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Abstract

This thesis discusses the concept of chaos in monetary policy games, which I believe to

be novel. The mathematical framework developed in this thesis addresses two important

problems in monetary theory, namely, the time-inconsistency and the complexity in

designing, conducting and predicting the impacts of monetary policy on the economy.

Considering a noncooperative non-zero-sum differential monetary policy game between

the central bank and the public when the coefficients of the system depend on the

state and control variables, it is shown that the co-state variables of both players are

controllable in three solution concepts. The controllability of the co-state variables

means that the monetary policy is time inconsistent even in the open loop Nash game,

which is known as a time-consistent policy game in the literature. In other words,

the results confirm that the structural time-inconsistency of monetary policy is almost

always unavoidable.

To better understand how monetary policy affects the economy, we need to know

the response of the public expectations. This can be achieved if the monetary policy

behaves in a systematic manner (Walsh, 2003). To this end, this thesis tests the chaotic

dynamics of the trajectories of both players. The results reveal that chaotic dynamics

is possible in monetary policy games, and it seems that the source of this complexity

comes from the chaotic behavior in the public expectations. Chaotic behavior in the

strategy of the public sector creates serious difficulties for the policymaker, who wishes

to design a policy that controls the business cycles.
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Chapter 1

Introduction

Chaotic behavior has captured the attention of many mathematical economists in recent

years. Chaos theory presumes that an apparently random system is both nonlinear

and deterministic. In other words, the process can be determined if the system has no

disturbances (Baba & Nagashima, 1999). However, revolutionary chaos theory has

shown that an external disturbance or noise may not be the only source of randomness,

and nonlinearity can lead to complexity. In his seminal paper, May (1976) argued that a

very simple nonlinear model can exhibit extraordinary rich dynamical behavior. Owing

to this behavior, researchers considered limits of predictability on the future behavior

of the process from the historical data. In such a system, history can be irrelevant,

and our process is time-independent. As a chaotic process is inherently unstable, it

cannot be predicted in the long-term. With chaotic dynamics, long-term prediction is

impossible even if the structure of the model is completely known (Baumol & Quandt,

1985; Baumol & Benhabib, 1989; DeCoster & Mitchell, 1991). A chaotic process warns

the monetary policymaker that "the seemingly random behavior" may not be random at

all.

12
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1.1 Problem Statement

Most of the economic models assume that the external noise generates randomness

and volatility for the economic system. However, the chaos revolution has revealed

another source of this volatile behavior. For instance, in econometric analysis of linear

systems, stochastic disturbance at least in some cases is inadequate and nonlinearity

can be more appropriate (Moosavi Mohseni & Kilicman, 2013, 2014). Forecasting a

chaotic economic system is extremely difficult (Baumol & Quandt, 1985) because the

past history is of limited use in predicting the future behavior. Such unpredictability

preserves difficulties for both policy designers and economic analysts. Furthermore, in

the presence of chaos, anticipating the behaviors of other players is a non-trivial task.

In recent years there has been a growing interest in seeking evidence of nonlinear

dynamics, in particular of chaos in economic data (Scheinkman, 1990; DeCoster &

Mitchell, 1992; Serletis, 1996; Michener & Ravikumar, 1998; Kaas, 1998; Benhabib,

Schmitt-Grohé & Uribe, 2002; Serletis & Shintani, 2003; Shintani & Linton, 2003;

Serletis & Shintani, 2006; Kyrtsou & Labys, 2006; Barkoulas, 2008; Barnett & Duzhak,

2008; Grandmont, 2008; Airaudo & Zanna, 2012; Park & Whang, 2012). The dynamics

of a chaotic economic system can be predicted only in the short-term; the long-term

prediction is difficult even if the correct economic system is known. If the system is

actually nonlinearity, the source of this nonlinearity must be identified.

Overall, research in the literature has revealed the existence and importance of

nonlinearity and chaos in economic behavior. Therefore further research in this field,

especially with regard to policy game outcomes is strongly suggested. The present study

is a mathematical attempt to rigorously investigate chaos in monetary policy games.
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1.2 Significance of the Study

Searching for chaotic behavior in monetary policy games is important for three reasons.

First, we must know whether the trajectory of the evolving strategies of economic

players is chaotic or not. Second, if the dynamics is nonlinear and chaotic, it cannot be

forecasted by linear stochastic models that are traditionally used in economics. Third,

by understanding the behavior of the system we can analyse the interaction between the

monetary policy designer and the public and figure out the effectiveness of the monetary

policy. To the best of my knowledge, the chaotic dynamics of the monetary policy

games has not been discussed in the literature. This study is one attempt to fill this gap.

1.3 Literature Review

This section reviews some of the most important literature related to this thesis. The

material preserves at three levels of specification. First, we have a critical overview on

the rule versus discretion problem. We then discuss some research works related to the

chaos in the monetary systems. Finally, we discuss a few research papers on the chaotic

games.

1.3.1 Rule versus Discretion

The rule versus discretion problem in the monetary policy has been studied by many

scholars, usually by applying optimization and game theory. The earliest study was due

to Simons (1936) who concluded that the monetary policy should obey a definite, stable

and legislative rule.

After Simon’s seminal work, Friedman advocated a simple money supply rule with

no feedback from future, current or past variables. Friedman (1948) recommended
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a monetary framework that operates under the rule of law rather than under the dis-

cretionary authority of administrators. He argued that governments must provide this

stable framework to eliminate the uncertainty and undesirable political implications of

discretionary actions. He posited that lags in policy, cause a large disturbance in any dis-

cretionary action. Friedman (1968) discussed the different roles of the monetary policy.

He believed that the monetary policy cannot peg the interest rate or unemployment rate.

In the late 1970s, the United States of America and most European economies

experienced a high and volatile inflation. The most important puzzle of this decade was

the monetary authority allowed such a high inflation. Therefore, from the late 1970s

to the early 1980s academic economists tried to explain the discrepancy between the

optimal and actual rate of inflation. This problem first was solved by Kydland and

Prescott (1977) and then was followed by two brilliant papers Barro and Gordon (1983a,

1983b).

Kydland and Prescott (1977) argued that optimal control theory is a powerful tool

for analysing economic systems only if the expectations is invariant to the future of the

policy, that is the optimal policy is inconsistent. They concluded that if policymakers

would avoid discretion and commit themselves to the rule, they would improve their

results. Thus, Kydland and Prescott advocated that to develop the dynamic consistent

policy, policymakers should be constrained by suitable rules.

As an economical discription of their theoretical deduction Kydland and Prescott

employed the inflation-unemployment (Phillips curve) model. This model is formulated

as follows

Ut = λ(πet − πt) +Un
t ; λ > 0, (1.1)

where Ut, Un
t , πet and πt are current unemployment rate, natural unemployment rate,

expected inflation and current inflation, respectively. They argued that this analysis
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depends mainly on the assumed price expectations. In the conventional approach (ad-

aptive expectation) the optimal path of inflation and unemployment can be determined

by the optimal control theory. Sargent and Wallace (1975) who accepted the rational

expectation hypothesis suggested that

πet = E(πt). (1.2)

The model is completed by the social objective function, which rationalizes the

policy choice

S(πt, Ut). (1.3)

A consistent policy maximizes (1.3) subject to (1.1). This model can be conceptual-

ized on a diagram. Initially, the expected inflation is zero (point A). At this point, the

equilibrium is optimal but time-inconsistent. The policymaker first attempt to reach a

position such as B on the highest possible indifference curve. As already mentioned,

the private sector is rational, this action is expected by the policymaker. Therefore

the expectations shift until the discretionary position reaches the equilibrium point C.

Consequently, the utility at point A is higher than that at point C. This means that if the

policymaker avoids discretion and commits to the rule, then he would achieve a better

result.

Barro and Gordon (1983a) argued that in the natural rate model with the rational

expectations, the systematic part of the monetary policy is irrelevant to real economic

activities. Therefore, a discretionary policymaker can create surprising inflation which

reduces unemployment through the Phillips curve. They believed that the most important

distinction between rules and discretion depends on the presence or absence of pre-

commitment. They assumed that the authority controls an instrument that directly

effects inflation. They also argued that a positive theory of monetary policy and inflation
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Figure 1.1: Time consistent and inconsistent equilibria

underlies the discretionary solution. In this regime, the inflation rate rises when the

policymaker attaches greater benefits to unexpected inflation. The outcomes of this

decision increase the natural rate of unemployment.

Barro and Gordon (1983b) included the reputation in their model that had been

largely ignored in the previous literature. They employed a very simple model with

three policy outcomes: discretion, rule and renege. Considering the time-inconsistency,

they argued that a purely active policy leads to higher and stable long-term inflation.

Since the seminal work of Barro and Gordon, a large body of works have examined

alternative solutions to the inflationary bias that arises under discretion. Some of the

most important works are summarized below.

Canzoneri (1985) argued that Barro and Gordon’s model resolved the credibility

problem without accounting for private information. He reformulated a model to include

the private information (Gray, 1976; Fischer, 1977). This paper provides a new structure
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for the old controversy over the subject rule versus discretion. Canzoneri concluded

the maximizing utility under the private information constraints in the monetary policy

game is one of the most important jobs of welfare economists.

According to Rogoff (1985a) the public can rationally accept that central banks have

different form of the objective function. He examined various types of intermediate

targeting regime in his model and argued that if supply shocks are important, the society

prefers that central banks focus on monetary targeting rather than inflation rate targeting.

He continued that the best intermediate target is the one that highly correlated with the

society’s objective function.

Backus and Driffill (1985a) examined the dynamic path of an economy after a

change in regime. Their model is a version of Barro and Gordon (1983b) macro policy

game. They questioned why government policy has tolerated such a high and persistent

inflation over the past decade when a stable price level is desirable. They believed

that if the public expects the government inflates then a tight monetary policy aimed at

eliminating inflation will reduce the output below the natural rate. On the other hand,

since the government policy is dynamically consistent, the government always finds

it optimal to stick to the initial plan. In this paper, Backus and Driffill presumed two

kinds of governments: wet and hard-nosed. They also considered the Kreps and Wilson

(1982b) model of reputation and extended their reputational equilibrium analysis.

Using a new classical model, Andersen (1986) analysed rule versus discretion

problem in the environment of asymmetric information between the government and the

private sector. He argued that the cooperative solution to the game, which is obtained

under constant growth rule is superior to the noncooperative solution. Under asymmetric

information when the monetary authority has direct information about a state variable,

that is not available to the private agents, the public should determine their expectations.

However, the outcomes show that the private sector is never more disadvantaged under

discretion than under a rule. This may explain why discretionary powers are admitted
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by monetary authorities.

Driffill (1988) conducted a survey employing the macro model adopted by Kydland

and Prescott and most of the other researchers. He argued that the expectation formation

mechanism is the punishment strategy of the private sector. He distinguished two types

of modelling process in this research area: separating equilibria and pooling equilibria.

A separating equilibrium occurs when the more inflationary government imitates the less

inflationary government at the start of the game. He argued that in such an equilibrium

the more inflationary government actually disciplines the less inflationary one. This

conclusion opposes those of Backus and Driffill (1985a, 1985b) and Barro (1986). A

pooling equilibrium occurs when one government is sufficiently less inflationary than

the other government.

McCallum (1988) suggested a monetarist’s rule for the conduct of monetary policy,

which maintains the nominal GNP close to a smooth target growth path. He examined

his suggested rules in the United States during the 1954-1985 period. A policy rule

should also specify an instrumental variable that the monetary authority can control

directly and/or accurately. Supposing that the natural rate hypothesis is valid, thus

money should be neutral in the long-term. He proposed a money base rule, which

yielded zero inflation in the United State during the study period.

J. B. Taylor (1993) argued that a good policy rule calling for changes in the money

supply, monetary base, or short-term interest rate will respond to changes in the price

level or real income. Policy rule has empirically significant advantages for policymakers

because it is superior to discretion in the time-inconsistent case. The advantage of the

rule over discretion resembles the advantage of a cooperative over a non-cooperative

solution in game theory. In the Taylor rule, the federal fund rate as a monetary policy

instrument depends on the deviations of inflation from its optimal rate and the deviations

of output from its target level. Taylor argued that if both inflation and output are on

target then the nominal federal fund rate is 4% or 2% in real term.



Chapter 1. Introduction 20

Clarida, Gali and Gertler (1998) empirically characterized the implementation of

monetary policy by European central bank since 1979. They argued that the policy

rule is essentially a forward-looking version of the backward-looking approach of the

J. B. Taylor (1993). They first noted that the evidence shows many central banks used

the short-term interest rate as the main operating instrument of monetary policy. They

assumed that central banks set a target for the nominal short-term interest rate based

on the structure of the economy. Clarida, Gali and Gertler estimated the parameters of

equations using the GMM. Their estimation results provided a guideline for inflation

targeting monetary policy with some allowance for output stabilization. Such a rule

has proven desirable for G3 (Japan, Germany and the United State) since 1979. On

the other hand, a fixed exchange rate mechanism stresses the economy through loss of

monetary control. Consequently, it is difficult to build credibility under this scheme.

Ball (1999) defined an efficient rule for monetary policy in a simple IS-Phillips

curve model. He aimed to find the best rule that stabilizes the inflation and output.

In this paper, a policy rule is set by the interest rate. The class of efficient policies

found in this model is equivalent to the class of inflation targeting. In other words, the

efficient Taylor rule derives the short-term interest rate that supports inflation targeting

with the various speed of adjustment. When inflation expressed as a target, then the

policymakers do not need to mention other variables such as output and unemployment.

Ball argued the nominal income targeting largely destabilizes both output and inflation

in response to aggregate-spending shocks.

J. B. Taylor (1999) argued that the degree of inflation rate fluctuations around its

target level is the key variable for evaluating the interest rate rule, but is not the only

performance measurement. The real output gap, unemployment gap and unanticipated

inflation also can influence the loss function. However, the historical analysis of rule

highlights the strong impact of inflation gap on the interest rate.

Over the past two decades, several researchers have empirically examined the



Chapter 1. Introduction 21

performance of simple monetary policy rules. For instance, Clarida, Gali and Gertler

(2000) analyzed the conduct of monetary policy pre and post-1970 in the United States,

and explored how monetary policy differed before and after Volcker- the former United

States Federal Reserve Chairman. They believed that this difference mainly derives

changes in the macroeconomic behavior. They then presented a theoretical model that

explains the macro performance responses to changes in the policy rule.

Orphanides (2001) compared the real-time monetary accommodation with those

obtained from ex-post revised data. Applying the Taylor rule as an example, he showed

that estimating the reaction function based on the ex-post revised data rather than on

data available in real time can easily overshadow an important fact that forward-looking

policy reaction functions appear to provide a more accurate description of the policy

than the Taylor type contemporaneous specification.

Kuttner and Posen (2004) analyzed the difficulty of using the Taylor rule in zero

interest rate economies such as Japan.

Esanov, Merkl and de Souza (2005) estimated the monetary policy rule in Russia

and reviewed the recent conduct of monetary policy in this country. Gerberding, Seitz

and Worms (2005) estimated the reaction function and monetary policy implementation

in the Bundesbank. Ishak-Kasim and Ahmed (2010) estimated the reaction function

of the short-run interest rate in Bank Indonesia, revealing how this bank conducts its

monetary policy to meet the inflation target. Finally, Shirazi and Moosavi Mohseni

(2015) presented a forward-looking optimum rule in an open economy.

