services.

We define individual research objectives in the next section.

1.3.1 Materialization Formulation

Materialization formulation deals with building factors of the materialization
solution. First, it considers all access patterns in SDF that contain the desired
materialization output in their output domains. Second, access patterns are
analysed in terms of satisfiability of input and output domains dependency.
Third, feasibility analysis produces a combination of access patterns in the
form of a reachability graph i.e., a combination of access patterns for which
the full materialization is possible [Zagorac 2014]. Last, all of the services
mapped to the selected access patterns are taken into consideration and used
during the materialization process, according to a run-time optimization pro-

cedure. Figure 1.1 outlines the steps of the materialization solution. First, for
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Figure 1.1: Formulation of the Materialization solution process.
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a given task T' it considers all access patterns in the service description frame-
work (SDF) - described in Chapter 4 section 4.2 - that contain the wanted
materialization output in their output domains. Secondly, the access pattern
selection is analysed in terms of their input and output domain dependences
- feasibility. Thirdly, the analysis produces the feasible combination of access
patterns - a reachability graph i.e., a combination of access patterns for which
the full materialization is possible. Lastly, all of the services interfaces (SI)
mapped to the selected access patterns are taken into consideration and used
during the materialization process, according to the run-time optimization

procedure that achieves materialization M.

1.3.2 Solution Feasibility

In this thesis a feasibility analysis is performed with two distinct objectives
in mind. Firstly, the objective of the analysis is to establish which of the AP
combinations is capable of producing the desired materialization output for
the given set of input dictionaries. In order to perform the analysis the concept
of reachability is explored [Murata 1989]. A combination of access patterns
is observed as a network in which input and output of the APs represent the
nodes and the query execution instigates propagation of the values - network
tokens through the network. By determining the furthest access pattern that
can be reached by a single query execution the reachability of the solution is
established.

Secondly, all reachable combinations of APs are further analysed to deter-
mine the network nodes whose position shapes the network coverage - bound-
edness - in terms of the number of queries this AP combination executes
[Murata 1989].

1.3.3 Solution Optimization

A given materialization scenario may result in a reachability graph that in-
volves access patterns with several available service interfaces. In this situation
it is necessary to further differentiate between services belonging to the same

access pattern on the basis of service properties.
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The goal of optimization is to minimize the running time of the materi-
alization process, while maximizing the produced materialization output and
maintaining the right leverage between the performance and the quality of the
obtained materialization.

As each access pattern can be mapped to several services, the material-
ization sequence needs to be monitored in materialization time by gathering
and analysing predefined materialization metrics. According to materializa-
tion run-time metrics the materialization process can be adjusted by switching
between available services so that the most optimal sequence in terms of mate-
rialization output efficiency and quality executes at all times. In this situation
it is necessary to further differentiate between services belonging to the same
access pattern.

In this thesis we look at the optimization variables and potential metrics
across service interface properties, materialized data characteristics and prop-
erties derived from the solution feasibility analysis. Each service interface is
characterized by a set of properties defining their Uniqueness, Performance
and Service Level Agreement features.

Materialized data domain characteristics are specific to each output do-
main whereby each output domain logically connected to the input domain
is characterized by the properties of the attribute values in the domain and
how they appear in the materialization discovery. This information is used
in self-sustainable materialization scenarios where output domain values are

used to generate - reseed - new materialization queries.

1.4 Thesis Contributions

As a main contribution this thesis delivers a novel concept of web data view
materialization as a well-defined and promising solution for ensuring the qual-
ity of the dependent heterogeneous, multi-domain query response in a search-
computing application context. To our knowledge this is a first attempt in
this field that provides a set of solutions unique to search computing.

The primary focus of this work is to characterize the novel concept of ma-

terializing web queries as views i.e., locally stored answers that can be queried
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in order to provide a reliable data source bed for associated heterogeneous,
multi-domain search.

The overall goal of the thesis is to define and characterize materialization
dimensions, their properties, and their influence on effectiveness of web data
materialization. This goal is driven by the motivation to overcome the con-
straints imposed by web data access limitations, and their effect on efficient
execution of multi-domain query answering.

We make the following contributions in this thesis:
e Definition of web materialization dimensions and underlying challenges,

e Formulation, characterization and formal definition of the service
and materialization properties relevant to the materialization process

through all levels of SeCo Service description framework,

e Formulation of the building blocks for the materialization feasibility

analysis,

e Definition of the materialization feasibility analysis method and the ac-

companying algorithms,

e Web data materialization optimization approach that aims at specific

materialization dimensions in the materialization process context,

e Formulation and formal definition of a set of performance dimensions

and their metrics for web source materialization,

e A cost model that utilizes optimization metrics in order to qualitatively

differentiate between web services in terms of materialization time,

e Materialization process optimization strategies and algorithms based on
the web source performance dimension metrics and query optimization

procedure.

Concise materializations are required to satisfy needs of domain focused, spe-
cific results driven search scenario such as SeCo search application search. To

deliver this and provide desired level of precision the search application needs
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a reliable data source provider. We believe that the above achieved contri-
butions provide the search computing process with these exact means, thus,

making it valuable and complementing to the field.

1.5 Thesis Structure

This thesis consists of eight chapters, followed by appendices and references.

Chapter 1 details the research problems, questions, objectives and contri-
butions of this thesis.

Chapter 2 gives insight into the search computing research context and
the research methods that either complements or contrasts this work.

Chapter 3 emphasizes the materialization dimensions and the underlying
challenges; it outlines the approaches for its resolution including the literature
review of the proposed approaches.

Chapter 4 presents the building blocks of the novel concept of web data
materialization. It expands on the service and materialization models; it
presents service and materialization properties, materialization scenarios and
the materialization process.

Chapter 5 delivers a case study that focuses on one of the building block
dimensions and illustrates a potential problem solution.

Chapter 6 presents a materialization feasibly analysis; the consequent fea-
sibility model; the empirical study and a discussion on the efficiency of the
proposed model.

Chapter 7 is focused on the materialization optimization; it delivers the
materialization optimization metrics, the cost model and consequent optimiza-
tion algorithms. The chapter is concluded by an exhaustive empirical study
proving validity of the proposed algorithms.

Finally, Chapter 8 presents a discussion of the implications of the results
and a summary of the research. In addition, Chapter 8 presents a discussion
of potential future research, limitations of this study and conclusions based

on the contributions that have been made by this thesis.
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1.6 Publications from the thesis

The following research papers have been written and published during the
course of this research.

Zagorac, Srdan & Pears, Russel. Web Data Source Materialization:
Optimization Approaches. Elsevier - Data and Knowledge Engineering
Journal. Under review.

Zagorac, Srdan & Pears, Russel. Web Materialization Formulation:
Modelling feasible solution. In Database and Expert Systems Applica-
tions (pp. 366-374). Springer International Publishing.

Bozzon, A., Ceri, S., & Zagorac, Srdan. Materialization of web data
sources. In Search Computing (pp. 68-81). Springer Berlin Heidelberg, 2012

Barbieri, D. Bozzon, A. Brambilla, M. Ceri, S.; Pasini, C. Tettamanti, L.
Vadacca, S. Volonterio, R. & Zagorac, Srdan. Exploratory Multi-domain
Search on Web Data Sources with Liquid Queries. In Web Engineering
(pp. 363-366). Springer Berlin Heidelberg.

1.7 Chapter Summary

This chapter has provided a summary that forms the foundation of this thesis
including an introduction to the research problem and the primary research
objective. The next chapter examines the web data materialization in the

search computing context and presents related research areas.



CHAPTER 2

Methodology Overview

2.1 Introduction

In this chapter, we review main themes of literature related to the contribu-
tions made in this thesis. Firstly, we discuss previous research in the view of
the materialization area that holds the most significance to this work. Then we
assess significance of binding schemas (access patterns) in the materialization
context.

Further, we introduce web service composition, an area of relevance to the
materialization formulation feasibility solution as web data sources closely re-
assemble relations within web services. In the same context we introduce Petri
nets as a modelling tool of preference for web services composition analysis.

Special consideration is given to query languages; we present an overview
of relevant query languages and their involvement in deep web querying and
data integration areas.

Further, we review previous research in the area of search engine caching in
contrast to our approach. We then present the research related to the sampling
of the hidden web data sources and discuss its relevance to our work. Lastly
we discuss web crawling in the context of web data materialization and the

data acquisition dimension.

2.2 View Materialization

Traditionally, in a relational database context views are needed because the
actual schema of the DB is normalized for implementation reasons and the
queries are then executed on one or more de-normalized relations that better

represent the real world. Then, defining a new relation that encapsulates
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the denormalized relations as a single unified view allows queries to be more
intuitively specified.

A view can be materialized by storing the tuples of the view in the database
or any persistent storage medium [Gupta 1999]. Index structures can be
built on the materialized views [Agrawal 2000]. Consequently system ac-
cesses to the materialized view can be much faster than re-computing the
view [Amiri 2003]. A materialized view is therefore like a cache - a copy of
the data that can be accessed quickly.

A materialized view provides fast access to data [Aouiche 2009]; the speed
difference might be critical in applications where the query rate is high or
the views are complex or the physical access to data is affected by network
bottlenecks or latency.

The task of view generation and materialization is mainly observed through
the problem of answering queries using views. Informally the problem is as
follows: Given a query @) over a data source schema and a set of view defini-
tions Vi, ..., V,, over the same schema, is it possible to answer the query using
only the answers to views Vi, ..., V,,? Alternatively, we can also ask what is
the maximal set of tuples in the answer () that we can obtain from the views?
If we have access to both the views and the data source relations, what is the
cheapest query execution plan for Q7

Historically, there have been two sets of application that rely on the prob-
lem of answering queries using views. The first class, query optimization and
database design, utilizes materialized views for speeding up query processing.
Such savings are significant in decision support algorithms when the views
and queries contain grouping and aggregation.

In the context of database design, view definitions provide a mechanism for
supporting the Independence of the physical view of the data from its logical
view. This independence enables us to modify the storage schema of the
data without changing its logical schema and to model more complex types of
indices [Valduriez 1987]. Hence several authors describe the storage schema
as a set of views over the logical schema [Yang 1987, Tsatalos 1996]. Given
these descriptions of the storage the problem of computing a query execution

plan involves deducing how to use the views to answer the query.
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The second class of applications is in the area of data integration. The
task of data integration is to provide a common interface to a collection of
heterogeneous data sources. Users of such systems do not pose queries in
terms of a mediated schema. The mediated schema is a set of relations that
is designed for a specific data integration application and contains the salient
aspects of the domain under consideration. The data integration systems
described in [Levy 1996, Duschka 1997a, Kwok 1996, Lambrecht 1999] follow
an approach in which the contents of the sources are described as views over
the mediated schema.

The data sources can vary from database systems and legacy systems to -
XML based - structured files. Such sources are commonly fronted and effec-
tively hidden by interface programs or web APIs found on World Wide Web
[Baru 1999, Ives 1999, Manolescu 2001, Naughton 2001, Yu 2004].

As opposed to the traditional database application, where the database
schema is modelled by the requirements of the application, the data inte-
gration encounters pre-existing data sources with its own data schemas and

specifics.

2.2.1 Access Patterns

In the context of data integration where data sources are modelled as views,
we may have limitations on possible access paths to data. For example when
querying the Internet Movie Database (IMDB) we cannot simply ask for all
the tuples in the database. Instead, we must supply one of several inputs
(actor, director etc.) and obtain the set of movies in which they are involved.

We can model limited access paths by attaching a set of adornments to
every data source. If a source is modelled by a view with n attributes, then an
adornment consists of a string of length n, composed of the letters b (bound)
and f (free). The meaning of the letter b in the adornment is that the source
must be given values for the attribute in that position. The meaning of the
letter f in an adornment is that the source does not have to be given a value
for the attribute in that position. For example, an adornment b; for a view

(A, B) means that tuples of V' can be obtained only by providing values for
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attributes A.

Previous research has considered the problem of answering queries using
views when the views are also associated with adornments describing limited
access patterns. In [Rajaraman 1995] it is shown that the bound given in
[Levy 1996] on the length of a possible rewriting does not hold anymore.

[Rajaraman 1995] shows that in the presence of access-pattern constraints
it is sufficient to consider a slightly larger bound on the size of the rewriting:
n + v, where n is the number of sub goals in the query and v is the number
of variables in the query.

The situation becomes more complicated when we consider maximally
contained rewritings. As the following example given in [Kwok 1996] shows,
there may be no bound on the size of a rewriting. In the following example,
the relation D Bpapers denotes the set of papers in the database field, and the
relation AwardPapers stores papers that have received awards (in databases

or any other field). The following views are available:

DBSourcef(X) : —DBpapers(X)
ClitationDBbf(X,Y) : —Clites(X,Y)
AwardDBb(X) : —AwardPaper(X)

The first source provides all the papers in databases, and has no access-pattern
limitations. The second source, when given a paper, will return all the papers
that are cited by it. The third source, when given a paper, returns whether
the paper is an award winner or not.

The query Q(X) asks for all the papers that won awards:
Q(X) : —AwardPaper(X). (2.1)

Since the view AwardDBb(X) requires its input to be bound, we cannot query
it directly. One way to get solutions to the query is to obtain the set of
all database papers from the view DBSource, and perform a dependent join
with the view AwardDBb. Another way would be to begin by retrieving the
papers in DBSource, join the result with the view CitationDB to obtain all
papers cited by papers in DBSource, and then join the result with the view

AwardDBb. As the rewritings below show, we can follow any length of citation
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chains beginning with papers in DBSource and obtain answers to the query
that were possibly not obtained by shorter chains. Hence, there is no bound

on the length of a rewriting of the query using the views.

Q'(X) : =DBSource(X), AwardDB(X)
Q'(X) : =DBSource(V), CitationDB(V, X1), ...,
CitationDB(Xn, X), AwardDB(X).

However, as shown in [Duschka 1997a, Duschka 1997b], we can still find a
finite rewriting of the query using the views, although a recursive one.

In [Duschka 1997a] it is shown that a maximally-contained rewriting of
the query using the views can always be obtained with a recursive rewriting.
In [Friedman 1997, Lambrecht 1999] the authors describe additional optimiza-

tions to this basic algorithm.

2.2.2 Query languages

Query languages can be defined as specialized programming languages for se-
lecting and retrieving data from "information systems'. These are (possibly
very large) data repositories such as file systems, databases, and (are all or
part of) the World Wide Web [Bailey 2005]. Query languages are specialized
insofar they are simpler to use or offer only limited programming functional-
ities that aim at easing the selection and retrieval of data from information
systems.

With the emergence of the Web in the early 1990s as a heterogeneous in-
formation source, query languages are undergoing a renaissance motivated by
new objectives: Web query languages have to access structured data that are
subject to structural irregularities (semi-structured data) to take into account
rich textual contents while retrieving data, to deliver structured answers that
may require very significant reorganizations of the data retrieved, and to per-
form more or less sophisticated forms of automated reasoning while accessing
or delivering meta-data.

Logic-based Web query languages such as the experimental language
Xcerpt [Berger 2003, Berger 2004, Guha 1998] have been proposed, and Se-
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mantic Web query languages such as RQL, RDQL, and SPARQL [Prudhom-
meaux 2005] clearly have logical roots. Furthermore, language optimizers and
evaluators of XPath and XQuery [Robie 2001, Trombetta 2004] exploit tech-
niques formerly developed, thus, bringing these languages back to the logical
roots of query languages. At the beginning of this ongoing query language
renaissance, a principled and summarized presentation of query language foun-
dations surely makes sense.

In the context of search computing, queries are expressed in a con-
junctive declarative query language over service interfaces named SeCoQL
[Braga 2011]. SeCoQL, an SQL variant elected as the most compact and
readable conjunctive formulation for both experts and developers, easily gen-

erated by the Ul modules and easily parsed by the underlying SeCo modules.

2.3 Web Service Composition

Historically, answering queries over independent data sources has been the re-
search object of parallel or distributed query processing [Ives 2004,Ozsu 2011,
DeWitt 1990]. Two main techniques have emerged in this research field: code
shipping and data shipping. While code shipping to Web services is not feasi-
ble, data shipping is feasible and allows the feeding of results coming from one
service in the access plan to another service in the plan. The latter technique
is heavily leveraged in search computing applications, as data are shipped in
pipelines from one service to another, so as to maximize parallelism.

Web services are loosely coupled, platform-independent, self-describing
software components that can be published, located and invoked via the Web
infrastructure using a stack of standards such as SOAP (Simple Object Access
Protocol), WSDL (Web Service Description Language) and UDDI (Universal
Description, Discovery and Integration). Recently, Web services have been
recognized as the next generation framework for building agile distributed ap-
plications over the Internet. One of the most promising advantages of Web
service technology is the possibility of creating value-added services by com-
posing existing ones. Several techniques have been proposed in this area
[Dustdar 2005] [Milanovic 2004].



2.3. Web Service Composition 21

The coordinated execution of distributed Web services is the subject of
Web services composition, which comes in two different flavours: orchestration
and choreography [Daniel 2006]. The distributed approach of choreographed
services (e.g., using WS-CDL [WSCDL 2005] or WSCI [WSCI 2002]) does not
suit our query processing problem, because choreographies are not executable
and require the awareness of and compliance with the choreography by all
the involved services. The centralized approach of orchestrated services (e.g.,
using BPEL [OASIS 2007]) suits better the research problem addressed in
this thesis, as orchestrations are executable service compositions (i.e., feasible
solution in our terminology) and services need not be aware of being the object
of query optimization and execution. In the specific case of BPEL, however,
its workflow-based approach does not provide the necessary flexibility when
the invocation order of services needs to be computed at runtime, as is our
case (e.g., dynamically fixing a number of fetches to be issued to a service
remains hard).

There is a growing amount of semantic approaches to the runtime com-
position of Web services (e.g., [WSMO 2010] or [Confalonieri 2004]), but
their focus is typically on functional requirements or quality of service [Bian-
chini 2006] and less on data. Inspired by the work presented in [Srivas-
tava 2006, Tatemura 2007] introduce the idea of continuous query over service-
provided data feeds (e.g., through RSS or Atom). The goal is to mash up and
monitor the evolution of third-party feeds and to query the obtained result.
Their mash-up query model is articulated into collections of data items and
collection-based streams of data (streams also track the temporal aspect of
collections and allow the querying of the history of collections). Suitable se-
lect, join, map, and sort operators are provided for the two constructs. The
described system consists of a visual mash-up composer, an execution engine,
and interfaces for users to subscribe to mash-up feeds equipped with person-
alized queries.

Finally, Yahoo! Pipes [YahooPipes 2014] and IBM Damia [Altinel 2007]
are a data integration services that enable a Web 2.0 approach to com-
pose ("mash up") queries over distributed data sources like RSS/Atom feeds,

comma separated values, XML files, and similar. Both approaches come with
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user-friendly and intuitive Web interfaces, which allow users to draw workflow-
like data feed logics based on nodes representing data sources, data transfor-
mations, operations, or calls to external Web services. Both Yahoo! Pipes
and IBM Damia require the user to explicitly specify the query processing
logic procedurally, which is generally not a trivial task for unskilled users,
especially for the case of joins, which have to be explicitly programmed by
the user. Instead, with our approach we automatically derive a plan from a
declarative query formulation.

It is worth noting that the previous service querying approaches effectively
enable users to distribute a query over multiple Web services, but they do not
specifically focus on the peculiarities of search services, such as ranking and
chunking. In this thesis we look into chunking or pagination as one of the
essential service properties. Service pagination is treated as essential part of
the query generation techniques and data surfacing strategies.

Also while these examples are useful first sources for looking for services,
many service directories that can be found on the Web are not stable, fail
to adhere to UDDI and, with time, become unreliable. Moreover, centralized
registries suffer from problems associated with having centralized systems such

as a single point of failure, and bottlenecks.

2.3.1 Petri Net

The Petri net [Petri 1962, Peterson 1981] is a well founded process modelling
technique that has formal semantics. It has been used to model and analyse
several types of processes including protocols, manufacturing systems, and
business processes [Aalst 1999]. A Petri net is a directed, connected, and
bipartite graph in which each node is either a place or a transition. Tokens
occupy places. When there is at least one token in every place connected to a
transition, we say that the transition is enabled. Any enabled transition may
fire removing one token from every input place, and depositing one token in
each output place.

A Web service behaviour is basically a partially ordered set of operations.

Therefore, it is straightforward to map it to a Petri net. Operations are
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modelled by transitions and the state of the service is modelled by places. The
arrows between places and transitions are used to specify causal relationships.

Work by Benatalah and Hamadi [Hamadi 2003] assumed that a Petri net,
which represents the behaviour of a service, contains one input place (i.e.,
a place with no incoming arcs) and one output place (i.e., a place with no
outgoing arcs). A Petri net with one input place, for absorbing information,
and one output place, for emitting information, will facilitate the definition
of the composition operators and the analysis as well as the verification of
certain properties (e.g, reachability, boundedness, deadlock, and liveness).

The work presented in this thesis relates to analysis of web data mate-
rialization feasibility as a propagation of tokens through a bipartite of in-
terconnected places and can, thus, be modelled using Petri Nets. The main
difference is the possibility of a service access pattern to contain sets of input
and output places with a composition operator joining these two sets.

There are mainly two compatibility considerations [De Backer 2004,
Narayanan 2002] between different web services (web data sources). First,
syntactically, web services can be composed only if the provided interfaces
specified by WSDL (schema) with port types operations, and message types
match the required interfaces of the other web services. The second one is be-
havioural including equivalence and usability. Two web services are equivalent
if one service can be replaced by another while the remaining components stay
unchanged. Web services are usable if the interactions among them guarantee
compatibility.

The syntactical compatibility refers to the conformance of access signa-
tures between the two web services. For instance, if one web service invokes
an operation of the second one, it is necessary that the parameters, their
number and type match each other. Data-driven based methods are often
adopted for the syntactic consideration. Data mapping is to relate equivalent
data elements of two messages so that two interfaces that belong to different
services can be linked. Two services can be composed by specifying the output
message of one interface as the mirror image of the input message of another
one. In order to solve the problems of integrating data models and message
formats, Extensible Stylesheet Transformations (XSLT) can be used. Nezhad
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et al. propose a solution for mismatches between service interfaces based on
schema matching [Nezhad 2007]. They first identify the relationships between
messages in partner web services and then specify mapping functions. A work
by [Tan 2009] proposes a method to automatically check and mediate the
messages sent and received by two web service parties during the interaction.

A satisfaction of syntactic requirement is not enough for successful inter-
action. To illustrate, let us consider two on-line restaurant rating web services
with simple matching access schema that take cuisine type and location as an
input and return a list of restaurants and locations ranked by user ratings.
The first web service expects an area name as a location input e.g., Auckland,
Ponsonby or Auckland, Parnell while the other service takes post code as a
location input eg., 1010 or 1134. Consequently, interaction between these two
ends up in deadlock. This kind of problem is also classified as a non-local
choice problem [Ben-Abdallah 1997]. Thus, the behaviour of web services
must be taken into account when analysing the compatibility of web services.
Since the textual specification of BPEL is not suitable for computer aided
verification for behaviour incompatibility, current methods mainly follow two
steps, i.e., modelling and analysis.

As an appropriate method for modelling and analysing distributed business
processes [Van der Aalst 1998], Petri nets are also an adequate modelling tool
for web service behaviour. As shown in [Hamadi 2003, they are able to define
and verify usability, compatibility and equivalence of web services. In partic-
ular, their semantics for BPEL are proposed [Hamadi 2003, Martens 2005b].
Since BPEL is becoming the industrial standard for modelling web service
based business processes, a Petri net based method is, thus, directly applica-
ble to real world examples.

Ouyang et al. [Ouyang 2005] transform BPEL into Petri nets represented
in the Petri nets markup language and perform WofBPEL to support three
types of analysis, i.e., reachability analysis, competing message-consuming
activities and garbage collection of queued messages by generating the full
state space. They adopt Petri net reduction rules to reduce a model before
generating its state space [Ouyang 2007].

Martens [Martens 2005a, Martens 2005b] proposes a BPEL annotated
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Petri net (BPN) and presents a decision algorithm for the controllability of
a BPN model based on a communication graph (c-graph). A c-graph is a
directed, bipartite graph in which nodes denote reachable states of the BPN
and edges denote messages that the BPN is able to send or receive. Martens
transforms the check of interaction between the composed BPEL processes
into the verification of deadlock-freeness of a BPN. After all parts that yield a
deadlock are cut off, the remaining part of BPN is proven to be controllable.

Koenig et al. [Koénig 2008] point out that the BPEL specification distin-
guishes two kinds of business processes, i.e., executable and abstract. Most
of the previous work [Hamadi 2003, Martens 2005b] focuses on abstract ones.
Their work permits the occurrence of incompatible cases. When it happens,
it is detected by the analysis method based on the Petri net-based model, and
then, two BPEL profiles for composition re-design can be applied, i.e., the ab-
stract process profile for observable behaviour from bottom-up viewpoint and
the abstract process one for templates from top-down viewpoint. Their main
idea is to substitute an erroneous service with a correct one. The efficiency of
this - substitute - based approach depends upon how to find out the exactly
right web service from thousands of candidate web services with the exact
behaviour that conforms to the other web services. In general, these methods
may become complex, considering that a single error of a certain web service
may affect the compatibility of the whole BPEL process.

We approach the web service compatibility issues by focusing on a) reacha-
bility and b) boundedness analysis in the search computing service description

framework context.

2.4 Caching

Search engines use optimization in form of caching to speed up result delivery.
This optimization occurs in search engines at two levels. A query enters the
search engine via a query integrator node that is in charge of forwarding it to a
number of machines and then combines the results returned by those machines.
Before this is done, however, a lookup is performed into a cache of previously

issued queries and their results. Thus, if the same query has been recently
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issued, by the same or another user, then we do not have to re-compute the
entire query but can simply return the cached result. This approach, called
result caching, is widely used in current engines, and has also been studied
by a number of researchers [Markatos 2001, Xie 2002, Lempel 2003, Baeza-
Yates 2003, Fagni 2006, Baeza-Yates 2007, Baeza-Yate 2007]. A second form
of caching, called index caching or list caching, is used on a lower level in
each participating machine to keep the inverted lists of frequently used search
terms in main memory [Jonsson 1998, Saraiva 2001, Zhang 2008].

The first published work on result caching in search engines appears to be
the work of Markatos in [Markatos 2001] which studies query log distribu-
tions and compares several basic caching algorithms. The work in [Xie 2002]
looks at various forms of locality in query logs and proposes to cache results
closer to the user. Work by Lempel and Moran [Lempel 2003] proposes im-
proved caching schemes for dealing with requests for additional result pages
(i.e., when a user requests a second or third page of results). Several authors
[Saraiva 2001, Baeza-Yates 2007, Garcia 2007] have considered the impact of
combining result caching and list caching; in particular, recent work in [Baeza-
Yate 2007] studies on how to best share a limited amount of memory between
these two forms of caching. In [Garcia 2007], Garcia examines caches for the
query evaluation process as a whole. Finally, work in [Fagni 2006, Baeza-
Yates 2007] considers hybrid methods for result caching that combine a dy-
namic cache that exploits bursty queries with a more static cache for queries
that stay popular over a longer period of time.

The work presented in this thesis bears much resemblance with the re-
search presented in the caching area. However, the main difference being the
proactive nature of the web view materialization approach that is not limited

to already seen queries.

2.5 Sampling

Database Sampling is the process of randomly selecting tuples from a dataset.
Traditionally, database sampling has been used to reduce the cost of re-

trieving data from a DBMS. Random sampling mechanisms have been stud-
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ied in great detail e.g., [Chaudhuri 1995, Haas 2004, Olken 1993, Piatetsky-
Shapiro 1984, Vitter 1985]. Applications of random sampling include estima-
tion methodologies for histograms and approximate query processing using
techniques [Garofalakis 2001]. However, in the case of hidden web sampling
where data sources are present behind a proprietary curtain there is a need for
developing a specific way of sampling underlying data with these restrictions
in mind.

In web data materialization we require prior knowledge or an estimate of
the remote source structure in order to execute the most expressive query
in terms of retrieved result tuples and thereby enhance the materialization
performance by increasing the ratio of discovered data against the number
of issued queries. Alas, generating random samples from hidden databases
presents significant challenges. The only view available into these databases
is via the proprietary interface that allows only limited access - e.g., the owner
of the database may place limits on the type of queries that can be posed, or
may limit the number of tuples that can be returned, or even charge access
costs, and so on. The traditional random sampling techniques that have
been developed cannot be easily applied, as we do not have full access to the
underlying tables.

However, these techniques do not apply to a scenario where there is an
absence of direct access to the underlying database. A closely related area
of sampling from a search engine index using a public interface has been
addressed in [Bharat 1998] and more recently [Bar-Yossef 2008]. The tech-
nique proposed by [Adler 2001], introduces the concept of a random walk
on the documents on the World Wide Web using the top-k results from a
search engine. However, this document-based model is not directly applica-
ble to hidden databases. In contrast to the database scenario, the document
space is not available as a direct input in the web model. This leads to the
use of estimation techniques, which work on assumptions of uniformity of
common words across documents. Random sampling techniques on graphs
have been implemented using Markov Chain Monte Carlo techniques, e.g.,
Metropolis Hastings [Metropolis 1953, Hastings 1970] techniques and Accep-

tance/Rejection technique [Von Neumann 1951]. Hidden databases represent
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a major part of the World Wide Web and are commonly referred to as the
hidden web. The size and nature of the hidden web has been addressed in
[DeepWeb 2009, Ipeirotis 2001, Lawrence 1998, Lawrence 1999]. Probing and
classification techniques on textual hidden models have been addressed by
[Callan 1999] while techniques on crawling the hidden web were studied by
Raghavan and Garcia-Molina [Raghavan 2000].

In this thesis we treat a materialization of the remote source as graph
traversal of the underlying domains (domain diagram) consequently graph
sampling techniques of interest as well.

Sampling on graphs has been used in many different flavours but very
little has been done on matching a large set of graph properties. Previous
work focused on using sampling to condense the graph to allow for better
visualization [Gilbert 2004, Rafiei 2005]. Works on graph compression fo-
cused on transforming the graph to speed up algorithms [Feder 1995]. Tech-
niques for efficiently storing and retrieving the web-graph were also studied in
[Adler 2001]. Internet modelling community [Krishnamurthy 2005] studied
sampling from undirected graphs and concluded that some graph properties
can be preserved by random-node selection with sample sizes down to 30%.

Of most interest to this work is research presented in [Leskovec 2006]
where two approaches to graph sampling are presented: under the Scale-down
goal - to match the static target graph, while under the Back-in-time goal -

to match its temporal evolution.

2.6 Web Crawling

A web crawler (also known as a robot or a spider) is a system for the bulk
downloading of web pages. Web Crawlers are typically one of the main com-
ponents of web search engines. Search engines use a crawling process to as-
semble a corpus of web pages, index them, and allow users to issue queries
against the index and find the web pages that match the queries. A related
use is web archiving (a service provided by e.g., the Internet archive [In-
ternetArchive 2014]), where large sets of web pages are periodically collected

and archived for posterity. Further use is web data mining, where web pages
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are analysed for statistical properties, or where data analytics is performed
on them (an example would be Atributor [Atributor 2014], a company that
monitors the web for copyright and trademark infringements). Finally, web-
monitoring services allow their clients to submit standing queries, or triggers,
and they continuously crawl the web and notify clients of pages that match
those queries (an example would be GigaAlert [GigaAlert 2014]).

Crawlers that automatically fill in HTML forms and Web APIs to reach the
content behind them are called hidden web or deep web crawlers. The deep
web crawling problem is closely related to the problem known as federated
search or distributed information retrieval [Callan 2000], in which a mediator
forwards user queries to multiple searchable collections, and combines the
results before presenting them to the user. The crawling approach can be
thought of as an eager alternative, in which content is collected in advance
and organized in a unified index prior to retrieval. Web materialization data
acquisition in many cases reassembles deep web crawling in this case applied
to a Service description framework (SDF) specific set of web data sources.

