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Abstract  

This paper reports the results of an experiment to 
illustrate the hazards of using correlation data as the sole 
determinant for software metric use and validation.  
Three widely cited complexity metrics have been 
examined in relation to the frequency of software 
development errors. 
 
I. INTRODUCTION  

The ultimate aim of quantitative software assessment is 
the same as that for any measurement procedure, i.e. to 
attain control over aspects of the operating environment.  
In the domain of software development there are many 
aspects over which we would like to maintain control e.g.  
development time, resources required, costs incurred and 
maintenance effort.  

Similarly, the measurement function over many 
application areas is often achieved in a common way, 
particularly when estimation is a priority.  Relationships 
are proposed, a model or technique is developed to reflect 
these relationships, prediction or estimation based on the 
model is performed, comparisons are made between 
actual and predicted results and the model is adjusted and 
tuned (if required).  
 
II. COMPLEXITY MEASUREMENT 

TECHNIQUES  

Such has been the perceived importance of software 
complexity assessment that well over fifty models and 
techniques which are said to quantify software 
complexity have been proposed in the literature.  (This in 
itself is an indication of the inadequacy of many of the 
methods.)  

Three of the most widely cited and investigated 
measurement approaches have been evaluated in this 
study.  These are the lines of code measures, Halstead's 
software science [1] and McCabe's cyclomatic complexity 
[2].  
 
a. Lines of code measures:  

Line-based measures are still widely promoted, 
particularly as an easily derived baseline approach which 

can be useful when applied consistently.  The many 
variations of this technique are based on a common 
assumption; that a larger program (in terms of the number 
of lines) is likely to be more difficult to understand than a 
smaller counterpart.  In turn this means that the larger 
program will be harder to construct and change.  

Five sub-techniques are widely employed to indicate 
complexity in lines:  

1. total lines (TLOC) - all lines excluding blank lines  

2. executable lines (ELOC) - quantifying all 
occurrences of program verb clauses  

3. non-commentary lines (NCLOC) - all lines except 
blank and comment lines  

4. lines as separated by code delimiters  

5. statement count - this usually has the same form as 
the ELOC or delimiter-separated counting method.  

Criticism of this overall approach has, however, been 
widespread.  Probably the most significant factor which 
has impaired the use of this method is the lack of 
consistency in the counting methods used - although five 
counting schemes were outlined above, up to twelve 
different methods have been identified [3], [4].  This 
clearly reduces the likelihood of obtaining valid 
comparisons for results obtained under different schemes.  

This method is also susceptible to variations dependent 
on the programming style employed (particularly the 
TLOC and NCLOC measures).  For example:  

IF X = 70 THEN  

GOSUB 500      TLOC = 4  

ELSE         NCLOC = 4  

X = X + 10 

  

IF X = 70 THEN GOSUB 500 ELSE X = X + 10  
           

TLOC = 1 

           NCLOC = 1  

Furthermore, the method appears to lack some degree of 
comprehensiveness, as only size is evaluated in the 
assessment of complexity.  In addition, LOC counts 
cannot be determined until late in the project, so that 
useful estimation for the current project is virtually 
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impossible.  
 
b. Halstead's metrics:  

Token counts form the basis for all of Halstead's metrics, 
the collection of which is widely known as software 
science. Each element in the code representation is 
classified as an operand (label, constant, variable etc.) or 
an operator (a symbol which affects the value or order of 
an operand). Thus the basic parameters of the theory are:  

n1 = number of unique or distinct operators in that 
implementation 
n2 = number of unique or distinct operands in that 
implementation 
N1 = total usage of all the operators in that 
implementation 
N2 = total usage of all the operands in that 
implementation. 

By combining psychological processing principles with 
these token counts, Halstead developed a number of size 
and complexity estimation formulae.  For example, the 
vocabulary is derived from the initial counts as:  

n = n1 + n2  

and the implementation length as  

N = N1 + N2.  

Another of the primary measures formulated was the size 
measure, volume:  

V = N log2 n.  

Although this overall technique appears to be 
comprehensive, several problems have been encountered 
in its use.  Significant anomalies have arisen in the 
consistent classification of tokens, particularly for 
languages which have emerged since the theory was 
developed [5], [6].  This has resulted in a situation where 
researchers have often had to use their own counting 
schemes, introducing a degree of subjectivity into what is 
said to be an objective quantification.  This is further 
compounded by the fact that many studies fail to publish 
the counting rules which were employed.  Thus 
validation through further experimentation cannot be 
performed.  

Criticism of the psychological assumptions utilized in the 
formulation of the theory is also widespread, particularly 
relating to the model of program construction which 
Halstead adopted [7], [8].  

Furthermore because of the theory's actuary nature, some 
very erratic results have been observed for empirical 
work involving very large and very small programs [9], 
[10].  This clearly lessens the general applicability of the 
theory.  

