

Full citation: MacDonell, S.G., & Gray, A.R. (1998) A comparison of modeling techniques for
software development effort prediction, in Proceedings of the Fourth International Conference on
Neural Information Processing (ICONIP'97/ANZIIS'97/ANNES'97). Dunedin, New Zealand,
Springer-Verlag, pp.869-872.

A Comparison of Modeling Techniques for
Software Development Effort Prediction

S.G. MacDonell and A.R. Gray
Department of Information Science, University of Otago

PO Box 56, Dunedin, New Zealand
Email: stevemac@commerce.otago.ac.nz

Abstract

Software metrics are playing an increasingly important
role in software development project management, with
the need to effectively control the expensive investment of
software development of paramount concern. Research
examining the estimation of software development effort
has been particularly extensive. In this work, regression
analysis has been used almost exclusively to derive
equations for predicting software process effort. This
approach, whilst useful in some cases, also suffers from a
number of limitations in relation to data set
characteristics. In an attempt to overcome some of these
problems, some recent studies have adopted less common
modeling methods, such as neural networks, fuzzy logic
models and case-based reasoning. In this paper some
consideration is given to the use of neural networks and
fuzzy models in terms of their appropriateness for the task
of effort estimation. A comparison of techniques is also
made with specific reference to statistical modeling and to
function point analysis, a popular formal method for
estimating development size and effort.

1. INTRODUCTION

As software development has become a more and more
crucial investment for many organizations there has been a
greater awareness of the need to better model the
development process. The financial gains available as a
result of better project management are considerable for
many organizations, with even slight improvements in
predicting the almost-chaotic dynamics of software
development appreciated. Models are therefore needed
for the purposes of predicting, monitoring, controlling, and
assessing software development. In this paper the
emphasis is on the goal of predicting development effort,
one of the most widely researched areas.

Predictive models of the software development process are
of considerable interest to a wide range of stakeholders,
including the software users, customers contracting for
development, contractors bidding for development,
developers, and managers in general. Such models are

generally constructed using software metrics as the
dependent and independent variables.

Software metrics are measurements concerning either the
software being developed (the product) or the manner in
which it is being developed (the process) [Fenton, 1991].
Examples of product metrics would be the size of a system
(perhaps in terms of the number of lines of code or a
functionality based measure, such as the number of screens
and reports), the number of defects in a system remaining
after testing, or the complexity of a module (defined in
some manner). Examples of process metrics would
include the number of developers working on the project,
the effort required for various stages of development, and
the experience of the developers.

Traditionally, such metrics were used as part of either a
formally specified model (such as Function Point Analysis
[Garmus and Herron, 1995]) which could be calibrated to
a specific organization and/or environment, or they were
used as variables in a regression equation. For example,
the effort (number of programmer hours) required for
testing a particular series of modules might be the
dependent variable in a model with a functionality
measure of size, complexity, and developer experience as
independent variables.

The field of software metrics has become a well-
researched area and while such models have provided
moderate success in the past, a number of concerns have
arisen. These include the following:

1. The accuracy of the models themselves. Linear
models without interactions have been traditionally
used in the interests of parsimony. While
transformations, usually exponential, have also been
used to compensate for non-linearities, the effect on
the objective function (such as Least Squares) can
make predictions less than optimal. Nonlinear
regression has rarely been used, largely due to a
desire for simplicity and also a lack of sufficient
quantities of data.

2. The ability to incorporate expert knowledge into a
model with the intention of reducing the free
parameters to compensate for the small quantities of

data that are usually available. The use of
regression has allowed only some very limited
expert knowledge to be used in the process of model
development.

3. The requirement for exact values of independent
variables to be provided to the currently used
models. Almost all software metric models are
based on an exact values in and exact values out
approach.

4. Related to Point 3 above, the fact that model outputs
are exact values often leads to an overcommittment
to these values, with the associated risks for poor
accuracy magnified. It would therefore seem
desirable if the outputs of such models could be
expressed as fuzzy variables, with more precise
predictions made as the development process
advances and additional information becomes
available.

5. The small quantities of data that are generally
available for software metrics is limiting in terms of
the techniques that can be used. While on some
occasions, larger data sets are available, that would
permit the use of non-linear statistical and neural
network models, in the majority of cases more
parsimonious models must be developed. Reasons
for the small size of data sets include the fact that
the number of variables influencing the process is so
large that a considerable number of observations
would be required before that data set could be
considered more than small. Large data sets are
generally collections of data from a number of
organizations, which makes generalization to a
particular organization even more difficult. The
constantly changing dynamics of the development
process, in terms of new tools and development
methodologies, also makes the gathering of relevant
past data difficult.