Content is either unstructured (e.g., free-form text) or structured (e.g.,
data records with typed fields). Similarly, the form interface used to query
the content is either unstructured (i.e., a single query box that accepts a free-
form query string) or structured (i.e., multiple query boxes that pertain to
different aspects of the content).

A news archive contains content that is primarily unstructured (of course,
some structure is present, e.g., title, date, author). In conjunction with a
simple textual search interface, a news archive constitutes an example of an
unstructured-content /unstructured-query deep web site. A more advanced
query interface might permit structured restrictions on attributes that are ex-
tractable from the unstructured content, such as language, geographical ref-
erences, and media type, yielding an unstructured-content/structured-query
instance. Recently, there have been efforts to integrate a vast amount of
structured data found on the Internet in the form of HTML tables [Ca-
farella 2009] and by surfacing information hidden behind web forms [Ragha-
van 2000]. However, the proposed approaches do not address the materializa-

tion of data provided through search interfaces, where result data surfacing
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[Cafarella 2009] is obstructed by search interfaces that impose limits on page
size, the number of duplicates and service responsiveness.

A product/service review site, on-line shopping or holidays booking sites
have relatively structured content (product names, numerical reviews, re-
viewer reputation, and prices, in addition to free-form textual comments).

The main approach to extracting structured content from a deep web site
proceeds in four steps:

(1) Select a subset of form elements to populate, or perhaps multiple such
subsets. This is largely an open problem, where the goals are to: (a) avoid
form elements that merely affect the presentation of results (e.g., sorting by
price versus popularity); and (b) avoid including correlated elements, which
artificially increase the dimensionality of the search space [Madhavan 2008].
In SeCo these questions are resolved within SDF; in this thesis we further
consider feasibility of interconnected form elements (connection patterns) in
the materialization formulation.

(2) If possible, decipher the role of each of the targeted form elements (e.g.,
book author versus publication date), or at least understand their domains
(proper nouns versus dates). Raghavan and Garcia-Molina [Raghavan 2000]
and several subsequent papers studied this difficult problem. We illustrate the
importance of this step in Chapter 5 where we present a case study related
to domain discovery and data surfacing materialization properties.

Domain discovery from hidden databases belongs to the area of informa-
tion extraction and deep web analytics [Chang 2006, Doan 2006, Jin 2011]. To
the best of our knowledge, the only prior work that tackles one of the prob-
lems we address, namely discovering attribute domains of hidden databases is
[Madhavan 2008, Shokouhi 2006].

(3) Create an initial database of valid data values (e.g., "Star Wars" and
1978 in the structured case; English words in the unstructured case). Some
sources of this information include [Raghavan 2000]: (a) a human adminis-
trator; (b) non-deep web online content, e.g., a dictionary (for unstructured
keywords) or someone’s list of favorite authors; (c¢) drop-down menus for popu-
lating form elements (e.g., a drop-down list of publishers). Web data material-

ization touches on these issues within Data Acquisition strategies as presented
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in Chapter 3.

(4) Use the database to issue queries to the deep web site (e.g., movie
genre = "SF"), parse the result and extract new data values to insert into the
database (e.g., movie title = "Star Wars"), and repeat. We cover data storage
and query issuing as a part of materialization process described in Chapter
4. We elaborate on Step 4, which has been studied under (variations of) the
following model of deep web content and queries [Zerfos 2005, Wu 2006].

A deep web site contains one or more content items, which are either
unstructured documents or structured data records. A content item contains
individual data values, which are text terms in the unstructured case, or data
record elements like author names and dates in the structured case. Data
values and content values are related via a bipartite graph as detailed in
Chapter 6.

A query consists of a single data value V' submitted to the form interface,
which retrieves the set of content items directly connected to V' via edges in the
graph called V’s result set. Each query incurs some cost to the crawler, typi-
cally dominated by the overhead of downloading and processing each member
of the result set, and hence modelled as being linearly proportional to result
cardinality.

Under this model, the deep web crawling problem can be cast as a weighted
set-cover problem: Select a minimum-cost subset of data values that cover all
content items. Unfortunately, unlike in the usual set-cover scenario, in our
case the graph is only partially known at the outset, and must be uncovered
progressively during the course of the crawl. Hence, adaptive graph traversal
strategies are required.

A simple greedy traversal strategy was proposed by Barbosa and Freire
[Barbosa 2004] for the unstructured case: At each step the crawler issues as a
query the highest-frequency keyword that has not yet been issued, where key-
word frequency is estimated by counting occurrences in documents retrieved
so far. In the bipartite graph formulation, this strategy is equivalent to se-
lecting the data value vertex of highest degree according to the set of edges
uncovered so far.

A similar strategy was proposed by Wu et al. [Wu 2006] for the structured
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case along with a refinement in which the crawler bypasses data values that
are highly correlated with ones that have already been selected, in the sense
that they connect to highly overlapping sets of content items.

Ntoulas et al. [Zerfos 2005] proposed statistical models for estimating
the number of previously unseen content items that a particular data value is
likely to cover, focusing on the unstructured case.

Google’s deep web crawler [Madhavan 2008] uses techniques similar to the
ones described above, but adapted to extract a small amount of content from
a large number (millions) of sites, rather than aiming for extensive coverage
of a handful of sites.

In most cases, the domain of the input attributes is not completely known, but
it is possible to exploit a dictionary of keywords, or the values produced by
the query results to generate legal input values [Madhavan 2008, Zerfos 2005];
in particular, a "reseed" occurs whenever the input values to be used for given
calls are extracted from the results of previous calls. In general, materializa-
tion can be built by exploiting the entire set of available input data in the
data source. The graph of connections linking the input data to the output
often exhibits the presence of components, or "data islands" [Wu 2006]. Data
islands are common to the data sources in which the underlying database
graphs are not fully connected. The reseeding problem has been considered
in [Cal 2009] tackling a setting where data sources can be accessed in limited
ways due to the presence of input parameters. Methods used in that paper
adopt recursive evaluation even in non-recursive queries, and use functional
and inclusion dependencies for improving the access to data sources. Our work
shares several assumptions with [Cali 2009], but also considers the additional
problems such as materialization efficiency in terms of number of executed
queries and the execution time brought by the invocation limitations of the

queried Web services.

2.7 Chapter Summary

This chapter presented a review of view materialization concept with focus

on schema mediation, query containment and binding schemas. It brought
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an overview of relevant query languages and their significance in deep web
querying. Further, the chapter presented a literature review in contrast to
our work of the caching, sampling and web crawling research areas.

The next Chapter brings us back to the search computing paradigm, its
aims, problems and areas of interest. The full focus is given to the web data

materialization dimensions and our approach towards their challenges.



CHAPTER 3
Web Materialization in Search

Computing Context

3.1 Introduction

Search Computing is a new paradigm for composing search services. While
state-of-art search systems answer generic or domain-specific queries, Search
Computing enables the answering of questions via a myriad of dynamically
selected, cooperating search services that are correlated by means of join op-
erations.

The latest years have witnessed an exponential increase in the number
of available Web data services. Such a trend has pushed the evolution of a
new classes of data integration systems, like mash-up applications or, more
recently, multi-domain search applications. Unfortunately, the access to Web
data repositories is typically limited 1) by the access constraints imposed
by the Web service query interface, and 2) by technical limitations such as
the network latency, as well as the number and frequency of allowed daily
service invocations. In order to create efficient and scalable multi-domain
search applications, where users expect good results provided in a timely and
reliable way, there is a need to provide methods and systems that allow fast
access to materialized copies of the original data.

In this chapter we provide an insight into the search computing concept;
we address the problem of Web data materialization in the context of the
multi-domain query systems, highlighting the underlying challenges and dis-
cussing the most relevant approaches that could be adopted to increase the

performance of data materialization systems.
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3.2 Search Computing

The aim of Search Computing is to respond to multi-domain queries, i.e.,
queries over multiple semantic fields of interest. Its goal is to help users
by decomposing queries and to automatically assemble complete results from
partial answers. Hence, Search Computing aims at filling the gap between
generalized search systems, which are unable to find information spanning
multiple topics, and domain-specific search systems, which cannot go beyond
their domain limits.

Some examples of Search Computing queries are: "Where can I attend an
interesting scientific conference in my field and at the same time relax on a
beautiful beach nearby?", "Where is the theatre closest to my hotel, offering
a high rank action movie and a near-by pizzeria?", "Who is the best doctor
who can cure insomnia in a nearby public hospital?', "Which are the highest
risk factors associated with the most prevalent diseases among the young
population?". These examples show that Search Computing aims at covering
a large and increasing spectrum of user’s queries, which structurally go beyond
the capabilities of general-purpose search engines. These queries cannot be
answered without capturing some of their semantics, which at a minimum
consists of understanding their underlying domains, in routing appropriate
query subsets to each domain specific source and in combining answers from
each expert domain to build a complete answer that is meaningful for the
user.

The main idea behind search computing is a data integration process as
complex queries are extracted from complex data and complex data demand
integration. In search computing, integration is query-specific, as answering
queries related to different semantic domains demands for intrinsically differ-
ent data sources: building results for such queries does not require "global
data integration', but simply data integration relative to specific domains.

In Search Computing a data source is any data collection accessible on
the Web. The Search Computing vision is that each data source should be
focused on its single domain of expertise (e.g., travel, music, shows, food,

movies, health, genetic diseases, etc.), but pairs of data sources that share
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information (e.g., about locations, people, genes) that can be linked to each
other, and then complex queries spanning over more than one data source can
use such pairing (that we call "composition pattern") to build complex results.
An advantage of this approach is its transitivity. If we can pair source A to
source B (e.g., pathologies which alter body functions), and then source B to
source C (e.g., body function alterations that are treated by drugs), then we
can answer queries that connect A to C (e.g., pathologies treated by drugs) and
so on. Fach source is in charge of its own maintenance policy thus determining
its level of data accuracy and currency.

The search computing paradigm also looks into a problem of composition
pattern, i.e., a data source coupling for answering multi-domain queries, recall-
ing that the purpose of composition is search, and that therefore results should
be presented to users according to some ranking, respectful of the original rank
of the elements coming from the native data sources and of the search intent
of the user. SeCo resorts to join [Ilyas 2004], which is however revisited in
the context of Search Computing to become service-based and ranking-aware
[Polyzotis 2011]. A result item of a multi-domain query is a "combination',
built by joining two or more elements coming from distinct data sources and
returned by different search engines. In our first query example ("Where
can I attend an interesting scientific conference in my field and at the same
time relax on a beautiful beach nearby?"), combinations are triples made of:
database conferences (extracted from a site specialized in scholar events, e.g.,
Dblife [DBLife 2014]), inexpensive flights (extracted from a flight selection
site, e.g., Expedia [Expedia 2014] or Edreams [Edreams 2014], and cities
with nice beaches (extracted from tourism or review sites, e.g., Yahoo! Travel
or Tripadvisor) [YahooTravel 2014, TripAdvisor 2014].

Inter domain connections contain semantics: flights connect pairs of cities
at given dates; therefore connections use "dates" and 'cities" as matching
properties. In SeCo joins are applied in the context of web services. The
assumption is that every data source is wrapped as a web service. Such
services, typically, expose a query-like interface, which undertakes keyword-
based input and yields ranked results as output. Services are further composed

by using a ranking-preserving join. This operation is referred to as a join of
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search services [Bozzon 2011a,Bozzon 2010, Braga 2011].

Search Computing aims at giving to expert users the capability of build-
ing similar solutions for different choices of domains, which - in the same way
as Expedia or Lastminute - share given properties and therefore can be con-
nected. For such purposes, Search Computing offers a collection of methods
and techniques for orchestrating the search engines and building global results.
Composition patterns are predefined connections between well-identified Web
services, therefore, orchestrations are not built arbitrarily, but rather by select-
ing nodes (representing services) and arcs (representing the links in the compo-
sition patterns) within a resource network representing the various knowledge
sources and their connections [Brambilla 2011]. This vision is consistent with
the emerging idea of moving from an Internet of (disorganized) pages to an
Internet of (semantically coherent) objects.

Complex queries are not only hard to answer, but they can be also difficult
to formulate for the user. Thus, an important research issue is to how best to
capture user’s search intent and direct the user towards the discovery of their
true information need. This process can be done by means of liquid queries,
a dynamic query interface that lets users dynamically extend the scope of
queries and then browse query results [Bozzon 2010, Bozzon 2011b].

Finally, Search computing considers the possibility of automatically infer-
ring the relevant network of data sources required to build the answer from
keyword-based user queries [Brambilla 2011]. This will require "understand-
ing" query terms and associating them to resources, through tagging, match-
ing, and clustering techniques. Thereafter, the query will be associated to
the "best" network of resources according to matching functions, and dynam-
ically evaluated upon them. This goal is rather ambitious, but it is similar
to supporting automatic matching of query terms to services within a seman-
tic network of concepts, currently offered by Kosmix [Rajaraman 2009]. One
step in this direction is to extend joins between services to support the notions
of partial linguistic matching between terms (supported by vocabularies such
as WordNet) or dealing with the predicate "near" in specific domains (e.g.,
distance, time, money).

Example: To familiarize with Search Computing concepts we present a
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search query example in SeCo data model context. To approach web data
sources SeCo Search relies on Service Description Framework (SDF) [Bram-
billa 2011], a multi-layered service model. Top of SDF, a conceptual level is a
simple model that characterizes real world entities used to build a domain di-
agram (DD) encompassing different data services called Service Marts (SM).
Service Marts are structurally defined by means of attributes and their rela-
tionships. Next down, a logical level describes the access to the conceptual
entities in terms of data retrieval patterns (Access Patterns, AP) described
by input and output attributes. Join operations between access patterns are
performed by means of attributes that share the same domains, thus, forming
a connection pattern. The bottom, a physical level represents the mapping of
access patterns to concrete Web data source Interfaces (SI), that incorporate
access endpoints with a basic non-functional properties of the service.

To quickly illustrate let us assume the user wants to specify a query about
which movies of a given genre are close to its current location in New Zealand.
The query translates into natural language as "What are the cinemas showing
thrillers in Auckland?". We assume a service framework, as depicted in 3.1,
featuring:

1) A Movie service mart that can be accessed via access pattern MovieByTitle
(AP1), returning movie details based on their title, with a single corresponding
service interface mapped to http://www.imdb.com (SI1).

2) A Cinema service mart that can be accessed via TheaterByCity (AP2),
returning New Zealand movie theaters close to an input position, having a
service interface mapped to https://www.eventcinemas.co.nz (SI2).

Join operation is preformed via a Movie.title attribute present in input and
output of AP1 and AP2. Given such services, the above query results in the
SeCo query language (SeCoQL) query [Braga 2011] below, which accepts as
input the movie genre, the address and city of the user’s location:

DEFINE QUERY Q($X:String, $U:String, $V:String) AS SELECT M.*, T.*
FROM AP1 (Movie.Genre: $X, Mowvie. Year: $Z) AS M USING S1 JOIN AP2
(Theater.Addr: $U, Theater.City: $V,Theater.Phone: $§W) AS T USING S2
ON M.Movie. Title=T. Movie. Title WHERE $V=Auckland AND $X=Thriller.

At execution time, after extracting movie and theater instances, the query
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produces only those pairs with a matching movie; as such, the result may be

empty.

Morrie Binary Relationship #{ Theater

M ovie Genre \ Mowie Rating APZ'/

Theater.City
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Connection | O- QutputAttribute

Movie vear Pattem

Figure 3.1: SDF illustration - MovieByTitle and TheaterByCity joined via Movie.Title

connection pattern.

3.3 Web Materialization Approaches

One of the basic Search Computing requirements is a reliable, accurate and
readily available data source repository that is needed to execute joins between
engaged multi domain services, construct answers to the posed queries and
deliver them to the end users in a timely fashion.

In order to achieve these requirements and overcome the constraints de-
scribed in Chapter 1, we intend to characterize and implement a system for
materializing queries as views, i.e., locally stored answers that can be, in turn,
queried. Our goal is to be able to do this in an efficient way while having a
good coverage of the original result set. We measure efficiency as the number
of queries issued to the system that find an answer in the materialized results;
coverage is measured as the degree of completeness of the answers produced by
querying the materialized data set in comparison with the answers obtained
against the actual dataset. We want to be able to distinguish between seman-
tic relations found in the materialized views in order to overcome problems
outlined above. We also want to be aware of the external data source updates

and changes in the actual sources while efficiently propagating those changes
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in a timely manner within our materialized views so that accuracy of answers
is preserved.

The sources we are querying against are bound by certain input-output
schema defined in the form of access patterns, where certain attributes in the
data set can be used to query and rank the output (answer) and some, not
necessarily the same ones, are produced in the output (answer). In order
to perform materialization we, therefore, have to be aware of the effect of
choosing different input attributes for querying on the output produced and
how changes in the input affect the size and relevance of the output. Answers
to the same query can be different depending on the ranking function and
ranking attribute used from the output schema by the remote data provider
source. For instance, an access pattern RestaurantByLocation&Rating that
takes Location as an input and returns a results set of restaurant names,
locations and customer ratings may be delivered by the remote source ranked
by maximum customer rating or nearness in respect to the queried location.
Clearly this aspect has to be taken into consideration as well. In this thesis
we explore, define and implement novel techniques for expanding (or relaxing)
the focus of the query input and output attributes in the context of answering
queries using materialized views.

Ideally, the research needs to look into ways of improving expressiveness of
the Search Computing Query Language (SeCoQL) [Braga 2011] used within
the SeCo system for answering queries. This ought to be done by looking into
ways of improving expressiveness of the language built-in types with the aim of
improving their information encapsulation and thus making them semantically

aware of the execution context.

3.4 Web Materialization Dimensions

The materialization, performed through data acquisition, must be executed
in an efficient and effective way. Here, the critical challenge is to acquire op-
timum data source coverage while complying with the access constraints and
minimizing the network traffic. The level of coverage can be measured as the

completeness of the answers obtained from the materialized data set in relation
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to what could be obtained against the actual data set. The materialization
process requires the integration of the data obtained from different sources
within the same AP. This task leads to a problem caused by inconsistent
instances or attribute values between the materialized data sets; therefore,
classic problems of object identification and record matching arise. As mate-
rialized views come in the form of tuples, duplicate detection approaches can
be used to match results from multiple services. The duplicate detection is
performed in the AP context and it spans different service interfaces.

To illustrate the above outlined problems let us consider a typical multi-
domain SeCo query: "Where can I see a good thriller movie then have dinner
in an Italian restaurant nearby, in Auckland?".

We have to query two independent web data sources: firstly, for cinemas
at this location - filtered by genre - and the other one for restaurants at the
same location. After we obtain both result sets we do a rank join operation
on them to create an answer to the query. Clearly the join operation cannot
be performed until both result sets are obtained. If we consider problems
for the first category - external properties of the data source - a problem
arises if the result page size of the individual result sets is unaligned i.e.,
the services return results of different sizes. Concretely in our example, if
the theater service returns k pages with the highest score and the restaurant
service returns k/2 pages, we then have to perform an extra Restaurant service
call to get another k/2 result before executing the Top-k ranking join.

A similar consideration applies if there is network congestion for any of
the services, the join operation has to wait until both services have returned
before executing. Even worse, if one of the services has a time based call limit
i.e., we can call it only a certain number of times in a given time interval (e.g.,
a daily limit), then if this limit is reached we have to wait until it is resolved
before invoking the service again. Obviously this causes a serious time lag on
the join operation and degrades performance of the search.

These factors illustrate the importance of data acquisition dimension -
sourcing of the remote service data by issuing queries. We observe data ac-
quisition through the concept of data surfacing [Madhavan 2008] which pre-

computes the queries to be submitted to the web data sources of interest.
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The surfacing problem consists of two main challenges: to decide which ac-
cess pattern inputs to fill when submitting queries to a remote source and
to find appropriate values to fill in these inputs. To provide an example let
us consider RestaurantByLocation&Rating AP that takes Location and Rat-
ing as a query and returns a set of restaurant names, addresses and phones.
If applied to a restaurant rating web search local to New Zealand such as
yelp.conz [YelpNZ 2014] with query location 'London’ and 5 stars rating, it
is unlikely the query will produce any outcome, chances are better if we query
with ’Sydney’ and the best if the query location was "Wellington’. In this case
the query will reach the most in terms of result set size. The result size may
further vary if we change the rating input from 5 stars to 2 or 1 star as there
may not be many restaurants that bad at the queried location thus bringing
even more complexity to the acquisition dimension.

Formally, we can model a service mart at the conceptual level as a database
D with a single table of n attributes. At the logical level each access pattern
defines a view V of D specified by different combinations of input and output
attributes (or input-output schema) and shaped by a distinct ranking func-
tion. If we consider a web based data source WS that exposes a searchable
interface whose input-output schema matches one of the access patterns then
by executing a query () using a particular access pattern against this data
source that conforms to the binding constraints of the access pattern, we can
materialize one of the views related to the service mart that this access pat-
tern belongs to. Thus, a materialized view is specific to the access pattern,
its ranking function and the data contained in the queried data source. By
changing the input attributes values in the query () we create a number of
different views following the same access pattern schema and against the same
web source, i.e., using the same service interface. Each of the views is unique
and is referenced by the query ) and the service interface SI against which
the query was executed. In turn, the service inter-face is uniquely defined by
the access pattern and the web source endpoint it refers to. Hence, the combi-
nation of the query @) and the service interface descriptors is considered to be
a view signature; a unique descriptor of the view. If represented in SeCoQL

[Braga 2011], the view signature is the actual SI level SeCoQL query since it
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holds all described signature elements. An example follows below, expressed
in an SQL type language, which is enhanced with constraints on tuple size
and the number of calls per time unit that can be made.

DEFINE QUERY RestaurantPlan($X:String, $Y:String) AS SELECT
R.* FROM ( AP2 (Restaurant.address: $X, Restaurant.city: $Y) AS R1
USING SI2 )

RANK BY (R1=0.5) LIMIT 20 TUPLES AND 50 CALLS

Theoretically, if we use all the distinct input attribute values present in a
data source we end up querying the source with all possible combinations of
queries, or in other words obtain all possible combinations of views of the data
source for the given access pattern. Hence, we create a full materialization of
this data source over the specified access pattern schema and in the context
of the service mart in which the access pattern is instantiated. If extended to
all queries belonging to one access pattern and provided that they are all fully
rewritten we say that what is obtained is a full rewrite or full materialization
of this data source in the context of the used access pattern (schema).

Formally, a set of connected domains can be modelled as a database M
where each domain d € R); where R, is a table of n attributes at the logical
level. Each Access Pattern (AP) defines a view of a table Ry, detailed by the
set of input and output attributes, and the applied ranking function. Finally,
at the physical level, each Service Interface is modelled as a data provider
for an Access Pattern that it shares with the same schema and ranking func-
tion. The objective of web view materialization is to pre-populate the defined
database and thereby provide a reliable off-line information resource.

In literature, a full materialization of a query over certain schema is also
known as an equivalent rewrite of a query, and is considered as one of the
main notions in the problem of answering queries using views [Halevy 2001].
Definition: Equivalent rewritings: Let ¢ be a query and V' = {vy, ..., v,,} be
a set of view definitions. The query ¢’ is an equivalent rewriting of ¢ using V'
if:

e ¢ refers only to the views in V| and

e ¢ is equivalent (references the same views) to g.
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In our setting, given a query g over an access pattern a, we define MV as
the set of materialized views of the Access Pattern a, where each view muv €
MYV is calculated according to a unique combination of values for the input
parameters of a. Theoretically, by specifying a domain it would be possible to
query such a source with all possible combinations of inputs, thus, obtaining
all the existing combinations of views for the given access pattern. Hence, it
would be possible to create a full materialization of the data sources over the
specified Access Pattern schema. Of course, if such knowledge of all input
values is not known a priori, the combination of views for the given access
pattern cannot be obtained.

Another dimension in the problem of answering queries using views is the
concept of a maximally contained rewrite [Halevy 2001].

Definition: Maximally-contained rewritings: Let ) be a query, V =
{V1,...,Vin} be a set of view definitions, and L be a query language. The

query ¢ is maximally-contained rewriting of ¢ with respect to L if:
e ¢ is a query in L that refers only to the views in V/,
e ¢ is contained in ¢, and

e There is no rewriting ¢; € L such that ¢ C ¢ C ¢ and ¢; is not

equivalent to ¢'.

To illustrate a maximally contained rewrite in the Service mart context de-
scribed above, let us assume that we do not know all the input attributes
present in the data source but instead use a dictionary of keywords or re-
turned result values to reseed the query [Madhavan 2008, Zerfos 2005]. In
some real world sources, the data in the underlying database may not be fully
connected, i.e., isolated ’data islands’ [Wu 2006] may exist. We define a con-
nection between data tuples (records) as a mutually shared attribute value;
a value that is present in both records. As a result, from a limited number
of input attribute values, the final materialization may represent only a frac-
tion of the target database. Such a materialization or rewrite of a query over
certain schema is referred to as a maximally contained rewrite or simply the

best possible rewrite of a given query.
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The data acquisition needs to be performed in an efficient manner whereby
the efficiency is expressed in terms of the size of the acquired data corpus
against the number of executed queries. Obviously more relevant data with
less executed queries is the desired outcome.

Data acquisition as a process is characterized by three main tasks that are
sequentially performed in order to obtain the materialized data corpus.

Firstly, an input values discovery phase is initiated where all the service
input attributes are considered and the list of values belonging to the attribute
domain is created for each attribute. We group the input selection strategy

into four main categories:

e Knowledge-based input strategy - query input attributes are selected
from a knowledge base organized as an ontology. For example, if the
input attribute required by the service is annotated with ’City’ (and
providing the knowledge-base conforms to the geolocation taxonomy
Street — Suburb — City — Region — Country), then the inputs can
be selected using all cities in the KB, possibly constrained by the values

of other inputs (e.g., country).

e Dictionary input strategy - an existing dictionary of relevant input terms

is used to populate the input attributes in the queries.

e Reseeding input strategy - method commonly used in extracting data
from the deep web, as described by the literature [Madhavan 2008]. The
input attributes are selected from the results obtained by the initial
‘seeding’ query and consequent queries are issued in recursive fashion

until all result inputs are exhausted.

e Query logs input strategy - existing SeCo engine query logs are used to

populate input attributes for the queries.

Secondly, a set of queries is generated using the values from the input
attribute domain in the query generation phase. In the query generation
phase the attribute lists are combined in pairwise fashion to obtain all the
possible combinations of queries. The number of generated queries equals

k™ where k is the number of input domain attributes and n the size of the
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input attribute domain. This is true only if we assume that all the input
values are independent (e.g., there is no correlation between the values of
a city attribute and the values of the country attribute). Indeed, one may
consider the existence of correlation between the values of input attributes,
thus, reducing the number of generated queries.

Our query generation techniques will rely on query reseeding approaches
[Madhavan 2008] as described above and will also use our proposed enhance-
ments to algorithms proposed in the context of deep web surfacing [Zer-
fos 2005, Wu 2006].

Thirdly, the data is acquired by executing the queries against the external
service in the data surfacing part of the data acquisition. Data Surfacing is
characterized by retrieving of the resulting materialization corpus of the re-
mote source. It consists of invoking the external service with queries generated
during query generation and thereby retrieving the query results obtaining the
data materialization of the service. In cases where the reseeding strategy is
used this process is intertwined with query generation since queries are gen-
erated whenever new input values for the given attribute are surfaced.

To further illustrate the reseeding strategy let us again consider Restau-
rantByLocation&Rating access pattern that takes Location and Rating as a
query and returns a set of restaurant names, ratings, addresses and phones.
This reseeding strategy is applied to a restaurant rating web search local to
New Zealand such as yelp.co.nz [YelpNZ 2014] taking rating as input the
number of stars in a range 1 - 5 and location as a post code. The search pro-
duces results starting with the best matches, that is a matching on the queried
number of stars (rating) and post code. However, the bottom of the result
set typically features not exactly matching, but results that are more removed
from the original query, in this case a post code in the address neighbouring
the queried post code and ratings close but not equal to that specified in the
query. We capitalize on this behaviour by reusing newly discovered post codes
and ratings to create new queries in pairwise fashion as described above and
proceed with the data acquisition process. The process continues following
the same scenario by discovering new inputs and producing new queries until

the query queue is exhausted or the desired data volume is obtained.



3.4. Web Materialization Dimensions 47

Alongside data acquisition and containment dimensions another set of di-
mensions of interest is expressed through semantic differences between data
sources. Let us assume there is more than one service mapped in each access
pattern that can be invoked to solve the example query. While solving the
example query, calls to the first restaurant service returns a result set of size
n, the theater service returns a result set which is 3n in size; thereby requir-
ing two more restaurant service result sets of size n for the waiting rank join
operation. Since we obtained two sets of results for the same query from two
different data sources we cannot be certain that the same ranking function
has been applied to the result sets. Thereby the rank function aggregation
dimension arises, whereby data obtained by the acquisition process is affected
by the ranking function applied by the service. Such an aspect is crucial when
the results obtained by several queries need to be aggregated in order to de-
fine a single information corpus. We classify this materialization challenge

according to the opacity of a ranking function:

e Transparent rank function - the rank function belonging to the remote
service is known and applicable to the materialized data. In such a
scenario, the materialized version of the service behaves exactly as the

original one, thus, providing a faster, unconstrained replica,

e Opaque rank function - the rank function is not explicit (e.g., Google
page rank); therefore it is not possible to create a unique corpus for the
query response, and, consequently, the results of each query instance are

materialized (and accessed) separately.

In the restaurant example even though restaurant services conform to the
same access pattern, that is the same input-output schema, the shape implied
by the ranking function of the returned data tuples is different thus placing it
in the ’Opaque ranking function’ category. Clearly, before performing the join
between theaters and restaurants we have to reconcile the ranking function
difference and reshape the restaurants results using some unifying rank.

We proceed to reconcile ranking differences between views obtained against
the same access pattern but with different ranking attributes in order to

produce, from the ranking perspective, a cohesive searchable data corpus.
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Our approach is to consider all views materialized using the same access pat-
tern with different ranking attributes. An algorithm of interest is applied in
MERGE system using the PipelineResults algorithm as described by Hristidis
et al. [Hristidis 2004]. We will also look into adopting and extending the
LPTA algorithm based on ideas proposed in the Threshold algorithm [Fa-
gin 2003, Guntzer 2001, Nepal 1999] as proposed by Das et al. [Das 2006].
Further methods are described in [Fagin 2003, Guntzer 2001, Nepal 1999,
where algorithms are provided to combine ranked lists of attributes in order
to efficiently retrieve the top results according to an aggregate function of
the attributes. In the aforementioned research, a sorted list is used for each
attribute in order to efficiently retrieve the top-N ranked results from a single
source.

Another dimension is the issue of duplicates in the data-sources, i.e., result
tuples that represent the same entity - same restaurant in our example - but
are described or named differently between sources. In other words we have to
be able to disambiguate between semantically related but physically different
data sources. For example, both result sets contain restaurant the 'name’
attribute, one which is populated by 'Bella Napoli’ in the first data source
but is shortened as 'B. Naples’ in the second source.

There are two possible scenarios based on the result tuple identifier avail-

ability.

e The existence of an RT Identifier duplicate detection strategy - the data

source natively exposes a unique result identifier.

e The absence of an RT Identifier duplicate detection strategy - there is

no unique identifier (key) present in the result tuples.

We consider duplicate detection approaches used for matching records with
multiple fields. These approaches fall roughly into several categories. Prob-
abilistic matching models exist such as the Bayes decision rule for minimum
error [Winkler 2002, Du Bois Jr 1969], the Bayes decision rule for minimum
cost [Duda 1973] and Decision with reject region approach [Verykios 2004]).