Halstead's work has also been criticized for failing to take 
account of the many other aspects which are thought to 
contribute to software complexity.  For example, 
software science makes no consideration of nesting levels 
or control flow in the code [11], [12].  

Samson et al [13] and Vessey [14] also comment that the 
measures are only derivable after coding is complete.  
 
c. McCabe's cyclomatic complexity:  

McCabe's measure uses the number of execution paths 
through the code as an indication of complexity, as it is 
suggested that each path must be traced if the program is 
to be completely understood.  

All procedural programs can be represented by directed 
flowgraphs, using nodes to indicate blocks of sequential 
statements and edges to illustrate selection and iteration 
structures.  For all single-entry single-exit code modules, 
McCabe's measure equates to one plus the number of 
decision structures (alternation and repetition) in the 
module:  

v(G) = e - n + 2   ≈     v(G) = π + 1  

e = number of edges   π = number of decision structures 

n = number of nodes.  

A significant criticism of the two previous assessment 
schemes (lines of code and software science) was their 
failure to consider the contribution of aspects such as 
code structure to the overall complexity of the program.  
In comparison, McCabe's technique appears to be quite 
promising, as control flow is clearly assessed.  It is 
evident however, that this is somewhat to the detriment of 
the evaluation of other aspects. In particular, the 
complexity of all functional code blocks is considered to 
be equivalent, irrespective of the size or internal nature of 
the blocks. This means in effect that a two-line segment 
of sequential statements is considered to be as difficult to 
understand as a two-hundred-line sequential code block.  

Two other counting anomalies arising from the original 
metric definition have also been identified.  The first 
concerns the consideration of multiple-exit code modules 
[15]; the second is related to the consistent interpretation 
of compound predicate structures [16], [17].  

In addition, no recognition is made of system size, 
nesting levels, data flow or program modularization.  It 
therefore seems doubtful that this metric can be 
considered as an adequately comprehensive indicator of 
total complexity.  Moreover, due to its foundation in code 
decisions or code-based flowgraphs, determination of the 
measure can only occur after program development is 
complete. 
 
d. Summary:  

All of the three techniques investigated here have positive 
aspects; each has been successfully validated both 
empirically and subjectively, and each is intuitively 
acceptable as being in some way related to software 
complexity.  However, criticism of the methods is also 
extensive.  Several failings are evident for all of the 
techniques, particularly (i) their single-aspect 
consideration, (ii) the counting procedure anomalies 
associated with each and (iii) the late availability of 
results under each of the schemes.  



(i) Since there are many attributes thought to 
contribute to complexity, it would not be an easy task 
to design a measure which would consider every 
aspect.  What is more, such a measurement scheme is 
likely to be so comprehensive as to become 
impractical for efficient project management.  Also, 
combining several approaches may have the 
undesirable result of simply compounding the 
problems inherent in each. It may also be difficult to 
achieve an appropriate `balance' between the 
approaches employed so that the scheme is not 
dominated by one aspect e.g.  size or module 
structure.  

(ii) Generally the causes of counting problems are 
two-fold: the first is the lack of succinct underlying 
theory behind the actual measurement techniques and 
the subsequent looseness in their definition; the 
second is the frequency of change in technology 
which afflicts the computing industry.  When the 
measurement schemes were developed, they were 
certainly relevant to development methods of their 
day. However with new techniques for software 
production constantly emerging, the appropriateness 
of the metrics has been reduced.  

(iii) To obtain an objective measure, the assessment of 
a tangible product was considered to be necessary - 
the obvious software product was the source code.  
Hence this has been used in most quantification 
techniques. However this does mean that 
measurement extraction can only be performed very 
late in the development process.  Furthermore, since 
design conventions and notations are still very broad 
and lacking in standards, measurement from these 
representations may also be difficult.  

Despite these extensive problems the three metrics are 
still widely supported, based solely on the very strong 
empirical evidence which has been observed in many 
studies.  Most of this evidence has been provided using 
linear correlation data, supporting the existence of linear 
relationships between the metrics and various aspects of 
the software development process and/or the final 
software product. These aspects are said to be indicative 
of complexity e.g. the number of development errors, 
development time duration or the time needed for error 
location or system enhancement.  Using Pearson's 
product-moment correlation coefficient (r), relationship 
levels of greater than 0.90 have been reported [18], [19].  
In many cases this has been the extent of the validation 
undertaken and predictions based on these findings have 
been subsequently performed.  

Reliance on conclusions based solely on the correlation 
data may be questionable, however. Lister [20] points out 
that although the correlation procedure is appropriate for 
investigating the relationship between random variables, 
this random nature has been seldom proved in 
measurement studies. Furthermore, a high correlation 
may indicate the existence of a linear relationship, but it 
provides no insight into the validity of the relationship 
itself.  
 

