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46. EEG Signal Processing fo

Petia Georgieva, Filipe Silva, Mariofanna Milanova, Nikola Kasabov

c user and the mpul device,
ard, mouse, or trackball. Other
aclude speech recognition io allow
tasks and dictation to be performed by the
vithoul any physical centact, Desplte the wide
computer input devices, it is clear that there
may be’ ¢ircumstances where such devices are not suit-
'1ble FOL example, if the user has a motor-control
rzboth speech and physical lnput may be impos-
his is how the idea of a brain computer interface
(BCI) emerged, as an aliernative communication chan-
nel between the human being and the external world,
The objective is to record the brain aclivily variations
associaled with a thought or mental state and frans-
late them inlo some kind of acluation or command

1
2
EEG Based BCI ...................................... 3
6.3:1-EEG Waves 3
:3.2 EEG-Based B( Paradigms............ 3
.3 Feattire Selection .......cooveeennnnnnns 5
_ 4 Classification Techniques............. 6
L6 BCl Mobile Robot Control ~ IEEFA
Case STUAY ... 6
. 46.5 Source~Based BCL.....cooooiiiiiiveeviieiiiannns
46.5.1 Sequential Monte Carlo Probiem
Formulation ........ccoccvveenivnnnnannnn, 10
46.5.2 EEG Source Localization Model
in State-Space......ccoovvevvvninnnnnn. 11
46,5.3 Beamforming as a Spatial Filter ... 12
46.5.4 Experimental Results.................. 12
46,6 CONCIUSIONS..........oovviiivieeiviceerereannn, 15
References ..o e 15

over a larget output, Examples of possible uses for
such an inlerface are control of a robot arm, wheelchair
movement or wriling on a monitor (BCI as a men-
tal keyboard), Ameng various potential applications,
prosthetic Emb conirol is currently a major largeted ap-
plication, allowing a paralyzed patient to gain motor
ability in a BCI controlled limb, Potential users include
those with severe head trauma or spinal cord injuries, as
well as people with amyotrophic lateral sclerosis (ALS,
or Lou Gehrig's disease), cerebral palsy, or other motor-
contro! disorders. BCIs could be useful even for people
with lesser, or no, motor impairment, as, for example,
computer gamers,

This chapler will present recent advances {owards
the development of BCI systems that analyze the brain
activity of a subject mensured through the electroen-
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Information Modelling of Perception, Sensation and Cognition

cephalogram (EEG). The work begins with a general
overview of BCI technologies, which is followed by
a more comprehensive analysis of the EEG-based BCI
paradigms. Next, we focus on the main signal pro-

16.2 BCl Technologies

There are three main BCI technologics, which are in-
vasive, parlialty invasive, and noninvasive. The invasive
BCIs are based on detection of single neuron activity by

intra-cortical electrodes implanted inte the gray matler
of the brain. Much of the related rescarch has been doite™ i _
" tional near-infrared systems (INIR) [46.3] arc also sub-

with animals (mainly rats and monkeys), although same
tests with humans have also been done. Fo:\___pgamp

already have the electrodes from epilepsy monitori
trials. Partially invasive BCIs are based onrégording 6
electrocorticographic (ECoG) implants isi
but outside the gray matter. Invasive an
vasive BCIs are more reliable "md less- i
implant placemenl by neurosurgery is;
brings hardware and ethical pro 'lcms Fo‘ exampte,
important issues concerning theli
Tong-term use or their periogd 'ti 1eplaccmenl have still
to be solved.
Noninvasive BCIs 1 I
activity at a macro leve), (in contfast to the single
neuron level by 111V'15ive [s) using various nonin-
vasive techniquegs “The most typical noninvasive BCI
designs use an EEG lo mieasure the potential differ-
ence between eleclrodes p\]'lced on the head surface.
The EEG mauhme “sétandard medical imaging de-
vice and !g'ls many, 7 ‘1dv'm('1gcq it is safe, cheap, and
relatively €asy lo usé‘ Moreover, the subject preparation
rimients: and “the recordings arc fast and, there-

-".'Hardwa : Complcxlt}.:;

(.md pme)

"! Cl'i‘l‘ ............................... ; s -:

= ' SPECT -

: @ MEG] @ s FCT MEG
L @ PET IMRL.

s Neuron] ! e
Amm® activity | @ IMRI ,.i EEG ..