Also applicable are supervised and semi supervised learning approaches such
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as CART algorithm [Breiman 1984], usage of adaptive distance function [Co-
hen 2002], or semi supervised probabilistic relational model as proposed by
Pasula et al. [Pasula 2002]. Of further interest are approaches relying on do-
main knowledge or on generic distance metrics to match records. In this cat-
egory of approaches methods such as active learning techniques [Cohn 1994]
and usage of decision trees to learn rules exist for matching multiple records
[Tejada 2002, Yancey 2005].

In distance based techniques approaches exist such as a string-matching
algorithm proposed by Monge and Elkan [Monge 1996], or a simple approach
of measuring the distance between individual fields and then computing a
weighted distance between the records [Dey 1998]. An alternative approach,
as described in [Guha 2004] is to create a distance metric that is based on
ranked list merging. Finally, in the group of unsupervised learning a boot-
strapping technique as described by Verykios et al. [Verykios 2000], reinforced
by clustering approaches as described in [Elfeky 2002, Ravikumar 2004], may
also be used.

Once surfaced materialized data requires an optimum storage environment
that includes a data structure and adequate indexing that is applied to it.
The materialization data structure choice is driven by the aforementioned
materialization challenges such as rank opacity; consequently we recognize

two distinct materialization data structures:

e Relational Table - if the ranks between all query results are reconciled
(transparent rank function scenario) then the materialized data repre-
sents a coherent and uniform data structure and a schema can be defined
by the access pattern schema of the service interface against which the
data was obtained. Consequently the data is stored in a relational table

with schema compliant with the underlying service interface.

e Index Table - in a situation where the rank reconciliation is not possible,
each query result is treated as a separate entity uniquely identified by
the query input parameters and the SI id (query schema definition)
against which the query was executed. Each result tuple is stored in a

relational table accessed via an index table holding a unique ID of the
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query and the information about the position of the result tuple in the

original result set.

Upon acquisition of the required materialization, a dimension of data corpus
maintenance is presented. We recognize two distinct maintenance situations

depending on the transparency of the update policy of the remote data source:

e Black box - updates and changes to the remote source are unknown.
Maintenance policy is defined by factors such as frequency of the data
access and data currency. For example, frequently accessed and older

data is refreshed more frequently,

e White box - the updates and changes to the remote source are visible
and are consequently propagated to the materialized data structure.
For example the maintenance policy is defined by timestamp differences
between the materialized data and the remote source (as, for instance,

in streams).

Maintenance of the materialized data corpus presents a considerable chal-
lenge as we want to preserve the maximum possible level of currency and
relevancy of the materialized data in regards to the changes in the original
sources. Ideas described in the algorithm based on the concept of access
frequency and the age of the materialized entry [Cambazoglu 2010] are of
particular interest. We consider eager maintenance techniques such as The
Eager Compensation Algorithm family of algorithms [Zhuge 1995]; and lazy
maintenance approaches as described by Zhou et al. [Zhou 2007]. Of partic-
ular interest is research described by Yi et al. [Yi 2003] focusing on run-time
self-maintenance in the context of top-k materialized views. Lastly, the in-
cremental view maintenance techniques [Gupta 1995] and other concepts as
outlined by Gupta and Mumick [Gupta 1993] are also of interest.

Materialization needs to be subjected to a stringent quality assessment
routine. Remote service characteristics form the base of the quality assessment
metrics used in the service materialization QA routine. The metrics can be
used to improve the quality of the materialization by being iteratively applied

to the materialization process. For example, by improving and reinforcing
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data acquisition in case the tested completeness of the materialization is low
or the correctness of the test queries is low as compared to the actual service
query results, thereby triggering an increase of the frequency in the data

maintenance policy. The metrics are as follows:

e Completeness - a measure of the data coverage as sourced by the data

acquisition routine,

e Currency - a measure of the age of the materialized data in comparison

to the actual data source,

e Accuracy - a measure of semantic correctness and precision of the query
answers obtained from the materialized data corpus compared against

the same query answers from the actual data source.

Quality of the materialized data will be assessed in terms of precision and
recall comparison between the materialized data and ’'real’ source search re-
sults. By doing so we will utilize concepts such as Precision at n (P@QN); a mea-
sure that models how a system is used and Average Precision [Voorhees 1999].
We will also consider techniques based on Geometric Average Precision or
GMAP as described in [Voorhees 2005]. We will refine the quality assess-
ment by the statistical testing in order to eliminate possibility that observed
results have occurred by chance. Some of the statistical tests of interests are
The Sign test, Wilcoxon Signed-Rank test and the Student’s t-test as sum-
marized and described by Hull [Hull 1993].

3.4.1 Dependencies between dimensions

Dependencies between dimensions are illustrated in the process flow chart be-
low. The flow chart 3.2 describes the initial materialization process taking
into consideration all the dimensions, from Data Acquisition Strategy, Data
Model selection and Duplicate Detection. The initial materialization is mon-
itored by the materialization maintenance process. This process performs
quality assurance analysis over the materialized data corpus upon successful

materialization. In the course of this thesis we will exploit the above presented
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concepts and approaches as required to reach the thesis goals presented in
Chapter 1.

3.5 Chapter Summary

This chapter presented the search computing aims and areas of interest. It
elaborated in detail on the web data materialization dimensions, their chal-
lenges and approaches in overcoming those challenges.

In the subsequent chapter we will present a full characterization of the
web materialization concept with focus on service and materialization models
and their properties. The next chapter will also present a case study illus-
trating the potential approach in solving one of the challenges of the relevant

materialization dimension.



CHAPTER 4
Web Materialization: Building
Blocks

4.1 Introduction

In this chapter we present the SeCo multi domain query framework. SeCo
defines multi domain services within its own service description framework
(SDF) [Brambilla 2011], which is based on a multi-layered model. Each data
service available to SeCo is known in terms of the entities that it describes
(conceptual view), its access pattern (logical view), the service interface, and
a variety of QoS parameters (physical view).

Next we present the service materialization model (SMM). SMM is defined
and implemented as a novel extension of the service description framework
unique to this research. Service materialization model is dependent of SDF
and operates in a seamless and complementary manner to SDF. SMM is ex-
pressed in terms of the number of used access patterns and mapped service
interfaces. We closely investigate single pattern single service and multi ser-
vice materialization scenarios. We also consider the single, multi and parallel
queue execution models for the given scenarios. All forthcoming optimization
approaches proposed in this thesis are expressed in terms of these models.

In this chapter we introduce and describe the service materialization pro-
cess and how it maps to the relevant materialization dimensions introduced
in Chapter 3. We observe in detail all components of the materialization
process, we discuss points of performance optimization and how such process

optimization might reflect on the final materialization outcome.
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4.2 Service Representation in SeCo

As introduced in Chapter 3, web data materialization is a complex proce-
dure grouped in several functionally different dimensions. Each dimension is
characterized by certain properties of the web source to be materialized.
The description of such properties, required to perform materialization of
Web search services, is based on the multi-layered model used in the Ser-
vice Description Framework [Brambilla 2011] of SeCo. Search services are
typically registered in a service repository that describes the functional in-
formation (e.g., invocation end-point, input and output attributes) of data
end-points. At this point we will briefly describe all levels of SDF with empha-
sis on the features relevant to the service materialization dimensions. Figure
4.1 shows an example of Service Description for a movie search application.
Next, we describe its features bottom-up, thereby using the same approach
that is used for registering services in the SeCo system and the materializa-

tion module. At the physical level, search services are registered as Service
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Figure 4.1: An Example of Service Description Framework for a Movie Search Application.

Interfaces (SI), a concrete representation of the service that provides a service

identifier. An SI provides a set of input and output parameters and a set of
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ranking attributes that specifies the ordering imposed on the service results.
For instance, the SDF in Figure 4.1 contains four service interfaces work-
ing on two data sources that contain information about movies, "IMDB" and
'"Google Movie" respectively. Two of them query the data source and require
as input the genre of the movie, while two require the name of an actor. As
output, services return information about the movies that match the query
condition (i.e. movies of a given genre, or movies acted in by a given actor).

At the logical level, services are described in terms of data retrieval pat-
terns, or Access Patterns (AP). Each AP is related to one or more SI that
shares the same invocation signature (input, output, and ranking attributes).
Each input and output parameter of an SI is mapped to exactly one attribute
of the AP.

For instance, in the case of service interface TMDB GetMovieByGenre’
input attribute Genre maps to Genre. Name input attribute of the access pat-
tern GetMovieByGenre; equivalently output attributes Title, Actors and Year
map to Movie. Title, Movie.Year and Actor.Name outputs of GetMovieBy-
Genre AP. Likewise, SI ’GM GetMovieByActor’ input attribute Actor maps
to input attribute Actor.Name of AP GetMovieByActor while output at-
tributes Title, Genre, Actors and Year map to access pattern’s output at-
tributes Genre. Name, Movie. Title and Movie. Year.

To enrich the description of search services, APs are annotated with enti-
ties, properties and relationships of existing external knowledge bases (KBs)
or ontologies, so as to define a conceptual layer, known as a Domain Diagram.
The purpose of this annotation is two-fold: on the one hand, to provide a
common ground for unifying the terminology between APs (attributes in the
APs are denoted by prefixing their name with the name of the entity they
refer to, e.g., Movie.title) and Sls; on the other hand, to support the query
process by providing a richer description of the objects (and object instances)
addressed by the SDF. Currently, SeCo uses YAGO ontology [Suchanek 2007]
within its data model. YAGO merges Wikipedia and WordNet, while enforc-
ing a hierarchy of data types to which all objects in SDF are associated. It also
defines a number of core relationships such as type, subclassOf, domain and

range. Lastly, YAGO defines relationships over relationships thus enabling
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subrelationOf relationships.

Figure 4.1 shows a Domain Diagram containing three domains defined as
triples (Movie, STRING,yg id), (Actor, STRING,yg_id) and
(Genre, STRING, yg_id) where (i) Movie, Actor and Genre are the respec-
tive domain names;

(ii) STRING denotes their types as enforced in the mapped ontology and
(iii) yg_id represents the id of the mapped ontology.

In the SeCo model, an access pattern (ap) for a relation r over a set of

attributes A is an ordered pair (I,0), where I and O are disjoint sets of at-
tributes from A, such that I |JO = A.
Each input and output parameter of an SI is mapped to exactly one input or
output attribute of the AP; for instance, the GetByMouvieActor access pat-
tern includes the IMDB GetMovieByGenre and the IMDB GetMovieByActor
service interfaces. Access patterns are linked at a logical level through a con-
nection pattern which is a description of the pairwise attribute relations that
enable the logical connections between data sources to be established during
search.

Figure 4.1 illustrates a logical connection between the 'same domain’
attribute in input and output of access patterns GetMovieByGenre and Get-
MovieByActor, whereby the pair-wise connection is formed via attribute Ac-
tor.Name contained in both input and output of these access patterns. This
inter-domain connectivity within the same access pattern is exploited in the
reseeding input discovery during the materialization.

Each AP provides an invocation signature to one or more Service Interfaces
(SI), a representation of the concrete data sources defined at the physical
level of SDF. Alongside access pattern supplied invocation signature, Service
interfaces describe profile properties of data sources, such as their actual access
details, performance characteristics and their service level agreement details.

In the example above service interface IMDB encapsulates the access
pattern GetMovieByGenre. The IMDB service property values maxPageSize,
maxResultSize, noOfChunks and callsPerDay are chosen from a set of
arbitrary values. These properties directly affect materialization dimensions

by either acting beneficially or detrimentally to the performance of the
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materialization process. The configuration illustrates one of the possible
‘materialization generous’ service interface profiles as SLA limit is set to
100000 calls per day and maximum page size to 100 items, which with a
chunk size of 10 gives a potential maximum result size per query of 1000, thus,
enabling the maximum possible surfacing of the data source. Hence, this
alignment of properties acts beneficially to the data acquisition dimension as
it improves the efficiency of materialization process. The wanted materialized
volume is obtained with minimal number of issued queries - more obtained
data with less issued queries. The IMDB invocation signature follows as:
IMDB(http : | /www.imdb.com/, (100, 1000, 10, 100000), Get M ovie ByGenrel D).
Comparatively, the service interface GoogleMovie maps to the same Get-
MovieByGenre access pattern as

GM (http : //google.com/, (10,50, 5,100), Get MovieByGenrel D). The GM
service interface exemplifies a restrictive service profile with very limited
surfacing power as its SLA daily limit is set to 100 calls per day and a
considerably smaller page and result set size of 10 and 50 respectively. In
contrast, this alignment of service properties acts detrimentally to the data
acquisition by decreasing the performance efficiency of the materialization as
high number of queries is needed to reach the wanted materialization volume

- less obtained data with more issued queries.

4.2.1 A Multi-level Model for Data Materialization

Our intention is to capitalize on the Service Description Framework provided
by SeCo by enriching the description of search services with non-functional
information (such as average response time, invocation constraints, etc.) and
the description of access patterns with information related to the material-
ization dimensions. This information will further be applied to some of the
dimensions concretely defined within the materialization process to deliver
materialization efficiency optimizations in terms of execution time and data

volume query ratio of the materialized web data sources.
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4.2.1.1 Representing Service Properties

In the SDF, Service Interfaces - existing descriptors also contain information
useful for the purposes of materialization. Such information can be used to
drive the selection of the service interface(s) that needs to be invoked in order
to efficiently materialize the addressed data source(s). Even within the SeCo
search architecture these descriptors are used for compile-time optimization
[Braga 2010b] and run-time adaptation [Braga 2010a]. In the data acquisi-
tion materialization dimension context we distinguish three main classes of

properties of the SDF:

Uniqueness properties, i.e., properties that indicate if the service will re-

turn disjoint results for different inputs. We then distinguish two cases:

e Unique: two distinct queries cannot return the same item,

o WithDuplicates: two distinct queries may return the same item.
Performance properties, i.e., metrics that describe a service in terms of:

e Pagination: indicates if the service returns results in chunks or
globally. Search services (e.g., the Google Movie search service)
typically return results in pages (chunks), and the service con-
sumer must perform several invocations in order to exhaust the

query result set,

o Maximum Result Size: indicates the maximum number of items

that can be returned by a single query,

o Mazimum Chunk Size: indicates the maximum number of items

that are returned in each chunk,

e Response Time Statistics: measures end-to-end response time

(e.g., average response time for each chunk).

Service Level Agreement properties, i.e., properties that specify the
level /quality of service offered by the data source service provider, in-

cluding:
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e Daily Invocation Limits, i.e., the maximum number of allowed

service invocations per day (or time unit),

e Chunk Invocation Limits, i.e., the allowed number of consecutive

chunk extractions,

e [nwvocation Access Delay, i.e., an invocation delay superimposed by

the remote service,

e Access Key, i.e., a client identification value that is needed in order

to access the remote source and enforce the SLA agreements.

4.2.1.2 Properties of Materialized Data

In this work we present novel extension to SDF service properties in form of
access pattern descriptions. This extension delivers a set of properties related
to materialization dimensions in access pattern context. It defines the relation
between the materialized data and the data offered by the addressed sources,

or to real-world data used as input for the materialization process.

Coverage Relative to the Full Materialization, this property denotes
the ratio between the number of items in the materialization and the
number of items in the potential, full materialization of the given data
source. Coverage can be further refined into a query-specific coverage
that expresses a ratio relative to the portion of data in the source that
satisfy the query. E.g., an application may be interested in greater cov-

erage of data which satisfies the query "Location = New York".

Coverage Relative to World’s Entities, which is quite hard to evaluate,
denotes the ratio between the number of materialized items and the
number of real world items. Using multiple data sources describing the
same real world entities can enhance this coverage. For instance, several
services offering New York’s "evening events' can be queried in order
to produce a more comprehensive materialization. It requires duplicate

elimination across different data sources.

Alignment This property is satisfied when the materialization contains the

same data as the data source; we regard as "consistent" a time period in
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which the source and materialization are aligned. Query-specific align-
ment expresses alignment relative to a given query. In case of full mate-
rialization, real-time alignment cannot be maintained. Materializations
can be further characterized by: 1) delay, which indicates the maxi-
mum allowed time interval since the last consistent time; and 2) max-
inconsistency, which indicates how many items can differ between the

source and the materialization.

Redundancy A measure of the amount of duplicates in the materialization.
It can be due to the presence of multiple sources, but also of a single
source accessed via a service with duplicates. Duplicate removal in the
first case may be harder due to the presence of value conflicts (e.g.,

distinct values for the same real world object).

Diversity This property measures how the items collected in the materializa-
tion represent the variety of data provided by the data sources according
to some set of item attributes. For example, in the case of events in New
York, it may be more interesting to include events of a different nature

rather than all the jazz concerts.

Accuracy A measure of semantic correctness and precision of the query an-
swers obtained from the materialized data corpus compared against the

same query answers from the actual data source.

Ranking Preservation A measure of the ability of the system to preserve
the original ranking of results obtained from the materialized data cor-
pus, compared against the same query answer from the actual data

source.

4.3 Service Materialization Model

Service Materialization Model (SMM) defines concepts novel to the SDF and
web sources materialization in general. It also expands and complements some
of the SDF definitions.
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We build upon Service Description Framework provided by SeCo to en-
rich the description of service with non-functional materialization information
such as average response time and service uniqueness, i.e., indication if the
service will return disjoint results for different inputs. We also annotate ac-
cess patterns with information related to the materialization of the underlying

sources. As data acquisition of a data source is only possible through the ac-

Maovie Actors Maovie Rating

Reseading Matenalization
Movie Year

KnowledgeBase.

Dict | Movie. Title Movie. Year

Movie Genre |

| _|

Movie Length

Figure 4.2: Schema representing the materialization scenario.

cess limitation imposed by Access Patterns (APs), each materialization query
call requires filling the AP’s input fields. To achieve coverage, the domains
of all legal values for such fields must be known. Such knowledge could be
available in advance when, for instance, a field insists on an enumerable value
set, possibly of small size (e.g., the set of movie genres). Alternatively, input
seeding can be seen as an incremental process driven by the materialization
queries, where the knowledge about the input fields’ domains is accumulated
during this process when queries are executed and output fields are retrieved.

In the data acquisition dimension context - Figure 4.2 - we illustrate the
impact of a materialization scenario on the input discovery phase by consider-
ing the two APs represented by MovieByTitle (which requires as input the
Movie’s Title, Genre and Year) and MovieByYear (which requires as input
the movies’ Year); the former access pattern has useful information, such as

Actors and the Rating, but requires very specific input. Instead, the latter
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access pattern has a simple input domain, consisting of the Year of issue (e.g.,
2011); with such input, it can produce a list of titles. Movie Genres are few,
and thus an input generator that already knows the Title and is set on the
current Year can iterate over all possible genres to generate the input for the
MovieByTitle access pattern, extracting all the information about actors and
ratings of current Year movies.

For the benefit of future discussion, as an example of data acquisition

dimension in access pattern context, we observe the access pattern:
MovieByTitle(I,0), where I = Year,Genre,Title and O =
Actors,Year, Rating. We note that attribute Year is contained in
both input and output domains, thus, enabling propagation of values via a
reseed operation from the output to the input domain.
The reseeding of the output domain is reinforced by the top-k nature of
the obtained results [Polyzotis 2011, Ilyas 2004]. Here just a top-k results
are expected to return closest matches to the query (input), while results
below this threshold will deliver different, dissimilar matches thus providing
new values for the reseeding operation. This type of behaviour will be given
special consideration in the remainder of the thesis.

We define the access pattern MovieByYear(I,O), where I = Year and
O = Title, Length. A connection pattern - a logic connection - between these
access patterns is established via Mowie. Title attribute that features in both
input and output domains of MovieByTitle and MovieByYear access patterns.

We also present three service interfaces mapped to MovieByTitle access
pattern, each one featuring a different service property profile in terms of
their data acquisition performance characteristics and service level agreement
limits. An interface
IMDBI1(http : / Jwww.imdb.com/, (100, 1000, 10, 100000), Movie ByT'itle) features a
fairly low SLA limit and a generous data acquisition performance profile of
page size 100 and 10 pages for each issued query that allows for a maximum
result size of 1000 tuples per query, and two restrictive interfaces
GM1(http : //google.com/, (10,50, 5,100), MovieByT'itle), and
GM?2(http : //google.com/, (20,40, 2,80), MovieByT'itle)

each featuring high daily invocation limit and rather conservative maximum
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result sizes per query of 50 tuples for GM1 and 40 tuples for GM2.
In the following subsection we will outline and define SMM concepts related
to data acquisition dimension that are explored within the service material-

ization process described further in the thesis.

4.3.1 Service Materialization Model Formalization

When considering a set of data sources and service interfaces, as in the example
of Figure 4.2, several data materialization scenarios can emerge. For instance,
an application might require the (full) materialization of a data source over a
specific service interface (and related access pattern). In other scenarios, one
might be interested in materializing the whole data source by exploiting all
of its access patterns and available services (e.g., the whole IMDB database).
Finally, an application might aim at collecting a comprehensive view of the
information related to one or more domains (e.g., all the movies ever released).

SeCo description framework service characteristics and its novel extension
of the materialization dimensions contained in access patterns are applied in

the materialization process and formally defined.

Definition 4.1. In the context of a Service Materialization Model, a mate-
rialization over a given service interface s mapped to an access pattern AP
is referred to as a single pattern single service materialization (spss). SPSS
materialization is an ordered pair spss_m(s, R) where s is a service interface
definition and R = {ryUraU...Ur,} is the union of all result sets r,, obtained

during materialization m.

Definition 4.2. The materialization coverage of R relative to some AP out-
put V is defined as: Cov = (|R])/(|V]). It denotes the ratio between R - the
number of tuples discovered in materialization m - and the total number of

tuples in output V.

For instance, in terms of access pattern Movie By Title, materialization over
one of its service interfaces (e.g, IMDBI1), is considered as a single pattern
single service materialization (spss) imdbl_m(IMDB1, Ryypp1). The cov-

erage Covimapt m = |Rimavt m)|/|Vo,.MovieByritie| refers to the ratio between
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the numbers of tuples discovered in materialization of IMDBI1 to total IMDB1

size.

Definition 4.3. A materialization query over a given access pattern AP is
defined as a tuple ¢ = (vy,...,v,), where ¢ is a query identifier, p is the
number of result pages returned by the query with 1 < p < MaxNoPages,
where MaxNoPages is the maximum number of pages retrievable by a query
as prescribed by the remote source; v,, is a value of attribute n in the input

domain [; n is determined by the cardinality of I.

Definition 4.4. A materialization result set over AP is defined as a set of
tuples {r(vy,...,v,)} where v, is a value of attribute n in the output domain

O; n is determined by the cardinality of O.

Definition 4.5. A materialization call over (si mapped to) AP is defined as
an ordered pair ¢(q?,r,), where (i) ¢ is the unique call id, (ii) ¢? is a query that
initiated the call; and (iii) r, is the result set - a result page p that answers

qv.

During data acquisition of an access pattern, a data source is accessed
by issuing a sequence of materialization calls. Each call ¢ contains a query
q” over this access pattern’s input interface and corresponding result set 7,
which is expressed over AP output interface.

Following the above we define a sequence of materialization calls as a set
{Cm}*_,, an ordered pair ({@m}r_,, {Rm}5_)), where {Qm}}_, is a set of
materialization queries; and {Rm};?:1 is a set of materialization result sets;
where k is the number of calls performed to obtain materialization m.

Furthermore, a materialization call over (si mapped to) access pattern AP is

expressed in SQL-like syntax:

SELECT distinct (<voi,...,vom> AS r_tmp, Rm) AS r, FROM
siap WHERE (a;1; = v 8,...8 a;,, = v;,, & pageNumber =p) AS ¢”
Where (i) 7, is a result set aggregated by a duplicate tuples detection routine
(distinct);

(i) distinct(z,y) aggregates result set r, by filtering the retrieved set of
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tuples rymp{< vo1,...,v0.m >} from tuples already in materialization Rm;
(iii) each domain value v,, in r_tmp element belongs to attribute element of
output interface O; and m = |O|;
(iv) g, is expanded so that each domain value vy is associated to the attribute
element of input interface I; and n = |I|;
(v) p is a result page number the query refers to, 1 < p < MaxNoPages,
where MaxNoPages is the maximum number of pages retrievable by the
query, it is defined by the service provider.

Observed through the MowieByTitle materialization, an example query
posed against IMDB1 service may present as
imdbl _q001' <’ Avatar’ action’, 2009 >, where imdbl 001 is this query’s
unique id, superscript 1 signifies the result page number this query relates to;
and terms Avatar, action and 2009 are the values in the respective domains
of InjovieByTitle-
The query in SQL-like syntax features as:
SELECT distinct({<Title, Genre, Year>} as r_tmp, Riupp1)
AS rloan g0 FROM IMDB1 WHERE (Title = Avatar’ AND
Genre =' action’ AND Year = 2009 AND pageNumber = 1) AS
imdbl__q001*
This query results in:
r_tmp{<’Avatar’, action,2009>, <’Avatar2’, action, 2016>, ...,
<’The Avatars’, action, 2013>, <’Avatar Spirits’, documentary, 2010>},
with the assumption that Rm already contains tuple
<’Avatar Spirits’, documentary, 2010>, distinct(r__tmp) delivers the final result:

rz-lmdbliq001{<7Avatar’, action,2009>, <’Avatar2’, action, 2016>,...,<’The Avatars’, action, 2013>}.

Definition 4.6. A materialization is considered feasible if there is an input
values dictionary (dict) allocated to all attributes in the input domain, that
is Va € I3dict CV, : 1 < |dict] < |V,]|.

A feasible solution allows for materialization call set to be executed se-
quentially.
A materialization call set {C'm}5_, is limited by k, where k is determined

by: a) the size of Cartesian product of all provided dictionaries; and b) the
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number of returned result set pages, i.e., the length of the query set sequence
is:

{Qm}Ir_| = dicty x dicty x ... x dict,,

where k = |dict; X dicty X ... X dict,| x noO f ReturnedPages,

n = |I|, where noO f ReturnedPages is the total number of retrieved results
r in materialization.

This dictates the length of {Rm}é?:1 which implies cardinality

|Rm| = Zk: pageSize;.

In the czgé of single pattern single service materialization (spss):

Visi € ViapandVo si € Vo,ap-

Similarly, due to limiting factors such as output domain O, duplicates
saturation, which occurs when a data source provides result tuples that are
already present in the materialization, Cov,, is decreased, thus, rendering
the materialization process execution inefficient in terms of the number of
executed queries and obtained materialization volume.

Let us consider a feasible materialization of /M D B1 with input dictionar-
ies a subset of IMDBI1 input domain dictr;y. = Avatar, Titanic, dictgenre =
Drama, Action, Comedy and dicty.., = 2005,2006, 2007, 2008, 2009. Let us
also assume for the sake of the example that noO f ReturnedPages is prede-
fined as 5 pages per query. A Cartesian product of the provided values gives
a query set Qrypp1 of size k = (2 x 3 x 5) x 5 = 150, and with assumption
that each materialization call achieved (a) maximum result page size and (b)
duplicate free result size of 100 tuples, the produced materialization Rrypp1
cardinality (size) was 150x100 = 15000 tuples. As the used input dictionaries
contained a subset of the input domain V;;ypp1 the produced materializa-
tion was a fraction of the full output domain of IMDB1 - Vo rympp1, or in
terms of coverage Covryppr = 15000/ |Vo, rmppi|. However, the materializa-
tion execution still performed to its full potential as it produced the maximum
result size for the given number of executed queries. Following this example
it became evident that failure of the queried data source to deliver (a) full
size result pages and (b) duplicate free results sets - would act detrimentally
to the materialization coverage as it would decrease the size of the final ma-

terialization.
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4.4 The Materialization Process

The materialization process is a novel concept unique to this research. It
deals with data acquisition and duplicate detection materialization dimen-
sions. Within this process we use aforementioned SDF service characteristics
and access pattern SMM properties to first establish the materialization pro-
cess and second to deliver optimization of the materialization execution time
and performance efficiency in terms of the number of queries - materialization
volume obtained with minimum number of queries.

We define a data materialization process for multi-domain queries as a
sequence of three data acquisition related tasks: 1) input discovery, 2) query
generation, and 3) data surfacing. In a typical materialization process, the

three tasks are performed cyclically, as depicted in Figure 4.3

T T T T T T OutputVeles = == = = — = |
1 Query Queue : -
¥ |
Input | Input i) Query Data
Discovery Values Generation Surfacing
A
Unique
Results — Results— — —

Materialization .

Figure 4.3: Materialization Process before optimization.

The input values discovery phase provides input values for the given access
pattern input interface such Va € [3dict C 'V, : 1 < |dict| < |V,|. We identify

three input discovery strategies:

1. The dictionary input strategy, where a static, existing dictionary of rel-
evant input terms is used to supply values for the input attributes of

the queries;

2. The reseeding input strategy, where the input is selected from the results

of previous queries. The reseeding strategy assumes a logical connection
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between at least one attribute in the input and output domains. The
values are discovered during data surfacing phase, domain-matched and
then passed back to the appropriate attribute dictionary. The concept
of reseeding within the materialization process is further illustrated later

in this chapter;

3. The query logs input strategy, where existing query logs are used to

populate the input attributes of the queries.

A materialization process can adopt one or more of the previously defined
strategies, so as to drive the creation of the queries used to materialize the
targeted data sources. For instance, a materialization process can start with
a dictionary input strategy and then be fed with the new values provided by
the reseeding strategy. The query generation phase is committed to the
generation of the input values combinations used to populate the materializa-
tion queries set {@Q} which contains a list of queries to be executed. Finally,
the data surfacing phase is in charge of selecting which materialization call
will be processed next. Once the call is selected the contained query is ad-
dressed against one of available service interfaces, thus, retrieving the results
and producing Rm. Data Surfacing phase relies on the call to service cou-
pling that orchestrates interaction between materialization calls and service
interfaces being materialized. Call to service coupling consists of two mutually
complementing parts. Firstly, a query queue de-queuing strategy which
is in charge of query selection. In SeCo the de-queuing strategy is based on
classical breadth-first and depth-first tree traversal algorithms as described in
[Bozzon 2012]. Secondly, a service interface selection strategy is used
which is responsible for the selection of the next service to be queried from
the pool of available service interfaces. When the reseeding input strategy is
used for one of the input attributes, data surfacing is intertwined with the
input discovery phase.

As an example we consider a feasible materialization of IMDB1 with
initial input value which is a subset of the input domain as:
dictrie = {Avatar, Titanic}, dictgenre = { Drama, Action, Comedy} and dictyeq = {2008, 2009}

In terms of the input discovery the process is started as a dictionary input
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strategy and then continued as a reseeding Input strategy. The materialization
is started by dictionary input strategy as the values are loaded from predefined
initial dictionaries for each input domain. A query generation phase gener-
ates the initial query queue by obtaining a Cartesian product of the given
initial values. A data surfacing phase cycle is performed by selecting one of
the queries from the query queue and executing it against one of the available
service interfaces - call to service coupling. The result is fetched and checked
for duplicates by the distinct routine and then stored - duplicate detection
materialization dimension. Next, the process switches back to input discovery;
now as a reseeding input strategy. Since input and output domains of Mowve-
ByTitle share an attribute Year, all newly obtained Year values are checked
against the existing dicty.,,, and if not present, are added to the dictionary.
As stated in Section 4.2 reseeding relies on the top-k nature of the queried
service as only top-k results are set to match the query while result tuples
below this threshold are likely to deliver new values in the shared domain.

Another round of query generation gets the Cartesian product with fresh
Year values, assembles queries and adds them to the query queue. This is
again followed by data surfacing call2service coupling and retrieving of the
results, new input values (Year) discovery and query assembly. The process
cycles until either the wanted materialization coverage is reached or the query
queue is exhausted.