1.3.2 Chaos in Monetary Systems

This section reviews some of the recent studies on chaotic behavior in monetary models.

Using the correlation dimension technique DeCoster and Mitchell (1991) searched

for evidence of nonlinearity in various weekly monetary data. The term nonlinearity
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is used to find the deterministic nonlinear dynamics which shows chaos. The results

showed a considerable evidence of nonlinearity in these US monetary data.

DeCoster and Mitchell (1992) noted that a model with rational expectations will

develop nonlinearity and chaotic behavior. After employing a standard version of the

Lucas-Sargent rational expectation macro model they observed the time path of the

variables in the system reflects the chaotic behavior in a noisy environment. Under the

rational expectation hypothesis, the nonlinear dynamic behavior of the system becomes

more complex in this model.

Michener and Ravikumar (1998) employed a deterministic version of Lucas Jr and

Stokey (1985)’s model to detect chaotic behavior in the cash-in-advance model. The

results showed that nonlinearity and chaos in cash-in-advance models can be prevented

under certain assumptions on the individual utility function.

Benhabib et al. (2002) analyzed the instability of the Taylor policy rule in a dynamic

general equilibrium model. They applied the existence theorem of Yamaguti and Fujii

(1979) on chaotic dynamics in a scalar system. They confirmed that the interest rate

rules can shape the aperiodic equilibrium cycles and chaos.

Barkoulas (2008) investigated the deterministic chaotic behavior in monetary phe-

nomena using the Lyapunov exponent and correlation dimension approaches. No

chaotic dynamics in the different types of monetary series were observed in either

approach.

Also using the Lyapunov exponent, Resende and Zeidan (2008) investigated the

nonlinearity in the behavior of the exchange rate expectations and reported no evidence

of chaotic behavior in this variable.

Yousefpoor, Esfahani and Nojumi (2008) evaluated the behavior of the sample stock

returns selected from the Tehran stock exchange. They applied three tests: the BDS,

largest Lyapunov exponent, and Kolmogorov entropy tests. The results of all tests

confirmed the existence of chaotic behavior in this stock market.
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Moosavi Mohseni and Kilicman (2014) checked the Hopf bifurcation in an open

monetary economic model. They analyzed and compared the behavior of the economic

system under two monetary policy rules namely, Taylor and inflation targeting. The

Hopf bifurcation appeared in both economic systems. Comparing the two systems the

authors could not identify which rule was most sensitive to the bifurcation coefficient.

The results also indicated that openness can change the location of the bifurcation

boundaries and largely increase the complexity of the system.

Moosavi Mohseni, Zhang and Cao (2015) investigated the chaotic behavior in

monetary systems. They employed three different forms of the Taylor rule: current,

backward and forward-looking. The base model employed in this study was based on the

modified version of Moosavi Mohseni and Kilicman (2014)’s model for monetary policy

analysis in an open economy. Chaotic behavior was found in all three monetary systems.

Moreover, inserting the public expectations in the monetary policy rule especially the

rational expectation hypothesis increased the complexity of the systems and enhanced

the chaotic behavior.

Chaos in monetary systems has also been investigated in Scheinkman (1990),

Serletis (1996), Serletis and Shintani (2006), Kyrtsou and Serletis (2006), Barnett

and Duzhak (2008), Barnett, Serletis and Serletis (2012), Airaudo and Zanna (2012),

Barnett and Eryilmaz (2013), Sanderson (2013) and Moosavi Mohseni and Kilicman

(2013), to cite few examples.

1.3.3 Chaotic Games

As mentioned previously, the chaotic dynamics of monetary policy games has not been

reported. However, chaotic behavior and strange attractors in dynamic games have been

generated by simple difference or differential equations.

Implementing a simple differential evolutionary game introduced by P. D. Taylor
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and Jonker (1978), Skyrms (1992) presented numerical evidence of chaotic behavior in

four strategies. The possibility of complicated behavior in this dynamical game was

demonstrated in two examples.

Sato, Akiyama and Farmer (2002) employed a continuous reinforcement dynamic

game involving two players in the rock-paper-scissors game. They showed that when

the players learn from their strategies, the situation becomes more complicated. The

zero-sum dynamic learning game leads to Hamiltonian chaos, meaning that even in

a two-player game the learning trajectory can be very complicated with the chaotic

strategies in the probability space.

Agiza and Elsadany (2004) investigated the chaotic behavior in a discrete-time

duopoly game when the expectations attitude differs between the players. In their

paper, the first and second players accepted a rational and an adaptive expectation rule,

respectively. In this heterogeneous situation, each player maximizes their payoffs by

different strategies. Numerical simulation revealed complex behavior and chaos in this

duopoly market.

Károlyi, Neufeld and Scheuring (2005) and Salvetti, Patelli and Nicolo (2007) also

revealed that chaos can emerge in the probability space trajectory of a rock-paper-

scissors game.

1.4 Research Questions

The main aim of this study is to formulate a non-cooperative two-player (the policymaker

and the public) differential monetary policy game model and to analyze the possible

chaotic dynamics in both players’ trajectories. Specifically, I intend to investigate and

solve the following questions

Question 1. How can we analyze the chaotic interactions between the policymaker and

the public using the dynamic game theory?
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Question 2. Do the evolutionary dynamics of both players’ trajectories show chaotic

behavior under the Nash open-loop solution concept?

Question 3. Do the evolutionary dynamics of both players’ trajectories show chaotic

behavior under the Nash feedback solution concept?

Question 4. Do the evolutionary dynamics of both players’ trajectories show chaotic

behavior under the Stackelberg solution concept?

Question 5. In Question 4, what is the difference between the chaotic behavior of the

trajectories if the leader (policymaker) employs time consistent or time-inconsistent

policies?

As mentioned previously, the presence of chaos is an important aspect of the de-

cision making, because it implies that one player cannot trivially anticipate the behavior

of the other. Therefore the following question is also of interest.

Question 6. What can we conclude by comparing the findings from the above ques-

tions?

1.5 Thesis Contributions and Organization

The contributions of this thesis depend on answering the questions in Section 1.4. The

remainder of this thesis is organized as follows.

Chapter 2 focuses on the mathematical preliminaries and economic concepts which

are required in the rest of the study in order to prepare a model to answer the previous

questions. Section 2.2 and 2.3 describe the fundamentals of dynamical systems, control

and chaos, differential games, and economic growth theory.

Chapter 3 develops our analytical framework using the well-known neoclassical growth

model with money. We briefly discuss the objective functions of the monetary authority

and the public sector. The framework is finalized by obtaining the policy-goal relation

which is necessary for understanding monetary policy. Finally, in this chapter we
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present a specific monetary economic model. Parts of the results from [3] and the model

that I employed in [4] and [6] are included in this chapter.

Chapter 4 theoretically discusses two solution concepts: Nash and Stackelberg equi-

librium. To understand the effectiveness of monetary policy, this chapter distinguishes

between simultaneous and hierarchical games. First, we describe the open and feedback

Nash solution concepts and analyze the strategies of both players. We then define the

Stackelberg solution concept when the central bank has this priority to play as the leader.

Parts of the results from [4] and [6] are include in this chapter.

Chapter 5 applies the specific monetary economic model presented in Chapter 3 to

investigate the chaotic behavior in the monetary policy games. The existence of chaos

is determined by the largest Lyapunov exponent, the most widely used method for

diagnosing chaos in time series data. Parts of the results from [1], [2] and [5] are

include in this chapter.

Chapter 6 presents concluding remarks and proposes some strategies for implementing

the study results.



Chapter 2

Preliminaries

2.1 Introduction

This chapter describes some mathematical techniques and economic theories used in

the field of dynamical systems and chaos, differential games, optimal control theory

and economic growth models. Applying these techniques and theories, we construct

our benchmark monetary policy game model and then answer the research questions

raised in the Section 1.4.

2.2 Mathematical Preliminaries

This section introduces some mathematical definitions and theorems employed in the

subsequent chapters of this thesis.

2.2.1 Dynamic Games

One-shot games or even conventional repeated games are unsuitable for analysing a

chaotic game, since no kinematic equations (transition equations) are there to describe

how a chaotic game reaches equilibrium. However, dynamic games provide a good

27
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benchmark to this problem. Dynamic games include differential games (continuous in

time), difference games (discrete in time), and timing games. These types of games

were introduced to economics by Roos (1925, 1927), but were neglected until the 1970s.

Therefore, they evolved into a standard tool for economic dynamic analysis. At each

time period in a dynamic game, which extends over finite or infinite time, the players

receive their payoffs. The overall payoff of each player is the sum (in the discrete

version) or integral (in the continuous version) of the discounted payoff over the time

horizon. This study employs the class of non-cooperative, non-zero-sum differential

games.

Now, we consider a differential game with N players over the time horizon [0, T ]

where T is finite or T = ∞. The state variables of these players are denoted by

x1(t), ..., xm(t), where t ∈ [0, T ]. The ith player’s control variable is denoted by

ui(t), where i = 1, ...,N and t ∈ [0, T ]. Let x(t) = (x1(t), ..., xm(t)) ∈ X ⊆ Rm and

u(t) = (u1(t), ..., uN(t)). For each i = 1, ...,N we let ui(t) ∈ U i ⊆ R, where U i is a

bounded interval. We call X the state space and and U i the admissible control of player

i, respectively. The state variables and the control variables are related by the following

ordinary differential equation

x′(t) = f (x(t), u(t), t) ; x(0) = x0, (2.1)

where the function f is differentiable. The payoff function of player i is given by

Ji(u) = hi (x(T )) + ∫
T

0
gi (x(t), u(t), t)dt; ∀i = 1, ...,N. (2.2)

where gi is ith player’s utility function and hi is the terminal payoff function. We

assume that gi and hi are differentiable and limT→∞ hi (x(T )) = 0 ∀i = 1, ...,N and

for all x ∈X .
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The above game identifies the optimal strategies u∗i for the players and analyses the

behavior of these trajectories. In particular, in the above N -person differential game,

the ith player seeks the solution of the following problem

max
ui

Ji(u),

subject to x′(t) = f (x(t), u(t), t) ,

x(0) = x0.

The necessary conditions for u∗i to solve the above problem are given by the maximum

pricipels that will be explained in the next section. To obtain the conditions we form

the Hamiltonian for ith player as

Hi (x(t), u(t), λ, t) = gi (x(t), u(t), t) + hi (x(T )) + λ ⋅ f (x(t), u(t), t) ,

where λ is a vector of the costate variables. In such games, the rate of change in the state

variables is described by a differential equation, often called the transition, dynamic or

kinematic equation of the system. Therefore, the state of the system changes over time

at a rate that depends on the control variables of each player. The solution of a dynamic

game can be found by open loop Nash solution concept, feedback (Markov-perfect)

Nash solution concept, or the Stackelberg solution concept. These three strategies can

set different types of dynamic games. A player’s open loop strategy is the planned time

path of his action. This type of equilibrium concept is time consistent, meaning that

along the equilibrium path, no player is incentivized to deviate from his original plan.

Definition 2.2.1. Open Loop Nash Strategy (Dockner, Jørgensen, Van Long & Sorger,

2000)

The N -tuple (ψ1, ψ2, ..., ψN) of the function ψi ∶ [0,∞) → R, i = 1, ...,N , is called

an open loop Nash equilibrium if, for each i, an optimal control path ui of the above
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problem exists and is given by the open loop Nash strategy ui = ψi.

In contrast, in a Markov-perfect strategy, the optimal current action should depend

on the currently observed state. This technique is better conceptualized, as a player

believes that other players change their strategies over time.

Definition 2.2.2. Feedback Nash Strategy (Dockner et al., 2000)

The N -tuple (ψ1, ψ2, ..., ψN) of the function ψi ∶X × [0,∞) → R, i = 1, ...,N , is called

a feedback Nash equilibrium if, for each i, an optimal control path ui of the above

problem exists and is given by the feedback strategy ui(t) = ψi(x, t), ∀t ∈ [0,∞) .

The last solution concept is Stackelberg leadership. If one player can commit to a

certain strategy before the other player can choose his strategy, the former is called the

leader and the latter is called the follower.

Definition 2.2.3. Open Loop Stackelberg Equilibrium1

Consider a differential game with two players, L (leader) and F (follower). Let x ∈X

and ui ∈ U i, i = L, F , denote the vector of the state and control variables of each

player, respectively. If Hi(x,uL, uF , λ, t), i = L, F , is the Hamiltonian ith player, then

RF (x,uL, λ, t) = argmax
uF

HF (⋅),

is the follower’s best reply. A pair of strategies (u∗L,RF ) such that for any objective

functions (Ji, i = L, F )

JL(u∗L,RF ) ⩾ JL(uL,RF ),

JF (u∗L,RF ) ⩾ JF (u∗L, uF ),
(2.3)

for all ui, i = L, F , is an open loop stackelberg equilibrium if u∗L, and u∗F are open

loop strategies, and if (2.3) holds ∀(uL, uF ).
1See Simaan and Cruz (1973), Dockner et al. (2000) and Bacchiega, Lambertini and Palestini (2010)



Chapter 2. Preliminaries 31

To solve this game, we must adopt the optimal control theory described in the next

section.

2.2.2 Optimal Control Theory

In a differential game, each player optimizes his payoff function under a number of

dynamical constraints that show the evolution of the state variables. Optimal control

theory finds a trajectory of the state variables by choosing a set of control variables.

This approach was developed by Pontryagin, Boltyanskii, Gamkrelidz and Mishchenko

(1962) and is called Pontryagin maximum principle. We start this part by describing the

calculus of variations.

Calculus of Variations

Calculus of Variations which deals with the function of functions derives from a seminal

work first discussed by Galileo in 1630 and then by Bernoulli in 1696. The problem

was solved by Bernoulli, Newton, and Leibnitz (Takayama, 2006), respectively. The

term commonly used to describe a scalar value that depends on a function is commonly

called a functional (Bellman & Dreyfus, 2015). Here, we briefly describe a fundamental

problem in Calculus of Variations. Consider the following Riemann integral

J(x) = ∫
b

a
f (t, x(t), x′(t))dt, x(t) ∈ Rm, m ≥ 1 (2.4)

where x′(t) = dx
dt and a and b are constants. Clearly, the above integral depends on the

function x(t). Any change in x(t) can change the value of J(x). Suppose that X is a

class of differentiable functions defined on the closed interval [a, b]. We seek a function

x(t) in X such as J(x) is minimized subject to x(a) = α and x(b) = β. The solution of

this problem is obviously a curve (trajectory) joining (a,α) to (b, β).
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Lemma 2.2.1. Fundamental Lemma of the Calculus of Variations (Gelfand, Silver-

man et al., 2000)

Let F (t) be a given continuous function on [a, b]. Let X0 be the set of all continuous

function on [a, b] such that h(t) ∈ X0 implies h(a) = h(b) = 0. If ∫
b

a F (t)h(t)dt = 0

for all h(t) ∈X0, then F (t) is identically equal to zero.

Pontryagin Maximum Principle

We desire the optimum trajectory x(t) that maximizes or minimizes a certain objective.