ll'_n!n ""- e

: Slms ls 105

- Time resolulmn

Fig, 6.1 Brain imaging techniques

L
BEG signal enhancement, feature
cation. Finally, we introduce our
EG source estimation by particle

cessing challenges —
extraction, and class
ongoing research o
filters.

jectof intensive rescarch. In Fig, 46.1 time versus spa-
ial resolutions of different techniques for brain imaging
and the associaled hardware complexily and price are
depicled. Note that while the EEG technique has a tem-
poral resotution similar to the real neuron activity (in the
range of 1 ms), its spatial resolution is the worst among
all techniques. Single photon emission compulerized to-
mography (SPECT) and positron emission tomography
{(PET) do not provide resolution advantages and, addi-
tionally, they are more expensive, and therefore they
have nol yet been reported as BCI technologies, Note
that MMRI has the closest spatial resolution to the real
neuron activity (around 1 mm?}. However, current tech-
nologies for recording MEG and fMRI are expensive,
making them not quite practical for wider applications
in the near future. fNIR is potentially cheaper bul both
fMRI and fNIR are based on changes in cerebral blood
Mow, which has an inherently slow response. Therefore,
EFG signal processing is currently the most practical
technology for BCIL Nevertheless, building a hybrid
BCI that combines the two modalities, EEG and fMRI,
and thus benefits from their respective favorable resolu-
tions is an appealing still unexplored alternative.

B{l Sensors
The evolution over time of the electrical sensors used in
BCI systems is sununurized in Fig. 46.2a, The

si arized in Fig. 46.2a, first B . Glh
system was developed in 1977 by Jacques Vidalm idde g} j;éff;

pased on visual evoked potentials (VEP}. The real-time
analysis of EEG signals suggested the use of waveform
activity in the timeframe of N100-P200 componernls,
with N and P indicating nepative and positive peaks,
and the numbers indicating the approximate latency
in msec. Vidal's achicvement was a proof of concept
demonstration. Due {o the limited computer process-
ing capacity at that time (an XDS Sigma 7 computer
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EEG-Based B(I

controlled the experiments and an IBM360 mainframe
digitized the data) it was far from being practical. On-
line removal of ocular artifacts was also included in
Vidal's system. A decade earlier, Edmond Dewan, 1967,
showed that subjects could learn to fransmit Morse code
messages using eye movements 1o modulate their brain
waves,

Since 1992 experiments with invasive eleclrodes
(ECoG and intra-cortical) have been performed in
the BCI framework, mainly with animals (Fig. 46.2¢).
However, due to the high risk and hardware and ethicat
problems, invasive brain imaging is still less imple-
nented, The noninvasive sensors (Fig. 46.2b) evolved
from the classical EEG gel-based electrodes, through £
the near-IR efectrodes, and very recently dry electrodes ||
appeared on the market.

L6.3 EEG-Based BCl
46.3.1 EEG Waves

brain is a rchtwely new one, bul :
waves has been reported since 1929 when Hans Berger
first recorded EEG signals from’a hiiman source using
electrodes and a galvanometer. This me’tsured the po-
tential difference between | “electrodes’ phced on the
scalp and a reference eieclrode placed on the earlobe,
The potential dilferepée=fluclyations gave an indica-
tion 1o the small cufrent prodiiced by the billions of
neurons in (he brain'When they/fire. The combination
of the neurons, firing 'in:flievbrain can yield signals
that are exiremely complex but that have identifiable
patterns b'lsed_upon the activity in the brain. For ex-
ample, sleepm;cg Wwill: produce a substantially different
EEG mgnal to that of a brain computing complex
atical probléms — this can be seen by per-
frequency amlyms of the s:gmls The key

the 0- 60Hz frequency band. Different brain activities
and stalus can be identified based on the extracted fre-
Luency content of the recorded oscillations [46.4]. The
frequency bands of the EEG signal are listed
in Fig, 46.3,

Delta waves (below 4 Hz) are associaled with deep
sleep, They are a high-amplitude, low-frequency wave
and are generated by the lack of processing by neu-

FJg L6, Za(a) BCI e[ectrodes lechnology evolulion {b} neninvasive

rons. Delta waves can also be found when examining
a comatose patient.

Theta waves (4—-8Hz) are typical for dreamlike
states and old memories, but can also be associated with
anxiety, epilepsy, and traumatic brain injury

Alpha band {813 Hz) correspond 1o a relaxed
state recorded in the occipital brain zone, The amplitude
of alpha waves ranges between 10 and 50mV,

Sensorimotor {mu) rhythms (8--12Hz} are associ-
ated with the sensory-motor corlex and can be used
to recognize intention or preparation of movement and
also imaginary motor movement,

Beta (13-30Hz) waves are associated with alert-
ness, arousal, concentration, and attention. Beta waves
are fast but of low amplitude., /g

Gamma band (30-50 Hz) are-characteristic for
mental activities such as perception, problem solving,
and creativity.