Once the best-fit model has been determined (by whatever
method), its consistency and accuracy can be assessed by
using a validation data set. The use of some data set that
has not exerted any influence whatsoever on the model
development and selection is essential for an unbiased
estimate of the model’s generalization capabilities. In the
case of software metrics, the holdout error is crucial for
assessing the risk associated with the model’s predictions.

Many different methods for estimating a model’s fit are
available. These include the many forms of correlation
(R2, adjusted R2, R2 adequate), Akaike Information
Criterion, and many others. A set of indicators is
commonly used in metrics analysis to indicate the
adequacy of a predictive model; namely the mean
magnitude of relative error (MMRE) and the threshold-
oriented pred measure.

The magnitude of relative error (MRE) is a normalized
measure of the discrepancy between the actual data values
(VA) and the fitted values (VF):

A

FA

V
VV

MRE
−

= (1)

The mean MRE (MMRE) is therefore the mean value for
this indicator over all observations in the sample. A lower
value for MMRE generally indicates a more accurate
model from the perspective of a project manager.

The pred measure provides an indication of overall fit for
a set of data points, based on the MRE values for each
data point:

pred l
i
n

() = (2)

In equation (2) l is the selected threshold value for MRE
(from equation (1)), i is the number of data points with
MRE less than or equal to l, and n is the total number of
data points. As an illustration, if pred(0.20) = 30%, then
we can say that 30% of the fitted values fall within 20% of
their corresponding actual values. In terms of assessing
the performance of a given model, contemporary
expectation of a good model is the achievement of
pred(30) = 60%.

The comparison of modeling techniques that follows is
based on the analysis of a set of more than eighty systems
development observations collected over a period of four
years [Desharnais, 1989]. This data is of the form often
encountered in software metrics, a number of project
characteristics to be used to predict development effort.
The specific details of the systems are beyond the scope of
this paper, where the emphasis is on evaluating modeling
techniques rather than developing actual models to be used
for similar projects. The interested reader is therefore
referred to [Desharnais, 1989] for further details.

The data set includes measurements of project effort,
project duration, levels of experience with development
equipment and in project management, numbers of basic
transactions and data entities, and the raw and adjusted
function point counts. For a more extensive and
theoretical comparative review of such techniques applied
to software metric models see [Gray and MacDonell,
1997].

The first analysis is linear regression analysis under the
Least-Squares and Least-Median-Squares approaches.
Next, results are shown for analysis based on a
feedforward neural network model. This is followed by a
discussion of how a fuzzy logic model could have been
used for even earlier estimation. Numerical results are not
provided for the fuzzy logic technique, since its
application is most suited to early project estimation and
the required data is not available.

A total of 81 observations are available from the data set.
Each modeling scenario has used a randomly selected set
of fifty-four observations for model construction (training,
and testing where appropriate), leaving a validation set of
twenty-seven observations.

2. REGRESSION MODELS

Linear regression under the Least-Squares model attempts
to find the line that minimizes the sum of the squared
errors. Regression analysis is commonly preceded by the
creation of two-dimensional scatter plots and exploratory
correlation analysis in order to first intuitively, as well as
quantitatively, determine the potential relationships that
may exist in the data. It is important to keep in mind that
the linear nature of such regression only refers to the linear
form of the coefficients. Transformations can be used in
advance on variables to permit non-linear modeling
providing the appropriate transformation is known. This
does however alter the meaning of the objective function if
the dependent variable is subject to transformation, which
may lead to non-optimal prediction. In such cases,
nonlinear regression is preferred. Similarly interaction
effects can be simulated by the creation of one or more
new variables appropriately defined. The primary
advantage of this technique is that it is well known to, and
understood by, both software metricians and project
managers.

Problems arise in relation to the use of least-squares linear
regression due in part to the fact that the method assumes a
reasonably normal underlying data distribution. All too
frequently, however, data sets derived from software
engineering do not adhere to this assumption – data is
often highly skewed, containing a number of outlier values
relative to the number of observations [Kitchenham and
Pickard, 1987]. For instance, module size data tends be
significantly skewed to the right due to the influence of a
few very large modules, whilst the majority of values
cluster around a ‘standard’ size (due to organizational
standards and overhead code). In such ‘non-normal’
cases, the least-squares regression model loses much of its
efficiency [Hampel et al., 1986; Myrvold, 1990].