We further develop on the SMM model to provide the means of optimizing
the materialization process. The SDF model is extended by expanding a
domain value to an ordered pair (v, sv) where v is a constant, i.e., a value in
the domain and v € dV where dV is a set of all domain values; sv is a tuple
containing domain value properties.

To fully appreciate the domain value properties and their significance in
the materialization process, we transform query queue de-queuing of the
Data surfacing phase to a tree traversal activity based on the distribution
of values in the output domain V.

Let us consider the following example, whereby attribute values from each
materialization call form a clique [Wu 2006]. If two calls share the same at-

tribute value, the corresponding vertex is said to "bridge" the two cliques. For
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example, each of the following two calls of the materialization of MovieByTi-
tle form a clique:

c1 (@ ("Avatar’, ’action’, 2005),

r1{("Avatar2’, ’action’, 2006),..., ("Avatar: The Last Airbender’, animation’, 2008)})
and

¢z (g2 ("Star Wars’, ’action’, 2010),

ro{ ("Star Wars’, video game’, 1983)...., ("Star Wars: Episode III’, ’action’, 2008)})
Output domain value Year 2008’ bridges these two cliques, that is links these
two materialization calls. Our intention is to exploit this behaviour to increase
the input value domain discovery rate by prioritizing queries containing such
values.

Figure 4.4 shows IM DB1 service interface materialization with the input

Gimeb Timdb
q,(2005) r,{(2008), (2008), (2008}
g+ (2010) r-{(2008), (2009), (2011}}
gs(2011) r;{(2008), (2009), (2013)}

Figure 4.4: Example of the sequence of materialization calls and corresponding AVG graph.

and output connected via a Year domain. The output domain is shaped by
the data service provider imposed temporal radius limit of 3 years i.e., each
materialization call obtains a result with a 3 year offset to the queried year.
Materialization is initiated with dictyq initial dictionary (2005 and 2010) -
presented in yellow. In the first call year 2005 is used as a query value, the
returned result tuples discovered years: 2006 and 2008 - green coloured; in
the second call year 2010 is used as a query value and the obtained result
tuples discovered years: 2008, 2009 and 2011 - blue coloured. The third call
is then executed by using reseed value 2011 from Year output domain, and
the fetched results contain years: 2008, 2009 and 2013 - orange coloured. The
example illustrates emerging of an Attribute-Value graph (AVG) with nodes
of different degrees. The vertices with years 2008 and 2009 are discovered (and

linked as depicted by colouration) by more than one materialization call. The
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difference of the domain value degrees in the AVG, their discovery frequency
and a number of calls containing the value (harvest rate) provide the basic

intuition for the domain value properties and related metrics.

Definition 4.7. A domain value property is an ordered pair defined as
sv( frequency, harvest Rate) where frequency and harvestRate are domain

value statistics defined further in the section.

Definition 4.8. A domain value frequency f is a property of output domain
value v defined as a number of occurrences n of value v in Rm or f = n(v),
where v € V. For instance materialization IMDB1 may produce |Rm| =
15000. The frequency of output domain Year value 2008 is 200 if the value is
present in 200 out of 15000 tuples.

Definition 4.9. A domain value harvestRate hr is a property of domain value
v directly derived from its AVG degree. It is defined as a count of material-
ization calls whose result set contains value v or hr = count(v,{Cm}*_,). For
instance, if materialization IMDB1 executed 150 materialization calls and 30
of these calls contained Year 2008 in its output, then the harvest rate of this

value is 30.

Formally, each access pattern attribute is an ordered pair a(d,V’) where
d denotes the domain and V is a set of values. The AVG is an undirected
graph that can be constructed so that each edge (E) in AVG stands for a
materialization call link between vertices (V) which correspond to values in
set V such as v; and v;. In terms of output domain attribute Year, every
tuple in IMDB1 materialization call is linked with another result tuple by
their respective year values.

By characterizing structured Web sources as AVGs the materialization
process can be transformed into a graph traversal activity. Moreover, an access
pattern materialization process becomes a self-driven graph traversal or graph
crawl if the following condition is satisfied: Va;(d;,V;) € I;a;(d;,V;) € O such
that d; = d;. Thus, in essence the graph traversal is enabled by the input and
output attribute being drawn from the same data domain.

Therefore, providing there is an initial dictionary of values such that

(initDict C dict) as a starting set of seed vertices, at each step, a graph
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traversal process that selects a previously seen vertex (value - v € V; ) can
discover all the neighbours of v. As d; = d;, the discovered vertices v € V; are
used as input dictionary dict of a;, thus, ensuring usage of the values present
in the domains of the materialized source. As described in the previous sub-
section, this strategy for input data surfacing is referred to as a Reseeding
Input strategy. It enables materialization-time based input data discovery,
and allows for dynamic expansion of the materialization call set since the
calls are generated and added to the set as new values are discovered.
Depending on the web source structure, an AVG is not necessarily fully
connected. It may consist of several disconnected graphs that form isolated
cliques or data islands in the total data corpus [Wu 2006]. Thus an attribute
value graph AVG of an attribute in the output domain of service interface
may form a disjoint union of graphs U. This implies |initDict| = |U| and
a prior knowledge of input attributes domain distribution. Hence, either a
domain sampling technique is employed or randomly chosen initial dictionary
of appropriately large cardinality to cover for most of the possible data cliques.
To illustrate this situation let us expand the above example so that output
domain Year contains a value 1997 as well as 2005, 2006, 2007, 2009, and
2011. Following the materialization with the same initDict (2005, 2009) and
with the same connectedness, the produced materialization does not contain
results including year 1997. Evidently, this configuration of the output domain
as specified by internal data provider processing that returns results in a 3
years offset to the queried year does not link the year 1997, thereby rendering
the reseeding strategy incapable of reaching this value. Hence the results
containing 1997 are unreachable for the given initDict, thus, giving rise to an

isolated clique and making full materialization unobtainable.

Definition 4.10. We further expand on the SDF model by defining a service
interface materialization properties related to materialization m as a triple

smp(responseTimePerQuery, noUniqueTuples, pageSize PerQuery).

Service interface materialization properties are a set of dynamic parameters
that characterize services in terms of their performance during the material-

ization process.
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A property pageSizePerQuery characterizes each service interface by ac-
tual result page size |run,| prior to duplicate pruning for each material-
ization call. A property pageSizePerQuery is defined as ps € PS, where
(i) PS is the total number of discovered tuples in materialization and (ii)
0 < ps < maxPageSize.

A property noUniqueTuples characterizes each service interface by the
number of unique tuples discovered in a materialization call. A property
noUnique Tuples is defined as wd € Rm, where (i) Rm is the total number of
discovered unique tuples in materialization and (ii) 0 < wd < mazPageSize.
A materialization property responseTimePerQuery characterizes service
interface by actual per query response time. A property responselimePer-
Query is defined as a pair (g, 7pq), where ¢ is the id of the query and rpq its
the response time, rpqg € RP(Q), where RP(Q) is the total response time used

by the query set sequence.

In case of the IMDB1(http : //www.imdb.com/, (100,1000, 10, 100000), Movie ByTitle)
materialization, upon execution of a materialization call the obtained mate-
rialization properties may feature as pageSizePerQuery=95 - the obtained
result size was 95 tuples; (maxPageSize=100) and noUniqueTuples =67 -
as after duplicate pruning the remaining unique tuple count was 67. The
execution time was captured from the moment the query was issued to
the point when the result was registered by the process, giving a response-
TimePerQuery = 967ms. These properties vary between calls and provide
the base for qualitative service differentiation in the materialization process
optimization approach.

Further, we intend to monitor the materialization process in terms of the
achieved coverage over the number of executed materialization calls in a period
of time. This is required to establish a basis for the qualitative analysis of the

materialization and the applied optimization strategies.

Definition 4.11. A materialization efficiency Em is expressed two-fold:
(i) in terms of achieved coverage C'ov,, over a number of executed material-
ization calls |C),| as Ec = Covy,/|Cy|, and

(ii) in terms of achieved coverage Cov,, over a period of time T,, as Er =
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k
Covy, /T,, where T,, = > ResponseTimePerQuery; , and k = |C,,|.
i=1

4.5 Materialization Scenarios

When considering a set of data sources and service interfaces, as in the example
of Figure 4.2, several data materialization scenarios can emerge. For instance,
an application might require the (full) materialization of a data source over a
specific service interface (and related access pattern). In other scenarios, one
might be interested in materializing the whole data source by exploiting all
its available services (e.g., the whole IMDB database). Finally, an application
might aim at collecting a comprehensive view of the information related to
one or more domains (e.g., all the movies ever released). According to the
requirements of the underlying application, we identify four classes of data

materialization scenarios:

Single Pattern, Single Service (SPSS): the goal is to optimize the cold-
start materialization of a single service with given access pattern. In this
scenario the main sources of complexity are provided by chunking of the
query answer and by the distribution of values for the input attributes,
which call for methods that are capable of balancing between the need
for dataset coverage and dataset diversification (w.r.t. the allowed query

inputs).

Single Pattern, Multiple Service (SPMS): the goal is to optimize the
cold-start materialization of several services with the same access pat-
tern insisting on different data sources. In this scenario, w.r.t. the
previous one, an additional source of complexity are the record match-
ing and duplicate identification, which are required in order to obtain a

consistent cache.

Multiple Patterns, Single Service (MPSS): the goal is to optimize the
cold-start of sources described by a schema with interacting APs as
described in Figure 4.2, where the output values of an AP can feed the

input values of another AP; each AP is mapped to a single service. The
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problem may reduce to a single data source (MPSS-1) with multiple
APs, or generalize to multiple data sources (MPSS-M). Figure 4.2
represents an instance of the MPSS-1 problem if we assume in that the

two APs are on the same underlying data service.

Multiple Patterns, Multiple Services (MPMS): the goal is to optimize
the cold-start of sources described by a schema with interacting APs as
described in Figure 4.2, where the output values of an AP can feed the
input values of another AP, and each AP can be mapped to multiple
services. The problem may reduce to a single data source (MPMS-1)
with multiple APs, or generalize to multiple data sources (MPMS-

The materialization scenarios are presented as novel contributions to the
concept of web data materialization. The feasibility analysis and the opti-
mization approaches presented in consequent chapters are observed through

these scenarios.

4.5.1 Single pattern multi service (SPMS)

Single pattern multi service SPMS scenario depicts the situation when mate-
rialization is performed over several sources (services) mapped to same access

pattern.

Definition 4.12. In SPMS scenario materialization is defined as an ordered
pair spms,,(SI, Rspms,,) where:

(i) spms,, € SPMS M where SPMS M is a set of all spms materializations;
(ii)1 < |SI|, SI < ap such that ap € AP where AP is a set of all access
patterns in SDF.

A materialization queries set Q) spms,, Over many si mapped to ap is defined
as:
Qspms m = {@si1 UQsi2U...UQsin}t where si € ST mapped to ap and n =
|ST].
A materialization result set Rgps,, over many si mapped to ap is defined as:
Ropms m = {Rsi1URsi2U...URsin} where si € SI mapped to ap and n =
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|ST].

Consequently, a materialization call set Cypps o is defined as Coppms m =
{CsinUCsi2U...UCs;n} where si € ST mapped to ap and n = |SI]|.

Hence, a materialization call set {Cipms m}i—; = {Qspms m}h—1, { Ropms m }r—;
contains calls to be issued to all participating services.

4.5.2 Multi pattern multi service (MPMS)

A multi pattern multi service MPMS scenario depicts the situation when
materialization is performed over several sources (services) mapped to several

access patterns - Figure 4.2.

Definition 4.13. In MPMS scenario materialization is defined as an ordered
pair mpms_m < SPMS M,CP > where:

(i) SPMS M is a set of spms_m materialization where |SPMS M| <
|AP|: AP € SDF

(ii) CP is a set of connection patterns where:

Yaq,ag € cpAN Dcp € CPdspms_mq, spms_mg € SPMS__M.

A materialization queries set Qppms m in MPMS scenario is defined as:
Qumpms_m = {Qspms 1 U Qspms2 U - U Qspmsn }
where spms_m € SPMS _M,n=|SPMS_M|.
A materialization result set Rpms m in MPMS scenario is defined as:
Rupms_m = { Rspms.1 U Rspms2U . U Rpms.n }
where si € ST mapped to ap and n = |SI|.
A materialization calls set Cypms m in MPMS scenario is defined as:
Crnpms m = {Cspmsi U Cspms2U ... U Cspmsn }
where si € ST mapped to ap and n = |SI|.

4.5.3 Execution models

In the materialization process context we explore three distinct query queue
execution models. The data surfacing phase of the materialization process

is characterized by call2service coupling that in turn may be executed as a
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Figure 4.5: Typical multi pattern multi service (MPMS) layout with input and output

domain dependencies.

serial single queue de-queuing where all participating services point to the
same query set. As opposed to the serial multi queue de-queuing where each
participating service has its own associated query set and conforms to the
query queue de-queuing and service interface selection strategies contained
within call2coupling routine. Both serial execution models are still constrained
within the same data surfacing phase relying to one call2service coupling as
depicted in Figures 4.6 and 4.7.

In case of a serial single queue execution the query queue de-queuing strat-
egy optimization is performed on the basis of output domain characteristics
of all services and contained within the same queue, thus, providing a ’one fits
all” optimization. We expect an enhanced effect of the individual service do-
main properties to the query queue de-queuing strategy optimization in case
of multi queue execution as each service points to its own queue featuring
queue optimization specific to this service output domain. This intuition will
be further explored and proved in the relevant chapter(s).

Alongside these two call2service coupling controlled de-queuing models
comes the parallel execution model in which each service features its own query
queue but without any particular de-queuing strategy applied, that is, queries
are removed from the queue in a natural order. In parallel model each service
and a query queue are executed in parallel, in its own data surfacing phase,
thus, effectively performing several materialization processes in parallel.

The size of materialization call set sequence and the rate of its processing
depend on materialization execution model. In the remainder of the section
we further exemplify and describe in more detail all three execution models.

In serial single queue execution model (SSQ) there is one material-
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ization call set sequence allocated to the materialization process, input value
dictionary size is |dict| = |I|, that is a number of input dictionaries matches
the number of attributes in the input interface of ap. As in the spss sce-
nario the size of {C};‘.‘:l is limited by k, where k is determined by the size
of Cartesian product of all provided dictionaries and number of discovered
result pages. The size of the input dictionaries is driven by the input value
discovery strategy of each a € I. There are two possible outcomes: a) input
values discovery strategy is static i.e., dictionary size is known a priori and so
is the call set size, and b) the input values discovery is dynamic as in case of
reseeding input strategy and the materialization call set size is unknown until
materialization ends.

During materialization call set sequential execution, each call is executed
against a service interface selected according to the supplied (optimized) call to
service allocation algorithm. The call to service allocation algorithm is based
on materialization properties of executing services. The shape of the call to
service algorithms, their heuristics and implementation are described further

in this work. To illustrate the single pattern many services scenario with
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Sing e Query Gueu ﬂ!ﬁﬂﬂ
m'ﬁﬁm Gl Cuery Cueue
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Service |ntetfaces

Figure 4.6: Serial Single Queue execution ex-

ample. Figure 4.7: Serial Multi Queue execution ex-

ample.

SSQ model we consider IMDB1, GM1 and GM2 service interfaces mapped
to MovieByTitle access pattern. As in the materialization process example
the materialization is started by populating a single query queue from initial
dictionaries, as in Figure 4.2. Data surfacing query2call coupling is performed
by fetching of a query from the single query queue that is executed against

one of the participating services. Reseeding input discovery identifies a new
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Year values in the output, that are further passed to the query generator for
new queries to be generated and placed in the query queue. The obtained
duplicate free result is stored in the provided DB storage.

In serial multi queue execution model (SMQ) there is a materializa-
tion call set assigned to each participating service interface. The input value
dictionary size is |dict| = |I| x |SI|, that is, input dictionaries are allocated
to each a € L.

In SMQ model materialization call sequence is defined as set ({Cyn}h_;)
where:

(D{Csintir € {Csr}ily):

(i) k = |dict; x dicty X ... X dicty,| and m = |I|;

(i) 32 ks; (iv) n = |S1].

Xsl in SSQ model each {C}j = 1)* size is driven by the final size of
{Q} = 1)*. The size of each query set is defined by Cartesian product of
input value dictionary sizes for each a € Ii and number of discovered result
pages. As in SSQ model, dictionary sizes are either known a priori in case of
static, predefined dictionary or unknown in case of dynamic dictionary values
allocation by reseeding input discovery strategy.

As in SSQ a call to service allocation algorithm selects the call to be
executed against the service. However, as opposed to SSQ, where selected
services are executed against the calls from the same query set, in SMQ the
choice of the service interface implies the choice of the query set as well.
As in SSQ the allocation algorithm is based on materialization properties of
executing services.

Serial multi queue execution model is illustrated by materialization
MovieByTitle of three service interfaces IMDB1, GM1 and GM2. The pro-
cess is started by creating three query queues each associated to one of the
participating services. The queues are initially identical as they use the same
provided initial input dictionaries, Figure 5. During the query2call coupling
GM1 is invoked by executing a query from the GM1 query queue. Further-
more the values discovered by reseeding are used to populate GM1 query
queue. The obtained duplicate free result is stored in the provided DB stor-

age. In the next materialization loop IMDBI1 service might be used in the
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call2service coupling, this time IMDB1 query queue is replenished by new
queries obtained by reseeding input discovery.

In parallel queue execution model (PQ) the input dictionaries and
the materialization set are defined as in SMQ model. During the materializa-
tion call set sequential execution each call set is executed simultaneously and
independently of one another. There is no application of any call to service
allocation algorithms. Each query queue is executed independently against
its service interface until it is exhausted or wanted materialization coverage is
achieved.

MovieByTitle materialization of IMDB1, GM1 and GM2 is executed as
three separate processes, one for each of three service interfaces, but with the
same materialization storage. Each service is mapped to its own query queue,
thus, making implementation of service2couple routine and consequent reseed-
ing a straightforward 1:1 decision. Worth noting is that since the obtained
materialization volume for each process is still stored in the same data storage,
distinct(rymp) function checks for duplicates of the each process against the
same materialized data volume.

As stated above the distribution of calls to individual services may vary
depending on the materialization properties services express during the ma-
terialization process. For instance, in an ideal situation a service interface
IMDB1 with composition of materialization properties
wdiyps = 0OANDpsiypp = marPageSize AN Drqtiypp < rqlsi, is priori-
tized during the call set execution. In other words, a service that consistently
returns many unique tuples in large size pages and short response times, is
distributed more queries by call2service coupling than a service with high
duplicate saturation or/and slow response times or/and small result set sizes.

As this is an ideal scenario not often found in the real world situation, the
need arises for an orchestration of call to service allocation process. Call to
service allocation process is based on the performance metrics of the services.
The performance metrics are derived from the described service materializa-
tion properties. Service materialization properties are monitored during the
materialization call set sequential execution. They are supplied to the call to

service algorithm that in turn ranks services according to their performance
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and allocates the best performer to the next set call. The call to service op-
timized allocation algorithms and their heuristics will be described further in

the thesis.

4.6 Chapter Summary

The chapter presented service and materialization model and formally defined
them. It also characterized properties related to the service and materializa-
tion models.

The chapter detailed the materialization scenarios and materialization
modes of execution. Full attention was given to the definition and illustration
of the materialization process.

In the next chapter we will present a case study that illustrates the im-
portance of the data acquisition materialization dimension and related service
materialization properties. It will also provide an intuition of the potential

materialization process optimization via these dimensions.



CHAPTER 5
Strategies for Data Surfacing -

Domain Coverage

5.1 Introduction

In this Chapter, as an illustration of the materialization data properties in-
troduced in Chapter 4, we present a case study focused on a specific problem
- Domain Coverage in the context of data acquisition dimension. The focus
is on domain discovery and its effect on the data surfacing part of the data
acquisition dimension. It presents four novel algorithms that aim to enhance
the domain discovery process and improve the query coverage of the materi-
alization process.

The study also presents query reseeding as a data surfacing strategy [Mad-
havan 2008]. Query reseeding is a data access method that uses available in-
formation from previous calls in order to build a materialization of maximum
possible size.

The case study illustrates the importance of the data acquisition mate-
rialization dimension and related service materialization properties. It also
provides an intuition of the potential materialization process optimization via

these dimensions.

5.2 Case Study

In this case study we explore the influence of the materialized data properties
to the outcome of the materialization process. In particular we focus on the

coverage property expressed twofold as:
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Coverage relative to the full materialization This property denotes the
ratio between the number of items in the materialization and the number
of items in the full materialization. Coverage can be further refined into
a query-specific coverage that expresses a ratio relative to the portion of
data in the source that satisfies the query. E.g., an application may be

interested in greater coverage of data which satisfies the query "Location
=Auckland".

Coverage relative to world’s entities This property denotes the ratio be-
tween the number of materialized items and the number of real world
items. Using multiple data sources describing the same real world en-
tities can enhance this coverage. For instance, several services offering
Auckland’s "evening events' can be queried in order to produce a more
comprehensive materialization. It requires duplicate elimination across

different data sources.

As the access to a data source is only possible through the access limitation
imposed by Access Patterns (APs), each materialization query call requires
filling the AP’s input fields. To achieve coverage, the domains of all legal val-
ues for such fields must be known - attribute value discovery. Such knowledge
could be known in advance when, for instance, a field insists on an enumer-
able value set, possibly of small size (e.g., the set of movie genres). Otherwise,
input seeding can be seen as an incremental process driven by the mate-
rialization queries, where the knowledge about the input fields’ domains is
accumulated during this process when queries are executed and output fields
are retrieved.

The prior research which directly tackles the attribute domain discovery prob-
lem is sparse and the only related work proposes a random crawling technique
[Raghavan 2000]. The impact of a materialization scenario on the input dis-
covery phase can be fully appreciated by considering the two APs represented
in Figure 5.1, RealEstateByPostCode which requires as input the real
estate type - 'Rental’ or 'Sale’; a Postcode and JobByType& City which re-
quires as input a Job type and a City. The latter access pattern holds useful

information, such as the job title and the company, but requires specific in-
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Figure 5.1: Example of the materialization problem.

put. Instead, the former service has a simple input domain, consisting of the
real estate type supplied by a two-word dictionary (corresponding to 'Rental’
or ’Sale’) and a postcode provided by an initial dictionary and further sus-
tained by a reseeding (self-feeding) strategy. Query reseeding strategy requires
domain-matching attributes in input and output domains. In Figure 5.1 the
input attribute 'postcode’ is also present in RealEstateByPostCode result,
thus, providing a base for query reseeding.

With such input, RealEstateByPostCode produces a list of properties
described by their price, number of bedrooms, city of location and a postcode.
As job types of interest are sparse, the provided list of cities via the real
estate AP materialization suffices as an input provider. The materialization
of JobByType&City iterates over all possible job types and given cities to
generate the input for the mapped job search service, thereby retrieving all
information about potential jobs for wanted job types and given cities.

As we can see in the example above, it is possible to query different data
sources by using the same access pattern and input parameters. Since the
queried data sources are independent and heterogeneous it is reasonable to
expect different results even though we have queried with the same query and

same access pattern.
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To further illustrate the above proposition let us consider the sce-
nario where the materialization of JobSearch service mapped to the Job-
ByType&City AP is performed by resolving the input attribute Loca-
tion.City dependency through the materialization of the three service inter-
faces mapped to RealEstateByPostCode, which are Zillow, TradeMe and
RealFEstate.co.nz. Each one of these services is characterized by geo-location,
pagination and SLA profile characteristics as in Table 5.1, thus, influencing
the materialization performance in terms of result set size and result diversity
for reseeding 'post code’ values. As the postcode reseeding drives the mate-
rialization of the former services this consequently ensures a steady supply of
new Location.City values to the 'consuming’ JobSearch service materialization

process.

Zillow (

Post Code dict (1144, 3011, 5555),
GeoLocation: US;

SLA Profile: Daily Limit: No limit;
Paginated: Yes,

Max Page Size: 100,

Max Number of Pages: 10)

JobSearch(

GeoLocation: NZ;

SLA Profile: Daily Limit: NA;
Paginated: Yes,

Max Page Size: 10,

Max Number of Pages: 10)

TradeMe( RealEstate.co.nz(

Post Code dict (1144, 3011, 5555), Post Code dict (1144, 3011, 5555),
GeoLocation: NZ; GeoLocation: NZ;

SLA Profile: Daily Limit: No Limit; | SLA Profile: Daily Limit: 1000;
Paginated: Yes, Paginated: Yes;

Max Page Size: 10, Max Page Size: 20;

Max Number of Pages: 1) Max Number of Pages: 10)

Table 5.1: Example SI configuration for reseeding scenario materialization with dependen-

cies.
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The materializations of the RealEstateByPostCode mapped services are
initialized with dictpostcode featuring 3 randomly selected NZ postcodes.
Clearly the selection of postcodes affects the result outcome of Zillow ser-
vice based in the US, as it is unlikely that NZ postcode based queries would
retrieve any valid results and consequently no new postcodes values would
result from the reseeding operation. Therefore its fairly generous SLA policy
- No Limit - and large maxPageSize of 100 have little influence on reseeding
query generation and consequent delivery of Location.City values. It is likely
this service will produce the least if any Cities for the given initial dictionary.

The situation looks better for TradeMe and RealEsate services, as they
are NZ based thereby making the supplied postcode dictionary more relevant.
Here, we can expect some result delivery from TradeMe service but it is un-
fortunately restricted as its small page size limits number of newly discovered
postcodes. It is likely that the queried postcode might feature in most if not
all of the first 10 result tuples as top ranked results tuples are likely to be
exact matches to the posed query in terms of queried value - postcode. This
will consequently restrict reseeding to a very slow pace and potentially even
extinguish it at an early materialization stage, thus, constricting the number
of discovered Cities that JobSearch requires.

We can expect better performance from RealEstate.co.nz service as it has
maxPageSize of 20 and maximum number of pages for the same query of 10.
This greatly widens the number of possible new postcodes discovered as the
retrieving of all chunks increases the possibility of discovering new postcodes
as the total result size increases. However, even though the RealEstate service
might return many new postcodes, create new queries via reseeding strategy,
and, thus, provide the base for discovery of new Cities, this service is limited
by its Service Level Agreement (SLA) to just 1000 queries a day. This drives
the need for prioritizing queries based on their power to retrieve chunks with
higher postcode diversity to enable us to fetch as many Location.City values
before hitting the SLA imposed limit.

It becomes evident that the coverage of the Location.City domain ulti-
mately bounds the materialization outcome of the dependent AP material-

ization. In the context of materialization process’ query generation phase we
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expect that faster exploration of the seeding domain leads to more available
queries, therefore, leading to more efficient data surfacing of the materialized

data source.

5.2.1 Strategies for Data Surfacing

Data surfacing involves the selection of the next query to be executed among
the ones available in the materialization queries queue. Such a selection is
performed according to a materialization strategy, i.e., a logic devoted to the
maximization of a given set of metrics in order to optimize the query se-
lection task. We next describe some materialization strategies for the SPSS
materialization scenario, which performance is evaluated in section 5.2.4.

Let us consider a single service s described by an access pattern AP; AP
has a set of input attributes I; associated with a domain d;, with ¢ = 1..n,
and a set of output attributes O; associated with a domain d;, with j = 1..m.
In order to show the reseeding, we assume that d; = d; for some i, j, i.e,.
that the domain of some input and output attributes is the same. Consider
d = di x ...d, as the cross product of the input domains, and let k € d be
a combination of input values for the AP. A paginated query ¢! is a query
addressed to the service interface (service) si using the combination k of input
values, and 1 < p < MaxNumPages indicates the page currently queried.
We define r{ C R as the set of tuples in the source that satisfies a query gf,
where R represents all the items of the source to be materialized. The input
discovery step of the materialization process builds, at materialization set-up
time, the initial query queue initQ), e.g., by retrieving them from a dictionary
- init Dict; then, new combinations of () can be found by using the values in
results rt of queries that are progressively executed. The materialization Ry,
is built as the union of the r1; note that Ry, C R, and in general R, is much
smaller than R due to the access limitations to the data source. With a single
service, the union operation is sufficient for duplicate elimination.

The outcome of a materialization strategy is influenced by the chunking of
query answers, which requires multiple service calls to fully collect a query’s

result, and by the distribution of values for the input attributes, as distinct
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inputs produce unaligned numbers of returned results, thus, introducing skew
in the materialized result set. These factors call for data surfacing strategies
that are capable of balancing between the coverage and diversity.

As illustrated in the example in section 5.2 issuing the queries to TradeMe
service retrieves many relevant results to the query, thus, ensuring diversity
but to the detriment of coverage due to the limited result set size. In contrast
the RealEstate service that may return in chunks up to 2000 results per issued
query. In this case some queries and its chunks might return many new cities
for the queried postcode. At the same time if for instance the postcode belongs
to a suburb in a major metropolitan area such a query might return results
with very little variety for new cities and postcodes due to availability of many
results exactly matching the posed query.

In order to define a few simple data surfacing strategies, let us model the
sequence of queries produced by a data surfacing strategy as an undirected
graph as described in Chapter 4. In this case the graph QRT is explored by
a tree walking algorithm, where all the nodes except the root correspond to
queries; the root is directly connected to queries g} with k € C, and we do not
further consider how nodes ¢i are ordered. In this context, a materialization
strategy consists of interleaving of tree generation and tree traversal steps.

Tree generation occurs as follows:

e If the current query ¢j has not retrieved all the available chunks and a

+1

new chunk can be retrieved, then ¢! is generated as a child of ¢,

e If the current query ¢}, has generated new query combinations A which
are not present in @, than new nodes ¢} are generated and @ is set to
QU h; the insertion of nodes ¢ in the tree may occur according to two

insertion policies:

e Child insertion policy: nodes g}, are created as children (Cq) of

¢, possibly on the left of ¢/ Figure 5.2,

o Sibling insertion policy: nodes ¢; are left-appended as children of

the root, Figure 5.2.

Once new queries are appended to the tree, the materialization strategy must
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R —root; Q — executed query; . —child; 54 —seed
Figure 5.2: Left - Child Insertion Policy; Right - Sibling Insertion Policy.

select the next query in the tree to execute. Related works [Wu 2006] per-
form a similar selection process by exploiting a cost model that associates a
weight to each edge in the tree, so to find an optimal selection of queries that
minimizes the total cost of traversal (a Weighted Minimum Dominating Set
problem). In this chapter, we instead exploit classical breadth-first and depth-
first tree traversal algorithms. We apply them to the two variants of insertion
policies, thus, obtaining four materialization strategies, which yield different
performances in terms of coverage and diversity. An analysis of the perfor-
mance of the proposed materialization strategies is provided in the following

sections.

5.2.2 Evaluation Algorithms

In this work, we performed a preliminary study of possible materialization
strategies, and we decided to address the problem from a topological point of
view by exploiting the breadth-first and depth-first tree traversal algorithms.
In this subsection, outlined are the algorithms: depth-first: "Sibling Inser-
tion Policy" and depth-first: "Child Insertion Policy", breadth-first: "Child
Insertion Policy" and breadth-first: "Sibling Insertion Policy" used in the cov-
erage experiments described in further subsections. The algorithms are ac-
companied by a visualization of their propagation through the materialization
process as captured by the materialization module during the materialization

(domain) discovery of the experiments described in section 5.2.4. The ex-
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periments were performed by considering the access pattern RealEstateBy-
Location, which takes a real estate type and a geographical location as the
input attributes. The real estate type input attribute was populated using a
dictionary strategy, which used a static, pre-populated list of attribute val-
ues such as 'rental’ or ’for sale’ as the input dictionary. The location input
attribute was populated by a reseeding strategy, the initial dictionary initD
featured set of US postcodes such as 08216, 99127, 44309. The queried web
data source was paginated, max page size was set to 10.