III. EXPERIMENTAL WORK  

To examine whether such confidence should be placed 
solely on correlation data, a set of twenty-eight high-level 
programs were analyzed in conjunction with development 
information.  

(i) Sample - The software used in this investigation 
was a financial database statistics extraction package 
written by a professional programmer with eleven 
years of programming experience.  The system was 
written in Clipper1

(ii) Procedure - All logical compilation errors which 
occurred during the development of each program 
were recorded as they arose until the program was 
complete.  Measures were then extracted from the 
modules for the three metric techniques discussed 
previously.  Total and non-commentary lines of code 
values were derived as representative of the line-
based measures (TLOC and NCLOC), n1, n2, N1, N2, 
n and N were chosen for software science and the 
number of decisions and v(G) were extracted for the 
topological measures (DEC and VG). Correlation and 
regression techniques were then employed to 
determine the existence and significance of any 
relationships.  

 and consisted of twenty-eight 
newly developed program modules. The smallest was 
twelve lines long, the largest was 123 lines.  

(iii) Results - Correlations between the number of 
development errors and the values of the specific 
metrics are shown in Table 1.  

TABLE 1. Correlation between development errors and 
complexity metrics 

 

 
Apart from the two decision-based metrics (DEC and 
VG) all of the metrics showed fairly good correlations 
(0.65 ≤ r ≤ 0.83) with the development errors.  If we were 
to end the experiment there, it would be tempting to 
suggest that these measures, particularly TLOC, NCLOC 
and n1, were adequate indicators of complexity in terms 
of development error occurrence, and that they may in 
fact be used to predict the likelihood of development 
errors (due to complexity) in other projects, as has been 
done in the past.  

Regression analysis, however, lessens the validity of such 

a suggestion.  Using the R
2
 statistic (the square of the r 

correlation measure) as an indication of the explanatory 
power of prediction models, the following levels (Table 
2) were obtained for the metric-based estimation of 
development errors:  

                                                           
1 Clipper is a trademark of Nantucket.  

 



TABLE 2. R
2
 levels for metric-based error prediction 

 

 
The explanatory capabilities of the various metrics appear 
to be lower than we would require to obtain accurate 
estimates of error occurrence. (This result can, of course, 
be derived from the correlation statistics, because of the 

direct square relationship between r and R
2
; this is 

seldom performed, however.) Furthermore, the regression 
procedure allows the examination of the residual plots 
associated with the prediction models.  These should 
show a constant band of data points, evenly dispersed 
about the mean (at 0 on the vertical) with a constant 
variance and a random nature. All of the plots derived 
from the above prediction models failed to conform to 
these requirements.  This is likely to be due at least in 
part to the impossibility of obtaining a negative value for 
the number of errors, resulting in a skewed distribution 
for this variable. This suggests that this commonly used 
method of complexity metric validation may be flawed, 
particularly for smaller samples.  

A stepwise linear regression procedure was then 
performed to determine whether a combination of metrics 
could provide more effective error prediction (Table 3).  

TABLE 3. Summary of stepwise regression procedure for 
dependent variable errors 

 

 

An R
2 

 of 0.88 appears promising at first; however, the 
beta coefficient of the N2A variable (n2) in the predictive 
equation is negative (-0.09902982).  This implies that (all 
other variables being held constant) the incidence of 
errors should actually decrease with a corresponding 
increase in the number of distinct operands in the 
representation.  This would seem to encourage the use of 
a large number of operands in order to reduce the 
incidence of errors in the code development phase. This 
is an interesting finding, but one which is most counter-
intuitive.  

These results provide a difficult choice. If we choose to 
use single variable based predictions (such as TLOC, 
NCLOC or n1), the explanatory powers are low and the 
residual plots reveal a lack of adequacy in the models.  If 

we therefore utilize the full stepwise model, counter-
intuitive parameters are employed.  
 
IV. CONCLUSIONS  

Despite widespread acknowledgement of the problems 
associated with the three techniques, support for each has 
continued because of the often strong correlative 
experimental evidence obtained. As a result, estimation 
of process and product attributes is frequently performed 
based on this data.  This study has attempted to illustrate 
the problems inherent in this procedure.  It is 
acknowledged that this study, like many others in this 
area, has several limitations.  Only one small system 
implemented in one language by one programmer was 
evaluated.  This, however, does not completely invalidate 
the results achieved - the same problems are likely to 
occur in experiments involving large, team-developed 
systems, if adequate statistical procedures are not 
employed.  It seems clear that the sole use of correlation 
data as evidence for metric use and validation is 
misdirected, and that other statistical methods should be 
applied if truly valid results are to be obtained.  
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