This problem of analysis can be at least partially overcome
through the application of the less common Least-Median-
Squares regression technique. This robust approach
determines outlier values prior to final regression, and
enables the analyst to discard or weight appropriately the
outlier observations. By minimizing the median squared
error, the method is robust to data contamination of up to
fifty-percent. Thus the main body of observations remains
integral to the development of the relationship whilst
outlier observations, which may be questionable in terms
of reliability or accuracy, can be treated more
appropriately. The result is generally a more robust
predictive model, particularly in the case where the data
set concerned is small, as is often the case in metrics
analysis.

3. NEURAL NETWORK MODELS

Neural networks have been applied to software metric
modeling in a large number of studies including those
described in [Karunanithi et al., 1992; Kumar et al., 1994,
Srinivasan and Fisher, 1995; Wittig and Finnie, 1994].
The results have, in general, been favorable to this

particular technique where sufficiently large data sets have
been available.

Multi-Layer Perceptron (MLP) networks were developed
using two-thirds of the 54 observations for training, and
one-third for a testing set. Training was stopped when the
testing error was minimized, and the lowest testing error
was used to select the particular network architecture with
performance as shown in Table 1. This table provides the
performance of the best network (on the testing data) for
all three data sets, in terms of the three most common
measures of accuracy in software metric modeling.

Table 1. Results for the Best MLP Model

 Training
Data

Testing
Data

Validation
Data

Pearsons
Correlation 0.8896 0.7745 0.7379

MMRE 0.2968 0.4586 0.43508
pred(10) 6/35 1/19 7/27
pred(25) 18/35 7/19 17/27
pred(50) 31/35 15/19 20/27

It is noted here that the performance of the network is not
overly impressive, with 7 out of the 27 validation cases not
being predicted even within 50%. The validation errors
shown here provide realistic estimates of how the model
would perform if used in real-world project management,
rather than as an academic after-the-fact analysis.

4. FUZZY LOGIC MODELS

While fuzzy logic models were not developed for this data
set, a number of points regarding the use of such models
for software metrics are made here.

The use of fuzzy logic models for software metric
modeling seems to be appropriate for using the existing
expert knowledge available from developers and
managers. The vast majority of organizations use some
form of expert-judgement as part of their project planning
process. This knowledge tends to generalize as techniques
and tools change, while numerical data is difficult to
recalibrate.

Fuzzy logic also provides a less harsh form of
commitment. A project manager may specify that a
project will have a large number of entities, a small
number of files, and similarly the other variables. These
can be represented as fuzzy variables and a series of rules
can then be used to derive some prediction for the output,
in this case the project effort. This effort measure could
be defuzzified into a number, or left as a slightly vague
linguistic label in order to encourage the idea that this is
only an estimate.

5. COMPARISON OF TECHNIQUES

It is not sufficient to merely select between techniques
based on model accuracy. Other issues such as usability,
representation of uncertainty, data requirements, and

meaningfulness of the model itself are also of considerable
importance. However, numerical accuracy is here used as
an initial assessment criterion.

In order to compare the techniques in terms of their
predictive accuracy, a standard metric model for
development effort prediction was added to the analysis.
One such standard is that of function point analysis (FPA)
which is the method of choice in system sizing and effort
estimation activities for many large organizations. FPA
provides a well-established method for the relatively early
assessment of system scope, based on various transaction-
oriented system requirements characteristics.

As can be seen in the results presented in Table 2, the
most accurate model in terms of MMRE is by far the
neural network model. This is to a large extent due to the
non-linearities and interactions present in the data, which
is barely large enough for such features to be taken into
account with regression analysis. However, in terms of
classification accuracy, the neural network model is fairly
comparable to the Least-Squares regression model after
outlier removal from the training and testing data based on
residual analysis.

Table 2. Overall Results for the Validation Data

Method MMRE pred(10) pred(25)
FP estimation (mean-based) 0.70 4% 22%
FP estimation (median-
based) 0.89 19% 41%

LS regression 0.86 15% 41%
LS regression (no outliers) 0.88 30% 56%
LMS regression 0.85 7% 41%
Neural network 0.44 26% 63%

Clearly these performance indicators are not in themselves
very encouraging - one would hope for much more
accurate predictions in order to effectively manage the
development process. The objective of this study,
however, was to compare a selection of analysis methods
using the same data set, so as to emphasize the potential of
the various analysis options and their capacity to provide
effective general models for estimation.