Obviously, this trajectory can be controlled by other variables. For instance, in monetary

economics, the amount of inflation in time t can be controlled by the money supply

and short-term interest rate. We denote these control variables by a vector u(t). To

obtain the trajectory of x(t), we choose a function u(t) that optimizes (maximizes or

minimizes) a certain objective function. This problem is called the optimal control

problem, and the theory of its solution is called optimal control theory. Mathematically,

optimal control theory is related to the Calculus of Variations (Chiang, 1992). This

problem was solved by the famous Russian mathematician Pontryagin, and as mentioned

above the basic result of this problem is called the Pontryagain maximum principle.

Analogous to the classical nonlinear Lagrangian maximization method, the Pontryagain

maximum principle shows the necessary conditions for optimality.

Consider the following first order differential equations

x′i = fi (t, x(t), u(t)) , ∀i = 1,2, ..., n (2.5)

where x(t) = (x1(t), x2(t), ..., xn(t)) ∈ Rn and u(t) = (u1(t), u2(t), ..., um(t)) ∈ U

are the state and control variables, respectively. The set U ⊆ Rm is called the set of

admissible controls. We assume that fi is continuous in each xi, uj and t, and has

continuous partial derivatives with respect to xi and t. The initial values of the above
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differential equations are given by xi(0) = xi0; ∀i = 1, ..., n. Finally, the objective

function is given as

π =
n

∑
i=1

cixi(t), t ∈ (0, T ), (2.6)

where ci are constants. Now, The problem now becomes

max
u(t)∈U

π,

subject to x′i = fi (t, x(t), u(t)) , ∀i = 1,2, ..., n

xi(0) = xi0. ∀i = 1,2, ..., n

(2.7)

Solving (2.7), we can find u∗(t) = (u∗1(t), u∗2(t), ..., u∗m(t)).

Theorem 2.2.1. Pontryagin Maximum Principle (Leitmann, 1966)

Suppose that u∗(t) is a solution of (2.7) with the corresponding state variables x∗(t).

There exists a non-zero continuous vector-valued function p(t) = (p1(t), p2(t), ..., pn(t))

such that

1. p(t) together with u∗(t) and x∗(t) solve the following Hamiltonian system for

all i = 1,2, ..., n

x′i(t) =
∂H∗

∂pi
,

p′i(t) = −
∂H∗

∂xi
,

where H (the Hamiltonian) and H∗ are respectively defined by

H =
n

∑
i=1

pifi (t, x(t), u(t)) ,

H∗ =H (t, x∗(t), u∗(t)) .

2. H (t, x∗(t), u∗(t)) ≥H (t, x∗(t), u(t)), for all u(t) ∈ U .
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3. pi(t) = ci for all i = 1,2, ..., n.

2.2.3 Dynamical Systems and Chaos Theory

After solving these games and finding the trajectories by the optimal control theory, we

must investigate many relevant issues. The first issue is: Are these trajectories divergent

or convergent? We can connect the dynamic games to chaos theory. In other words, if

we have an infinitesimally small perturbation in one of the trajectories, will the orbit be

periodic or chaotic? As mentioned by May (1976), a very simple but chaotic model can

show an extraordinarily complex dynamical behavior. Such an environment presents

difficulties to all decision makers (players).

A dynamical system consists of a set of possible states and a rule that determines the

present state in terms of the past states (Alligood, Sauer & Yorke, 1996). Each dynamical

system under certain conditions can have at least one fixed point (equilibrium). A point

p∗ is a fixed point of a map f if f(p∗) = p∗. Fixed point theorems, especially Brouwer’s

fixed point theorem, have played a crucial role in equilibrium analysis of dynamical

systems.

Theorem 2.2.2. Brouwer’s Fixed Point Theorem (Border, 1989)

Let U ⊆ Rn be a not empty, compact, convex set. Each continuous map of U to itself

has at least one fixed point.

A stable fixed point called a sink is the convergence point of the nearby points as the

dynamical system evolves. Obviously, an unstable fixed point (called a source), drives

points away as time elapses.

Theorem 2.2.3. Stability of Fixed Points (Alligood et al., 1996)

Let f be a smooth map on R and assume that p∗ is a fixed point of f . If f ′(p∗) < 1, then

p∗ is a sink (attractor). If f ′(p∗) > 1,then p∗ is a source (repeller).
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Obviously, fixed points play an important role in the behaviors of orbits. The above

theorem implies that if the fixed point is a sink, it provides the final state of the system.

The minimum number of iterations in which an orbit returns to its start point is called

the period of the orbit.

Definition 2.2.4. Periodic Points of Period-k (Verhulst, 2006)

Let f be a smooth map on R. We call p a periodic point of period- k if k is the smallest

positive integer such that fk(p) = p. The orbit with initial point p is called a periodic

orbit of period-k.

Clearly the above theorem is useful for investigating the stability of the periodic

orbit around a fixed point. Suppose p is a period-k point. The period-k orbit of p is a

period sink if p is a sink for the map fk. The orbit of p is a period source if p is a source

for the map fk. Let {p1, p2, . . . , pk} denote a period-k orbit of f . Then applying the

chain rule in Calculus, we can show that the periodic orbit is a sink if

∣f ′(p1).f ′(p2).. . . .f ′(pk)∣ < 1,

and a source if

∣f ′(p1).f ′(p2).. . . .f ′(pk)∣ > 1.

In most of economic models, the external noise is considered as the main source

of volatile behavior in a dynamical system, but the chaos revolution has revealed

another source (Barnett et al., 2012). Barnett and Eryilmaz (2013) argued that economic

dynamical systems are subject to the bifurcation, and those bifurcation boundaries can

enhance our understanding of the dynamical properties of such systems. Bifurcation

theory is the study of points in a mathematical system exhibiting drastic changes in the

behavior of the system (Moosavi Mohseni & Kilicman, 2014).
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Definition 2.2.5. Bifurcation Point (Moosavi Mohseni & Kilicman, 2014)

In a dynamical system, a bifurcation occurs when a small change in the value of a

parameter (the bifurcation parameter) of a system causes a dramatic change in the

behavior of the system.

In the general representation, f(x∗; τ) denotes a strange attractor, whose value

depends on the value of the parameter τ . At certain values of τ , called the bifurcation

points, the behavior of the system dramatically changes. A bifurcation point can reveal

how a mathematical system transmits to chaos.

Chaos can be broadly defined as stochastic behavior occurring in a deterministic

system (Royal Society, London, 1986). One of the most popular definitions of chaos

in mathematical textbooks was proposed by Devaney in 1989. This definition is given

below.

Definition 2.2.6. Chaos (Devaney, 1989)

Let V be an interval on R. We can say that f ∶ V → V is chaotic on V if

i. f is sensitive to the initial conditions,

ii. f is transitive,

iii. Periodic points are dense in V .

Sensitive dependence on the initial condition is a crucial property of a chaotic system.

It states that changes in initial measures or calculation errors along the orbit can generally

alter the outcome. The existence of chaos as defined by Devaney is commonly detected

by the Lyapunov exponents, which measures the average divergence (convergence)

between a reference (y0) and a perturbed trajectory (y0 +∆y0). The separation between

two trajectories is an infinitesimally small perturbation ∆y0. Over time, this perturbation

from the initial condition can make a new perturbation trajectory ∆y that is a function

of time and the reference orbit, i.e., ∆y(y0, t).
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Sensitivity to the initial conditions can be represented as

∣∆y(y0, t)∣ ≊ eλt∣∆y0∣,

where λ denotes the Lyapunov exponents, i.e., the mean rate of separation of trajectories,

and ∣ ∣ indicates the absolute value. The Lyapunov exponents for a general orbit are

formally defined below

Definition 2.2.7. Lyapunov Exponents (Bensaïda, 2014)

The Lyapunov exponent λ of a dynamical system is defined as follows

λ = lim
t→∞

1

t
ln(∣∆y(y0, t)∣

∣∆y0∣
) . (2.8)

In this study we employ the BenSaïda (2012)’s algorithm (Bensaïda & Litimi, 2013;

Bensaïda, 2014; BenSaïda, 2015) to numerically estimate the Lyapunov exponents.

Properties of the Lyapunov exponents are described by the following theorem.

Theorem 2.2.4. (Lynch, 2004)

If at least one of the average Lyapunov exponents is positive, then the system is chaotic.

If the average Lyapunov exponents is negative, then the orbit is periodic. Finally, when

the average Lyapunov exponents is zero, the system bifurcates.

A chaotic orbit exhibits unstable behavior at all time. Especially, this orbit near

a source is neither fixed nor periodic and is never attracted to a sink (Alligood et al.,

1996).

2.3 Economic Preliminaries

This section provides a simple economic growth framework that clarifies an economic

concept. This framework prepares the reader for the monetary model that is developed
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in the next chapter. The starting point of this framework is the so-called the Solow-Swan

model2.

2.3.1 The Economic Environment

To analyze the long-term behavior of the Solow-Swan model, we require the neoclassical

aggregate production function, denoted by F (K,L), where K and L denote capital

and labor, respectively. The neoclassical production function satisfies the following

properties3.

1. Homogeneity

The function F (K,L) is homogeneous of degree one in K and L. This property is also

known as the constant return to scale (CRS).

Definition 2.3.1. Homogeneous Function (Acemoglu, 2008)

The function f(x, y) is called homogeneous of degree m in x and y, where m is a

positive integer, if

λmf(x, y) = f(λx,λy); ∀λ > 0.

This property is useful because of the following theorem.

Theorem 2.3.1. Euler’s Theorem (Acemoglu, 2008)

Suppose that f ∶ R2 → R is continuously differentiable in x ∈ R and y ∈ R and

homogeneous of degree m in x and y, with partial derivatives denoted by fx and fy,

respectively. Then

mf(x, y) = fx(x, y)x + fy(x, y)y; ∀ x, y ∈ R.

Morover, fx(x, y) and fy(x, y) are homogeneous of degree m − 1 in x and y.

2See Solow (1956) and Swan (1956)
3See Barro and Sala-i Martin (2004, pp. 27-28)
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2. Positive and Diminishing Marginal Product

The production function F (K,L) is twice continuously differentiable in K and L, and

satisfies

FK(K,L) > 0, FKK(K,L) < 0,

FL(K,L) > 0, FLL(K,L) < 0.

3. Inada Conditions and Essentiality

The production function F (K,L) satisfies the following conditions4

lim
K→∞

FK(K,L) = 0, lim
K→0

FK(K,L) = ∞,

lim
K→∞

FL(K,L) = 0, lim
K→0

FL(K,L) = ∞.

Moreover, each input is essential for production, that is

F (0, L) = F (K,0) = 0.

In economic growth theory which is concerned with constant returns, we are interested

in per capita variables. Hence if we define λ = 1
L , we have

Y = F (K,L) = Lf(K
L

).

Setting y = Y
L and k = K

L , then the per capita production function is given by

y = f(k). (2.9)

4Inada (1963)
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The remaining equations of the model are as follows

K ′ = I −ΩK, 0 < Ω < 1 (2.10)

S = sY, 0 < s < 1 (2.11)

C = (1 − s)Y, (2.12)

L = L0e
nt, 0 < n < 1 (2.13)

Y = C + I, (2.14)

where S, C and I are saving, private consumption and investment, respectively. Equa-

tion (2.10) determines the net increase in capital where Ω is the depreciation rate.

Equations (2.11) and (2.12) are private saving and private consumption functions re-

spectively, where s denotes the marginal propensity to save. Equation (2.13) assumes

that population grows at a constant rate n. Finally, (2.14) denotes the equilibrium

condition in a closed economy with no government sector.

2.3.2 The Solow-Swan Model: Fundamental Law of Motion

To analyze the dynamic behavior of the above economy, we divide both sides of (2.10)

by L and exploit the Keynesian closure rule which states that in the long-term S = I .

This gives
K ′

L
= sf(k) −Ωk. (2.15)

To express the left-hand side of (2.15) in per capita terms, we take the derivative of

k = K
L with respect to time. From (2.13), we know that L

′

L = n. Thus, we have

k′ = K
′

L
− nk. (2.16)
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Substituting the right hand side of (2.15) into (2.16), we get

k′ = sf(k) − (n +Ω)k. (2.17)

Equation (2.17) describes the fundamental dynamics of the Solow-Swan growth model.

In this model, the long-term equilibrium point or the steady state of k, denoted by kss,

corresponds to k′ = 0. Thus, in the long-term, we have

sf(kss) = (n +Ω)kss. (2.18)

Using (2.9)-(2.12), we can find the steady-state values of the other endogenous variables

of the economy.

The above discussion establishes the following two important propositions

Proposition 2.3.1. Steady State of the Solow-Swan Growth Model

Cosider the above Solow-Swan growth model. There exists a unique steady state point

kss ∈ (0,∞) determined by (2.18).

Proposition 2.3.2. Stability of the Solow-Swan Growth Model

Consider the above Solow-Swan growth model. Then for any K(0) > 0, the above

Solow-Swan growth model is globally asymptotically stable, that is, limt→∞ k(t) = kss.

Under these two propositions, the Solow-Swan growth model has a stable unique

steady state equilibrium point.
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Structure of the Model

This chapter describes the structure of the model. The presented monetary model is a

noncooperative, nonzero sum game between the central bank and the public. To derive

the dynamics of the system, we first introduce a version of the two-asset economic

growth model with the public expectations. We then present the objective functions

of both players. The policy-goal relation finalizes the structure of our model. Finally,

Section 3.4 presents the framework of our specific model

3.1 Dynamics of the System

The dynamics of the system are derived by two markets: asset and commodity, which

are described in Subsections 3.1.2 and 3.1.3, respectively. Appearence of the public

expectations in this model is the result of relaxing the usual perfect foresight assumption

in growth model. In the following model, the parameters of the system vary as the

functions of the variables of the model and this is one of the most important differences

between this model and the previous ones in the literature.

42
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3.1.1 Production Function

Following Solow (1956), suppose that a unique final good Yt is produced by labor Lt and

capital Kt.1 The production function is assumed as a twice continuously differentiable

and homogeneous function of degree one in Lt and Kt. Thus, the production function

in per capita term can be expressed as yt = f(kt), where yt = Yt
Lt

and kt = Kt
Lt

are the per

capita output and capital, respectively.2 Moreover, we require that f satisfies the Inada

conditions: f(0) = 0, fk > 0, and fkk < 0.

3.1.2 Asset Market

Suppose that there are two main asset categories in our economy: money and capital.

The total asset value in this economy is then expressed as

An =M + PKK, (3.1)

where An is the total nominal asset, M and PK are nominal money balances and

capital price, respectively. Assume that the capital price ruling the economy equals to

the commodity price, that is, PK = P . Since we are interested in the real per capita

variables, we divide both sides of (3.1) by PL, to obtain

a =m + k, (3.2)

where a and m denote the real per capita assets and the money balances, respectively.

Suppose that the real per capita demand for money is m = L(y, i, π)a, where i is the

nominal interest rate and π is the inflation rate. We know that Ly > 0, Li < 0 and

1This function exhibits a constant return to scale production function.
2For simplicity we ignore (t) hereafter.
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Lπ < 0.3 Substituting a in (3.2) into the real per capita demand for money, we obtain

md = V (y, i, π)k, (3.3)

where

V (y, i, π) = L(y, i, π)
1 − L(y, i, π)

.