Note that the alpha band and mu-rhythms cover the
same frequency range, however, the respective waves
are clearly identified at different brain zones,

For each particular brain activity there is one par-
ticular area that produces sironger electrical activity in
one of the previously referred to frequency bands; simi-
larly, intemnal artifacts are more relevant in some parts of
the scalp than in others. Consequenlly, EEG signals are
mulli-channel signals, were cach channel corresponds
lo a specific scalp location, The occipital area of the
scalp is known to provide stronger electrical signals in

Please check that this is the intended meamng;' o
Plcase chcck tlnl this is lhe mlended meaning.

Uiy o uﬁs'csta's ansatadons (will be reowwed before the #inzd TeX rin)
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Fig. 46.3a-f EEG; vaves. (a) Delia b'md (below 4Hz), (b) theta

& band (4-8Hz); {¢) alpha iband (8—13Hz); (d) mu-rhythm
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30 Hz); {f} gamma band (30-50Hz)

- (8—12Hz); (e} beta band.(]

':"ﬁﬁ 3 2 EE;EG-Based BCl Paradigms

Amfong the various noninvasive BCI paradigms pro-
posed, the sensorimotor () riythms (SMR} and the
Svisual evoked potentials (VEP) are the most frequently
reported,

SMR are spontaneous changes in the EEG os-
cillations i the 8-12Hz range registered from the
central region of the scalp (sensorimotor cortex) when

Created on: 4 February 2013 17:02.CET

movement or imaginition of: l___pq_gph nt is performed.
At least a secondibefore subjects initinte voluntary
movement b8 r (he hemisphere contralateral
irection dccrease in amplitude. SMR
activify returns 1o baseline levels within a second after
movément isinitiated. These motor activily dependent
changes are ed ovent related desynchronization
(ERD) and event rchled synchronization (ERS). Wol-
w et al. [46.5] reponed the first use of SMRs for

4 Snlrast to spontancous SMR that do not re-
Guire specn]" stimuli to oceur, VEP changes in the
ungomg-EEG are generated in response Lo visual stim-
ilus. ‘However, visual stimuli may comprise different
components, such as color, lexture, motion, objects,
abitity (text versus non-text), etc. Each of these
mponents has an impact on the spatial dispersion

s of the VEP (hroughout the scalp, being observed dif-

ferently in each EEG channel. Therefore, to focus the
VEP production and anatysis, the sel of visual stim-
uli must be coherent, i.e., il should always stimulate
the same brain areas. Typical VEP waves are denoled
as N100, P100, P200, P300, and N300, with N and
P indicating negative and positive peaks and the num-
bers indicating the approximate tatency in milliseconds,
for example, P300 stays for positive potentials over
300 ms. Barly waves (N100, P100) correspond to per-
ception of sensory stimulus, while Tatter waves (P3040,
N300) refiect higher cognitive processes like attention,
learning tasks, decision-making, memory, etc. Various
studies [46.6-8] showed that VEPs recorded from the
luman scalp contain a train of short latency wavelets,
in the gamma band, precisely time locked to the stim-
ulus and lasting approximately 100 ms, Furthermore,
a more recent study [46.9] showed that the perception
learning task of a picture set induced neural activ-
ity in the gamma band, highly synchronized between
occipital electrades. Finally, (he analysis of EEG in
response 0 coherent and noncoherent visual stimu-
lus in o discrimination task evidenced a short-lasting
occipital enhancement in the band around 300ms af-
ter stimulus onsel in response lo coherent images
only [46.10],

The most well-known BCI based on VIP is the so-
called P300 BCI where a matrix of choices (letters of
the alphabet, digits, and other symbols) is presented on
sereen and the BEG is recorded as these choices flash
in succession. The posilive potentials around 300ms
after an event significant to the subject is considered
a cognitive potential since it is generated in tasks where
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46,3 EEG-Based BQ

Table 46,1 BCI feature selection

the subject discriminates among stimuli. In the P360
spelling device, the subject focuses hisfher attention on
the desired symbol as the rows and columns of the ma-
trix are repeatedly flashed to elicit VEPs.