Algorithms 1, 2, 3 and 4 detail the pseudo-code of a template for the
four tree traversal algorithms. We assume a single threaded query execution
model, where queries visited during the traversal of the QRT are serialized
in a query queue, from which they are fetched one at a time for execution.
The algorithm template consists of three phases: materialization initialization,
allocation of reseeded queries in the buffer, and allocation of next page queries
in the buffer. The create@) function is responsible for the query generation
step which, given the currently discovered field domain values initD, creates
the set of queries that are added to the execution queue: at initialization time,
queries are added by the enqueue function; at query reseeding time, instead,
reseeded queries are added using the insert ReseededQuery function, while
next-page queries are added with the insert NextQuery function.

Given a currently processed query, depth-first algorithms push next page
queries at the head of the query queue, thus, assuring that the result set
associated with the current input combinations is exhausted before probing
new combinations; in this context, the Sibling Insertion policy imposes the
new query to be appended at the bottom of the queue, thus, deferring the
evaluation of the new input combinations after all the previously discovered
ones; the Child insertion policy, instead, inserts the new query right after the
currently executed one, thus, assuring that it will be executed as soon as the
current input combinations are exhausted.

In breadth-first strategies are, instead, more involved. When the Child
insertion policy is applied, newly discovered queries are added to query queue
as a child of the currently processed query, while the next page of the currently

processed query (if it exists) is placed at the bottom of the query queue.
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The application of the sibling insertion policy requires a more articulated
query serialization algorithm, and it is depicted in 3. We assume the query
queue to be n-dimensional, where the number of dimensions (levels, in the
algorithm description) is bounded by the maximum number of pages that can
be retrieved for a given query. A level, therefore, represents a query page
number. Newly discovered queries are added as the last in the current level,
while the new page of the currently processed query (if it exists) is placed
at the bottom of the next level. Queries are fetched execution-level-wise, i.e.,
page-2 queries are fetched only when all the page-1 queries have been executed.

The algorithms are accompanied by the visualization of their propagation
through the materialization process as captured by the materialization module
during the materialization discovery.

Depth-first "Sibling insertion policy" - newly discovered seed is added
to the query queue as a child of its parent (currently processed query), while
the next page of the currently processed query (if exists) is placed at the head

of the queue; currently processed query is removed.
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Algorithm 1 Depth-First: “Sibling Insertion Policy”

Ry + & //empty materialization

currDict + initD //current dictionary initialized
initQSet < createQ(currDict) //initial query set created
QRT «+ populate(initQSet) //graph populated
queryQueue < enqueue(QRT) //query queue as QRT traversal
while QueryQueue is not empty do
q < getHead(queryQueue)
d(q), r < execute(q)
currDict < D(q)
Ry +— Ry UTZ
seeded@Set < createQ(currD™)
while seededQSet is not empty do
sq « qetHead(seeded@Set) // sq - seeded query
if sq not in queryQueue AND sq not in executedQueries then
queryQueue <+ insertReseededQuery(nextPage(q))
end if
end while
if hasNextPage(q) then
queryQueue <+ insertNextQuery(nextPage(q))
end if
queryQueue — queryQueue q
executedQueries < executedQueries U q

end while
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Figure 5.3: Depth-first: "Sibling Insertion Policy" run-time visualization.
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Depth-first "Sibling insertion policy" visualization example in Figure 5.3
illustrated the algorithm behaviour. For the given query with postcode 01826
results pages 1-10 have returned non empty result sets with pages 5, 6, 7, 8 and
9 discovering new seeds (new postcodes). Following the algorithm behaviour

once the 11%"

page was returned empty, the query 01826 was interpreted as
exhausted and removed from the query queue. The algorithm retracted to the
first available - last discovered seed at the top of the queue which happened
to be seed 01824, discovered in page 9, that became a new query queue head,
and then continued.

Depth-first "Child Insertion Policy" - newly discovered seed is added
at the queue bottom, while the next page of the currently processed query (if
it exists) is placed at the head of the query queue; currently processed query

is removed.
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Algorithm 2 Depth-First: “Child Insertion Policy”

Ry + & //empty materialization

currDict + initD //current dictionary initialized
initQSet < createQ(currDict) //initial query set created
QRT «+ populate(initQSet) //graph populated
queryQueue < enqueue(QRT) //query queue as QRT traversal
while QueryQueue is not empty do
q < getHead(queryQueue)
d(q), r < execute(q)
currDict < D(q)
Ry +— Ry UTZ
seeded@Set < createQ(currD™)
while seededQSet is not empty do
sq + poll(seeded@Set) // sq - seeded query
if sq not in queryQueue AND sq not in executedQueries then
queryQueue < addAtPosition(get Position(q), sq)
end if
end while
if hasNextPage(q) then
queryQueue <+ addFirst(nextPage(q))
end if
queryQueue — queryQueue q
executedQueries < executedQueries U q

end while
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Depth-first "Child Insertion Policy" run-time visualization example in Fig-
ure 5.4 illustrated the algorithm behaviour. For the given query with postcode
01826 results pages 1-10 have returned non empty result sets with pages 5, 6,
7, 8 and 9 discovering new seeds (new postcodes). Following the algorithm be-
haviour once 11th page was returned empty, the query 01826 was interpreted
as exhausted and removed from the query queue. The algorithm retracted to
the first available seed 03079 discovered in page 5, that became a new query
queue head, and continued. Query 03079 didn’t produce any new seeds so
once exhausted the new query queue head became 01852 post code discovered
in page 5 of 01826 and continued.

Breadth-first "Sibling Insertion Policy" - newly discovered seed is
added as the last in the current level, while the new page of the currently
processed query (if it exists) is placed at the bottom of the next level; cur-
rently processed query is removed. (Worth noting is that this version of the
breadth-first version is spatially organized into two levels of complexity; upon
exhaustion the top (first) level is removed while the bottom (second) level is
promoted as first and the new (empty) second level added to the data struc-

ture.)
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Algorithm 3 Breadth-First: “Sibling Insertion Policy”

Ry < @ //empty materialization

currDict < initD //current dictionary initialized
mitQSet « create@Q(currDict) //initial query set created
QRT + populate(init@QSet) //graph populated
queryQueue < enqueue(QRT) //query queue as QRT traversal
while QueryQueue is not empty do
q + getHead(queryQueue)
d(q), ry + execute(q)
currDict < D(q)
Ry Ry Ury,
seeded@Set + createQ(currD™)
while seededQSet is not empty do
sq < getHead(seededQSet) // sq - seeded query
if sq not in queryQueue AND sq not in executedQueries then
queryQueue < addLastCurrentLevel(sq)
end if
end while
if hasNextPage(q) then
queryQueue < addLastNextLevel(nextPage(q))
end if
queryQueue < queryQueue q
executedQueries < executedQueries U q
if currentLevel is empty then
current Level = nextLevel
nextLevel = addNew Level/()
end if

end while
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Breadth-first "Sibling Insertion Policy" run-time visualization example in
Figure 5.5 illustrated the algorithm behaviour. For the given query with
postcode 01826 results pages 1-10 have returned non empty result sets with
pages 5, 6, 7, 8 and 9 discovering new seeds (new postcodes). Following the
algorithm behaviour once the new seeds were discovered in page 5, page 5
was placed at the bottom of the next level in the queue and a new query’s
page 1 with value 01876 was executed until it returned no new seeds. The
process then retracted to seed 01852 discovered by the page 5 of the first
query 01826. Postcode 01852 page 1 discovered new seeds, 01852; page 2
was put at the bottom of the next level and another seed 01854 continued
execution, upon its exhaustion (no new seeds discovered) process switched
back to seed of 01852, which happened to be 01851, and then continued until
it was exhausted - no new seeds. The process continued with the first query
01852 seed corresponding to page 5 - query 01841.

Breadth-first "Child Insertion Policy" - a newly discovered seed is
added to the query queue as a child of its parent (currently processed query),
while the next page of the currently processed query (if it exists) is placed at

the bottom of the query queue; currently processed query is then removed.
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Algorithm 4 Breadth-First: “Child Insertion Policy”

Ry + & //empty materialization
currDict + initD //current dictionary initialized
initQSet < createQ(currDict) //initial query set created
QRT «+ populate(initQSet) //graph populated
queryQueue < enqueue(QRT) //query queue as QRT traversal
while QueryQueue is not empty do
q < getHead(queryQueue)
d(q), r < execute(q)
currDict < D(q)
Ry +— Ry UTZ
seeded@Set < createQ(currD™)
while seededQSet is not empty do
sq + poll(seeded@Set) // sq - seeded query
if sq not in queryQueue AND sq not in executedQueries then
queryQueue < addAtPosition(get Position(q), sq)
end if
end while
if hasNextPage(q) then
queryQueue < addLast(nextPage(q))
end if
queryQueue < queryQueue q
executedQueries < executedQueries U q

end while
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Figure 5.6: Breadth-first: "Child Insertion Policy" run-time visualization.
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Breadth-first "Child Insertion Policy" run-time visualization example in
Figure 5.6 illustrated the algorithm behaviour. For the given query with
postcode 01826 results pages 1-10 have returned non empty result sets with
pages 5, 6, 7, 8 and 9 discovering new seeds (new postcodes). Following the
algorithm behaviour once the new seeds were discovered in page 5, it was
placed at the bottom of the queue and new query 03079 page 1 was executed
resulting in an empty result set then a new query, seed 01876, pages 1, 2,
3 were executed until exhausted. As they did not discover new seeds, the
process then retracted to seed 01852 discovered by the first query 01826 page
5. Postcode 01852 page 1 discovered new seeds, 01852 page 2 was put at the
bottom of the next level and another seed 01854 continued execution, upon
its exhaustion (no new seeds discovered) the process switched back to seed of
01852, which happened to be 01851 and continued until it was exhausted - no
new seeds. The process continued with the first query 01826 seed of its page
5 - query 01841.

5.2.3 Materialization Module Architecture

In order to support the materialization process, for the purposes of this work
we have designed and developed a materializer module that sits within the
broader SeCo framework [Bozzon 2011a] - Figure 5.7. The module relies on
the descriptions stored with the existing SeCo service mart repository, and
utilizes the existing SeCo QP (query processor) API implementation. The

materialization module is comprised of:

e Materialization Profiles repository, which contains the service and ma-
terialization properties of the Service Description Framework Service

Interfaces and Access Patterns,

e Data Acquisition module, which implements the input discovery strate-
gies (e.g., dictionary, reseeding and query log data acquisition), guided

by the data model. Implemented:

e Dictionary Strategy - an existing dictionary of relevant input

terms is used to populate the input attributes in the queries,
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e Reseeding Strategy - the input attribute values are selected from
the results obtained by the set of initial 'seeding’ queries and con-
sequent queries in recursive fashion until all result inputs are ex-
hausted,

e Consumer Strategy - input attribute values are 'consumed’ from

the producer queue as they become available,

e Reseeding Consumer Strategy - input attribute values are ob-

tained as a combined input from Cosumer and Reseeding Strategy,

e Random From DB Strategy - input attribute values are obtained
as a random selection from available DB containing input attribute

domain dictionary.

e Query Generation module, which generates the queries to be executed
and adds them to a data structure PQ representing the pending queries

to be executed. Implemented:

e Cartesian Product - in cases where there is more than one input
attribute, queries are generated by creating all pair-wise combina-

tions of the given input values,

e Cartesian Product Scored - in cases where there is more than one
input attribute, queries are generated by creating all pair-wise
combinations of the given input values and returned as a queue
ordered by the supplied score function - frequency, harvest rate,

diversification etc.,

e Cartesian Product Centrality Scored Strategy - in cases where
there is more than one input attribute, queries are generated by
creating all pair-wise combinations of the given input values and
ordered by the centrality betweenness function against one of the

input attribute domain,

e Twitter Query Generation Strategy - query generation strategy
specific to the requirement of the Twitter materialization proce-
dure. Twitter materialization procedure enables materialization of

Twitter messages for provided hash tag dictionary via Twitter API
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[Twitter 2014]. The query generation is self-driven by reseeding

via hash tags obtained from retrieved tweets.

e Result Generation Module, which extracts the next query from the query

queue and launches its execution. Implemented:

e Result Generator Breadth 1 - Breadth first - child insertion pol-
icy,

e Result Generator Breadth 2 - Breadth first - sibling insertion
policy,

e Result Generator Depth_ 1 - Depth first - child insertion policy,

e Result Generator Depth_ 2 - Depth first - sibling insertion policy,

e Result Generator Graph - result generation strategy driven by the
supplied graph algorithm,

e Result Generator Random - result generation strategy that ran-

domly extracts queries from the query queue.

e Materialization Analytics module, which processes discovered material-
ization data in run time and computes the result set and output domains

based statistics. Implemented:

e Domain Coverage Analytics - analysis coverage of the domain

space in run-time,

e Result Coverage Analytics - analysis total result coverage against

the pre-materialized data,

e Centrality Betweenness Analytics - computes a number of shortest
paths from all vertices to all others that pass through the discov-

ered domain values,

e Domain Connectivity Analytics - determines the connectivity of

the values in the domain as they are discovered,

e Frequency Analytics - computes number of occurrences of the re-
seeding value in the materialization during materialization pro-

cess,
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e Harvest Rate Analytics - computes a number of results sets con-

taining the reseeding value during materialization process,

e Diversification Analytics - computes diversification rate of the re-

seeding value during materialization process.

A single materialization is driven by a materialization controller, which is in
charge of determining the order of execution for the queries produced during
the Query Generation step, by traversing the data structure of pending queues
according to a given materialization strategy.

Two additional components take care of the Multi Pattern Multi Service
expansion of the model. Materialization Session Controller, which builds an
initial plan of the MPMS materialization by performing the reachability anal-
ysis. It monitors the service interface performance statistics dynamically ad-
justing the materialization execution process. Materialization execution ses-
sion, which maintains the execution environment of the plan, i.e., encapsulates
all the individual materializations as traverse down the tree of execution while

enforcing synchronization between materialization data structures.

5.2.4 Evaluation Results
5.2.4.1 Domain Coverage

We evaluated the efficiency of the materialization strategies described in Sec-
tion 5.2.1 in terms of domain coverage for each attribute with respect to
the number of queries required to achieve a given coverage value. The goal
is to assess the ability of each materialization strategy to quickly explore the
data and domain-space of a data source. To perform the evaluation, we cre-
ated a database composed of 1M real estate offers crawled from an existing
Real Estate Web site. Experiments were performed by considering the access
pattern realEstateByLocation, which takes a real estate type and a geo-
graphical location as the input attributes.

The real estate type input attribute was populated using a dictionary strategy,
which used a static, pre-populated list of attribute values such as 'rental” or

‘for sale’ as the input dictionary. The location input attribute was populated
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Figure 5.8: Experimental Results for SPSS domain coverage.

by reseeding strategy; moreover a matching location output attribute return-
ing locations was mapped as an appropriate input attribute value provider.
A domain of postcodes found in the collected real estate database was used
as the location input attribute domain. The domain size of the postcodes re-
seeding input attribute was approximately 11000, a randomly selected subset
of which was used as a starting seed dictionary.

For each of the materialization (result generation) strategies 10 runs were
performed; to avoid biases in the evaluation, the input attributes conforming
to the reseeding input strategy were initialized at each run by a randomly se-
lected subset tnit Dict of size 100. The resulting domain coverage increase had
been averaged between runs for each strategy and observed in 10% increments

(with regards to the overall domain size).

5.2.4.2 Coverage relative to the full materialization

We evaluated the efficiency of the materialization SPSS strategy described
in the previous subsection in terms of result coverage for each query with
regards to the number of queries required to achieve a given coverage value.

The setup of the experiment was the same as in the domain coverage experi-
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ment. We used a database composed of 1M real estate offers crawled from an
existing Real Estate Web site. Experiments were performed by considering
the access pattern realEstateByLocation, which takes a real estate type and

a geographical location as the input attributes. ~While obtaining the origi-
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Figure 5.9: Experimental Results SPSS - Total Result Coverage - page size 10.

nal materialization the set of queries used for the discovery was serialized in
a DBMS. During the experiment a subset of 80% randomly selected queries
of the original query set were executed in batches of 500 against the origi-
nal materialization. After each batch the difference between the experiment
materialization data and the original materialization was taken. Two sets of
experiments were performed each one with 10 runs. First experiment was
performed with chunk size 10 - minimum page size, while the other experi-
ment was performed with chunk size 100 - maximum page size. The resulting
result coverage increase had been averaged between runs for each strategy and

observed in 10% increments (with regards to the overall result size).

5.2.4.3 Evaluation Results Discussion

We compared the performance of Breadth First Search (BFS) and Depth First
Search (DFS) algorithms, each featuring two different child/sibling insertion
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Figure 5.10: Experimental Results SPSS - Total Result Coverage - page size 100.

policies. The results were obtained against a database of 1M real estate offers
crawled from several existing Real Estate Web sites. Figure 5.8 depicts the
change of coverage in respect to the number of issued queries.

We also performed the real estate database coverage experiments with
varying result set sizes. Figures 5.9 and 5.10 depict the change of coverage
in respect to the number of issued queries when result set size was set to 10
and 100 results tuples respectively.

Figure 5.8 provides the results of our comparison. Breadth-first algorithms
are able to retrieve a wider coverage on the input by requiring less service in-
vocations. For the tested scenario, the first breadth-first algorithm is able
to achieve a 65% coverage of the input domain after 5000 queries (values in
line with the daily limit imposed by several Web data source API providers),
thus, requiring 25% less queries than the second best breadth-first algorithm
and 50% less queries than the best performing depth-first algorithm and al-
most a 5H-fold improvement over the worst, depth-first based algorithm. The
depth-first algorithm, instead, proves very unsuited for the goal at hand. The

experimental results match our intuition.
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The variance in the performance between BFS and DFS algorithms
matches our intuition. DFS algorithms focus on executing all pages of the
given query attribute value, thus, narrowing the scope of the potential do-
main discovery. The queried attribute value may suffer from poor connectivity
within the domain. Another reason might be the feature of the query whereas
rr matched top-k tuples of the query, thus, restricting the new domain value
discovery. Conversely we observed the situation where the query is too specific
to return any values.

In conclusion, if the query is neither in top-k range nor too exact, the
discovery of domain values of an attribute with unknown domain is enabled.
Contrasting to DFS, BFS switches to queries with new values as soon as
discovered, thus, widening the discovery scope. The behaviour also limits
the negative influence of poorly connected values to the discovery rate. BFS
algorithm is still suspect to the value discovery optimal situation where the
query is neither in top-k nor exact as elaborated above.

Results presented in this study case match work done by [Jin 2011]. Here
authors employed breadth and depth search algorithms alongside their im-
proved algorithms against several hidden web databases to ascertain their
domain value discovery performance.

Figure 5.9 provides the results of our second comparison. The results of
both result set size experiments match the behaviour of the strategies observed
in the domain coverage experiments. Breadth-first algorithms are able to
retrieve a wider coverage on the input by requiring less service invocations.
For the tested scenario, the first breadth-first algorithm is able to achieve a
25% coverage of the total result domain after 46000 queries, thus, requiring
18% less queries than the second best breadth-first algorithm and 25% less
queries than the best performing depth-first algorithm and almost a 3-fold
improvement over the worst, depth-first based algorithm.

Noticeable is the drastic difference in the number of executed queries to
achieve the full result, in case of the first experiments with chunk size 10
- 120000 queries were issued while in the case of second experiments with
chunk size 100, just 18000 queries were issued, almost a 9-fold decrease. This

result correlates research results presented in work by [Wu 2006], where sim-
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ilar decrease in result size resulted in 50-60% drop of the domain discovery
performance.

In summary the case study case illustrates the importance of the engage-
ment of the appropriate domain value discovery algorithm. Failure to perform
in this phase of the materialization is likely to result in, from the number of
used queries, an expansive materialization procedure. This also increases the
risk of the materialization process not achieving the desired result as data
acquisition phase may fail to discover new values for all the possible queries

needed to achieve the assigned task.

5.3 Chapter Summary

In the previous two chapters we presented service and materialization models
and formally defined them.
This chapter brought a case study that illustrated input discovery as a chal-
lenge within the materialization data acquisition dimension. The case study
presents our approach and experiment results proving the validity of this ap-
proach. It reflects on the related research, it outlines similarities and findings
that are to be proved of essence in the materialization process optimization. In
this chapter we also described the architecture of the materialization module
used in the empirical study throughout the research.

In the next chapter we will address the first materialization formulation
step - finding a feasible solution for the materialization task from the given

set of access patterns and mapped services.



CHAPTER 6

Modelling Feasible Solutions

6.1 Introduction

In this Chapter we focus on materialization feasibility analysis. Feasibility
analysis presents a critical part of the formulation of the materialization solu-
tion as it delivers a combination of access patterns that meet required coverage
requirements.

The service materialization formulation and its feasibility analysis are ex-
pressed in terms of Service Description Framework and Service materialization
model as presented in Chapter 4.

The analysis of feasibility determines which combination of access patterns
produces wanted materialization considering the available input dictionaries.
It also provides an estimate of the materialization coverage by determining
a maximum number of materialization calls, or boundedness, for the given
feasible solution.

We present the transformation of the SDF into a network layout from
which the feasibility model is derived and analysis performed upon. We for-
mally define the feasibly analysis model and its relation to the service materi-
alization model. Then we elaborate on the actual feasibility study that leads
to the feasibility analysis model. On top of this, the model is presented as a
working algorithm to be extended in the materialization process. Finally, to
evaluate the effectiveness of the feasibility analysis we experiment with a set

of materialization tasks of varying Access Pattern complexity.
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6.2 Service Materialization Feasibility Model

The service materialization feasibility model defines concepts novel to the SDF
and web sources materialization in general. It also expands and complements
some of the SDF definitions. The logical level of the SeCo Service description
framework may contain many access patterns with overlapping input and out-
put attributes domains. The analysis of feasibility within the selected set of
access patterns is necessary in order to select the combination of access pat-
terns which when executed produces a materialization output. The analysis
of feasibility considers a materialization task by taking a set of access patterns
from SDF as input as well as a set of input dictionaries and determines which
combination of access patterns for the provided dictionary is able to achieve
a materialization task. This is also referred as a reachability of the proposed
solution. The analysis further defines boundedness of the feasible solution by
taking reachable solution and input dictionaries as input and considering all
attributes in the output domains which value delivering power and position

in respect to input attributes restrict the number of materialization calls. An
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Figure 6.1: Example of schema of the materialization problem at AP level and its Petri Net

representation.

access to a data source is shaped by the access limitations imposed by Ac-
cess Patterns (APs). Each materialization query call requires filling the AP’s
input fields. To maximize coverage, the domains of all legal values for such
fields must be known. Such knowledge could be known in advance when,

for instance, a field insists on an enumerable value set, possibly of small size
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(e.g., the set of movie genres). Alternatively, input seeding can be seen as
an incremental process driven by the materialization queries, whereby the
knowledge about the input field domains is accumulated during this process
when queries are executed and output fields are retrieved. As shown in Figure
6.1 the MovieBy Year materialization reseeds MovieByTitle via the connection
pattern Movie.Title.

We illustrate the impact of a materialization scenario on the input discov-
ery phase by considering the two APs represented by MovieByTitle (which
requires as input the Movie’s Title, Genre, and Year) and MovieByYear (which
requires as input the Movies’ Year). The former AP has useful information,
such as Actors and the Rating, but requires very specific input. Instead, the
latter AP has a simple input domain, consisting of the Year of issue (e.g.,
2011); with such input, it can produce a list of titles. Movie Genres are few,
and thus an input generator that already knows the Title and is set on the
current Year can iterate over all possible genres to generate the input for the
former service, thus extracting all the information about actors and ratings of
current Year movies.

The described AP interaction is further represented in a Petri net model
[Murata 1989]. In the proposed Petri net model input values are tokens that
propagate through the net whose nodes (places) reassemble the input and
output domain attributes. In the Petri net model the input domain is on
the left side of the net while the output domain is on the right side. It is
assumed that every input attribute is supplied by tokens from its own input
dictionary of values or from the equivalent output domain attribute from the
same access pattern (reseeding) or from another access pattern. The token
propagates from left side to the right, driven by the firing of the query, and
in some situations from the right side to the left if there is such a connection
between access patterns. The edges are the arcs between the input and output
domains of the access patterns. The propagation of tokens through the net is
triggered by issuing of queries called transactions in the Petri net model.

Following this representation the above scenario translates to the sequence
of token moves from PO (Movie.Year), triggered by t0 (query) to P1 and
P2 (Movie.Length and Movie.Title). The token from P2 propagates to P3
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thereby supplying Movie.Title value from the output domain of MovieByYear
to the input domain of the dependant MovieByTitle access pattern. The
MovieByTitle access pattern executes if there are tokens in each place of its
input domain, provided that there is an input dictionary attached to P4 and
P5 supplying tokens, and if the token was supplied by P2 to P3 (see Figure
6.1).

By analysing token propagation through the net we deduce the reachabil-
ity of the proposed access pattern combination. In the presented scenario the
tokens will propagate through all places of the net if and only if there is an
input dictionary with at least one value for places PO, P4 and P5 and if the top
AP query execution (MovieByYear) resulted in a value at P2. Furthermore,
by analysing the size of the input dictionaries and the size of the discovered
output attribute domain we measure the boundedness of the proposed access
pattern. The number of materialization calls for the presented scenario de-
pends on the number of tokens supplied to PO, produced by P2 and passed to
P3, as well as the number supplied to P4 and P5 via P8.

6.2.1 Feasibility Analysis SDF Transformation

As the logical level of the SeCo Service description framework may contain
many access patterns with overlapping input and output attribute domains, an
analysis of reachability within the selected set of access patterns is necessary
in order to select the combination of access patterns with the full reach.

The scenario outlined in Figure 6.2 depicts the situation where access
patterns share input and output attribute domains, thereby facilitating data
surfacing through an input/output conduit of interconnected pattern mate-
rializations. The access pattern TheaterByPhone utilizes the reseeding input
strategy, as the method of populating its input attribute values dictionary.
The Theater.Phone input attribute is obtained from the equivalent output
domain attribute’s Theater. Phone values during the materialization process.
Access Pattern TheaterByCity depends on external supply of values for the
Theater. City input attribute as is the case for MovieByTitle access pattern

being dependant on the external supply of values for Movie. Year, Mowvie. Title
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Figure 6.2: Example of schema of the materialization problem at AP level and its Petri Net

representation.

input attributes. As illustrated in the Figure 6.2, the output attribute val-
ues Theater.City of the TheaterByPhone access pattern are passed - to
TheaterByClity input attribute Theater.City in order to maintain the materi-
alization process of the latter. In turn, the output attribute values Movie.Title
and Movie.Year of TheaterByCity are passed to the input attributes be-
longing to the same domain Move.Year, Movie.Title of the MovieByTitle
access pattern in order to perform its materialization.

The above access pattern interaction can be further represented as a bi-
partite graph where the input attribute domains form a set of vertices and
the output attribute domains form another set of vertices of the graph. In
the context of the MPMS scenario, we model the directed bipartite graph as

a Petri net in which:

e The input and output attributes and their corresponding domains are a

set of places,

e The input and output attribute domain values are represented as tokens

that propagate through the network,

e The query is the transformation from input to output domain as well

as the process of supplying output attribute domain values to the input
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the access patterns. MPMS example scenario with token in p0.

attribute domain via an available connection pattern,

e The places and transitions constitute the nodes of the graph connected
via directed arcs. Places may contain zero or more tokens, labelled with

input and output attribute domain values and their types,

e The state often referred to as marking M, is the distribution of tokens
over places. In the MPMS scenario the state is the distribution of values

over input and output attribute domains of the involved access pattern.

Formally, an access pattern presented as a Petri Net ap,,, is a triplet (P, Top,
Fop):

e P, is a finite set of places,

e T,, is a finite set of transitions (PNT = &),

o Fup C (Poyp x Tpp)U(Thp x Pyy) is a set of arcs (flow relation).
As followed in Chapter 4 we extend the latter definitions:

e P, ={I,O0,R,} is a set that consists of three finite subset of input I,
output O, and ranking R, attributes of ap,

e [ € P, where [ is the set of attributes a;...a; C A that defines the

input interface of ap,
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e O € P, where O is the set of attributes a;...ay C A that defines

the output interface of ap,

o 1R, € P where R, is the set of attributes a;...a, € O that defines

the ranking condition of ap.

o T, = {t., T.,} is a set that consist of a single transition ¢, and set T,

where:

e t. € T where t. is a transition that facilitates a materialization

call ¢ € C, as defined in chapter 4,

o t., € T,, where 1., is a transition that facilitates execution of the

connect pattern cp,

e cp is defined as tuple < ay,ap > where attribute a;y € I, an input

interface of ap,,1 and attribute ap € O, an output interface of

appn,Q-

A place p is called an input place of a transition ¢ if and only if there exists
a directed arc from p to t. In the MPMS scenario an input place is typically
an input domain attribute of an involved access pattern or an output domain
attribute of an access pattern connected by a connection pattern to another
access pattern’s input domain attribute. A place p is called an output place of
transition ¢ if and only if there exists a directed arc from ¢ to p. In the MPMS
scenario an output place is an output domain attribute of the associated access
pattern.

Tokens, which are input and output attribute domain values propagate
through the net, driven by firing of the queries. Transitions are active com-
ponents in a Petri net. In the MPMS scenario, there are two semantically
different transitions: materialization call transition and connection pattern
transition (output domain to input domain supply transition). Transitions

change the state of the net according to the following firing rule:

e A transition t is said to be enabled if and only if each input place p of ¢
contains at least one token - a value d in either input or output domain

of the associated access pattern,
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An enabled transition may fire. If transition t fires, then ¢ consumes
one token from each input place p of t and produces one token for each
output place p of t. In the MPMS scenario, the actual transition fir-
ing represents either materialization or supply of values (tokens) from

output attributes,

In this way a sequence of states My, M, ...M, is generated, such that
M, is the initial state and M;, is the state reachable from M; by firing
a transition. If several transitions are enabled at the same time, then
any of these transitions may be the next to fire. In the MPMS scenario
this means that as soon as there are input domain attribute values
available to the access pattern, a query ¢ is issued and the produced
result’s 7, values are placed in the output domain attributes of the
involved access pattern. Alternatively, if there is a value in the output
domain attribute connected by connection pattern to another access
pattern’s input attribute domain the supply transition is fired and the

value passed over,

Let M, be the initial state of a Petri net. In the MPMS scenario the

initial place is input attribute(s) of at least one involved access pattern,

A state is called a reachable state if and only if there exists a firing
sequence My, My, ...M, which enables this state. In the MPMS sce-
nario this sequence is a combination of both places whose arcs con-
tain a materialization call transition and places whose arcs contain

connection pattern transition,

A terminal state is a state where none of the transitions is enabled,
i.e. a state without successors. In the MPMS scenario the terminal
state is either a place representing an output domain attribute with no
outward connections or a place representing an output domain attribute
for which a materialization call did not produce any values valid in the

associated input attribute domain.

We evaluate an MPMS topology as a marked net < PN, My > where
< PN, MO0 > with PN = (P, T, F, D, My) specifies:
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e An initial marking (i.e., state) My - an initial input attribute belonging
to access pattern for which there are satisfied input attribute domain

requirements,

e The rules of evolution T, F - a set of directed transformations between
input to output domains in the same access pattern and between access

patterns in form of connection patterns,
e A set of places P in input and output domains,
e A set of tokens (values) D that propagate through the net.