Here, i = fk+πe,4 where πe = h(π) is the expected inflation in terms of π. Moreover,

hπ ∈ [0,1] is the expected inflation rate. Since y is a function of k and i = fk + πe, we

can re-write (3.3) in terms of k, π and πe as

md = V(k, π, πe)k (3.4)

with Vk > 0, Vπ < 0 and Vπe < 0. Equation (3.4) expresses the demand for money as

a function of k, π and πe. We assume that the real per capita supply of money ms is

exogenous and expressed as follows

ms = M

PL
. (3.5)

Our aim is to derive the fundamental dynamics of inflation from the equilibrium

relation of the money market, ms = md. Differentiating each term of the log of (3.4)

with respect to time, we obtain

m′

m
= Vk(k, π, π

e)k′ + Vπ(k, π, πe)π′ + Vπe(k, π, πe)πe′
V(k, π, πe)

+ k
′

k
.

3A variable with a subscript means the derivative of that variable with respect to the index, i.e.,
yx =

∂y
∂x

. In addition, a variable with a superscript prime (′) means the derivative of that variable with
respect to time, i.e., y′ = ∂y

∂t
.

4This shows the Fisher equation after Fisher (1896). But under competitive firm profit maximization,
we have r = fk, where r is the real interest rate.
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After substituting πe′ = hππ′ and rearranging, we get

m′

m
= Vk(k, π, π

e)
V(k, π, πe)

k′ + Vπ(k, π, π
e) + hπVπe(k, π, πe)
V(k, π, πe)

π′ + k
′

k
.

The above equation can be simplified as follows

m′

m
= (1

k
+ Vk(k, π, π

e)
V(k, π, πe)

)k′ + Vπ(k, π, π
e) + hπVπe(k, π, πe)
V(k, π, πe)

π′. (3.6)

On the supply side, differentiating each term of the log of (3.5) with respect to time, we

have
m′

m
= µ − π − n, (3.7)

where µ = M ′

M is the monetary policy rate parameter and n is the population growth

rate.5 By equating the right hand sides of (3.6) and (3.7), we obtain

(µ − π − n)V(k, π, πe) = (V(k, π, π
e)

k
+ Vk(k, π, πe))k′

+ (Vπ(k, π, πe) + hπVπe(k, π, πe))π′.

It follows that the fundamental dynamics of inflation is given by

π′ = ψ(k, π, πe) ((µ − π − n)V(k, π, πe) − φ(k, π, πe)k′) , (3.8)

where

ψ(k, π, πe) = 1

Vπ(k, π, πe) + hπVπe(k, π, πe)
,

φ(k, π, πe) = V(k, π, π
e)

k
+ Vk(k, π, πe).

5Assume that in the long run, full employment always prevails and the labour force grows exponen-
tially at the rate n, i.e., L(t) = L(0)ent.
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In the next subsection, we will derive the fundamental dynamics of k.

3.1.3 Commodity Market

The equilibrium condition in real terms can be written as

Y = C + I +G, (3.9)

where C = c(i)Y D is the consumption function with ci < 0, Y D is the disposable income,

I is the investment given by I = K ′ − ΩK (Ω is the depreciation rate) and G is the

exogenous government expenditure. Defining the real tax as a simple linear function of

Y , i.e., T = τY , where 0 < τ < 1, the disposable income is given by Y D = (1 − τ)Y . It

follows that the consumption function is C = c(k, πe)(1 − τ)Y . Substituting C, I and T

into (3.9), we get

Y = c(k, πe)(1 − τ)Y +K ′ +ΩK + Ḡ.

Rearranging the above equation for K ′ we obtain

K ′ = (1 − c(k, πe)(1 − τ))Y +ΩK − Ḡ. (3.10)

Knowing from (2.16) that
k′

k
= K

′

K
− n,

and substituting the right-hand side of (3.10) into the above equation and simplifying,

we obtain
k′

k
= (1 − c(k, πe)(1 − τ))Y

K
− Ḡ

K
+Ω − n.
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In terms of per capita variables this becomes

k′

k
=

(1 − c(k, πe)(1 − τ)) YL
K
L

−
Ḡ
L
K
L

+Ω − n.

Given that y = Y
L = f(k), k = K

L and ḡ = Ḡ
L , we have

k′

k
= (1 − c(k, πe)(1 − τ)) f(k)

k
− ḡ
k
+Ω − n.

Hence, after multiplying both side of the above equation by k, we obtain

k′ = (1 − c(k, πe)(1 − τ)) f(k) − ḡ + (Ω − n)k. (3.11)

where ḡ is the exogenous per capita government expenditure. Equation (3.11) gives the

fundamental dynamics of the commodity market.

3.1.4 Fundamental Dynamics of Model

From (3.11), we know that k′ is a function of k and πe, denoting this function by

α(k, πe), it follows that

k′ = (1 − c(k, πe)(1 − τ)) f(k) − ḡ + (Ω − n)k = α(k, πe). (3.12)

Now, substituting k′ = α(k, πe) into (3.8) and denoting π′ as a function of k, π, µ and

πe, namely β(k, π, µ, πe), we obtain

π′ = ψ(k, π, πe) ((µ − π − n)V(k, π, πe) − φ(k, π, πe)α(k, πe))

= β(k, π, µ, πe).
(3.13)
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The last two equations describe the fundamental dynamics of the model.

3.2 Objective Functions

To determine policy choice of the central bank, we must specify the preference of the

central bank. However, the impact of the monetary policy often depends on the public

expectations. Thus, the preferences of both players play important roles in a monetary

economic model. The players’ preferences are described by the following functions

UCB = 1

2
λ1 (y − yn)2 − 1

2
λ2 (π − π̂)2

, (3.14a)

UPS = UPS (C(k;πe);µ) , (3.14b)

where yn, and π̂ are the real per capita natural output and the target inflation of the

central bank, respectively. The coefficients λ1 and λ2 weight the output expansion and

inflation stabilization as two main goals of the central bank, respectively. Equation

(3.14a) denotes the policy choices of the central bank, as described in Barro and Gordon

(1983a, 1983b). Given that y = f(k) and that yn corresponds to the full employment

capital-labor ratio, we can rewrite UCB as

UCB = 1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2

.

Equation (3.14b) denotes the money-in-utility function, where UCPS > 0, and

UPSµ ≶ 0 (Sidrauski, 1967a, 1967b; Walsh, 2003). Following Chang (1998), we employ

the following additive utility function for the public sector

UPS = UPS1 (C(k;πe)) +UPS2 (µ) .
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Thus, the final objective functions for both players are given by

ZCB = ∫
∞

0
(1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2) e−ρtdt, (3.15a)

ZPS = ∫
∞

0
(UPS1 (C(k;πe)) +UPS2 (µ)) e−ρtdt, (3.15b)

respectively.

3.3 Policy-Goal Relation

Following Barro and Gordon (1983a), we assume that the instrument wielded by the

monetary authority directly affects inflation as the main goal of the central bank. Thus,

the remaining part of the model relates inflation to the policy instrument

π = π(µ); πµ ∈ [0,1] . (3.16)

As the policy instrument makes an indirect impact on k, we should search the

transmission of monetary policy.

3.4 A Specific Model

This section describes the framework for our numerical analysis. This monetary eco-

nomic model6 is specified by the following relationships

6For and exposition of the macroeconomic models, see(Turnovsky, 2000)



Chapter 3. Structure of the Model 50

y = k%; 0 < % < 1, (3.17a)

a =m + k, (3.17b)

md = ηy

ιi +$π
a; η, ι,$ > 0, (3.17c)

ms = M

PL
, (3.17d)

y = C + inv + ḡ, (3.17e)

C = θ

σi
yD; θ, σ > 0, (3.17f)

inv = K
′

L
+Ωk; Ω > 0, (3.17g)

t = τy; τ > 0, (3.17h)

yD = y − t, (3.17i)

π = εµ; ε ∈ [0,1], (3.17j)

where inv denotes the real per capita private investment. Equation (3.17a) specifies the

output in terms of a per capita Cobb-Douglas production function. Equations (3.17b)

- (3.17d) describe the assets, demand for money and money supply, respectively. The

commodity market is described by the (3.17e) - (3.17i). Finally, (3.17j) describes the

relationship between goal and policy, which is assumed to be linear.

We are interested in determining the dynamical behavior of the state variables, i.e.

k and π. Substituting i = %k%−1 + πe into (3.17c) and (3.17f), we obtain

m = ν(k, π;πe)k,

C = c(k;πe)k%,
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where

ν(k, π;πe) = ηk%

ι(%k%−1 + πe) − ηk% +$π
,

c(k;πe) = θ(1 − τ)
σ(%k%−1 + πe)

.

Now, we also have

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k = α(k, πe), (3.18a)

π′ = ψ(⋅) ((µ − π − n) − φ(⋅)α(⋅)) = β(k, π;πe, µ) (3.18b)

where

ψ(k, π;πe) = (ι(%k%−1 + πe) − ηk% +$π)2

−((ιδ +$)βk% + ιδ)
,

φ(k, π;πe) = ηk%

ι(%k%−1 + πe) − ηk% +$π
(% − %k%−1 ((% − 1)ι − %ηk)

ι(%k%−1 + πe) − ηk% +$π
) .

Equations (3.18a) and (3.18b) together provide the formal behavior of the dynamics of

this model. Suppose

UPS = ln( θ(1 − τ)
σ(%k%−1 + πe)

k%) + ln (µ),

is an additive utility function for the public sector. Now, the present value of the

objective functions of the central bank and the public sector are respectively given by

ZCB = ∫
∞

0
(1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2) e−ρtdt, (3.19a)

ZPS = ∫
∞

0
(ln( θ(1 − τ)

σ(%k%−1 + πe)
k%) + ln (µ)) e−ρtdt. (3.19b)



Chapter 4

Analysis of the Solution Concepts

4.1 Introduction

We can now analyze the model introduced in the previous chapter. This chapter applies

the Nash and Stackelberg solution concepts described in Chapter 2 to a noncooperative

differential monetary policy game with two players.

The next section discusses the Nash equilibrium concepts in the open loop and

feedback (Markovian) strategies. Section 4.3 analyses the hierarchical game, which is

well-known as the Stackelberg solution concept.

The importance of the time consistency problem is also discussed in this chapter. A

policy is said to be time consistent if it includes a period t action that is optimal from

the period t point of view (Canzoneri & Henderson, 1991).

Contrary to the previous literature, we demonstrate two types of time consistency

problems: behavioral and structural. As its name suggests behavioral time consistency

depends on the behavior of a policymaker who reneges on his goals, after being

incentive to deviate from the announced policy. Almost all of the literature in this

research field focused on this type of time inconsistency. Structural time consistency

depends on the economic conditions and causes from the variation of parameters in the

52
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economic models (Lucas critique)1. Here we argue that structural time inconsistency

is unavoidable. This argument explains the rarity of time-consistent policy in practice

even when the policymaker is fully committed to the policy.

4.2 Nash Equilibrium

Distinction between open loop and feedback or Markov perfect Nash strategies is useful

for understanding the game when one player deliberately deviates from his original

plan. This section describes these two different concepts of the Nash equilibrium.

Our optimal control problem is to find a time path for µ and πe so as to maximize

ZCB and ZPS subject to k′ = α(k;πe) and π′ = β(k, π;µ,πe) and the usual initial

condition for the state variables. Define Hamiltonian for both players by

HCB = 1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2 + ωCBα(k;πe) + γCBβ(k, π;µ,πe),

HPS = UPS1 (C(k;πe)) +UPS2(µ) + ωPSα(k;πe) + γPSβ(k, π;µ,πe).

where ωCB and ωPS are the co-state variables of the commodity market for the central

bank and the public sector and γCB and γPS are the co-state variables of money market

for both players, respectively.

4.2.1 Open Loop Nash Strategies

As an open loop Nash strategy, due to its precommitment, it is generally thought to

be time consistent but is not robust to perturbations (Dockner et al., 2000; Van Long,

2010). In other words, an open loop Nash strategy is a sequence of precommited actions

over the time horizon of the game.

1After Lucas (1976) who criticized a range of macroeconometric policy evolutions because they
assumed rules are invariant with respect to the law of motion that the public faced (Sargent, 2009). The
Lucas critique acknowledged that the model parameters can depend on individual behaviors.
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In an open loop Nash strategy, the control variable of one player is an exogenous

variable for the others. Mathematically, the control variable of each player depends on

time, i.e., µ = µ(t) and πe = πe(t)2. Assuming that the movements of the central bank

and the public are synchronous in time, the necessary conditions of the central bank

under an open loop Nash solution concept are given by

ωCB
′ − ρωCB = −λ1 (k − kn) − ωCBαk(k;πe) − γCBβk(k, π;µ,πe), (4.1a)

γCB
′ − ργCB = λ2 (π − π̂) − γCBβπ(k, π;µ,πe), (4.1b)

k′ = (1 − c(k;πe)(1 − τ)) f(k) − ḡ + (Ω − n)k, (4.1c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (4.1d)

0 = −λ2πµ (π − π̂) + ωCBαµ(k;πe) + γCBβµ(k, π;µ,πe), (4.1e)

0 = lim
t→∞

k(t)ωCBe−ρt, (4.1f)

0 = lim
t→∞

π(t)γCBe−ρt, (4.1g)

k(0) = k0, π(0) = π0, (4.1h)

where αµ = ∂α
∂k

∂k
∂µ . Suppose that ∂k∂µ = 1 − πµ, then αµ = αk(1 − πµ). Equation (4.1b) is a

first order differential equation, where the solution can be explained as

γCB = γCB(k, π;µ,πe). (4.2)

Substituting (4.2) into (4.1g), we have

lim
t→∞

π(t)γCB(k, π;µ,πe) = 0. (4.3)

Hense, the transversality condition (4.1g) holds for γCB if limt→∞ π(t) = 0. Now, we

2In an open loop Nash game, ψ(k, π;πe) = V(k,π;π
e)

Vπ(k,π;πe) .
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must find ωCB. Substituting (4.2) into (4.1a) and rearranging, we obtain

ωCB
′ − (ρ − αk)ωCB = −λ1 (k − kn) − βπγCB(k, π;µ,πe).

This is a first order differential equation, where the solution can be expressed as

ωCB = ωCB(k, π;µ,πe). (4.4)

Substituting (4.4) into (4.1f), we obtain

lim
t→∞

k(t)ωCB(k, π;µ,πe)e−ρt = 0. (4.5)

Since the shadow value of capital at the end of the planning horizon seems to be

positive, the transversality condition (4.1f) holds if limt→∞ k(t) = 0. This means that

the households leave no capital at the end of the planning horizon.

Proposition 4.2.1. In an open loop Nash solution concept, the dynamic path of the

monetary policy depends on the dynamic behavior of the public expectations, that is,

µ′ = Υ11(k, π;µ;πe) +Υ12(k, π;µ;πe)πe′, (4.6)

where

Υ11(k, π;µ;πe) = −
αµωCB

′ + βµγCB ′ + (ωCBαkµ + γCBβkµ)α + ωCBβπµβ
λ2π2

µ + ωCBαkµ(1 − πµ) + γCBβµµ
,

Υ12(k, π;µ;πe) = −
ωCBαπeµ + γCBβπeµ

λ2π2
µ + ωCBαkµ(1 − πµ) + γCBβµµ

.

