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Abstract 

Software metrics are playing an increasingly important 
role in software development project management, with 
the need to effectively control the expensive investment of 
software development of paramount concern.  Research 
examining the estimation of software development effort 
has been particularly extensive.  In this work, regression 
analysis has been used almost exclusively to derive 
equations for predicting software process effort.  This 
approach, whilst useful in some cases, also suffers from a 
number of limitations in relation to data set 
characteristics.  In an attempt to overcome some of these 
problems, some recent studies have adopted less common 
modeling methods, such as neural networks, fuzzy logic 
models and case-based reasoning.  In this paper some 
consideration is given to the use of neural networks and 
fuzzy models in terms of their appropriateness for the task 
of effort estimation.  A comparison of techniques is also 
made with specific reference to statistical modeling and to 
function point analysis, a popular formal method for 
estimating development size and effort. 

 

1.  INTRODUCTION 

As software development has become a more and more 
crucial investment for many organizations there has been a 
greater awareness of the need to better model the 
development process.  The financial gains available as a 
result of better project management are considerable for 
many organizations, with even slight improvements in 
predicting the almost-chaotic dynamics of software 
development appreciated.  Models are therefore needed 
for the purposes of predicting, monitoring, controlling, and 
assessing software development.  In this paper the 
emphasis is on the goal of predicting development effort, 
one of the most widely researched areas. 

Predictive models of the software development process are 
of considerable interest to a wide range of stakeholders, 
including the software users, customers contracting for 
development, contractors bidding for development, 
developers, and managers in general.  Such models are 

generally constructed using software metrics as the 
dependent and independent variables. 

Software metrics are measurements concerning either the 
software being developed (the product) or the manner in 
which it is being developed (the process) [Fenton, 1991].  
Examples of product metrics would be the size of a system 
(perhaps in terms of the number of lines of code or a 
functionality based measure, such as the number of screens 
and reports), the number of defects in a system remaining 
after testing, or the complexity of a module (defined in 
some manner).  Examples of process metrics would 
include the number of developers working on the project, 
the effort required for various stages of development, and 
the experience of the developers.   

Traditionally, such metrics were used as part of either a 
formally specified model (such as Function Point Analysis 
[Garmus and Herron, 1995]) which could be calibrated to 
a specific organization and/or environment, or they were 
used as variables in a regression equation.  For example, 
the effort (number of programmer hours) required for 
testing a particular series of modules might be the 
dependent variable in a model with a functionality 
measure of size, complexity, and developer experience as 
independent variables. 

The field of software metrics has become a well-
researched area and while such models have provided 
moderate success in the past, a number of concerns have 
arisen.  These include the following: 

1. The accuracy of the models themselves.  Linear 
models without interactions have been traditionally 
used in the interests of parsimony.  While 
transformations, usually exponential, have also been 
used to compensate for non-linearities, the effect on 
the objective function (such as Least Squares) can 
make predictions less than optimal.  Nonlinear 
regression has rarely been used, largely due to a 
desire for simplicity and also a lack of sufficient 
quantities of data. 

2. The ability to incorporate expert knowledge into a 
model with the intention of reducing the free 
parameters to compensate for the small quantities of 



 

data that are usually available.  The use of 
regression has allowed only some very limited 
expert knowledge to be used in the process of model 
development. 

3. The requirement for exact values of independent 
variables to be provided to the currently used 
models.  Almost all software metric models are 
based on an exact values in and exact values out 
approach. 

4. Related to Point 3 above, the fact that model outputs 
are exact values often leads to an overcommittment 
to these values, with the associated risks for poor 
accuracy magnified. It would therefore seem 
desirable if the outputs of such models could be 
expressed as fuzzy variables, with more precise 
predictions made as the development process 
advances and additional information becomes 
available. 

5. The small quantities of data that are generally 
available for software metrics is limiting in terms of 
the techniques that can be used.  While on some 
occasions, larger data sets are available, that would 
permit the use of non-linear statistical and neural 
network models, in the majority of cases more 
parsimonious models must be developed.  Reasons 
for the small size of data sets include the fact that 
the number of variables influencing the process is so 
large that a considerable number of observations 
would be required before that data set could be 
considered more than small.  Large data sets are 
generally collections of data from a number of 
organizations, which makes generalization to a 
particular organization even more difficult.  The 
constantly changing dynamics of the development 
process, in terms of new tools and development 
methodologies, also makes the gathering of relevant 
past data difficult.   

Once the best-fit model has been determined (by whatever 
method), its consistency and accuracy can be assessed by 
using a validation data set.  The use of some data set that 
has not exerted any influence whatsoever on the model 
development and selection is essential for an unbiased 
estimate of the model’s generalization capabilities.  In the 
case of software metrics, the holdout error is crucial for 
assessing the risk associated with the model’s predictions.  

Many different methods for estimating a model’s fit are 
available.  These include the many forms of correlation 
(R2, adjusted R2, R2 adequate), Akaike Information 
Criterion, and many others.  A set of indicators is 
commonly used in metrics analysis to indicate the 
adequacy of a predictive model; namely the mean 
magnitude of relative error (MMRE) and the threshold-
oriented pred measure. 