6. CONCLUSIONS AND FURTHER
RESEARCH

This paper has illustrated some of the advantages that may
be gained when a variety of data analysis methods are
considered and the most appropriate method chosen for
the development of predictive models. Traditional
approaches to development effort estimation may be
augmented by such methods as neural networks and fuzzy
logic in order that the greatest possible use can be made of
whatever data and knowledge is available. When
combined with site-based model calibration, there is
significant potential for more effective estimation.

In terms of further investigation, our work is continuing in
the use of fuzzy logic models, neuro-fuzzy hybrids, and
case-based reasoning as other data analysis approaches.
Other areas of interest include the consistency of experts’

classification of projects in terms of fuzzy logic, and the
psychological effect of using various modeling techniques
on the users of the models.

The other major focus continuing from this work is the
development of a paradigm for selecting the most
appropriate technique for modeling software metric
models. This is not merely a matter of selecting the
technique with the greatest mapping, or generalization,
capability as was discussed earlier in the paper.

Preliminary results suggest that neuro-fuzzy hybrids
[Kasabov et al., 1997] may be used in many cases to real
effect in producing robust, generalisable and intuitively
appealing estimation models.

REFERENCES

[Desharnais, 1989] J-M Deharnais, Analyse statistique de la
productivitie des projects de development en informatique
apartir de la technique des points des fontion, Master’s Thesis,
Universite du Montreal, 1989

[Fenton, 1991] N.E. Fenton, Software metrics - a rigorous
approach, London UK, Chapman & Hall, 1991

[Garmus and Herron, 1995] D. Garmus, and D. Herron,
Measuring the software process: a practical guide to functional
measurement, Englewood Cliffs NJ, USA, Prentice Hall, 1995

[Gray and MacDonell, 1997] A.R. Gray, and S.G. MacDonell, A
comparison of model building techniques to develop predictive
equations for software metrics, Information and Software
Technology, to appear, 1997

[Hampel et al., 1986] F.R. Hampel, E.M. Ronchetti, P.J.
Rousseeuw, and W.A. Stahel, Robust statistics, New York NY,
USA, John Wiley & Sons, 1986

[Karunanithi et al., 1992] N. Karunanithi, D. Whitley, and Y.K.
Malaiya, Prediction of software reliability using connectionist
models, IEEE Transactions on Software Engineering. 18, 563-
574, 1992

[Kasabov et al., 1997] N. Kasabov, J.S. Kim, M. Watts, and A.
Gray, FuNN/2 - A fuzzy neural network architecture for adaptive
learning and knowledge acquisition, Information Sciences:
Applications, to appear, 1997

[Kitchenham and Pickard, 1987] B. Kitchenham and L. Pickard,
Towards a constructive quality model part ii: statistical
techniques for modeling software quality in the esprit request
project, Software Engineering Journal 2(4): 114-126, 1987

[Kumar et al., 1994] S. Kumar, B.A. Krishna, and P.S. Satsangi,
Fuzzy systems and neural networks in software engineering
project management, Journal of Applied Intelligence 4, 31-52,
1994

[Myrvold, 1990] A. Myrvold, Data analysis for software metrics,
Journal of Systems and Software 12: 271-275, 1990

[Srinivasan and Fisher, 1995] K. Srinivasan and D. Fisher,
Machine learning approaches to estimating software
development effort, IEEE Transactions on Software Engineering
21, 126-137, 1995

[Wittig and Finnie, 1994], G.E. Wittig and G.R. Finnie, Using
artificial neural networks and function points to estimate 4GL
software development effort, Australian Journal of Information
Systems 1(2), 87-94, 1994

	Full citation: MacDonell, S.G., & Gray, A.R. (1998) A comparison of modeling techniques for software development effort prediction, in Proceedings of the Fourth International Conference on Neural Information Processing (ICONIP'97/ANZIIS'97/ANNES'97). ...
	A Comparison of Modeling Techniques for Software Development Effort Prediction
	S.G. MacDonell and A.R. Gray
	Department of Information Science, University of Otago
	PO Box 56, Dunedin, New Zealand
	Email: stevemac@commerce.otago.ac.nz

	Abstract
	1. Introduction
	2. Regression Models
	3. Neural Network Models
	4. Fuzzy Logic Models
	5. Comparison of Techniques
	6. Conclusions and Further Research
	References