Proof. Differentiating (4.1e) with respect to time, we have

− λ2πµπ
′ + αµωCB

′ + ωCBαµ′ + βµγCB
′ + γCBβµ′ = 0. (4.7)
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From the policy relation, we have π′ = πµµ′. Differentiating αµ = αµ(k;πe) and

βµ = βµ(k, π;µ,πe) with respect to time, we also obtain

αµ
′ = αkµk′ + απeµπe′ + αkµ

∂k

∂µ
µ′,

βµ
′ = βkµk′ + βπµπ′ + βπeµπe′ + βµµµ′.

By knowing that k′ = α, π′ = β and ∂k
∂µ = 1 − πµ and substituting them into the above

equations, we have

αµ
′ = αkµα + απeµπe′ + αkµ(1 − πµ)µ′, (4.8a)

βµ
′ = βkµα + βπµβ + βπeµπe′ + βµµµ′. (4.8b)

Substituting (4.8a) and (4.8b) into (4.7) and rearranging, we obtain

µ′ = −
αµωCB

′ + βµγCB ′ + (ωCBαkµ + γCBβkµ)α + ωCBβπµβ
λ2π2

µ + ωCBαkµ(1 − πµ) + γCBβµµ

−
ωCBαπeµ + γCBβπeµ

λ2π2
µ + ωCBαkµ(1 − πµ) + γCBβµµ

πe′,

(4.9)

which means that the strategy trajectory of the central bank (control variables) depends

on the dynamics of the public expectations, i.e., πe. ◻

As seen in (4.2) and (4.4), the co-state variables of the central bank are functions

of the control variable of the public sector. Hence, the co-state variables of the central

bank are controlled by the public. The controllability of the co-state variables is now

defined as follows.3

Definition 4.2.1. (Controllability). The co-state variable of a player is said to be

controllable if it depends on the control variables of the other players.
3(Dockner et al., 2000, p. 116).
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Proposition 4.2.2. In an open loop Nash game with the variation of the parameters,

the co-state variables of the central bank are controllable.

In this situation, manoeuvring the public expectation changes the co-state variables

of the central bank, leading to the time consistency problems4.

Definition 4.2.2. (Time Consistency). A policy is time consistent if an action planned

at time t for time t + i remains optimal to be implemented when time t + i actually

arrives5.

We must now find the trajectory of the public expectations. From (3.15b), the first

order conditions for the public sector are given by

ωPS
′ − ρωPS = −UPSk − ωPSαk(k;πe) − γPSβk(k, π;µ,πe), (4.10a)

γPS
′ − ργPS = −γPSβπ(k, π;µ,πe), (4.10b)

k′ = (1 − c(k;πe)(1 − τ)) f(k) − ḡ + (Ω − n)k, (4.10c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (4.10d)

0 = UPSπe + ωPSαπe(k;πe) + γPSβπe(k, π;µ,πe), (4.10e)

0 = lim
t→∞

k(t)ωPSe−ρt, (4.10f)

0 = lim
t→∞

π(t)γPSe−ρt, (4.10g)

k(0) = k0, π(0) = π0, (4.10h)

where UPSk = UPS1
C

∂C
∂k , and UPSπe = UPS1

C
∂C
∂πe . The solution of (4.10b) can be represented

as

γPS = γPS(k, π;µ,πe). (4.11)

4Xie (1997), Van Long (2010), and Bacchiega et al. (2010) showed that controllability in the
Stackelberg solution concept leads to time inconsistency.

5Walsh (2003).
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Substituting (4.11) into (4.10g), we obtain

lim
t→∞

π(t)γPS(k, π;µ,πe) = 0,

which means the transversality condition (4.10g) satisfies if limt→∞ π(t) = 0.

Substituting (4.11) into (4.10a) and rearranging, we obtain

ωPS
′ − (ρ − αk)ωPS = −UPSk − βkγPS(k, π;µ,πe).

Again this is a first order non-homogeneous differential equation. Its solution can be

expressed as

ωPS = ωPS(k, π;µ,πe). (4.12)

Substituting (4.12) into (4.10f), we obtain

lim
t→∞

k(t)ωPS(k, π;µ,πe) = 0.

The above transversality condition satisfis if limt→∞ k(t) = 0. That is, the households

will leave no capital as an asset at the end of the planning horizon.

Proposition 4.2.3. In an open loop Nash solution concept with the variation of para-

meters, the co-state variables of the public sectors are controllable.

Proof. Examining (4.11) and (4.12), we find that the co-state variables of the public

sector are functions of the control variable of the central bank. Hence, the co-state

variables of the public sector are controlled by the central bank. ◻

This means that central bank can change πe by manoeuvring the policy instrument.

Proposition 4.2.4. In an open loop Nash solution concept, the dynamic path of the
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public expectations depends on the dynamic behavior of the policy instrument, that is

πe′ = Υ21(k, π;µ;πe) +Υ22(k, π;µ;πe)µ′, (4.13)

where

Υ21 = −Υkα +Υπβ

Υπe
,

Υ22 = −
Υµ

Υπe
.

Proof. Substituting γPS and ωPS into (4.10e), we obtain

UPSπe + ωPS(k, π;µ;πe)απe(k, π;µ;πe) + γPS(k, π;µ;πe)βπe(k, π;µ;πe) = 0. (4.14)

Obviously, (4.14) depends on the state and control variables. For simplicity, we rewrite

the above equation as follows

Υ(k, π;µ;πe) = 0. (4.15)

Now differentiating (4.15) with respect to time, we have

Υkk
′ +Υππ

′ +Υµµ
′ +Υπeπ

e′ = 0,

Substituting k′ = α and π′ = β, into the above expression and rearranging, we obtain

πe′ = −Υkα +Υπβ

Υπe
−

Υµ

Υπe
µ′. (4.16)

◻

Proposition 4.2.5. In an open loop Nash game, assuming Υ12Υ22 ≠ 1, the strategies of
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the central bank and the public sector are given by

µ′ = 1

1 −Υ12Υ22
(Υ11 +Υ12Υ21) , (4.17a)

πe′ = 1

1 −Υ12Υ22
(Υ22Υ11 +Υ21) , (4.17b)

respectively.

Proof. To find the trajectories of both players, we rewrite (4.6) and (4.13) as the

following matrix notation

⎛
⎜⎜
⎝

1 −Υ12

−Υ22 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

µ′

πe′

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

Υ11

Υ21

⎞
⎟⎟
⎠
. (4.18)

Solving the system (4.18), for µ′ and π′, we obtain (4.17a) and (4.17b), respectively. ◻

As emphasized in Propositions 3.2. and 3.6., the reaction of the public sector on the

policymaker and vice versa cannot be ignored.

Proposition 4.2.6. In an open loop Nash solution concept, when the coefficients vary

with the control and state variables of the system, the trajectories of both players depend

on the variables of the system. In other words, the optimal monetary policy in an open

loop Nash solution concept is structurally time inconsistent.

Proof. From (4.17a) and (4.17b), we respectively have

µ′ = µOLE(k, π;µ,πe), (4.19a)

πe′ = πOLE(k, π;µ,πe), (4.19b)

that is, the optimal monetary policy is a function of the state of the system at each

instant of the time horizon. ◻
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Corollary 4.2.1. The open loop Nash solution concept is time consistent if all coeffi-

cients of the system are invariant with respect to the control and state variables.

Two dynamics of the system, i.e., k′ = α(k;πe), and π′ = β(k, π;µ,πe), together

with (4.19a) and (4.19b) determine the optimal monetary policy under an open loop

Nash solution concept.

Proposition 4.2.7. The open loop Nash solution concept for the optimal monetary

policy in a neoclassical growth model is given as follows

k′ = α(k;πe), (4.20a)

π′ = β(k, π;µ,πe), (4.20b)

µ′ = µOLE(k, π;µ,πe), (4.20c)

πe′ = πOLE(k, π;µ,πe), (4.20d)

4.2.2 Feedback Nash Strategies

In the feedback Nash solution concept, one player believes that the other player’s

action in each period will accord with the observed level of at least one state variable.

Mathematically, the control variables of the game between the central bank and the

public sector can be described as follows

πe = πe(π) = δπ; δ ∈ [0,1], (4.21a)

µ = µ(π − π̂); µπ < 0. (4.21b)

This solution concept can be the preferred choice if we believe the players manipu-

late. The necessary conditions of the central bank in this solution concept are given by
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ωCB
′ − ρωCB = −λ1 (k − kn) − ωCBαk(k;πe) − γCBβk(k, π;µ,πe), (4.22a)

γCB
′ − ργCB = λ2 (π − π̂) − ωCBαπ(k;πe) − γCBβπ(k, π;µ,πe), (4.22b)

k′ = (1 − c(k;πe)(1 − τ)) f(k) − ḡ + (Ω − n)k, (4.22c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (4.22d)

0 = −λ2πµ (π − π̂) + ωCBαµ(k;πe) + γCBβµ(k, π;µ,πe), (4.22e)

0 = lim
t→∞

k(t)ωCBe−ρt, (4.22f)

0 = lim
t→∞

π(t)γCBe−ρt, (4.22g)

k(0) = k0, π(0) = π0, (4.22h)

where

απ(k;πe) = απe(k;πe)∂π
e

∂π
,

αµ(k;πe) = αk
∂k

∂µ
+ απe(k;πe)∂π

e

∂π

∂π

∂µ
.

From (4.22e), we have

γCB =
λ2πµ (π − π̂)

βµ
−
αµ
βµ
ωCB. (4.23)

Substituting (4.23) into (4.22a), we obtain

ωCB
′ − (ρ + αµ

βk
βµ

− αk)ωCB = −λ1(k − kn) + λ2πµ(π − π̂)
βk
βµ
. (4.24)

This is a first order differential equation. The solution can be expressed as

ωCB = ωCB(k, π;µ,πe), (4.25)
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Substituting (4.25) into (4.22g), we obtain

lim
t→∞

k(t)ωCB(k, π;µ,πe) = 0.

The transversality condition (4.22g) holds if limt→∞ k(t) = 0.

Now, we must find γCB. Substitute (4.25) into (4.22b) and rearrangeing, we obtain

a first order differential equation

γCB
′ − (ρ − βπ)γCB = λ2 (π − π̂) − απωCB(k, π;µ,πe). (4.26)

The solution of (4.26) can be expressed as

γCB = γCB(k, π;µ,πe). (4.27)

Substituting (4.27) into (4.22f), we have

lim
t→∞

π(t)γCB(k, π;µ,πe) = 0.

The transversality condition (4.22f) holds if limt→∞ π(t) = 0.

Proposition 4.2.8. In a feedback Nash solution concept with variable parameters, the

co-state variables of the central bank are controllable.

Substituting (4.25) and (4.27) into (4.22e), we have

−λ2πµ (π − π̂) + αµωCB + βµγCB = 0.

For convinience, we rewrite the above equation as

Γ(k, π;µ,πe) = 0.
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Differentiation this expression with respect to time gives

Γkk
′ + Γππ

′ + Γµµ
′ + Γπeπ

e′ = 0.

We know that k′ = α and π′ = β. Morover, differentiating (4.21a) with respect to time

gives πe′ = δβ. Substituting these terms in the above equation and rearanging, we have

µ′ = −Γkα

Γµ
− β (Γπ + Γπeδ)

Γµ
. (4.28)

The above equation describes the trajectory of the monetary policy instrument. Obvi-

ously, the dynamics of µ are independent of the dynamics of the public expectations.

Proposition 4.2.9. In a feedback Nash solution concept, the time path of the policy

instrument depends on the control and state variables of the system. In other words, the

optimal monetary policy is structurally time inconsistent.

We now need to derive the trajectory of the public expectations under the feedback

strategy. The first order conditions for the public sector are given by

ωPS
′ − ρωPS = −UPSk − ωPSαk(k;πe) − γPSβk(k, π;µ,πe), (4.29a)

γPS
′ − ργPS = −UPSπ − ωPSαπ(k;πe) − γPSβπ(k, π;µ,πe), (4.29b)

k′ = (1 − c(k;πe)(1 − τ)) f(k) − ḡ + (Ω − n)k, (4.29c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (4.29d)

0 = UPSπe + ωPSαπe(k;πe) + γPSβπe(k, π;µ,πe), (4.29e)

0 = lim
t→∞

k(t)ωPSe−ρt, (4.29f)

0 = lim
t→∞

π(t)γPSe−ρt, (4.29g)

k(0) = k0, π(0) = π0. (4.29h)
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where

UPSk = ∂U
PS1

∂c

∂c

∂k
,

UPSπ = ∂U
PS1

∂c

∂c

∂πe
∂πe

∂π
,

UPSπe = ∂U
PS1

∂c

∂c

∂πe
,

απ =
∂α

∂πe
∂πe

∂π
.

Solving (4.29e) for ωPS , we obtain ωPS = −U
PS
πe

απe
− βπe
απe

γPS . Substitute this result

into (4.29b), gives the first order differential equation

γPS
′ − (ρ − βπ + δβπe)γPS = 0,

which the solution can be expressed as

γPS = γPS(k, π;µ,πe). (4.30)

Substituting (4.30) into (4.29g), we have

lim
t→∞

π(t)γPS(k, π;µ,πe) = 0,

hence the transversality condition (4.29g) holds if limt→∞ π(t) = 0. Substituting (4.30)

into (4.29a) and rearranging, we obtain ωPS as

ωPS
′ − (ρ − αk)ωPS = −UPSk − βkγPS(k, π;µ,πe), (4.31)

which is a first order differential equation with the following implicit solution

ωPS = ωPS(k, π;µ,πe). (4.32)
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Knowing that

lim
t→∞

k(t)ωPS(k, π;µ,πe) = 0,

The above transversality condition holds if limt→∞ k(t) = 0.

Proposition 4.2.10. In a feedback Nash solution concept, with varying parameters, the

co-state variables of the public sector are controllable.

Substituting (4.30) and (4.32) into (4.29e) the trajectory of the public expectations

under the feedback solution concept is obtained as

UPSπe + απeωPS(k, π;µ,πe) + βπeγPS(k, π;µ,πe) = 0. (4.33)

For simplicity, we rewrite (4.33) as Θ(k, π;µ,πe) = 0. Differentiation this expression-

with respect to time, we obtain

Θkk
′ +Θππ

′ +Θµµ
′ +Θe

ππ
e′ = 0, (4.34)

with k′ = α and π′ = β and differentiating (4.21b) with respect to time, we obtain

µ′ = µπβ. Substituting this result into (4.34) the dynamics of the public expectations

are described by

πe′ = −
Θkα +Θπβ +Θµµπβ

Θπe
. (4.35)

The above equation denotes the trajectory of the public expectation under the feedback

Nash solution concept.