An attempt for BCI design based on mental {asks
such as solving a mathematical problem, mental cou"
ing, and imaginingfrotating a 3D object was pmfmsed
recenily [46.11]. ;

stillproduce usable resulls
Fur(her to this, the protocols and drivers of commu-
ation between the EEG machine, the computer, and

% eventually an output device often need special attention.

BCl Challenges
Independently of the paradigms discuss

sources of noise and physi
3. Poor spatial resolulion. ,

EEG signals are electric signa Sgathered at the scalp
of an individual. Thes arg- ‘a combination of
signals from twe dlf_f rent Sourges 1) neural-cerebral
activity, called featlites and 2) noncerebral origins,
called artifacts, Internal (pliysiological) artifacts are ar-
tifacts :.aused”by other,  body activities, such as eye
mation, eye blthlng, electrocardtc activity, and electric
activity resulting g"i'['rommli%cle contraction. External (en~

SOUICEs,;
..conl:{c' ;

s;gn‘lls recel\'e from the electrodes are very weak, in
order to! ‘senerate a useable signal they must be am-
plified sﬁbstfmtlally Therefore, the EEG measurements
e euhjeu to pre-processing and filtering to remove the
physu)]oglc'll and environmental artifacts and also the
background brain activity (for example, jaw clenching)
in order to isolate the event related features.

Apart from the EEG signal processing challenges,
more technical problems such as effective electrode

Timing issues represent an additional challenge when
real-time control of an external device is lhe goal of
the BCI, as, for example, contrelling a wheelchair. Last
but not least, the mulli-disciplinarity of BCI research
requires knowledge and expertise in many different dis-
ciplines such as signal processing, computer science,
computational neuroscience, and imbedded intelligent
systems,

46.3.3 Feature Selection

After amplification and filtering of the row EEG data,
ihe features that define the brain state or activily are se-
lected and extracted. Due to the inherently large EEG
signal variability that ranges from session to session
for the same subject, through single versus multiple tri-
als also for the same subject, to a clearly expressed

Fig. 46.4 Typical BCI featurcs
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T-zble 46.1). The isolation and extrdctloh.o he:
sumble features of interest is lhe,-:}.ey for BCI designs

Fealures.
For BCI-based on mc
isolated by the powor ﬁﬁ |

such as auto regresswe (AR) mode!s adaptive auto
reglesswe (AAR) madels Kalman ﬁ!teung (KF), and

ponem anq}_ys__i_ﬁ(l
(PCA). [

A wmhumtmn

The' prolocol for motor imagery BCI designed in the
Lfnbémlory of Signal Processing (www.iceta.pt) by the
Insfitute of Electrical Engineering and Telematics of

“Aveiro (JEETA) is outlined in this section, The am-

bulatory EEG device, Trackit system LifeLines Ltd.,
has eight channels, a sampling frequency of 256 Hz,
and a maximum voltage of 10mV. The electrades
are located according to the standard 10/20 inter-
national system (Fig.46.6) and their size is about

u6.3.4 Classification Techniques

The next step of the BCI design is the fealure clas-
sification and decoding of the brain state that reflects
the subject’s desire. The classification approaches are
generally devised as nonlinear and linear, the latter be-
ing applied more often. The main linear and noninear
techniques and lheir respective contribution in the BCI
framework are summarized in Fig. 46.5. Among the lin-
ear lechnigues, simple thresholding and linear discrim-
inant analysis (LDA) are generally the best classifiers.
As with the nonlinear approach, neural networks (NN},
learning vector quantization (LVQ), and nonlinear sup-
port vector machines (SVM) are implemented in more
thait 80% of cases. Although probabilistic technigues
like Bayesian classifiers and hidden Markov models
(HMM) are very powerful, they need longer execution
time (particularly if Monte Carlo runs are required) and,
therefore, are not suitable for real-time applications.

- 146,k BEI Mobile Robot Control - IEETA Case Study

1.5mm. EEG signals recorded from the central arca
(C3, C4, Cz), the frontal area (F3, F4), and the
parietal area (P3, P4) are used for brain activily
decoding.