The reachability graph of MPMS topology < PN, M, > is a firing sequence
G = (X, E,0,x9) where:

e X = R(PN, M,), i.e., the states of the sequence are the reachable mark-

ings,

o £ =T, ie., the events in MPMS execution are the transitions of the

net,
e For any two reachable markings M, M.

e A reachable markings transition o(M,t) = M’ < M[t > M’ i.e.,
there exists an arc labelled ¢t from M to M’ on the sequence if and

only if marking M’ is reachable from M on firing transition ¢;
e xo = My, i.e., the initial state of the sequence is the initial marking.

In the example below we demonstrate all the reachable (or feasible) states in
series of firing sequences for the given MPMS topology.

We present MPMS topology with three access patterns
AP1 with I={d1}, O={ dl1 , d3}, AP2 with I={d4, d5}, O={d6} and AP3
with I={d3}, O={d4 , d5}. The logic of the firing sequence is defined by the
following reachability algorithm.

Given an MPMS net < PN, M0 > let G be its reachability graph with set
of states X constructed using the defined algorithm.

e R(N,My) = X - the reachability set,
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0,ds

Upon t1 firing M1 = [0,1,1,0,0,0,0,0,0],

Initial Marking M0 = [1,0,0,0,0,0,0,0,0]
Transitions t2 and t6 are enabled

0, d5 0,ds

Upon t2 firing M2 = [0,1,0,1,0,0,0,0,0], Upon t3 firing M3 = [0,1,0,0,1,1,0,0,0],

transition t3 is enabled transition t4 is enabled
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Upon t4 firing M4 = [0,1,0,0,0,0,1,1,0],

Upon t5 firing M5 =[0,1,0,0,0,0,0,0,1]
transition t5 is enabled

0,d5

Last, upon t6 firing M6 =[1,0,0,0,0,0,0,0,1]
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Algorithm 5 Algorithm for reachability Graph

1: Consider as root node the initial marking My for which there is an AP with I = ¢ and tag it new.

2: while a node tagged new exists do

3: Select a node M tagged new
4: for all ¢t enabled at M do
5: Let M’ be the marking reached from M by firing ¢
6: if there does not exists a node M’ in the graph then
7 add a new node M’ and tag it new
8: end if
9: Add an arc labelled ¢ from M to M’
10: end for
11: Untag node M

12: end while

e L(N,My) = L(G) - set of all possible firing sequences from M.
We retrieved the following information from the reachability graph G.

e Marking M is reachable <» M is a node of G,
e 0 € L(N,My) <> 6(My, o) is defined in G,

o M[o>M" < M[t>M' there exists a path as arc ¢ from M to M’ labelled
by o.

As follows in the example sequence PN|0,1,0,0,0,0,1,1,0] is reachable for:
Mo(do)={1,0,0,0,0,0,0,0,0} L(PN do)={t1,12,t3, 4,15} =>
L(PN dy)={0,1,0,0,0,0,0,0, 1}.

6.3 Feasibility Analysis Formalization

6.3.1 Single Access Pattern

We further expand the definition of access pattern Petri Net in subsection
6.2.1 to be exploited within the single pattern single service (spss) material-
ization scenario. In the spss context we define a Petri Net pn,, that models

access pattern ap, as a tuple < Py, Toap, Fap, Dap, Mo op > Where:
o P, ={Pr,Po} is a set of 2 finite subsets of places where:

e Input Places subset P; = {p1, p2, ..., Pn}, P € I, where [ is the set
of attributes a;...a; € A that defines the input interface of ap,
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e A place p € P,, belongs to P; subset if and only if there

exists a directed arc from p to T¢ 4.

Po = {p1,p2, -, Dm}, Pm € O, where O is the set of attributes
ai...ar, € A that defines the output interface of ap,

e A place p € P,, belongs to Py subset if and only if there

exists a directed arc from T¢ 4, to p.

T.qp is a transition that facilitates materialization call ¢ € C,

Fop C (P xT)U(T x P) is a set of arcs (flow relation),

Do, ={Dr, Do} is a set of 2 subsets of tokens where:

e D;={dy,dy,...,d,},d, € dV; where dV} is a superset of all
input value sets dV7, ...dV; mapped to the attributes in input
domain 7,

e Do ={di,ds,...,dpn},d,, € dVp where dV is a superset of
all output value sets dV;...dV; mapped to the attributes in

output domain O.

o My : Pr—{0,1,2,3, ..., k} is the initial marking, where k is the

number of places in Py,

e PNT=0and PUT # @.

The dynamic behaviour of a Petri Net pn,, is described as a change of

state according to the following transition - firing rules:

1. A transition T¢ 4, is said to be enabled if each input place p,, of T.,, is

marked with one token d,, € Dy,
2. A firing of an enabled transition T ,,:

e Removes tokens d, € Dy from each input place p, of T.,,, and

adds tokens d,,, € Do to each output place p,, of T. 4,

e If output place p,, is a duplicate of input place p,, of T, ,, that is
if both places map semantically and by type identical attributes
a;,a, € A, then the token d,,, € Do is propagated to input place

pn, of Tt qp as well - as in Figure 6.5.
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A reachability property of a Petri Net pn,, is defined as a sequence of firing
of transitions which would result in transforming a marking M, to M; 4,
where M, ,, represents the specific state in which all places in Py are popu-
lated by tokens, and the sequence of firings represents the required functional
behaviour, that is a firing rule as defined above. Such state is illustrated in
Figure 6.4 if firing of transition place t. resulted in valid values at places p1,
p2 and p3 of the top most access pattern (TheaterByPhone).

The set of all possible markings reachable for initial marking M of a Petri
Net pnyg, is called the reachability set and is denoted by Rg,(Mop). The set
of all possible firing sequences from M 4, is denoted by Ly, (Mo ap)-

Tﬂap

Figure 6.5: Petri Net pn,, reachable firing sequence with input output domain connection.

Initial marking My ., = {1,0,0,0} reaches sequence M, ,, = {1, 1,1, 1} follow-
ing sequence of transition firings - Tt ap. Rap(Moap) = {0, pl, p2, p3}, while
Lop(Moap) = {T,ap} - as illustrated in Figure 6.5.

Or initial marking My,., = {1,0,0,} reaches sequence M;,, = {0,1,1}

o2 o2

T":EF' Tﬂap

Figure 6.6: Petri Net pn,, reachable firing sequence.

following sequence of transition firings - T, 4. Rep(Moap) = {p1,p2}, while
Lop(Moop) = A{T,ap} - as illustrated in Figure 6.6.

An unboundedness property of a png, is derived from the definition
of boundedness where a Petri net is said to be k-bounded if the number of
tokens in any place p, where p € P,,, is always less or equal to k£ (k is non-

negative integer number) for every marking M reachable from initial marking
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My, M € R,,(My). Thus, a Petri net pn,, is said to be unbounded if there
is a place p € F,, that can hold an arbitrarily large number of tokens, as in

Petri net example in Figure 6.7 where places p0 and pI are unbounded.

Figure 6.7: Petri net that is unbounded.

6.3.2 Multiple Access Patterns

We further expand the definition of access pattern Petri net in subsection
6.2.1 to be exploited within the multi pattern multi service (mpms) ma-
terialization scenario. In the mpms context we define a Petri Net pn,,,
that models a combination of multiple access patterns mp, as a tuple <
PNy, CPrp, Teomps Props Dinps Mo mp >, Where:

® PNy, = {phapt, Prap2, -, Plapn } 1s a set of all Petri nets that model

access patterns contained in mp net,

e CP,, C CP, where CP is a set of connection patterns, and CF,,, is a

subset of all connection patterns connecting access patterns in mp net,

T p = {tempts temp2y s tempn | 18 @ finite set of transitions that facili-
tate the interactions between png,, € PN, as enabled by connection

patterns in C'P,,),

o D, =4Dyp1, Dypa, ..., Dapn b 18 & set of tokens that includes token sets
p ply p2r ) D

of all access patterns in mp net,

o Py = {Pup, Pap2, ..., Papn} 18 a superset of all place sets of all access

patterns in mp net,

© Momp: Prmp — {0,1,2,3,...,k} is the initial marking in the domains of

mp, where k is the number of places in P,
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e PNT=0and PUT # @.

The dynamic behaviour of a Petri Net pn,,, is described as a change of

state according to the following transition - firing rules:

1. A transition T'c,,, is said to be enabled if place p € F,,, that matches

Aap 10 f CDmyp € CP,yy, is marked with one token dgy, € Dgpn,

2. A firing of an enabled transition 7,,,, copies tokens d,, € D,p, from
each output place pof P,,, € P,,, that matches aqp r0fcpm, € CPyyp, to

each input place p € P,,, that matches a.p,00fcpm,.

A reachability property of a Petri Net pn,,, is defined as in section 6.3.1
and expanded to all Petri Nets pn,, that participate in pn,,,.

The set of all possible markings reachable for initial marking M,
of a Petri Net pn,,, is called the reachability set and is denoted by
Ryp(Momp). The set of all possible firing sequences from M, is de-
noted by Lp,(Momp). The set of all access pattern Petri nets from
Mo, mp is denoted Ppp(Momp). Figure 6.8 depicts a reachable solu-

tcmp1

-ié@»»lég
Tcap2 P6)

Figure 6.9: Unbounded
MPMS Net Places.

Figure 6.8: MPMS Net reachable solution.

tion where the initial marking My,,, = {1,0,0,0,0,0,0} reaches se-
quence M;,,, = {1,1,1,0,1,1,1} following sequence of transition firings -
TcaplatcmplaTcap2~ Rmp(MO,mp) = {p07p17p2ap37p47p57p6}a Whﬂe ﬁI‘il’lg se-
quence Lap(Momp) = {Teapt, temprs Teap} and the set of access patterns is
Pmp(MO,mp) = {pnaplupnapQ}‘

An unboundedness property of a Petri Net pn,,, is defined as in section

6.3.1. Thus, a Petri net pn,,, is said to be unbounded if there is a place
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p € P, that can hold an arbitrarily large number of tokens. In the Petri net
example in Figure 6.9 places p0, pI and p3, p6 are unbounded.

6.4 Feasibility Analysis Model

In the following subsections we will study the reachability of an MPMS net-
work by looking into three factors: Initial Access Pattern Choice, Transforma-
tions Direction of the connection patterns and Connection Patterns between

Access patterns in the examined MPMS topology.

6.4.1 Initial access pattern

Firstly, we investigate effect of the choice of the initial access pattern i.e., the
placement of the token as the initial marking M, to the reachability of the
proposed MPMS topology. To illustrate the given problem let us assume, tak-

Figure 6.10: TheaterByPhoneFigure 6.11: TheaterByCity - Figure 6.12: MovieByTitle -
- initial AP. initial AP. initial AP.

ing the example in Figures 6.10 that the TheaterByPhone access pattern is
chosen as the initial access pattern with an appropriate starting dictionary of
input values and the token placed to P0 is My. The access pattern Theater-
ByClity is dependant on the output tokens produced by the materialization

of the TheaterByPhone and the number of queries that is able to execute is
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limited by the number of non-duplicate output values tokens that the pre-
ceding access pattern supplies to it via the materialization call transition £.1.
Equivalently, the third access pattern MovieByTitle executes as many queries
as many output tokens it receives from the TheaterByCity access pattern via
connection pattern transition f.,3.

As a comparison, if TheaterByCity access pattern was chosen as the initial
access pattern - the token placed to P4 is My as in Figure 6.11, the number
of queries executed would depend solely on the size of the input dictionary,
as the access pattern layout is not supporting the reseeding input strategy.
Consequently output tokens supplied to the depending MovieByTitle access
pattern via connection pattern transition ¢.,3 would be dependent on the
size of the TheaterByCity input dictionary and the number of non-duplicate
output values (i.e., tokens) this materialization produces. Most importantly,
due to the topology of the graph, the TheaterByPhone access pattern would
not execute at all, producing null materialization output.

In the most limited representation of the topology, if MovieByTitle is the
initial access pattern - the token placed to P8 and P9 as M, as in Figure 6.12,
the only access pattern reached is MowvieByTitle, producing as many queries
as the initial dictionary supplies input tokens, while both TheaterByPhone
and TheaterByCity are unreachable i.e., there is no materialization produced
for these two access patterns.

The choice of the initial access pattern place in the given topology affects
the total size of the materialization produced. In the case of TheaterBy-
Phone if the token is placed to PO as state My, being the initial pattern, the
self-driven materialization of all three access patterns is limited by reseeding
volume of the place P1 - d1 output domain attribute - as illustrated in Figure
6.10. A partial materialization of dependent access patterns is limited by the
size of their input attribute domain dictionaries, i.e., the number of tokens
placed to P4, P§ and P9, and the non-duplicate output attribute values pro-
duced in the form of tokens by P6 and P7, as illustrated in Figures 6.11 and
6.12.
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6.4.2 Transformations Direction

A further factor affecting the reach of the materialization is observed through
the directions of the connection pattern transformations in the selected MPMS
topology. In order to further understand the situations affecting the reach-
ability of the access pattern connection pattern dependencies let us consider
the following change of the MovieByTitle access pattern with addition of the
new connection pattern, as shown in Figure 6.13. In the output attribute do-
main of the MovieByTitle we added Theater.City (d3) attribute also present
in the input attribute domain of TheaterByCity, thus forming new connection

pattern between these two access patterns via transition ¢.,5.

{d5 i a3ji 7 T s
FHR m’}“ R I d3
T (a0 -"*"ﬁ--. 5
n pat REER Ee T
Figure 6.13: Petri Net modelFlgure 6.14: Two  sub- Figure 6.15: Reversal of the
topologies derived on the . a
of the topology with added . " connection pattern flow be-
connection pattern. basis of the new connection tween sub-topologies.
pattern.

As shown in Figure 6.13, the newly added connection pattern transition
tepd between MovieByTitle and TheaterByCity removes dependencies between
the TheaterByPhone access pattern and the rest of the network. Neverthe-
less, the choice of the initial access pattern is still important as the choice
of TheaterByPhone as the initial pattern provides the largest reach by ini-
tiating MovieByTitle and TheaterByCity. It also facilitates the connection
pattern between MovieByTitle and TheaterByClity via transition ¢.,5, thus
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making them independent, in case d3 output domain attribute value supply
from TheaterByPhone exhausts tokens from place P3.

Furthermore, the change forms two self-driven materialization sub-
topologies. Figure 6.14, illustrates the sub-topologies and the importance of
TheaterByPhone and TheaterByCity in the d3 arc direction (sequence P3, t1,
P4) as the choice of either MovieByTitle or TheaterByCity. The initial access
pattern prohibits TheaterByPhone from materializing. Clearly, it is necessary
to choose TheaterByPhone and either MovieByTitle or TheaterByCity. Thus
tokens can be placed to PO and P4 or PO and P8, P9 as state M, to reach
all parts of the network.

As an addition to the example in Figure 6.14, it becomes evident that the
materialization of this layout may be observed as two separate materializa-
tions; the top one being driven by the SPSS concept and the bottom one by
the MPMS concept. The top one is used to reinforce the d3 input attribute
value supply via connection pattern transition t.,1 in case the supply from
connection pattern transition ¢.,5 is unavailable or degraded by duplicate val-
ues, as illustrated in Chapter 7. Figure 6.15 shows how the change of the
arc direction between TheaterByCity and TheaterByPhone via transition .1
disconnects MovieByTitle and Theater ByPhone sub-topology from the rest of

the network, thus making it impossible to reach each other.
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6.4.3 Connection patterns between access patterns

Figure 6.16: More than one connection pat-Figure 6.17: Two initial access patterns as a

tern per access pattern. seed.

Figure 6.16 shows the topology, whereby an access pattern shares connec-
tions with more than one access pattern via connection pattern transitions
tepl and t.,5. Here, it is necessary to choose more than one access pattern
as a starting seed of the MPMS topology. As demonstrated in Figure 6.17,
the only way to reach all parts of the graph is to start both the top and the
bottom access patterns via places PO, P7, P8 as state M.

As demonstrated, the choice of the initial access patterns, the direction of
the connection pattern arcs and the number of connection patterns per AP

play a crucial role in reachability of the whole network.
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6.4.4 Proposed Feasibility Analysis Model

In this section we will derive a set of formal rules to provide a basis for
establishing the topology with the largest reach.

As demonstrated in the previous section, the reachability of MPMS topology
(MPMSNet) is affected by three factors: Initial Access Pattern Choice, Arc
Direction of the connection patterns and Number of connection patterns per
AP in the examined MPMS topology..

Strongly connected and boundedness [Murata 1989] properties of the Petri
Net are used to model reachability analysis of the MPMS materialization
scenario. By using these properties two method propositions for the analysis
of the MPMS reachability are derived and proved.

We define a strongly connected component of MPMS Petri net topology
as the subset of its places such that for every two places  and y in the
component, there is a directed path leading from x to y.

Strongly connected components i.e., a firing sequence of places such that
there is a set of arcs from each place in the sequence to every other place in

the sequence can be:
e Transient components - there are paths going out of the component,

e Ergodic (or absorbing) components - there are no paths going out of the

component.

Proposition 1 If a starting place M, is chosen from an access pattern
representing a strongly connected subnet, whereby outgoing paths exist that
lead from an output domain to an input domain, then all places contained
within the MPMS can be reached.

Proof Places My and M; in a given MPMS are connected if there is a
path t; connecting these places. Likewise, places M; and M, are connected if
there is a path t5 connecting these places. In general, for any given n, there
must be a path t, connecting M,,_; to M, since all places My, k = 0,...,n
are chosen from a transient strongly connected subnet. Thus, for the chain,
My, My, ..., M, _1, M,, it follows that there is either a path directly linking

path M; to Mj, for all 0 <7 < j < n, or a path exists as a series of traversals
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M; to M1, My to Miio,...,M;_y, to M;. In either case, given a starting
place M all other nodes are reachable from M, by traversing a certain number
of links.
Given an MPMS net <PN, My> let G be its reachability graph with set
of states X constructed using the algorithm 5 in subsection 6.2.1.
As depicted in Figures 6.18 and 6.19: If My(d1)={1,0,0,0,0,0,0,0,0} then

Transient i |I
o g

Ergodic

Figure 6.18: Transient Initial Place My(dl)  Figure 6.19: My(d1) reachable position

PN={1,0,0,0,0,0,0,0,1} is reachable L(PN,dl) ={t1, t2, t3, t4, t5, t6} =>
R(PN,d1)={1,0,0,0,0,0,0,0,1} = X - reachable.

Contradicting, as depicted in Figures 6.20 and 6.21: If
My(d3) = {0,0,0,1,0,0,0,0,0} than PN={1,0,0,0,0,0,0,0,1} is not reachable.
L(PN,d3)={t3, t4, t5} => R(PN, d3)={0,0,0,0,0,0,0,0,1}

L(PN,dl) != L(PN, D3) and R(PN,d3) != R(PN,d1) - not reachable.

To further illustrate, let us consider examples in subsections 6.4.1, 6.4.2
and 6.4.3. As depicted in Figures 6.10 and 6.11 a strongly connected
transient component is formed by TheaterByPhone access pattern driven by
the reseeding data surfacing process via input and output attribute The-
ater.Phone (d1) - places PO and P1. TheaterByPhone forms a strongly

connected component through d1 connection; further, it connects (transient
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Transient Transient

Figure 6.20: Ergodic Initial Place My . Figure 6.21: Mj(d3) reachable position.

property) via d3 to the other sub-topology. By reversing the outward arc i.e.,
by making it ergodic, the rest of the topology is disconnected thus, making it
unreachable - Figure 6.15.

Figures 6.13, 6.14 and 6.15 introduce another strongly connected com-
ponent to the topology. The new component is composed of TheaterByCity
and MovieByTitle access patterns. This component is larger than the first
strongly connected component (TheaterByPhone), and as demonstrated in
Figure 6.15, once this component’s outward arc is directed towards the smaller
strongly connected component via transition .1, the topology connects the
sub-topologies but it does not reach all the places yet.

As shown in Figures 6.16 and 6.17, a topology where an access pat-
tern shares input connections with more than one access pattern Propositionl
holds, in order to satisfy access patterns with more than one input connection
pattern, it is necessary to choose initial access patterns in both sub-topologies
of the graph. Hence, as demonstrated in Figure 6.16 the only way to reach
all parts of the graph is to start both at the top and bottom access patterns;
that is, to define places PO, P7 and PO as state M.

As defined in section 6.3.1 an MPMS Petri net < PN, M > is bounded if
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and only if, for every reachable state and every place p the number of tokens
in p is bounded.

Proposition 2 The Boundedness of given subgraph G (strongly con-

nected component) is determined by the highest bound of the attribute
(place) in the output domain that makes a transient relationship with any
subgraph’s input domain that connects to G.
Proof For graph G we select all places with transient relationship as set S
{M,,...,M,} that produce values in their respective domains. We now choose
an element from S that produces the maximum number of values k from its
domain. This determines that the bound for graph G is now k as no other
places in S are able to produce more values.

For the marked net PN <dl,d3,d1> reachability graph R(PN,d1)

Figure 6.22: Boundedness proposition example.

L(PN,d1)={t1, t6} => [1,0,1] the bound k of place p is max M (p) for all
places in R - Figure 6.22. The max M(p) is defined by the filling of d1

output attribute domain.
If output k1 = |M(dl)| = 3, L(PN,d1) = {t1,t6} executes 3 times.
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If output k2 = |M(dl)| = 2, L(PN,d1) = {t1,t6} executes 2 times.
As k1 > k2 the bound k, of place p is max M (p) for all places in R.

For the marked net PN <d3,d4,d5, d4, d5, d6> reachability graph R(PN,d3)
L(PN,d3)={t2,t3,t4,t5} => [0,0,0,0,0,0,1] the bound k of place p is max
M(p) for all places in R - Figure 6.22. The max M(p) is defined by the
filling of d3 output attribute domain.

If output k1 = |M(d3)| = 4, L(PN,d3) = {t2t3t4t5} executes 4 times.

If output k2 = |M(d3)| = 2, L(PN,d3) = {t2t3t4t5} executes 2 times.

As k1>k2 the bound k, of place p is max M (p) for all nodes in R.

To further illustrate, let us consider the topology in Figure 6.14. The
bound of the top subgraph - TheaterByPhone - is defined by the bound of d1
output domain attribute, place P1 (transient place tpl), since this attribute
holds a transient relationship with the input domain. In other words as many
non-duplicate values that it delivers to the input domain, that many queries
will be executed.

The bottom subgraph’s bound is determined by the highest of the bounds
of d3, d5 or db, i.e. places P6, P7, P10 as they all equally contribute to the
input domain of the subgraph.

Once the reachability graph as defined in section 6.3.1 and determined
via Proposition 1 is established, Proposition 2 is used to determine how many
times this layout can be reached i.e., the maximum number of materialization

calls that can be executed in the given MPMS net.
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6.4.5 Algorithms

Algorithms 6 and 7 present the feasibility analysis split into two steps accord-
ing to the propositions defined in section 6.4.4. Stepl algorithm analyses

Algorithm 6 Feasibility Analysis Step 1

Nc¢p // number of connection patterns
APyrpyvs // set of ap in MPMS

ap // access pattern

scp // strongly connected component
O— > 1 // output to input
for each ap in APyppyrs with Nop >0 do
for each scp linking ap with O— > I outgoing arcs do
Start ap in scp

end for

—_

end for

1, ds

. .. Figure 6.24: Step 1 Base case reachable posi-
Figure 6.23: Step 1 Base case start position. .
ion.

the given MPMS net for a strongly connected component in order to start the
execution of an initial AP so that the largest reach of the given topology is
ensured. Step 2 further analyses the model by establishing the Boundedness
of the given MPMS net.

As a base case, as depicted in Figures 6.23 and 6.24, we consider PNy/pars
= {ap;<dl,d3,d1>,apy<d3,d4,d5>} , ap; contains N, = 1, ap; is also a scp
with O — [ as it is connected to apy via cp<d3.p1,0,d3ap2,1>.

We choose M (dl) as M, of the reachable solution. If My(d1) = {1,0,0,0,0,0}

is reachable
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L(PN,dl)={t1, t2, t3} => [0,0,0,0, 1, 1] thus R(PN, D1) is reachable.

As a more elaborate example as depicted in Figures 6.25 and 6.26 we con-

0, d7

0, d6

1,d6

Fi .26: Step 1 1 habl
Figure 6.25: Step 1 Complex case start posi- igure 6.26: Step 1 Complex case reachable

. position.
tion.

sider PNy pys = {ap1<d0,d1,d2> apy<d2,d3,d5,d6>, aps<d5,d6,d3,d7>}.
Access pattern ap; contains N, = 1, ap; is also a scp with O — I as it is
connected to apy via cp<d24p1 0, d24p2,1>. We choose M (d1) as My of the first
scp of reachable solution. Access pattern aps contains N, = 1, aps is also an
scp with O — I as it is connected to aps via cp<d3aps,0, d3ap2,1>.
We choose M (db,d6) as My of the second scp of reachable solution.
If My(dO, d5,d6) = [1,0,0,0,0,0,1,1,0,0] is reachable.
L(PNypus, (d0,d5,d6)) = { t1 t4 t2 t5 t3} => [0,0,0,0,0,1,1,0,0,0,0] thus
R(PNypas, (d0,d5,d6)) - reachable.
Complexity: O(n2) for worst case scenario.

Step 2 further analyses the model by establishing the Boundedness of the
subgraphs of the given MPMS net.
As a base case - Figure 6.27 - we consider PNypys {ap1<dl,d2,d1>}, this

net forms one scp with d1 from output making connection with d1 in the input
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Algorithm 7 Feasibility Analysis Step 2

I // input domain
tp // transient place
scp // strongly connected component
for each scp in MPMSNet < PN, My > with tp arcs directed to I do
if List < tp > .count > 1 then
sep bound = Max(M (tp)) for all nodes in List < tp >
else
scp bound = M (tp)
end if

end for

—_

domain. Thus bound of PNy pys Max(P2).

Complex example - Figure 6.28 - features PNypys {ap1<dl,d2,d1>,
apy<d3,d1,d5>}, there are two scp; top one having two bound places with
Maz(P2) or Max(P5) determining the scp bound.

Complexity: O(n2) for worst case scenario.

0,dl tl P3

0, d2 £

Figure 6.27: Step 2 Base case. 0,ds

Figure 6.28: Step 2 Complex case.

6.5 Empirical Study

In this section we demonstrate the performance of our approach in the context
of the feasible solutions delivered by the proposed model algorithms. The
performance of the proposed model was evaluated by the number of executed
queries (firing sequences) against MPMS layouts with different number of

bound places and strongly connected components.
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6.5.1 Experimental Settings

To evaluate the proposed solution we apply the model to a set of material-
ization tasks designed to support a 'reallocation search’ multi domain search
scenario depicted in Figure 6.29. It is illustrated by real life queries such
as ' am looking for a Java developer position in an area where housing is
in a certain price range and there are good Italian and Thai restaurants
nearby’, against a service repository which deals with a variety of domains
from jobs to real estate to entertainment and general shopping. Each task
is constrained by a predefined set of input dictionaries and required ma-
terialization coverage. The feasibility analysis is performed against a set
of potential access patterns |AP| = 120, derived from the Domain Dia-
gram. The empirical study considered the access patterns 1) jobByLocation
(AP1) which takes job position location and job type as input attributes
- Figure 6.29 in green colour - I = {JobKeyword, Location} and - Fig-
ure 6.29 in red colour O = {JobName, SalaryRange, JobType, Location};
2) realEstateByLocation (AP2) which takes a real estate type, price range
and location as input attributes - Figure 6.29 in green colour - [ =
{real EstateType, Price Range, Location} and - Figure 6.29 in red colour
O = {PriceRange, NoO f Bedrooms, Location}; 3) restaurantByLocation
(AP3) which takes a cuisine type and location as inputs - Figure 6.29 in
green colour I = {cuisineType, Location} and - Figure 6.29 in red colour
O = {Name, Rating, Cuisine, Location}. For practicality reasons all solu-
tions recommended by the feasibility analysis were restricted to MPMSNet
with strongly connected component size of 2 <= |SCPypys| <= 5, and
the number of transient places 1 < |tp| <= 10. For each AP at least
one feasible solution was chosen for each combination of feasibility prop-
erties; for each feasible solution 10 runs were performed; the materializa-
tion goal was set to 50 executed queries/retrieved result sets. The input
dictionaries for attributes that were not populated by reseeding or a con-
nection pattern were supplied by static dictionary of 50 values belonging
to their respective domains e.g., dicteyisinerype = {'Italian’) Indian’, ...} or

dictreaipstaterype = {'house’) flat') studio’, ...}. To avoid bias, the input dic-
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Figure 6.29: ‘Reallocation search’ multi domain search scenario (I-input, O

input/output reseeding)
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tionaries were initialized at each run by a randomly selected subset. To per-
form the evaluation, we created a master database composed of 100K listed

items from several existing on-line real estate, restaurant rating and job sites.
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Figure 6.31: No of scp vs No Of Executed Queries.

Influence of transient places to the materialization. Figure 6.30

examines the effect of the number of transient (bound) places to the number
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of executed queries (sequences). The result reveals an interesting trend as the
number of queries decrease with an increase in the number of bound places.
The layouts with less than 5 transient places seem to perform adequately, on
the whole reaching the given goal of 50 queries. The materialization output
(number of queries) decreases with increase in the number of transient places.
This is most likely imposed by the unpredictable nature of the seeding output
attributes 'capacity’ as it is hard to predict number of valid input values
produced by the transient place due to the unknown data distribution of the
remote source.

Influence of strongly connected places to the materialization. Fig-
ure 6.31 examines the effect of the number of strongly connected components
(scp) of the given feasible layout to the obtained materialization. The results
are consistent in all 3 APs, as there is no significant shift in the obtained
materialization volume as the number of scp increases. This further validates
the importance of positioning of input values, as there was no deviation in the

input dictionary sizes the executions performed close to 100% in each case.

6.5.2 Discussion

We consider real-life application of the empirical results in the context of
Search Computing. Search Computing queries typically address search tasks
that go beyond a single interaction, the task transpires via a query paradigm
that supports multi-step, exploratory search over multiple Web data sources.

4

This query paradigm requires users to be aware of searching over “intercon-
nected objects” with given semantics, but each exploration step is simplified
as much as possible, by presenting to users at each step simple interfaces,
offering some choices that can be supported by the system; choices include
moving “forward”, by adding new objects to the search, or “backward”, by
excluding some objects from the search; and the selection and de-selection of
displayed results in order to dynamically manipulate the result set.

SeCo service description framework’s (SDF) Domain Diagram provides
users a mean of expressing queries directly upon the concepts that are known

to the system, such as jobs or restaurants, or salaries; moreover, users are
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aware of the connections between the concepts, and they can, therefore, e.g.,
select a job and then relate it to several other concepts such as salaries, loca-
tion or job type; or select a show and then relate it to several other concepts:
the performing artist, the close-by restaurants, the transportation and park-
ing facilities, other shows being played on the same night in town, and so on.
The query is focused (and restricted) to known semantic domains provided
via the linked ontology.

At any stage, users can “move forward” in the exploration, by adding a new
object to the query, starting from the connections available in the SDF and
from the objects that have been previously extracted following connections
provided in Domain Diagram. Users can also “move backward” (backtrack)
in the exploration, by excluding one of the objects from the query, or by
“unchecking” some of their previous manual selections of relevant object in-
stances. For example, a user may decide that the bus ride is too inconvenient,
preferring to use a car instead, and then explore parking opportunities for the
selected restaurants.

In such a dynamic search environment our solution provides the search
with a means of constructing a quick materialization ‘pathway’. The feasibly
analysis considers access patterns linked to the concepts in the given Domain
Diagram then constructs a feasible solution and enables materializer to quickly
satisfy new search need.