Proposition 4.2.11. In a feedback Nash solution concept, the time path of the public

expectations depends on the control and state variables of the system. In other words,

the optimal monetary policy is structurally time inconsistent.
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Proposition 4.2.12. The feedback Nash solution concept for the optimal monetary

policy in a neoclassical growth model is given by

k′ = α(k;πe), (4.36a)

π′ = β(k, π;µ,πe), (4.36b)

µ′ = ΓFBE(k, π;µ,πe), (4.36c)

πe′ = ΘFBE(k, π;µ,πe). (4.36d)

4.3 Stackelberg Equlibrium

Suppose that the players are not required to start the game simultaneously. In this

situation, the first player (the leader) is granted priority to choose his strategy. This

type of game is a game with hierarchical play, and its equilibrium is the well-known

Stackelberg solution concept. If the leader (hereafter the central bank) commits to the

time path of its policy instrument and knows the best public response along any given

of time path, then the best strategy of the central bank depends on the best reply of

the follower (hereafter the public sector). Using this information the central bank can

choose its strategy before the public. When the central bank knows the reaction of the

public sector (here as an open loop player), it can generate a time path of the monetary

policy instrument by employing the first order condition of the open loop Nash game for

the public. In this situation, the central bank constrained by four differential equations

(Starr & Ho, 1969; Chen & Cruz, 1972; Simaan & Cruz, 1973; Van Long, 2010;

Dockner et al., 2000). These two additional constraints include two state variables γPS

and ωPS arising from the optimal control solution of the public in the open loop Nash
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solution concept. Hence we have

ωPS
′ − ρωPS = −UPSk − ωPSαk(k;πe) − γPSβk(k, π;µ,πe), (4.37a)

γPS
′ − ργPS = −γPSβπ(k, π;µ,πe), (4.37b)

0 = UPSπe + ωPSαπe(k;πe) + γPSβπe(k, π;µ,πe). (4.37c)

Rearranging (4.37c) as γPS = −U
PS
πe

βπe
− απe
βπe

ωPS and substituting it into (4.37a), we

obtain the third constraint on the central bank (the first two constraints are (3.12) and

(3.13)). The final constraint comes from rearranging (4.37b). These two constraints are

respectively given as follows

ωPS
′ = (ρ − αk − βk

απe

βπe
)ωPS + βk

βπe
UPSπe − UPSk = ∆(k, π,ωPS;µ,πe), (4.38a)

γPS
′ = (ρ − βπ)γPS = Λ(k, π, γPS;µ,πe), (4.38b)

where ωPS(0) and γPS(0) can be freely chosen by the central bank (Xie, 1997; Dockner

et al., 2000; Van Long, 2010).

Proposition 4.3.1. In an open loop Stackelberg solution concept with the variation of

parameters, the co-state variables of the public are controllable.

The Hamiltonian of the central bank in the Stackelberg solution concept is given by

HCB = 1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2 + ωCBα(k;πe) + γCBβ(k, π;µ,πe)

+ ξCB∆(k, π,ωPS;µ,πe) + ζCBΛ(k, π, γPS;µ,πe),
(4.39)

where ωCB, γCB, ξCB, and ζCB are the co-state variables of the system. To find the
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solution of this game, we must solve the following Pontryagin maximum principle

−∂H
CB

∂k
= ωCB ′ − ρωCB, −∂H

CB

∂π
= γCB ′ − ργCB,

−∂H
CB

∂ωPS
= ξCB ′ − ρξCB, −∂H

CB

∂γPS
= ζCB ′ − ρζCB,

k′ = α(k;πe), π′ = β(k, π;µ,πe),

ωPS
′ = ∆(k, π,ωPS;µ,πe), γPS

′ = Λ(k, π, γPS;µ,πe),
∂HCB
∂µ

= 0,

given k(0) = k0 and π(0) = π0, where ωPS(0), and γPS(0) are both free and are

chosen by the central bank . Finally, the transversality conditions of this optimal control

problem are given by6

lim
t→∞

k(t)ωCBe−ρt = 0, lim
t→∞

π(t)γCBe−ρt = 0,

lim
t→∞

ωPS(t)ξCBe−ρt = 0, lim
t→∞

γPS(t)ζCBe−ρt = 0.

From the results of the above system of equations, the central bank suggests two

time paths for ωPS and γPS that satisfy the transversality conditions. After the public

sector substitutes these two time paths into (4.37c) and solves to obtain the trajectory of

the public expectations the optimization problem is completed.

In the open loop Stackelberg solution concept, both players make their decisions in

a hierarchical manner. Similar to the open loop Nash solution concept, the time path

actions are planned over the time horizon. Therefore in both of this games µ = µ(t) and

πe = πe(t) are still valid.

6Turnovsky and Brock (1980); Xie (1997); Dockner et al. (2000).
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Meanwhile, the first order conditions for the central bank are given by

ωCB
′ − ρωCB = λ1 (k − kn) − ωCBαk − γCBβk − ξCB∆k − ζCBΛk, (4.40a)

γCB
′ − ργCB = −λ2 (π − π̂) − γCBβπ − ξCB∆π − ζCBΛπ, (4.40b)

ξCB
′ − ρξCB = −ξCB (ρ − αk − βk

απe

βπe
) , (4.40c)

ζCB
′ − ρζCB = −ζCB (ρ − βπ) , (4.40d)

k′ = (1 − c(1 − τ)) f(k) − ḡ + (Ω − n)k, (4.40e)

π′ = ψ ((µ − π − n) − φα) , (4.40f)

ωPS
′ = (ρ − αk − βk

απe

βπe
)ωPS + βk

βπe
UPSπe − UPSk , (4.40g)

γPS
′ = (ρ − βπ)γPS, (4.40h)

0 = λ2πµ (π − π̂) + γCBβµ + ξCB∆µ + ζCBΛµ, (4.40i)

0 = lim
t→∞

k(t)ωCBe−ρt, (4.40j)

0 = lim
t→∞

π(t)γCBe−ρt, (4.40k)

0 = lim
t→∞

ωPS(t)ξCBe−ρt, (4.40l)

0 = lim
t→∞

γPS(t)ζCBe−ρt, (4.40m)

k(0) = k0, π(0) = π0, ω
PS(0); free, γPS(0); free. (4.40n)

Rearranging (4.40c) and (4.40d), we obtain the following pair of homogeneous

differential equations

ξCB
′ − (αk + βk

απe

βπe
) ξCB = 0,

ζCB
′ − βπζCB = 0,



Chapter 4. Analysis of the Solution Concepts 71

the solution of the above equations can be expressed as

ξCB = ξCB(k, π;µ,πe), (4.41a)

ζCB = ζCB(k, π;µ,πe). (4.41b)

Both of the above solutions should satisfy the corresponding transversality conditions

lim
t→∞

ωPS(t)ξCB(k, π;µ,πe) = 0,

lim
t→∞

γPS(t)ζCB(k, π;µ,πe) = 0.

To find γCB, we substitute (4.41a) and (4.41b) into (4.40i) and obtain

γCB = −
λ2πµ(π − π̂)

βµ
−

∆µ

βµ
ξCB(k, π;µ,πe) −

Λµ

βµ
ζCB(k, π;µ,πe). (4.42)

Now, substitute (4.41a), (4.41b) and (4.42) into (4.40a) and rearranging, we get

ωCB
′ − (ρ − αk)ωCB = λ1 (k − kn) + λ2πµ

βk
βµ

(π − π̂) + (∆µ
βk
βµ

−∆k) ξ

+ (Λµ
βk
βµ

−Λk) ζ.
(4.43)

Solution to (4.43) can be expressed as

ωCB = ωCB(k, π,ωPS, γPS;µ,πe). (4.44)

Proposition 4.3.2. In an open loop Stackelberg solution concept, with the variation of

parameters, the co-state variables of the central bank are controllable.

For simplicity, (4.40i) can be written as follows

Ξ1(k, π, γPS, ωPS;µ,πe) = 0 (4.45)
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To find the dynamics of µ, we differentiate (4.45) with respect to time

Ξ1
kk

′ +Ξ1
ππ

′ +Ξ1
γPSγ

PS ′ +Ξ1
ωPSω

PS ′ +Ξ1
µµ

′ +Ξ1
πeπ

e′ = 0,

where γPS ′ = Λ, ωPS ′ = ∆, k′ = α and π′ = β. Substituting these terms into the above

equation and rearranging, we derive the dynamics of the monetary polict rate as follows

µ′ = −
Ξ1
kα +Ξ1

πβ +Ξ1
γPS

Λ +Ξ1
ωPS

∆

Ξ1
µ

− Ξ1
πe

Ξ1
µ

πe′. (4.46)

Therefore, the dynamics of the policy instrument depends on the dynamics of the public

expectations and more importantly is the variation of coefficients depends on the states

and control variables of the system. For simplicity, we rewrite (4.46) as

µ′ = Ξ11 +Ξ12πe′, (4.47)

where

Ξ11 = −
Ξ1
kα +Ξ1

πβ +Ξ1
γPS

Λ +Ξ1
ωPS

∆

Ξ1
µ

,

Ξ12 = −Ξ1
πe

Ξ1
µ

.

Proposition 4.3.3. In an open loop Stackelberg solution concept, the dynamic path of

the monetary policy instrument depends on the dynamic behavior of the public expecta-

tions.

The dynamics of the public expectations can be found from equation (4.37c). For

convinience, we rewrite this equation as Ξ2(k, π, γPS, ωPS;µ,πe) = 0. Differentiating
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it with respect to time, we obtain

Ξ2
kk

′ +Ξ2
ππ

′ +Ξ2
γPSγ

PS ′ +Ξ2
ωPSω

PS ′ +Ξ2
µµ

′ +Ξ2
πeπ

e′ = 0,

Substituting k′ = α, π′ = β, ωPS ′ = ∆ and γPS
′ = Λ into the above equation and

rearranging, we get

πe′ = −
Ξ2
kα +Ξ2

πβ +Ξ2
γPS

Λ +Ξ2
ωPS

∆

Ξ2
πe

−
Ξ2
µ

Ξ2
πe
µ′, (4.48)

which means that the dynamics of the public expectations also depends on the dynamics

of the monetary policy instrument. Again, the trajectory coefficients are not invariant

and depend on the states and control variables of the system. For simplicity, we rewrite

(4.48) as follows

πe′ = Ξ21 +Ξ22µ′, (4.49)

where

Ξ21 = −
Ξ2
kα +Ξ2

πβ +Ξ2
γPS

Λ +Ξ2
ωPS

∆

Ξ2
πe

,

Ξ12 = −
Ξ2
µ

Ξ2
πe
.

Proposition 4.3.4. In an open loop Stackelberg solution concept, the dynamic path of

the public expectations depends on the dynamic behavior of the policy instrument.

To find the dynamics of the policy instrument and the public expectations, we

simultaneously solve (4.47) and (4.49) as follows

⎛
⎜⎜
⎝

µ′

πe′

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −Ξ12

−Ξ22 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

Ξ11

Ξ21

⎞
⎟⎟
⎠
. (4.50)
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Suppose that 1 −Ξ12Ξ22 ≠ 0, we conclude

µ′ = µSOE(k, π, γPS, ωPS;µ,πe), (4.51a)

πe′ = πSOE(k, π, γPS, ωPS;µ,πe). (4.51b)

Proposition 4.3.5. In an open loop Stackelberg solution concept, when the coefficients

depend on the control and state variables of the system, the trajectories of both players

depend on the variables of the system. In other words, the optimal monetary policy

under an open loop Stackelberg solution concept is structurally time inconsistent.

The open loop Stackelberg solution concept is described by the following proposi-

tion.

Proposition 4.3.6. An open loop Stackelberg solution concept for the optimal monetary

policy in a neoclassical growth model is conceptualized as follow

k′ = α(k;πe), (4.52a)

π′ = β(k, π;µ,πe), (4.52b)

ωPS
′ = ∆(k, π,ωPS;µ,πe), (4.52c)

γPS
′ = Λ(k, π, γPS;µ,πe), (4.52d)

µ′ = µSOE(k, π, γPS, ωPS;µ,πe), (4.52e)

πe′ = πSOE(k, π, γPS, ωPS;µ,πe), (4.52f)



Chapter 5

Chaos: A Numerical Investigation

5.1 Introduction

This chapter investigates the chaos in the monetary policy game between the central bank

and the public. The analysis is performed in a specific neoclassical growth framework

which is presented in Chapter 3. The results can stimulate improvements in both the

theory and applications of monetary policy chaotic games.

First, we discuss the mathematical solutions of this model in different solution

concepts, then present the numerical solutions that are more suited to economic applica-

tions. Because the solutions in each case were analyzed by the same method, we can

compare the results of the different games.

The central bank and the public sector are required to maximize (3.19a) and (3.19b)

subject to (3.18a) and (3.18b) respectively, given the usual initial conditions of the state

variables. The Hamiltonian of the players in this specific monetary policy game are

75



Chapter 5. Chaos: A Numerical Investigation 76

easly introduced as

HCB(k, π;πe, µ;ωCB, γCB) = 1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2

+ ωCBα(k, πe) + γCBβ(k, π, µ, πe),
(5.1a)

HPS(k, π;πe, µ;ωPS, γPS) = ln( θ(1 − τ)
σ(%k%−1 + πe)

k%) + ln (µ)

+ ωPSα(k, πe) + γPSβ(k, π, µ, πe).
(5.1b)

5.2 Solution Concepts of the Specific Model

This section is mainly devoted to the equilibrium of our three solution concepts in-

troduced in Chapter 3. The trajectories of both players are found by the approaches

developed in the previous chapter.

5.2.1 Nash Equilibrium: Open Loop Strategy

In the open loop strategy, each player should commit to his planned action over the time

horizon. Therefore, the control variable of each player does not depend on the states of

the system and we can simply write

πe = πe(t), (5.2)

µ = µ(t). (5.3)

Suppose that the central bank and the private sector move simultaneously at each

instance in time. Using the Hamiltonian of the players given in the previous section, i.e.,

(5.1a) and (5.1b) the optimum path of both players can be determined by the Pontryagin

maximum principle. Hence, the necessary conditions for the central bank are given as
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follows

ωCB
′ − ρωCB = −λ1 (k − kn) − ωCBαk(k;πe) − γCBβk(k, π;µ,πe), (5.4a)

γCB
′ − ργCB = λ2 (π − π̂) − γCBβπ(k, π;µ,πe), (5.4b)

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.4c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (5.4d)

0 = −λ2ε (π − π̂) + ωCBαµ(k;πe) + γCBβµ(k, π;µ,πe), (5.4e)

0 = lim
t→∞

k(t)ωCBe−ρt, (5.4f)

0 = lim
t→∞

π(t)γCBe−ρt, (5.4g)

k(0) = k0, π(0) = π0, (5.4h)

where αµ(k;πe) = αk(1 − ε) and βµ(k, π;πe) = ψ ((1 − ε) − φαµ). Solving (5.4b), we

obtain the following first order differential equation

γCB
′ − (ρ − βπ)γCB = λ2 (π − π̂) ,

where βπ = −ψ. Solution to the above differential equation can be expressed as

γCB = γCB(k, π;µ,πe). (5.5)

Substituting (5.5) into (5.4a), we obtain the following first order differential equation

ωCB
′ − (ρ − αk)ωCB = −λ1 (k − kn) − βkγCB(k, π;µ,πe), (5.6)
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where

αk = %(1 − θ(1 − τ)
σ(%k%−1 + πe)

)k(%−1) + θ(1 − τ)%(% − 1)
σ(%k%−1 + πe)2

k(%−2) +Ω − n.

and

βk = −ψφαk.