The abjective is to design a communication pratocol
between the brain and the Khepera mini-robot (5.7 em
diameter) during moltor imagery tasks and to success-
fully control the robot movements over an improvised
platform (Fig. 46.7).
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46.4 BC Mobiie

¥ o ® @ @
@@®®®®®o@

cation system

Before real-time experiments, thef
modu!ale mu- rhy!hms with the hclp 0 i
ments to the right, left, forw'trd i ds oppmg the screen

ball (Flg 46.8), The BCI cla

mlcnt:on
The dlgomhm for sig

Algorithm 46,1 EEG :;.s.vgnal processing  for B(
(Fig. 46.9)

{fixation period)

ject preparation and concentration
hich the personalized baseline EEG
signal is recorded,

(

qg:d] of subject training

p 2t Standard digital filter

The recordcd EEG signals (C3, C4, Cz, P3, P4, F3,
F4yare filtered by a standard digital infinite impulse

esponse (IR} Butterworth filter of the cighth order
40 Hz).

- Step 3: Spatial surface Laplacian filter
For each hemisphere only one corresponding channel is
considered obtained by subtracting the mean value of

the three neighbor channels:
CILH=C3-1/3%(F3+P3+C2)
{left hemisphere)
CRH =C4—1/3%(F4+P4+Cx)
(right hemisphere)

Step 41 Spectral power feature extraction
Sensorimotor (mu) rhythms (8—12Hz) are extracted
from the C_LH and C_RH equivalent signals and di-
vided into segments of 128 sequential samples (0.5s).
The spectral power (P) for each segment per hemisphere
is extracted,

Step 51 Event related de-synchronization (ERD)
ERD is computed {or each channel C_LH and C_RH,

ERD% = %1(}0,

Fig. 46,7 {a} Khepera mini-robot;
{b} BCI control of a mobile robot

IEETA Case Study
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Digital
filter

Fig. 46.10 Typical speciral power

curves in left (C3) and right (C4)
hemispheres related with imagery

4
5 ;
ol ;i —_
: DS SR F RN e

1 e () kg (0 B et DL e (B

movement task fo the right

1
I
w_l__;é’% B is the mean power value of the baseline signal
“¢ollected during the fixation period (step 1), P is the
spectral power computed during motor imagery tasks
(step 4).

Step 6: Classification
The classifier has two inputs, one for each ERD
block,

Power attenuation is confirmed if ERD has a neg-

ative value and the following empirical rules drive the
classifier:

2]

@

If only the right hemisphere signal verifies the ERD
— the classifier output is “LEFT”

If only the left hemisphere signal verifies the ERD -
the classifier output is “RIGHT” (sce Fig, 46.10).
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Fig. 46.11 ERD/ERS due i movenenl imagery versus
movement execution p

— C3 Movement execution
——— C4 Movement execution
— €3 Movement imagery

—-e Cd4 Movement imagery

e If both signals verify the ERD — the output is “FOR-
WARD”

e f neither of the signals verify the ERD — the outpul
is “STOP",

In most of the cases studied, the motor imagery BCI
can reach an accuracy of up to 70-75%. Other publi-
cations report similar results [46,12], ERD/ERS due to
imagination of a physical movement are normaliy less
clearly identifiable compared with ERD/ERS provoked
by real movement execution (Fig, 46.11). However, if
the subject has some residual motor abilities there ex-
ist betier human-compuler communication techniques
than motor imagery BCls. On the other side, allernilive
like VEP BCI are reported to achieve better accuracy
however their technical realization is more difficiilt-and
slow, smce lhey require visual stimuli. More "j er, whll ‘

cin'do other cognitive tasks {46.13], P300 BCI requires
the total atiention of the subject during the stimulus
presentation,

expressed as a number of refated blind source separation
(BSS) problems. Choi et al. [46.18] present a review

Noninvasive BCI design based no
on inner brain sources that origi
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source-based BCI {46.14-
based BCLis to find the localwatlon and time patterns
of the main brain activi ‘wa]yzmg mulu-
channet EEG recordm

g, EEG source signal estimation is
éwn as e BEG inverse problem. The problem
can be- foimulate follows: using the measurements
iential on the scalp recorded from muli-
, the go‘ll is to build a reconstruction system
able to’ esmmte the location (the brain area) and the
nmgmludé and directions of the dominative neural brain
rees thal most probabiy have originated the recorded
G’“Slgndl Thus the problem can be divided into two
stages: 1) focalization of the principal original sources
inside the brain and 2} estimation of the source signal
{waveforms).