This is particularly applicable in a situation where at any stage of the ex-
ploration, users can store the status of their search, by saving the query that
has been formulated so far as well as the results. As the dynamic nature of
the exploration does not always guarantee data validity, as obviously relevant
data may not be available, quick feasibility analysis and small goal materi-
alization effort further reinforces the available, stored results. Therefore, the
same query can be repeated for a returning or different user, saving the ex-
ploration effort. Potential expansion of the materialization by, for instance,
including top k+1 results in the materialized data corpus may prove benefi-
cial for backtracking at the level of individual conditions as well, as e.g., in
changing the choice of job search keyword from “JAVA Developer” to “Web

Developer” during reuse.
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6.6 Chapter Summary

In this chapter we designed a method for analysing a potential section of ac-
cess patterns in the given service description framework in order to determine
a feasible combination of AP for which the given materialization task suc-
ceeds. Furthermore, we introduced and characterized feasible solution prop-
erties reachability and boundedness which were the building blocks of the
proposed analysis. We have also presented a two-step algorithm based on the
proposed analysis procedure. We performed a range of live materialization
tasks using the presented algorithms and confirmed validity of the analytic
step in the materialization formulation. We also came to an interesting ob-
servation in regards to the bound AP attribute in respect of the final mate-
rialization outcome. The experiment results have shown that our approach
provides better performance in terms of final materialization coverage where
the number of bound places is smaller in equally reachable AP layouts.

In the next chapter we will extend deeper into the materialization for-
mulation by addressing the actual materialization run-time query and service

selection optimization, relevant metrics and the cost model.



CHAPTER 7

Materialization Optimization

7.1 Introduction

Proposed materialization scenario may result in a reachability graph that in-
volves access patterns with several available service interfaces. This event is
reflected in SPMS and MPMS materialization scenarios illustrated in Chap-
ter 4. In materialization run-time each of these services once queried may
return tuples varying in duplicate saturation, result size or response time. The
services may also be affected by inflexible service level agreement.

The number of queries and result set size may be compromised if:
a) the number of queries & is limited by input dictionary size, i.e., the available
input value dictionary size is not sufficient to provide large enough rewrite,
b) provided input dictionary does not match a segment of the output domain
contained in the source, i.e., thus expressed queries do not yield any results,
e.g., queried source holds all movies in year range 1980 -1990 while the input
dictionary contains values from year 2000 onwards,
c) effective result pageSize is decreased by the presence of duplicate tuples,
i.e., some of the retrieved result tuples are already present in the materialized
data,
d) pageSize is limited by the service itself as a part of their service level
agreement.

Further, the materialization is compromised in terms of the effective pro-
cessing time if: a) web source is characterized by low response time,
b) number of source invocations (queries) k is limited by service level agree-
ment imposed by the remote data provider.
These factors affect the volume and the currency of the data harvested during

materialization process, thus, compromising the accuracy of the dependent



7.2. Optimization approach 150

multi domain search application.

To prevent these factors’ detrimental effect on the materialization, it is
necessary to further differentiate between services belonging to the same access
pattern on the basis of service interfaces properties and characteristics of the
materialized data source.

This differentiation is necessary in order to optimize materialization run-
time.

The goal of optimization is to minimize the running time of the materi-
alization process, while maximizing the produced materialization output RM
and maintaining the right leverage between the performance and the quality
of the obtained materialization. Here, we aim to achieve the least possible
running time in the context of participating services and available input dic-
tionaries for the prescribed materialization task.

In this chapter we outline and define our optimization approach in respect
to the materialization process. Further, we look at the optimization variables
and potential metrics across service interface properties, materialized data
characteristics and properties derived from the solution feasibility analysis.

We propose a cost model that employs the proposed set of optimization
metrics in order to provide quantitative differentiation between the involved
services and provide a basis of the consequent run-time optimization algo-
rithm. Lastly, we describe the set of algorithms implementing proposed opti-

mization and prove their effectiveness in the empirical study.

7.2 Optimization approach

Our optimization approach is focused on the data surfacing phase of the ma-
terialization process. We intend to improve both parts of the call2service
coupling algorithm - Figure T7.1.

First, in the query queue sequence de-queuing strategy we intend to deliver
improvement to the existing query selection algorithm. The goal is to improve
rate of discovery of the input domain values in the mapped output domain so
as to minimize problem cases outlined below:

(i) Provided dictionary of input values is saturated with non-domain values,
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Figure 7.1: Materialization Process after optimization.

and
(ii) Input values build queries with low result expressive power, that is the
obtained result sets are either empty or of small size.

Second, in the service interface selection strategy we intend to apply a new
algorithm based on service execution cost per tuple. The goal of the algorithm
is to minimize selection of services featuring:

(i) High duplicate levels,
(ii) Low QueryResponseTime materialization property,
(iii) CallsPerDay service level agreement (SLA) defined limits.

This implies transformation from set of available services SI to sequence of
services {ST}{,_;) where k = [ST| and it is ordered by the associated service
interface execution cost.

We expect an improved query expressiveness and decreased duplicates rate
to result in an improved materialization efficiency F¢, as fewer queries will
be required to achieve desired coverage level.

Equivalently, we expect the selection of faster responding services with less
SLA limit to improve materialization efficiency Er as desired materialization

coverage will be achieved over shorter period of time.

7.3 Optimization Strategy

The goal of materialization optimization is to minimize the running time of
the materialization process for the given materialization scenario, while maz-

imizing the produced materialization output RM and maintaining the right
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balance between performance and the quality of the obtained materializa-
tion. Here, we aim to achieve the least possible running time in the context
of participating services and available input dictionaries for the prescribed
materialization task.

The optimization strategy goal is divided into two sub goals: a) Differentia-
tion of services by performance; b) Differentiation of queries by expressiveness

for the given source output domain.

7.3.1 Optimization Metrics Differentiation

In the subsequent subsection we illustrate influence of particular service and
materialization properties by investigating how they affect the actual ma-
terializations performed in case study of Chapter 5. The materializations
are labelled as Matl and Mat2 and present the data obtained during real-
life materialization of the web data test bed as described in the case study.
Data sets Matl and Mat2 represent materialized web source in the Real
estate web domain, Matl featuring 200K records and Mat2 featuring 350K
records. During the materialization web sources allowed for maximum result
size 1s<100 tuples and result chunk (page) size of 10 tuples. The obtained
results were ranked (ordered) by geographical distance from the queried post

code as reported in Chapter 5.

7.3.1.1 Service Interfaces properties differentiation

Service Interfaces wrap web sources that are in turn characterized by a set of
dynamic, run-time properties related to their materialization performance -
materialization properties and a set of static properties related to constraints
imposed by the legal parameters as prescribed by the service provider. The
run-time properties are used for qualitative differentiation between services.
The qualitative analysis is based on performance cost per materialized tuple
derived from the service interface materialization properties. A cost model
applied in the service differentiation is based on a set of metrics derived from
the service materialization properties.

We observe the effect of the service properties variables across all three
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main classes of service properties as described in Chapter 4 section 4.2.1.1.
We distinguish between the following properties relevant to the qualitative

differentiation of the services.

Uniqueness Uniqueness properties are the group of service interface prop-
erties that indicate whether the service returns disjoint results for different

inputs.

WithDuplicates Property of interest in the Uniqueness group of prop-
erties is With Duplicates that defines whether the result sets r of two or more
distinct queries ¢ may contain the same tuples. Figure 7.2 illustrates the
situation observed in real estate web source materializations described in case

study of Chapter 5. In each materialization, there is a number of duplicate

+Matl - Mat2
256 1
1

: 128 N L

g 651 4 ¢+ L

g LR LA e

= 32 - LA, Y RSN

[- % "’.'..f s, .

E 15 il._ '9,""

T 8- ' e

[

2 4

s .

z

1 T T T
2 20 200 2000

Number of Result Tuples

Figure 7.2: Distribution of duplicates over two performed materializations.

tuples discovered per query. Mat2 materialization is characterized by high
number of duplicates (over 100) for small set of tuples - in the range of 2
to 20. Matl materialization expresses better utilization of the result set, as
its maximum number of duplicates never exceeds 64 duplicates. Both of the
materializations show steady duplicate discovery rate in the range 16 to 32
duplicates for roughly 2000 discovered tuples. Evidently, there was consid-

erable waste of result set space per each issued query. Figures 7.3 and 7.4
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Figure 7.3: Total vs unique tuples in Maﬂ'Figure 7.4: Total vs unique tuples in Mat2.

show the ratio of the total tuples versus the number of unique tuples in ma-
terializations Matl and Mat2. As the page size for Matl was 35 tuples per
result the number of wasted queries were 39078; the page size for Mat2 was
100 with number of wasted queries 6013.

Following the above demonstration we define WithDuplicates metric, the
uniqueness efficiency of the result r’; per each issued query q]’j as a number of

unique tuples discovered in the given result.

Definition 7.1. The materialization cost cost[q’;, r’;] applied by the WithDu-
plicates property to the materialization Ry is defined as cost[q),rs] =
size(ry)/noUniqueTuples.  Both size(r)) and noUniqueTuples are val-
ues related to the cardinality of 7’5 and are defined by the page size
1 < p < MaxPageSize where 1 < size(r’;) < MaxPageSize and 0 <

noUniqueTuples < size(r)).

For instance, if the discovered result set size is 10 and number of unique
tuples is 10 then the materialization call cost per each tuple is 1, if the number
of unique tuples changes to 5 then the cost per each tuple changes to 2, further,

if the number of unique tuples is 2, the cost increases to 5.

Performance Performance group of service properties describe the service
in terms of performance as outlined in Chapter 4 section 4.2.1.1. We take
interest in mazimum page size, maximum result set size and query response

time properties.
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Maximum Page Size Figure 7.5 below shows the materialization Mat1
in terms of the issued number of queries and the returned result chunk size.
As expected the result set page size has major effect on the number of issued
queries per materialization, thus, having a significant impact on the efficiency

of the materialization process. The size of the query set needed for the dis-
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Figure 7.5: Total result coverage obtained with page size 10 and 100.

covery of 50% of the materialization corpus Rj; is around 14000 queries for
page size 100 while the query set size needed for the equivalent materialization
with result set page size 10 - a 10-fold decrease - is close to 120000 queries,
almost a 10-fold increase of the query set size as demonstrated in the actual
materialization performed for the case study of Chapter 5 and outlined in
Figure 7.5.

The experimental results clearly indicate reverse reciprocity between the
result set chunk size and the number of queries needed for the materialization
discovery, i.e., as the page size increases the number of queries decrease and
vice versa - Figure 7.5.

Following the above demonstration we define MazPageSize metric as the
efficiency of the query qg in terms of number of tuples in 7“]’; discovered per

each query.

Definition 7.2. The materialization cost cost[q;f,r;f] applied by the
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MaxPageSize property to the materialization R, is defined as: cost[q’;, r’;]

MaxPageSize/C, where C <= MazPageSize, C' is a constant, an arbitary

value that determines the value range of this cost metric.

The cardinality of result set r’; is defined by the page size 1 < ps <
MaxPageSize and by 1 < p < MaxNoChunks service properties.

For instance, if the prescribed maximum chunk size is 10 tuples per result
set and constant is set C=100, the cost per tuple of this query is 0.1, if the
chunk size is 50 the cost is 0.5 and if it is 100 tuples per result the cost of
tuple is 1.0.

Maximum Result Size Following the same analogy as in Maximum
Page Size it is fair to conclude that service interfaces with large Maxzimum
Result Size property enable us to reach materialization corpus Rjy; with lesser
number of materialization calls than if the maximum result size was mediocre.
The latter scenario implies larger input value dictionary and an increased
number of materialization calls, thus, rendering the materialization procedure
inefficient.

Hence, we apply the same logic as in MazPageSize metric to define the
metric MaxResultSize as the efficiency of the query q;f in terms of number of

tuples discovered per each result 7‘5.

Definition 7.3. The materialization cost cost[q;f ,r;f] applied by the
MaxResultSize property to the materialization R,; is defined as:
cost[q]’;’, r’;] = MaxResultSize/C, where C <= MaxResultSize, C' is a con-

stant, an arbitary value that determines the value range of this cost metrics.

The cardinality of result set r]’,f is defined as for the MazPageSize metric
by the page size 1 < ps < MaxPageSize and by 1 < p < MaxNoChunks

service properties.

Query Response Time Query Response time is the performance ser-
vice interface property that measures end-to-end response time (e.g., average
response time for each page). Figure 7.6 shows distribution of query response

times per number of queries for materialization Mat1. Majority of the queries
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are in the response time range 400ms - 3000ms, with maximum query time be-

ing close to 8000ms. Figure 7.7, shows a snapshot of the query response time
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Figure 7.6: Distribution of query response times per number of queries in Mat1.
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Figure 7.7: Snapshot of query response times per number of queries distribution.

distribution presented in Figure 7.6, here we focus on time range from Oms to
2000ms. The figure clearly indicates that the fastest response time was around
400ms while the majority of the queries fit in the 400ms - 1500 ms range. The
number of queries used was 25786, with total time of 25012210ms - 6.9 hours
- giving an average query time of 969.9ms - for the whole materialization.
Thus, by utilizing the query response time property, we derive Respon-

sePerQuery metric as effective per-query response time of the given service.

Definition 7.4. The materialization cost cost[q — p*,75] applied by the

ResponsePerQuery property to the materialization Rj; is defined as:
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cost[q’;,r’;] = (1 — 1/ty), where t, is response time of executed query q;f.
Evidently, as the response time increases, the query cost increases asymptot-

ically approaching 1 as the query time tends to infinity.

For instance, if the query time is 400ms the cost is calculated as (1 - 1/400)
= 0.9975 or in the worst case of Matl materialization (1-1/8000) = 0.999875.

Service Level Agreement Properties Service Level Agreement (SLA)
properties are the group of properties characterising services in terms of the

level /quality of service offered by the data source service provider.

Daily invocation limit Daily invocation limit is SLA property limiting
daily number of service invocations i.e., limiting the number of queries issued
per day.

Typically if the service is constricted by an SLA agreement, the service
user is required to sign the SLA agreement upon which the user is issued with
an access key uniquely identifying the user with the service provider. On the
basis of the supplied key as a part of the input signature the service provider
tracks and limits the daily number of service invocations.

This scenario was in effect during the materialization Mat2, where the
daily invocation limit was prescribed to 1000 calls per day. The materialization
Mat2 was obtained by issuing 46000 queries over a time span of 46 days. The
average query response time of the daily lots was less than 1000ms per query,
thus, leading to conclusion that if there was not for the daily limit of calls the
M at2 materialization would be obtained within one day.

Clearly the SLA daily invocation limit brings the efficiency of the mate-
rialization process to a standstill. Hence, we define CallsPerDay metric as

materialization query efficiency in terms of SLA driven daily invocation limits.

Definition 7.5. The materialization cost cost[q;f, T;f} applied by CallsPer Day
o=

property to the materialization R,; is defined as: cost[q]’j T
DailyInvocationLimit/C, where C' is a constant value maintaining the ratio
between CallsPerDay costs for different services. Constant C' is defined by

the smallest daily limit of the participating services.
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For instance, if we consider three participating services with
DailyInvocation Limit limit of 1000 for si_1 , 2500 for si_ 2 and 100000 for
si_ 3 the C would be assign limit of si_ 1 ie., C' = 1000. Consequently the cost
per query forsi_ 1 =1;si 2= 2.5 and forsi_3 = 0.01

7.3.1.2 Domain values quality differentiation

This set of characteristics is specific to each output domain used in the Reseed-
ing input value discovery scenario. Each output domain logically connected
to the input domain is characterized by the properties of the attribute values
in the domain and how they appear in the materialization discovery.

For each v € O (output domain), domain value statistics are recomputed
after each materialization call; in query generation phase the queries gener-
ated using the values are queued in descending order from largest to smallest
according to domain statistics scores, and popped from the queue in result
generation phase of the materialization process.

In order to present the matrices related to the attribute domain charac-
teristics let us observe the following definition of the materialization RM.

A structured web source fronted by service interface and subject to the
materialization process can be seen as a single relational table with n data
tuples t1,t2,...,tn over O the set of attributes a;...a; € A that defines the
output interface of ap.

As defined in Chapter 4, an attribute-value graph (AVG), G(V,E) for
attribute’s value domain dV,, is an undirected graph that can be constructed
and formally defined as follows: for each distinct attribute value d; € dV,,
there exists a unique vertex v; € V. An undirected edge e(v;,v;) € E if and
only if d; and d; coexist in one materialization call ¢; where materialization
call ¢; € C' is defined as a tuple < q}’;, r’; >. Each edge e in AVG stands for a
materialization call link between d; and d;.

According to the definition, attribute values from each materialization call
may form a clique if two calls share the same attribute value. The correspond-
ing vertex "bridges’ the two cliques.

Further, by characterizing structured web sources as AVG, materialization

process is transformed into a graph traversal activity as described in Chapter
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5. By starting with a set of seed vertices in the form of initial input dictio-
nary, at each step, following the applied algorithm the materialization process
selects a previously seen vertex v; - a value in D, to discover all the neighbours
of v;.

Depending on the web source structure, an AVG is not necessarily fully
connected. It may consist of several disconnected graphs that form an isolated
cliques or data island in the total data corpus. Thus, an attribute value graph
of an attribute in the output domain of service interface may form a disjoint
union of graphs U(Vi U Vo, EyUEoU...U Va1 U Vi, Eno1 U Ey).
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Figure 7.8: Disjoint graphs distribution in materialization Mat1.

Figure 7.8 shows the distribution of the disjoint graphs of Location out-
put attribute domain, that has been logically connected to the equivalent at-
tribute in the input attribute domain of the access pattern used in reseeding
materialization scenario of Matl materialization process. There are a total
of 1817 disjoint graphs - islands, largest graph containing 8093 vertices, and
605 graphs with only one vertex. Figure 7.9 shows the equivalent reseeding
scenario as described in Figure 7.8, here applied to the materialization Mat2.
Output attribute Location of the Mat2 service interface shows significantly
less disjoint graphs - islands, than Matl. Mat2 totals 35 disjoint graphs with
the largest one having 42244 vertices out of total 43817 vertices in the location

attribute domain - 90% of the total vertices. This implies significantly smaller
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Figure 7.9: Disjoint graphs distribution in materialization Mat2.

attribute Location initial dictionary, as it is sufficient to start the material-
ization with 35 location attribute values, each one being an edge in one of the
disjoint graphs to materialize the whole source.

In contrast, equivalent initial dictionary for Matl needs to contain 1817

location attribute values, each one being an edge in one of its 1817 disjoint
graphs.
Evidently, this information becomes available once the actual materialization
has been performed, thus, rendering this knowledge unavailable for the initial
materialization. However, it may prove to be useful for the consequent ma-
terialization maintenance procedures where existing materialized data corpus
is periodically refreshed following certain maintenance heuristics as hinted on
in Chapter 8.

Following the above defined characteristics of the service interface attribute
domains, we look into following attribute domain characteristics in order to
define domain value optimization scores for values in domains used in Reseed-
ing input discovery scenario. This optimization is to be exploited as part of
general MPMS materialization optimization process and is described in the

algorithm section further below.

Frequency Frequency property is derived by the intuition that the domain

value having higher number of occurrences in discovered result set tuples has a
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higher degree - the number of edges incident to the vertex - in the underlying
graph representation of the given domain, thus leading to more undiscovered
values - vertices.

We define Frequency as optimization metrics of reseeding attribute output
domain domain value d,, in reseeding attribute output domain, as the number
of occurrences of the value in each materialization call ¢ result r* until the

P
value is used in query q;f - i.e., until it appears in the input domain.

Definition 7.6. The optimization score score[d,,dV,]| applied by Frequency
metrics to the reseeding domain value d,, is defined as: score[d,,dV,] =
(1 — 1/ fan), where fq4, is the number of occurrences of the value d,, in each
materialization call’s result until the value is used in a query - i.e., until it
appears in the input domain. The intention here is to assign higher scores to
the values that appear more frequently in the output, thus, prioritizing such

values in the reseeding process.

Example metric application: first, for all newly discovered and all pre-
viously discovered unused seeding values Frequency metrics are recomputed
after each materialization call; second in query generation phase the queries
generated using the values are queued in descending order from largest to the
smallest according to Frequency metrics, and popped from the queue in result

generation phase of the materialization process.

Harvest Rate Harvest Rate property observes number of result sets con-
taining value d,, of the output attribute domain used in reseeding scenario.
We define HarvestRate metrics of reseeding attribute output domain value
d,, in reseeding attribute output domain, as the count of results T;f containing
the value d,,, until the value is used in query q]’; - i.e., until it appears in the

input domain.

Definition 7.7. The optimization score score[d,,, dV,| applied by HarvestRate
metrics to the reseeding domain value d,, in dV, is defined as: score[d,, dV,] =
(1 —1/hrg,), where hry, is the count of result sets containing value d,, , until

the value is used in query q;f.
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As for the Frequency metrics the intention of the high score assignment is
to reward and thus prioritize such values in the reseeding process. As opposed
to low score earners that are penalized and used last. The same logic applies
to all metrics and the derived scores in this group of properties.

Example metric application: first, for all newly discovered and all previ-
ously discovered unused seeding values HarvestRate metrics are recomputed
after each materialization call; second in query generation phase the queries
generated using the values are queued in descending order from largest to
the smallest according to HarvestRate metric, and popped from the queue in

result generation phase of the materialization process.

Number of Discovered Seeds The following metric is derived by the
intuition that values coming for the result sets with larger diversification,
i.e., higher degree of variation of the domain values, have better connectivity
within their domain. We define Diversification metrics of reseeding attribute
output domain value d, in reseeding attribute output domain, as the count
of new reseeding domain values discovered in result r;f and assigned to those

values.

Definition 7.8. The optimization score score[d,, 7“1’;] applied by Diversifica-
tion metrics to the reseeding domain value d,, is defined as: score[dn,r;f] =
1-1/ divrg, where dz’vrlg is the count of new reseeding domain values discovered

in the result set r’;.

As in the metrics above the values with higher discovery rates are awarded
and prioritized in reseeding.

Example metric application: for each result set a number of distinct newly
discovered reseeding domain values is taken and associated with the values.
Queries are arranged in the queue according to the Diversification metrics of
the discovered values, the metrics and queue order are updated upon every

materialization call execution.

Betweenness Centrality By graph theory definition, betweenness central-

ity is a measure of node’s centrality in the network equal to a number of
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shortest paths from all vertices to all others that pass through the node. In
the context of reseeding attribute domain’s attribute-value graph (AVG), this
measure is a number of shortest paths that pass through value d,,.

Following the intuition that the high centrality of the value may lead to
discovery of more unseen reseeding domain values we define BetweennessCen-
trality metrics as a number of shortest paths in domain of values dV,, that

pass through the value d,,.

Definition 7.9. The optimization score score[dn,r];] applied by Between-
nessCentrality metrics to the reseeding domain value d, is defined as:
score(d,, r’;] = 1 —1/bcgy, where beg, is a number of shortest paths in output

domain dV,, that pass through the value d,,.

Example metric application: first for all newly discovered and all previ-
ously discovered unused seeding values the BetweennessCentrality metrics are
recomputed after each materialization call; second in query generation phase
the queries generated using the values are queued in descending order from
largest to smallest according to BetweennessCentrality metric, and popped

from the queue in result generation phase of the materialization process.

7.3.2 Optimization Cost Model

The primary objective of the cost model is to provide a measure of the ef-
fectiveness of the materialization process by computing the ratio between the
performance cost incurred by service calls execution and the materialization
coverage achieved during the materialization process.

Thanks to the formulation of a cost model, it is possible to optimize the
materialization process by adjusting the execution variables (e.g., prioritize
services or queries in the queue) that affect the performance of the process in
order to increase the cost effectiveness of the materialization.

For the given materialization, the task differentiation between participat-
ing services is based on the ratio between the accumulated cost and the
achieved materialization coverage per each service. Furthermore, a service
that achieves more result coverage with less cost is prioritized on the service

queue during the materialization process.
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Concretely, in the materialization process context the objective of the cost
model is to quantitatively characterize parts of the call2service coupling algo-
rithm.

A) Cost model for service differentiation is based on service materialization
call cost per tuple. The cost is derived from materialization service properties.
The cost formula derives from the service interface materialization property
metrics, it is expressed per materialization call ¢ as

cost(c) = Wops x QueryPageSize + Wy g x WithDuplicates + Wepp X
CallsPerDay + Wgrpg % ResponsePerQuery, where Wops,Wws, Wepp and
Wrpg are weights associated with each metric, 0f < W < 1f.

Table 7.1 exemplifies differentiation between MovieByT'itle access pattern
mapped services {IMDB1, GM1, GM2} considering their service materializa-
tion property metrics obtained after each service executed a materialization
call, the cost formula assumes equal significant of each property in the calcu-
lation W = 1. The example also shows newly established order of services on

the basis of their cost per tuple.

SI WithDuplicates QueryPageSize ResponsePerQuery  cost(c;) % SI
O
IMDB{¢;) 1-9/10 1-10/10 1/4500 0.1002 % IMDB(c;)
GM1{¢) 1-5/10 1-5/10 1/9000 1.0001 Fzg GM2(¢;)
GM2{¢) 1-1/20 1-20/20 1/6400 09501 2 GMl(¢)
o

Table 7.1: Services materialization metric differentiation.

B) Cost model for query differentiation is based on domain value statistics
scores. The cost formula derived from domain value statistics for domain
value d,, is as follows:

score(d,) = Wpx Y1 freq(d,) +Wgr x Y1 hRate(d,,); where Wy and
Wyr are weights associated with each score. During the query generation
phase queries are ordered by the scores of their values.

Table 7.1 exemplifies computation of Year scores for the MovieByT'itle
materialization and consequent ordering of expressed queries. The score for-

mula assumes equal significance of each statistics in the calculation, W=1.
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YEAR frequency harvestRate score(d,) % Q

1999 1-1/78 1-1/7 18442 B gP <2003 >

2003 1-1/56 1-1/12 1.8987 % P < 2008 >

2008 1-1/123 1-1/10 1.8918 % qP < 1999 >
o

Table 7.2: Output domain value metrics differentiation.

7.3.2.1 Optimized Materialization Algorithm

In this section we provide a generic optimization algorithm 8 based on the
materialization process defined in Section 4. The algorithm implements the
optimization approach by applying the cost model delivered augmentation to
service interface selection strategy and query queue selection strategy parts of
the call2service coupling. The algorithm is shown in SPMS materialization
scenario with SSQ execution model.

The algorithm assumes an initial, preconditioning phase where (i) for
each input domain attribute of the participating service, an initial dictionary
initDict is provided via the Dictionary input value strategy, (ii) a starting
query sequence is initiated by creating queries from the initial dictionaries,
(iii) a sequence of service interfaces is instantiated, the sequence features nat-
ural order of services as initially their execution cost is unknown.

By loading the initial set of queries, the initial phase of the SPMS materi-
alization ensures the feasibility of the materialization. The algorithm assumes
presence of domain-matching attributes in input and output domains, thus,
enabling sourcing of the input domain values via the Reseeding input value

strategy.
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Algorithm 8 Optimized Materialization Algorithm

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

var {SI} // sequence of si mapped to feasible ap
var best__si // si with best materialization properties., i.e., si with least execu-
tion cost incurred
var best_mcall //mcall containing query expressed by value(s) with highest
domain stats scores
var {C'} // materialization call sequence of legal ap
var R, //wanted materialization
var V7 //input domain values set
var feasible__ap < Preconditioning() // ap with available queries in the query
queue
{C} « legalyp.get MaterializationSequence()
{81} < legal,p.get M appedServices()
//Generic Optimization procedure
while ~Cov,,,|[{C} # 0 do
bests; <— {SI}.get HeadElement()
best_mcall < {C}.getHeadElement()
best_mcall.executeQuery(best__si) //call2service coupling
R, < best_mcall. Result
// service interface selection strategy augmentation
best_si <«  cost(bestpcall) = best_mcall.getWithDuplicates() +
best__mecall.getQueryResponseTime() 4 best_mcall.getQueryPageSize()
{ST}.put(best__si)
{SI}.reorder ByCost()
// query queue de-queuing strategy augmentation
for each v in best _mcall. Result do
score(v) = freq(v) + hRate(v)
Vi <+ Reseeding(v)
{C}.createNewQueries(VI)
{C}.reorder ByQueryQueue()
end for

end while
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Algorithm 9 Greedy Materialization Algorithm

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

var {ST} // sequence of si mapped to feasible_ap
var best__si, win__si // best_si for sampling phase, win__si winner of the sam-
pling phase used in progressive phase
var best_mcall //mcall containing query expressed by value(s) with highest
domain stats scores
var {C'} // materialization call sequence of legal ap
var R,, //wanted materialization
var V; //input domain values set
var feasible__ap < Preconditioning() // ap with available queries in the query
queue
var {C} < legal,p.getMaterializationSequence() // materialization call se-
quence of feasible_ap
var {SI} < legalyp.getMappedServices() // sequence of si mapped to feasi-
ble_ap
var {Csgmpie} < {C}.getSubset(n) // allocates subset of C
//Sampling phase
for each cin{Csompie} do

GenericOptimizationProcedure()

{SI}.reorder ByCost()

win__si < {S1}.getHeadElement()
end for
// progressive materialization phase
while =Covp|[{C} # 0 do

best_mcall < {C}.getHeadElement()

best__mecall.executeQuery(win__si) //call2service coupling

R, < best,,call. Result

for each v in best mecall. Result do

score(v) = freq(v) + hRate(v)
Vi < Reseeding(v)

end for

{C}.createNewQueries(Vr)

{C}.reorder ByQueryQueue()
end while
// scraping materialization phase
while =Covp|[{C} # 0 do GenericOptimizationProcedure()

end while
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7.3.2.2 Greedy Materialization Algorithm

The optimized call2service coupling algorithm proposed in the previous sec-
tion, although able to deliver an improvement to materialization efficiency on
the whole, may experience performance degradation as the number of services
increases, as shown in our experimental results in Section 7.4. To improve
materialization scalability for access patterns with high number of services we
propose a greedy variation 9 of the original algorithm.

The greedy algorithm is divided into following phases:
(i) a preconditioning phase as in the generic optimization algorithm,
(ii) a sampling phase where a subset of calls is executed and scored against a
sequence of service interfaces selected from {SI} in order to establish the best
performing service interface wing;,
(iii) a progressive materialization phase where de-queued materialization calls
are coupled exclusively with wing; until a predefined threshold coverage Covr
is achieved, this assumes Covy < Couy,, (iv) lastly if Cov,, is not reached, a
scraping materialization phase is initiated in which materialization calls are
again coupled against all services interfaces in {SI} as in generic optimization
algorithm. The scraping phase is necessary due to Vi ap = (VisiiU...Visin)
where n = |SI|, and Voap = (Vosi1U..Vosin), where n = |SI|, access
pattern properties. A scraping materialization phase is envisaged as a last

resort attempt to reach Cov,,, despite the potential efficiency decrement.

7.4 Empirical Study

We have designed our empirical study to be relevant to the underlying SeCo
search requirements. As described in Chapter 4 access patterns and their ser-
vices are organized in SDF and linked via their semantic relations to Domain
diagram (DD). This is further put into service of SeCo exploratory search
paradigm [Bozzon 2011b] where users can express their queries directly upon
the concepts known (registered) to the system such as jobs, restaurants, the-
aters, shops etc.

The exploratory query interaction paradigm proceeds as follows. The user
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starts by selecting one of the available objects, and submits an “object query”
to extract a subset of object instances. For example, a user could choose a
“jobs” object, and ask for “java” jobs in some “salary range” in the “CBD” area
of “Auckland City”, or choose a “shop” object, and ask for “toys” merchandises
in the “West area” of “the Greater Auckland” in a given “price range”. At any
stage, users can “move forwards” in the exploration, by adding a new object
to the query, starting from the connections available in the DD and from the
objects that have been previously extracted.

By having this type of SeCo Search in mind we have based our experi-
ments on a few common concepts, their access patterns and mapped services
registered in the SDF.