Solution to (5.6) can be expressed as

ωCB = ωCB(k, π;µ,πe) (5.7)

To find the trajectory of the central bank decision variable, i.e., µ, we differentiate

(5.4e) with respect to time, thereby obtain

− λ2επ
′ + αµωCB

′ + α′µωCB + βµγCB
′ + β′µγCB = 0. (5.8)

We have already found ωCB and γCB, given that

αµ(k;πe) = αk(1 − ε),

βµ(k, π;πe) = ψ ((1 − ε) − φαµ) ,

we obtain

α′µ = (1 − ε) (αkkk′ + αkπeπe′ + αkk(1 − ε)µ′) . (5.9)

β′µ = βµkk′ + βµππ′ + βµπeπe′. (5.10)

We also have k′ = α and π′ = β. Substituting (5.9) and (5.10) into (5.8) and rearranging

for µ, we get

µ′ = Υ11 +Υ12πe′, (5.11)
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where

Υ11 =
−λ2επ′ + αµωCB ′ + βµγCB ′ + ωCB(1 − ε)αkkα + γCB (βµkα + βµπβ)

−ωCB(1 − ε)2αkk
,

Υ12 =
ωCB(1 − ε)αkπe + γCBβµπe

−ωCB(1 − ε)2αkk
.

Equation (5.11) describes the trajectory of the monetary policy rate.

We must now find the trajectory of the public sector. To this end, we solve the

following Pontryagin maximum principle

ωPS
′ − ρωPS = −UPSk − ωPSαk(k;πe) − γPSβk(k, π;µ,πe), (5.12a)

γPS
′ − ργPS = −γPSβπ(k, π;µ,πe), (5.12b)

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.12c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (5.12d)

0 = UPSπe + ωPSαπe(k;πe) + γPSβπe(k, π;µ,πe), (5.12e)

0 = lim
t→∞

k(t)ωPSe−ρt, (5.12f)

0 = lim
t→∞

π(t)γPSe−ρt, (5.12g)

k(0) = k0, π(0) = π0, (5.12h)

where

UPSk = UPSC
∂C
∂k

= %(k%−1 + πe)
(%k%−1 + πe)k

,

UPSπe = UPSC
∂C
∂πe

= −1

(%k%−1 + πe)
.

From (5.12b), we have

γPS
′ − (ρ − βπ)γPS = 0, (5.13)



Chapter 5. Chaos: A Numerical Investigation 80

which is a linear homogeneous first order differential equation. The solution to (5.13)

can be represented as

γPS = γPS(k, π;µ,πe). (5.14)

To find ωPS , we substitute (5.14) into (5.12a). The result is another first order

differential equation

ωPS
′ − (ρ − αk)ωPS = −UPSk − βkγPS(k, π;µ,πe). (5.15)

Solution to (5.15) can be expressed as

ωPS = ωPS(k, π;µ,πe). (5.16)

Substituting the known values of γPS and ωPS into (5.12e), we can find the dynamics

of the public expectation. First, we differentiate (5.12e) with respect to time

UPSπekk′ + UPSπeπeπe′ + ωPS
′
απe + ωPSα′πe + γPS

′
βπe + γPSβ′πe = 0, (5.17)

where βπe = −ψφαπe , απe = δαπ and

UPSπek =
%(% − 1)k%−2

(%k%−1 + πe)2
,

UPSπeπe =
1

(%k%−1 + πe)2
,

ωPS
′ = ∂ω

PS

∂k
k′ + ∂ω

PS

∂π
π′ + ∂ω

PS

∂µ
µ′ + ∂ω

PS

∂πe
πe′,

γPS
′ = ∂γ

PS

∂k
k′ + ∂γ

PS

∂π
π′ + ∂γ

PS

∂πe
πe′,

α′πe =
∂απe

∂k
k′ + ∂απ

e

∂πe
πe′,

β′πe =
∂βπe

∂k
k′ + ∂βπ

e

∂π
π′ + ∂βπ

e

∂µ
µ′ + ∂βπ

e

∂πe
πe′.
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Substitute the above equations in (5.17) and rearranging for πe′, we obtain

πe′ = Υ21 +Υ22µ′, (5.18)

where

Υ21 = −
α ( %(%−1)k%−2

(%k%−1+πe)2 +
∂ωPS

∂k απe + ∂απ
e

∂k ωPS +
∂γPS

∂k βπe + βπe
∂k γ

PS)
1

(%k%−1+πe)2 +
∂ωPS

∂πe απe +
∂απe
∂πe ω

PS + ∂γPS

∂πe βπe +
∂βπe
∂πe γ

PS

−
β (∂ωPS∂π απe + ∂γPS

∂π βπe + βπe
∂π γ

PS)
1

(%k%−1+πe)2 +
∂ωPS

∂πe απe +
∂απe
∂πe ω

PS + ∂γPS

∂πe βπe +
∂βπe
∂πe γ

PS)
,

Υ22 = −
∂ωPS

∂µ απe + ∂βπe
∂µ γ

PS

1
(%k%−1+πe)2 +

∂ωPS

∂πe απe +
∂απe
∂πe ω

PS + ∂γPS

∂πe βπe +
∂βπe
∂πe γ

PS)
.

To find the the players’ strategies, we need to solve (5.11) and (5.18) simultaneously.

The result is

µ′ = 1

1 −Υ12Υ22
(Υ11 +Υ12Υ21), (5.19)

πe′ = 1

1 −Υ12Υ22
(Υ22 +Υ11Υ21). (5.20)

Thus the solution of the open loop Nash strategy is as follows

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.21a)

π′ = (k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (5.21b)

µ′ = 1

1 −Υ12Υ22
(Υ11 +Υ12Υ21), (5.21c)

πe′ = 1

1 −Υ12Υ22
(Υ22 +Υ11Υ21). (5.21d)
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5.2.2 Nash Equilibrium: Feedback Strategy

In the previous chapter, we explained in the feedback Nash strategy the players observe

the states of the system to choose their next movement accordingly. For instance,

consider the following reaction functions of the central bank and the public

µ = µ(π − π̂); µπ < 0, (5.22a)

πe = πe(π) = δπ; δ ∈ [0,1]. (5.22b)

In this solution concept, each player solves the optimal control problem given the

opponent’s strategy.

Consider the Pontryagin maximum principle described in Theorem 2.2.1. Substitut-

ing (5.22a) and (5.22b) into the respective Hamiltonian of the players, we can find the

feedback Nash equilibria which differ from the equilibria in the previous section. The

necessary conditions for the central bank are given by

ωCB
′ − ρωCB = −λ1 (k − kn) − ωCBαk(k;πe) − γCBβk(k, π;µ,πe), (5.23a)

γCB
′ − ργCB = λ2 (π − π̂) − ωCBαπ(k;πe) − γCBβπ(k, π;µ,πe), (5.23b)

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.23c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (5.23d)

0 = −λ2ε (π − π̂) + ωCBαµ(k;πe) + γCBβµ(k, π;µ,πe), (5.23e)

0 = lim
t→∞

k(t)ωCBe−ρt, (5.23f)

0 = lim
t→∞

π(t)γCBe−ρt, (5.23g)

k(0) = k0, π(0) = π0, (5.23h)
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where

απ(k;πe) = ∂π
e

∂π
απe(k;πe) = δαπe(k;πe),

απe(k;πe) = k%

σ2(%k%−1 + πe)2
,

αµ(k;πe) = αk
∂k

∂µ
+ απe(k;πe)∂π

e

∂π

∂π

∂µ
= (1 − ε)αk + δεαπe ,

βµ(k, π;µ,πe) = ψ ((1 − ε) − φαµ) .

Rearranging (5.23e), we get

γCB = λ2ε (π − π̂)
βµ

−
αµ
βµ
ωCB.

Substituting the above equation into (5.23a) and rearranging, we obtain

ωCB
′ − (ρ − αk + αµ

βk
βµ

)ωCB = −λ1 (k − kn) − λ2ε (π − π̂)
βk
βµ
. (5.24)

Equation (5.24) is a first order differential equation, where solution to this equation can

be expressed as

ωCB = ωCB(k, π;µ,πe). (5.25)

Substituting (5.25) into (5.23b) and rearranging, we obtain another first order

differential equation

γCB
′ − (ρ − βπ)γCB = λ2 (π − π̂) − απωCB(k, π;µ,πe). (5.26)

Solution to (5.26) can be represented as

γCB = γCB(k, π;µ,πe). (5.27)
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Inserting ωCB and γCB calculated by (5.25) and (5.27) respectively into (5.23e), we

obtain the dynamics of the central bank’s strategy. Differentiating (5.23e) with respect

to time, we get

− λ2επ
′ + ωCBα′µ + ωCB

′
αµ + γCBβ′µ + γCB

′
βµ = 0, (5.28)

where

ωCB
′(k, π;µ,πe) = ∂ω

CB

∂k
k′ + (ω

CB

∂π
+ δ∂ω

CB

∂πe
)π′ + ∂ω

CB

∂µ
µ′,

γCB
′(k, π;µ,πe) = ∂γ

CB

∂k
k′ + (∂γ

CB

∂π
+ δ∂γ

CB

∂πe
)π′ + ∂γ

CB

∂µ
µ′,

α′µ(k;πe) =
∂αµ
∂k

k′ + δ
∂αµ
∂πe

π′,

β′µ(k, π;µ,πe) =
∂βµ
∂k

k′ + (
∂βµ
∂π

+ δ
∂βµ
∂πe

)π′ +
∂βµ
∂µ

µ′.

Given k′ = α and π′ = β the above equations are substituted into (5.28) which is then

rearranged for the µ′

µ′ = −α
αµ

∂ωCB

∂k + βµ ∂γ
CB

∂k + ωCB ∂αµ
∂k + γCB ∂βµ

∂k

αµ
∂ωCB

∂µ + βµ ∂γ
CB

∂µ + γCB ∂βµ
∂µ

− β
−λ2ε + αµ (ω

CB

∂π + δ ∂ωCB∂πe ) + βµ (∂γ
CB

∂π + δ ∂γ
CB

∂πe ) + ωCBδ ∂αµ∂πe + γCB (∂βµ∂π + δ ∂βµ∂πe )

αµ
∂ωCB

∂µ + βµ ∂γ
CB

∂µ + γCB ∂βµ
∂µ

.

The above equation describes the trajectory of the central bank’s control variable. For

simplicity, we rewrite this equation as

µ′ = Ψµ(k, π;µ,πe). (5.29)

Next, we derive the trajectory of the public expectations. The first order conditions
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for the public sector are given as follows

ωPS
′ − ρωPS = −UPSk − ωPSαk(k;πe) − γPSβk(k, π;µ,πe), (5.30a)

γPS
′ − ργPS = −UPSπ − ωPSαπ(k;πe) − γPSβπ(k, π;µ,πe), (5.30b)

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.30c)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (5.30d)

0 = UPSπe + ωPSαπe(k;πe) + γPSβπe(k, π;µ,πe), (5.30e)

0 = lim
t→∞

k(t)ωPSe−ρt, (5.30f)

0 = lim
t→∞

π(t)γPSe−ρt, (5.30g)

k(0) = k0, π(0) = π0, (5.30h)

where UPSπ = UPSπe ∂πe

∂π = −δ
(%k%−1+πe) . Rearranging (5.30e), we obtain

ωPS = −U
PS
πe

απe
− βπ

e

απe
γPS. (5.31)

Substituting (5.31) into (5.30b) and rearranging, we get the first order differential

equation

γPS
′ − (ρ − βπ + δβπe)γPS = 0. (5.32)

Solution to (5.32) can be represented as

γPS = γPS(k, π;µ,πe). (5.33)

We must now find ωPS . Subdtituting (5.33) into (5.30a) and rearranging, we obtain

the following first order differential equation

ωPS
′ − (ρ − αk)ωPS = −UPSk − βkγPS(k, π;µ,πe). (5.34)
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The solution to the above equation can be expressed as

ωPS = ωPS(k, π;µ,πe). (5.35)

Substituting (5.33) and (5.35) into (5.30e) and differentiating with respect to time,

we obtain the dynamics of the public expectations as follows

UPSπekk′ + UPSπeπeπe′ + ωPS
′
απe + ωPSα′πe + γPS

′
βπe + γPSβ′πe = 0, (5.36)

where

UPSπek =
%(% − 1)k%−2

(%k%−1 + πe)2
,

UPSπeπe =
1

(%k%−1 + πe)2
,

α′πe =
∂απe

∂k
k′ + ∂απ

e

∂πe
πe′,

β′πe =
∂βπe

∂k
k′ + ∂βπ

e

∂π
π′ + ∂βπ

e

∂πe
πe′ + ∂βπ

e

∂µ
µ′,

ωPS
′ = ∂ω

PS

∂k
k′ + ∂ω

PS

∂π
π′ + ∂ω

PS

∂πe
πe′ + ∂ω

PS

∂µ
µ′,

γPS
′ = ∂γ

PS

∂k
k′ + ∂γ

PS

∂π
π′ + ∂γ

PS

∂πe
πe′ + ∂γ

PS

∂µ
µ′.

Substituting the known terms k′ = α, π′ = β and µ′ = µππ′ into (5.36) and rearranging

for πe′, we obtain

πe′ = −α
%(%−1)k%−2
(%k%−1+πe)2 + ωPS

∂απe
∂k + γPS ∂βπe∂k + απe ∂ω

PS

∂k + βπe ∂γ
PS

∂k

1
(%k%−1+πe)2 + ωPS

∂απe
∂πe + γPS ∂βπe∂πe + βπe

∂γPS

∂πe + απe ∂ω
PS

∂πe

− β
απe (∂ω

PS

∂π + µπ ∂ω
PS

∂µ ) + βπe (∂γ
PS

∂π + µπ ∂γ
PS

∂µ ) + γPS (∂βπe∂π + µπ ∂βπe∂µ )
1

(%k%−1+πe)2 + ωPS
∂απe
∂πe + γPS ∂βπe∂πe + βπe

∂γPS

∂πe + απe ∂ω
PS

∂πe

.
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For simplicity, we rewrite the above equation as

πe′ = Ψπe(k, π;µ,πe). (5.37)

Equilibrium of the feedback loop Nash solution concept is described as follows

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.38a)

π′ = ψ(k, π;πe) ((µ − π − n) − φ(k, π;πe)α(k;πe)) , (5.38b)

µ′ = Ψµ(k, π;µ,πe), (5.38c)

πe′ = Ψπe(k, π;µ,πe). (5.38d)

5.2.3 Stackelberg Equilibrium

If the moves of some players are prioritized to others the game develops a hierarchical-

moves and is known as the Stackelberg game. This section derives the open loop

Stackelberg equilibrium define in the previous chapter. In this duopoly game model,

both players (leader and follower) commit to the time paths of their planned strategies.

In other words, (5.2) and (5.3) remain valid in this section.

As described in Chapter 4, two additional constraints are imposed on the leader.