The problem of reconstructing the time pattern of
the originat source signals from a sensor array, can be

of various BSS and independent component analysis
(ICA) algoritlhms for static and dynamic models in
their applications. Beamforming (BF} is also a popular
analysis procedure for noninvasively recorded electro-
physiological data sets, The goal is to use a set or
recording sensors and combine the signals recorded at
individual siles to increase the SNR, but focusing on
a certain region in space (region-of-interest, ROI). In
that sense, beamforming uses a different approach to
image brain activities: the whole brain is scanned point
by point, Thus, it is, in fact, a spatial filter designed to be
fully sensitive to activity from the {arget location, while
being as insensitive as possible to actlivily from other
brain regions. This is achieved by constructing the spa-
tial filter in an adaptive way, i. ., by taking inlo account
Lhe recorded data, More conerelely, BF is carried out by
weighting the EEG signals, thereby adjusting their am-
plitudes such as that when added together they form the
desired source signal,

In this chapler we propose a solution {o the
EEG-based brain source recovering by combining two
techniques, namely a sequential Monte Carlo (SMC)
method for source localization and spatiaf filicring by
BF for the respective source signal estimation based on
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BEG measurements. The EEG inverse problem is in-
tensively studded assuming that the source localization
is known. In this work, for the first time the problem
of inverse modeling is solved simultaneously with the
problem of the respective source space localizalion.

46.5.1 Sequential Monte Carlo Problem
Formulation

We consider the problem of the EEG source localization
as an estimation problem and solve it within the SMC
framework. To define the estimation problem, consider
the evolution of the state sequence {xy, & € N} of a tar-
get given by

xp = flig-, we1),

W13 N is Ehc %et of natural numbers. The objcctl’
to recursively estimate x; from measurement

7% = by, ve)

where / is a possibly nontinear:fu
measuremient noise sequence,
(46.2) are the slate and {
the general state-space {r

sition model! required by the
n parlicule’f’r we seek fltered

time step T.
Within framework, the estimation
S sively caleulale some degree of be-
llef in the: slatc xpat Egme k, given the data 7|z up to time
[46 20] Thus.it-s required to construct the posterior
dcnsuy function (pdf) p(xi | z1x). It is as-
e initial pdf p{xp | z0) = plxo) of the state
Yeclor, which? is also known as the prior, is available
. (zp i8” (hc--:nllﬂl measurement). Then, in principle, the
' pgslenorpondllnoml pdf p{xx | z:4) may be oblained
rectirsively, in two stages: predr'crian and rrpdate. Sup-

\ ilable. The prcdicuon stftge mvolves usmg the sys-
“4ém model (46, l) to obtain the prior pdf of the state
at time & via the Ch'ipm'lll—KOlIﬂOgOt’O\’ equation

Pl | zik-1)
= f Pt xe—pln-1 | zi—1)dxe—r . (46.3)

since (46.1) deqcnb"'s a “Markoy” process of order
one p(xg | Xp—t, Z1:61) = p(xg | x—1). The probabilis-
tic model of fhe, ste olullop plxi | xk—1) is defined
by the syslcm qiation (46,1) and the known statistics
step k, 8 measurcment zi becomes

‘s may be used to update the prior (up-

|‘-L)P{\R | Zis—1)
pleg b zik-1)
_ likelihood # prior
T evidence
Zpr—1) is a normalizing constant defined

POl zie) =

{46.4)

by the measurement model (46.2) and the known statis-
lics: of v, Hence, the recursive update of p(xy [zz) is

tional to
Pl b ziw) o plae | xdpCo | 2ie—1) - {16.5)
n the update stage (46.4) the measurement is used

to medify the prior density to obtain the required

posterior density of the current state. The recurrence re-
lations (46.3) and (46.4) form the basis for the optimal
Bayesian framework.

In most real-life problems the recursive propagation
of the posterior density cannot be performed analytically
(the integral in {46.3) is intraclable). Usually numerical
methods are used and, therefore, a sample-based con-
slruction to represent the state pdf. The family of tech-
niques that solve the estimation problem numerically
are denoted as particle filtering methods (also known as
nonparametric methods). Particle filters (PF) were first
defined in the sequential Monte Carlo (SMC) framework
and applied to object and video tracking. In the SMC
framework, mulliple particles (samples) of the shle
are generaled, each one associaled with a weight Wk
which characterizes the quality of a specific particle ],
f=1,2,..., N. Thus, a sel of N weighted particles,
drawn from the posterior conditional pdf, is used to map
integrals to discrete swms. The posterior p(xg | 2141} is
approximated by the weighted sum of particles

Pk | 211) = i W 8(xe— 1), (46.6)
and the update preball?illity is

plxg | z1) = i ﬁ’,f,”ﬁ(,rk —.r{.) , {(16.7)
where -

W = WO p(zs | 06 = Wprevious* , likelihood
{46.8)
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