The magnitude of relative error (MRE) is a normalized 
measure of the discrepancy between the actual data values 
(VA) and the fitted values (VF): 
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The mean MRE (MMRE) is therefore the mean value for 
this indicator over all observations in the sample.  A lower 
value for MMRE generally indicates a more accurate 
model from the perspective of a project manager. 

The pred measure provides an indication of overall fit for 
a set of data points, based on the MRE values for each 
data point: 
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In equation (2) l is the selected threshold value for MRE 
(from equation (1)), i is the number of data points with 
MRE less than or equal to l, and n is the total number of 
data points.  As an illustration, if pred(0.20) = 30%, then 
we can say that 30% of the fitted values fall within 20% of 
their corresponding actual values.  In terms of assessing 
the performance of a given model, contemporary 
expectation of a good model is the achievement of 
pred(30) = 60%. 

The comparison of modeling techniques that follows is 
based on the analysis of a set of more than eighty systems 
development observations collected over a period of four 
years [Desharnais, 1989].  This data is of the form often 
encountered in software metrics, a number of project 
characteristics to be used to predict development effort.  
The specific details of the systems are beyond the scope of 
this paper, where the emphasis is on evaluating modeling 
techniques rather than developing actual models to be used 
for similar projects.  The interested reader is therefore 
referred to [Desharnais, 1989] for further details. 

The data set includes measurements of project effort, 
project duration, levels of experience with development 
equipment and in project management, numbers of basic 
transactions and data entities, and the raw and adjusted 
function point counts.  For a more extensive and 
theoretical comparative review of such techniques applied 
to software metric models see [Gray and MacDonell, 
1997]. 

The first analysis is linear regression analysis under the 
Least-Squares and Least-Median-Squares approaches.  
Next, results are shown for analysis based on a 
feedforward neural network model.  This is followed by a 
discussion of how a fuzzy logic model could have been 
used for even earlier estimation.  Numerical results are not 
provided for the fuzzy logic technique, since its 
application is most suited to early project estimation and 
the required data is not available. 

A total of 81 observations are available from the data set.  
Each modeling scenario has used a randomly selected set 
of fifty-four observations for model construction (training, 
and testing where appropriate), leaving a validation set of 
twenty-seven observations. 



 

2.  REGRESSION MODELS 

Linear regression under the Least-Squares model attempts 
to find the line that minimizes the sum of the squared 
errors.  Regression analysis is commonly preceded by the 
creation of two-dimensional scatter plots and exploratory 
correlation analysis in order to first intuitively, as well as 
quantitatively, determine the potential relationships that 
may exist in the data.  It is important to keep in mind that 
the linear nature of such regression only refers to the linear 
form of the coefficients.  Transformations can be used in 
advance on variables to permit non-linear modeling 
providing the appropriate transformation is known.  This 
does however alter the meaning of the objective function if 
the dependent variable is subject to transformation, which 
may lead to non-optimal prediction.  In such cases, 
nonlinear regression is preferred.  Similarly interaction 
effects can be simulated by the creation of one or more 
new variables appropriately defined.  The primary 
advantage of this technique is that it is well known to, and 
understood by, both software metricians and project 
managers. 

Problems arise in relation to the use of least-squares linear 
regression due in part to the fact that the method assumes a 
reasonably normal underlying data distribution.  All too 
frequently, however, data sets derived from software 
engineering do not adhere to this assumption – data is 
often highly skewed, containing a number of outlier values 
relative to the number of observations [Kitchenham and 
Pickard, 1987].  For instance, module size data tends be 
significantly skewed to the right due to the influence of a 
few very large modules, whilst the majority of values 
cluster around a ‘standard’ size (due to organizational 
standards and overhead code).  In such ‘non-normal’ 
cases, the least-squares regression model loses much of its 
efficiency [Hampel et al., 1986; Myrvold, 1990]. 

This problem of analysis can be at least partially overcome 
through the application of the less common Least-Median-
Squares regression technique.  This robust approach 
determines outlier values prior to final regression, and 
enables the analyst to discard or weight appropriately the 
outlier observations.  By minimizing the median squared 
error, the method is robust to data contamination of up to 
fifty-percent.  Thus the main body of observations remains 
integral to the development of the relationship whilst 
outlier observations, which may be questionable in terms 
of reliability or accuracy, can be treated more 
appropriately.  The result is generally a more robust 
predictive model, particularly in the case where the data 
set concerned is small, as is often the case in metrics 
analysis. 

 

3. NEURAL NETWORK MODELS 

Neural networks have been applied to software metric 
modeling in a large number of studies including those 
described in [Karunanithi et al., 1992; Kumar et al., 1994, 
Srinivasan and Fisher, 1995; Wittig and Finnie, 1994].  
The results have, in general, been favorable to this 

particular technique where sufficiently large data sets have 
been available. 