This constraint are the dynamics of the co-state variables of the follower, i.e., (4.38a)

and (4.38b). The Hamiltonian of the central bank is as follows

HCB = 1

2
λ1 (k − kn)2 + 1

2
λ2 (π − π̂)2 + ωCBα(k;πe) + γCBβ(k, π;µ,πe)

+ ξCB∆(k, π,ωPS;µ,πe) + ζCBΛ(k, π, γPS;µ,πe),
(5.39)

where ωCB, γCB, ξCB and ζCB are the co-state variables of the system. The first order
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conditions of the central bank are given as

ωCB
′ − ρωCB = λ1 (k − kn) − ωCBαk − γCBβk − ξCB∆k − ζCBΛk, (5.40a)

γCB
′ − ργCB = −λ2 (π − π̂) − γCBβπ − ξCB∆π − ζCBΛπ, (5.40b)

ξCB
′ − ρξCB = −ξCB (ρ − αk − βk

απe

βπe
) , (5.40c)

ζCB
′ − ρζCB = −ζCB (ρ − βπ) , (5.40d)

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.40e)

π′ = ψ ((µ − π − n) − φα) , (5.40f)

ωPS
′ = (ρ − αk − βk

απe

βπe
)ωPS + βk

βπe
UPSπe − UPSk , (5.40g)

γPS
′ = (ρ − βπ)γPS, (5.40h)

0 = λ2ε (π − π̂) + γCBβµ + ξCB∆µ + ζCBΛµ, (5.40i)

0 = lim
t→∞

k(t)ωCBe−ρt, (5.40j)

0 = lim
t→∞

π(t)γCBe−ρt, (5.40k)

0 = lim
t→∞

ωPS(t)ξCBe−ρt, (5.40l)

0 = lim
t→∞

γPS(t)ζCBe−ρt, (5.40m)

k(0) = k0, π(0) = π0, ω
PS(0); free, γPS(0); free. (5.40n)

Rearranging (5.40c) and (5.40d), we obtain the pair of differential equation

ξCB
′ − (αk + βk

απe

βπe
) ξCB = 0, (5.41)

ζCB
′ − βπζCB = 0, (5.42)
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Solution to these two equations can be expressed as

ξCB = ξCB(k, π;µ,πe), (5.43)

ζCB = ζCB(k, π;µ,πe). (5.44)

To find γCB, we substitute (5.43) and (5.44) into (5.40i). Hence, we obtain

γCB = −λ2ε(π − π̂)
βµ

−
∆µ

βµ
ξCB(k, π;µ,πe) −

Λµ

βµ
ζCB(k, π;µ,πe). (5.45)

Substitute (5.43), (5.44) and (5.45) into (5.40a) and rearranging, we get

ωCB
′ − (ρ − αk)ωCB = λ1 (k − kn) + λ2ε

βk
βµ

(π − π̂)

+ (∆µ
βk
βµ

−∆k) ξCB(k, π;µ,πe)

+ (Λµ
βk
βµ

−Λk) ζCB(k, π;µ,πe).

(5.46)

Solution to (5.46) can be represented as

ωCB = ωCB(k, π;µ,πe). (5.47)

The dynamics of the monetary policy instrument are obtained by (5.40i). For

simplicity, we rewrite this equation as follows

Ξ1(k, π, γPS, ωPS;µ,πe) = 0 (5.48)

Differentiating (5.48) with respect to time, we obtain

Ξ1
kk

′ +Ξ1
ππ

′ +Ξ1
γPSγ

PS ′ +Ξ1
ωPSω

PS ′ +Ξ1
µµ

′ +Ξ1
πeπ

e′ = 0, (5.49)
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Substituting the known terms γPS ′ = Λ, ωPS ′ = ∆, k′ = α and π′ = β into (5.49) and

rearranging, we obtain the dynamics of the public expectations as

µ′ = Ξ11 +Ξ12πe′, (5.50)

where

Ξ11 = −
Ξ1
kα +Ξ1

πβ +Ξ1
γPS

Λ +Ξ1
ωPS

∆

Ξ1
µ

,

Ξ12 = −Ξ1
πe

Ξ1
µ

.

To find the dynamics of the public expectations, we differentiate (5.12e) with respect

to time

UPSπekk′ + UPSπeπeπe′ + (απekk′ + απeπeπe′)ωPS

+ (ωPSπ π′ + ωPSk k′ + ωPSµ µ′ + ωPSπe πe′)απe

+ (βπeππ′ + βπekk′ + βπeµµ′ + βπeπeπe′)γPS

+ (γPSπ π′ + γPSk k′ + γPSµ µ′ + γPSπe πe′)βπe = 0,

(5.51)

Inserting the known terms k′ = α and π′ = β into (5.51) and rearranging, we obtain

πe′ = Ξ21 +Ξ22µ′, (5.52)

where

Ξ21 = −
α (UPSπek + απekωPS + ωPSk απe + βπekγPS + βπeγPSk )
UPSπeπe + απeπeωPS + ωPSπe απe + βπeπeγPS + γPSπe βπe

− β (ωPSπ απe + βπeπγPS + γPSπ βπe)
UPSπeπe + απeπeωPS + ωPSπe απe + βπeπeγPS + γPSπe βπe

,

Ξ12 = −
ωPSµ απe + βπeµγPS + γPSπ βπe

UPSπeπe + απeπeωPS + ωPSπe απe + βπeπeγPS + γPSπe βπe
.
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The simultaneous solutions of (5.50) and (5.52) give the time paths of µ′ and πe′. Thus,

we solve
⎛
⎜⎜
⎝

µ′

πe′

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −Ξ12

−Ξ22 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

Ξ11

Ξ21

⎞
⎟⎟
⎠
. (5.53)

Suppose that 1 −Ξ12Ξ22 ≠ 0. We conclude that

µ′ = 1

1 −Ξ12Ξ22
(Ξ11 −Ξ12Ξ21) , (5.54a)

πe′ = 1

1 −Ξ12Ξ22
(Ξ21 −Ξ22Ξ11) . (5.54b)

In the open loop Stackelberg solution concept to the previous differential game is

expressed as follows

k′ = (1 − θ(1 − τ)
σ(%k%−1 + πe)

)k% − ḡ + (Ω − n)k, (5.55a)

π′ = ψ ((µ − π − n) − φα) , (5.55b)

ωPS
′ = (ρ − αk − βk

απe

βπe
)ωPS + βk

βπe
UPSπe − UPSk , (5.55c)

γPS
′ = (ρ − βπ)γPS, (5.55d)

µ′ = 1

1 −Ξ12Ξ22
(Ξ11 −Ξ12Ξ21) , (5.55e)

πe′ = 1

1 −Ξ12Ξ22
(Ξ21 −Ξ22Ξ11) . (5.55f)

where ωPS and γPS are calculated by (5.14) and (5.16), respectively.

5.3 The Chaotic Behavior

chaotic dynamics are commonly tested by an empirical method that finds the possibility

of chaos in the time path generated by a dynamical system. In this section, the possible

occurrences of chaos in the trajectories of both players are detected by the largest
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Lyapunov exponent1. The exponential divergence rate of initially close trajectories is a

measure of chaotic dynamics. Thus, we must first find the trajectories of both players

under the Nash and Stackelberg solution concepts.

Table 5.1: Baseline parameter and coefficient values of the specific model

Coefficient Definition Value Acceptable Interval
θ Marginal Propensity to Consumption (MPC) 0.70 θ ∈ (0,1)
τ Income Tax Rate 0.15 τ ∈ (0,1)
δ Incriment Rise of Inflation on Expectated Inflation 0.85 δ ∈ (0,1)
Ω Depreciation Rate 0.05 Ω ∈ (0,1)
% Output Elasticity of Capital 0.65 % ∈ R+
λ1 Central Bank’s Weight on Output 1 λ1 ∈ R+
λ2 Central Bank’s Weight on Inflation 1.5 λ2 ∈ R+
ρ Subjective Discount Rate 0.03 ρ ∈ (0,1)
π̂ Inflation Goal 0.02 π̂ ∈ R+
ε Incriment Rise of Policy Rate on Inflation 0.80 ε ∈ [0,1]
η Coefficien of Output in Money Demand Function 0.30 η ∈ R+
ι Coefficien of Interest Rate in Money Demand Function 0.10 ι ∈ R+
n Population Growth Rate 0.01 n ∈ R
σ Coefficien of Interest Rate in Consumption Function 0.20 σ ∈ R+
µπ Monetary Policy Reaction on Inflation -0.2 χ ∈ R−
$ Coefficien of Inflation in Money Demand Function 0.20 $ ∈ R+
kn Natural Rate of Capital-Labor Ratio 85 kn ∈ R+

Using the coefficients and parameters presented in Table 5.1, we simulate time

paths of the strategies of both players in the model introduced in the previous section.

Seventeen coefficients and parameters appear in the equations that characterize the

behavior of the dynamical system. The value of the most of these coefficients and

parameters are common to standard economic models (Walsh, 2003). Figures 5.1-5.3

plot the trajectories of the monetary policy rate and the public expectations in our three

solution concepts. In all solution concepts, the public expectations are more volatile

than the monetary policy rate.

For our purpose, the most interesting part of this study is to find the sign of the

largest Lyapunov exponent from the series generated by the model. As mentioned

earlier, chaotic dynamic systems are characterized by a positive Lyapunov exponent (λ).
1Among the many methods available for determining the largest Lyapunov exponent, but here we

employ the BenSaïda’s algorithm (BenSaïda, 2007, 2012; Bensaïda & Litimi, 2013; Bensaïda, 2014;
BenSaïda, 2015).
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We now detect possible chaotic behavior in our monetary dynamic games by applying

the Lyapunov test. The null hypothesis of this test is H0 ∶ λ ≥ 0, and its rejection

provides a strong evidence of non-chaotic dynamics (Bensaïda, 2014; Moosavi Mohseni

et al., 2015). In fact, the more chaotic the system, the higher positive the value of λ

(Lynch, 2004).

Table 5.2 provides the Lyapunov exponent in the open loop Nash, feedback Nash

and Stackelberg solution concepts.

Table 5.2: Results of the chaos test on the monetary policy games

Solution Concepts Players (L, m, q) λ p-value∗ Confidence Interval∗∗ Accepted H

Nash
Open Loop

Central Bank (1, 4, 1) 0.12839 0.99900 [0.06007, ∞) H0

Public Sector (1, 6, 1) 0.01103 0.99990 [0.00617, ∞) H0

Feedback
Central Bank (1, 1, 1) -0.57874 0.00000 [-0.78652, ∞) H1

Public Sector (1, 6, 3) 0.00198 0.72226 [-0.00355, ∞) H0

Stackelberg
Central Bank (1, 1, 5) -2.39456 0.00000 [-2.39456, ∞) H1

Public Sector (1, 6, 5) 0.01425 0.72546 [-0.02355, ∞) H0

* At the 5% significance level, H0 is rejected for p-value less than 0.05.

** Confidence interval at the 5% significance level.

Open Loop Nash Staregy

The Lyapunov exponent of the central bank and the public sector are 0.12839 and

0.01103, respectively. Therefore, the trajectories of both players are chaotic at the 5%

significance level.

Figure 5.1: Trajectories of the monetary policy rate and the public expectations in the
Nash open loop strategy
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Feedback Nash Strategy

In this solution concept, the trajectory of the central bank shows the absence of any

chaotic tendencies at 5% confidence level. However, the trajectory of the public sector

still remains chaotic.

Figure 5.2: Trajectories of the monetary policy rate and the public expectations in the
Nash feedback strategy

Stackelberg Strategy

In the Stackelberg strategy, no evidence of chaotic dynamics appears in the trajectory of

the central bank, and the null hypothesis is rejected at the 5% significance level. On the

other hand, the results confirm the test by accepting the null hypothesis of the chaotic

dynamics in the trajectory of the public sector.

Figure 5.3: Trajectories of the monetary policy rate and the public expectations in the
Stackelberg strategy

The above chaos test is robust to relative changes in the parameter values. Although

changing the parameter values can alter the time paths and the Lyapunov exponents
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but the accepted hypotheses still remain unchanged. However, this analysis rises one

interesting possibility. The source of any chaotic behavior in the dynamics of monetary

policy games depend on the behavior of the public expectations. As established by the

following proposition, the public expectation plays an important role in the emergence

of chaotic dynamics in monetary policy games.

Proposition 5.3.1. Any complexity during the conduct of monetary policy is sourced

from the chaotic behavior of the public expectations.

We have already indicated the crucial role of the public expectations in the effect-

iveness of monetary policy. Also, in the monetary policy games, the expected inflation

behaves as a punishment strategy of the public sector. Furthermore, as revealed in this

section the public expectations is the sources of the transient to chaos and complexity

in such games.

5.4 Conclusion

This chapter confirmed that chaotic dynamics can arise in monetary policy games.

Consequently, the trajectories fail to replicate themselves (Baumol & Quandt, 1985)

thereby limiting the predictability of the future behavior from the past history. Such

complexity imposes a serious caveat on monetary policymakers. Policy designing

is a difficult task, rendered more complex when the public sector exhibits chaotic

behaviors. Chaotic behavior in the strategy of the public sector inhibits the ability of

the policymakers to control the business cycles through predictive analysis.



Chapter 6

Conclusion and Future Works

Employing the dynamic two-player noncooperative monetary policy game introduced

in Chapter 3 and the mathematics and economic concepts discussed in Chapter 2, this

thesis provides numerous insights into the time inconsistency of monetary policy and

chaotic games with the variation parameters. The numerical solutions revealed more

volatile behavior in the public sector than in the central bank regardless of solution

concepts. This aspect of chaotic games in monetary economic systems is veiled in

previous theoretical and applied works. Rather than focusing on chaotic behavior in

the monetary policy games, this study revealed the time inconsistency in the monetary

policy games with varying parameters.

The main finding was the possibility of chaotic dynamics in the monetary policy

games. The likely source of this complexity is the chaotic behavior of the public sector.

6.1 Concluding Remarks and Discussion

When discussing the dynamics of the monetary policy games, in Chapter 3 we emphas-

ized aspects of the structural time inconsistency that were previously unmentioned in

the literature, but which are important for studying the monetary policy dynamics. By

96
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relaxing the assumption of fixed coefficients in conventional growth models, we found

that the co-state variables were uncontrollable in all solution concepts.

Remark 6.1.1. According to the analysis, the monetary policy instrument is state and

control contingent and responds to any changes in the state and control variables. In

other words, the economic condition forces the central bank to deviate from its planned

action. Moreover, this deviation is necessary to maintain optimality of the monetary

policy game. We referred to this type of deviation as the structural time inconsistency.

The importance of this analysis is twofold. First, it represents that even if the

policymaker commits to the goals, the structure of the economy can influence the actual

decisions of the central bank. Second, we understand how the central bank should

conduct a monetary policy that maintains a low and stable rate of inflation.

Remark 6.1.2. Propositions 4.2.1 and 4.2.4 imply that in an open loop solution con-

cepts the trajectory of each player directly depends on the time path of the strategy of

the other player. Consequently, the dynamic behavior of one player depends on the time

path of the other player.

It is worth noting that the public expectations largely influence the transmission

mechanism of monetary policy and appearance of the expected inflation in this model is

the result of relaxing the usual perfect foresight assumption. In our model, the expected

inflation is a punishment strategy of the public sector.

Remark 6.1.3. Results of the chaos test indicated that the trajectory of the public

expectations introduces complexity and chaos in the monetary policy games. This

complexity creates difficulties for policymakers.

To elucidate the impact of the monetary policy on the economy, we must determine

the response of the public expectations. This becomes possible when the monetary

policy behaves in a systematic manner (Walsh, 2003). The emergence of chaotic
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dynamics which means the inability to forecast weakens the power of the monetary

policymaker to stabilize the economic cycles.

6.2 Future Works

Even though Moosavi Mohseni et al. (2015) reported that expectations hypotheses

increase the complexity in the behavior of the dynamical monetary systems, it seems

further thought needs to be devoted into the different expectations hypotheses in the

presence of chaotic dynamics in monetary policy games.

We have explored a two-player dynamical game. Adding a third player (the fiscal

authority) to this game would refine the analysis. We know that the interaction between

the fiscal and the monetary policies are through the government’s budget constraint. One

could analyze the chaotic dynamics when monetary and fiscal policies are coordinate,

and not coordinate, and compare the results.
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