We evaluate the performance of the proposed optimization model and the
algorithms outlined in Section 7.3.2 in terms of coverage over the number of
materialization calls efficiency E¢, and coverage over period of time efficiency
Er. The goal of the experiments was to establish the materialization efficiency
increase achieved by performing optimized materialization in comparison to a
non-optimized solution outcome.

We considered a single pattern multi service scenario (spms) in different
materialization call sequence execution models as described in Section 4.5
of Chapter 4. For each materialization algorithm experiment we compared
optimized serial execution models performances with parallel execution model,
and random non-optimized execution model performance.

The empirical study was performed by considering the access pattern
shoppingltemByLocation which takes shopping item location and item type
as input attributes, where IgnoppingitemByLocation = {ItemType, Location}
and OghoppinglItemByLocation = 11temName, Price, SaleT'ype, Location}. The
item type input dictionary was populated by a dictionary input strat-
egy which used a static, pre-populated list of input values Dictremrype =
{"books' toys' clothes'}. The location input attribute was populated by us-
ing a reseeding strategy via the domain-matching attribute Location in the
output.

To perform the evaluation, we created a master database composed of

100K listed items from several existing on-line US auction and shopping sites.
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A domain of US postcodes found in the collected shopping items database was
used as location input attribute domain. The domain size of the postcodes re-
seeding output attribute was approximately 8000, a randomly selected subset
of which was used as an initial seed dictionary. For each of the materializa-
tion (result generation) strategies 30 runs were performed; to avoid biases in
the evaluation, the location input attribute conforming to the reseeding input
strategy was initialized at each run by a randomly selected subset of Location
dV as init Dictrpeqation Of size 50.

Provided are several initial first chunk (page)  queries:
qi <’books’’43314’>, ¢3< ’books’, '23857'> and ¢i<’books’, ’80002">,
qi<’toys’;43314’>, q¢i< ’toys’, '23857> and ¢i< ’toys’;’80002'>, g¢i<
‘clothes’, '43314’>, gl < ’clothes’, '23857"> and ¢ < ’clothes’, ’80002’>.

The resulting materialization coverage increase had been averaged between
runs for each strategy and observed in intervals of 10% with regards to the
overall materialization size.

Several experimental source databases were created as a subset of the mas-
ter database. Each source consisted of a varying ratio of shared and unique
items, thus, maintaining different levels of heterogeneity between sources.
Each source was allocated a time value that was used as an average for deriv-
ing random, normally distributed query response times - Table 7.3 for each

materialization call variance o = 0.2.

SI Unidue Response Time mean(ms) Max Page Size  Max Result Size
Tuples (%)

ShopltemByLoc_1 80 5100 10 100

ShopltemByLoc_2 60 4000 20 100

ShopltemByLoc_3 40 8200 10 100

ShopltemByLoc_4 40 6500 30 100

Table 7.3: Relevant properties configuration of the experimental source databases.
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Experiment Setting We ran our experiments on a Dell Precisions T1500
workstation under Ubuntu Linux 12.04 LTS, Intel Core i7-870 CPU, 8GB of
DDR3 SDRAM, and NVIDIA Quadro FX 580 graphics card and 320GB HDD.
For the purpose of the experiment the source databases were fronted by a
REST web service that interfaced the search process. The materializer module
ran under Apache Tomcat 7.3 web container, the materialization was persisted
into PostgreSQL 8.3 DBMS. The materialization module, the SeCo search
engine and the database were hosted on its own Oracle VirtualBox based
Ubuntu virtual machine. The experimental source databases were hosted on
PostgreSQL 8.3 DBMS under their own Ubuntu virtual machine with the

search REST web service deployed to Apache Tomcat web container.

7.4.1 Coverage Efficiency for serial single queue (SSQ)

execution model

Firstly we observe performance of the optimization algorithms in the serial
single queue (SSQ) execution model. Figure 7.10 delivers two sets of results
‘Service optimization” where just service interface selection strategy optimiza-
tion were applied and ‘Full Optimization’ where both service selection and
query queue prioritization were applied.

As expected the single queue nature of the execution process obscures
the effect of the domain value characteristic metrics as analysis is performed
against results obtained across all participating services contained in the single
query queue. Figure 7.10 demonstrates this behaviour, as inclusion of the
query queue optimization - Full Optimization fails to deliver considerable
improvement. The greedy algorithm performs better due to the prioritization
of the single ’best performing service’ throughout the process, thus allowing
the domain characteristics analysis and consequent query queue ordering to be
performed against the single source. The upper segment of the Full Opt result
shows mild improvement in the obtained coverage due to inclusion of the query
queue optimization. This also shows that the prioritization of the "popular’
nodes in the domain distribution delivers small but constant improvement to

the efficiency of the materialization process.
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Figure 7.10: SSQ Service Optimization vs Full (service selection and query queue) Opti-

mization.
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Figure 7.11: SSQ performance Full (service selection and query queue) optimization results.
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Figure 7.11 provides the result of the SPMS materialization scenario ob-
tained by performing non optimized materialization process 'Random’, two
optimized processes Full Opt and Full Opt Greedy and a parallel non op-
timized process. The benefits of the optimization approaches were evident
as both optimization algorithms consistently achieved the best coverage with
the least communication effort. The generic optimization algorithm (Opt) ex-
pressed 1.8-fold coverage E¢ efficiency increase at 50% of the materialization,
while the greedy optimization algorithm (Greedy Opt) shows a 2.4-fold effi-
ciency increase. Parallel process shows 1.4 times efficiency increase in compar-
ison to the random process. The efficiency at 70% coverage remains increased
at similar levels for both generic Opt and Opt Greedy algorithms.

This efficiency increase illustrates the importance of the sampling phase of
the Greedy algorithm as this phase clearly elects the best service in terms of
its performance qualities - low response times, low duplicates, high result size,
and reseeding domain characteristics. This further enables the progressive
phase to efficiently reach the wanted materialization coverage by using just
the elected, sampling phase winner service.

The parallel process fair result exemplifies the nature of the parallel execu-
tion sequence where all services are materialized in their own data acquisition
phases, thus, effectively performing several individual materializations in par-
allel.

Worth noticing is the failure of non-optimized process to achieve 100%
coverage. This illustrates the benefits of the optimization approaches versus
issues outlined in section 7.1 - low reseeding domain coverage, thereby provid-
ing inadequate input dictionary, high duplicate levels and small result sizes. It
also stresses the drawbacks of the serial single queue execution model where
a once executed a query is unreachable with respect to other participating
sources.

We have clearly demonstrated that domain distribution based query prior-
itization together with service optimization deliver significant improvement to
the efficiency of the materialization process and delivers full accomplishment

of the materialization task.
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7.4.2 Coverage Efficiency for serial multi queue (SMQ)

execution model

As a contrast to the SSQ model, serial multi queue execution (SMQ) allows for
query queue prioritization to be executed for every participating service. This
in turn allows for domain distribution of each service to be fully exploited in
the optimization process. This was evident in the optimization performance
comparison between service profile based optimization versus the optimization
utilizing both service selection strategy and query queue de-queuing strategy
optimization methods, as shown in Figure 7.12.

The influence of the domain analysis was particularly pronounced in the
50% to 80% of the materialization coverage i.e., once enough of the domain was
discovered to make an impact on consequent query queue prioritization. The
positive effect diminished after coverage exceeded 80% when all approaches
deteriorated. This shows that after the coverage reaches a certain level, most
returned tuples overlap with the previous results. In the literature this is
referred to as the 'low marginal benefit’ phenomenon in query-based database
crawling [Wu 2006].
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Figure 7.12: SMQ Service Optimization vs Full (service selection and query queue) Opti-

mization.

Figure 7.13 shows coverage efficacy increase for generic optimization Full
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Figure 7.13: SMQ Full (service selection and query queue) optimization performance results.

Opt and greedy optimization Full Opt Greedy algorithm. At 50% coverage
the efficiency increase was 1.7-fold for generic optimization and 2.5-fold for
greedy optimization algorithms when compared to the random, non-optimized
process. However the generic optimization process decreased in efficiency and
meets the non-optimized solution at 75% of the achieved materialization. This
matched our expectation that due to the exhaustion of the expressive "popular’
input domain values in individual source queues as well as the general drain
of unique results within sources the efficiency would decrease after a certain
percentage of the coverage was exceeded.

Parallel execution model achieved steady performance of 1.5 times perfor-
mance increase, just below the generic optimized algorithm performance. It
showed the same efficiency decrease at 75% of the coverage as the Opt algo-
rithm. The greedy optimization still maintains a two-fold efficiency increase
at 80% of coverage. It gradually decreased once it entered the scraping phase
i.e., reintroduced all sources to the process.

The experiments also outlined the difference in efficiency scale of the exe-
cution models. The SMQ execution maintained the same queries vs. coverage
ratio up until 50% of the coverage. The scale of the MQ execution drastically

increased after 70% of the coverage was exceeded as queries were executed
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against all participating services in the scrape phase as opposed to SQ execu-
tion where queries once executed were unavailable to the other sources.

In terms of efficiency scalability our results suggest better suitability of
the proposed approaches in the context of smaller, output domain condensed
data sources where materialization task is possible against limited number
of services. The introduction of sparsely populated, duplicate ridden sources
leads to the degradation of the process efficiency due to the increase of mate-

rialization calls issued to reach the wanted coverage.

7.4.3 Time efficiency for SSQ and SMQ) execution mod-

els

Figure 7.14 illustrates the increase in FErp efficiency of the materialization
process achieved by applying generic and greedy optimization algorithm to
serial single queue model (SSQ). The time efficiency increase caused by generic
optimization algorithm Opt was 3-fold and almost 4-fold for the greedy variant
of the optimization algorithm.

The parallel process, as expected matched the 4-fold efficacy increase of the

greedy algorithm, even surpassing it in the final 20% of the materialization.
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Figure 7.14: SSQ Time optimization performance result.
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Figure 7.15: SMQ Time optimization performance result.

Time dimension efficiency increase of SPMS materialization process with
SMQ execution model is shown in Figure 7.15. It confirmed and amplified
the pattern of efficiency increase observed in the single queue execution mode
experiment. The generic optimization increased Er efficiency 3-fold at 50%
coverage while the greedy variant increase is 5-fold. This trend was maintained
at 80% coverage, gradually decreasing towards the full materialization due to
the general unique tuples exhaustion across the involved sources.

As expected, parallel execution model matched the Greedy Opt algorithm

and surpassed it in the last 20% of the materialization.

7.4.4 Live large data source evaluation

To further assess validity of our optimization approach we executed a material-
ization of the stack exchange group of sites [SOCareers 2014, CareerJet 2014]
with a focus on job related search. The aim of the experiments was as in
the previous case to establish the materialization efficiency increase achieved
by performing optimized materialization in comparison to a non-optimized
solution outcome.

We considered a single pattern multi service scenario (spms) in different
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materialization call sequence execution models as in the previous experiment.
For each optimization algorithm experiment we compared optimized serial sin-
gle queue (SSQ) and serial multi queue (SMQ) execution model performances
with parallel execution model, and random non-optimized execution model
performances.

The empirical study was performed by considering the access pattern
jobBy K eyword& Location which takes a job location and a job search keyword
as input attributes I = {jobKeyword, Location} and retrieves
O = {jobT'itle, jobType, JobProvider, Location}.

The job search keyword input dictionary was populated by a dictionary
input strategy that used a static, pre-populated list of input values Dict =
{"Javaprogrammer' Sysadmin/’, ..., Civilengineer'} of size 50. The location
input attribute was populated by reseeding from the location attribute in the
output domain.

We provide few initial first chunk (page) queries gi <’Java programmer’,
‘New York’>, g2<"Web designer’, ‘Chicago’> and ¢i<'Dentist’, ‘Houston’>.
As both services returned paginated results we ran paged queries until the
result set execution, that is an empty result page was reached.

We performed 20 materialization runs over a period of time. The ma-
terializations were performed until the process exhausted all the generated
queries. The size of the queried data sources was unknown in advance due
to the constraints imposed by the service level agreement of the materialized
web sources, thereby it was impossible to pre-set the wanted materialization
size. The final materializations size on average was close to one million tuples.

Experiment Setting We ran our experiments on a custom built worksta-
tion under Ubuntu Linux 13.04 LTS, AMD FX(tm)-8320 Eight-Core Proces-
sor, 3500 Mhz, 4 Core(s), 8 Logical Processor(s), and NVIDIA GeForce GTX
650 graphics card and 1TB HDD. The materializer module ran under Apache
Tomcat 7.5 web container, the materialization was persisted into PostgreSQL
8.3 DBMS.

The results of serial single queue (SSQ) performance efficiency E¢ matched
our expectations. The full greedy optimization outperformed other approaches

from 1.5-fold in case of generic optimization to 3-fold in the case of random
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Figure 7.16: SSQ Full optimization performance results.
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Figure 7.17: SMQ Full optimization performance results.
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non-optimized experiment result. Interesting behaviour appears in the upper
segment of the Full Opt result where a sudden surge in coverage efficiency
may be observed. We explain this feature by the nature of the single queue
execution where one of the services 'wins’ and holds its lead until the queue is
exhausted while the greedy algorithm in this segment is already in the scraping
phase finalizing ’leftover’ services of lower coverage reach.

The coverage efficiency of the serial multi queue (SMQ) proved the greedy
algorithm to be a reliable performer, winning over other approaches. In this
experiment the multi queue nature of the execution model maintained stable
performance over all segments of the materialization execution.

Figures 7.18 and 7.19 provide further evidence of the increase in Erp
time efficiency of the materialization process achieved by applying generic
and greedy optimization algorithm. Evidently, the unpredictability of the
Internet environment plays a role as the Ep time efficiency increase is not
so pronounced in the serial single queue model execution as it is in a case
of more controlled environment in the first set of experiments. The parallel
execution widened the performance gap by more than 20% in all segments of
the materialization coverage. This also demonstrates a limitation of the single
queue execution model - once executed against a not so productive service a
potentially expressive query is unrecoverable for the other services.

Nevertheless, in the case of serial multi queue model the Time Opt Greedy
algorithm closed the performance gap with the parallel execution to around

10% in most of the materialization coverage.
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Figure 7.18: SSQ Time optimization performance result.
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Figure 7.19: SMQ Time optimization performance result.
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7.5 Chapter Summary

In this chapter we identified and formally defined factors acting detrimentally
to the web source data materialization. We identified and formally defined
a set of web data source properties relevant to the materialization process
performance. We also established a set of domain value characteristics that
significantly influence materialization query expressiveness. We proposed a
set of metrics and a subsequent cost model to be used in the optimization
algorithms tackling aforementioned detrimental factors.

We demonstrated the effectiveness of our optimization approach over a
series of experiments. The experiments were conducted considering several
materialization execution models against a medium size data set realistically
mimicking 'real world’ situation. The results proved the effectiveness of the
approach as the improvement of materialization efficiency in most cases were
close to 3-fold when compared to the non-optimized materialization algorithms
results.

We further demonstrated the validity of the optimization approach by
performing a series of materializations of the actual web data sources that
resulted in obtained materialization size close to one million tuples. The
performance increase of E¢ efficiency was analogous to the first set of results.
The E¢ efficiency increase was present in the live experiment results although
not so pronounced as in the more controlled environment of the first set of
experiments.

Most of the approaches tested were able to materialize the first 50% of
the given materialization task in an efficient and timely manner. However,
the efficiency of the algorithms performed in the second parts of the materi-
alization process varied. The greedy algorithm performed optimally in both
single queue and multi queue execution, however with decreased efficiency as
the scale of the process increased in multi queue scenarios. In all tests domain
structure driven query queue optimization achieved the best results once 50%
or more of the materialization coverage were exceeded, that is, optimal do-
main distribution knowledge was obtained. Given this empirical evidence it is

fair to conclude that if the domain distribution of reseeding values were known
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a priori the query queue based optimization would deliver a more significant
optimization result.

Our optimization goal was to optimize the materialization process while
maintaining the right leverage between performance and coverage of the ma-
terialization task.

We intentionally left the ‘right leverage’ indicator loose as it is hard to
predict the right in the search task context. Sometime we materialize just
a fraction of the source volume and that is sufficient to feed the search pro-
cess until a more responsive and result generous service is found. Sometime
even with most of the source materialized the incoming query might request
results from the remaining - not materialized - source subset, thus rendering
the materialization effort futile. However, in the context of the given material-
ization task the empirical study has proven that a considerable materialization
optimization level has been achieved. In both SQ and M(Q materialization ex-
periment full optimization have achieved 3-fold and 2-fold improvement in
50% and 75% coverage of the materialization task over un-optimized, random
materialization run. We expect this to be a valuable contribution and the
right leverage for most of the search scenarios where materialization tasks for
the specific, focused domain are required.

The open question remains how the proposed approaches perform against
very large sources with 10 - 100 million tuples sizes. The main obstacle is the
availability of such sources as they are typically fronted by fairly conservative
SLAs. This makes our testing routine pointless as the time necessary to

achieve one materialization test might stretch over several months.



CHAPTER 8§

Limitations and Future Work

8.1 Introduction

In this chapter we address the limitations of the presented research. We discuss
their impact to the materialization solution and outline a possible way forward
in overcoming these limitations.

We discuss shortcomings in the areas of materialization optimization,
query containment, and materialization maintenance. Moreover, we present a

possible way forward in terms of possible solution and research continuation.

8.2 Research Limitations and Future Lines of

Work

Whilst we have provided major contributions to the materialization formula-
tion problem by characterizing web materialization dimensions, providing a
feasibility analysis model and delivering materialization optimization, much
room still remains for further improvement of materialization building blocks
as defined in Chapter 4.

Query containment as one of the main concepts behind view material-
ization has not been given enough focus in this work. The idea of relaxing
materialization query to increase the yield of the obtained results set is a
paramount for the improved optimization of the materialization process. At
present, materialization process is still constrained to equivalent rewrites of
the provided queries. An addition of the query expansion algorithm to the
optimization process would deliver ultimate optimization effect, as this would
enable materialization of potentially whole domains with minimum input dic-

tionary. For instance, query expansion from ‘Select Thai restaurants in Herne
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Bay, Auckland’ to ‘Select all restaurants in Auckland’ is set to achieve full
Auckland restaurant domain in just one issued query. In the remainder of
this section we will present a potential way of delivering this improvement of
our research.

One further limitation of this research is the lack of a dedicated sampling
routine. A materialization attempt may prove to be futile if a selected service
is unresponsive, duplicate-saturated or simply not conforming to the pro-
vided initial dictionary. Even though presented optimization algorithm aims
to omit such services during materialization execution this may still prove
to be inadequate. Concise materializations are required to satisfy needs of
domain focused, specific results driven search scenario such as exploratory
search. To limit such risk and provide desired level of precision the materi-
alization process needs to be enhanced by addition of a remote data source
sampling routine. Naive implementation of sampling routine is based on the
SDF Domain Diagram contained entities and their focuses. For instance, for
the given set of access patterns, their focus entries and defining attributes are
considered. In case of access pattern RestaurantByCuisine we consider an
entity with focus Restaurant and attribute C'uisine, or in case of access pat-
tern Theater By Location, entity with focus Theatre and attribute Location,
to perform quick sampling exploration of the available services. Thus de-
fined ‘sampling heuristics’ is further employed in some of the domain graph
sampling routines such as Random graph walk or Random Jump sampling
[Leskovec 2006] to obtain reduced yet representative sample of the domain
graph for the given web sources.

The topic of materialization maintenance has also been left out of the
scope of the thesis due to its own complexity and size.

In the following subsection we provide some thoughts on a possible way
forward in regards to materialization optimization and query expansion as

well as also our view of a potential materialization maintenance procedure.
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8.2.1 Enhanced Optimization by feasibility analysis

variables

One of the future lines of work lies in expanding the materialization optimiza-
tion routine by considering optimization enhancements delivered through the
feasibility analysis model.

As feasibility solution analysis relies on the methodology based on graph
properties of the implemented model, the measures described in this section

are based on notions defined in the graph theory [Easley 2010].

8.2.1.1 Shortest Distance

Shortest distance is based on the notion of shortest path from the ini-
tial marking My in a given reachability set R,,, at one end and the exe-
cutable set of transitions L,,, as imposed by the feasibility solution at the
other end. The idea is to prioritize access patterns that satisfy more de-
pendencies. We do the prioritization by taking the count of transitions

in L,,, executed to reach a certain place in R,,,. As illustrated in Fig-

e R

Tcap3

Figure 8.1: Shortest Distance metrics example.

ure 8.1 initial marking My, = 1,0,0,0,0,0,0,0,0,0,0 reaches sequence

My =1,1,1,0,1,1,1,0,1,1 following a sequence of transition firings - T'cq1,
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temp1, TCap2, tCmpa, TCaps. Rup(Mo.mp) = p0, pl, p2, p4, p5, p6, p8, p9, while
Ly (Mo ap) = Tapt, tempr, T'Cap2s tempa, TCaps-

To reach p8 and p9 it is required to fire five transitions -
T'Capts tempt, T'Cap2, temp2, T'Capz, While to reach p4, pd, pb - three transitions
are fired - T'cop1, tCmp1, T'Capz, and just one transition - T'c,y to reach pl and
p2.

Following the above demonstration we define ShortestDistance metric, the
prioritization measure based on services position in the materialization feasi-

bility solution.

Definition 8.1. The materialization cost applied by the ShortestDis-
tance property to the materialization Ry is defined as: cost[qs, k] =
NoO fTransitions/C, where NoOfTransitions is the size of L,,, where 1 <=
NoO fTransitions, and C' is a constant, arbitrary value, determining the

range of the cost metrics.

For instance, if NoOfTransitions leading to the service in the feasibility
solution is 5 and C=10 then the service materialization call cost is 0.5, if
NoOfTransitions=1, the cost is 0.1.

8.2.2 Query expansion

Current research has not addressed the query expansion concept to the de-
sired degree as suggested in the introduction to this thesis. Hence, another
limitation of the current research and potential area for improving web materi-
alization efficiency in terms of query containment is semantic query expansion
[Bhogal 2007]. One possible way of query expansion is illustrated further be-
low.

In SeCo service description framework context an issue of query expansion
and web data materialization as a main area of interest can be approached as
follows.

In the domain diagram definition there is a space for enhancement in the
definition of attribute types. The enhanced data type will enable us to define

the semantic relations between data domains, their attributes and repeating
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groups. Semantically aware attributes will provide us with the logical con-
nections between different domains not just at the conceptual level but also
at the logical and physical levels thus enabling us to reformulate, expand or
shrink multi domain queries on the fly at the run-time.

In order to do so we will define a complex type that describes Domain
attributes as:
Data Type the actual type of the attribute; it consists of: type field - String,
Number, or Boolean; isRanged field - Boolean, true if ranged, false otherwise;
Range field - the range of the attribute if applicable;
Semantic Type a type describing attribute semantics, it consists of: super-
type field - attribute’s predecessor in the logical sequence (ontology); Subtype
field - attribute’s successor in the logical sequence (ontology); the ontology
identifier field;
Rank describes the ranking abilities of the attribute, it consists of: isRankable
field - Boolean true if rankable, false otherwise; Ranking function pointer(s) -
pointer(s) to ranking function(s) applicable to the attribute.

AttributeType
Semantic Type(Predecessor, Successor, OntolD)
DataType(Type(String, Number, Boolean), isRanged, Range)
Rank(isRankable, RankFunctions]])

If we consider attributes ZipCode and Postcode found in two access
patterns in different domains, assuming their semantic connectivity and
postcode being a predecessor of the zip code, their complex type is defined
as:

Postcode
SemanticType : (null, ZipCode, CodeOnto)
DataType : (Number, true,0..n)

Rank : (true, [f1, fa, ..., fa)])

ZipCode
SemanticType : (Postcode, null, CodeOnto)
DataType : (Number, true,0..n)
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Rank : (true, [f1, fa, -y fn])

Once we have the complex type that reflects semantic relations between

attributes defined, we apply it as follows to the SDF levels.

Conceptual Level If we apply the semantically enhanced attribute at the
domain diagram - conceptual level we observe the following:

Provided we have two Domains
Restaurant(Name, Location(Street, Suburb, City, ZipCode, Region, Coun-
try), Phone, Url, Rating, Category(Name))
which describes a class of web objects containing all information about restau-
rants.

GeographicLocations(Longitude, Latitude, Number, Street, Suburb, City,
Postcode, Region, Country, Continent)

which describes a location geographically.

Further, we define logical sequence or ontology and present it with the seman-
tically aware - complex type attributes as proposed above.
GeoLocoOnto(Street — Suburb — City — Province — Country)

Then, we apply it to the appropriate attributes in the domain diagram; in
the Restaurants domain Street, Suburb, City, ZipCode, Region, Coun-
try and Number, Street, Suburb, City, Postcode, Region, Country
in the GeographicLocation domain.

Therefore, after the complex type application to the attributes of both
domains with the above described complex types, we end up with a semantic
cross section between these two domains. If we describe it via a hyper-graph
we see that each attribute is a node and each hyper-edge a semantically con-
nected view between these domains.

The definitions of the boundaries (or frontiers) of the multi-domain cross-
sections are contained within the Rank of the complex type where ranking
capabilities of the attributes and corresponding rank functions are described.

In the following example we define two Domains with the TimeLine ontol-
ogy applied to their attributes’ complex types:

Movies(Title, Director, Score, Year, Language, Genres(Genre), Open-



8.2. Research Limitations and Future Lines of Work 191

ings(Country, Date), Actors(Name))
and TemporalLocation(Second, Minute, Hour, Day, Month, Year, Century)

Then we define and apply the complex type to TimeLine ontology
TimeLineOnto(Year — MonthDay — Hour — Minute)

Clearly, there is a semantic connection between the release year, the open-
ing date of the Movies domain and the TemporalLocation domain via the
TimeLine ontology. Furthermore, the Openings repeating group also contains
a semantic connection between its country attribute and the corresponding
attribute in the GeographicLocation domain, as described above, via the Ge-
oLoco ontology.

Hence, there are three different domains semantically connected and if
represented by a hyper graph, its nodes denote attributes and hyper-edges
describe their semantic connections (views), and the frontier of the cross-

sections is defined by the ranking functions present in the complex type.

Logical Level We observe a query about a particular restaurant identified
by its location attributes ‘suburb’ and ‘zipcode’ to which we apply an access
pattern that is associated with the above described Restaurant and Geograph-
icLocation domains.

If there is a query that looks for a particular restaurant with suburb and
zip code as input attributes then the query expansion will be performed by
sourcing all the restaurants in the suburb’s city and using all the available zip
codes or simply a wild card. Worth noting is, even though the access patterns
are related to particular domains, that there is a semantic connection defined
and present between Restaurant and GeographicLocation via GeoLocoOnto
ontology and contained in the attributes complex type definition.

DEFINE QUERY RestaurantPlan($X:Suburb, $Y: ZipCode ) AS
SELECT R.

FROM Restaurant (iSuburb:  $X, iZipCode:  $Y) AS M USING
YELP _Wrapper

In this case input attributes’ complex types are defined as:

Suburb Semanticl'ype : (City, Street, GeoLocoOnto) DataType
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(String, false,null) Rank : (true, [f1, fa, .., fn])

ZipCode SemanticType : (Postcode,null, GeoLocoOnto) DataType :
(Number, true,0..n) Rank : (true, [f1, f2, .., fa])

Further, in order to resolve the actual value of the semantically expanded
suburb type we construct a query resolving the super-type actual value as
shown below. This assumes that there is a set of domains in the domain
diagram and an access pattern registered that is capable of handling this
expansion i.e., the GeographicalLocation described above and semantically
bound to the Restaurant domain via GeoLocoOnto ontology.

The query below utilizes two access patterns, one for Restaurant domain
and another one for GeographicLocation domain.

AP__Restaurants
I = Location.C'ity, Location.ZipCode, Category.Name
O = Name, Location.Street, Location.Suburb, Location.Country, Phone, Url, Ratingg
AP Location
I = Location.C'ity, Location.ZipCode
O = Location.County, Location.Country, Location.Street, Location.Suburb
NB. The subscript R denotes a ranking attribute in the output domain.

First, the query is resolved as follows:

DEFINE QUERY RestaurantPlan($X:Suburb, $Y: ZipCode ) AS
SELECT R.

FROM  Restaurant (iCity: Suburb. Predecessor, VAL B
Code: ZipCode.getRangeAll) AS M RANK BY iRat-
ing:Rating.isRankable.get Function (i)

Then expanded into the query below it shows the expansion iCity with
interpolation:

DEFINE QUERY RestaurantPlan(3X:Suburb,$Y: ZipCode ) AS
SELECT R.

FROM  Restaurant (iCity(Select City  from Clites Where
Cities.suburb=3X:Suburb.get Value, iZipCode: ZipCode.getRangeAll  as
C), iZipCode:

ZipCode.getRangeAll) AS M RANK BY iRat-
ing:Rating.isRankable.get Function (i)
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Obviously, the expansion mechanism can be applied to all layers of the
ontology contained within types and can go both ways. Hence we can focus
or blur the result set based on the given semantic relations as required. Or, if
described using a layered cake analogy by scrolling up and down the contained
ontology we add or remove flavours like we add or remove layers in a layered
cake.

The expansion is driven by the logic that String attributes are expanded by
a predecessor and Number attribute by max range. In other words, Strings
expand semantically into their predecessors or condense to their successors
i.e., increase or decrease semantic range, numbers expand by its numerical

value to max value or wild card.

Physical Level As represented at the service interface level, there is a bot-
tom up relation between two service interfaces, two access patterns and two
different domains via a semantic connection contained within the attributes’
complex types.

Service Interface YelpRestaurants resolves access pattern AP_ Restaurant
against a Yelp.com based web service.

Restaurant(“YelpRestaurants”, AP_ Restaurant, http://yelp.com)
Service Interface USLocations resolves access pattern AP_ Location against a
prototype geolocator.com web service specified for US based locations.
GeoLocation(“USLocations”” AP_ Location, http://geolocator.com/us)

The query is expanded into

DEFINE QUERY RestaurantPlan($X:Suburb, $Y: ZipCode ) AS

SELECT R.
FROM  Restaurant (iCity(Select City  from Clites Where
Cities.suburb=3$X:Suburb.get Value, iZipCode: ZipCode.getRangeAll as C
USING USLocations), iZipCode:  ZipCode.getRangeAll) AS M USING
Yelp Restaurants

Finally, we obtain all the restaurants for the given city that relates to
suburb and all the values of the Zip for the given Zip type.

In this way we have obtained a view semantic expansion by location of a

query and are capable of answering the query:
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DEFINE QUERY RestaurantPlan($X:Suburb, $Y: ZipCode ) AS SELECT
R.* FROM Restaurant (iSuburb: $X, iZipCode: $Y) AS M

8.2.3 Materialization maintenance

As proposed by [Gupta 1995] and transposed to the web data context, view
maintenance is a process of updating materialized web data source in response
to changes in the underlying web source. As materialization is proven to be
performance and time-wise expensive process we propose our future work
on an incremental maintenance procedure based on certain heuristics. The
heuristics are based on meta-data availability of the materialized web sources

and consequently lead to two maintenance processes as a way forward.

8.2.3.1 White Box Metrics Description

Here the web source provider exposes the data describing the data source,
data structure, and updates over time. Based on this information we ob-
serve coverage, data accuracy and currency [Peralta 2006] as three main data
quality metrics on which we derive incremental materialization maintenance
heuristics.

Coverage relative to the materialization (C) - as defined in Chapter
4 section 4.3.1, materialization coverage denotes the ratio between the num-
bers of tuples discovered in materialization R,, to the total number of tuples
in the data source.
Currency (Crn) - is the percentage of the data tuples (Odt) in the materi-
alized data set that has older timestamps than their equivalents (Ds) in the
external service data set, where Odt is a number of obsolete data tuples in
the materialized data set and Ds is the external service data si