Multi-Layer Perceptron (MLP) networks were developed 
using two-thirds of the 54 observations for training, and 
one-third for a testing set.  Training was stopped when the 
testing error was minimized, and the lowest testing error 
was used to select the particular network architecture with 
performance as shown in Table 1.  This table provides the 
performance of the best network (on the testing data) for 
all three data sets, in terms of the three most common 
measures of accuracy in software metric modeling. 

Table 1. Results for the Best MLP Model 

 Training 
Data 

Testing 
Data 

Validation 
Data 

Pearsons 
Correlation 0.8896 0.7745 0.7379 

MMRE 0.2968 0.4586 0.43508 
pred(10) 6/35 1/19 7/27 
pred(25) 18/35 7/19 17/27 
pred(50) 31/35 15/19 20/27 

 
It is noted here that the performance of the network is not 
overly impressive, with 7 out of the 27 validation cases not 
being predicted even within 50%.  The validation errors 
shown here provide realistic estimates of how the model 
would perform if used in real-world project management, 
rather than as an academic after-the-fact analysis. 

 

4. FUZZY LOGIC MODELS 

While fuzzy logic models were not developed for this data 
set, a number of points regarding the use of such models 
for software metrics are made here. 

The use of fuzzy logic models for software metric 
modeling seems to be appropriate for using the existing 
expert knowledge available from developers and 
managers.  The vast majority of organizations use some 
form of expert-judgement as part of their project planning 
process.  This knowledge tends to generalize as techniques 
and tools change, while numerical data is difficult to 
recalibrate. 

Fuzzy logic also provides a less harsh form of 
commitment.  A project manager may specify that a 
project will have a large number of entities, a small 
number of files, and similarly the other variables.  These 
can be represented as fuzzy variables and a series of rules 
can then be used to derive some prediction for the output, 
in this case the project effort.  This effort measure could 
be defuzzified into a number, or left as a slightly vague 
linguistic label in order to encourage the idea that this is 
only an estimate. 

 

5.  COMPARISON OF TECHNIQUES 

It is not sufficient to merely select between techniques 
based on model accuracy.  Other issues such as usability, 
representation of uncertainty, data requirements, and 



 

meaningfulness of the model itself are also of considerable 
importance.  However, numerical accuracy is here used as 
an initial assessment criterion. 

In order to compare the techniques in terms of their 
predictive accuracy, a standard metric model for 
development effort prediction was added to the analysis.  
One such standard is that of function point analysis (FPA) 
which is the method of choice in system sizing and effort 
estimation activities for many large organizations.  FPA 
provides a well-established method for the relatively early 
assessment of system scope, based on various transaction-
oriented system requirements characteristics.  

As can be seen in the results presented in Table 2, the 
most accurate model in terms of MMRE is by far the 
neural network model.  This is to a large extent due to the 
non-linearities and interactions present in the data, which 
is barely large enough for such features to be taken into 
account with regression analysis.  However, in terms of 
classification accuracy, the neural network model is fairly 
comparable to the Least-Squares regression model after 
outlier removal from the training and testing data based on 
residual analysis. 

Table 2. Overall Results for the Validation Data 

Method MMRE pred(10) pred(25) 
FP estimation (mean-based) 0.70 4% 22% 
FP estimation (median-
based) 0.89 19% 41% 

LS regression 0.86 15% 41% 
LS regression (no outliers) 0.88 30% 56% 
LMS regression 0.85 7% 41% 
Neural network 0.44 26% 63% 
 
Clearly these performance indicators are not in themselves 
very encouraging - one would hope for much more 
accurate predictions in order to effectively manage the 
development process.  The objective of this study, 
however, was to compare a selection of analysis methods 
using the same data set, so as to emphasize the potential of 
the various analysis options and their capacity to provide 
effective general models for estimation. 

 

6. CONCLUSIONS AND FURTHER 
RESEARCH 

This paper has illustrated some of the advantages that may 
be gained when a variety of data analysis methods are 
considered and the most appropriate method chosen for 
the development of predictive models.  Traditional 
approaches to development effort estimation may be 
augmented by such methods as neural networks and fuzzy 
logic in order that the greatest possible use can be made of 
whatever data and knowledge is available.  When 
combined with site-based model calibration, there is 
significant potential for more effective estimation. 

In terms of further investigation, our work is continuing in 
the use of fuzzy logic models, neuro-fuzzy hybrids, and 
case-based reasoning as other data analysis approaches.  
Other areas of interest include the consistency of experts’ 

classification of projects in terms of fuzzy logic, and the 
psychological effect of using various modeling techniques 
on the users of the models. 

The other major focus continuing from this work is the 
development of a paradigm for selecting the most 
appropriate technique for modeling software metric 
models.  This is not merely a matter of selecting the 
technique with the greatest mapping, or generalization, 
capability as was discussed earlier in the paper.   

Preliminary results suggest that neuro-fuzzy hybrids 
[Kasabov et al., 1997] may be used in many cases to real 
effect in producing robust, generalisable and intuitively 
appealing estimation models.   
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